
Estimating a Semiparametri
 Asymmetri
 Sto
hasti
Volatility Model with a Diri
hlet Pro
ess Mixture�Mark J. Jensen John M. MaheuFederal Reserve Bank of Atlanta University of TorontoMark.Jensen�atl.frb.org & RCEAjmaheu�
hass.utoronto.
aAbstra
t. In this paper we extend the parametri
, asymmetri
, sto
hasti
 volatility model (ASV), wherereturns are 
orrelated with volatility, by 
exibly modeling the bivariate distribution of the return andvolatility innovations nonparametri
ally. Its novelty is in modeling the joint, 
onditional, return-volatility,distribution with a in�nite mixture of bivariate, mean zero, Normal distributions having unknown mixtureweights and 
ovarian
e matri
es. This semiparametri
 ASV model nests sto
hasti
 volatility models whoseinnovations are distributed as either Normal or Student-t distributions, plus the response in volatility tounexpe
ted return sho
ks is more general than the �xed asymmetri
 response of the ASV model. Theunknown mixture probabilities and parameters are modeled with a Diri
hlet Pro
ess prior. This priorensures a parsimonious, �nite, posterior, mixture that bests represents the distribution of the innovations anda straightforward sampler of the 
onditional posteriors. We develop a Bayesian Markov 
hain Monte Carlosampler to pfully 
hara
terize the parametri
 and distributional un
ertainty. Nested model 
omparisons andout-of-sample predi
tions with the 
umulative marginal-likelihoods, and one-day-ahead, predi
tive log-Bayesfa
tors between semiparametri
 and parametri
 versions of the ASV model, shows our semiparametri
 modelfore
asting market returns more a

urately. A major reason is volatility's expe
ted response to unexpe
tedmarket movements. When the market is tranquil, expe
ted volatility's rea
tion to a negative (positive) pri
esho
k is to rise (de
line, then rise as the size of the positive sho
k gets larger). However, during a volatilemarket the asymmetry and size of the 
hange in expe
ted volatility be
omes muted. In other words, whentimes are good, no news is good news, but when times are bad, neither good nor bad news matters withregards to volatility.Keywords: Bayesian nonparametri
s, 
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1 Introdu
tionIn this paper we extend the parametri
, asymmetri
, sto
hasti
 volatility model (ASV),where returns are 
orrelated with volatility, by 
exibly modeling the bivariate distributionof the return and volatility innovations nonparametri
ally.1 Log-volatility of the ASV be-longs to the parametri
, �rst-order autoregressive, 
lass of sto
hasti
 volatility, whi
h 
ana

omodate stationarity as imposed in the literature (Ja
quier et al. (1994) and Kim et al.(1998)) as well as nonstationary deviations from this assumption. The rest of the modelis nonparametri
 in the sense that no assumptions are made about the underlying jointdistribution of returns and volatility. Instead, the 
exible Diri
hlet pro
ess mixture (DPM)
lass of priors by Lo (1984) along with return data is used to estimate the joint distribution.The version of the DPM used is an in�nite mixture of bivariate, Normal distributionswith mean zero, but unknown 
ovarian
e matri
es and mixture probabilities. This is usedto �t the return and log-volatility distribution. As a mixture, ea
h observations 
ovarian
ematrix is distributed a

ording to a Diri
hlet pro
ess prior { a nonparametri
 prior over thevalue of the 
ovarian
e matrix and the probability of its o

urren
e.Others have nonparametri
ally modeled the return distribution of a sto
hasti
 volatilitymodel, but the joint return, log-volatility distribution has not been. Jensen (2004), GriÆnand Steel (2006), Jensen and Maheu (2010), GriÆn and Steel (2011), and Delatola andGriÆn (2011a), ea
h apply a Diri
hlet pro
ess mixture type prior to the return distribu-tion. For the asymmetri
 sto
hasti
 volatility model, Delatola and GriÆn (2011b) in
ludea 
onstant leverage e�e
t and model the distribution of the log-squared return innovationnonparametri
ally with the in�nite mixture, Constant Component Varian
e model of Grif-�n (2011). Yu (2011) dire
tly models the leverage e�e
t nonparametri
ally by modeling the
orrelation between returns and volatility with a �xed ordered linear spline, and Durham(2007) models the return distribution with a �nite mixture model where its order is �xed apriori by the e
onometri
ian.By relaxing the parametri
 distribution of the asymmetri
 sto
hasti
 volatility model,the approa
h taken in this paper is more 
exible and better positioned to model non-Gaussian behavior. As pointed out by Das and Sundaram (1999), the parametri
 sto
hasti
volatility model 
an only produ
e the level of skewness and kurtosis observed in the datawhen it takes on implausible parameter values. By design a nonparametri
 joint distributionallows the sto
hasti
 volatility model to 
apture these types of 
hara
teristi
s in the datawithout sa
ri�
ing the time dependent nature of the sto
hasti
 volatility model.1See Harvey et al. (1994), Yu (2005) and Omori et al. (2007) or Eq. (20)-(21) for the parametri
 versionof the asymmetri
 sto
hasti
 volatility model. 2



A Markov 
hain, Monte Carlo posterior algorithm for sampling the nonparametri
 andparametri
 portions of the model is presented. Our semiparametri
 sampler extends theunivariate algorithm of the semiparametri
 sto
hasti
 volatility model by Jensen and Maheu(2010). A restri
ted version of the algorithm is also applied to a fully parametri
, asym-metri
, sto
hasti
 volatility model. Parameter, volatility, and distributional un
ertainty areintegrated out with the sampler of the posterior. These draws will be used to generate boththe one-day-ahead predi
tive joint density for daily market returns and log-volatility andthe marginal density for one-day-ahead returns.Sto
hasti
 volatility models and e
onometri
 models in general are 
hosen based on theirpredi
tability (see Geweke (2001), and Geweke and Whiteman (2006)). This is understand-able given the important role predi
tions play in valuing sto
ks and options, 
onstru
tingportfolios, and 
reating hedging strategies. Strong eviden
e in favor of our semiparametri
model relative to parametri
 models is provided by the sequential predi
tive likelihoods forreturns. In parti
ular, the DPM estimate of the unknown predi
tive distribution for returnsis found to be robust over low and high volatility periods and to large return sho
ks.Great emphasis is also pla
ed on the ability of a model to fore
ast volatility.2 Asym-metry, where an unexpe
ted de
line in pri
e leads to higher volatility, whereas an in
reasein pri
e 
auses volatility to de
line, is 
ommon in volatility models (see Bekaert and Wu(2000), Chen and Ghysels (2011)). In the sto
hasti
 volatility model this asymmetry 
omesfrom returns and log-volatility being negatively 
orrelated. Sin
e the 
ovarian
e matrixof the nonparametri
 return and log-volatility innovations distribution follows a randomse
ond-order e�e
t, this paper's semiparametri
 volatility model exhibits asymmetry. How-ever, the random se
ond-order e�e
t for the 
ovarian
e also allows the 
orrelation to 
hangedepending on market 
onditions. During a regular market the asymmetry is like that foundby Chen and Ghysels (2011), moderate in
reases in sto
k pri
es redu
e expe
ted volatility,whereas any de
line in sto
k pri
es or a large unexpe
ted in
rease in pri
es leads to higherexpe
ted volatility. However, during volatile times, expe
ted volatility barely in
reases fol-lowing an unexpe
ted sho
k to market returns. In other words, the asymmetri
 return andvolatility relationship is not a high volatility phenomenon.The paper is organized as follows. In the Se
tion 2, the asymmetri
, sto
hasti
 volatilitymodel with a nonparametri
 Diri
hlet pro
ess mixture prior for the unknown distributionis 
onstru
ted. Se
tion 3 spells out the nonparametri
 model's Markov 
hain, Monte Carlosampler of all the unknown parameters and latent variables. In Se
tion 5 we apply oursemiparametri
 and an existing parametri
 asymmetri
, sto
hasti
 volatility models to 282See Poon and Granger (2003) for an extensive overview of the volatility fore
asting literature3



years worth of daily market returns as measured by the value-weighted market portfoliofrom the Center of Resear
h in Se
urity Pri
es. In Se
tion 6 and 7, we 
ompare our em-piri
al results by �rst using the Savage-Di
key density ratio to evaluate the Bayes fa
torin favor of a nested parametri
 versions of the nonparametri
 model. We then 
omparethe fore
asting performan
e of the models over the last two years of the data with their
umulative log predi
tive Bayes fa
tors. In Se
tion 8 we estimate volatility's response tounexpe
ted 
hanges in sto
k pri
es. A summary and 
on
lusions are 
ontained in Se
tion9.2 ModelWe model asset returns using the following semiparametri
, asymmetri
, sto
hasti
, log-volatility modelyt = �+ expfht=2g�t (1)ht+1 = 'ht + �t (2)where yt is the 
ontinuously 
ompounded daily return at time periods t = 1; : : : ; n, and ht+1is the value of the latent, log-volatility, one-day-ahead. The absolute value of the autore-gressive parameter, ', is 
onstrained to the unit interval.3 Hen
e, ht+1 will be 
ovarian
estationary.We relax all assumptions 
on
erning the joint distribution of �t and �t, and, instead,allow their distribution to be 
ompletely unknown and random as if the distribution werean additional unknown to the parameters and latent volatilities of the ASV model.Being unknown and random, the joint distribution requires a prior, whi
h 
an then beused to obtain the random distributions posterior on
e data has been 
olle
ted. We 
hoosethe following Lo (1984) type Diri
hlet pro
ess mixture prior (DPM)� �t�t ������t � N(0;�t); (3)�t � G; (4)GjG0; � � DP (�;G0); (5)to model the unknown distribution. In Eq. (3)-(5), the tth innovations are distributedas a bivariate Normal with a mean zero ve
tor but with a random 
ovarian
e matrix,�t = � �2y;t �yh;t�yh;t �2h;t � ; distributed as G. The distribution G is unknown with the Diri
hlet3Be
ause the mean of ht+1 
an be subsumed into the varian
e of �t, identi�
ation requires the mean oflog-volatility to be zero; i.e., the inter
ept term of ht+1 must be set equal to zero.4



pro
ess distribution prior, DP (�;G0), of Ferguson (1973). The nonzero s
alar � is thepre
ision parameter and G0 is the base distribution.The DPM builds on the well known property that a 
exible distribution 
an be foundby mixing together a �nite number of known distributions. It extends this 
on
ept bymixing together an in�nite number of distributions. In its simplest and most basi
 form theDiri
hlet pro
ess mixture models the innovation ve
tor (�t; �t)0 as independent realizationsfrom the same, unknown, distribution whi
h we model as a mixture of distributionsZ FN (0;�)G(d�); (6)where FN is a Normal distribution fun
tion with mean zero and 
ovarian
e matrix �, andG is a weighted mixture of the �s.Eq. (1)-(5) 
onstitute the semiparametri
, asymmetri
, sto
hasti
 volatility model withDPM prior model (ASV-DPM). At �rst glan
e, the ASV-DPM model, with its mean zero,bivariate, Normal distribution fun
tion, might seem to la
k the 
apa
ity to �t the non-Gaussian behavior of returns and log-volatility. This, however, is in
orre
t. Fixing themean of F to zero only limits the DPM prior to the 
lass of distributions having one mode.This is hardly a limitation sin
e asset returns are not known to have distributions withmore than one mode.The DPM prior for the ASV model 
an be viewed in terms of a random, se
ond-order,e�e
ts model, where �t is the random e�e
t, but with a slight twist. Unlike a randome�e
ts model where �t is assumed to follow a parametri
, Inverse-Wishart distribution,in the ASV-DPM model G is unknown and is modeled nonparametri
ally. As a unknownrandom distribution fun
tion, G enables the �ts to be distributed with \multimodality", andmore \skewness" and \kurtosis" than is possible with a parametri
 distribution. However,be
ause G is nonparametri
 the se
ond-order, random e�e
ts matri
es, �ts, do not haveany �nan
ial or e
onomi
 meaning. They are simply building blo
ks in �tting the unknowndistribution of (�t; �t).Employing Sethuraman (1994) de�nition of DP (�;G0), G will almost surely be equalto the dis
rete distributionG(d�) = 1Xj=1 �jÆ�j (d�); (7)where Æ�j (�) is a degenerative distribution on the 
ovarian
e matrix atom�j = � �2y;j �yh;j�yh;j �2h;j � ; (8)5



with �yh;j = �j�y;j�h;j. Ea
h �j is a unique 
ovarian
e matrix randomly drawn from theDP prior's base distribution, G0. To ensure 
onjuga
y, G0 is a Inverse-Wishart distributionwith s
ale matrix S0 and v0 degrees of freedom, i.e.,G0 � Inv-Wish(S0; v0): (9)The probability of �t being equal to a parti
ular �j is �j where �1 = V1; �j = VjQj0<j(1�Vj0), and Vj � Beta(1; �), for � > 0.In (7), G0 is our \best" guess at the distribution of the �ts. Be
ause the Vjs aredistributed as Beta(1; �), their expe
ted value is E[Vj ℄ = 1=(1+�). It follows that for largevalues of � the �js will be 
lose to zero and, hen
e, G will be 
lose to G0. Formally,� �t�t ������t � N(0;�t);�t � G0 � Inv-Wishart(S0; v0);when �!1. This illustrates the 
exibility of the ASV-DPM be
ause, as �!1, the ASV-DPM 
onverges to a parametri
, ASV model where (�t; �t)0 are distributed as a bivariate,Student-t distribution with mean zero, 
ovarian
e matrix, v0=(v0 � 2)S0, and v0 degreesof freedom.4 In the Student-t 
ase, expfhtg does not typi
ally have �nite un
onditionalmoments, nor 
ovarian
e stationary (see Nelson (1991)). Hen
e, the posterior moments ofexpfhtg depend on the data.At the other end of the spe
trum when � 
lose to zero, the DP prior for G is a dis
retedistribution with support over a few unique 
ovarian
e matri
es, �js. When taken to itsextreme, �t = �, for all t, and� �t�t � � N(0;�);� � Inv-Wishart(S0; v0)when �! 0. In other words, the ASV-DPM model 
onverges to the parametri
, normallydistributed, ASV model of Harvey et al. (1994) with G0 being the prior of �.2.1 Parsimony with the DPParsimony, in other words, 
lustering or uniqueness in the 
ovarian
es, �t, of the ASV-DPMmodel is provided by the almost sure dis
reteness of Eq. (7). By modeling G as a DP prior4Be
ause the ASV-DPM is a mixture of Normals it only spans the set of Student-t distributions whosemarginals distributions have the same degree of freedom. For the marginals to have di�erent degrees offreedom one 
ould repla
e the mixture of bivariate Normals with a mixture of 
opulas (see Burda andProkhorov (2012) and Rey and Roth (2012)). This is a topi
 for future resear
h.6



there is guaranteed to be ties among the �ts. To be expli
it, the joint distribution of the 
o-varian
es 
an be de�ned sequentially as �(�1;�2; : : : ;�n) � �(�1)�(�2j�1):::�(�nj�1; : : : ;�n�1)where �(�1) � G0 and�tjG;�1; : : : ;�t�1 � G; (10)Gj�1; : : : ;�t�1 � DP  �; ��+ t� 1G0 + t�1Xt0=1 1�+ t� 1Æ�t0 (dG)! ; (11)for t = 2; : : : ; n (see Bla
kwell and Ma
Queen (1973)). Integrating out G from ea
h of the
onditional distributions in Eq. (10), we obtain the 
onditional distribution for �t�tj�1; : : : ;�t�1 � � G0 with probability ��+t�1 ;�j with probability nj�+t�1 ; j = 1; : : : ; kt; (12)where �j, j = 1; : : : ; kt are the unique 
ovarian
e matri
es among the �t0 , t0 = 1; : : : ; t, andkt is the number of unique 
ovarian
es.Eq. (12) shows the self-reinfor
ing property of the DP where previously sampled valuesare more likely to be resampled in the future. The more �t0s belonging to a 
luster, thelarger nj will be and the greater the probability �t being assigned �j. On the other hand,if only a few �t0 have been assigned �j, both nj and the likelihood of �t being assigned �jwill be smaller. Noti
e also that there is a non-trivial 
han
e, proportional to �, of a new
ovarian
e 
luster being sele
ted from G0. If � ! 1, no 
lustering o

urs, whereas thereis extreme 
lustering when �! 0.2.2 Orthogonal representationThe ASV-DPM model 
an be written in terms of orthogonal innovations by �rst de�ningthe latent assignment variable st = j when �t equals the jth unique 
ovarian
e �j; i.e.,when �t = �j , then st = j. Under the DP prior st is distributedst � 1Xj=1 �jÆj;where the probability weights, �j , j = 1; : : : ; are those de�ned in Eq. (7).In
orporating st into the de�nition of the ASV-DPM model, we arrive atyt = �+ �y;st expfht=2gut; (13)ht+1 = 'ht + �h;stvt; (14)� utvt ����� st;�st � N(0;�st); (15)7



st � 1Xj=1 �jÆj ; (16)�st � G0; (17)where the 
orrelation matrix �j = � 1 �j�j 1 �, with �j = �hy;j=(�h;j�y;j).Letting �1=2st represent the Cholesky de
omposition, �st � �1=2st �1=20st , we pre-multiply(ut; vt)0 by the inverse of �1=2st to obtain the un
orrelated innovation ve
tor� wtvt � � ��1=2st ��1� utvt � = � (ut � vt�st)=p1� �2stvt � :Solving for ut in terms of wt and substituting this into Eq. (13), the ASV-DPM model interms of the orthogonal sho
ks (wt; vt)0 equals:yt = �+ �y;st expfht=2g�stvt + �y;st expfht=2gq1� �2stwt (18)ht+1 = 'ht + �h;stvt: (19)where (wt; vt)0 iid� N(0; I2). This form of the ASV-DPM model will be shown to be 
onve-nient for the posterior sampling of log-volatilities and '.3 EstimationIn this se
tion we outline the likelihood-based approa
h we take to parameter inferen
e,distributional un
ertainty, and model 
omparison with the ASV-DPM model by sket
hingout the Markov 
hain Monte Carlo (MCMC) sampler. We leave the details to AppendixA. The MCMC sampler has a number of advantages. Along with providing parameterestimates, the MCMC sampler also estimates the latent volatilities and integrates out theun
ertainty of the latent mixture variables from the DPM prior.Let y = (y1; : : : ; yn)0 be the observed asset returns and h = (h0; h1; : : : ; hn; hn+1)0 theve
tor of its unobserved log-volatilities. The ASV-DPM posterior distribution�(�; '; h; f�tg; �jy) / f(yj�; '; h; f�tg; �)�(�)�(hj')�(')�(f�tgj�)�(�)does not have a 
losed form. As a result, we strategi
ally group the unknown parameters,latent volatilities, and mixture order, identities and assignments into manageable blo
kswhere the sele
ted blo
ks 
onditional posterior distributions are either known or have atra
table form. A Markov 
hain is then 
onstru
ted by iteratively sampling through ea
hblo
k's posterior distribution 
onditioning on the value of the other parameters and latentvariables drawn earlier.The blo
ks of 
onditional distributions are:8



� �(f�tgjy; h; �; '; �)� �(hjy; �; '; f�tg)� �('jy; h; �; f�tg)� �(�jy; h; f�tg)� �(�jf�tg)Sampling from f�tgjy; h; �; '; � 
ould be done by using the Polya urn, Gibbs sam-pler method of Es
obar (1994). However, we 
hoose the more eÆ
ient two-step, Poly urnbased approa
h of West et al. (1994) and Ma
Ea
hern and M�uller (1998). This methodmakes draws from the equivalent distribution �(�1; : : : ;�k; sjy; h; �; '; �), where the �j,j = 1; : : : ; k, k � n, are the distin
t �t, t = 1; : : : ; n, and s = (s1; : : : ; sn)0 is the ve
tor
onsisting of the assignment variables, st; i.e., st = j when �t = �j . This sampler breaks upthe draws of st, t = 1; : : : ; n from the draws of �j , j = 1; : : : ; k, resulting in less dependen
ythan if �t, t = 1; : : : ; n were drawn dire
tly. Hen
e, de
reasing the number of sweeps neededfor the sampler to span the support of the posterior distribution.Sin
e log-volatilities are highly 
orrelated, step-by-step draws from htjy; ht�1; ht+1 willmix very slowly.5 Hen
e, we propose a more eÆ
ient tailored, Metropolis-Hasting samplerof randomly drawn blo
ks of h. Draws from �(hjy; �; '; f�tg) are made by forming randompartitions of h where the length of ea
h subve
tor in the partition is equal to a randomdraw from a Poisson distribution. Ea
h blo
k will be di�erent from sweep to sweep ensuringthat the blo
ks are not drawn 
onditionally on the same adja
ent volatilities. Ea
h blo
kvolatility's 
onditional distribution is nonstandard so we use the Metropolis-Hasting sampler(see Chib and Greenberg (1995)) found in Appendix A.2.Draws from �('; jy; h; f�tg) are made with a Metropolis-Hastings sampler where the
andidate distribution is the 
onditional distribution of ' in a SV model without leverage(see Appendix A.3 for details). Sin
e �(�) � N(m; �), �(�jy; h; f�tg) is Normal withthe mean and varian
e spelled out in Appendix A.4. Lastly, when the mixture order, k,identifying ve
tor, s, and 
ovarian
es f�jg, are all known, the posterior of � depends onlyon k. So instead of dire
tly drawing from �(�jf�g) we instead use the two step algorithm ofEs
obar and West (1995) found in Appendix A.5 to sample from the equivalent distribution�(�jk).5See Kim et al. (1998) and Chib et al. (2002) for eviden
e of this with the SV model.9



4 Results from quasi-return dataTo determine how well the ASV-DPM model approximates the unknown distribution, andhow well the sampler spans the posterior distribution of the parameters, we apply ourMCMC sampler to returns generated from three parametri
, asymmetri
, sto
hasti
 volatil-ity models whereyt = �+ expfht=2g�t; (20)ht+1 = 'ht + �t; (21)is the 
ommon stru
ture, but the distributions of �t and �t di�er. They are:1. Harvey et al. (1994) ASVmodel with (�t; �t)0 � N(0;�), where � = � �2y ��y�h��y�h �2h �and � � Corr(�t; �t).2. Ja
quier et al. (2004) ASV-t model where �t � �1=2t zt and �t iid� Inv-Gamma(�=2; �=2)with � = 10; i.e., �t is distributed as a Student-t with � degrees of freedom. Theinnovations (zt; �t)0 � N(0;�).3. Durham (2007) ASV-MIX3 model where�t � 0:8386N(0:015; 1:0292) + 0:0041N(�3:611; 2:6512) + 0:1576N(0:015; 0:4442);�t � N(0; �2h) and Corr(�t; �t) = �. The mixture parameter values 
ome from Durham(2007) and ensure a mean of zero and a varian
e of one for �t.The value of the stru
tual parameters in Eq. (20)-(21) and for � are set equal to theestimates reported in Table 2 of Se
tion 5. These estimates 
ome from estimating the ASVmodel with 7,319 daily returns (multiplied by a 100) of the Center of Resear
h in Se
urityPri
es (CRSP) value-weighted portfolio index over the January 2, 1980 to De
ember 31,2008 time period. These parameter values are used to generate 1,000 quasi-returns fromea
h of the three models.We �t the ASV-DPM to returns simulated from the ASV, ASV-t and ASV-MIX3 models.The priors for the ASV-DPM model are �(�) � N(0; 0:1) and �(') � N(0; 100)Ij'j<1. Forthe DPM, we 
hoose the base distribution G0 � Inv-Wish(S0; v0) where S0 = I2 andv0 = 10. The prior for the DPM pre
ision parameter is �(�) = Gamma(2; 8) so thatE[�℄ = 1=4 and Var[�℄ = 1=32.Using the initial starting parameter values, we throw away the �rst 1,000 draws of log-volatility and then the following 10,000 draws of both the volatilities and parameters, before10



keeping the last 30,000 parameter draws. Table 1 reports the posterior mean, standarddeviation, and 95% probability interval of the parameters from the ASV-DPM model whenapplied to the quasi-returns. Also reported is the ineÆ
ien
y measure of Geweke (1992)whi
h is1 + 2RR� 1 LX�=1K � �L� 
(�);where K(�) is Parzen's �lter (see Per
ival and Walden (1993), p. 265), 
(�) is the sampleauto
orrelation fun
tion of the drawn parameter, R is the number of draws (R = 30,000),and L is the largest lag at whi
h the auto
orrelation fun
tion is 
omputed (L = 1000). TheineÆ
ien
y measure quanti�es how well the sampler has 
onverged to the target posteriordensity and how 
lose it is to making un
orrelated draws by quantifying the losses from using
orrelated draws to 
ompute the posterior properties like mean and standard deviation.There is nothing out of the ordinary in the posterior results of Table 1. The ASV-DPM parameter estimates are reasonably 
lose to their true value. The average numberof mixture 
lusters k for the di�erent quasi-return series re
e
t the in
reasing 
omplexityof the data generating pro
ess's underlying distribution. Lastly, the ineÆ
ien
y measuresrange from a high of 260.0 for the ASV-t model's ' to a low of 5:3 for the ASV-MIX3model's �. These levels of ineÆ
ien
y are mu
h smaller than those reported by Omori et al.(2007) with the single-move h sampler of Ja
quier et al. (2004). This improvement in theineÆ
ien
y measures is likely due to our random blo
k sampler of h.
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Table 1: The posterior estimates from the ASV-DPM model as applied to 1,000 quasi-returns simulated from the ASV, ASV-t,and ASV-MIX3 models. Given the initial starting parameter values, the �rst 1,000 draws of log-volatility are dis
arded andthen the next 10,000 draws of both the volatilities and parameters are thrown away, before keeping the last 30,000 draws.ASV ASV-t ASV-MIX3mean stdev 95% prob interval ine� mean stdev 95% prob interval ine� mean stdev 95% prob interval ine�� 0.1690 0.1414 (0.0207, 0.4727) 6.9 0.2254 0.1534 (0.0305, 0.6051) 26.1 0.2509 0.1646 (0.0347, 0.6545) 22.5k 1.0 0.8454 (1, 4) 23.5 2.3884 1.3337 (1, 6) 76.0 2.7617 1.4616 (1, 6) 56.3' 0.9634 0.0118 (0.9386, 0.9849) 146.9 0.9611 0.0150 (0.9301, 0.9896) 260.0 0.9482 0.0169 (0.9108, 0.9774) 68.8� 0.0501 0.0237 (0.0032, 0.0962) 80.6 0.0552 0.0244 (0.0071, 0.1033) 50.2 0.0730 0.0195 (0.0345, 0.1111) 5.3Returns were generated from the three parametri
 ASV models with the same stru
ture,yt = �+ expfht=2g�t and ht+1 = 'ht + �t, where � = 0:06and ' = 0:97, but the ASV innovations are distributed (�t; �t)0 � N(0;�) with� = � 0:61 �0:46 � p0:61 � 0:04�0:46 � p0:61 � 0:04 0:04 � :The ASV-t return innovations are �t � �1=2t zt, with �t iid� Inv-Gamma(10=2; 10=2), and (zt; �t)0 � N(0;�). Lastly, the ASV-MIX3 innovations aredistributed as �t � 0:8386 �N(0:015; 1:0292) + 0:0041 �N(�3:611; 2:6512) + 0:1576 �N(0:015; 0:4442) and �t � N(0; 0:04) with Corr(�t; �t) = �0:46.12



4.1 Predi
tive densityWe also 
ompare the joint predi
tive densities, f((yn+1; hn+2)0jy;M); M = ASV-DPM; ASV,by numeri
ally 
al
ulating and graphing ea
h of the two model's density. Let � = (�; '; h; f�jg ; s; �).Then the predi
tive density for the ASV-DPM isf �� yn+1hn+2 ����� y;ASV-DPM� � Z f �� yn+1hn+2 ����� ���(�jy) d�;� R�1 RXl=1 f �� yn+1hn+2 � ����(l)� ; (22)where R = 30;000, �(l) = ��(l); '(l); h(l);n�(l)j o ; s(l); �(l)� is the lth draw from the posterior�(�jy) and G(d�) has already been integrated out of the unknown joint distribution of �tand �t (see Gelfand and Mukhopadhyay (1995)) to arrive atf �� yn+1hn+2 ����� �� = ��+ nfMSt � yn+1hn+2 ����� � �'hn+1 � ;�Hn+1S0Hn+1v0 � 1 ��1 ; v0 � 1!+ kXj=1 nj�+ nfN �� yn+1hn+2 ����� � �'hn+1 � ;Hn+1�jHn+1� ; (23)with Hn+1 = � ehn+1=2 00 1 �. By averaging over the weighted draws of the parametersand the unknown volatilities, the predi
tive density integrates out both parameter andlog-volatility un
ertainty leaving a distribution dependent on only the return series, y.In the ASV model, the predi
tive density integrates out �; '; h;�, from the samplingdistribution,fN �� yn+1hn+2 ����� � �'hn+1 � ;Hn+1�Hn+1� : (24)Similarly, the marginal posterior predi
tive density of yn+1 
an be approximated byaveraging over the randomly sampled draws of � from the posterior �(�jy). For the ASV-DPM model the marginal posterior predi
tive density for returns equalsf (yn+1jy;ASV-DPM) = Z f(yn+1j�)�(�jy)d�;� R�1 RXl=1 f �yn+1 ����(l)� ; (25)wheref �yn+1 ����(l)� = �(l)�(l) + nfSt0�yn+1 �������(l); s11eh(l)n+1v0 � 1 !�1 ; v0 � 11A13



+ 1�(l) + n k(l)Xj=1 n(l)j fN �yn+1 ����(l); eh(l)n+1�2(l)y;j � : (26)Given a realization of yn+1, Eq. (26) is the predi
tive likelihood for the ASV-DPM model.In addition to estimating the ASV-DPM model we now estimate the ASV model forthe quasi-returns generated from the ASV. The priors for the ASV are those for the ASV-DPM, meaning the prior for � is G0. The sampler of the ASV model is also the same asthe ASV-DPM model's ex
ept with k and st, t = 1; : : : ; n, �xed and set equal to 1.In Figure 1 we plot the joint predi
tive densities of both models. Sin
e the densitiesare three-dimensional, we plot ea
h model's density from two vantage points { the lefthandside �gures plot the joint densities from the yn+1-axis vantage point, and the righthand�gures plot the densities, but from the hn+2-axis perspe
tive. The two model's densitiesare nearly identi
al in their shape and lo
ation. Both densities are 
entered at yn+1 = 0and hn+2 = 1:25, and both show a slight upward skewness in the hn+2 dimension. If thereis a di�eren
e to be found it is in their height. The ASV-DPM model's predi
tive densityrea
hes a maximum density value of 0:2 that is slightly larger than the ASV, indi
ating thepredi
tive distribution of the ASV-DPM model is leptokurtoti
 relative to the predi
tivedistribution of the ASV model. This does not 
ome as a surprise. From the results in Table1, there are sweeps where the DPM sampler drew a mixture representation with two or more
lusters. Furthermore, in Eq. (23) we see that the ASV-DPM predi
tive density in
ludesthe Student-t density fun
tion with v0 � 1 degrees of freedom { a known leptokurtoti
distribution.

14



Figure 1: Joint predi
tive densities of the ASV-DPM and ASV model from the vantagepoints of the yn+1-axis (lefthand side plots) and hn+2-axis (righthand side plots) as appliedto return data simulated from the ASV model.
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5 Empiri
al Appli
ationWe analyze the ASV-DPM and ASV models by applying them to 7,319 daily returns (mul-tiplied by a 100) over the period of January 2, 1980 to De
ember 31, 2008 from the Centerof Resear
h in Se
urity Pri
es (CRSP) value-weighted portfolio index. In Figure 2, we plotthe value-weighted portfolio returns. The 
hosen time period is ideal sin
e market returnsexhibit a number of di�erent dynami
s. For example, the pre- and post-1987 market 
rashperiods, the te
h bubble of the late 90s, and the �nan
ial 
risis of 2008. Over the entiresample, returns average 0.045 and have a varian
e of 1.12. Daily market returns appear tobe asymmetri
ally distributed with fat-tails as is evident in a negative skewness of -0.757and an ex
ess kurtosis measure of 19.296.Figure 2: CRSP value-weighted portfolio daily 
ompounded returns from January 2, 1980to De
ember 31, 2008 (in per
entages).
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1/1984 1/1988 1/1992 1/1996 1/2000 1/2004 1/2008The priors applied to the ASV-DPM and ASV models are the same as were used inSe
tion 4. They are �(�) � N(0; 0:1), �(') � N(0; 100)Ij'j<1, G0 � Inv-Wish(I2; 10),and �(�) = Gamma(2; 8). For the ASV model, the prior for � is the Inv-Wish(I2; 10)distribution and k and st, t = 1; : : : ; n, are set equal to 1. To redu
e the in
uen
e of thestarting values, we �rst perform 1000 sweeps over the log-volatilities using the step-by-stepvolatility sampler of Kim et al. (1998) while holding the other parameters 
onstant. Wethen let the entire sampler of Se
tion 3 iterate 40,000 times, keeping only the last 30,00016



Table 2: Posterior estimates of the ASV-DPM and ASV models for daily 
ompoundedCRSP value-weighted portfolio returns from January 2, 1980 to De
ember 29, 2008 (7319observations, 41,000 draws with the �rst 1000 draws of log-volatility followed by the next10,000 draws of all the unknowns being dis
arded).ASV-DPM ASVmean stdev 95% prob interval ine� mean stdev 95% prob interval ine�f 0.0423 0.0191 (0.0057, 0.0727) 39.38� 0.3188 0.1609 (0.0862, 0.7007) 16.53k 4.4220 1.3120 (3, 8) 56.52' 0.9799 0.0030 (0.9739, 0.9855) 136.94 0.9740 0.0037 (0.9662, 0.9809) 73.38� 0.0665 0.0082 (0.0506, 0.0826) 163.02 0.0611 0.0083 (0.0448, 0.0774) 56.50�2y 0.6100 0.0514 (0.5112, 0.7169) 337.98�2h 0.0391 0.0046 (0.0308, 0.0490) 131.62� -0.4682 0.0371 (-0.5402,-0.3944) 40.78f is the predi
tive likelihood, f(yn+1jy), where yn+1 = 3:0911 is the daily return on January 2, 2009.draws from the two models for inferen
e purposes.Table 2 reports the posterior mean, standard deviation, and 95% Bayesian probabilityinterval for the parameters of the ASV-DPM and ASV models, along with the posteriorestimate of the predi
tive likelihood, f(yn+1jy), for the ASV-DPM model. Posterior drawsof the ASV-DPM parameters along with their smoothed histogram and auto
orrelationfun
tion are plotted in Figure 3. Although some of the posterior draws are 
orrelated,our sampler overall mixes well and produ
es realizations from over the entire posteriordistribution.The posterior mean for the ASV-DPM model's un
onditional mean of return, �, at0:067 is slightly larger than the ASV model's estimate of 0:061. But their posterior stan-dard deviations have the same value of 0:008. Hen
e, the model's posterior distributions,�(�jy), are similar in shape but the ASV-DPM is shifted slightly to the right. Althoughthe di�eren
e in the estimates of � are small, it 
an still have an e�e
t on one's expe
tedmedian wealth say 20 years into the future. For example the median expe
ted wealth perunit of investment over twenty years (e�=100�365�20) is 128:32 for the ASV-DPM model asopposed to 86:51 for the ASV.Persisten
e in volatility, as 
aptured by the posterior distribution of the autoregressiveparameter, ', is 
lose to being the same for the two models. In the ASV-DPM model, theposterior mean of ' is 0:98, whereas, in the ASV model it is 0:97. The standard deviationsare also similar with the ASV-DPM model's equaling 0:003 and the ASV slightly larger at17



0:004. Values of ' so 
lose to one is eviden
e of a strongly persistent volatility pro
ess wherea sho
k to volatility impa
ts its future values and lives on for a very long time in eithermodel. Even under a nonparametri
 distribution, the ' for ASV-DPM �nds 
lustering involatility where large and small 
u
tuations follow similar type of behavior.Figure 3: 30,000 MCMC draws, their smoothed histogram and auto
orrelation fun
tion,from the ASV-DPM model of the daily 
ompounded CRSP value-weighted portfolio returnsfrom January 2, 1980 to De
ember 29, 2008.
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The average number of posterior 
lusters is k = 4:42. In other words, the DPM useson average 4:42 bivariate Normal densities to model the unknown return, log-volatilitydistribution. We 
al
ulate the average posterior value for ea
h 
ovarian
e matrix, �t, t =1; : : : ; 7319 and plot them in Figure 4. The �rst graph is of the average posterior draw of�2y;t, the se
ond graph �2h;t, and the third is of �t. The behavior over time in �2y;t and �2h;tare indistinguishable. Both move at the same time and in the same dire
tion. This dynami
suggests that a market where �2y;t is large also has a large �2h;t. Instan
es where the �2y;tand �2h;t are both large also helps identify mixture 
lusters with relatively low probability,but, whi
h only o

ur when the market de
lines. For example, those instan
es where �2y;t >18



Figure 4: Time plots of the posterior average of �2y;t; �2h;t; �t, t=1,. . . ,7319
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0:5; �2h;t > 0:1; �t < �0:457 only o

ur eleven times out of the 7319 observations, but ea
hof these epsiodes 
orresponds to a market de
line ranging from the 2% market drop onFebruary 4, 1994 to the 17% de
line during the O
tober '87 
rash.6 This 
luster 
ontrastswith the one where �2y;t � 0:07; �2h;t � 0:02; �t � �0:455. Be
ause most of the sample
onsists of this se
ond 
luster, it has the largest mixture probability and, hen
e, representsthe market's 'typi
al' 
ovarian
e.Figure 4 also identi�es a third mixture 
luster. This third 
luster 
onsists of �ts whose�2y;t are between 0:15 and 0:4, and whose �2h;t are between 0:04 and 0:08. The 
luster's
orrelation is no di�erent from the �0:45 found for the 'typi
al' mixture 
luster. In totalthere are 29 o

uren
es of the third 
luster with twenty-two o

uring when returns werenegative, and, ex
ept for four of these days, de
lining 2%. On the days were returns werepositive the market in
reased betweeen 2 to 4%. Hen
e, unlike the �rst 
luster where returns6The exa
t dates of these episodes, with the market return in parenthesis, are: 9/11/1986 (-4.4%),10/19/1987 (-17.1%), 1/8/1988 (-5.5%), 4/14/1988 (-3.6%), 10/13/1989 (-5.3%), 11/14/1991 (-3.4%),2/16/1993 (-2.6%), 2/4/1994 (-2.3%), 3/8/1996 (-2.8%), 10/27/1997 (-6.5%), 2/27/2007 (-3.4%).19



Table 3: Posterior estimates of the ASV-DPM model with the pre
ision parameter priorGamma(0:1; 0:1) for daily 
ompounded CRSP value-weighted portfolio returns from January2, 1980 to De
ember 29, 2008 (7319 observations, 41,000 draws with the �rst 1000 draws oflog-volatility followed by the next 10,000 draws of all the unknowns being dis
arded).mean stdev 95% prob interval ine�f 0.0443 0.0188 (0.0067, 0.07307) 33.17� 0.5085 0.3767 (0.0613, 1.4901) 54.19k 5.3737 2.3133 (3, 11) 96.01' 0.9799 0.0030 (0.9736, 0.9853) 140.39� 0.6684 0.0081 (0.0510, 0.0825) 150.24f is the posterior predi
tive likelihood of yn+1.were always negative, this third 
luster o

urs during a market gain or loss. Its leveragee�e
t is also smaller.5.1 Robustness to �(�)To gauge the sensativity of the ASV-DPM results to �(�), we re-estimate the ASV-DPMmodel using the more di�use prior �(�) � Gamma(0:1; 0:1). Under this prior E[�℄ = 1 andVar[�℄ = 10. Table 3 
ontains the results. Similar to Jensen and Maheu (2010) �ndingsfor the semiparametri
 sto
hasti
 volatility model, the stru
turual parameters, �, ', areun
hanged relative to Table 2 results. On the other hand, the DPM parameters, � and k,both go up. The pre
ision parameter goes from 0:32 to 0:51 and k in
reases from a posteriormedian of 4 to 5 
lusters. In addition, �(�) e�e
t on the predi
tive likelihood, f , is negligble.Neither the predi
tive likelihood's posterior mean, standard deviation, probability interval,or ineÆ
ien
y level are impa
ted by the 
hange to �(�).5.2 FitA point of possible 
ontention with the ASV-DPM model is that it �ts an unknown jointdistribution where one of the random variables, h, is not observed. To address this 
on
ernwe 
ompare the draws of h from the ASV-DPM model with those from the ASV model. Ifthe ASV-DPM model is unable to �t a nonparametri
 distribution to the latent volatilitypro
ess, we would expe
t to �nd the draws from the smooth distribution �(hjy) to be lesspre
ise and have a very di�erent posterior mean from the parametri
 model. We would alsoexpe
t the lo
ation and spread of the ASV-DPM model's joint predi
tive density to notmat
h up with the ASV model's predi
tive distribution.20



In Figure 5 we plot two graphs. In Figure 5(a) we plot the di�eren
e between the ASVand ASV-DPM sampler's standard deviations of �(hjy) over the trading days, January 2,1980 to De
ember 29, 2008, and in Figure 5(b) the sample means of the two model's drawsof h. Ex
ept for a few trading days, the standard deviation of the ASV draws are slightlylarger than the ASV-DPM models. Be
ause of the large di�eren
e between the ASV-DPMand ASV standard deviation on those days where the ASV-DPM standard deviations islarger, on average, the ASV-DPM standard deviations are 0:0026 larger than the ASV. Onthese days market volatility was generally low.In Figure 5(b), the two model's smoothed volatilities, E[hjy℄, are similar in their leveland pattern. However, there are di�eren
es, su
h as when volatility rea
hes a lo
al peak.In these instan
es, the ASV model's smooth volatility is larger than the ASV-DPM model.Be
ause the instantaneous varian
e of returns, �2y , in the ASV model is 
onstant, large
hanges in the return pro
ess 
orrespond to large 
hanges in volatility. This 
ontrasts withthe ASV-DPM model where �2y;st is 
exible and, as we saw in Figure 4, 
hanges value whenit needs to adapt to a market de
line. As a result the ASV-DPM model's volatilities areless volatile and do not in
rease by as mu
h as the ASV model.6 Nested Model ComparisonThe DP pre
ision parameter � 
an be understood as being a tuning parameter to the numberof unique �ts; i.e., the degree of 
lustering imposed by the DP prior. Under the DP (�;G0)prior, a data set of length n is expe
ted to have E[kn℄ = Pni=1 �=(� + i � 1) 
lusters. Byin
reasing or de
reasing the value of �, the ASV-DPM model is more or less likely to addnew 
lusters. As � approa
hes zero, the probability of a se
ond unique 
ovarian
e matrix,�=(1 + �), approa
hes zero, as does the probability of there being a se
ond, third, fourth,et
. 
luster. It follows that the ASV-DPM model is equivalent to the parametri
 ASV modelwhen � is equal to zero.At the other end of the spe
trum, the prior probability of drawing a new 
luster for �tgoes to one as �!1. Be
ause the DP prior for G is no longer dis
rete, but is instead equalto the distributionG0, when �!1, the prior for �t, t = 1; : : : ; n, is G0. Hen
e, as �!1,the ASV-DPM model is the ASV-t model { a parametri
 ASV model whose innovations aredistributed as a bivariate, Student-t with mean-ve
tor zero, 
ovarian
e matrix, S0=(v0 � 3)and v0 � 1 degrees of freedom (see Eq. (43)).Be
ause the ASV and ASV-t models are nested versions of the ASV-DPM that dependon the value of �, Bayes fa
tors in favor of the nested models 
an be 
omputed using the21



Figure 5: (a) di�eren
e between the ASV and ASV-DPM standard deviation from theMCMC draws of �(htjy), and (b) the average draw of htjy from the ASV and ASV-DPM.Both �gures are for the period of January 2, 1980 to De
ember 31, 2008.
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Savage-Di
key density ratio test (see Di
key (1971)). In general, the Savage-Di
key densityratio favors the nested modelM 0 : � = �0, where, in our 
ase, �0 = f0;1g, over the generalmodel M : �, where � � 0, when Bayes-fa
torBF (� = �0) � m(yjM 0)m(yjM) ; (27)= �(� = �0jy;M)�(� = �0) ; (28)where m is the marginal likelihood, is large. In our 
ase, M = ASV-DPM and M 0 =ASV; ASV-t, respe
tively.The limit �0 !1 does not lend itself easily to the Savage-Di
key density ratio, so wetransform � into the random variable u � �=(� + 1) and assume u is distributed as themaximum entropy prior�(uj�) = e�u�e� � 1 ; � 2 R; (29)over the unit interval, u 2 [0; 1℄. The 
orresponding maximum entropy prior for � is�(�j�) = � expf��=(1 + �)g(e� � 1)(1 + �)2 : (30)Under this transformation, u! 0, as � ! 0, and u! 1, as �!1. The random variableu is thus, the prior probability of there being a se
ond mixture 
luster. If u = 1, then �2will be drawn from G0. Whereas, if u = 0, the probability of drawing a se
ond 
luster iszero and �2 = �1.Let the nested ASV and ASV-t models M 0 : u = u0, be, respe
tively, u0 = f0; 1g andthe unrestri
ted model M : u 2 [0; 1℄. In terms of u, the Savage-Di
key density ratio infavor of the nested model M 0 isBF (u = u0) � �(u = u0jy;M)�(u = u0) :Unlike the Gamma prior we used earlier for �, the maximum entropy prior does not lenditself to a standard distribution for the 
onditional posterior of �, so, we modify the Es
obarand West (1995) sampler of �. Sin
e drawing either � or u requires a Metropolis sampler,we 
ould 
hoose to sample either one. However, be
ause � is de�ned on the positive realline, whereas u is 
onstrained to the unit interval, we 
hoose to draw � and use a randomwalk proposal with unit varian
e to generate the 
andidate draws.Denote the 
andidate draw by �0. It will be a

epted as a draw from �(�jy) withprobability�(kj�0; n)�(�0j�)�(kj�; n)�(�j�) = �0k�(�0)=�(�0 + n)�(�0j�)�k�(�)=�(� + n)�(�j�) ; (31)23



where � is the draw from the previous sweep and k is the number of 
lusters from the 
urrentsweep (see Es
obar and West (1995) for the formula of the likelihood fun
tion, �(kj�; n)).For ea
h draw of � we 
ompute the 
orresponding draw of u and evaluate u's empiri
alposterior distribution �(ujy) at zero and one. If the Savage-Di
key ratio at these points isgreater than one then there is eviden
e in favor of the nested model, M 0.Figure 6: The prior, �(uj� = 0) � Unif(0; 1), and the empiri
al posterior density�(ujy;ASV-DPM).
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uWe 
hoose the maximum entropy prior for u where � = 0 when testing the nested ASVand ASV-t models against the ASV-DPM. When � = 0, the maximum entropy prior is auniform prior over the unit interval. Ex
ept for the prior of u, the MCMC sampler is thesame as Se
tion 5.In Figure 6, we plot the uniform prior and empiri
al posterior density of u. The Savage-Di
key density ratio in favor of the ASV model (u0 = 0) has a 1-in-20 
han
e of o

urringand indi
ates that there is some likelihood for the parametri
 ASV model but not mu
h.Sin
e �(u = 1jy) = 0, there is virtually no eviden
e supporting the ASV-t model (u0 = 1).Though there is little empiri
al eviden
e supporting the nested ASV and ASV-t models,in Figure 6, there is still a range of values for u0 where a sharp hypothesis is supported.If we restri
t u0 to values where �(u = u0jy;ASV-DPM) is greater than �(u0), we �nd anumber of Bayes-fa
tors in favor of the restri
ted ASV-DPM model. From Figure 6, thedata supports a ASV-DPM model where u is between 0:125 and 0:525, with a mode ofu � 0:3. Given the relationships, E[kn℄ = Pni=1 �=(� + i � 1) and � � u=(1 � u), these24



posterior values of u support ASV-DPM models with approximately 2 to 10 
lusters.6.1 Prior sensitivityBe
ause M 0 is a sharp hypothesis, the prior for u under M 0 is the Dira
 delta fun
tion,�(ujM 0) = Æuo(u). For the unrestri
ted model, M , the prior is the maximum entropydistribution of Eq. (29) with hyperparameter � 2 R. As � ! �1, the prior �(uj�;M) !Æ0(u); i.e., the prior of the unrestri
ted model 
onverges to that of the sharp ASV modelhypothesis. As �!1, �(uj�;M)! Æ1(u) and the prior is that of the ASV-t model.The marginal likelihood for M ism(yj�;M) = Z l(yju; �;M)�(uj�;M) du; (32)and the marginal likelihood for the nested model M 0 ism(yjM 0) = Z l(yju; �;M)Æu0 (u) du (33)= l(yju = u0;M): (34)The Bayes fa
tor in favor of the restri
ted model M 0 written in terms of these marginallikelihoods isBF (u = u0jy; �;M) = l(yju = u0;M)m(yj�;M) :Under this prior for u, there exists limits where the unrestri
ted model equals the re-stri
ted. The two restri
ted models are u0 = 0 (ASV) and u0 = 1 (ASV-t). To obtain theASV model with the unrestri
ted model, the priorlim�!�1�(uj�;M) = Æ0(u);and for the ASV-t modellim�!1�(uj�;M) = Æ1(u):Thus, the Bayes fa
tor in favor of the ASV model 
an be written in terms of M 's marginallikelihood fun
tion asBF (u = 0jy; �;M) = m(yj�! �1;M)m(yj�;M) (35)and for the ASV-t the Bayes fa
tor 
an be expressed asBF (u = 1jy; �;M) = m(yj�!1;M)m(yj�;M) : (36)25



Eq. (35) illustrates how the Bayes fa
tor of a sharp hypothesis is in
uen
ed by the prioreven when the posterior is robust to the prior. The situation o

urs when the marginallikelihood of the unrestri
ted model is sensitive to the prior. For example, the maximumentropy prior 
auses the Bayes fa
tor in favor of the ASV model to get 
loser and 
loser toone for more and more negative values of �.We use the prior �(uj� = �10;M) to 
ompute the Bayes fa
tor favoring the ASV modeland the prior �(uj� = 10;M) for the Bayes fa
tor favoring the ASV-t. These priors givethe bene�t of doubt to the restri
ted ASV-DPM model. In Figure 7 we graph in subplot(a) the prior �(uj� = 10;M) and in subplot (b) the prior �(uj� = �10;M). Ea
h plot also
ontains the empiri
al distribution of u using the respe
tive prior.Using these two maximum entropy priors, the Savage-Di
key density ratio for the twosharp hypothesis reinfor
es the �ndings of Se
tion 6. In the 
ase where the prior lendssupport to a ASV model (� = �10), the density ratio at u0 = 0 in Figure 7(b) shows thereto be slightly less than a 1-in-10 
han
e of a ASV model. The Savage-Di
key density ratiogoes to zero in Figure 7(a) when the prior heavily weights ASV-DPM models having a largenumber of 
lusters. Neither prior 
hanges the likelihood of the data 
oming from a ASV-tmodel. In ea
h 
ase �(u = 1jy;M) is zero.Figure 7 also shows how the expe
ted number of posterior 
lusters is robust to the prior.As was the 
ase with the uniform prior, the data supports a u between 0:125 and 0:5 (0:75)when � = �10 (� = 10). Again these are sharp hypothesis that the data 
an support.7 Predi
tabilityTo 
ompare the ASV-DPM model with the ASV and SV-DPM-P models, and more gen-erally any model of returns, we 
ompute the marginal likelihood of ea
h model using theprodu
t of its one-step-ahead predi
tions. As we have mentioned, in addition to integrat-ing out parameter un
ertainty, the marginal likelihood of sto
hasti
 volatility models alsointegrates out the un
ertainty asso
iated with the latent volatilities. In the past, parti
le�lters have been applied to sto
hasti
 volatility models to integrate out volatility (see Chibet al. (2002)). However, the marginal likelihood for the ASV-DPM model also requiresintegrating out the latent DP 
ovarian
e matri
es. Basu and Chib (2003) have a way ofdoing this but only for a DPM type model, not a DPM model with sto
hasti
 volatility.The ASV-DPM model requires a parti
le �lter for integrating out the latent volatilities andDP parameters, making the Basu and Chib approa
h infeasible.77An appealing alternative to the approa
h we take here is the sequential Monte Carlo method to esti-mating and �ltering DPM type model of Carvalho et al. (2010).26



Figure 7: The empiri
al posterior density of u under the maximum entropy priors (a)�(uj� = 10) and (b) �(uj� = �10).
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Be
ause of the additional 
omputation 
osts involved in integrating out the volatilitiesand DPM 
ovarian
es, and also be
ause of the in
reased availability of parallel 
omputing,Beowulf 
lusters, and quad-
ore pro
essors, we 
hoose to 
ompute the ASVmodel's marginallikelihood sequentially with one-step-ahead predi
tive likelihoods. Given the low 
ost ofmulti-thread 
omputing and availability of multiple pro
essors, a large number of individualand independent MCMC draws 
an be 
ondu
ted on the histories of the return series. Forthe ASV-DPM, ASV and SV-DPM-P models we simulataneously 
arry out 50 separate andunique MCMCs on 5 servers where ea
h server has two quad-
ore pro
essors. As a result amodel's marginal likelihood is 
omputed well within the length of a day.Our approa
h is as follows. Let the ve
tors yt�1 = (y1; : : : ; yt�1)0, where t = 2; : : : ; n,denote the histories of returns up to time period t � 1. By the law of 
onditional proba-bility, the marginal likelihood 
an be expressed in terms of the one-step-ahead predi
tivelikelihoodsm(yjM) = nYt=1 f(ytjyt�1;M); (37)where M = ASV-DPM; ASV; SV-DPM-P. It is helpful to write the posterior predi
tivedensities asf(ytjyt�1;M) � Z f(ytjyt�1;�M ;M)�(�M jyt�1;M) d�M ; (38)where �M is a ve
tor of the unobservable parameters and volatilities. The posterior density�(�M jyt�1;M) / �(�M jM) t�1Y�=1 f(y� jy��1;�M ;M);where �(�M jM) is the Mth model's prior density for �M . For the ASV-DPM model theone-step-ahead posterior predi
tive likelihoods, f(ytjyt�1;ASV-DPM), is found in Eq. (26)ex
ept it will be evaluated at yt and yt�1 repla
es y.When t is small, �(�M jM) will in
uen
e the one-step-ahead predi
tive likelihood. So,in pra
ti
e, the produ
t in Eq. (37) generally does not begin at t = 1, but will instead startfurther into the data set. However with DPM models the densities f(y� jy��1;�M ;M), M =ASV-DPM; SV-DPM-P are unknown and must be learned by observing data. Whereasthe ASV model's predi
tive density fun
tion is already known and similar to the priorit will in
uen
e f(ytjyt�1;ASV) and 
ause it to have a relative advantage over the DPMmodels. Hen
e, it will be informative to see how the ASV-DPM learns relative to theASV by 
omputing f(ytjyt�1;M) for t = 2; : : : ; n. Our marginal likelihoods will then bem2(yjM) =Qnt=2 f(ytjyt�1;M). 28



Ea
h of the n�2 MCMC posterior 
onditional samplers is independent from the others.Given this independen
e we only need to supply a parti
ular sampler with one of then � 2 histories yt�1 before letting it run. First, we farm out as many histories as thereare pro
essors available. On a quad-
ore, multi-threaded, 
omputer this generally equals10 potential MCMC samplers. When a pro
essor's task of sampling R draws from theposterior distribution 
onditioned on that parti
ular history is 
ompleted, the pro
essor
omputes the one-step-ahead predi
tive likelihood in Eq. (26) and returns it for later use.If predi
tive likelihoods for other histories still need to be 
omputed, the pro
essor willrequest another history and sample from its posterior. On
e all n� 2 predi
tive likelihoodshave been 
omputed the marginal likelihood is 
al
ulated.7.1 Cumulative Bayes-fa
torFrom the posterior predi
tive likelihoods, f(ytjyt�1;M), the 
umulative log-Bayes fa
tor(CLBF) of the ASV-DPM relative to the other two models equalslog�mL(y� jASV-DPM)mL(y� jM) � = �Xt=2 log�f(ytjyt�1;ASV-DPM)f(ytjyt�1;M) � ; � = 2; : : : ; n; (39)where M = ASV; SV-DPM-P. Ea
h point on the CLBF represents the log-Bayes fa
torbetween the relative models for the history y� . By plotting the CLBF over � we are ableto identify those instan
es where one model out preforms the others. Day-to-day 
hange inthe CBLF depi
t how well the models perform relative to fore
asting the next day's returnas illustrated by the quantities log f(ytjyt�1;ASV-DPM)� log f(ytjyt�1;M).Be
ause of the large 
omputational 
osts involved in 
omputing the predi
tive likelihoodsover the 7,319 daily returns of Se
tion 5, we investigate the 
umulative log-Bayes fa
torsusing the value-weighted CRSP portfolio returns from January 3, 2006 to De
ember 31, 2008(755 trading days). For the three models we 
ompute the posterior predi
tive likelihoods,f(ytjyt�1;M), from t = 2 (Jan. 4, 2006) to 755 (De
 31, 2008), by sampling the model'sunknowns 11,000 times and dis
arding the �rst 1,000 draws. The 
umulative log-Bayesfa
tors are plotted in the top panel of Figure 8. In the bottom panel, we plot the dailyreturn for the CRSP value-weighted portfolio over the 
orresponding period.Unlike Geweke and Amisano (2010), who �nd the CBLF for a handful of symmetri
alsto
hasti
 volatility models jumping by as mu
h as 50 points on a parti
ular days, the ASV-DPM model's CLBF do not move more than a point on a single day, but, instead exhibitgeneral behavior and trends. For example, the ASV model's CLBF initially muddles aroundwith values less than one until the middle of 2006. This muddling is a time of learning29



Figure 8: Cumulative log-Bayes fa
tor, log �mL(y� jASV-DPM)mL(y� jM) �, of the ASV-DPM modelrelative to the ASV (red line) and SV-DPM-P (green line) models from January 4, 2006 toDe
ember 31, 2008 using CRSP value-weighted portfolio returns (blue line) ba
k to January3, 2006.
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for the ASV-DPM as it identi�es the ne
essary number of mixture 
ovarian
es and theirlo
ations. On the other hand, the ASV's normality assumption allows it to start redu
ingthe un
ertainty around its unknown 
ovarian
e right from the beginning. After this initialperiod of learning, the CLBF begins to 
limb steadily, experien
ing a few short lived dropsalong the way, in favor of the ASV-DPM model. During the summer of 2008 the ASV-DPMbrie
y enjoys a period where the CLBF ex
eeds seven before de
lining over the �nan
ial
risis to 6:0. This general upward trend in the ASV model's CLBF is eviden
e of the ASV-DPM model produ
ing on average better day-ahead predi
tions of market returns thanthe ASV model. A

ording to Je�eries (1961), a �nal CLBF value of six is \very strong"eviden
e in favor of the ASV-DPM model over the ASV model.Leverage appears to play less of a role when markets are volatile than it does whenmarket volatility is low. In Figure 8, the CLBF between the model with leverage, ASV-DPM, and the one without, SV-DPM-P, rises when the market is tranquil from mid-2006to mid-2007 (as seen in the smoothness of CRSP returns over this period). During thistime the CLBF rises to over 10, \de
isive" eviden
e in favor of the ASV-DPM model forthe �rst half of the return series. Returns then be
ome more volatile and the SV-DPM-Pmodel begins to produ
e on average better fore
asts until volatility re
edes after the �rstquarter of 2008. By the end of 2008 the CLBF is 4:3. This is \strong" eviden
e in favor ofthe ASV-DPM model relative to the SV-DPM-P for the entire series.8 Volatility ResponseEver sin
e Bla
k (1976) proposed the leverage hypothesis and Fren
h et al. (1987) thevolatility feedba
k e�e
t, many have studied how volatility rea
ts to 
hanges in marketreturns.8 Yu (2005) and Asai and M
Aleer (2009) both establish the theoreti
al relation-ship for sto
hasti
 volatility and returns when leverage is present. Yu (2005) derives thevolatility-return relationship for the asymmetri
 sto
hasti
 volatility model and Asai andM
Aleer (2009) for the multivariate sto
hasti
 volatility model, but neither empiri
allyinvestigates the relationship.Volatility's response in the ASV-DPM to a 
hange in market returns is derived fromEq. (22) { the joint posterior predi
tive density, f((yn+1; hn+2)0jyn). This predi
tive densitydispenses with parameter and latent volatility un
ertainty by integrating out the unknownsover their posterior.9 For a 200 � 200 array of equally spa
ed values of yn+1 and hn+2, we8See Bekaert and Wu (2000) for a review of the resear
h prior to 2000 and Chen and Ghysels (2011) formore re
ent work on the subje
t.9The volatility-return relationship of Yu (2005) and Asai and M
Aleer (2009) do not integrate out this31




ompute f((yn+1; hn+2)0jyn). In other words, we evaluate the predi
tive density at four-thousand points, fyn+1;j; hn+2;j0gj;j0 , where j; j0 = 1; : : : ; 200. Tomorrow's 200 di�erentreturns are 
entered around the next day's a
tual return and the log-volatilities are 
enteredaround the average draw of hn+1 from the MCMC burnin.The ASV-DPM's predi
tive joint density 
ontains a healthy amount of information 
on-
erning the return-volatility relationship. However, sin
e the predi
tive posterior densityis bivariate and depends on today's return, yn, it is diÆ
ult to visualize all this infor-mation in a density plot. We try to summarize some of the more interesting features ofthe return-volatility relationship by 
omputing and plotting the 
onditional expe
tation ofnext period's log-volatility, E[hn+2jyn; yn+1℄, over a range of values for yn+1. If tomorrow'sreturn is y0n+1, next period's expe
ted log-volatility will equalE[hn+2jyn; y0n+1℄ = Z hn+2 f(hn+2jyn; y0n+1) dhn+2� 200Xj=1 hn+2;j " f(y0n+1; hn+2;j jyn)P200j0=1 f(y0n+1; hn+2;j0 jyn)# : (40)We 
ompute the ASV-DPM model's joint predi
tive density using the MCMC drawsfrom Se
tion 7 and the CRSP portfolio returns from January 3, 2006 to De
ember 31,2008. In Figure 9, we plot �fteen of the 
ontour lines from the predi
tive density (solidlines) along with E[hn+2jyn; yn+1℄ (dashed line). In the �gure, the 
ontour lines bow upand out when tomorrow's return is negative, while the 
ontours are nearly linear over smallvalues of hn+2; i.e., 
onditional on returns being negative, the predi
tive distribution forhn+1 is not symmetri
al but is skewed upward. Skewness is also present when yn+1 > 0.However, these 
ontour lines are less (more) bowed out for large (small) values of hn+1.When market returns are positive, the 
onditional distribution of tomorrow's log-volatilityis skewed upward, but less so relative to when yn+1 is negative. Thus, tomorrow's volatilityis likely to be higher following either a market de
line or in
rease, but be
ause of thedi�eren
e in the degree of skewness, volatility's expe
ted response is asymmetri
.This asymmetri
 response in volatility is seen in the dashed line of E[hn+2jyn; yn+1℄.When the market does not move, tomorrow's expe
ted log-volatility is 1:46. With ea
hper
entage point de
line in the daily market return, expe
ted log-volatility in
reases atapproximately the rate of 0:3. This 
ontrasts with a market in
rease, where expe
ted log-volatility responds in a nonlinear manner. Expe
ted log-volatility ever so slightly de
linesfor market gains smaller than 0.2%. in
reasing at a rate of 0:1. But as returns get evenlarger expe
ted log-volatility rises at a faster rate of 0:2. Even though this rate of in
reaseun
ertainty and depend on the value of the estimated parameters.32



Figure 9: Contour lines (solid lines) of the ASV-DPM model's joint predi
tive density,f((yn+1; hn+2)0jyn), and the 
onditional expe
ted value of log-volatility given tomorrow'sreturn, E[hn+2jyn; yn+1℄, (dashed line) where yn 
ontains 755 daily CRSP value-weightedportfolio returns from January 3, 2006, to De
ember 31, 2008.
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in expe
ted log-volatility is smaller than had the market dropped, tomorrow's expe
tedvolatility will be larger after any sizable move in the market, be it negative or positive.Thus, in the words of Campbell and Hents
hel (1992) and Chen and Ghysels (2011),\Nonews is good news," when talking about market returns and volatility.8.1 Time-varying volatility responseLike volatility, the volatility-return relationship 
an vary. This begs the question, does thedashed line in Figure 9 represent the typi
al joint predi
tive distribution of tomorrow'smarket return and log-volatility, or is it an abnormality? To answer this question we deletethe last 540 returns from the return history and sequentially estimate the volatility-returnrelationship beginning with the return history ending on November 8, 2006 and adding onereturn at a time until we rea
h De
ember 31, 2008.Figure 10: The ASV-DPM 
onditional expe
ted log-volatility, E[hn+2jyn; yn+1℄, plottedagainst future return, yn+1, for the return series, yn = (y1; : : : ; yn), n = 216; : : : ; 755.

In Figure 10, we plot E[hn+2jyn; yn+1℄ for ea
h of the 540 return histories, yn, n =216; : : : ; 755. This �gure illustrates how the volatility-return relationship depends on the re-turn history. The value of E[hn+2jyn; yn+1 = 0℄ ranges from -1 to 4, with the highest 
on
en-34



tration falling between �0:5 to 1:5. Histories asso
iated with the largest E[hn+2jyn; yn+1 =0℄ end during the most volatile period of September, 2008. The E[hn+2jyn; yn+1 = 0℄near the origin have yn that end during 
almer more normal market periods. Currentvolatility explains 89 per
ent of the variation in E[hn+2jyn; yn+1 = 0℄ when regressing it onE[hn+1jyn℄. Hen
e, as one would expe
t tomorrow's expe
ted volatility is strongly 
orre-lated with today's volatility.Many studies of the leverage e�e
t assume that debt is una�e
ted by 
hanges in thesto
k market, and is hen
e, riskless; e.g. see S
hwert (1989) and Figlewski and Wang(2000). Christie (1982) shows that by allowing the value of debt to 
hange in the samedire
tion as market 
apital, the leverage e�e
t is weakened. Under risky debt, a negativemarket return leads to an in
rease in volatility, but the size of the impa
t de
lines as leveragegrows. By most pra
titioners, leverage was viewed as being high during 2008. The returnhistories ending during this period have the highest values for E[hn+2jyn; yn+1℄, but alsothe 
attest.The degree of asymmetry in E[hn+2jyn; yn+1℄ is also a�e
ted. Asymmetry is greatestwhen E[hn+2jyn; yn+1 = 0℄ is negative and today's volatility is low. At the other end of thespe
trum, volatility's response to the market is nearly symmetri
al when E[hn+2jyn; yn+1 =0℄ is greater than 2 and the return history ends during volatile bear markets. Volatilityresponse is not only symmetri
al for these histories, there is almost no volatility responseat all.The degree of shading in Figure 10 provides a rough density measure of the di�erentvolatility-return responses. Dark bands over the negative returns show that for many ofthe 540 volatility-return responses a drop in the market today 
orresponds to an in
rease inexpe
ted log-volatility. A similar but not quite as dark a band 
an also be seen for positivedaily returns.10 The lighter lines are the volatility-return relationships whose histories endduring rare, but very volatile, times. As mentioned above, these responses are symmetri
aland nearly 
at. Thus, we see that during \normal" times, no news is good news for volatility,whi
h is even more true during tranquil times. During the most turbulent of markets, newsof any sort just does not matter for expe
ted volatility. This is a notable feature of thesemiparametri
 ASV model. When markets are highly volatile, a return sho
k must belarge in order to a�e
t the market's expe
tations about tomorrow's volatility. Whereas, ona typi
al day only a little bit of news is required to 
ause expe
ted volatility to in
rease.10The dark band in Figure 10 has a shape very similar to Chen and Ghysels (2011) nonparametri
 newsimpa
t 
urve on p. 49. 35



9 Con
lusionIn this paper we extended the asymmetri
, sto
hasti
, log-volatility model whose innova-tions are 
orrelated and normally distributed by modeling the un
ertainty in their jointdistribution with a nonparametri
, bivariate Diri
hlet pro
ess mixture prior. We providea sampling algorithm to integrate out the parameter, volatility and distributional un
er-tainty of our semiparametri
, asymmetri
, sto
hasti
 volatility model. Our algorithm is alsoused to 
ompute the log Bayes predi
tive fore
ast of the semiparametri
 model relative tothe parametri
 version. These log Bayes predi
tions are used to evaluate and 
ompare thefore
asting abilities of the two models.The nonparametri
 prior in
reases the 
exibility of the asymmetri
 sto
hasti
 volatilitymodel by allowing the 
orrelation between its innovations to take on in�nite number of val-ues, while being manageable and parsimonious by taking on a �nite number of 
orrelationsfor a �nite length data set. This 
exibility is important when fore
asting market returns,espe
ially when the market transitions from a low to high volatility state or the marketsuddenly de
lines. In the empiri
al 
ase study, fore
asts from our semiparametri
 asym-metri
 sto
hasti
 volatility model 
apture these types of episodes, whereas the parametri
model does not. This leads to the daily predi
tive Bayes fa
tors favoring the nonparametri
asymmetri
 sto
hasti
 volatility model more often than the parametri
 version.The 
exibility of having more than one value to model the 
orrelation between volatilityand return is also important for modeling the volatility-return relationship and the responsein expe
ted volatility to a unexpe
ted 
hange in market returns. In parti
ular, the size andand degree of asymmetry in the response of volatility to an unexpe
ted 
hange in marketpri
es 
an vary. Using the semiparametri
 model of the asymmetri
 sto
hasti
 volatility, theresponse in the expe
ted value of volatility to a de
line in sto
k pri
es versus an in
reaseis highly asymmetri
 when volatility is 
urrently low and the market is 
alm. However,if volatility is high and the market irregular, the asymmetry nearly disappears and theresponse in expe
ted volatility be
omes muted. In other words, during normal times, just alittle bit of news a�e
ts volatility, whereas, during a turbulent market, it takes a signi�
antamount of news to impa
t volatility.
36



A Details of MCMC samplerA.1 Sampler of �De�ne z = (z1; : : : ;zn)0, where zt = ((yt��) expf�ht=2g; ht+1�'ht)0, then �t 
onditionalposterior distribution is :�tjf�t0 : t0 6= tg;zt; � � ��+ n� 1g(zt)G(d�jzt)+ 1�+ n� 1Xt0 6=t fN (ztj�t0)Æ�t0 (d�); (41)where g(zt) � R fN (ztj0;�) G0(�)d�, and, by the law of 
onditional probability,G(d�jzt) /fN (ztj0;�)G0(d�). Applying the prior information of Eq. (3) and (9) it follows that thedensity for the distribution G(d�jzt) is:g(�jzt) / j�j�1=2 exp��12trztz0t��1� jS0jv0=2j�j(v0+3)=2 exp��12tr��1S0� ;= jS0jv0=2j�j(v0+4)=2 exp��12tr(S0 + ztz0t)��1� ; (42)This is the kernel to the Inverse-Wishart distribution, G(d�jzt) � Inv-Wish(S0+ztz0t; v0+1) (see Zellner (1971), p.395). Integrating out � from G(d�jzt) results in the marginallikelihood fun
tion:g(zt) = fMSt(ztj0; (S0=(v0 � 1))�1; v0 � 1); (43)In other words, the bivariate Student-t density fun
tion with v0 � 1 degrees of freedom,mean-zero ve
tor, and 
ovarian
e, S0=(v0�3) (see Zellner (1971), Eq. (B.20), p. 383 for theexa
t formula of fMSt).Let nj be the number of observations where st = j, k(t) to be the distin
t number of �jin f�t0 : t0 6= tg, and n(t)j the number of observations where st0 = j, t0 6= t. For a given h,�, ' and �, draws from the posterior �(f�jg; sjz; �) � �(f�jg; sjy; h; �; '; �) are made in2-steps:1. s and k are drawn by sampling st, t = 1; : : : ; n, from:stjf�t0 : t0 6= tg;zt; � � ( ��+n�1g(zt) Æ0(dst)1�+n�1Pk(t)j=1 n(t)j fN (ztj0;�j) Æj(dst): (44)If zero is drawn for st, k in
reases by one, st is set equal to the new value of k, and anew �k is drawn from the distribution whose density is Eq. (42). Otherwise, st equalsthe randomly drawn j. 37



2. Dis
ard the �js from Step 1 and use the sampled s and k to iteratively draw new �j,j = 1; : : : ; k, from:�(�jjz; s; k) / Yt:st=j fN (ztj0;�j)G0(d�) (45)/ Yt:st=j j�j j�1=2 exp��12trztz0t��1j �� jS0jv0=2j�j j(v0+3)=2 exp��12trS0��1j � (46)= jS0jv0=2j�j j(v0+nj+3)=2 exp8<:�12tr0�Xt:st=j ztz0t + S01A��1j 9=; (47)� Inv-Wish0�S0 + Xt:st=j ztz0t; v0 + nj1A : (48)A.2 Sampler of hGiven a parti
ular partition of h sequentially draw ea
h volatility blo
k 
onditional on thevalue of the other volatilities. The 
onditional distribution of the volatility blo
k h(t0;�) =(ht0 ; ht0+1; : : : ; h� )0, with 1 � t0 � � < n, and lt0 � � � t0 + 1 being randomly distributed asa Poisson distribution, Pois(�h), is:�(h(t0 ;�)jy(t0;�); h�(t0 ;�)) / �(h(t0 ;�)jh�+1; ht0�1)f(y(t0;�)jh(t0 ;�); h�+1)= exp(�12 (ht0 � 'ht0�1)2�2h;st0 ) �Yt=t0 exp(�12 "(ht+1 � 'ht)2�2h;st + ht#)� �Yt=t0 exp(�12 �yt � �� eht=2�y;st�st(ht+1 � 'ht)=�h;st�2(1� �2st) expfhtg�2y;st ) :(49)For the �rst blo
k, �(h(1;�)jh�+1; h0) depends on h0. The unknown h0 is modeled withthe prior �(h0) � N(0; �2h;0=(1 � '2)), where �2h;0 � E[G0(d�)℄2;2 is the expe
ted varian
eof log-volatility from the the DPM base distribution. By drawing h0 from �(h0jh1) �N('h1; �2h;0), it is integrated out.If the draw of lt0 
auses � to be greater than or equal to n, the 
onditional distribution ofthe volatility blo
k is the same as above ex
ept � = n. For the last blo
k of h we integrateout the one period ahead, out of sample, volatility, hn+1, by repla
ing it with a randomdraw from:�(hn+1jy; hn) � N(�hn+1; ��2hn+1); (50)38



where�hn+1 = 'hn + (yn � �)�sn�h;sne�hn=2�y;sn ; ��2hn+1 =  �2sn(1� �2sn)�2h;sn + 1�2h;sn!�1 ;and hn is from the previous sweep of the sampler.The 
onditional distributions �(h(t;�)jy(t;�); h�(t;�)) are nonstandard, so a Metropolis-Hasting sampler is used. Candidate draws of h(t;�) are made from a lt-variate Student-t dis-tribution having mean ve
torm, 
ovarian
e matrix S, and � degrees of freedom. The 
andi-date mean ve
tor,m, is set equal to the argument maximizing �(h(t0 ;�)jh�+1; ht0�1)f(y(t0;�)jh(t0;�); h�+1),and the 
andidate 
ovarian
e, S, equals the negative inverted Hessian of the unnormalized
onditional distribution evaluated at m.A.3 Sampler of 'Draws from �('jy; h; f�tg) are made with a Metropolis-Hasting sampler whose 
andidatedistribution is N(b'; b�2') where:b' = b�2' �'�2' + n�1Xt=1 ht+1ht�2h;st ! ; b�2' =  1�2' + n�1Xt=1 h2t�2h;st!�1:A draw, '0, from this 
andidate distribution will be a

epted with probability �('0; ') =minng('0)g(') fN ('jb';b�2')fN ('0jb';b�2') ; 1o whereg(') / f(yj'; h; f�jg; s; hn+1)�(hj'; f�jg; s)�(hn+1jhn; ')�(h0j')�(');= nYt=1 exp(�12 "�yt � �� �teht=2�y;st(ht+1 � 'ht)=�h;st�2(1� �2st)�2y;steht + (ht+1 � 'ht)2�h;st #)� exp(�12 "(h1 � 'h0)2�2h;0 + h20�2h;0=(1 � '2)#) fN ('j�'; �2')Ij'j<1:If the 
andidate '0 is reje
ted, the previous sweep's value of ' is kept as the 
urrent sweep'sdraw from �('jy; h; f�tg).A.4 Sampler of �To draw from �(�jy; h; f�tg), let �(�) � N(m; �). Sin
e �(�) is Normal, draws of � aremade from the 
onjugate posterior N(�̂; �̂) where:�̂ = �̂  m� + nXt=1 ~yt~�2t ! ; �̂ =  1� + nXt=1 1~�2t !�1;and ~y = yt � �teht=2�y;st(ht+1 � 'ht)=�h;st and ~�2t = (1� �2st)�2y;st expfhtg.39



A.5 Sampler of �The two step algorithm of Es
obar andWest (1995) is used to sample the ASV-DPMmodel'spre
ision parameter from �(�jf�tg) equivalent distribution �(�jk). More pre
isely, assume�(�) � �(a; b), where a > 0 and b > 0. Draws from �(�jk) are made by1. Sampling the random variable � from �(�j�; k) � Beta(�+ 1; n)2. Sampling � from the mixture �(�j�; k) � ���(a+k; b�ln �)+(1���)�(a+k�1; b�ln �),where ��=(1� ��) = (a+ k � 1)=[n(b � ln �)℄.
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