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1 Introduction

Kernel-smoothed heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estim-

ator is most commonly applied for the long-run variance (LRV) matrix estimation in the presence

of serial dependence of unknown form. The bandwidth selection for the HAC estimation is an

important practical issue, as is the case with all other kernel methods. Up to date two bandwidth

choice rules, proposed by Andrews (1991) and Newey and West (1994), are most popularly applied.

Although they both derive their bandwidth formulae by minimizing the asymptotic mean squared

error (AMSE) of the covariance estimator, they take substantially different approaches for estimat-

ing the unknown quantity in the AMSE-optimal bandwidth – the ratio of the spectral density of

the innovation process and its generalized derivative, evaluated at the zero frequency. The unknown

quantity is called the normalized curvature hereafter. Andrews (1991) estimates it by simply fit-

ting an AR(1) model as a reference. This is an analog to Silverman’s “rule of thumb” for density

estimation (Silverman, 1986, section 3.4.2), and the automatic bandwidth ŜT is not consistent for

the AMSE-optimal bandwidth S∗T in general in the sense that
³
ŜT − S∗T

´
/S∗T

p9 0 unless the refer-

ence correctly specifies the process. Hence, this approach might perform poorly when the process

is not well approximated by an AR(1) model. Newey and West (1994) estimate the normalized

curvature consistently with the truncated kernel to avoid the issue of misspecification of the process.

However, they provide up to a range of the divergence rates of the bandwidth for the normalized

curvature estimator that guarantee the consistency of the HAC estimator; in fact, they implement

the bandwidth for the normalized curvature estimator in an ad hoc manner.

To overcome the drawbacks of the two existing approaches, this paper proposes a reliable band-

width choice rule for kernel HAC estimation. The proposed method might appear to be an extension

of Newey and West (1994) in the sense that it is built on estimating the normalized curvature con-

sistently with a general class of kernels. Rather, it is driven by the parallel setting of probability

and spectral density estimations: using the fact that their AMSEs have some common structure, this

paper aims at establishing an analog to the well-known bandwidth choice rule for density estimation

by Sheather and Jones (1991), which is also recommended as the most reliable among all existing
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methods by Jones, Marron and Sheather (1996). As the one in Sheather and Jones (1991) is built

on the two-stage density estimation by Jones and Sheather (1991), so the bandwidth choice rule in

this paper forms the two-stage covariance estimation, including the estimations of the normalized

curvature (first stage) and the covariance matrix (second stage) with possibly different kernels. By

this nature it is called the two-stage plug-in bandwidth selection. The bandwidth derived by this

rule is implemented by an algorithm analogous to the one by Sheather and Jones (1991).

Besides Newey and West (1994) and this paper, Politis (2003) and Politis and White (2004)

propose to estimate the normalized curvature nonparametrically with the flat-top kernel in the con-

texts of spectral and probability density estimations and block choice problems for block bootstrap

methods. They argue the theoretical superiority of the flat-top kernel for the normalized curvature

estimation, while such an infinite-order kernel is not considered in this paper. Although whether

there is an optimal kernel choice for the normalized curvature estimation (or even an optimal com-

bination of the kernels for two stages) is beyond the scope of this paper, it is an interesting challenge.

The remainder of this paper is organized as follows: section 2 gives the theory of the two-

stage plug-in bandwidth selection and the implementation method of the optimal bandwidth with

theoretical justifications; section 3 displays the results of two Monte Carlo experiments; section 4

concludes this paper; all assumptions and proofs are given in the appendix.

Before proceeding, a few words on notation: [x] denotes the integer part of x; kAk denotes

the Euclidean norm of matrix A, i.e., kAk = [tr (A0A)]1/2; vec (A) denotes the column by column

vectorization function of matrix A; ⊗ denotes the tensor (or Kronecker) product; c (> 0) denotes

a generic constant, the quantity of which varies from statement to statement. The expression

‘XT ∼ YT ’ is used whenever XT /YT → 1 as T →∞. Lastly, define 00 ≡ 1 by convention.

2 Two-Stage Plug-In Bandwidth Selection

2.1 Optimal Bandwidth for Normalized Curvature Estimation

For illustrative purposes, consider the LRV estimation in the generalized method of moments

(GMM, Hansen, 1982) framework. Suppose that an economic theory is represented as the mo-

ment condition E {g(zt, θ0)} ≡ E (gt) = 0, where {zt}∞t=−∞ is a stationary and strong mix-
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ing process, θ ∈ Θ ⊆ Rp is a parameter vector of interest with the true value θ0, and g(z, θ)

∈ Rs (p ≤ s) is a known measurable vector-valued function in z, ∀θ ∈ Θ. Define the LRV of {gt} as

Ω = limT→∞ T−1E
n³PT

t=1 gt

´³PT
t=1 g

0
t

´o
=
P∞

j=−∞E(gtg
0
t−j) =

P∞
j=−∞ Γg(j). To implement

the efficient GMM in the presence of unknown serial dependence for the process {gt}, the inverse of

a consistent estimator of Ω must be employed as the optimal weighting matrix. The most popular

estimator of Ω takes the form of weighted autocovariances

Ω̂ =
T−1X

j=−(T−1)
k(

j

ST
)Γ̂g(j) =

T−1X
j=−(T−1)

k(
j

ST
)

⎛⎝ 1
T

min{T+j,T}X
t=max{1,1+j}

ĝtĝ
0
t−j

⎞⎠ , (1)

where k(·) is a kernel function, ST ∈ R+ is the non-stochastic sequence of a bandwidth, ĝt =

g(zt, θ̂), and θ̂ is the first-step GMM estimator. Likewise, define the pseudo-estimator of Ω as Ω̃ =PT−1
j=−(T−1) k(j/ST )Γ̃g(j) =

PT−1
j=−(T−1) k(j/ST )

³
T−1

Pmin{T+j,T}
t=max{1,1+j} gtg

0
t−j

´
, which is identical to

Ω̂ but is based on the unobservable process {gt} rather than {ĝt}. According to Newey and West

(1994),1 the mean squared error (MSE) of Ω̃ is defined as

MSE(Ω̃;Ω) = E
n
w0T (Ω̃− Ω)wT

o2
, (2)

where wT is an s × 1 (possibly random) weighting vector with wT
p→ w (a constant vector) at a

suitable convergence rate. Also let s(n) =
P∞

j=−∞ |j|
n
w0Γg(j)w for n = 0, q(<∞), where q is the

characteristic exponent of a kernel k(x) (Parzen, 1957) that satisfies kq ≡ limx→0 {1− k(x)} / |x|q ∈

(0,∞). Then, if s(q) 6= 0, (2) is approximated by

MSE(Ω̃;Ω) ∼
k2q
¡
s(q)

¢2
S2qT

+
ST
T

½
2
³
s(0)

´2 Z ∞
−∞

k2(x)dx

¾
. (3)

The bandwidth that minimizes (3) is

S∗T = (γT )
1

2q+1 =

(
qk2q

¡
R(q)

¢2R∞
−∞ k2(x)dx

) 1
2q+1

T
1

2q+1 , (4)

where the normalized curvature R(q) = s(q)/s(0) is the only unknown quantity in this formula.

Following Jones and Sheather (1991), we estimate the normalized curvature R(q) with a kernel

l (·) (possibly different from k (·)) that has the characteristic exponent r(< ∞) satisfying lr ≡
1 In the approximation to the MSE of the covariance estimator, it is convenient to reduce the problem to a scalar

one with some weighting vector, as in Newey and West (1994).
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limx→0 {1− l(x)} / |x|r ∈ (0,∞). Hereafter, the kernels l (·) and k (·) are called the first- and

second-stage kernels, respectively. Also let Γh(j) be the jth autocovariance of the scalar process

{ht} = {w0gt}, where w is the probability limit of the weighting vector in (2). Then, Γh(j) =

w0Γg(j)w = w0E
¡
gtg

0
t−j
¢
w and s(n) =

P∞
j=−∞ |j|

n
Γh(j). Also let bT ∈ R+ be the non-stochastic

sequence of a bandwidth for the first-stage kernel, and let Γ̃h(j) = T−1
Pmin{T+j,T}

t=max{1,1+j} htht−j . Then,

the pseudo-estimator of R(q) is written as

R̃(q)(bT ) ≡
s̃(q)

s̃(0)
≡
PT−1

j=−(T−1) l(
j
bT
) |j|q Γ̃h(j)PT−1

j=−(T−1) l(
j
bT
)Γ̃h(j)

. (5)

According to Jones and Sheather (1991), we derive the AMSE-optimal bandwidth for R̃(q)(bT ).2 To

approximate the MSE of R̃(q)(bT ), it is convenient to apply the idea of the delta method. Let δ =³
1/s(0),−s(q)/

¡
s(0)

¢2´0
and h =

¡
s̃(q) − s(q), s̃(0) − s(0)

¢0
. Taking the first-order Taylor expansion

of R̃(q)(bT ) around
¡
s̃(q), s̃(0)

¢0
=
¡
s(q), s(0)

¢0
gives R̃(q)(bT ) = R(q) + δ0h + op(khk). Then, the

asymptotic bias (ABias) and the asymptotic variance (AVar) of R̃(q)(bT ) become

ABias(R̃(q)(bT )) = δ0
µ

E
¡
s̃(q)

¢
− s(q)

E
¡
s̃(0)

¢
− s(0)

¶
, AV ar(R̃(q)(bT )) = δ0

µ
V ar(s̃(q)) Cov(s̃(q), s̃(0))

Cov(s̃(q), s̃(0)) V ar(s̃(0))

¶
δ.

The following lemmata give the approximations to the bias and variance terms of h.

Lemma 1 If A1, A3 and A4 hold, then

lim
T→∞

brT

n
E(s̃(q))− s(q)

o
= −lrs(q+r), lim

T→∞
brT

n
E(s̃(0))− s(0)

o
= −lrs(r).

Lemma 2 If A1, A3 and A4 hold, then

lim
T→∞

T

b2q+1T

V ar(s̃(q)) = 2
³
s(0)

´2 Z ∞
−∞

x2ql2 (x) dx,

lim
T→∞

T

bT
V ar(s̃(0)) = 2

³
s(0)

´2 Z ∞
−∞

l2 (x) dx,

lim
T→∞

T

bq+1T

Cov(s̃(q), s̃(0)) = 2
³
s(0)

´2 Z ∞
−∞

|x|q l2(x)dx.

Two lemmata demonstrate that whereas the asymptotic biases of the spectral density and gen-

eralized derivative estimators are of the same order, the asymptotic variance of the latter dominates

2Deriving only the range of divergence rates of bT for the consistency of the HAC estimator is not sufficient for
constructing an analog to the Sheather and Jones (1991) rule.
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in order. The next theorem on the AMSE of R̃(q)(bT ) and the optimal first-stage bandwidth bT

immediately follows these lemmata, and thus the proof is omitted.

Theorem 1. If s(q)s(r) 6= s(0)s(q+r) and A1, A3 and A4 hold, then the MSE of R̃(q)(bT ) is

approximated by

MSE(R̃(q)(bT );R
(q)) ∼ l2rC

2(q, r)

b2rT
+

b2q+1T

T

µ
2

Z ∞
−∞

x2ql2(x)dx

¶
, (6)

where C(q, r) =
¡
s(q)s(r) − s(0)s(q+r)

¢
/
¡
s(0)

¢2
. The bandwidth that minimizes (6) is

b∗T = (βT )
1

2q+2r+1

=

(
rl2rC

2(q, r)

(2q + 1)
R∞
−∞ x2ql2(x)dx

) 1
2q+2r+1

T
1

2q+2r+1 . (7)

At the optimum,

MSE(R̃(q)(b∗T );R
(q)) = O

³
T−2r/(2q+2r+1)

´
∼ T−

2r
2q+2r+1

½
β
− 2r
2q+2r+1

l2rC
2(q, r) + 2β

2q+1
2q+2r+1

Z ∞
−∞

x2ql2(x)dx

¾
.

Practitioners may wish to employ a kernel commonly to estimate the normalized curvature and

the LRV. The following corollary refers to the special case in which a common kernel is employed in

both stages. Note that this corollary is also valid when two kernels having a characteristic exponent

in common are employed (e.g., when the Parzen and Quadratic Spectral (QS) kernels are employed

in the first and the second stages, respectively). It is worth mentioning that the Bartlett and Parzen

kernels can be employed commonly, whereas the QS kernel not, because
R∞
−∞ x4k2QS(x)dx =∞ (see

Table 1 in the next section) and thus the AVar in (6) is not well defined.

Corollary 1. Suppose that two kernels having a characteristic exponent in common are employed

so that r = q. If
¡
s(q)

¢2 6= s(0)s(2q) and A1, A3 and A4 hold, then the MSE of R̃(q)(bT ) is

approximated by

MSE(R̃(q)(bT );R
(q)) ∼

l2qC
2(q)

b2qT
+

b2q+1T

T

½
2

Z ∞
−∞

x2ql2(x)dx

¾
, (8)

where C(q) ≡ C(q, q) =
³¡
s(q)

¢2 − s(0)s(2q)
´
/
¡
s(0)

¢2
. The bandwidth that minimizes (8) is

b∗T = (βT )
1

4q+1

=

(
ql2qC

2(q)

(2q + 1)
R∞
−∞ x2ql2(x)dx

) 1
4q+1

T
1

4q+1 , (9)
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At the optimum,

MSE(R̃(q)(b∗T );R
(q)) = O

³
T−2q/(4q+1)

´
∼ T−

2q
4q+1

½
β
− 2q
4q+1

l2qC
2(q) + 2β

2q+1
4q+1

Z ∞
−∞

x2ql2(x)dx

¾
.

Theorem 1 shows that the optimal bandwidth (7) depends on yet another unknown quant-

ity C(q, r), and thus it must be estimated to implement the bandwidth: the implementation

method is discussed in the next section. Corollary 1 demonstrates that if a common kernel

is employed in both stages, the optimal divergence rate of the first-stage bandwidth is b∗T =

O(T 1/5) with MSE(R̃(1)(b∗T );R
(1)) = O

¡
T−2/5

¢
for q = 1 (Bartlett), and b∗T = O(T 1/9) with

MSE(R̃(2)(b∗T );R
(2)) = O

¡
T−4/9

¢
for q = 2 (Parzen). The divergence rate of b∗T is much slower

than O(T 1/3) (Bartlett) or O(T 1/5) (Parzen), the one of the optimal bandwidth for the HAC estim-

ator S∗T .

In reality, the covariance estimator of interest is rather (1), and thus we should consider the

normalized curvature estimator based on the observable process {ĝt} rather than {gt}. A random

weighting vector wT may need to be considered. Then, let ŝ(n)T =
PT−1

j=−(T−1) l(j/bT ) |j|
n Γ̂h,T (j)

for n = 0, q, where Γ̃h,T (j) = T−1
Pmin{T+j,T}

t=max{1,1+j} ĥT,tĥT,t−j is the jth sample autocovariance of the

process
n
ĥT,t

o
= {w0T ĝt}. Also let R̂(q)T (bT ) = ŝ

(q)
T /ŝ

(0)
T . Furthermore, the notations ŝ(n) and

R̂(q)(bT ) are used as their counterparts when a constant weighting vector w is employed. Following

Andrews (1991), the AMSE criterion is also modified in two respects. First, the normalized (or

scale-adjusted) version of MSE is introduced so that its dominating term is O (1). Using the scale

factor T 2r/(2q+2r+1) gives the normalized MSE of R̂(q)T (bT ) as

MSE(R̂
(q)
T (bT );R

(q), T 2r/(2q+2r+1)) = T
2r

2q+2r+1MSE(R̂
(q)
T (bT );R

(q)). (10)

Hereafter, the MSE refers to (10), unless otherwise noted. Second, if θ̂ has an infinite second moment,

its use may dominate the normalized MSE criterion, even though the effect of replacing θ0 with θ̂ in

constructing R̂(q)T (bT ) is at most op (1). Then, the MSE is truncated by the scalar m > 0. The trun-

cated MSE of R̂(q)T (bT ) with the scale factor T 2r/(2q+2r+1) isMSEm(R̂
(q)
T (bT );R

(q), T 2r/(2q+2r+1)) =

Emin

½
T 2r/(2q+2r+1)

¯̄̄
R̂
(q)
T (bT )−R(q)

¯̄̄2
,m

¾
. From the next theorem on, the truncated MSE with
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arbitrarily large truncation point limm→∞ limT→∞MSEm(R̂
(q)
T (bT );R

(q), T 2r/(2q+2r+1)) is used as

the criterion of optimality. The next theorem shows that the asymptotic normalized MSE of R̂(q)T (bT )

is invariant after the replacement of θ0 by θ̂.

Theorem 2. If A1 and A3 - 6 hold and b2q+2r+1T /T → β ∈ (0,∞), then

(a) T r/(2q+2r+1)
n
R̂
(q)
T (bT )− R̃(q)(bT )

o
p→ 0.

(b)
limm→∞ limT→∞MSEm(R̂

(q)
T (bT );R

(q), T 2r/(2q+2r+1))

= limm→∞ limT→∞MSEm(R̃
(q)(bT );R

(q), T 2r/(2q+2r+1))

= limT→∞MSE(R̃(q)(bT );R
(q), T 2r/(2q+2r+1)).

2.2 Implementation of Optimal Bandwidth for HAC Estimation

According to Sheather and Jones (1991), we propose the implementation method of the optimal

bandwidth S∗T that obtains the bandwidth estimator by numerically solving the fixed-point equa-

tion.3 By this nature, this implementation method is called the solve-the-equation plug-in (SP) rule

hereafter. The SP bandwidth estimator of S∗T can be derived as follows. The optimal second-stage

bandwidth (4) is expressed as “S∗T in terms of T”. Solving (4) for T , we can rewrite it as “T in

terms of S∗T ”, or

T =

(R∞
−∞ k2(x)2dx

qk2q
¡
R(q)

¢2
)
(S∗T )

2q+1
. (11)

Substituting (11) into the optimal first-stage bandwidth (7) yields the expression of b∗T as a function

of S∗T

b∗T = b∗T (S
∗
T ) =

(
α2(q, r)rl2r

R∞
−∞ k2(x)dx

q (2q + 1) k2q
R∞
−∞ x2ql2(x)dx

) 1
2q+2r+1

(S∗T )
2q+1

2q+2r+1 , (12)

where α(q, r) = C(q, r)/R(q) = s(r)/s(0) − s(q+r)/s(q). By (4) and (5), the bandwidth estimator ŜT

is given by the root of the system of nonlinear equations (12) and

S∗T =

⎧⎪⎨⎪⎩
qk2q

³
R̂
(q)
T (b∗T (S

∗
T ))
´2

R∞
−∞ k2(x)dx

⎫⎪⎬⎪⎭
1

2q+1

T
1

2q+1 . (13)

In case of multiple roots in the system, the SP bandwidth estimator is defined formally as follows.4

3The “solve-the-equation” approach originally comes from Park and Marron (1990).
4The following definition comes from the suggestion in Park and Marron (1990). In line with this definition, a

recommended root search algorithm is the grid search starting from some large positive number. GAUSS codes for
SP covariance estimators under the Bartlett and Parzen kernels are available on the author’s web page.
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Definition. The SP bandwidth estimator ŜT is defined as the largest root that solves the system

of equations (12) and (13).

When a kernel is commonly employed to estimate the normalized curvature and the LRV so that

l(x) = k(x) and r = q, many common factors are cancelled out, and thus the system determining

ŜT takes a much simpler form

S∗T =

⎧⎪⎨⎪⎩
qk2q

³
R̂
(q)
T (b∗T (S

∗
T ))
´2

R∞
−∞ k2(x)dx

⎫⎪⎬⎪⎭
1

2q+1

T
1

2q+1 , b∗T (S
∗
T ) =

(
α2(q)

R∞
−∞ k2(x)dx

(2q + 1)
R∞
−∞ x2qk2(x)dx

) 1
4q+1

(S∗T )
2q+1
4q+1 ,

where α(q) = α(q, q) = s(q)/s(0) − s(2q)/s(q). For convenience, Table 1 displays the characteristic

numbers of popular kernels that are required to calculate the optimal bandwidths b∗T and S∗T .

Table 1: Characteristic Numbers of Kernels Most Popularly Applied
Kernel q kq

R∞
−∞ k2(x)dx

R∞
−∞ x2k2(x)dx

R∞
−∞ x4k2(x)dx

Bartlett 1 1 2/3 1/15 2/105
Parzen 2 6 151/280 491/20160 929/295680

Quadratic Spectral 2 18π2/125 1 125/72π2 ∞

The only problem left is the unknown quantity α(q). Since Ω̂ and R̂(q)(bT ) are T q/(2q+1)- and

T q/(4q+1)-consistent at the optimum, any T 1/2-consistent estimator of α(q) establishes the consist-

ency of the resulting covariance estimator. Park and Marron (1990) and Sheather and Jones (1991)

argue that the influence of fitting a parametric model to α(q) at this point appears to be less crucial

than fitting it directly to R(q) as Andrews (1991) does. Then, fitting {ht} to a reference AR(1)

model ht = φht−1+�t is considered. The proxy of α(q) is obtained by substituting the least squares

estimate of the AR coefficient φ̂LS into s
(n), n = 0, q, 2q. The formulae of the proxy α̂(q) for q = 1, 2

under the AR(1) reference are

α̂(q) =

⎧⎨⎩
³
φ̂
2

LS + 1
´
/
³
φ̂
2

LS − 1
´

for q = 1

−
³
φ̂
2

LS + 8φ̂LS + 1
´
/
³
φ̂LS − 1

´2
for q = 2

.

2.3 Properties of Automatic Bandwidth

This section provides theoretical justifications of the automatic two-stage plug-in bandwidth se-

lection. Let ξ̂ and ξ be the parameter estimator of the model fitted to the process {ht} and its

probability limit. In line with the parametric specification, the first- and second-stage bandwidths

are rewritten as bξT and SξT , and so on. Also let b̂T =
³
β̂T
´1/(2q+2r+1)

and ŜT = (γ̂T )1/(2q+1)
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be the corresponding automatic bandwidths with ξ̂ plugged in. The next two theorems show that

the automatic two-stage plug-in bandwidth consistently estimates the normalized curvature and the

LRV, even when the fitted reference model is misspecified.

Theorem 3. If A1 and A3 - 7 hold and b2q+2r+1ξT /T → βξ ∈ (0,∞), then

(a) T r/(2q+2r+1)
n
R̂
(q)
T (bξT )−R

(q)
ξ

o
= Op (1) .

(b) T r/(2q+2r+1)
n
R̂
(q)
T (b̂T )− R̂(q)(bξT )

o
p→ 0.

(c)
limm→∞ limT→∞MSEm(R̂

(q)
T (b̂T );R

(q)
ξ , T 2r/(2q+2r+1))

= limm→∞ limT→∞MSEm(R̃
(q)(bξT );R

(q)
ξ , T 2r/(2q+2r+1))

= limT→∞MSE(R̃(q)(bξT );R
(q)
ξ , T 2r/(2q+2r+1)).

Theorem 4. If A1 - 7 hold and S2q+1ξT /T → γξ ∈ (0,∞), then

(a) T q/(2q+1)
³
w0T Ω̂wT − w0Ω̃w

´
p→ 0.

(b)
limm→∞ limT→∞MSEm(Ω̂;Ω, T

2q/(2q+1))

= limm→∞ limT→∞MSEm(Ω̃;Ω, T
2q/(2q+1))

= limT→∞MSE(Ω̃;Ω, T 2q/(2q+1)).

Lastly, practitioners may wonder what happens if the process {ht} happens to be serially un-

correlated and nonetheless the automatic two-stage plug-in bandwidth is applied. The next lemma

shows that even in the absence of the serial dependence in the process {ht} the automatic two-stage

plug-in bandwidth consistently estimates the covariance matrix.

Lemma 3. Suppose that Γh(j) = 0,∀j 6= 0, so that s(q) = 0. If A1 - 7 hold, then R̂
(q)
T (b̂T )

p→ R
(q)
ξ

and Ω̂
p→ Ω.

3 Monte Carlo Results

3.1 Experiment A: Accuracy of LRV Estimates

This experiment investigates the accuracy of LRV estimates under the SP covariance estimator. As

the data generating processes (DGPs), univariate ARMA(1,1) and MA(2) models are chosen. These

models are commonly used for Monte Carlo experiments in time series analysis. Parameter settings

are given below. In all experiments, the sample size is T = 128, and the number of replications is

R = 2000.

ARMA(1,1): xt = ρxt−1 + �t + ψ�t−1, �t
iid∼ N (0, 1) , ρ, ψ ∈ {0,±.5,±.9} , ρ+ ψ 6= 0.
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MA(2): xt = �t + ψ1�t−1 + ψ2�t−2, �t
iid∼ N (0, 1) ,

(ψ1, ψ2) = (−1.9, 0.95) , (−1.3, 0.5) , (−1.0, 0.2) , (0.67, 0.33) , (0,−0.9) , (0, 0.9) , (−1.0, 0.9) .

Variance estimates are calculated by the following nine estimators: (i) the QS estimator with

AR(1) reference by Andrews (1991) (QS-AR); (ii) the Bartlett estimator by Newey and West (1994)

with the bandwidth for the normalized curvature estimator
h
4 (T/100)

2/9
i
(BT-NW ); (iii) the Bart-

lett estimator with AR(1) reference (BT-AR); (iv) the Bartlett two-stage plug-in estimator with

C (1) in b∗T estimated by AR(1) reference (BT-2P); (v) the Bartlett SP estimator (BT-SP); (vi)

the Parzen estimator with AR(1) reference (PZ-AR); (vii) the Parzen two-stage plug-in estimator

with C (2) in b∗T estimated by AR(1) reference (PZ-2P); (viii) the Parzen SP estimator (PZ-SP);

and (xi) the truncetd estimator with AR(1) reference suggested in Andrews (1991, footnote 5 on

page 834) (TR-AR). Estimators (i)-(ii) are most widely used in applied works, while (iii)-(iv) and

(vi)-(vii) are calculated as the benchmarks for two corresponding SP estimators. Unlike others,

estimator (xi) does not necessarily yield non-negative LRV estimates in finite samples. In case of a

negative estimate, the bandwidth is shortened until the resulting estimate becomes positive. The

root mean squared error (RMSE) is chosen as the performance criterion, whereas the bias is reported

for convenience. To avoid obtaining extraordinarily large RMSEs, the least squares estimate of the

AR(1) coefficient φ̂ is adjusted so that its modulus is less than .95.

TABLE 2-3 ABOUT HERE

Tables 2 and 3 display the Monte Carlo results for ARMA(1,1) and MA(2) models, respectively.

The RMSEs and the biases (in parentheses) of the LRV estimators are reported in the first and

second rows of a given DGP. For convenience, Ω, the true value of the LRV, is also provided. The

major findings are summarized below:

• As far as the AR(1) reference correctly specifies the processes, QS-AR performs best. However,

in the presence of MA terms (MA(2) models, in particular) its performance tends to be inferior

to the SP estimators.

• Since the SP estimators are designed to limit the influence of the AR(1) reference, they do not
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perform well for AR(1) models. Once MA terms are introduced, they appears reliable in the

sense that they often substantially reduce RMSEs, compared with their corresponding AR(1)

reference-based and 2P estimators.

• BT-SP performs best in the presence of moderate positive serial dependence. Even in the

presence of negative serial dependence it often performs better than QS-AR, while the latter

still has advantage for the DGPs with dominating AR coefficients such as ARMA(1,1) with

(ρ, ψ) = (−.9, .5). BT-SP tends to improve its RMSE mainly by reducing the variance, and

as a result it possesses a large bias even in the case with a smaller RMSE than QS-AR: see

ARMA(1,1) with (ρ, ψ) = (0, .9) , (.5, .5) and MA(2) with (ψ1, ψ2) = (.67, .33), for example.

The large bias issue is remarkable in particular for near unit root DGPs.

• PZ-SP performs best in the presence of negative serial dependence. However, in the presence

of positive serial dependence, it often worsens RMSE, and tends to be outperformed by QS-AR.

• Because of its way of estimating the normalized curvature, BT-NW should work well at least

for MA models. It indeed performs best for some MA(2) models, but its overall performance

does not exceed QS-AR or SP estimators.

• Since the issue of negative estimates occurs in the presence of strong negative serial dependence,

TR-AR performs extremely poorly for such DGPs. On the other hand, it sometimes performs

best with respect to both RMSE and bias for the DGPs with positive serial dependence.

The results indicate that although no dominant estimator is found, the SP estimators can yield

more accurate LRV estimates for a wide variety of DGPs that cannot be well approximated by

AR(1) models. Therefore, the next experiment focuses only on the SP estimators.

3.2 Experiment B: Size Properties of Test Statistic

Although the SP rule is primarily motivated by estimating the LRV more reliably, it is also of

interest whether the SP estimator can be applied as a useful tool for inferences. Then, according

to West (1997), this experiment investigates the size properties of a test statistic based on the
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linear regression yt = θ1 + θ2x2t + θ3x3t + θ4x4t + θ5x5t + ut ≡ x0tθ + ut, x1t ≡ 1, t = 1, . . . , T .

Without loss of generality the true parameter value θ is set equal to zero. The parameter is

estimated by OLS, and thus the asymptotic covariance matrix of the OLS estimator θ̂ is calculated

as V̂ ≡
³
T−1

PT
t=1 xtx

0
t

´−1
(estimate of Ω)

³
T−1

PT
t=1 xtx

0
t

´−1
. The test statistic of interest is the

Wald statistic T θ̂
2

2/V̂22
d→ χ21 under H0 : θ2 = 0. In all experiments, the sample size is T = 128,

and the number of replications is R = 2000. The regressors follow AR(1) models independently

with common parameter φ, i.e., xit = φ xit−1 + eit, i = 2, . . . , 5, where φ = .5 or .9. The variance

of the iid normal random variable {eit} is chosen so that {xit} has a unit variance. The error term

{ut} independently follows one of the time series models used in Experiment A or the AR(2) model

ut = 1.6ut−1 − .9ut−2 + vt. An important difference of the error term from the regressors is that

since the innovation in each DGP of {ut} follows vt iid∼ N (0, 1), the variance of {ut} varies across

models. The Wald statistics are calculated based on five estimators, namely, QS-AR, BT-NW, BT-

SP, PZ-SP, and TR-AR. To check how the size properties improves by prewhitening (Andrews and

Monahan, 1992), both non-prewhitened and prewhitened versions are investigated for all estimators

other than TR-AR. The procedure of prewhitening follows Andrews and Monahan (1992) with the

eigenvalues of modulus of the fitted VAR(1) coefficient matrix adjusted to being less than .97. The

weighting matrix for QS-AR and TR-AR is a diagonal one with zero weight corresponding to the

intercept parameter and one otherwise, as suggested in Andrews (1991). The weighting vector for

all others assigns zero to the intercept parameter and one otherwise.

TABLES 4-5 ABOUT HERE

Tables 4 (φ = .5) and 5 (φ = .9) report finite sample null rejection frequencies against 5%

nominal size. The major findings are summarized below:

• Table 4 shows that the performances of three non-prewhitened estimators (QS-AR, BT-SP and

PZ-SP) are similar and satisfactory in general. Although over-rejections are observed in the

presence of positive serial dependence (and they are sometimes considerable for BT-SP), these

are substantially remediable by prewhitening. The size properties of the three prewhitened

estimators are comparable.
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• Table 5 indicates that QS-AR sometimes yields an erratic test statistic. As reported in West

(1997), it often rejects the null too infrequently in the presence of strong negative serial depend-

ence, and it appears that prewhitening does not improve the size properties: see ARMA(1,1)

with (ρ, ψ) = (0,−.9), (.5,−.9) and MA(2) with (ψ1, ψ2) = (0,−.9). Moreover, there are

the cases in which the performances of prewhitened PZ-SP get worse: see ARMA(1,1) with

(ρ, ψ) = (0,−.9), (0,−.5) and MA(2) with (ψ1, ψ2) = (−1.9, .95) , (−1.3, .5) , (−1.0, .2). On

the other hand, BT-SP appears less sensitive to prewhitening for the same DGPs: it could be

the case that second-order spectral density derivative estimator (and thus second-order nor-

malized curvature estimator) appears to be more sensitive to prewhitening than the first-order

one.

• Overall non-prewhitened BT-NW tends to exhibit size distortions, and prewhitening does not

necessarily reduce them substantially.

• Again as reported in West (1997), TR-AR often yields a too modest test statistic in the

presence of negative serial dependence. Its performances in the presence of positive serial

dependence are in general better than non-prewhitened QS-AR but worse than prewhitened

QS-AR, BT-SP and PZ-SP.

• Sometimes prewhitening adversely affects the test statistics. In Table 5 prewhitening worsens

the size properties by QS-AR and BT-SP for MA(2) with (ψ1, ψ2) = (0, .9). For each of

MA(2) with (ψ1, ψ2) = (−1.0, .9) and AR(2) with (ρ1, ρ2) = (1.6,−.9), before prewhitening

the Wald statistic by BT-SP alone performs at a satisfactory level. Prewhitening worsens

the size property of the Bartlett-based one for the MA(2) case, and it makes the QS- and

Bartlett-based ones too modest for the AR(2) case. The spectral densities of the three DGPs

have a peak or trough at a nonzero frequency. A lesson here is that we should take extra care

of prewhitening for a process with such a nasty spectral density.
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4 Conclusion

To overcome the drawbacks of two widely applied bandwidth choice rules for kernel HAC estimation,

this paper has proposed the two-stage plug-in bandwidth selection by applying a well-known band-

width choice rule in the literature of probability density estimation. Under this rule, the normalized

curvature is estimated with a general class of kernels, and the AMSE-optimal bandwidth for the

normalized curvature estimator is derived. It is demonstrated that the optimal bandwidth should

diverge at a much slower rate than the one for the HAC estimator with the same kernel. Monte

Carlo results indicate that the SP-based HAC estimator can estimate the LRV more accurately than

the QS estimator by Andrews (1991) or the Bartlett estimator by Newey and West (1994) for a wide

variety of DGPs. The SP-based test statistic has the size properties comparable to the QS-based

one, and better in general than the Bartlett-based one.

A Appendix

A.1 Assumptions

All the assumptions that establish the theorems are given below. A1 and A2 refer to the properties

of the first- and second-stage kernels. Although they appear restrictive, every K1 class kernel (An-

drews, 1991) with bounded support and a finite characteristic exponent greater than 1/2 (including

the Bartlett and Parzen kernels) turns out to satisfy them. Also note that infinite-order kernels

such as the truncated and flat-top kernels do not satisfy A1 or A2. A4(a)(b) are the same as

Assumption 2 in Newey and West (1994). A4(c) is also standard for spectral density estimation.

As discussed in Andrews (1991), A6(a) implies that the right-hand side of (10) is L1+δ bounded for

some δ > 0. Without this assumption, it would be L1 bounded, which would not suffice to establish

the first-order equivalences of MSEs in Theorems 2, 3 and 4. A6(b) is required only when a random

weighting scheme is applied.

A1. The first-stage kernel l(·) satisfies the following conditions:

(a) l : R → [−1, 1], l(0) = 1, l(x) = l(−x),∀x ∈ R, l(·) is continuous at 0 and at all but a finite
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number of other points, the characteristic exponent r ∈ (1/2,∞), and
R∞
−∞ x2ql2(x)dx < ∞,

supx∈R |x|
q |l(x)| <∞ for a given characteristic exponent of the second-stage kernel q.

(b) |l(x)− l(y)| ≤ c |x− y| for some c, ∀x, y ∈ R.

(c) For a given characteristic exponent of the second-stage kernel q, |l(x)| ≤ c |x|−b1 for some c and

for some b1 > q + 1 + (q + 2) / {2 (q + r)}.

(d) l(x) has [r] + 1 continuous, bounded derivatives on [0, x̄1] for some x̄1 > 0, with the derivatives

at x = 0 evaluated as x→ 0+.

A2. The second-stage kernel k(·) satisfies the following conditions:

(a) k : R → [−1, 1], k(0) = 1, k(x) = k(−x),∀x ∈ R, k(·) is continuous at 0 and at all but a finite

number of other points, the characteristic exponent q ∈ (0,∞), and
R∞
−∞ k2(x)dx <∞.

(b) |k(x)− k(y)| ≤ c |x− y| for some c,∀x, y ∈ R.

(c) For a given characteristic exponent of the first-stage kernel r, |k(x)| ≤ c |x|−b2 for some c and

for some b2 > 1 + (2q + 2r + 1) / {q (2r − 1)− 1/2}, provided that q (2r − 1) > 1/2.

(d) k(x) has [q]+ 1 continuous, bounded derivatives on [0, x̄2] for some x̄2 > 0, with the derivatives

at x = 0 evaluated as x→ 0+.

A3. (a) The first stage bandwidth bT satisfies 1/bT + b
max{1,r}
T /T + b2q+1T /T → 0 as T →∞.

(b) The second stage bandwidth ST satisfies 1/ST+ S
max{1,q}
T /T → 0 as T →∞.

A4. (a) g(z, θ) is twice continuously differentiable with respect to θ in a neighborhood N0 of θ0

with probability 1.

(b) Let gt (θ) ≡ g(zt, θ), gtθ (θ) ≡ ∂g(zt, θ)
0/∂θ, and gitθθ (θ) ≡ ∂2gi(zt, θ)/∂θ∂θ

0, where gi(·, ·) is

the ith component of g(·, ·). Then, there exist a measurable function ϕ (z) and some constant

K > 0 such that supθ∈N0
kgt (θ)k < ϕ (z), supθ∈N0

kgtθ (θ)k < ϕ (z), supθ∈N0
kgitθθ (θ)k <

ϕ (z) , i = 1, . . . , s, and E
©
ϕ2 (z)

ª
< K.
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(c) Let vt ≡
¡
gt (θ0)

0
, vec (gtθ (θ0)−E (gtθ (θ0)))

0¢0
=
¡
g0t, vec (gtθ (θ0)−E (gtθ (θ0)))

0¢0. Also let

Γv(j) and κv,abcd(·, ·, ·) be the jth-order autocovariance of the process {vt} and the fourth-order

cumulant of (va,t, vb,t+j , vc,t+j+l, vd,t+j+l+n), where vi,t is the ith element of vt. Then, {vt} is

a zero-mean, fourth-order stationary sequence that satisfies
P∞

j=−∞ |j|
q+max{1,r} kΓv(j)k <∞

and
P∞

j=−∞
P∞

l=−∞
P∞

n=−∞ |κv,abcd(j, l, n)| <∞,∀a, b, c, d ≤ s+ ps.

A5. T 1/2
³
θ̂ − θ0

´
= Op (1).

A6. (a) The process {gt} is eighth-order stationary with
P∞

j1=−∞ · · ·
P∞

j7=−∞ |κg,a1...a8(j1, . . . , j7)| <

∞,∀a1, . . . , a8 ≤ s, where κg,a1...a8(j1, . . . , j7) is the cumulant of (ga1,0, ga2,j1 , . . . , ga8,j7) and gi,t is

the ith element of gt.

(b) The random weighting vector wT satisfies either T q/(2q+1) (wT − w)
p→ 0 for q >

¡
−1 +

√
5
¢
/2

and r ≤ q (2q + 1), or T r/(2q+2r+1) (wT − w)
p→ 0 for r > max {1/2, q (2q + 1)}.

A7. T 1/2
³
ξ̂ − ξ

´
= Op (1).

A.2 Proof of Lemma 1

The proof closely follows that of Theorem 10 in Chapter V of Hannan (1970). Using E
³
Γ̃h(j)

´
=

{(T − |j|) /T}Γh(j), j = 0,±1,±2, . . . gives

brT

n
E
³
s̃(q)

´
− s(q)

o
= brT

T−1X
j=−(T−1)

l(
j

bT
) |j|q

µ
1− |j|

T

¶
Γh(j)− brT

∞X
j=−∞

|j|q Γh(j)

= brT

T−1X
j=−(T−1)

½
l(

j

bT
)− 1

¾
|j|q Γh(j)− brT

T−1X
j=−(T−1)

l(
j

bT
) |j|q |j|

T
Γh(j)− brT

∞X
|j|≥T

|j|q Γh(j)

≡ B1 −B2 −B3.

As T →∞,

B1 = −
T−1X

j=−(T−1)

½
1− l(j/bT )

|j/bT |r
¾
|j|q+r Γh(j)→ −lr

∞X
j=−∞

|j|q+r Γh(j) = −lrs(q+r).
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On the other hand,

|B2| ≤
brT
T

T−1X
j=−(T−1)

¯̄̄̄
l(

j

bT
)

¯̄̄̄
|j|q+1 |Γh(j)| ≤

(
(brT /T ) kwk

2P∞
j=−∞ |j|

q+r kΓg(j)k→ 0 for r ≥ 1
(brT /T ) kwk

2P∞
j=−∞ |j|

q+1 kΓg(j)k→ 0 for r < 1
.

By bT ≤ T for arbitrarily large T , |B3| ≤ 2
P∞

j=T |j|
q+r |Γh(j)| ≤ 2 kwk2

P∞
j=T |j|

q+r kΓg(j)k → 0,

which establishes the first approximation. A4(c) implies that
P∞

j=−∞ |j|
max{1,r} kΓg(j)k < ∞.

Then, the second approximation is immediately established if this condition is used for the term

corresponding to B2. ¥

A.3 Proof of Lemma 2

The proof closely follows that of Theorem 9 in Chapter V of Hannan (1970). The result on page

313 in Hannan (1970) gives

TCov
³
Γ̃h(i), Γ̃h(j)

´
=

∞X
u=−∞

{Γh(u)Γh(u+ i− j) + Γh(u+ i)Γh(u− j) + κh(i, u, u+ j)}ϕT (u, i, j), (14)

where κh(·, ·, ·) is the fourth-order cumulant generated by the process {ht}, and ϕT (u, i, j) is defined

for i ≥ j by

ϕT (u, i, j) =

⎧⎨⎩ 0 if u ≤ −T + i; 1− (i− u) /T if − T + i ≤ u ≤ 0;
1− i/T if 0 ≤ u ≤ i− j; 1− (j + u) /T if i− j ≤ u ≤ T − j;
0 if T − j ≤ u.

Hence,

T

b2q+1T

V ar(s̃(q)) =
1

bT

T−1X
i=−(T−1)

T−1X
j=−(T−1)

¯̄̄̄
i

bT

¯̄̄̄q ¯̄̄̄
j

bT

¯̄̄̄q
l(

i

bT
)l(

j

bT
)
∞X

u=−∞
Γh(u)Γh(u+ i− j)ϕT (u, i, j)

+
1

bT

T−1X
i=−(T−1)

T−1X
j=−(T−1)

¯̄̄̄
i

bT

¯̄̄̄q ¯̄̄̄
j

bT

¯̄̄̄q
l(

i

bT
)l(

j

bT
)
∞X

u=−∞
Γh(u+ i)Γh(u− j)ϕT (u, i, j)

+
1

bT

T−1X
i=−(T−1)

T−1X
j=−(T−1)

¯̄̄̄
i

bT

¯̄̄̄q ¯̄̄̄
j

bT

¯̄̄̄q
l(

i

bT
)l(

j

bT
)
∞X

u=−∞
κh(i, u, u+ j)ϕT (u, i, j)

≡ V1 + V2 + V3.

Let v ≡ i− j. Then, V1 can be rewritten as

V1 =

2(T−1)X
v=−2(T−1)

∞X
u=−∞

Γh(u)Γh(u+ v)

⎧⎨⎩ 1

bT

X
j

ϕT (u, j + v, j)

¯̄̄̄
j

bT

¯̄̄̄q
l(

j

bT
)

¯̄̄̄
j + v

bT

¯̄̄̄q
l(
j + v

bT
)

⎫⎬⎭ ,
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where the summation over j runs only for {j : |j| ≤ T − 1, |j + v| ≤ T − 1}. By picking trimming

functions mT = O
¡
b1−�T

¢
for some � ∈ (0, 1) and MT = O

³
b1+ηT

´
for some η ∈ (0, �/ (3q)), it can be

shown5 that

V1 ∼

⎧⎨⎩ X
|u|≤mT

Γh(u)

⎫⎬⎭
⎧⎨⎩ X
|u0|≤mT

Γh(u
0)

⎫⎬⎭
⎧⎨⎩ 1

bT

X
|j|≤MT

¯̄̄̄
j

bT

¯̄̄̄2q
l2(

j

bT
)

⎫⎬⎭→ ³
s(0)

´2 Z ∞
−∞

x2ql2 (x) dx.

Similarly, we have V2 →
¡
s(0)

¢2 R∞
−∞ x2ql2 (x) dx. Finally, by A1(a) and A4(c),

|V3| ≤
2

bT

µ
sup
x∈R

|x|q |l(x)|
¶2 ∞X

j=−∞

∞X
l=−∞

∞X
n=−∞

|κh(j, l, n)|→ 0,

which establishes the first approximation. The second approximation is a standard result of the spec-

tral density estimation. The third approximation is shown by recognizing that
R∞
−∞ |x|

q
l2(x)dx <∞

by A1(a). ¥

A.4 Proof of Theorem 2

Part (a): On the right-hand side of

T
r

2q+2r+1

n
R̂
(q)
T (bT )− R̃(q)(bT )

o
≤ T

r
2q+2r+1

¯̄̄
R̂
(q)
T (bT )− R̂(q)(bT )

¯̄̄
+ T

r
2q+2r+1

¯̄̄
R̂(q)(bT )− R̃(q)(bT )

¯̄̄
,

the first term is op (1) by A6(b). Hence, we need to show that the second term is op (1). Taking the

first-order Taylor expansion of R̂(q)(bT ) around
¡
ŝ(q), ŝ(0)

¢0
=
¡
s̃(q), s̃(0)

¢0
gives R̂(q)(bT ) = R̃(q)(bT )+

δ̃
0
ĥ + op

³°°°ĥ°°°´, where δ̃ = ³
1/s̃(0),−s̃(q)/

¡
s̃(0)

¢2´0
and ĥ =

¡
ŝ(q) − s̃(q), ŝ(0) − s̃(0)

¢0
. Then, we

need only show that T r/(2q+2r+1)
¡
ŝ(n) − s̃(n)

¢ p→ 0, n = 0, q.

Taking the second-order Taylor expansion of ĥt = w0ĝt = w0g
³
zt, θ̂

´
around θ̂ = θ0 gives

ĥt = ht+
∂ht
∂θ0

¯̄̄̄
θ=θ0

³
θ̂ − θ0

´
+
1

2

³
θ̂ − θ0

´0 ∂2ht
∂θ∂θ0

¯̄̄̄
θ=θ̄

³
θ̂ − θ0

´
= ht+htθ

³
θ̂ − θ0

´
+
1

2

³
θ̂ − θ0

´0
h̄tθθ

³
θ̂ − θ0

´
for some θ̄ joining θ̂ and θ0. Then,

ĥtĥt−j

= htht−j + [ht−j (htθ −E (htθ)) + ht (ht−jθ −E (htθ))]
³
θ̂ − θ0

´
+ (ht−j + ht)E (htθ)

³
θ̂ − θ0

´
+
³
θ̂ − θ0

´0µ
h0tθht−jθ +

1

2
ht−j h̄tθθ +

1

2
hth̄t−jθθ

¶³
θ̂ − θ0

´
5A detailed argument is available on the author’s web page.
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+
1

2

½
htθ

³
θ̂ − θ0

´µ³
θ̂ − θ0

´0
h̄t−jθθ

³
θ̂ − θ0

´¶
+ ht−jθ

³
θ̂ − θ0

´µ³
θ̂ − θ0

´0
h̄tθθ

³
θ̂ − θ0

´¶¾
+
1

4

½³
θ̂ − θ0

´0
h̄tθθ

³
θ̂ − θ0

´¾½³
θ̂ − θ0

´0
h̄t−jθθ

³
θ̂ − θ0

´¾
.

Hence,

T
r

2q+2r+1

³
ŝ(n) − s̃(n)

´
= T

r
2q+2r+1

T−1X
j=−(T−1)

l(
j

bT
) |j|n

n
Γ̂h(j)− Γ̃h(j)

o
= T

r
2q+2r+1 0n

n
Γ̂h(0)− Γ̃h(0)

o
+2T

r
2q+2r+1

T−1X
j=1

l(
j

bT
) |j|n

⎧⎨⎩ 1T
TX

t=j+1

(ht−j (htθ −E (htθ)) + ht (ht−jθ −E (htθ)))

⎫⎬⎭³θ̂ − θ0

´

+2T
r

2q+2r+1

T−1X
j=1

l(
j

bT
) |j|n

⎧⎨⎩ 1T
TX

t=j+1

(ht−j + ht)

⎫⎬⎭E (htθ)
³
θ̂ − θ0

´

+2T
r

2q+2r+1

³
θ̂ − θ0

´0 T−1X
j=1

l(
j

bT
) |j|n

⎧⎨⎩ 1T
TX

t=j+1

µ
h0tθht−jθ +

1

2
ht−j h̄tθθ +

1

2
hth̄t−jθθ

¶⎫⎬⎭³θ̂ − θ0

´

+2T
r

2q+2r+1

µ
1

2

¶ T−1X
j=1

l(
j

bT
) |j|n

⎧⎨⎩ 1T
TX

t=j+1

htθ

³
θ̂ − θ0

´µ³
θ̂ − θ0

´0
h̄t−jθθ

³
θ̂ − θ0

´¶

+ht−jθ
³
θ̂ − θ0

´µ³
θ̂ − θ0

´0
h̄tθθ

³
θ̂ − θ0

´¶¾³
θ̂ − θ0

´
+2T

r
2q+2r+1

µ
1

4

¶ T−1X
j=1

l(
j

bT
) |j|n

⎧⎨⎩ 1T
TX

t=j+1

µ³
θ̂ − θ0

´0
h̄tθθ

³
θ̂ − θ0

´¶µ³
θ̂ − θ0

´0
h̄t−jθθ

³
θ̂ − θ0

´¶⎫⎬⎭
≡ D1 +D2 +D3 +D4 +D5 +D6.

D1 = op (1) is obvious. Since

D2 = T−
2q+1

2(2q+2r+1) 2
T−1X
j=1

l(
j

bT
) |j|n

⎛⎝ 1
T

TX
t=j+1

(ht−j (htθ −E (htθ)) + ht (ht−jθ −E (htθ)))

⎞⎠nT 1
2

³
θ̂ − θ0

´o
≡ T−

2q+1
2(2q+2r+1)R2

n
T

1
2

³
θ̂ − θ0

´o
,

we need only show that R2 = Op (1) to establish that D2 = op (1). R2 is further rewritten as

R2 = 2
T−1X
j=1

l(
j

bT
) |j|n

⎧⎨⎩ 1T
TX

t=j+1

ht−j (htθ −E (htθ))

⎫⎬⎭+ 2
T−1X
j=1

l(
j

bT
) |j|n

⎧⎨⎩ 1T
TX

t=j+1

ht (ht−jθ −E (htθ))

⎫⎬⎭
≡ R21 +R22.

Observe that E {ht−j (htθ −E (htθ))} and E {ht (ht−jθ −E (htθ))} are autocovariances. Hence, by

A4(c) the same argument as in the proofs of Lemmata 1 and 2 applies. Then, brT {E (R2i)−R∗2i} =

19



O (1) and
³
T/b2q+1T

´
V ar (R2i) = O (1) , i = 1, 2, where

R∗21 ≡
T−1X
j=1

l(
j

bT
) |j|nE {ht−j (htθ −E (htθ))} , R∗22 ≡

T−1X
j=1

l(
j

bT
) |j|nE {ht (ht−jθ −E (htθ))} .

By bT = O(T 1/(2q+2r+1)), MSE (R2i;R
∗
2i) = O(T−2q/(2q+2r+1)) → 0. Finally, letting R∗2 ≡ R∗21 +

R∗22 yields MSE (R2;R
∗
2)→ 0 by Cauchy-Schwarz inequality, and thus we have R2 = Op (1).

D3 can be rewritten as

D3 = T−
2q+1

2(2q+2r+1)

⎧⎨⎩2
T−1X
j=1

l(
j

bT
) |j|n

⎛⎝ 1
T

TX
t=j+1

(ht−j + ht)

⎞⎠⎫⎬⎭E (htθ)
n
T

1
2

³
θ̂ − θ0

´o
≡ T−

2q+1
2(2q+2r+1)R3

n
E (htθ)T

1
2

³
θ̂ − θ0

´o
.

To establish D3 = op (1), we need only show that R3 = op (1), where

R3 = 2
T−1X
j=1

l(
j

bT
) |j|n

⎛⎝ 1
T

TX
t=j+1

ht−j

⎞⎠+ 2 T−1X
j=1

l(
j

bT
) |j|n

⎛⎝ 1
T

TX
t=j+1

ht

⎞⎠ ≡ R31 +R32.

By T/b2(q+1)T = O(T (2r−1)/(2q+2r+1))→∞ for r > 1/2 and E (R31) = 0,

T

b
2(q+1)
T

V ar (R31) =
T

b
2(q+1)
T

E
¡
R231

¢
=

4

b
2(q+1)
T

T−1X
i=1

T−1X
j=1

l(
i

bT
) |i|n l( j

bT
) |j|n

⎧⎨⎩TCov(
1

T

TX
t=i+1

ht−i,
1

T

TX
t=j+1

ht−j)

⎫⎬⎭ .

Observe that¯̄̄̄
¯̄TCov( 1T

TX
t=i+1

ht−i,
1

T

TX
t=j+1

ht−j)

¯̄̄̄
¯̄ ≤ ∞X

k=−∞
|Γh (k)| ≤ kwk2

∞X
k=−∞

kΓg (k)k <∞.

A1(a) implies that
R∞
−∞ |x|

q |l(x)| dx <∞, and thus

4

b
2(q+1)
T

T−1X
i=1

T−1X
j=1

l(
i

bT
) |i|n l( j

bT
) |j|n ≤

⎧⎨⎩ 2

bT

T−1X
j=1

¯̄̄̄
j

bT

¯̄̄̄q ¯̄̄̄
l(

j

bT
)

¯̄̄̄⎫⎬⎭
2

→
½Z ∞
−∞

|x|q |l(x)| dx
¾2

<∞.

Hence, V ar (R31) = o (1). Similarly, V ar (R32) = o (1), and thus V ar (R3) = o (1) by Cauchy-

Schwarz inequality. Finally, R3 = op (1) is shown by Chebyshev’s inequality.

Moreover,

|D4| ≤ T
°°°θ̂ − θ0

°°°2 ³T r
2q+2r+1−1bq+1T

´⎧⎨⎩ 2

bq+1T

T−1X
j=1

|j|n
¯̄̄̄
l(

j

bT
)

¯̄̄̄⎫⎬⎭
¯̄̄̄
¯̄ 1T

TX
t=j+1

µ
h0tθht−jθ +

1

2
ht−j h̄tθθ +

1

2
hth̄t−jθθ

¶¯̄̄̄¯̄
≡ T

°°°θ̂ − θ0

°°°2R4.
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To establish D4 = op (1), we need only show that R4 = op (1). By A4(b),

E

¯̄̄̄
¯̄ 1T

TX
t=j+1

µ
h0tθht−jθ +

1

2
ht−j h̄tθθ +

1

2
hth̄t−jθθ

¶¯̄̄̄¯̄ ≤ 2 kwk2K <∞.

We also have

2

bq+1T

T−1X
j=1

|j|n
¯̄̄̄
l(

j

bT
)

¯̄̄̄
≤ 1

bT

T−1X
j=−(T−1)

¯̄̄̄
j

bT

¯̄̄̄q ¯̄̄̄
l(

j

bT
)

¯̄̄̄
→
Z ∞
−∞

|x|q |l(x)| dx <∞.

By O(T r/(2q+2r+1)−1bq+1T ) = o(T−(q+r)/(2q+2r+1)) = o (1), we have E |R4| = o (1), and thus R4 =

op (1) by Markov’s inequality. Similarly, D5 = op (1) and D6 = op (1) can be shown.

Part (b): The proof directly follows the proof of Theorem 1(c) in Andrews (1991). ¥

A.5 Proof of Theorem 3

Part (a): On the right-hand side of

T
r

2q+2r+1

¯̄̄
R̂
(q)
T (bξT )−R

(q)
ξ

¯̄̄
≤ T

r
2q+2r+1

¯̄̄
R̂
(q)
T (bξT )− R̂(q)(bξT )

¯̄̄
+ T

r
2q+2r+1

¯̄̄
R̂(q)(bξT )− R̃(q)(bξT )

¯̄̄
+ T

r
2q+2r+1

¯̄̄
R̃(q)(bξT )−R

(q)
ξ

¯̄̄
,

the first and second terms are op (1) by A6(b) and Theorem 2(a). Since the third term is Op (1) by

Theorem 1, the result immediately follows.

Part (b): Taking the first-order Taylor expansion of R̂(q)(b̂T ) around
³
ŝ(q)

³
b̂T

´
, ŝ(0)

³
b̂T

´´
=³

ŝ
(q)
ξ , ŝ

(0)
ξ

´0 ³
≡
¡
ŝ(q)(bξT ), ŝ

(0)(bξT )
¢0´

gives R̂(q)(b̂T ) = R̂(q)(bξT ) + δ̂
0
ξĥξ + op

³°°°ĥξ°°°´, where δ̂ξ =µ
1/ŝ

(0)
ξ ,−ŝ(q)ξ /

³
ŝ
(0)
ξ

´2¶0
and ĥξ =

³
ŝ(q)

³
b̂T

´
− ŝ

(q)
ξ , ŝ(0)

³
b̂T

´
− ŝ

(0)
ξ

´0
. Again, we need only show

that T r/(2q+2r+1)
n
ŝ(n)

³
b̂T

´
− ŝ

(n)
ξ

o
p→ 0, n = 0, q. Observe that

T
r

2q+2r+1

n
ŝ(n)

³
b̂T

´
− ŝ

(n)
ξ

o
= T

r
2q+2r+1

T−1X
j=−(T−1)

½
l(

j

b̂T
)− l(

j

bξT
)

¾
|j|n

n
Γ̂h(j)− Γ̃h(j)

o

+T
r

2q+2r+1

T−1X
j=−(T−1)

½
l(

j

b̂T
)− l(

j

bξT
)

¾
|j|n Γ̃h(j)

≡ H1 +H2.

H1 = op (1) is shown as follows. By A1(c) we can pick some η ∈ (1 + 1/ {2 (b1 − q − 1)} , 2 + (r − 2) / (q + 2)).
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For such η, let an integer m1 be m1 ≡
h
bηξT

i
. Then,

H1 = 2T
r

2q+2r+1

m1X
j=1

½
l(

j

b̂T
)− l(

j

bξT
)

¾
|j|n

n
Γ̂h(j)− Γ̃h(j)

o
+ 2T

r
2q+2r+1

T−1X
j=m1+1

l(
j

b̂T
) |j|n

n
Γ̂h(j)− Γ̃h(j)

o

−2T r
2q+2r+1

T−1X
j=m1+1

l(
j

bξT
) |j|n

n
Γ̂h(j)− Γ̃h(j)

o
≡ 2H11 + 2H12 − 2H13.

By A1(b),

|H11| ≤ T
r

2q+2r+1

m1X
j=1

¯̄̄̄
l(

j

b̂T
)− l(

j

bξT
)

¯̄̄̄
jn
¯̄̄
Γ̂h(j)− Γ̃h(j)

¯̄̄

≤ cT
r

2q+2r+1

m1X
j=1

¯̄̄̄
¯̄̄ j³
β̂T
´1/(2q+2r+1) − j¡

βξT
¢1/(2q+2r+1)

¯̄̄̄
¯̄̄ jn ¯̄̄Γ̂h(j)− Γ̃h(j)¯̄̄

≤ c

½
T

1
2

¯̄̄̄
β̂
− 1
2q+2r+1 − β

− 1
2q+2r+1

ξ

¯̄̄̄¾⎧⎨⎩T
r−1

2q+2r+1−1
m1X
j=1

jq+1T
1
2

¯̄̄
Γ̂h(j)− Γ̃h(j)

¯̄̄⎫⎬⎭ .

Now, T 1/2
¯̄̄
β̂
−1/(2q+2r+1) − β

−1/(2q+2r+1)
ξ

¯̄̄
= Op (1) by A7, and supj≥1 T

1/2
¯̄̄
Γ̂h(j)− Γ̃h(j)

¯̄̄
= Op (1)

by A4(b) and A5. By
Pm1

j=1 j
q+1 = O(T η(q+2)/(2q+2r+1)) and η < 2 + (r − 2) / (q + 2), we have

O(T (r−1)/(2q+2r+1)−1
Pm1

j=1 j
q+1) = o (1) and thus H11 = op (1). Moreover, by A1(c),

|H12| ≤ T
r

2q+2r+1

T−1X
j=m1+1

¯̄̄̄
l(

j

b̂T
)

¯̄̄̄
jn
¯̄̄
Γ̂h(j)− Γ̃h(j)

¯̄̄

≤ cT
r

2q+2r+1

T−1X
j=m1+1

¯̄̄̄
¯̄̄ j³
β̂T
´ 1
2q+2r+1

¯̄̄̄
¯̄̄
−b1

jq
¯̄̄
Γ̂h(j)− Γ̃h(j)

¯̄̄

≤ cβ̂
b1

2q+2r+1

⎧⎨⎩T
r+bf

2q+2r+1−
1
2

T−1X
j=m1+1

jq−b1T
1
2

¯̄̄
Γ̂h(j)− Γ̃h(j)

¯̄̄⎫⎬⎭ .

A1(c) implies that q − b1 < 0, and thus
PT−1

j=m1+1
jq−b1 = O(T η(q+1−b1)/(2q+2r+1)). By η >

1 + 1/ {2 (b1 − q − 1)}, it follows that O(T (r+b1)/(2q+2r+1)−1/2
PT−1

j=m1+1
jq−b1) = o (1), and thus

H12 = op (1). Similarly, H13 = op (1) can be shown, and thus H1 = op (1) is established.

H2 = op (1) is shown as follows. Let x̂j ≡ j/
³
β̂T
´1/(2q+2r+1)

. By A1(d) and the definition of

the characteristic exponent, for 0 ≤ x̂j ≤ x̄1 the Taylor-series expansion of l(x̂j) around x̂j = 0 gives

l(x̂j) = 1 + l(1)(0)x̂j + · · ·+
l([r])(0)

[r]!
x̂
[r]
j +

l([r]+1)(x̄j)

([r] + 1)!
x̂
[r]+1
j = 1 +

l([r])(0)

[r]!
x̂
[r]
j +

l([r]+1)(x̄j)

([r] + 1)!
x̂
[r]+1
j .
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for some x̄j joining 0 and x̂j . Similarly, let xξj ≡ j/
¡
βξT

¢1/(2q+2r+1)
. Then, for 0 ≤ xξj ≤ x̄1,

l(xξj) = 1 +
l([r])(0)

[r]!
x
[r]
ξj +

l([r]+1)(x̄ξj)

([r] + 1)!
x
[r]+1
ξj

for some x̄ξj joining 0 and xξj . Hence,

l(x̂j)− l(xξj) =
l([r])(0)

[r]!

³
x̂
[r]
j − x

[r]
ξj

´
+

l([r]+1)(x̄j)

([r] + 1)!
x̂
[r]+1
j − l([r]+1)(x̄ξj)

([r] + 1)!
x
[r]+1
ξj .

Note that this expansion is valid for j ≤ J ≡ min
½
T − 1,

∙
x̄1

³
β̂T
´1/(2q+2r+1)¸

,
h
x̄1
¡
βξT

¢1/(2q+2r+1)i¾
.

For such J , H2 is rewritten as

H2 = 2T
r

2q+2r+1

JX
j=1

½
l(

j

b̂T
)− l(

j

bξT
)

¾
jnΓ̃h(j) + 2T

r
2q+2r+1

T−1X
j=J+1

l(
j

b̂T
)jnΓ̃h(j)− 2T

r
2q+2r+1

T−1X
j=J+1

l(
j

bξT
)jnΓ̃h(j)

≡ 2H21 + 2H22 − 2H23.

H21 is further rewritten as

H21 = T
r

2q+2r+1

JX
j=1

l([r])(0)

[r]!

(µ
j/
³
β̂T
´ 1
2q+2r+1

¶[r]
−
³
j/
¡
βξT

¢ 1
2q+2r+1

´[r])
jnΓ̃h(j)

+T
r

2q+2r+1

JX
j=1

l([r]+1)(x̄j)

([r] + 1)!

½
j/
³
β̂T
´ 1
2q+2r+1

¾[r]+1
jnΓ̃h(j)

−T r
2q+2r+1

JX
j=1

l([r]+1)(x̄ξj)

([r] + 1)!

n
j/
¡
βξT

¢ 1
2q+2r+1

o[r]+1
jnΓ̃h(j)

≡ H211 +H212 −H213.

If [r] < r, then l([r])(0) = 0 by the definition of the characteristic exponent, which trivially yields

H211 = op (1). If [r] = r, then

|H211| ≤
¯̄̄̄
l(r)(0)

r!

¯̄̄̄ n
T

1
2

¯̄̄
β̂
− r
2q+2r+1 − β

− r
2q+2r+1

ξ

¯̄̄o ¯̄̄̄¯̄T− 1
2

JX
j=1

jq+rΓ̃h(j)

¯̄̄̄
¯̄ .

By
¯̄̄
E
n
Γ̃h(j)

o¯̄̄
≤ E

¯̄̄
Γ̃h(j)

¯̄̄
≤ |Γh(j)|, A4(c) and Markov’s inequality, for every � > 0,

Pr

⎛⎝¯̄̄̄¯̄T− 1
2

JX
j=1

jq+rΓ̃h(j)

¯̄̄̄
¯̄ > �

⎞⎠ ≤ 1
�
E

¯̄̄̄
¯̄T− 1

2

JX
j=1

jq+rΓ̃h(j)

¯̄̄̄
¯̄ ≤ T−

1
2

�
kwk2

∞X
j=−∞

|j|q+r kΓg(j)k→ 0,

and thus H211 = op (1). To show that H212 = op (1), we use the following facts: (a) ([r] + 1)th

derivative of l(x) is bounded on [0, x̄1]; (b)
¯̄̄
E
n
Γ̃h(j)

o¯̄̄
≤ |Γh(j)|; and (c) J ≤

∙
x̄1

³
β̂T
´1/(2q+2r+1)¸

.

Then,

|H212| ≤ c
¯̄̄
β̂
¯̄̄− [r]+1

2q+2r+1

¯̄̄̄
¯̄T r−[r]−1

2q+2r+1

JX
j=1

j[r]+q+1Γ̃h(j)

¯̄̄̄
¯̄ .
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A4(c) implies that
P∞

j=1 j
q+r |Γh(j)| < ∞, and thus |Γh(j)| ≤ cj−(q+r)−(1+δ) for some δ > 0, for

which
PJ

j=1 j
[r]+q+1 |Γh(j)| = O

¡
T ([r]−r−δ+1)/(2q+2r+1)

¢
holds. Hence, H212 = op (1) follows from

β̂
p→ β and Markov’s inequality

Pr

⎛⎝¯̄̄̄¯̄T r−[r]−1
2q+2r+1

JX
j=1

j[r]+q+1Γ̃h(j)

¯̄̄̄
¯̄ > �

⎞⎠ ≤ 1
�
E

¯̄̄̄
¯̄T r−[r]−1

2q+2r+1

JX
j=1

j[r]+q+1Γ̃h(j)

¯̄̄̄
¯̄ ≤ O

³
T−

δ
2q+2r+1

´
→ 0.

Similarly, we have H213 = op (1), and thus H21 = op (1) is established. On the other hand,

|H22| ≤ cT
r

2q+2r+1

¯̄̄̄
¯̄ T−1X
j=J+1

½
j/
³
β̂T
´ 1
2q+2r+1

¾−b1
jqΓ̃h(j)

¯̄̄̄
¯̄ = c

¯̄̄
β̂
¯̄̄ b1
2q+2r+1

¯̄̄̄
¯̄T r+b1

2q+2r+1

T−1X
j=J+1

jq−b1 Γ̃h(j)

¯̄̄̄
¯̄ .

By
PT−1

j=J+1 j
q−b1 |Γh(j)| = O(T−(b1+r+δ)/(2q+2r+1)) for some δ > 0, β̂

p→ β and Markov’s inequality,

we have H22 = op (1). Similarly, H23 = op (1) can be shown, and thus H2 = op (1) is established.

Part (c): This is immediately established by applying the same argument as used in the proof of

Theorem 2(b). In particular, for the first equality, the references should be changed from Theorems

1 and 2(a) to Theorem 3(a)(b). ¥

A.6 Proof of Theorem 4

Part (a): By A6(b) we need only show that T q/(2q+1)
³
w0Ω̂w − w0Ω̃w

´
p→ 0. Observe that

T
q

2q+1

³
w0Ω̂w − w0Ω̃w

´
= T

q
2q+1

T−1X
j=−(T−1)

½
k(

j

ŜT
)− k(

j

SξT
)

¾n
Γ̃h(j)−E

³
Γ̃h(j)

´o

+T
q

2q+1

T−1X
j=−(T−1)

½
k(

j

ŜT
)− k(

j

SξT
)

¾
E
³
Γ̃h(j)

´

+T
q

2q+1

T−1X
j=−(T−1)

k(
j

ŜT
)
n
Γ̂h(j)− Γ̃h(j)

o
≡ A1 +A2 +A3.

Since A2 = op (1) and A3 = op (1) have been already shown as Lemmata A7 and A8 in Newey and

West (1994), we need only show that A1 = op (1).

Let γ̂ ≡ qk2q

³
R̂
(q)
T (b̂T )

´2
/
R∞
−∞ k2(x)dx and γξ ≡ qk2q

³
R
(q)
ξ

´2
/
R∞
−∞ k2(x)dx so that ŜT =

(γ̂T )
1/(2q+1) and SξT =

¡
γξT

¢1/(2q+1)
. By A2(c) we can pick some ζ such that ζ ∈ (1 +

1/ (2 (b2 − 1)) , 3/4 + (r (2q + 1)) / (2 (2q + 2r + 1))). For such ζ, let an integer m2 be m2 =
h
SςξT

i
.
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Then,

A1 = 2T
q

2q+1

m2X
j=1

½
k(

j

ŜT
)− k(

j

SξT
)

¾n
Γ̃h(j)−E

³
Γ̃h(j)

´o

+2T
q

2q+1

T−1X
j=m2+1

k(
j

ŜT
)
n
Γ̃h(j)−E

³
Γ̃h(j)

´o

−2T
q

2q+1

T−1X
j=m2+1

k(
j

SξT
)
n
Γ̃h(j)−E

³
Γ̃h(j)

´o
≡ 2A11 + 2A12 − 2A13.

By A2(b),

|A11| ≤ T
q

2q+1

m2X
j=1

¯̄̄̄
k(

j

ŜT
)− k(

j

SξT
)

¯̄̄̄ ¯̄̄
Γ̃h(j)−E

³
Γ̃h(j)

´¯̄̄

≤ cT
q

2q+1

m2X
j=1

¯̄̄̄
¯ j

(γ̂T )
1/(2q+1)

− j¡
γξT

¢1/(2q+1)
¯̄̄̄
¯ ¯̄̄Γ̃h(j)−E

³
Γ̃h(j)

´¯̄̄
≤ c

³
T

r
2q+2r+1

¯̄̄
γ̂−

1
2q+1 − γξ

− 1
2q+1

¯̄̄´
T

q−1
2q+1−

r
2q+2r+1−

1
2

m2X
j=1

j

½
sup
j≥1

T
1
2

¯̄̄
Γ̃h(j)−E

³
Γ̃h(j)

´¯̄̄¾
.

By Theorem 3(a), T r/(2q+2r+1)
¯̄̄
γ̂−1/(2q+1) − γξ

−1/(2q+1)
¯̄̄
= Op (1). Moreover, by (14), |ϕT (·, ·, ·)| ≤

1 and A4(c), we see that supj≥1 TV ar
³
Γ̃h(j)

´
< ∞. Hence, supj≥1 T

1/2
¯̄̄
Γ̃h(j)−E

³
Γ̃h(j)

´¯̄̄
=

Op (1). It follows from
Pm2

j=1 j = O(T 2ς/(2q+1)) and ς < 3/4 + (r (2q + 1)) / (2 (2q + 2r + 1)) that

T (q−1)/(2q+1)−r/(2q+2r+1)−1/2
Pm2

j=1 j = o (1), and thus A11 = op (1). On the other hand, by A2(c),

|A12| ≤ T
q

2q+1

T−1X
j=m2+1

¯̄̄̄
k(

j

ŜT
)

¯̄̄̄ ¯̄̄
Γ̃h(j)−E

³
Γ̃h(j)

´¯̄̄

≤ cT
q

2q+1

T−1X
j=m2+1

¯̄̄̄
¯ j

(γ̂T )1/(2q+1)

¯̄̄̄
¯
−b2 ¯̄̄

Γ̃h(j)−E
³
Γ̃h(j)

´¯̄̄

≤ cγ̂
b2

2q+1T
q+b2
2q+1−

1
2

T−1X
j=m2+1

j−b2
½
sup
j≥1

T
1
2

¯̄̄
Γ̃h(j)−E

³
Γ̃h(j)

´¯̄̄¾
.

By
PT−1

j=m2+1
j−b2 = O(T ς(1−b2)/(2q+1)) and ς > 1+1/ (2 (b2 − 1)), T (q+b2)/(2q+1)−1/2

PT−1
j=m2+1

j−b2 =

o (1), and thus A12 = op (1). Similarly, A13 = op (1), and thus A1 = op (1) is established.

Part (b): This part has been already shown as a part of Theorem 3(c) in Andrews (1991). To see

this, recognize by (2) that MSE(Ω̃;Ω) = E
n
vec(Ω̃− Ω)0 (wTw

0
T ⊗ wTw

0
T ) vec(Ω̃− Ω)

o
; in other

words,MSE(Ω̃;Ω, T 2q/(2q+1)) can be always rewritten as equation (3.5) in Andrews (1991) with the

weighting matrix WT = (wTw
0
T )⊗ (wTw

0
T ). ¥
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A.7 Proof of Lemma 3

To show the consistency of R̂(q)T (b̂T ), by A6(b) we need only show that R̂(q)(b̂T )
p→ R

(q)
ξ . In the

absence of serial dependence in the process {ht}, φ = 0. Hence, s(q)ξ = 0, and thus s(q+r)ξ = 0.

It follows that Cξ(q, r) = R
(q)
ξ = 0. Then, Ĉ(q, r) = Cξ(q, r) + Op

¡
T−1/2

¢
= Op

¡
T−1/2

¢
. The

estimator of the first-stage bandwidth becomes b̂T = O

µn
Ĉ2(q, r)T

o1/(2q+2r+1)¶
= O (1). Since

Γh(j) = 0,∀j 6= 0 and l (0) = 1, it is easy to see that ŝ(q) and ŝ(0) are unbiased for s(q)ξ and s
(0)
ξ .

Then, O
³
MSE(R̂(q)(b̂T );R

(q)
ξ )
´
= O

³
V ar(R̂

(q)
T (b̂T ))

´
= O

¡
T−1

¢
, which implies that R̂(q)(b̂T ) =

R
(q)
ξ +Op

¡
T−1/2

¢
= Op

¡
T−1/2

¢
, or R̂(q)(b̂T )

p→ R
(q)
ξ (= 0). As a result, the estimator of the second-

stage bandwidth becomes ŜT = O

Ã½³
R̂(q)(b̂T )

´2
T

¾1/(2q+1)!
= O (1). Since ŝ(q) is unbiased for

s
(q)
ξ , O

³
MSE(Ω̂;Ω)

´
= O

³
V ar(Ω̂)

´
= O

¡
T−1

¢
, or Ω̂

p→ Ω. ¥
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Table 2: Accuracy of LRV Estimates for ARMA(1,1) Models

ρ ψ Ω QS-AR BT-NW BT-AR BT-2P BT-SP PZ-AR PZ-2P PZ-SP TR-AR
-.9 0 .277 .080 .232 .144 .285 .178 .127 .100 .095 5.337

( .048 ) ( .199 ) ( .066 ) ( .082 ) ( .044 ) ( .106 ) ( .037 ) ( .041 ) ( 4.977 )
-.5 0 .444 .104 .279 .138 .161 .162 .105 .112 .113 .724

( .044 ) ( .107 ) ( .064 ) ( .074 ) ( .074 ) ( .043 ) ( .018 ) ( .016 ) ( .300 )
.5 0 4.000 1.348 1.451 1.398 1.478 1.520 1.383 1.497 1.516 1.285

( -.655 ) ( -1.026 ) ( -.934 ) ( -1.148 ) ( -1.238 ) ( -.660 ) ( -.823 ) ( -.779 ) ( -.612 )
.9 0 100.000 63.897 73.425 64.839 68.862 69.216 64.425 67.891 67.260 61.822

( -49.611 ) ( -71.980 ) ( -55.876 ) ( -63.914 ) ( -65.030 ) ( -52.237 ) ( -58.672 ) ( -58.081 ) ( -46.482 )
0 -.9 .010 .399 .227 .281 .149 .091 .360 .133 .065 1.292

( .388 ) ( .116 ) ( .275 ) ( .145 ) ( .086 ) ( .352 ) ( .125 ) ( .057 ) ( .945 )
0 -.5 .250 .243 .229 .200 .163 .150 .219 .142 .128 .347

( .222 ) ( .082 ) ( .179 ) ( .128 ) ( .102 ) ( .200 ) ( .102 ) ( .068 ) ( .106 )
0 .5 2.250 .642 .705 .618 .661 .589 .660 .687 .726 .567

( -.155 ) ( -.388 ) ( -.268 ) ( -.416 ) ( -.379 ) ( -.174 ) ( -.250 ) ( -.274 ) ( -.038 )
0 .9 3.610 1.120 1.186 1.067 1.149 .961 1.161 1.198 1.313 1.025

( -.293 ) ( -.691 ) ( -.466 ) ( -.747 ) ( -.629 ) ( -.337 ) ( -.464 ) ( -.563 ) ( -.157 )
-.9 -.9 .003 .219 .720 .337 .279 .222 .434 .131 .130 19.080

( .201 ) ( .689 ) ( .319 ) ( .251 ) ( .190 ) ( .412 ) ( .104 ) ( .096 ) ( 17.830 )
-.9 -.5 .069 .140 .456 .208 .185 .155 .275 .093 .096 12.088

( .126 ) ( .434 ) ( .191 ) ( .156 ) ( .113 ) ( .258 ) ( .067 ) ( .068 ) ( 11.219 )
-.9 .5 .623 .124 .198 .194 .328 .200 .129 .346 .129 1.296

( -.005 ) ( .050 ) ( .024 ) ( .095 ) ( .041 ) ( .004 ) ( .102 ) ( -.011 ) ( 1.037 )
-.5 -.9 .004 .217 .553 .207 .120 .084 .226 .059 .048 3.671

( .211 ) ( .289 ) ( .204 ) ( .117 ) ( .078 ) ( .222 ) ( .053 ) ( .040 ) ( 3.601 )
-.5 -.5 .111 .134 .393 .135 .100 .090 .138 .052 .055 2.255

( .125 ) ( .193 ) ( .126 ) ( .081 ) ( .060 ) ( .131 ) ( .032 ) ( .031 ) ( 2.211 )
-.5 .9 1.604 .362 .455 .337 .371 .324 .376 .390 .420 .362

( -.047 ) ( -.199 ) ( -.102 ) ( -.223 ) ( -.162 ) ( -.063 ) ( -.107 ) ( -.129 ) ( .136 )
.5 -.9 .040 .729 .171 .643 .577 .367 .659 .652 .658 .697

( .709 ) ( .110 ) ( .616 ) ( .527 ) ( .290 ) ( .640 ) ( .602 ) ( .555 ) ( .644 )
.5 .5 9.000 3.758 3.402 3.539 3.772 3.441 3.875 3.987 4.428 3.443

( -1.299 ) ( -2.430 ) ( -1.877 ) ( -2.709 ) ( -2.558 ) ( -1.442 ) ( -1.892 ) ( -2.238 ) ( -.887 )
.5 .9 14.440 6.151 5.554 5.803 6.248 5.641 6.338 6.668 7.407 5.601

( -2.697 ) ( -4.194 ) ( -3.444 ) ( -4.764 ) ( -4.352 ) ( -2.966 ) ( -3.679 ) ( -4.389 ) ( -1.930 )
.9 -.5 25.000 17.397 18.022 18.039 18.383 18.609 16.981 16.461 16.151 18.068

( -16.161 ) ( -17.631 ) ( -17.239 ) ( -17.758 ) ( -18.064 ) ( -15.504 ) ( -14.704 ) ( -14.159 ) ( -17.165 )
.9 .5 225.000 149.666 163.870 144.369 156.685 153.102 152.146 161.578 151.477 140.263

( -117.794 ) ( -160.538 ) ( -121.811 ) ( -145.203 ) ( -142.463 ) ( -127.351 ) ( -141.060 ) ( -132.925 ) ( -100.006 )
.9 .9 361.000 252.219 264.245 239.151 255.084 248.999 254.339 267.369 250.659 239.142

( -188.633 ) ( -258.388 ) ( -195.318 ) ( -232.992 ) ( -228.789 ) ( -204.974 ) ( -224.522 ) ( -214.641 ) ( -161.681 )
Note:  The first and second rows of each DGP are RMSEs and biases (in parentheses).

Table 3: Accuracy of LRV Estimates for MA(2) Models

ψ1 ψ2 Ω QS-AR BT-NW BT-AR BT-2P BT-SP PZ-AR PZ-2P PZ-SP TR-AR
-1.9 .95 .003 .306 .777 .383 .202 .135 .326 .054 .045 5.581

( .295 ) ( .353 ) ( .376 ) ( .196 ) ( .127 ) ( .319 ) ( .043 ) ( .032 ) ( 5.500 )
-1.3 .5 .040 .161 .410 .202 .111 .081 .171 .031 .028 2.941

( .154 ) ( .187 ) ( .197 ) ( .105 ) ( .071 ) ( .166 ) ( .020 ) ( .015 ) ( 2.889 )
-1.0 .2 .040 .243 .285 .202 .111 .079 .230 .063 .043 1.964

( .236 ) ( .130 ) ( .198 ) ( .106 ) ( .071 ) ( .225 ) ( .056 ) ( .033 ) ( 1.871 )
.67 .33 4.000 1.343 1.412 1.291 1.363 1.210 1.381 1.433 1.565 1.187

( -.391 ) ( -.895 ) ( -.629 ) ( -.914 ) ( -.825 ) ( -.454 ) ( -.611 ) ( -.732 ) ( -.177 )
0 -.9 .010 1.855 .212 1.806 1.801 .360 1.714 1.660 .712 1.849

( 1.827 ) ( .147 ) ( 1.780 ) ( 1.773 ) ( .297 ) ( 1.686 ) ( 1.609 ) ( .446 ) ( 1.824 )
0 .9 3.610 1.781 1.264 1.715 1.767 1.731 1.653 1.645 1.477 1.882

( -1.642 ) ( -.812 ) ( -1.620 ) ( -1.661 ) ( -1.541 ) ( -1.487 ) ( -1.329 ) ( -.997 ) ( -1.793 )
-1.0 .9 .810 .407 .503 .247 .464 .212 .341 .273 .307 2.061

( -.392 ) ( .038 ) ( -.051 ) ( .045 ) ( -.045 ) ( -.317 ) ( -.225 ) ( -.277 ) ( 1.994 )
Note:  The first and second rows of each DGP are RMSEs and biases (in parentheses).
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Table 4: Finite Sample Null Rejection Frequencies against 5% Nominal Size (φ = .5)
(% )

Q S-A R B T -N W B T -SP P Z-SP Q S -A R B T-N W B T -SP P Z-SP TR -A R
A R M A (1 ,1 ): ρ ψ

-.9 0 4 .0 5 .7 3 .9 4 .5 5 .1 5 .9 5 .0 4 .9 .5
-.5 0 5 .1 5 .7 4 .6 4 .8 6 .1 7 .4 6 .2 6 .2 2 .8
0 0 6 .0 7 .4 5 .2 5 .3 6 .1 7 .3 6 .1 6 .1 5 .3
.5 0 9 .6 11 .0 12 .0 10 .5 7 .7 9 .4 7 .7 7 .7 8 .9
.9 0 12 .4 15 .0 15 .5 14 .0 9 .1 10 .0 9 .1 9 .1 11 .6
0 -.9 4 .4 6 .7 4 .1 4 .3 5 .2 6 .8 5 .2 5 .1 2 .5
0 -.5 4 .3 5 .8 3 .5 3 .4 5 .1 6 .3 5 .1 5 .1 3 .7
0 .5 8 .6 9 .1 10 .4 9 .1 6 .7 8 .0 6 .8 6 .8 7 .2
0 .9 9 .2 10 .2 11 .3 10 .2 6 .7 8 .6 6 .9 6 .9 8 .1
-.9 -.9 4 .1 5 .3 3 .7 4 .8 4 .6 6 .0 4 .7 4 .7 .3
-.5 -.9 3 .5 5 .6 3 .5 3 .9 4 .2 5 .3 4 .2 4 .2 .6
-.5 .9 8 .4 8 .9 9 .4 8 .7 7 .0 8 .4 7 .1 7 .2 7 .6
.5 -.9 4 .1 5 .8 3 .4 3 .4 4 .5 5 .9 4 .5 4 .5 2 .9
.5 .9 10 .0 12 .4 13 .1 11 .0 7 .2 8 .9 7 .5 7 .6 9 .0
.9 .9 10 .3 13 .8 14 .5 12 .5 6 .7 7 .5 6 .8 7 .0 10 .2

M A (2): ψ 1 ψ 2
-1 .9 .95 4 .2 6 .1 4 .1 4 .6 4 .8 6 .5 4 .9 4 .9 .5
-1 .3 .5 3 .5 5 .1 3 .6 4 .0 3 .6 5 .9 3 .6 3 .5 .4
-1 .0 .2 4 .3 6 .1 4 .2 4 .8 4 .5 6 .6 4 .5 4 .4 .9
.67 .33 9 .6 10 .9 12 .1 10 .5 7 .6 8 .5 7 .7 7 .7 8 .9
0 -.9 3 .7 5 .7 4 .0 3 .9 4 .0 5 .7 4 .1 4 .3 3 .9
0 .9 9 .9 9 .8 9 .5 9 .0 10 .2 10 .2 10 .2 10 .2 9 .3
-1 .0 .9 5 .2 7 .2 5 .1 5 .8 6 .0 7 .9 6 .2 6 .1 .9

A R (2): ρ 1 ρ 2
1 .6 -.9 9 .3 11 .3 11 .2 10 .3 6 .0 7 .2 6 .7 6 .7 8 .5

N on-P rewhitened P rewhitened

Table 5: Finite Sample Null Rejection Frequencies against 5% Nominal Size (φ = .9)
(% )

Q S-A R B T-N W B T-SP P Z-SP Q S-A R B T-N W B T-SP P Z-SP TR -A R
A R M A (1,1): ρ ψ

-.9 0 4 .3 2 .7 4 .9 4 .5 5 .6 6 .8 5 .3 5 .4 .0
-.5 0 6 .2 9 .9 6 .8 7 .7 6 .9 10 .2 6 .7 6 .6 .9
0 0 7.5 10 .7 7 .0 6 .9 7 .6 11 .5 7 .7 7 .8 7 .2
.5 0 13.6 15 .7 15 .9 14 .8 9 .4 11 .8 9 .8 9 .6 12 .3
.9 0 25.9 28 .6 29 .2 27 .9 17 .9 18 .3 18 .4 18 .1 24 .1
0 -.9 .7 6 .9 2 .2 2 .8 .7 6 .0 1 .7 .5 .1
0 -.5 3 .4 8 .4 5 .0 5 .7 3 .2 7 .4 3 .6 2 .9 1 .4
0 .5 9 .6 11 .9 10 .2 10 .8 5 .0 9 .8 5 .5 6 .4 7 .9
0 .9 10 .9 12 .5 10 .8 12 .3 4 .9 11 .5 5 .2 7 .5 9 .6
-.9 -.9 2 .2 1 .3 3 .3 2 .3 3 .8 4 .5 3 .0 2 .9 .0
-.5 -.9 1 .1 6 .0 2 .7 3 .1 1 .6 5 .4 2 .4 2 .0 .0
-.5 .9 8 .9 11 .1 9 .4 9 .5 5 .9 10 .7 6 .4 7 .5 7 .7
.5 -.9 1 .1 7 .3 2 .2 1 .8 1 .0 7 .0 1 .7 1 .1 1 .6
.5 .9 16 .9 18 .7 17 .3 18 .1 6 .4 12 .2 6 .8 9 .7 15 .4
.9 .9 27 .3 29 .9 30 .8 29 .3 14 .0 15 .3 15 .3 14 .8 25 .1

M A (2): ψ 1 ψ 2
-1 .9 .95 1 .1 5 .8 2 .5 3 .3 1 .3 3 .7 2 .1 1 .6 .0
-1 .3 .5 1 .0 5 .6 2 .0 2 .9 1 .2 4 .7 1 .8 1 .3 .0
-1 .0 .2 1 .8 6 .6 3 .5 4 .4 1 .8 6 .4 2 .9 1 .6 .1
.67 .33 12.6 14 .8 12 .9 13 .5 5 .7 11 .8 6 .6 7 .7 11 .0
0 -.9 .3 7 .4 2 .0 2 .3 .3 6 .7 1 .8 2 .4 .4
0 .9 15 .0 14 .0 14 .6 13 .8 16 .5 14 .2 16 .3 14 .4 15 .7
-1 .0 .9 9 .7 10 .2 7 .7 10 .2 10 .5 10 .6 9 .1 8 .9 .2

A R (2): ρ 1 ρ2
1 .6 -.9 10 .0 6 .8 6 .0 12 .4 .5 2 .4 1 .1 5 .7 6 .0

Non-P rewhitened P rewhitened
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