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1 Introduction

Traditionally truncated regression models have been identified and estimated with parametrically

specified regression functions and error distributions. As is well known (see, for example, Powell

(1994)), misspecification of the regression function or the error distribution in limited dependent

variable models leads in general to inconsistent estimates, misleading inferences and erroneous

predictions. Recent developments in the semiparametric and nonparametric estimation literature

are largely motivated by sensitivity to misspecfications. For the identification and estimation of

truncated regression models, Honoré and Powell (1994) and Lee (1994), among others, allowed

for general error distribution in the cross-sectional case, and Honoré (1992) in the panel data case

with fixed effects, but these studies imposed parametric specifications on the latent regression

functions. Levy (2000), on the other hand, considered nonparametric identification and estima-

tion of the latent regression function in the cross-sectional case, but he imposed normality on

the error distribution. Consequently, the identification and estimation results from these earlier

methods are sensitive to misspecification of the latent regression function or the error distribution.

In this paper, we provide a comprehensive treatment of nonparametric identification of truncated
∗I would like to thank Xiaohong Chen, Bo Honoré, Lung-Fei Lee, Oliver Linton, Arthur Lewbel, Jim Powell, the

Co-Editor and three anonymous referees, and participants at the Triangle econometrics workshop, the 2003 North

American Econometric Society Summer meetings and the Conference on Semi-parametric Methods for Survival and
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regression models for both the cross-sectional and panel data settings and further propose non-

parametric estimation procedures based on the identification results. Our results are therefore

robust to misspecification of parametric structures of the model.

There has been some recent progress in nonparametric identification and estimation of the

truncated regression model in the cross-sectional case. By employing a novel two-step identifica-

tion procedure, Lewbel and Linton (2002) proposed a two-step nonparametric estimator, which

can be implemented through two nonparametric regressions (and their derivatives) and a univari-

ate integral. However, there are two major drawbacks associated with their approach. First, they

require a strict monotonicity assumption in order for the mean regression based on truncated

sampling to be invertible, which, in turn, is equivalent to a log-concavity assumption on the error

distribution1. This strong shape restriction could potentially restrict the applicability of their

estimator in empirical applications. Heckman and Honoré (1990) provided some discussions on

situations when this concavity assumption is reversed and further provided some counter exam-

ples2. Another major drawback of the approach by Lewbel and Linton (2002) is the requirement

of the presence of a continuous regressor, thus ruling out the case when all the regressors are

discrete, which is common in empirical applications.

In this paper, we first present an identification result for the underlying regression function

in the cross-sectional case. The main insight behind this identification result is the observation

that the basic shape of the error distribution is preserved under truncation beyond any trunca-

tion point, subject to rescaling; thus, the truncated distributions based on the same underlying

error distribution with different truncation points belong to an equivalence class, subject to a

location shift and rescaling. Equivalently, the truncated hazard functions corresponding to dif-

ferent truncation points are linked through a location shift. We establish an identification result

for the latent regression function by exploiting this equivalence result under a non-periodicity3

assumption, without imposing any strong shape restriction on the error distribution or requiring

the presence of a continuous regressor, thus avoiding the forementioned two main drawbacks of

Lewbel and Linton (2002). Heuristically, the strength of our approach in comparison with Lewbel

and Linton (2002) is that we achieve identification by exploiting the full knowledge of the trun-

cated distributions4, whereas Lewbel and Linton (2002) only rely on the knowledge of the first

two truncated moments. We further propose a consistent estimator for the underlying regression

function based on this identification result.

While our identification result does not require a strong shape restriction on the underlying

error distribution or the presence of a continuous regressor by exploiting the mapping between
1Their log-concavity assumption is somewhat weaker than that of Honoré and Powell (1994). Still, it imposes a

strong shape restriction on the underlying error distribution; namely, they require strict concavity of
R∞
t
(1−F (v))dv,

where F is the CDF of the error term. See Abrevaya (2000), Heckman and Honoré (1990) and Levy (2000) for

some detailed discussions.
2 It is straightforward to construct counter-examples to this log-concavity assumption; in particular, this assump-

tion fails when any portion of the right tail of the error distribution violates this log-concavity assumption.
3Horowitz (1998) and Ichimura (1993) noted the usefulness of non-periodicity in identification in the context of

single-index models.
4 In a way, this is equivalent to making use of an infinite number of moments.
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truncated distributions at different truncation points through some location shift and rescaling,

or equivalently, by exploiting the mapping between truncated hazard functions at different trun-

cation points through some location shift, there is still a possibility of non-uniqueness of such

mappings when the error distribution possesses a particular periodicity property. It is possible,

however, to overcome such non-uniqueness to achieve identification, when the above-mentioned

non-periodicity fails, by exploiting a smoothness property when all the regressors are continuous,

or by making use of both the smoothness property and a large support condition on the underlying

regression function5 when both continuous and discrete regressors are present.

For the panel data model with fixed effects, Porter (1997) considered nonparametric estimation

of the regression function when there is no censoring or truncation. Abrevaya (2000) and Honoré

(1992) considered semiparametric estimation of the fixed-effect panel data regression model under

truncation with a linear specification for the underlying regression function. To the best of our

knowledge, nonparametric identification and estimation of the truncated regression model with

panel data has not been considered in the literature. Similar to the cross-sectional case, we show

that the underlying regression function can be identified under a non-periodicity condition on the

error distribution and that identification is still possible in the presence of a continuous regressor

even when this non-periodicity condition fails. In addition, we further propose a nonparametric

estimation procedure for the underlying regression function. Our approach in the panel data case

could be viewed as a bivariate extension of our results for the cross-sectional case.

The paper is organized as follows. Section 2 presents our identification results. Section 3

introduces our estimators and analyzes their large sample properties. Section 4 reports some

simulation results. Section 5 concludes the paper. The appendix contains some mathematical

proofs.

2 Identification

In this section, we describe the models and provide identification results. These results are useful

for motivating our estimation procedures proposed in the next section.

We first consider the cross-sectional case. Suppose the observed data are generated based on

the latent response variable, Y ∗, defined by

Y ∗ = m0(X) + ε (2.1)

where X is a d-dimensional column vector of regressors, m0(·) is the unknown regression function,
and ε is the unobservable error term independent of X. For the truncated model, our observations

consist of a random sample {(Yi,Xi): i = 1, 2, ..., n} from the conditional distribution of (Y ∗,X)

given the event {Y ∗ > 0}.
5Horowitz (1998) and Ichimura (1993) noted that less-stringent conditions are needed for identification in single-

index models when all regressors are continuously distributed. Furthermore, Horowitz (1998), Ichimura (1993) and

Manski (1988) noted the usefulness of the presence of a continuous regressor and a large support of the regression

function for identification in the context of single-index and binary choice models when discrete regressors are

present.
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To motivate our identification approaches, define

S∗(t, x) = E∗[1{Y ≥ t}|X = x] =
S(t−m0(x))

S(−m0(x))
(2.2)

for x ∈ Ω, where Ω is the support of X, E∗ denotes the expectation operator based on the

truncated distribution, and S is the survival functions of ε. Assume6 that Pr(Y ∗ > 0|X = x) > 0

for each x ∈ Ω. We focus on the identification and estimation of m0(x) up to a location since
no location restriction is imposed on the error distribution7. Set m0(x0) = 0, for some x0 ∈ Ω.
The main insight behind our identification results is that the basic shape of the error distribution

beyond the truncation point is preserved under truncation8; namely, the error survival functions at

two different truncation points are linked through a rescaling factor in their overlapping domain,

which, in turn, implies the truncated conditional survival functions of Y given X = x and X = x0,

S∗(t, x) and S∗(t, x0) are linked through a rescaling factor together with a location shift. Suppose

m0(x) ≥ 0; then, S∗(t, x) and S∗(t, x0) are linked through the following location-scale relationship:
S∗(t, x0) = β0S

∗(t+ β1, x) for t ≥ 0, where β0 = 1/S∗(m0(x), x) and β1 = m0(x), namely,

S∗(t, x0) =
S∗(t+m0(x), x)

S∗(m0(x), x)
. (2.3)

Similarly, form0(x) < 0, we obtain S∗(t, x) = β01S
∗(t+β11, x0) for t ≥ 0 with β01 = 1/S∗(−m0(x), x0)

and β11 = −m0(x), or

S∗(t, x) =
S∗(t−m0(x), x0)

S∗(−m0(x), x0)
. (2.4)

Equations (2.3) and (2.4) form the basis for our identification and estimation results. Define

T (m) = T1(m)1{m ≥ 0}+ T2(m)1{m < 0} (2.5)

where

T1(m) =

Z ∞

0

∙
S∗(t, x0)−

S∗(t+m,x)

S∗(m,x)

¸2
w1(t)dt

and

T2(m) =

Z ∞

0

∙
S∗(t, x)− S

∗(t−m,x0)
S∗(−m,x0)

¸2
w1(t)dt

and w1(t) is a positive integrable function on [0,∞). Clearly, T (m0(x)) = 0. Our first identifica-

tion result states that T (m) has a unique minimizer under a non-periodicity assumption on the

error distribution.
6Note that, given the nonparametric treatment in the paper, extrapolation on m(x) is not permitted for x with

P (Y ∗ > 0|X = x) = 0.
7With truncated sampling, quantile restrictions are not useful in identifying m0(x) as the scale factor

1/S(−m0(x)) cannot be identified. Under the conditional zero mean restriction, the location factor can be identified

only by relying on the tail distribution of the error term based on identification at infinity.
8Note that, conditional on X = x, ε is truncated at −m0(x).
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Lemma 1: For some x ∈ Ω, if the hazard function of ε, λ(t) = −d lnS(t)/dt, is not periodic on
(max{0,−m0(x)},∞), then m0(x) is identified.

Proof : Suppose that m0(x) ≥ 0. We will show that m0(x) is the unique solution to T (m) = 0.

Suppose that there is an m̃x 6= m0(x) such that T (m̃x) = 0. Further suppose that m̃x ≥ 0.

Then, it follows that S∗(t, x0) =
S∗(t+m̃x,x)
S∗(m̃x,x)

for all t ≥ 0. Some simple algebra shows that

λ(t) = λ(t+ m̃x−m0(x)), which implies that λ must be a periodic function on (0,∞), leading to
a contradiction. We could use similar arguments to derive a similar contradiction if m̃x < 0. The

case with m0(x) < 0 is treated analogously.

Remark 1 : In contrast to the monotonicity assumption of the conditional regression based on

truncated sampling by Lewbel and Linton (2002), the assumption that λ(·) is not a periodic
function on (max{−m0(x), 0},∞) does not impose a strong shape restriction on the underlying
error distribution. In particular, their monotonicity assumption is equivalent to the condition thatR∞
t S(v)dv is log-concave, or, equivalently, S(t)/

R∞
t S(v)dv is monotonically decreasing, which,

in turn, implies that S(t)/
R∞
t S(v)dv cannot be periodic, or equivalently, that λ (·) cannot be

periodic on (max{−m0(x),−m0(x0)},∞). Thus, the monotonicity assumption by Lewbel and
Linton (2002) is sufficient for our above identification result.

Remark 2 : Let λ(t|x) = −d lnS∗(t, x)/dt = λ(t−m0(x)) denote the conditional hazard function

of Y given X = x. In the proof of Lemma 1, we have shown that the location-scale restriction on

the conditional survival functions based on truncated sampling is equivalent to a location shift

restriction on the conditional hazard functions. Intuitively, the above non-periodicity assumption

implies the uniqueness of the location shift parameter for the two conditional hazard functions.

If the error hazard function, λ, is indeed periodic on (max{0,−m0(x)},∞), then the arguments
used in the proof of the above lemma actually show that m0(x), in addition to the location

normalization, are identified up to an integer multiple of the corresponding period. In the next

lemma, we show that this multiplicity problem does not arise in the continuous case; in other

words, identification is still possible even if the error hazard function is periodic in its right tail.

Lemma 2: Assume that X is continuously distributed with a convex support Ω and that m0 (·)
is a continuous function. Then, m0(x) can be identified for x ∈ Ω if error hazard function λ (·) is
not a constant on (max{0,−m0(x)},∞)), that is, if λ (·) does not have an exponential right tail.

Proof: We provide only the details for the case with m0(x) ≥ 0, as the case with m0(x) < 0
involves similar arguments. If λ (·) is not a periodic function on (0,∞), then the identification of
m0(x) follows from Lemma 1. Now suppose that λ (·) is indeed a periodic function on (0,∞) with
a positive period γc0. Define a functional, T

f (m) = T f1 (m) + T
f
2 (m), of a function m (·) (with a

slight abuse of notation here), where

T f1 (m) =

Z Z ∞

0

∙
S∗(t, x0)−

S∗(t+m(x̃), x̃)

S∗(m(x̃), x̃)

¸2
1{m(x̃) ≥ 0}w2(x̃)w1(t)dtdx̃

and

T f2 (m) =

Z Z ∞

0

∙
S∗(t, x̃)− S

∗(t−m(x̃), x0)
S∗(−m(x̃), x0)

¸2
1{m(x̃) < 0}w2(x̃)w1(t)dtdx̃
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and w1 is defined as above and w2 is a positive weight function such that
R
w2(x̃)dx̃ < ∞.

Clearly T (m0) = 0. Now suppose that there exists another continuous function, m̃ (·), such
that T f (m̃) = 0. Define x(u) = (1 − u)x0 + ux, for u ∈ [0, 1]; thus x(0) = x0 and x(1) = x.

By following the arguments in the proof of Lemma 1 and noting Remark 2, we can show that

λ(t) = λ(t+ m̃(x(u))−m0(x(u)) and m̃(x(u)) = m0(x(u))+η(u)γc0 for any u ∈ [0, 1], where η(u)
takes on integer values, which can be different for different u ∈ [0, 1]. Due to the continuity of
m̃ (·) and m0(·), however, we can deduce that η(u) must be a constant term, say, η0. Furthermore,
we have η0γc0 = 0 since m̃(x0) = m0 (x0) = 0; thus, η0 = 0. Hence, m̃(x(u)) = m0(x(u)) for any

u ∈ [0, 1]. Therefore, m0(x) is identified.

Remark 3 : Note that λ(t|x) = λ(t−m0(x)) can be identified based on the knowledge of S∗(t, x)

with truncated sampling. If λ(·) and m0(·) are differentiable, then, similar to the arguments in
Horowitz (1996), we can show that ∂m0(x)

∂xk
= −

R ∂λ(t|x)
∂xk

∂λ(t|x)
∂t w1(t)dt/

R
[∂λ(t|x)∂t ]2w1(t)dt, provided

that
R
[∂λ(t|x)∂t ]2w1(t)dt > 0, where xk is the k-th component of x. Thus,

∂m0(x)
∂xk

can be identified

as long as λ(·) does not have an exponential tail on (−m0(x),∞), which is a weaker identification
condition than that in Lewbel and Linton (2002) for identifying the partial derivatives of m0(·).
Remark 4 : An exponential tail for the error distribution can also be problematic for truncated

regression models even in the semiparametric case in which m0 has a linear specification. Suppose

that λ(t) = λ0, a constant, when t ∈ (t0,∞) for some t0 and m0(x) = x
0β. Then, under truncated

sampling, we have S∗(t, x) = e−λ0t if −x0β > t0. Therefore, the observations with −X 0β > t0 and

t > t0 are not informative about the finite dimensional parameter, β, under truncated sampling.

Finally, we examine the usefulness of continuous regressors in identification when discrete

regressors are present. In particular, we show that identification is still possible even if the error

hazard function is periodic in its right tail when a continuous regressor is present and the support

of the underlying regression function is large enough.

Lemma 3: Let X = (Xc,Xd) with its support Ω = Ωc × Ωd, where Xc and Xd denote the
continuous and discrete components, respectively, Ωc is a convex set and Ωd is finite. Suppose

that there exists an x∗c ∈ Ωc, such that λ (·) is not a periodic function9 on (−m0(x
∗
c , xd),∞) and

m0(xc, xd) is a continuous function of xc for any xd ∈ Ωd. For any x0 = (xc0, xc0) and x = (xc, xd)
in Ω, if λ (·) is not a constant on (max{−m0(x),−m0(x0)},∞), thenm0(x)−m0(x0) is identified10.

Proof : Note thatm0(x
∗
c , xd)−m0(x∗c , xd0) is identified by Lemma 1 since λ (·) is not periodic on

(max{−m0(x
∗
c , xd),−m0(x∗c , xd0)},∞). As λ (·) is not a constant on (max{−m0(xc, xd),−m0(x

∗
c , xd)},∞)

or (max{−m0(xc0, xd0),−m0(x∗c , xd0)},∞), m0(xc, xd)−m0(x
∗
c , xd) and m0(xc0, xd0)−m(x∗c , xd0)

are identified by Lemma 2. Consequently, we can identify m(xc, xd) −m(xc0, xd0) by combining
these three terms.

Now, we turn to the panel data model with fixed effects. In this case the observed data are
9 It is straightforward to show that there exists a constant, t0, such that λ cannot be a periodic function on

[−t0,∞) if the support of ε is the real line. Therefore, we could pick an x∗c such that m0(x
∗
c , xd ) > t0, which is

possible if supxc m0(xc, xd) is sufficiently large for every xd ∈ Ωd.
10Note that no location normalization is imposed for this lemma.
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generated based on the latent variables, Y ∗t , given by

Y ∗t = α+m0(Xt) + εt for t = 1, 2, (2.6)

where X1 and X2 are d-dimensional column vectors of regressors, m0(·) is an unknown regression
function, α is the fixed effect, and ε1 and ε2 are the unobservable error terms. In this case, our

observations {(Yit,Xit): i = 1, 2, ..., n, t = 1, 2} consist of a random sample generated from the

conditional distribution of {Y ∗t ,Xt, t = 1, 2} given the event {Y ∗1 > 0 and Y ∗2 > 0}. We focus on
the case with two time periods, but our results could be extended to more general cases.

We now consider identification under the conditional pairwise exchangeability condition (e.g.,

Honoré and Kyriazidou (2000)) that (ε1, ε2) and (ε2, ε1), or equivalently, (ε∗1, ε
∗
2) and (ε

∗
2, ε

∗
1) with

ε∗1 = α+ ε1 and ε∗2 = α+ ε2, are identically distributed conditional on (α,X1,X2). Let Ωp denote

the support of X = (X1,X2) and P (Y ∗1 > 0, Y
∗
2 > 0|X1 = x1,X2 = x2) > 0 for any (x1, x2) ∈ Ωp.

Similar to Honoré (1992), the pairwise exchangeability implies that the conditional distribution of

(Y ∗1 , Y
∗
2 ) given (X1 = x1,X2 = x2) is symmetric around the 45

0 line through (0,m0(x2)−m0(x1)).

The main insight for our identification results is the observation that such conditional symmetry11

is preserved under truncation. As will become clear later, the identification results for the panel

data case could be viewed as an extension of those for the cross-sectional case.

For (x0, x) ∈ Ωp, define the joint conditional survival function of (Y1, Y2) under truncation,

G(s1, s2, x0, x) = E
∗[1{Y1 > s1, Y2 > s2}|X1 = x0,X2 = x] =

Sp(s1 −m0(x0), s2 −m0(x), x0, x)

Sp(m0(x0),−m0(x), x0, x)
,

where Sp(s1, s2, x0, x) = E(ε∗1 > s1, ε
∗
2 > s2|X1 = x0,X2 = x). Under the conditional pairwise

exchangeability, we have

G(s1, s2 +m0(x)−m0(x0), x0, x) = G(s2, s1 +m0(x)−m0(x0), x0, x) (2.7)

for m0(x)−m0(x0) ≥ 0 and

G(s1 − (m0(x)−m0(x0)), s2, x0, x) = G(s2 − (m0(x)−m0(x0)), s1, x0, x) (2.8)

for m0(x) − m0(x0) < 0 for any s1 > 0 and s2 > 0. Define location-shifted versions of G as

G1m(s1, s2, x0, x) = G(s1, s2 +m,x0, x) and G
2
m(s1, s2, x0, x) = G(s1 −m, s2, x0, x). It is easy to

show that G1m0(x)−m0(x0)
(s1, s2, x0, x) is pairwise exchangeable in (s1, s2) if m0(x)−m0(x0) ≥ 0,

and

G2m0(x)−m0(x0)
(s1, s2, x0, x) is pairwise exchangeable in (s1, s2) ifm0(x)−m0(x0) < 0. This location

shift restriction can be thought of as a bivariate extension of the location shift restriction utilized

for identification in the cross-sectional case.

Similar to the identification approach adopted for the cross-sectional case, define

Tp(m) = Tp1(m)1{m ≥ 0}+ Tp2(m)1{m < 0} (2.9)
11Note that Honoré (1992) exploited only the moment conditions related to the first two moments based on

the symmetry, whereas we exploit the entire symmtry property of the conditional distribution based on pairwise

exchangeability.
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where

Tp1(m) =

Z ∞

0

Z ∞

0
[G1m(s1, s2, x0, x)−G1m(s2, s1, x0, x)]2w1(s1)w1(s2)ds1ds2

and

Tp2(m) =

Z ∞

0

Z ∞

0
[G2m(s1, s2, x0, x)−G2m(s2, s1, x0, x)]2w1(s1)w1(s2)ds1ds2

As noted above, the pairwise exchangeability implies that the joint distribution of (ε1, ε2) is

symmetric around the 450 line through the origin. Our next lemma rules out other 450 lines

about which the joint conditional error distribution is symmetric.

Lemma 4: For (x0, x) ∈ Ωp, if the 450 line through the origin is the only 450 line about
which (ε∗1, ε

∗
2) is symmetric, given (X1,X2) = (x0, x) in the region (−m0(x0),∞)× (−m0(x),∞),

then m0(x)−m0(x0) is identified.

Proof : Clearly, Tp(m0(x)−m0(x0)) = 0. Suppose that there exists an m̃
p
x0x 6= m0(x)−m0(x0)

such that Tp(m̃
p
x0x) = 0. Assuming that m0(x)−m0(x0) ≥ 0 and m̃p

x0x > m0(x)−m0(x0) (other

cases involve similar arguments, thus omitted), then we can obtain

Sp(t1 −m0(x0), t2 + m̃
p
x0x −m0(x), x0, x) = Sp(t2 −m0(x0), t1 + m̃px0x −m0(x), x0, x)

for t1 ≥ 0, t2 ≥ 0, or Sp(t1, t2 + δx0x, x0, x) = Sp(t2, t1 + δx0x, x0, x) for δx0x = m̃
p
x0x − (m0(x) −

m0(x0)), t1 ≥ −m0(x0) and t2 ≥ −m0(x0), or, equivalently, Sp(t1, t2, x0, x) = Sp(t2 − δx0x, t1 +

δx0x, x0, x) for t1 ≥ −m0(x0), t2 ≥ δx0x − m0(x0). Therefore, Sp(·, ·, x0, x) is also symmetric
around the 450 line through (0, δx0x) in the region (−m0(x0),∞) × (−m0(x),∞), leading to a
contradiction. Thus, m0(x)−m0(x0) is identified.

Remark 5 : Similar to Lemma 1 for the cross-sectional case, Lemma 4 implies that the regression

function is identified under a non-periodicity condition. Specifically, both lemmas require some

form of non-periodicity on the underlying error hazard function or density (distribution) function.

Indeed, we can establish a relationship between univariate periodic functions and bivariate func-

tions symmetric around 450 lines. Suppose that ξ(e1, e2) is symmetric around the two 450 lines

through (0, 0) and (0, e∗2), respectively, for some e
∗
2 6= 0, namely,

ξ(e1, e2) = ξ(e2, e1) and ξ(e1, e2) = ξ(e2 − e∗2, e1 + e∗2).

For any fixed point, (e10, e20), define g(u) = ξ(e10 + u, e20 − u), thus g(u) takes on the values of
ξ(·, ·) on the 1350 line through (e10, e20) when u changes. By the symmetry property of ξ(·, ·), we
have

g(u) = ξ(e20 − u, e10 + u) = ξ(e10 + u− e∗2, e20 − u+ e∗2) = g(u− e∗2).

Thus, g(u) is a periodic function; in other words, ξ(e1, e2) is a periodic function along the 1350

lines. Therefore, identification based on Lemma 4 requires a non-periodicity property on the

conditional error distribution.

Remark 6 : If Ωp = Ωp1 × Ωp2, then for any (x1, x2) ∈ Ωp, we can use Lemma 4 to identify
m0(x2) −m0(x1). For any (x1, x2) ∈ Ωp1 × Ωp1, we thus can pick an x0 ∈ Ωp2 and use Lemma
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4 to identify m0(x2)−m0(x0) and m0(x1)−m0(x0), which implies that m0(x1)−m0(x2) is also

identified. Therefore, it is not necessary for Ωp1 and Ωp2 to have a non-empty overlapping set for

identification based on Lemma 4.

Remark 7 : If ε1 and ε2 are independent and identically distributed conditional on (X1,X2,α),

Honoré (1992) showed that, with a linear specification for m0(x), the linear regression coefficients

are identified if the conditional marginal density of ε1 and ε2 is strictly log-concave. This is,

indeed, sufficient for identifying m0(x)−m0(x0) nonparametrically. Let Sε1,ε2(s,α, x0, x) denote

the marginal conditional survival function of ε1 and ε2 given α, X1 = x0, and X2 = x. Note that

G(s1, s2 +m,x0, x, )−G(s2, s1 +m,x0, x1) =
Eα|x0,x[S

1(s1, s2,m,α, x0, x)S
2(s1, s2,m,α, x0, x)]

Sp(s1 −m0(x0), s2 −m(x), x0, x)
,

where

S1(s1, s2,m,α, x0, x) = Sε1,ε2(s2 − α−m0(x0),α, x0, x)Sε1,ε2(s2 +m− α−m0(x),α, x0, x)

and

S2(s1, s2,m,α, x0, x) = [
Sε1,ε2(s1 − α−m0(x0),α, x0, x)
Sε1,ε2(s2 − α−m0(x0),α, x0, x)

− Sε1,ε2(s1 +m− α−m0(x),α, x0, x)

Sε1,ε2(s2 +m− α−m0(x),α, x0, x)
].

We can show that for given (s1, s2,m, x0, x), S2(s1, s2,m,α, x0, x), as a function of α, does not

change signs if Sε1,ε2(·,α, x0, x) is log-concave. Therefore, m0(x) −m0(x0) must be the unique

minimizer of Tp(m) and thus is identified under the log-concavity of Sε1,ε2(·,α, x0, x), which is
implied by the log-concavity of the conditional marginal density of ε1 and ε2 (e.g., Heckman and

Honoré (1990)). Furthermore, in the special case when the fixed effect, α, is degenerate at α0, it

is straightforward to deduce that m0(x)−m0(x0) is identified if the conditional hazard function

of ε1 and ε2 (independent of each other) given (X1,X2) = (x0, x) is not periodic in (−α0 +
max{−m0(x),−m0(x0)},∞), which coincides with the condition in Lemma 1 for identification in
the cross-sectional case.

Similar to the cross-sectional case, we now examine the usefulness of continuous regressors for

identification purposes. Corresponding to Lemma 2, we first consider the case in which all the

regressors are continuous, and we show that identification is possible even if the non-periodicity

discussed in Remark 5 fails.

Lemma 5: Assume that (X1,X2) is continuously distributed with a convex support, Ωp =

Ωp1 × Ωp2, Sp(e1, e2|x1, x2) is continuous in (e1, e2, x1, x2) for (x1, x2) ∈ Ωp, and m0 (·) is a
continuous function. For some x0 ∈ Ωp1 ∩ Ωp2 and x ∈ Ωp2, assume that there does not ex-
ist any u ∈ [0, 1] such that S(e1, e2|x0, xu) is constant along all the 1350 lines12 in the region
12 It is interesting to note a close connection between a bivariate density function constant along the 1350 lines and

the univariate density function with an exponential tail referred to in Lemmas 2 and 5. Specifically, if a bivariate

density function, ξ(·, ·), satisfies ξ(e1, e2) = ξ0(e1 + e2) = ξ1(e1)ξ2(e2) in the region (−ξ10,∞) × (−ξ20,∞) for
some univariate functions ξ0(·), ξ1(·) and ξ2 (·) and constant terms ξ10 and ξ20; namely, ξ(·, ·) is constant along
the 1350 lines and is the product of the two marginal densities in the region, then it is straightforward to show

through some calculus manipulation that ξ1(e1) = λ1 exp(−λ0e1) for e1 > (−ξ10,∞) and ξ2(e2) = λ2 exp(−λ0e2)
for e2 > (−ξ20,∞) and some constant terms, λ0, λ1 and λ2.
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(max{−m0(xu),−m0(x0)},∞)× [max{−m0(xu),−m0(x0)},∞), where xu = (1−u)x0+ux. Then
m0(x)−m0(x) is identified13.

Proof : Define a functional:

T fp (m) =

Z Z ∞

0

Z ∞

0
{[G1m(x̃)(s1, s2, x0, x̃)−G1m(x̃)(s2, s1, x0, x̃)]21{m(x̃) ≥ 0}

+[G2m(x̃)(s1, s2, x0, x̃)−G2m(x̃)(s2, s1, x0, x̃)]21{m(x̃) < 0}}w1(s1)w1(s2)w2(x̃)ds1ds2dx̃.

Note that T fp (m0) = 0. Suppose now that there exists a continuous function, m̃ (·), such that
T fp (m̃) = 0, but m̃(x) 6= m0(x) −m0(x0). Suppose that Sp(·, ·|x0, xu) is also symmetric14 about
the 450 line through (0, γ(u)), in addition to the 450 line through the origin, (−m0(x0),∞) ×
(−m0(xu),∞) for u ∈ U0, where U0 is a subset of [0, 1]. Then, based on the arguments in the
proof of Lemma 4, we can show that T fp (m̃) = 0 implies m̃(xu) = m0(xu)−m0(x0)+η(u)γ(u) for

any u ∈ U0, where η(u) takes on integer values, which can be different for different u ∈ [0, 1], but
we have m̃(xu) = m0(xu)−m0(x0) for any u ∈ [0, 1]\U0. Define γ0 = infu∈U0 γ(u). If γ0 > 0, then
m̃(xu) = m0(xu)−m0(x0) for u ∈ [0, 1] because of the fact that m̃(x0) = 0 and the continuity of
m̃ (·) imply that η(u) = 0; thus, the identification follows immediately. Now, suppose that γ0 = 0.
Then, there exists a sequence {ul}, such that limu→∞ ul = u0 and limu→∞ γ(ul) = 0. Now we

pick a point (t1, t2) such that t1, t2 > max{−m0(x0),−m0(xu0)}. Without loss of generality, let
t2 > t1. Define t12 = (t1 + t2)/2, t̄12 = (t2 − t1)/2, and nl = [t̄12/γ(ul)], the integer part of

t̄12/γ(ul); thus, we can write t̄12 = nlγ(ul) + ε̄l, with ε̄l ∈ [0, γ(ul)). Then, for any ζ > 0, there

exists an L large enough such that for any l > L, we have t1, t2 > max{−m0(x0),−m0(xul)},
|Sp(t1, t2, x0, xu0)− Sp(t1, t2, x0, xul)| < ζ/3 or

|Sp(t12 − t̄12, t12 + t̄12, x0, xu0)− Sp(t12 − t̄12, t12 + t̄12, x0, xul)| < ζ/3

and

|Sp(t12 − t̄12, t12 + t̄12, x0, xul)− Sp(t12 − nlγ(ul), t12 + nlγ(ul), x0, xul)| < ζ/3

Sp(t12 − nlγ(ul), t12 + nlγ(ul), x0, xul) = Sp(t12, t12, x0, xul)

by continuity and the symmetry property; in addition, we have

|Sp(t12, t12, x0, xu0)− Sp(t12, t12, x0, xul)| < ζ/3

by continuity. Consequently, we obtain |Sp(t1, t2, x0, xu0)−Sp(t12, t12, x0, xu0)| < ζ for any ζ > 0.

Therefore, Sp(t1, t2, x0, xu0) = Sp(t12, t12, x0, xu0); in other words, Sp(·, ·, x0, xu0)must be constant
along all the 1350 lines in the region (max{−m0(x0),−m0(xu0)},∞)×(max{−m0(x0),−m0(xu0)},∞),
contradicting the assumptions in the Lemma. Thus, Lemma 5 has been established.
13Note that here we require at least partial overlapping supports for the regressors in two periods.
14Note that if a bivariate function is symmetric about the 450 line through (0, γ(u)) for a given u, then it is also

symmetric about the 450 line through (0, nγ(u)) for any integer, n. In addition, if γ(u) < 0, then we can show the

bivariate function is also symmetric about the 450 line through (0,−γ(u)); thus, without loss of generality, we can
assume that γ(u) > 0.
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We now examine the usefulness of continuous regressors in identification when both contin-

uous and discrete regressors are present. Again, we show that identification is possible when a

continuous regressor is present and the supports of the underlying regression functions are large

enough even if the non-periodicity mentioned in Remark 5 fails in some upper-right region.

Lemma 6: Let X1 = (X1c,X1d) and X2 = (X2c,X2d), where (X1c,X2c) and (X1d,X2d) denote
the continuous and discrete components, respectively. (i) Suppose that Ωp = Ωp1×Ωp2 with Ωp1 =
Ωpc1×Ωpd1, Ωp2 = Ωpc2×Ωpd2, where Ωpd1 = Ωpd2 = Ωpd0, Ωpc1 and Ωpc2 are convex sets and Ωpd0
is finite. (ii) There exists a constant, α0 > 0, such that Sp(·, ·, x1, x2) is only symmetric about the
450 line through the origin in the region (−α0,∞)×(−α0,∞) for (x1, x2) ∈ Ωp. (iii) There exists an
x∗c ∈ Ωpc1∩Ωpc2 such that m0(x∗c , xd) > α0 for any xd ∈ Ωpd0. (iv) For some x0 = (xc0, xd0) ∈ Ωp1,
x = (xc, xd) ∈ Ωp2, there is no u ∈ [0, 1] such that Sp(·, ·, x0, xu) is constant along all the 1350

lines in the region (−m0(xc, xd),∞)×[−m0(x∗cu, xd),∞) or (−m0(xc, xd0),∞)×[−m0(x
∗
cu, xd0),∞)

where x∗cu = (1− u)x∗c + uxc. Then, m0(xc, xd)−m(xc0, xd0) is identified.
Proof : Similar to the arguments in the proof of Lemma 3, we can show that m0(x

∗
c , xd0) −

m0(x
∗
c , xd) is identified by Lemma 4. Furthermore, Lemma 5 implies thatm0(xc0, xd0)−m0(x∗c , xd0)

and m0(xc0, xd)−m0(x
∗
c , xd) are identified as well. Consequently, m0(xc, xd)−m(xc0, xd0) is iden-

tified.

In summary, it is worth reiterating the similarities between the identification results in the

cross-sectional and panel data cases; in particular, Lemmas 1 and 4 indicate that identification is

possible when the underlying error hazard function or the conditional distribution satisfies some

non-periodicity condition. In Lemmas 2 and, 5 we show that identification is still possible when

all the regressors are continuous even if the non-periodicity fails. Moreover, in Lemmas 3 and 6,

we show that in the case when there are discrete regressors, we can still establish identification

without the above-mentioned non-periodicity if a continuous regressor is present and the support

of the underlying regression is large enough.

3 Estimation

In this section, we propose our estimators for the regression functions in truncated regression

models based on the identification results in the previous section, and we also investigate their

large sample properties.

We first consider the cross-sectional case. The particular identification result we exploit here

for estimation is thatm0(x) is the unique minimizer of T (m) defined in Eq. (2.5) under conditions

set out in Lemma 1. Thus, the proposed estimator will be applicable to the general case in which

both continuous and discrete regressors are allowed. The objective function is constructed by

replacing various elements in the expression of T (m) by some consistent estimates. Specifically,

our estimator for m0(x), m̂(x), is defined as a minimizer of

Tn(m) = Tn1(m)w(m) + Tn2(m)w
c(m) (3.1)
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over a compact set M, where w(m) is a smoothed version of the indicator function, 1 {m ≥ 0},
wc(x) = 1− w(m), and Tn1(m) and Tn2(m) are sample analogues15 of T1(m) and T2(m), except
for some minor adjustments for technical reasons,

Tn1(m) =

Z ∞

0

∙
S∗n(t, x0)

S∗n(ε0, x0)
− S∗n(t+m,x)

S∗n(ε0 +m,x)

¸2
w1(t)dt

and

Tn2(m) =

Z ∞

0

∙
S∗n(t, x)

S∗n(ε0, x)
− S∗n(t−m,x0)
S∗n(ε0 −m,x0)

¸2
w1(t)dt,

where ε0 is a small, positive constant, S∗n(t, x) =
Pn
i=1Ky(

Yi−t
hy
)k(Xi−xh )/

Pn
i=1 k(

Xi−x
h ) is a

smoothed version of the nonparametric estimator of S∗(t, x) based on a random sample {Yi,Xi:
i = 1, ..., n}, k is a kernel function with h as its bandwidth, andKy(t) =

R t
−∞ ky(v)dv is a smoothed

step function, an integral of a kernel function, ky (·), with hy as the smoothing parameter, similar
to Horowitz (1992). Note that, for simplicity, we assume that all the regressors are continuous.

Discrete regressors can be easily accommodated. We make the following assumptions.

Assumption 1: The random vector, (Y ∗,X), X ∈ Rd, satisfies (2.1) and {Yi,Xi: i = 1, ..., n}
is a random sample from the distribution of (Y ∗,X) conditional on Y ∗ > 0 with P0 = P (Y ∗ >

0) > 0.

Assumption 2 (i) x and x0 are two interior points of Ω; (ii) the density function ofX, p(·), and
the regression function, m0, are continuously differentiable up to order q in some neighborhoods

of x0 and x with both p(x) and p(x0) being positive, and the cumulative distribution function of

ε, F (·), is continuously differentiable up to order q∗ = max{q, qy} for qy to be specified below, and
these derivatives are uniformly bounded. (iii) The weight function, w(·), is a nonnegative twice
continuously differentiable function such that w(m) ≥ 0, w(m) = 1 for m ≥ ε0/2, w(m) = 0 for

m ≤ −ε0/2; w1(·) is a continuous non-negative integrable weight function such that w1(t) = 0 for
t ∈ [0, ε0] and w1(t) > 0 for t > ε0.

Assumption 3: The parameter space,M, is a compact set and m0(x) is an interior point in

M.

Assumption 4: For the kernel functions, k is continuously differentiable and ky is twice
continuously differentiable with bound supports, and they are q- and qy-order kernel functions,

respectively16:
R
k(v)dv = 1,

R
vjk(v)dv = 0 if 1 ≤ |j| < q, and

R
vjk(v)dv 6= 0 if |j| = q;R

ky(v)dv = 1,
R
vjky(v)dv = 0 if 1 ≤ j < qy, and

R
vjky(v)dv 6= 0 if |j| = qy.

Assumption 5: The sequence of bandwidths satisfy nhdh3/2y / lnn → ∞, hqyy = o(hq),

h2q/hy = o(1) and nhd+2q = O(1) as n→∞.
Assumption 6: The hazard function of the error distribution, λ (·), is not a periodic function

on (max{−m0(x), 0}+ ε0,∞).
15Here m0(x) is viewed as an unknown parameter. Pinske and Robinson (1995) and Pendakur (1999) used a

similar strategy in estimation with regression functions with a similar shape.
16For a d-dimensional vector, v = (v1, ..., vd)0 and a corresponding vector of intergers, j = (j1, ..., jd)0, vj denotes

vj11 · · · v
jd
d . Also, we adopt the convention ∂jω(v)/∂vj = ∂|j|ω(v)/∂j1v1 · · · ∂jdvd for a differentiable function, ω,

with |j| =
Pd

i=1 ji.
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Assumption 1 describes the data generation process for the truncated regression model in

the cross-sectional case. Assumption 2 states some smoothness and boundedness conditions.

Assumption 3 is common for optimization-based estimation procedures. Assumptions 4 and 5

provide conditions on the kernel functions and the rates of convergence of the bandwidths. For

example, if d = 1 and we choose second-order kernels with q = qy = 2, then we can choose h ∝
n−1/5 and hy ∝ n−1/3, in which case, hy can go to zero more rapidly than typical bandwidths in
nonparametric estimation. Assumption 6 is an identification condition, which is slightly stronger

than that in Lemma 1 due to the minor adjustment in the estimation procedure.

Theorem 1 Under Assumptions 1-6, m̂(x) is consistent for m0(x) and asymptotically normal,

√
nhd((m̂(x)−m0(x))− hqb(x)) d→ N(0,σ(x))

where b(x)) and σ(x) are defined in the appendix.

Now, we consider the panel data model with fixed effects. Similar to the cross-sectional case,

we make use of the identification result in Lemma 4 for the purpose of estimation, where the

vector of regressors can have both discrete and continuous components. We again focus on the

continuous case. Suppose that (x0, x) is an interior point of Ωp. For a random sample, {(Yit,Xit),
i = 1, 2, ..., n, t = 1, 2}, we define our estimator m̂p(x), for m0(x)−m0(x0), as a minimizer of the
objective function17:

Tpn(m) = Tpn1(m)w(m) + Tpn2(m)w
c(m),

where

Tpn1(m) =

Z ∞

0

Z ∞

0
[1− Gn(s1, s2 +m,x0, x)

Gn(s2, s1 +m,x0, x)
]2w1(s1, s2)ds1ds2,

Tpn2(m) =

Z ∞

0

Z ∞

0

Z
[1− Gn(s1 −m, s2, x0, x)

Gn(s2 −m, s1, x0, x)
]2w1(s1, s2)ds1ds2

with w1(s1, s2) = w1(s1)w1(s2) and

Gn(s1, s2, x0, x) =
1

n

nX
i=1

Ky(
Yi1 − s1
hy

)Ky(
Yi2 − s2
hy

)
1

h2d
k(
Xi1 − x0

h
)k(
Xi2 − x
h

).

We make the following assumptions for the panel data case.

Assumption 7: The random sample, (Y ∗it ,Xit), i = 1, 2, ...n, t = 1, 2, satisfies (2.5) with

Yit = Y
∗
it conditional on the event {Y ∗i1 > 0 and Y ∗i2 > 0} where it is assumed that P{Y ∗1 > 0,Y ∗2 >

0} > 0.
Assumption 8: The density function of (X1,X2) at (x1, x2), p(x1, x2), is bounded away from

zero and continuously differentiable up to order q in some neighborhood of (x0, x); Sp(e1, e2, x1, x2)

is continuously differentiable with respect to each argument up to order q∗ = max{q, qy}; m0 (·)
17We could have used a sample analogue of Tp(m) in (2.9), say T ∗np(m), by directly replacingG by its corresponding

nonparametric estimates. One drawback, however, is that both Tp(m) and T ∗np(m) would go to zero when m

increases, thus leading to difficulty in estimation in practice.

13



is continuously differentiable up to order q in some neighborhoods of x0 and x; in addition, these

derivatives are uniformly bounded.

Assumption 9: The sequence of bandwidths satisfy nh2dh3/2y → ∞, hqyy = o(hq), h2q/hy =

op(1) and nh2(d+q) = O(1) as n→∞.
Assumption 10: The 450 line through the origin is the only 450 line about which (ε∗1, ε

∗
2)

is symmetric in the region (−m0(x0) + ε0,∞)× (−m0(x) + ε0,∞), conditionally on (X1,X2).
These assumptions are similar to those in the cross-sectional case. Assumption 7 describes the

data-generating process for the truncated regression model in the panel data setting. Assumption

8 states some smoothness and boundedness conditions. Assumption 9 provides conditions on the

rates of convergence of the bandwidths. Finally, Assumption 10 is an identification condition that

corresponds to Lemma 4. Set m0(x0) to 0 for notational simplicity.

Theorem 2 Under Assumptions 2(iii),3-4 and 7-10, m̂p(x) is consistent for m0(x) and asymp-

totically normal
√
nh2d((m̂p(x)−m0(x))− hqbp(x)) d→ N(0,σp(x))

where bp(x) and σp(x) are specified in the appendix.

4 A Simulation Study

In this section, we examine some of the finite sample properties of our estimator, in compari-

son with that of Lewbel and Linton (2002) in the cross-sectional case. The data are generated

according to the following model

Y ∗ = 0.8 +X + ε

where X is uniformly distributed on (−1, 1), the error term ε, with different distributions for three

different designs, is generated given X, and the observation is kept if the resulting Y ∗ is positive.

The sample size was set to 400 and 1000 replications were carried out for each design.

In the simulation study, we set m0(0) = 0 with x0 = 0 as the location normalization point,

and we report the mean value (Mean), the standard deviation (SD), and the root mean square

error (RMSE) for our estimator (Chen) and the estimator of Lewbel and Linton (LL) (2002) for

ten equally spaced points in the interval [−0.9, 0.9]. In implementing our estimation approach,
we used the non-smoothed version of the conditional survival function, ε0 was set to 0, the weight

functions were chosen as w(m) = 1{m ≥ 0} and w1(t) = 1{0 ≤ t < y0.975}, where y0.975 is the
0.975th quantile of Y in the sample18. We adopt the standard normal density function as the

kernel function, k, and the bandwidth is set to chs, where hs was chosen according to Silverman’s

(1986) rule-of-thumb for both our estimation approach and each of the two steps in Lewbel and

Linton (2002). We experimented with c = 0.6, 0.8 and 1.0 which produce quite stable results, and

it appears that our approach is less sensitive to the choice of bandwidth than is that of Lewbel

and Linton (2002).
18The minor adjustments made in defining the objective function in (3.1) do not produce a noticable difference

in our experiments.
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Table 1 reports the simulation results for the first design in which ε is a standard normal

variable. In this case, both estimators are consistent and perform reasonably well, but our esti-

mator outperforms that of Lewbel and Linton (2002) for all values of c. Note that the estimator

of Lewbel and Linton (2002) is more sensitive to the choice of c, especially in the region where

the truncation rate was high.

In the second design for which the results are reported in Table 2, ε is chosen from the logistic

distribution standardized to have unit variance. As pointed out by Levy (2000), the monotonicity

assumption of the truncated regression in Lewbel and Linton (2002) is not as strong as in the

standard normal case used in the first design. As a result, the performance of the estimator by

Lewbel and Linton (2002) deteriorates noticeably; in contrast, the overall performance of our

approach is still comparable to the performance in the standard normal case.

Table 3 reports the results for the third design in which ε was set to (ε∗−0.2)/1.865 to have zero
mean and unit variance, where ε∗ = 0.5∗ ε1.5a +0.5∗

£
−|εb|0.8

¤
, a mixture distribution with εa and

εb generated from the standard exponential distribution. In this case, the monotonicity in Lewbel

and Linton (2002) no longer holds. Consequently, the procedure by Lewbel and Linton (2002)

incurs substantial biases and large variances. Our procedure still performs quite satisfactorily,

though there is noticeable bias in the region where the truncation rate is very high.

5 Conclusion

In this paper, we have provided a comprehensive treatment of nonparametric identification of

truncated regression models in both the cross-sectional and panel data settings and have proposed

nonparametric estimators based on the identification results. Our nonparametric approach for

the cross-sectional case overcomes some major drawbacks associated with the approach of Lewbel

and Linton (2002), and simulation results indicate the superior performance of our estimator.

Moreover, we have provided the first systematic treatment of nonparametric identification and

estimation of the truncated panel data model with fixed effects, and the results could be viewed

as bivariate extensions of those for the cross sectional case. The proposed estimators are shown

to be consistent and asymptotically normal.

Appendix

In the appendix, we only provide sketches of the proofs of Theorems 1 and 2.

Sketch Proof of Theorem 1 : Under Assumptions 1—2 and 4-5, with some standard arguments (e.g.,
Newey (1994), Pollard (1995)), it is straightforward to establish that supt |S∗n(t, x̃) − S∗(t, x̃)| = Op(δn),

supt |
∂S∗n(t,x̃)

∂t − ∂S∗(t,x̃)
∂t | = Op(δn1), and supt |

∂2S∗n(t,x̃)
∂t2 − ∂2S∗(t,x̃)

∂t2 | = Op(δn2) for x̃ uniformly in some

neighborhoods of x and x0, where δn = (lnn/nhd)1/2 + hq + h
qy
y , δn1 = (lnn/nhdhy)

1/2 + hq + h
qy
y ,

δn2 = (lnn/nh
dh3y)

1/2 + hq + h
qy
y . Then, we can show that Tn(m) converges to

T 0(m) =

Z ∞
0

(∙
S∗(t, x0)

S∗(ε0, x0)
− S∗(t+m,x)

S∗(ε0 +m,x)

¸2
w(m) +

∙
S∗(t, x)

S∗(ε0, x)
− S∗(t−m,x0)
S∗(ε0 −m,x0)

¸2
wc(m)

)
w1(t)dt
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uniformly in m ∈ M. Moreover, T 0(m) achieves the unique minimum at m0(x) under Assumption 6.
Consistency then follows from the standard arguments in Amemiya (1985).

To establish the asymptotic normality, we first establish an initial rate for m̂(x). We can show that

Tn(m) = Op(δ
2
n) +Op(δn)(m−m0(x)) + C(m−m0(x))

2

for some C > 0 uniform in m in a op(1) neighborhood of m0(x). Then, standard arguments for extreme
estimators (e.g., Sherman (1993)) yield m̂(x) −m0(x) = δn. Then a Taylor expansion of the first-order
condition, together with the above preliminary results, yields

m̂(x)−m0(x) = V (x)
−1Un(x) + op((nh

d)−1/2) (A.1)

where

V (x) =

Z
[λ∗1(t, x)]

2
w1(t)dtw(m0(x)) +

Z
[λ∗2(t, x)]

2
w1(t)dtw

c(m0(x)),

with λ∗1(t, x) =
S(t)
S(ε0)

(λ(ε0)−λ(t)) and λ∗2(t, x) =
S(t−m0(x))
S(ε0−m0(x))

(λ(ε0 −m0(x))− λ(t−m0(x))), and Un(x) =

Un1(x)w(m0(x)) + Un2(x)w
c(m0(x)), where

Un1(x) =

Z
[
S∗n(t, x0)

S∗n(ε0, x0)
− S∗n(t+m0(x), x)

S∗n(ε0 +m0(x), x)
]λ∗1(t, x)w1(t)dt

and

Un2(x) =

Z
[
S∗n(t, x)

S∗n(ε0, x)
− S∗n(t−m0(x), x0)

S∗n(ε0 −m0(x), x0)
]λ∗2(t, x)w1(t)dt.

Through linearization, we can establish that

Un1(x) =
1

n

nX
i=1

∙
φ11(Yi,Xi) +

1{Yi > ε0}P0
S(ε0 −m0(Xi))

B11(Xi, x0, x)

¸
1

hd
k

µ
Xi − x0
h

¶

− 1
n

nX
i=1

[φ12(Yi,Xi) +
1{Yi > ε0 +m0(x)}P0
S(ε0 +m0(x)−m0(Xi))

B12(Xi, x0, x)]
1

hd
k

µ
Xi − x
h

¶
] + op((nh

d)−1/2)

if w(m0(x)) 6= 0, and

Un2(x) =
1

n

nX
i=1

∙
φ21(Yi,Xi) +

1{Yi > ε0}P0
S(ε0 −m0(Xi))

B21(Xi, x0, x)

¸
1

hd
k

µ
Xi − x
h

¶

− 1
n

nX
i=1

∙
φ22(Yi,Xi) +

1{Yi > ε0 −m0(x)}P0
S(ε0 −m0(Xi))

B22(Xi, x0, x)

¸
1

hd
k

µ
Xi − x0
h

¶
] + op((nh

d)−1/2)

if wc(m0(x)) 6= 0, where

φ11(Yi,Xi) =
P0

S(ε0)p(x0)

Z ∙
1{Yi > t}− 1{Yi > ε0}

S(t−m0(Xi))

S(ε0 −m0(Xi))

¸
λ∗1(t, x)w1(t)dt

φ12(Yi,Xi) =
P0

S(ε0)p(x)

Z
[1{Yi > t+m0(x)}−1{Yi > ε0+m0(x)}

S(t+m0(x)−m0(Xi))

S(ε0 +m0(x)−m0(Xi))
]λ∗1(t, x)w1(t)dt

φ21(Yi,Xi) =
P0

S(ε0 −m0(x))p(x)

Z ∙
1{Yi > t}− 1{Yi > ε0}

S(t−m0(Xi))

S(ε0 −m0(Xi))

¸
λ∗2(t, x)w1(t)dt
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φ22(Yi,Xi) =
P0

S(ε0 −m0(x))p(x0)

Z
[1{Yi > t−m0(x)}−1{Yi > ε0−m0(x)}

S(t−m0(Xi))

S(ε0 −m0(Xi))
]λ∗2(t, x)w1(t)dt

B11(Xi, x0, x) =
S(ε0 −m0(Xi))

S(ε0)p(x0)

Z ∙
S(t−m0(Xi))

S(ε0 −m0(Xi))
− S(t)

S(ε0)

¸
λ∗1(t, x)w1(t)dt

B12(Xi, x0, x) =
S(ε0 +m0(x)−m0(Xi))

S(ε0)p(x)

Z ∙
S(t+m0(x)−m0(Xi))

S(ε0 +m0(x)−m0(Xi))
− S(t)

S(ε0)

¸
λ∗1(t, x)w1(t)dt

B21(Xi, x0, x) =
S(ε0 −m0(Xi))

S(ε0 −m0(x))p(x)

Z ∙
S(t−m0(Xi))

S(ε0 −m0(Xi))
− S(t−m0(x))

S(ε0 −m0(x))

¸
λ∗2(t, x)w1(t)dt

and

B22(Xi, x0, x) =
S(ε0 −m0(Xi))

S(ε0 −m0(x))p(x0)

Z ∙
S(t−m0(Xi))

S(ε0 −m0(Xi))
− S(t−m0(x))

S(ε0 −m0(x))

¸
λ∗2(t, x)w1(t)dt.

Following some standard arguments in nonparametric regression analysis, we can show that

E

½∙
1{Yi > ε0}P0
S(ε0 −m0(Xi))

B11(Xi, x0, x)−
1{Yi > ε0 −m0(x)}P0
S(ε0 −m0(Xi))

B22(Xi, x0, x)

¸
1

hd
k

µ
Xi − x0
h

¶¾
= hqb1(x)+o (h

q)

and

E

½∙
1{Yi > ε0}P0
S(ε0 −m0(Xi))

B21(Xi, x0, x)−
1{Yi > ε0 +m0(x)}P0
S(ε0 +m0(x)−m0(Xi))

B12(Xi, x0, x)

¸
1

hd
k

µ
Xi − x
h

¶¾
= hqb2(x)+o (h

q)

for some b1(x) and b2(x). Let b(x) = V −1(x)[b1(x)w(m0(x)) + b2(x)w
c(m0(x))] and σ(x) = σ1(x) + σ2(x),

where

σ1(x) = V
−2(x)E [φ11(Yi(x0), x0)w(m0(x))− φ22(Yi(x0), x0)w

c(m0(x))]
2
Z
k2(u)dup(x0)/P0

and

σ2(x) = V
−2(x)E [φ12(Yi(x), x)w(m0(x))− φ22(Yi(x), x)w

c(m0(x))]
2
Z
k2(u)dup(x)/P0,

with Yi(x0) = εi and Yi(x) = m0(x) + εi. Then, we can obtain

√
nhd(m̂(x)−m0(x)− hqb(x)) =

1√
nhd

nX
i=1

½
φi1k

µ
Xi − x0
h

¶
+ φi2k

µ
Xi − x
h

¶¾
+ op(1), (A2)

where φi1 = φ11(Yi,Xi)w(m0(x))−φ22(Yi,Xi)wc(m0(x)) and φi2 = φ21(Yi,Xi)w
c(m0(x))−φ12(Yi,Xi)w(m0(x)).

Consequently, Theorem 1 follows by applying a triangular-array central limit theorem to (A.2).

Sketch Proof of Theorem 2 :
Proceeding as in the proof of Theorem 1, we can show that m̂p(x) is consistent and

m̂p(x)−m0(x) = Vp(x)
−1Upn(x) + op((nh

2d)−1/2), (A.3)

where

Vp(x) =

Z Z n£
λ∗p1(s1, s2, x)

¤2
w(m0(x)) +

£
λ∗p2(s1, s2, x)

¤2o
w1(s1, s2)ds1ds2w

c(m0(x))
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and Upn(x) = Upn1(x)w(m0(x)) + Upn2(x)w
c(m0(x)),

Upn1(x) =

Z Z
[
Gn(s2, s1 +m0(x), x0, x)−Gn(s1, s2 +m0(x), x0, x)

G(s2, s1 +m0(x), x0, x)
]λ∗p1(s1, s2, x)w1(s1, s2)ds1ds2,

Upn2(x) =

Z Z
[
Gn(s2 −m0(x), s1, x0, x)−Gn(s1 −m0(x), s2, x0, x)

G(s2 −m0(x), s1, x0, x)
]λ∗p2(s1, s2, x)w1(s1, s2)ds1ds2

with λ∗p1(s1, s2, x) =
d
dm

h
Sp(s1,s2+m0(x),x0,x)
Sp(s2,s1+m0(x),x0,x)

i
and λ∗p2(s1, s2, x) =

d
dm

h
Sp(s1−m0(x),s2,x0,x)
Sp(s2−m0(x),s1,x0,x)

i
.

Define φpi = φpi1w(m0(x)) + φpi2w
c(m0(x)), where

φpi1 =

Z Z £
φpi11(s1, s2)− φpi12(s1, s2)

¤
G(s2, s1 +m0(x), x0, x)

λ∗p1(s1, s2, x)w1(s1, s2)ds1ds2

φpi2 =

Z Z £
φpi21(s1, s2)− φpi22(s1, s2)

¤
G(s2 −m0(x), s1, x0, x)

λ∗p2(s1, s2, x)w1(s1, s2)ds1ds2

with

φpi11(s1, s2) = 1{Yi1 > s2, Yi2 > s1 +m0(x)}−
Sp [s2 −m(Xi1), s1 +m0(x)−m(Xi2),Xi1,Xi2]

Sp [−m(Xi1),−m(Xi2),Xi1,Xi2]

φpi12(s1, s2) = 1{Yi1 > s1, Yi2 > s2 +m0(x)}−
Sp [s1 −m(Xi1), s2 +m0(x)−m(Xi2),Xi1,Xi2]

S2 [−m(Xi1),−m(Xi2),Xi1,Xi2]

φpi21(s1, s2) = 1{Yi1 > s2 −m0(x), Yi2 > s1}−
Sp [s2 −m0(x)−m(Xi1), s1 −m(Xi2),Xi1,Xi2]

Sp [−m(Xi1),−m(Xi2),Xi1,Xi2]

φpi22(s1, s2) = 1{Yi1 > s1 −m0(x), Yi2 > s2}−
Sp [s1 −m0(x)−m(Xi1), s2 −m(Xi2),Xi1,Xi2]

Sp [−m(Xi1),−m(Xi2),Xi1,Xi2]
.

We can then show that

√
nh2d(m̂p(x)−m0(x)− hqbp(x)) =

1√
nh2d

nX
i=1

φpi
1

h2d
k(
Xi1 − x0

h
)k(
Xi2 − x
h

) + op(1) (A4)

for some bp(x). Let

σp(x) = V
−2
p (x)E

[φ(Yi1(x0), Yi2(x), x0, x)]
2

Sp(0,−m0(x), x0, x)P0

½Z
k2(u)du

¾2
p(x0, x)/P0

where Yi1(x0) = ε∗i1 and Yi2(x) = m0(x) + ε∗i2. Consequently, Theorem 2 follows by applying a triangular-
array central limit theorem to (A.4).
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Table1: Design I

Chen LL
m0(x) Mean Bias SD RMSE Mean Bias SD RMSE

c = 0.6

-0.9 -0.850 0.050 0.294 0.298 -0.783 0.117 0.380 0.397
-0.7 -0.701 -0.001 0.282 0.281 -0.648 0.052 0.364 0.368
-0.5 -0.522 -0.022 0.272 0.272 -0.476 0.024 0.369 0.369
-0.3 -0.329 -0.029 0.278 0.279 -0.300 0.000 0.352 0.352
-0.1 -0.081 0.019 0.112 0.113 -0.106 -0.006 0.255 0.255
0.1 0.081 -0.019 0.116 0.118 0.117 0.017 0.277 0.277
0.3 0.304 0.004 0.228 0.228 0.293 -0.007 0.343 0.342
0.5 0.505 0.005 0.234 0.234 0.490 -0.010 0.350 0.350
0.7 0.699 -0.001 0.235 0.235 0.690 -0.010 0.379 0.378
0.9 0.879 -0.021 0.251 0.251 0.909 0.009 0.371 0.371

c = 0.8

-0.9 -0.824 0.076 0.287 0.298 -0.721 0.179 0.401 0.439
-0.7 -0.680 0.020 0.269 0.269 -0.613 0.087 0.375 0.385
-0.5 -0.514 -0.014 0.259 0.259 -0.486 0.014 0.374 0.374
-0.3 -0.304 -0.004 0.218 0.218 -0.301 -0.009 0.371 0.371
-0.1 -0.068 0.032 0.075 0.081 -0.107 -0.007 0.223 0.222
0.1 0.068 -0.032 0.070 0.077 0.093 -0.007 0.213 0.213
0.3 0.296 -0.004 0.181 0.181 0.288 -0.013 0.361 0.361
0.5 0.502 0.002 0.199 0.198 0.499 -0.001 0.365 0.365
0.7 0.704 0.004 0.211 0.211 0.717 0.017 0.357 0.357
0.9 0.851 0.049 0.248 0.252 0.908 0.008 0.362 0.361

c = 1.0

-0.9 -0.836 0.064 0.287 0.294 -0.619 0.281 0.399 0.487
-0.7 -0.709 -0.009 0.277 0.277 -0.571 0.129 0.381 0.401
-0.5 -0.520 -0.021 0.241 0.242 -0.471 0.029 0.390 0.390
-0.3 -0.310 -0.010 0.197 0.197 -0.305 -0.005 0.340 0.339
-0.1 -0.065 0.034 0.074 0.081 -0.101 -0.001 0.168 0.168
0.1 0.067 -0.003 0.061 0.069 0.098 -0.002 0.156 0.155
0.3 0.305 0.005 0.156 0.156 0.326 0.026 0.357 0.357
0.5 0.512 0.012 0.185 0.185 0.549 0.049 0.390 0.392
0.7 0.696 -0.004 0.192 0.192 0.771 0.071 0.335 0.342
0.9 0.826 0.074 0.224 0.236 0.922 0.022 0.337 0.337

20



Table 2: Design II

Chen LL
m0(x) Mean Bias SD RMSE Mean Bias SD RMSE

c = 0.6

-0.9 -0.826 0.074 0.340 0.347 -0.793 0.107 0.517 0.528
-0.7 -0.707 -0.007 0.313 0.313 -0.662 0.038 0.483 0.484
-0.5 -0.514 -0.014 0.297 0.297 -0.468 0.032 0.433 0.433
-0.3 -0.331 -0.031 0.282 0.283 -0.265 0.035 0.410 0.411
-0.1 -0.086 0.014 0.110 0.110 -0.104 -0.004 0.287 0.287
0.1 0.072 -0.028 0.085 0.089 0.103 0.003 0.285 0.284
0.3 0.295 -0.005 0.212 0.212 0.284 -0.016 0.396 0.396
0.5 0.515 0.015 0.221 0.222 0.490 -0.010 0.402 0.402
0.7 0.699 -0.001 0.215 0.214 0.688 -0.012 0.431 0.431
0.9 0.873 -0.027 0.235 0.237 0.936 0.036 0.428 0.429

c = 0.8

-0.9 -0.843 0.057 0.334 0.339 -0.700 0.200 0.539 0.574
-0.7 -0.726 -0.026 0.299 0.299 -0.591 0.108 0.485 0.496
-0.5 -0.521 -0.021 0.281 0.282 -0.432 0.067 0.465 0.468
-0.3 -0.308 -0.008 0.212 0.212 -0.269 0.031 0.429 0.430
-0.1 -0.076 0.024 0.074 0.077 -0.098 0.002 0.238 0.238
0.1 0.075 -0.025 0.063 0.068 0.104 0.004 0.232 0.232
0.3 0.304 0.004 0.170 0.170 0.286 -0.014 0.381 0.381
0.5 0.509 0.009 0.177 0.177 0.510 0.010 0.415 0.414
0.7 0.709 0.009 0.182 0.182 0.747 0.047 0.390 0.391
0.9 0.853 -0.047 0.207 0.212 0.927 0.027 0.393 0.393

c = 1.0

-0.9 -0.834 0.066 0.301 0.307 -0.557 0.343 0.541 0.640
-0.7 -0.706 -0.006 0.264 0.264 -0.531 0.169 0.490 0.518
-0.5 -0.541 -0.041 0.246 0.249 -0.455 0.045 0.468 0.469
-0.3 -0.319 -0.019 0.175 0.175 -0.315 -0.015 0.426 0.426
-0.1 -0.079 0.021 0.064 0.067 -0.108 -0.008 0.207 0.207
0.1 0.073 -0.027 0.054 0.060 0.094 -0.006 0.191 0.191
0.3 0.301 0.001 0.132 0.132 0.287 -0.013 0.390 0.390
0.5 0.505 0.005 0.157 0.157 0.529 0.029 0.419 0.419
0.7 0.695 -0.005 0.167 0.167 0.761 0.061 0.368 0.373
0.9 0.827 -0.073 0.187 0.200 0.919 0.019 0.399 0.399
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Table3: Design III

Chen LL
m0(x) Mean Bias SD RMSE Mean Bias SD RMSE

c = 0.6

-0.9 -0.514 0.386 0.698 0.797 -0.105 0.795 0.685 1.049
-0.7 -0.618 0.082 0.541 0.546 -0.457 0.243 0.644 0.687
-0.5 -0.498 0.002 0.523 0.523 -0.549 -0.049 0.679 0.680
-0.3 -0.334 -0.034 0.436 0.437 -0.426 -0.126 0.616 0.628
-0.1 -0.090 0.010 0.115 0.115 -0.151 -0.051 0.364 0.367
0.1 0.094 -0.006 0.077 0.077 0.153 0.053 0.413 0.416
0.3 0.314 0.014 0.201 0.201 0.557 0.257 0.646 0.694
0.5 0.497 -0.003 0.134 0.134 0.912 0.412 0.778 0.880
0.7 0.696 -0.004 0.142 0.142 1.169 0.469 0.786 0.915
0.9 0.868 -0.032 0.110 0.114 1.541 0.641 0.846 1.060

c = 0.8

-0.9 -0.594 0.306 0.710 0.772 -0.042 0.858 0.613 1.054
-0.7 -0.610 -0.090 0.553 0.560 -0.222 0.478 0.598 0.765
-0.5 -0.515 -0.015 0.484 0.484 -0.253 0.247 0.685 0.727
-0.3 -0.337 -0.037 0.395 0.397 -0.251 0.049 0.611 0.613
-0.1 -0.094 0.006 0.127 0.127 -0.105 -0.005 0.378 0.378
0.1 0.092 -0.008 0.042 0.043 0.128 0.028 0.378 0.379
0.3 0.302 0.002 0.122 0.121 0.475 0.175 0.638 0.661
0.5 0.507 0.007 0.089 0.089 0.748 0.248 0.803 0.839
0.7 0.700 0.000 0.090 0.090 0.993 0.239 0.860 0.908
0.9 0.844 -0.056 0.105 0.118 1.288 0.388 0.931 1.008

c = 1.0

-0.9 -0.674 0.226 0.603 0.662 -0.141 0.759 0.611 0.974
-0.7 -0.624 0.076 0.531 0.535 -0.181 0.519 0.622 0.809
-0.5 -0.494 0.006 0.511 0.510 -0.177 0.323 0.721 0.789
-0.3 -0.343 -0.043 0.357 0.359 -0.149 0.151 0.651 0.668
-0.1 -0.087 0.013 0.138 0.139 -0.095 0.005 0.376 0.376
0.1 0.097 -0.003 0.112 0.112 0.111 0.011 0.414 0.413
0.3 0.311 0.011 0.154 0.154 0.358 0.058 0.736 0.738
0.5 0.512 0.012 0.114 0.114 0.603 0.103 0.819 0.825
0.7 0.692 -0.008 0.093 0.093 0.875 0.175 0.886 0.902
0.9 0.821 -0.078 0.095 0.123 1.110 0.210 0.879 0.902
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