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AIM

• In this paper, we study nonparametric methods for identifying and estimating the distributions

of factor and error variables in linear multi-factor models.

• Data: a vector of L measurements Y , modelled as Y = ΛX + U , where X is a vector of

unobservable common factors, U is a vector of errors and Λ is a matrix of parameters (factor

loadings).

• The critical assumption is that all components of X and U are mutually independent.

• We assume Λ known or that a root-N consistent estimator is available and that the number of

factors is known.

• Problem: identification and estimation of the distributions of X and U .

2



Examples of application

• Numerous examples of econometric applications in finance, macroeconomics (structural VAR

models).

• Examples of microeconometric applications:

– Models of individual earnings dynamics:

yit = yP
it + yT

it

=
(
yP

i0 + ui1 + ... + uit

)
+ (φvi,t−1 + vit) , t = 1, ..., L,

where uit is a permanent shock and vit a transitory shock.

– Linear multifactor heterogeneity structure for latent variables of selection models. See series of

recent papers by Heckman and various coauthors, starting with Carneiro, Hansen, Heckman

(IER, 2003) and most recent application in Cunha, Heckman, Schennach (2006).

• In all these applications, it is important to estimate both factor loadings and/or a prediction of

underlying factors given observables.

3



Available techniques

• PCA delivers a point estimate of both Λ and X . But factor structure identified only up to a

rotation.

• ICA assumes no noise and less factors than measurements and recovers a prediction of X as Λ−Y .

• Flexible parametric factor distributions like normal mixtures. Difficult to identify the number of

mixture components. Computationally intensive (Gibbs sampling, MCMC).

The alternative approach that we adopt in this paper extends nonparametric deconvolution methods.
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Nonparametric deconvolution

• Abundant literature on deconvolution:

– Classical deconvolution problem assumes one measurement, one factor and one error, with

known error distribution; see Caroll and Hall (1988), Stefanski and Caroll (1990).

– Horowitz and Markatou (1996), Li and Vuong (1998), Linton and Whang (2002) and Hall and

Yao (2003) have proposed estimators for one-factor models with unknown error distributions.

– Related methods have been developed by Li (2002), Schennach (2004) and Hu and Ridder

(2005) for the problem of estimating nonlinear models with measurement error.

• No available result for multifactor models.
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WHAT THE PAPER DOES

• Identification: use a powerful identification result due to G.J. Székely and C.R. Rao (Sankhyā,

2000) who show that L(L+1)
2 factor and error distributions are nonparametrically identified under

a simple condition on factor loadings.

• Estimation: We propose a nonparametric estimation procedure for factor and error distrib-

utions based on these second-order functional restrictions. Factor and error densities follow by

integration and inverse Fourier transformation. This procedure generalizes Li and Vuong’s (1998)

estimator to the multi-factor case.

• Asymptotic theory: We prove that our estimator converges uniformly to the true density

when the sample size tends to infinity. Contrary to Li and Vuong (1998), but following Hu and

Ridder (2005), we do not assume bounded support for factor and error variables.

• Monte Carlo simulations.

• Empirical application: wage dynamics.
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APPLICATION: WAGE DYNAMICS

• PSID, 1978 to 1987

• We consider the following model:

∆yit = ∆pit + ∆rit,

= εit + rit − rit−1, i = 1...N, t = 2...T,

where pit follows a random walk: pit = pit−1 + εit, where εit and rit are white noise innovations

with variances σ2
ε and σ2

r.

• Estimation results (GMM): σ2
ε = .0256 (.0050), σ2

r = .0361 (.0045) . Permanent shocks account

for 26% of the total variance of wage growth residuals.
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a) Density of ∆yit b) Normal probability plot

a) Permanent shock b) Transitory shock

Figure 1: Nonparametric density estimates for standardized permanent and transitory shocks
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Model fit

∆yit = yit − yi,t−1 ∆2yit = yit − yi,t−2 ∆3yit = yit − yi,t−3

Data
Variance .0915 .1206 .1374
Skewness -.244 -.440 -.377
Kurtosis 24.2 22.9 19.7

Predicted, nonparametric
Variance .0579 .0734 .0892
Skewness -.031 -.0034 -.0093
Kurtosis 6.46 5.46 4.87

Predicted, normal
Variance .0978 .1235 .1492
Skewness 0 0 0
Kurtosis 3 3 3

Predicted, normal mixture
Variance .1007 .1275 .1543
Skewness 0 0 0
Kurtosis 11.5 8.66 7.28

Table 1: Fit of the model, moments of wage growth residuals
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a1) ∆yit = yit − yi,t−1 b1) ∆2yit = yit − yi,t−2 c1) ∆3yit = yit − yi,t−3

a2) ∆yit, normal mixture b2) ∆2yit, normal mixture c2) ∆3yit, normal mixture

Figure 2: Fit of the model, densities of wage growth residuals (data: thin line; nonparametric/normal mixture estimate: thick line;

normal estimate: dashed line).
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Components of wage mobility

• We compute the conditional expectations of permanent and transitory components given obser-

vations of ∆syit, s = 1, 2, 3, i.e.

E(

s−1∑

r=0

εit−r|∆syit) and E(rit − rit−s|∆syit),

using Bayes formula.

• For example

fεit
(ε|∆yit = ∆y) ∝ fεit

(ε)f∆yit
(∆y|εit = ε) = fεit

(ε)

∫
fηit

(r) fηi,t−1
(−∆y + ε + r)dr.
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a) ∆yit b) ∆2yit c) ∆3yit

Figure 3: Conditional expectation of shocks given wage growth residuals (permanent: thick line; transitory: thin line)
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Job changes

• We compute permanent and transitory shocks given number of job changes.

• We find that job movers have bigger variance components and wage innovations are much more

transitory.

Job changes 0 1/2 3+
∆yit

total .04048 .05334 .10929
permanent .01244 .01400 .02195
transitory .02804 .03934 .08734

∆2yit

total .04793 .07045 .13705
permanent .02239 .02858 .04702
transitory .02554 .04187 .09003

∆3yit

total .06140 .08155 .15740
permanent .03310 .04170 .07253
transitory .02830 .03985 .08487

Table 2: Variances of shocks by categories of job changers
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IDENTIFICATION THEORY

• Drop the distinction between factor and error

• and consider a DGP: Y = AX , where

1. Y = (Y1, ..., YL)T is a vector of L ≥ 2 zero-mean real-valued random variables,

2. X = (X1, ..., XK)T is a random vector of K real valued, mutually independent and non

degenerate random variables with zero means and finite variances,

3. A = [aℓk] is a known L × K matrix of scalar parameters such that any two columns are

linearly independent,

→ write A[·,k] for column k and A[ℓ,·] for row ℓ.

4. Assume that the characteristic functions of factor variables are everywhere non vanishing.
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G.J. Székely and C.R. Rao (Sankhyā, 2000)

They show the following general identification theorem.

• Let Bp =
[
b
(p)
ik

]
where

b
(p)
ik = aℓ1kaℓ2k...aℓp+1,k

for k = 1, ..., K and i = (ℓ1, ..., ℓp+1) represents one of the
(
L+p
p+1

)
unordered samples with replace-

ment from {1, 2, ..., L}.

• Assume that EXs
k, s = 1, 2, ..., p, k = 1, ..., K, exist and are known.

• Then the distribution of X1, ..., XK is uniquely determined if and only if rank (Bp) ≥ K.

• When the characteristic function (cf) of Y is differentiable p + 1 times (and not only p times

as implied by the existence of the first p moments), it is easy to construct the cf’s of factors

X1, .., XK from the set of all partial derivatives of κY (t) = ln
[
E exp

(
itTY

)]
.
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Example for p = 1: the measurement error model

• Consider the measurement error model:
{

Y1 = X + U1,

Y2 = aX + U2,
a 6= 0, X ∈ R.

• If EX3 ≡ 0, a can be estimated by regressing Y2 on Y1 using Y1Y2 as instrument (Geary, 1942).

• The cumulant generating function (cgf) of Y = (Y1, Y2) is the log of the characteristic function

(cf):

κY (t1, t2) = ln E exp i (t1Y1 + t2Y2)

= ln E exp i ((t1 + at2) X + t1U1 + t2U2)

= ln Eei(t1+at2)X + ln Eeit1U1 + ln Eeit2U2

≡ κX (t1 + at2) + κU1 (t1) + κU2 (t2)
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• Differentiate two times:




∂2
11κY (t1, t2)

∂2
12κY (t1, t2)

∂2
22κY (t1, t2)



 =





1 1 0

a 0 0

a2 0 1





︸ ︷︷ ︸
=B1





κ′′
X (t1 + at2)

κ′′
U1

(t1)

κ′′
U2

(t2)





• This implies that

κ′′
X (t1 + at2) =

1

a
∂2

12κY (t1, t2)

or

κ′′
X (τ ) =

1

a
∂2

12κY

(
t1,

1

a
τ −

1

a
t1

)
, ∀τ , t1.

• Integrate using κX (0) = κ′
X (0) = 0 as integration constants:

κX (τ ) =
1

a

∫ τ

0

∫ u

0

∂2
12κY

(
t1,

1

a
v −

1

a
t1

)
dvdu

=

∫ τ

0

[
∂1κY

(
t1,

1

a
u −

1

a
t1

)
− ∂1κY

(
t1,−

1

a
t1

)]
du.
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• Setting t1 = 0 yields Li and Vuong’s (1998) solution:

κX (τ ) =

∫ τ

0

∂1κY

(
0,

1

a
u

)
du =

∫ τ

0

i
E

[
Y1e

iuY2/a
]

E
[
eiuY2/a

] du.

(Li &Vuong assume a = 1.)

• Remarks:

1. As pointed out by Schennach, Li & Vuong’s particular form of the general estimator only

requires E (U1|X, U2) = 0 and U2 ⊥⊥ X .

2. The double integrals of second-order derivatives of κY will not simplify into a simple integral

of first derivatives for all different possible choices of t1.

3. Apart from that the choice of t1 is arbitrary. Our preferred choice takes t1 so as to minimize
∥∥∥∥

(
t1,

1

a
τ −

1

a
t1

)∥∥∥∥
2

= t21 +

(
1

a
τ −

1

a
t1

)2

,

as cf’s are more difficult to estimate at large frequencies, i.e. t1 = τ/
(
1 + 1

a

)
.
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General constructive identification proof for p = 1

(maybe skipped)

• Consider cumulant generating functions (cgf; = log of characteristic function) of measurements

and factors:

κY (t) = ln
[
E exp

(
itTY

)]
and κXk

(τ ) = ln [E exp (iτXk)] .

• Independence and linearity imply that, for all t = (t1, ..., tL) ∈ RL,

κY (t) =
∑K

k=1 κXk

(
tTA[·,k]

)
.

• Differentiate the cgf of Y :

κY (t) =

K∑

k=1

κXk

(
tTA[·,k]

)

=⇒ ∂ℓκY (t) = i
E

[
Yℓe

itT Y
]

E
[
eitT Y

] =

K∑

k=1

aℓkκ
′
Xk

(
tTA[·,k]

)
.

• In general, K > L as there are L errors and at least one common factor. So there are more

function κ′
Xk

than partial derivatrives ∂ℓκY .
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• To obtain an invertible system, differentiate one more time:

∂2
ℓmκY (t) = −

E

[
YℓYmeitT Y

]

E
[
eitT Y

] +
E

[
Yℓe

itT Y
]

E
[
eitT Y

]
E

[
YmeitT Y

]

E
[
eitT Y

]

=

K∑

k=1

aℓkamkκ
′′
Xk

(
tTA[·,k]

)
, ℓ ≤ m.

• This is a system of L(L+1)
2 equations and K variables κ′′

X1

(
tTA[·,1]

)
, ..., κ′′

XK

(
tTA[·,K]

)
.

• Assume that B1 = [aℓ1am1, ..., aℓKamK ]ℓ≤m ∈ R
L(L+1)

2 ×K is full column rank (so K ≤ L(L+1)
2 ).

• One can invert the identifying system of second-order restrictions as

κ′′
Xk

(
tTA[·,k]

)
=

(
B−

1

)
[k,·]

∇2κY (t) (k = 1, ..., K)

where

– B−
1 is a generalized inverse of B1,

–
(
B−

1

)
[k,·]

denote the kth row of B−
1

– and ∇2κY (t) =
[
∂2

ℓmκY (t) ; ℓ ≤ m
]

is the L(L+1)
2 -vector of non redundant second-order partial

derivatives.
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• Let Tk =
{
t ∈ RL|tTA[·,k] = 1

}
. Then, for all t ∈ Tk and τ ∈ R,

κ′′
Xk

(τ ) =
(
B−

1

)
[k,·]

∇2κY (τt) .

• Integrating with respect to τ yields

κXk
(τ ) =

∫ τ

0

∫ u

0

(
B−

1

)
[k,·]

∇2κY (vt) dvdu.
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Example for p = 2: Two measurements, two factors

• Consider model {
Y1 = X1 + X2 + U1,

Y2 = X1 + aX2 + U2,

with a 6= 1 and a 6= 0, is identified provided that the variances of X1 and X2 are known

(preestimated) and normalized to one.

• B2 full column rank is a necessary condition for identification as K = 4 =
(
L+p
p+1

)
.

• One can show that {
κX1 (τ 1) =

∫ τ1

0

∫ u

0 ∂2
12κY (2v,−v) dvdu − a

τ2
1
2 ,

κX2 (τ 2) =
∫ τ2

0

∫ u

0 ∂2
12κY (−v, v) dvdu − 1

a

τ2
2
2 .
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ESTIMATION

• First step – Empirical characteristic functions:

κ̂Y (t) = ln
(
EN

[
eitT Y

])
, ∂̂ℓκY (t) = i

EN

[
Yℓe

itT Y
]

EN

[
eitT Y

] = ∂ℓκ̂Y (t),

∂̂2
ℓmκY (t) = −

EN

[
YℓYmeitT Y

]

EN

[
eitT Y

] +
EN

[
Yℓe

itT Y
]

EN

[
eitT Y

]
EN

[
YmeitT Y

]

EN

[
eitT Y

] = ∂2
ℓmκ̂Y (t),

where EN denotes the empirical expectation operator.

• Second step – Integration:

κ̂Xk
(τ ) =

∫ τ

0

∫ u

0

(
B−

1

)
[k,·]

(∫
∇̂2κY (vt) dW (t)

)
dvdu,

where W is some probability distribution on Tk =
{
t ∈ RL|tTA[·,k] = 1

}
.

• Third step – Inverse Fourier transformation:

f̂Xk
(x) =

1

2π

∫ TN

−TN

ϕ̂Xk
(τ )e−iτxdτ =

1

2π

∫ TN

−TN

exp
[
−iτx + κ̂Xk

(τ )
]
dτ ,

where the smoothing parameter TN tends to infinity at a rate to be specified.
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Choice of the weighting distribution W

• Empirical characteristic functions are well estimated around the origin and badly estimated in

the tails.

• It makes sense to choose t such that ∇2κY (τ kt) is well estimated on a maximal interval.

• A natural choice is to minimize ‖t‖, for t ∈ Tk =
{
t ∈ RL|tTA[·,k] = 1

}
:

arg min
t

∥∥∥∥
t

tTA[.,k]

∥∥∥∥ ≡ t∗ =
(
A[·,k]

)−T
=

A[·,k]

AT
[·,k]A[·,k]

.

• The simulation section will provide evidence that choosing W = δt∗ works well in practice.
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ASYMPTOTIC THEORY

Li and Vuong (1998) and Hall and Yao (2003) assume bounded supports. Clashes with assumption

that cf 6= 0 (same remark in Hu and Ridder, 2005). We relax the boundedness assumption.

Lemma 1 Let X be a scalar random variable and let Y be a vector of L scalar random variables.

Let there be an iid sample of N observations of (X, Y ).

Assume that EX2 ≤ M1 < ∞ and that E |Y |i < ∞ for all i ∈ {1, ..., L}.

Define ft(x, y) = x exp(itTy) for t ∈ RL.

Let K|X| (ε) be such that

E
[
|X|1

{
|X| > K|X| (ε)

}]
=

∫ ∞

K|X|(ε)

uf|X| (u) du = ε.

Then,

sup
|t|≤TN

|ENft − Eft| = O(εN), a.s.,

(where |t| = maxℓ |tℓ|) for all εN , TN such that

ln TN = O (ln N) and
K|X| (εN)

εN
= o

[(
N

ln N

)1
2

]
.
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Consistency of factor cf’s

Theorem 2 Suppose that there exists an integrable, decreasing function gY : R+ → [0, 1], such

that |ϕY (t)| ≥ gY (|t|) as |t| → ∞. Then, there exists εN ↓ 0 and TN → ∞ such that

sup
|τ |≤TN

∣∣ϕ̂Xk
(τ ) − ϕXk

(τ )
∣∣ =

T 2
N

gY (TN)3
O(εN) a.s., (1)

where εN is the minimum convergence rate satisfying the conditions of Lemma 1 for all functions

ft of the form exp
(
itTY

)
, Yℓ exp

(
itTY

)
and YℓYm exp

(
itTY

)
, ℓ, m ∈ {1, ..., L}, and TN satisfies

two constraints: ln TN = O (ln N), and
T 2

N
gY (TN )3

εN = o(1).

• More difficult to identify factor characteristic function if measurement distribution is smooth

(gY (|t|) decays rapidly to zero).
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Consistency of factor pdf’s

Theorem 3 Suppose that there exists an integrable, decreasing function gX : R+ → [0, 1] such

that |ϕX(τ )| ≥ gX(|τ |) as |τ | → ∞. Suppose also that there exist K integrable functions

hXk
: R+ → [0, 1] such that hXk

(|τ |) ≥
∣∣ϕXk

(τ )
∣∣ as |τ | → ∞. Then, f̂Xk

is a uniformly

convergent estimator of the pdf fXk
of Xk, i.e.

sup
x

∣∣∣f̂Xk
(x) − fXk

(x)
∣∣∣ =

T 3
N

gX(TN)3
O(εN) + O

(∫ +∞

TN

hXk
(v)dv

)
= o (1) a.s., (2)

where εN and TN are given by Theorem 2 applied to gY (|t|) = gX(L |A| |t|).

Interestingly, smoothness is both good and bad.

• On one hand, smooth distributions require less trimming (less regularization).

• On the other hand, it is more difficult to separate the different sources of information if factors

are smooth.

• A more precise assessment of this trade-off requires a more precise, parametric specification of

factor distributions’ tails and smoothness. In which case, one can optimize the choice of TN wrt

εN in (2).
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Particular case: Pareto tailed, polynomially-smooth factor distributions

Corollary 4 Assume that there exists 1 < βk ≤ αk such that

|τ |−αk ≤
∣∣ϕXk

(τ )
∣∣ ≤ |τ |−βk, |τ | → ∞,

and a > 1 such that K|Xk| (ε) ≤ (1/ε)a−1. Then

sup
x

∣∣∣f̂Xk
(x) − fXk

(x)
∣∣∣ = O




(

ln N

N

) βk−1
2+3α+βk

a(1/2−γ)


 a.s.,

for α =
∑K

k=1 αk, and for a trimming parameter TN in f̂Xk
chosen such as

TN = O




(

N

ln N

) a(1/2−γ)
2+3α+βk



 .

• The convergence rate is polynomial in ln N
N instead of ln ln N

N as in Li and Vuong (1998). This is

because factor distributions do not necessarily have bounded support.

• Thick tails (small a) require more trimming and yield lower convergence rates.
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Is smoothness good or bad?

• The rate of convergence increases with βk (smoothness is good) and decreases with αk (smoothness

is bad), the other αm, m 6= k, remaining constant.

• Makes little sense to vary αk independently from βk. Let αk = βk. Then, the optimal convergence

rate unambiguously increases with βk (smoothness is good) and less trimming is necessary to

achieve a given rate.

• Furthermore, the optimal uniform rate of convergence of f̂Xk
(x) unambiguously decreases with

α−αk =
∑

m 6=k αm. That is to say that it is more difficult to identify and estimate the distribution

of one factor if the other factors and errors are smooth.
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Practical choice of the smoothing parameter TN

• Asymptotic bounds do not yield practical ways of choosing TN .

• We use method in Diggle and Hall (1988) who consider the deconvolution problem, Y = X + U ,

with independent random samples for Y and U (!). Our simulations proved that their method

also works well in our setup.
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MONTE-CARLO SIMULATIONS

A measurement error model (L = 2, K = 3)

• We simulate {
Y1 = X1 + U1,

Y2 = X1 + U2,

where (X1, U1, U2) ∼ N (0, I3).
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a) ln |ϕY (t)|, t = (0, τ) b) ln |ϕY (t)|, t = (τ/2, τ/2)

c) ln
∣∣ϕX1

(τ)
∣∣, t = (0, τ) d) ln

∣∣ϕX1
(τ)

∣∣, t = (τ/2, τ/2)

Figure 4: Monte Carlo simulations for the estimated characteristic functions in the measurement error model (left: Li and Vuong; right:

our preferred direction of integration) 32



A 3-measurement, 3-factor, 2-error case (L = 3 and K = 6!)

• We simulate Y = ΛX + U , with Y ∈ R3, X ∈ R3 and U ∈ R3.

• We set

Λ =





2 1 1

1 2 1

1 1 2



 ,

and assume that all factors follow the same distribution. Idem for all errors.
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Factor, σU = .5 Error σU = .5

Factor, σU = 2 Error, σU = 2

Figure 5: Monte Carlo simulations for density estimates in the linear factor model with 3 measurements, 3 factors and 3 errors — normal

distributions 34



Factor, Laplace/Laplace Error, Laplace/Laplace

Factor, Laplace/normal Error, Laplace/normal

Figure 6: Monte Carlo simulations for density estimates in the linear factor model with 3 measurements, 3 factors and 3 errors — Laplace

and normal distributions 35



Factor, gamma (5, 1) Error, gamma (5, 1)

Factor, gamma (2, 1) Error, gamma (2, 1)

Figure 7: Monte Carlo simulations for density estimates in the linear factor model with 3 measurements, 3 factors and 3 errors — Gamma

distributions 36



Factor, normal mixture (κ4 = 100) Error, normal mixture (κ4 = 100)

Factor, log-normal Error, log-normal

Figure 8: Monte Carlo simulations for density estimates in the linear factor model with 3 measurements, 3 factors and 3 errors — normal

mixtures and log-normal distributions 37



CONCLUSION

• This paper provides a generalization of the nonparametric estimator of Li and Vuong (1998) to the

case of a general linear independent factor structure, allowing for any number of measurements,

L, and at most L(L+1)
2 factors (including errors).

• The main lessons of the standard deconvolution literature carry over:

– Convergence rates are slow; it is easier to identify the distribution of a smooth factor;

– and it is easier to identify the distribution of one factor if the other factor distributions are

not smooth.

• Monte Carlo simulations show that the method works reasonably well in practice.

• However, it is easier to identify smooth distributions with little kurtosis excess.

• In Bonhomme and Robin (2005), we show that skewness and peakedness are required for the

matrix of factor loadings to be identified from higher-order moments. There is thus a tension

between obtaining precise estimates of factor loadings and precise estimates of factor distributions.

• Future work: nonlinear factor models, ARCH factors, ...
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