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Abstract

We study the identification and estimation of linear factor models under the assumptions that
factors and errors are independent and that factors are not normally distributed. High-order
moments are shown to yield full identification of the matrix of factor loadings if factor distrib-
utions are sufficiently skewed or kurtotic. We develop simple algorithms to estimate the matrix
of factor loadings from the second, third and fourth-order moments of the data. We run Monte
Carlo simulations and apply our methodology to microdata on wages and education, and to
financial data on stock returns.
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Keywords: Factor models, high-order moments, independent component analysis.



1 Introduction

Linear factor models are routinely used in social sciences. Spearman’s (1904) “g” factor is one

of the earliest applications in psychology. Principal component analysis (PCA) is a leading

technique in sociology to construct social indices and to uncover hidden causes of individual

actions. Econometric applications include measurement error models, error component mod-

els for panel data, structural VAR models in macroeconomics, and multifactor asset pricing

models in empirical finance. Linear factor models have also been used in nonlinear empirical

microeconomic models. For example, Carneiro, Hansen and Heckman’s (2003) Roy model of

educational choice is a successful application of factor models for estimating treatment effects

and other policy parameters using microdata.1

Despite these empirical successes, it is usually thought that the interest of linear multifactor

models for structural applications is severely hampered by a fundamental lack of identification.

Suppose that a vector of L observed measurements, Y , be related to a vector of K unobserved

factors, X, by a noisy linear relationship: Y = ΛX + U , where Λ is a matrix of parameters

(factor loadings) and U is a vector of errors. In ordinary Factor Analysis, the identification of

factor loadings rests on covariance restrictions, and it is well known that matrix Λ is identified

only up to a multiplicative orthogonal matrix (Anderson and Rubin, 1956). Parametric restric-

tions, often in the form of exclusion restrictions, are usually added for identification. In VAR

models, for example, the identification of structural shocks is achieved by assuming a particular

triangular form for Λ. In the same spirit, Carneiro, Hansen and Heckman (2003) assume that

there is at least two specific measurements for each factor.

In this paper, we show that these restrictions are unnecessary if two key conditions are

satisfied: First, factors and errors are independent, not just uncorrelated. Second, the third

and/or fourth-order moments of the vector of observed measurements are informative, which

implies that factors are not Gaussian. If K ≤ L, we show that the matrix of factor loadings Λ

1Continuous instruments with large supports allow to identify the distribution of latent variables and a linear
factor structure is used to model the effect of unobserved heterogeneity on latent variables. See Cunha et. al

(2005) and Heckman and Navarro (2005) for other applications of this idea.
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is generically identified from second, third and fourth-order moments of the data. If K < L, we

show that Λ is identified from second and third-order moments only. In both cases, identification

is unambiguously defined up to multiplication of each column by ±1 and column permutations.

The importance of the assumptions of independence and non normality for the identification

of one-factor models is well known in the measurement-error literature. Since the seminal

contributions of Geary (1942) and Reiersol (1950) a long series of papers have proposed different

ways of using third and fourth-order moments to correct estimators for measurement errors in

the regressors.2 The class of estimators introduced in this paper can be seen as a generalization

of this approach to multifactor structures.

In a different branch of statistics, signal processing, linear factor models are commonly used

to separate the components of linear mixtures of signals. Since its introduction at the beginning

of the 1990’s, Independent Component Analysis (ICA) has rapidly become a leading technique

for blind signal separation.3 In this vast literature, one of the most popular methods is Cardoso

and Souloumiac’s (1993) JADE algorithm. This is a joint diagonalization algorithm of a set of

well chosen matrices of fourth-order cumulants of measurements. In the past ten years, the ICA

problem has also become an important topic in the neural networks literature and Hyvärinen’s

(1999) FastICA algorithm has become another very popular algorithm.4

One serious drawback of ICA, at least for econometric applications, is that it rules out

measurement errors. The estimated model is Y = ΛX, with K = L, not Y = ΛX + U .

Neglecting noise can be a source of severe biases, as we shall show. All existing extensions

of ICA allowing for noise make parametric assumptions on the distributions of errors (usually

Gaussian) and factors (usually Gaussian mixtures).5 As far as we know, our paper is the

2Relevant contributions include Madanski (1959), Pal (1980), Dagenais and Dagenais (1997), Cragg (1997),
Lewbel (1997), and Erickson and Whitted (2002). Less directly related to our work are the papers of Spiegelman
(1979) and Van Montfort et al. (1989), using more of the information contained in the characteristic function
of measurements than the value at zero of its first few derivatives. Lastly, Lewbel (2004) and Doz and Renault
(2005) use heteroskedasticity as a source of identification.

3The designation “Independent Component Analysis” was first proposed par Comon (1994). See Hyvärinen
et al. (2001) and Cardoso (1999) for surveys.

4See Xu, 2003, for a survey of Bayesian learning applications to ICA.
5For example, Moulines et al. (1997) and Attias (1999) use a ML approach and the EM algorithm. Xu (2000,

2001) allows for non-Gaussian errors and uses Bayesian learning algorithms. Ikeda and Toyama (2000) adopt a
two-stage method which combines PCA and JADE to reduce the size of the noise. As such, the estimator they
propose is still inconsistent in the presence of noise.
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first, out of a long list of contributions, to propose a semiparametric statistical procedure for

consistently estimating a K ×K matrix of factor loadings from data moments in a linear factor

model with error distributions of unknown form.

We develop an algebraic procedure that builds on Cardoso and Souloumiac’s JADE al-

gorithm. Our quasi-JADE algorithm proceeds in two stages: First, we estimate the second,

third and fourth-order error moments, which we use to “remove” the noise component from the

second, third and fourth-order moments of the data (“whitening” stage). Then, we straight-

forwardly apply Cardoso and Souloumiac’s joint diagonalization algorithm to the “whitened”

data. Notice that we therefore do not need to assume full independence between factor and

error components, only that they are orthogonal up to third or fourth order.

The outline of the paper is as follows. In Section 2, we study the semiparametric identifica-

tion of factor loadings. Section 3 deals with estimation issues. We first discuss the estimation of

the number of common factors using Robin and Smith’s (2000) rank test. We then present Car-

doso and Souloumiac’s (1993) JADE algorithm and study its asymptotic properties. Lastly, we

introduce the quasi-JADE algorithm. In Section 4, we investigate the finite-sample properties

of quasi-JADE by means of Monte-Carlo simulations. In Section 5, we apply our methodology

to two rather different empirical setups.

We first estimate the returns to schooling in France, using microdata from the French Labor

Force Survey. Our method allows to identify two factors of individual wages and education.

Interestingly, while the first factor has a positive effect on wages, the second factor is positively

related to education, yet negatively to wages. This is evidence that there exist individual char-

acteristics which are valued by the education institution but not by the labor market. Moreover,

the exhibited factor structure is consistent with the standard model of education returns if one

allows measurement errors on the education measure and unobserved heterogeneity. We then

reconsider Fama and French’s (1993) factor analysis of US stock returns.6 Fixing the number

of factors to three, as Fama and French do, we apply our blind signal extraction procedure and

estimate independent (up to third or fourth order) factor components which turn out to be

6For a first application of ICA and JADE to multivariate financial time series, see Back and Weigend (1997).
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strongly correlated with those derived by Fama and French.

Lastly, Section 6 concludes.

2 Identification of linear independent factor models

Let Y = (Y1, ..., YL)T be a vector of L ≥ 2 zero-mean, real-valued random variables (mea-

surements).7 Let X = (X1, ..., XK)T be a random vector of K ≥ 1 zero-mean, real valued,

non degenerate random variables (factors). Let U = (U1, ..., UL)T be a vector of L zero-mean,

real-valued random variables (errors). Factors and errors are unobserved.

Assumption A1 There exists a L × K matrix of scalar parameters (factor loadings), Λ,

such that Y = ΛX + U .

The difference between factors and errors is a matter of definition. A given covariate is called

a factor if it enters at least two measurement equations (i.e. every column λk, k = 1, ..., K, of

Λ has at least two non-zero entries). Otherwise, it is called an error. Moreover, if two columns

of Λ are proportional, then one can aggregate the corresponding factors into a single one.

Assumption A2 Any column of Λ contains at least two non zero entries and any two columns

of Λ are not proportional.

In ordinary Factor Analysis (FA), factors and errors are uncorrelated and identification rests

on the following covariance restrictions:

ΣY = ΛΣXΛT + ΣU , (1)

where ΣZ denotes the variance-covariance matrix of any random vector Z. Obviously parame-

ters Λ, ΣX and ΣU are not identified from second-order restrictions (see Anderson and Rubin,

1956). First, restrictions are needed on the correlations between errors and it is usually assumed

that ΣU is diagonal. Second, ΣX is not separately identified from Λ. If (Λ, ΣX) satisfies (1),

then so does (ΛΩ, IK), where ΩΩT = ΣX . The variance-covariance matrix of X is therefore

normalized to the identity matrix IK . Thirdly, even if ΣX = IK and ΣU is diagonal, Λ is

7In the rest of the paper, MT denotes the transpose of matrix M .
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identified only up to an orthogonal matrix; that is, if Λ satisfies the covariance restrictions,

then so does ΛP , for any orthogonal matrix P . This indeterminacy characterizes both ordinary

Factor Analysis and PCA (e.g. Lawley and Maxwell, 1971).

In this paper, we maintain the assumptions that ΣX = IK and ΣU is diagonal, and we

strengthen the absence of correlations between factors and errors by making them independent.

Assumption A3 Factors have unit variances.

Assumption A4 All factor and error variables are mutually independent.

A triple (Λ, X, U), satisfying Assumptions A1, A2, A3 and A4 and such that ΛX + U has

the same distribution as Y is called a representation of Y .

The aim of this section is to determine conditions under which Λ, the matrix of factor

loadings, is identified. We shall start by a general semiparametric identification result stating

conditions under which the family of equivalent representations (Λ, X, U) (i.e. such that ΛX+U

has the same distribution as Y ) share the same Λ. Then, we shall investigate the conditions

under which one can uniquely reconstruct Λ from a small number of moments of Y instead of

its entire distribution.

2.1 A first identification result

For any value of K, let us define the set of sign-permutation matrices as the set SK of all

products DP , where D is a diagonal matrix with diagonal components equal to 1 or −1 and

P is a permutation matrix. For given values of L and K, let (Λ, X, U) be a representation.

Clearly, for all S ∈ SK ,
(
ΛS, ST X, U

)
is another representation. Hence, identification has to

be defined modulo the set SK .

Notice that the group SK is a finite subgroup of the infinite orthogonal group OK , up to

which identification is defined in ordinary or orthogonal Factor Analysis. The quotient group

OK/SK is thus also infinite. Proving identification modulo SK , instead of modulo OK , will

result in a considerable reduction of model indeterminacy.

We first state the following general identification theorem.
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Theorem 1 (Sufficient conditions for semiparametric identification of Λ) Let (Λ, X, U)

be a representation of a vector of measurements Y , such that the components of X are not nor-

mal. Let (Λ̃, X̃, Ũ) be an equivalent representation. The following two assertions are true:

(i) Every column of Λ is a scalar multiple of a column of Λ̃.

(ii) Assume, in addition, that the L(L−1)
2 × K matrix

Q(Λ) = [λℓ1λm1, ..., λℓKλmK ; ℓ, m = 1, ..., L, ℓ < m]

is full column rank. Then matrix Λ̃ differs from matrix Λ by a sign-permutation matrix.

Theorem 1 follows by a straightforward application of a result due to Kagan, Linnik and

Rao (1973) that is stated in Section A.1 of the Mathematical Appendix (see also Eriksson and

Koivunen, 2003). This theorem shows that, if factors are non normal, then Λ is identified up

to a multiplicative diagonal matrix and column permutations (i.e. if Λ works, then so does

ΛDP with D diagonal and P a permutation matrix). Recovering the right scale shift requires

an additional restriction (Q (Λ) full column rank) which implies that K ≤ L(L−1)
2 . The rest of

this section aims at demonstrating that, under these two assumptions, only a few moments of

Y suffice to identify Λ up to column-sign and column-permutation.

2.2 Moment restrictions

Define multivariate cumulants as follows. The second-order cumulant of a couple of zero-mean

random variables (Z1, Z2) is equal to their covariance:

Cum (Z1, Z2) = E(Z1Z2), (2)

The third-order cumulant of (Z1, Z2, Z3) is the third-order moment:

Cum (Z1, Z2, Z3) = E(Z1Z2Z3). (3)

The fourth-order, multivariate cumulant of (Z1, Z2, Z3, Z4) is

Cum (Z1, Z2, Z3, Z4) = E (Z1Z2Z3Z4) − E(Z1Z2)E(Z3Z4) (4)

−E(Z1Z3)E(Z2Z4) − E(Z1Z4)E(Z2Z3).
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Straightforward algebra shows that the linear factor structure and the assumption of orthog-

onality between factors and errors up to fourth order, that follows from independence, implies

the following set of multilinear restrictions. Let ℓ1, ..., ℓp be p indices in {1, ..., L}, for p = 2, 3, 4.

Then,

Cum
(
Yℓ1 , ..., Yℓp

)
=

K∑

k=1

(
p∏

i=1

λℓi,k

)
κp (Xk) + Cum

(
Uℓ1 , ..., Uℓp

)

=





∑K
k=1 (λℓk)

p κp (Xk) + κp (Uℓ) , if ℓ1 = ... = ℓp ≡ ℓ,

∑K
k=1 (

∏p
i=1 λℓi,k)κp (Xk) , otherwise,

(5)

where κp (Z) = Cum (Z, Z, ..., Z) (repeat Z p times) denotes the pth cumulant of a univariate

random variable Z.8

2.3 Algebraic structure of moment restrictions

Moment restrictions of all orders have a common multilinear structure which can be conveniently

expressed in matrix form, as in ordinary Factor Analysis.

Using (5) with p = 2, second-order restrictions take the usual matrix form:

ΣY = ΛΛT + ΣU , (6)

where ΣY and ΣU denote the variance-covariances matrices of Y and U .

Now, define the following L × L matrices of third-order cumulants

ΓY (ℓ) = [Cum (Yi, Yℓ, Yj)](i,j)∈{1,...,L}2 , ℓ ∈ {1...L}. (7)

Third-order restrictions (p = 3) imply that

ΓY (ℓ) = ΛD3 diag (Λℓ) ΛT + κ3 (Uℓ) SpL,ℓ, (8)

where ΛT
ℓ ∈ R

K×1 is the ℓth row of Λ, D3 is the diagonal matrix with κ3 (Xk) in the kth entry

of the diagonal, and SpL,ℓ is the L × L sparse matrix with only one 1 in position (ℓ, ℓ).

8For a zero mean variable Z, the first four univariate cumulants are thus defined as:

κ2 (Z) ≡ Cum(Z, Z) = Var (Z) = EZ2,

κ3 (Z) ≡ Cum(Z, Z, Z) = EZ3,

κ4 (Z) ≡ Cum(Z, Z, Z, Z) = E
�
Z4�− 3E

�
Z2�2 .
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Lastly, let ∆L =
{

(i, j) ∈ {1, ..., L}2 , i ≤ j
}

and ∆L =
{

(i, j) ∈ {1, ..., L}2 , i < j
}

. One

can also define the following L × L matrices of fourth-order cumulants:

ΩY (ℓ, m) = [Cum (Yi, Yℓ, Ym, Yj)](i,j)∈{1,...,L}2 , (ℓ, m) ∈ ∆L. (9)

Fourth-order restrictions (p = 4) then imply that

ΩY (ℓ, m) = ΛD4 diag (Λℓ ⊙ Λm) ΛT + δℓmκ4 (Uℓ) SpL,ℓ, (10)

where D4 is the diagonal matrix with κ4 (Xk) in the kth entry of the diagonal, and ⊙ is the

Hadamard (element by element) matrix product.

Restrictions (8) and (10) clearly show the same algebraic structure as restriction (6). This

property will be the source of identifying restrictions yielding exact identification of the factor

structure.

2.4 Moment-based identification of factor loadings in the noise-free case
(U = 0)

We here derive parametric identification results based on the first four moments of the data.

The identification proofs are constructive, and will be used for estimation in the next section.

We first consider the case of factor models without errors. In this case, second, third and

fourth-order restrictions (6), (8), (10) imply that matrix Λ satisfies simultaneously

ΣY = ΛΛT , (11)

ΓY (ℓ) = ΛD3 diag (Λℓ) ΛT , ℓ ∈ {1...L}, (12)

ΩY (ℓ, m) = ΛD4 diag (Λℓ ⊙ Λm) ΛT , (ℓ, m) ∈ ∆L. (13)

Left and right-multiplying (11), (12) and (13) by Σ
−1/2
Y and Σ

−T/2
Y , respectively, where

Σ
−1/2
Y ΣY Σ

−T/2
Y = IK , one obtains:

Σ
−1/2
Y ΓY (ℓ)Σ

−T/2
Y = V D3 diag (Λℓ) V T , ℓ ∈ {1...L},

Σ
−1/2
Y ΩY (ℓ, m)Σ

−T/2
Y = V D4 diag (Λℓ ⊙ Λm) V T , (ℓ, m) ∈ ∆L,

where V = Σ
−1/2
Y Λ is orthogonal; that is: V V T = IK . Therefore, V solves a joint diagonaliza-

tion problem. Theorem 2 below gives conditions for the solution to this joint diagonalization

problem to be unique.
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Theorem 2 (Moment-based identification of Λ in the noise-free case) Assume that

(i) U = 0, (ii) K ≤ L and (iii) Λ has rank K.

If (iv) at most one factor variable has zero kurtosis excess, then factor loadings are identified

from second and fourth-order moment restrictions (11) and (13).

If (iv’) at most one factor variable has zero skewness, then factor loadings are identified

from second and third-order moment restrictions (11) and (12).

If (iv”) for any couple of factors indices (k, k′), (κ3 (Xk) , κ3 (Xk′) , κ4 (Xk) , κ4 (Xk′)) 6= 0,

then factor loadings are identified from second, third and fourth-order moment restrictions (11),

(12) and (13).

The proof is in the mathematical appendix. Theorem 2 shows that high-order moments

are a source of identification in noise-free factor models. This insight has been widely used

in the ICA literature. For instance, Cardoso and Souloumiac (1993) use restrictions (11) and

(13) as the basis of their JADE algorithm. In usual applications of ICA methods, factors are

thought to be symmetric. For this reason, third-order information is a priori neglected in

that literature. However, there is no strong argument for discarding third-order moments of

the data in econometrics. It is yet true that the variables of interest are often transformed to

make them as much Gaussian as possible. For instance, by taking the logarithm of income, one

obtains a distribution which is close to being normal, at least as far as skewness and kurtosis are

concerned. However, there can still be enough non-normality in the multivariate distribution

of the data for factor loadings and factor moments to be well identified. The first application

in Section 5 will provide an illustration of this remark.

2.5 Moment-based identification of error moments

In the “noisy” case (U 6= 0), the previous identification results apply, provided that the first

moments of error variables are identified. We here give conditions under which these moments

are identified. Two cases are distinguished, depending on whether some fourth-order cumulants

of factors are zero or not.
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First case: all factor distributions are kurtotic. Let ΩY be the L(L+1)
2 × L(L−1)

2 matrix

of all fourth-order cumulants of the data, defined by

ΩY =
[
Cum (Yi, Yj , Yℓ, Ym) ; (i, j) ∈ ∆L, (ℓ, m) ∈ ∆L

]
∈ R

L(L+1)
2

×
L(L−1)

2 . (14)

The rows of ΩY are indexed by (i, j) ∈ ∆L (i.e. i ≤ j) and the columns are indexed by

(ℓ, m) ∈ ∆L (i.e. ℓ < m). The factor structure implies that

ΩY = QD4Q
T , (15)

where

Q ≡ Q (Λ) = [λℓkλmk; (ℓ, m) ∈ ∆L, k ∈ {1, ..., K}] ∈ R
L(L−1)

2
×K , (16)

Q ≡ Q (Λ) =
[
λℓkλmk; (ℓ, m) ∈ ∆L, k ∈ {1, ..., K}

]
∈ R

L(L+1)
2

×K . (17)

We first show that, under the assumption that all factors have kurtosis excess, it suffices

that Q be full column rank for the first four error moments to be identified from the first four

moments of the data.

Lemma 1 Assume that (i) K ≤ L(L−1)
2 , (ii) Q has rank K and (iii) factor variables have non

zero kurtosis excess. Then, the following propositions hold true.

1. Matrix ΩY has rank K.

2. Let C ∈ R

L(L+1)
2

×
�

L(L+1)
2

−K
�

be a basis of the null space of ΩT
Y ; that is: the columns of

C are linearly independent and ΩT
Y C = 0. The first four moments of Uℓ, ℓ ∈ {1, ..., L},

satisfy the linear restrictions:

C
T

vech (ΣY ) =
L∑

ℓ=1

Var (Uℓ) C(ℓ,ℓ), (18)

C
T

vech (ΓY (ℓ)) = κ3 (Uℓ)C(ℓ,ℓ), (19)

C
T

vech (ΩY (ℓ, ℓ)) = κ4 (Uℓ)C(ℓ,ℓ), (20)

where C
T
(ℓ,ℓ) denotes the (ℓ, ℓ)th row of C, when the L(L+1)

2 rows of C are indexed by ∆L,2,

and where vech is the linear matrix operator stacking all L(L+1)
2 non redundant elements
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of a symmetric matrix.9

3. Matrix
[
C(1,1), ..., C(L,L)

]
is full rank and Var (Uℓ), κ3 (Uℓ) and κ4 (Uℓ) are uniquely defined

by identification restrictions (18), (19) and (20).

The proof is in Section A.3 of the mathematical appendix. The following theorem then

follows straightforwardly.

Theorem 3 (Sufficient conditions for moment-based identification of Λ when K ≤

L) Assume that (i) K ≤ min
{

L, L(L−1)
2

}
, (ii) Λ is full column rank, (iii) Q has rank K, and

(iv) factor variables have non zero kurtosis excess. Then, factor loadings are identified from

second and fourth-order moments.

The maximal number of factors for which Λ can be identified (up to column sign and

permutation) in Theorem 3 is K = 1 if L = 2, and K = L if L ≥ 3.

Second case: all factor distributions are either skewed or kurtotic. We now consider

the problem of identifying factor loadings, in the “noisy” factor model, when some or all factor

distributions have zero kurtosis excess.

Let

ΩY (j) = [Cum (Yi, Yj , Yℓ, Ym) ; i ∈ {1, ..., L} , (ℓ, m) ∈ ∆L] ∈ R
L×

L(L−1)
2 . (21)

The rows of ΩY (j), j ∈ {1...L}, are indexed by i ∈ {1, ..., L} and the columns are indexed by

(ℓ, m) ∈ ∆L (i.e. ℓ < m). The factor structure implies that

ΩY (j) = Λ diag (Λj)D4Q
T . (22)

Let also ΓY be the L × L(L−1)
2 matrix of third-order cumulants of the data defined by

ΓY = [Cum (Yi, Yℓ, Ym) ; i ∈ {1, ..., L} , (ℓ, m) ∈ ∆L] ∈ R
L×

L(L−1)
2 , (23)

The factor structure implies that

ΓY = ΛD3Q
T . (24)

9Let A = [aij ] be a L × L matrix. Then vech (A) = [aij ; i ≤ j] ∈ R
L(L+1)

2
×1, ordering couples (i, j) by

increasing order.

11



Lastly, let ΞY be the L× L(L−1)(L+1)
2 matrix of all third and fourth-order cumulants of the

data, obtained by stacking matrices ΓY , ΩY (1),..., ΩY (L) horizontally:

ΞY = [ΓY , ΩY (1), ...,ΩY (L)] . (25)

We first establish a set of linear restrictions on error moments.

Lemma 2 Assume that (i) K ≤ min
{

L, L(L−1)
2

}
, (ii) Λ and Q are full column rank K and

(iii) every factor distribution is either skewed or kurtotic. Then, the following propositions hold

true.

1. ΞY has rank K.

2. Let C ∈ R
L×(L−K) be a basis of the null space of ΞT

Y ; that is: the columns of C are

linearly independent, and ΞT
Y C = 0. Let CT

ℓ denote the ℓth row of C. The second, third

and fourth-order moments of Uℓ, for all ℓ ∈ {1, ..., L}, satisfy the linear restrictions:

CT




E (Y1Yℓ)
...

E (YLYℓ)


 = Var (Uℓ) Cℓ, (26)

CT




E
(
Y1Y

2
ℓ

)

...
E
(
YLY 2

ℓ

)


 = κ3 (Uℓ)Cℓ. (27)

and

CT




E
(
Y1Y

3
ℓ

)
− 3E (Y1Yℓ) E

(
Y 2

ℓ

)

...
E
(
YLY 3

ℓ

)
− 3E (YLYℓ) E

(
Y 2

ℓ

)


 = κ4 (Uℓ)Cℓ. (28)

Lemma 2 is not sufficient to identify error moments if K = L, as in this case matrix C is

zero. We thus require additional assumptions on Λ.

Lemma 3 Assume, in addition to the conditions of Lemma 2, that (i) K ≤ L − 1, and (ii)

every submatrix of Λ made of a selection of L − 1 rows has rank K. Then, no column of C is

nil (Cℓ 6= 0, ∀ℓ) and Var (Uℓ), κ3 (Uℓ) and κ4 (Uℓ) are identified.

The proofs are in Section A.4 of the mathematical appendix. The following theorem then

follows immediately.
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Theorem 4 (Sufficient conditions for moment-based identification of Λ when K ≤

L − 1) Assume that (i) K ≤ L − 1, (ii) every submatrix of Λ made of a selection of L − 1

rows has rank K, (iii) matrix Q has rank K, (iv) every factor distribution is either skewed or

kurtotic. Then, factor loadings are identified from second, third and fourth-order moments.

As a special case, if all factors are skewed then factor loadings are parametrically identified

from second and third-order moments.

Corollary 5 (Sufficient conditions for moment-based identification of Λ from sec-

ond and third-order moments when K ≤ L − 1) Assume that (i) K ≤ L − 1, (ii) every

submatrix of Λ made of a selection of L − 1 rows has rank K, (iii) matrix Q has rank K, and

(iv) all factor distributions are skewed. Then, factor loadings are identified from second and

third-order moments.

For example, consider the case of L = 2 and K = 1 and factor X1 has a non symmetric

distribution:
{

Y1 = λ11X1 + U1,
Y2 = λ21X1 + U2,

and E
(
X3

1

)
6= 0. One easily finds:

λ11 =

√
E(Y1Y2)

E(Y1Y1Y2)

E(Y1Y2Y2)
,

λ21 =

√
E(Y1Y2)

E(Y1Y2Y2)

E(Y1Y1Y2)
.

The ratio of the two factor loadings is then

λ21

λ11
=

E(Y1Y2Y2)

E(Y1Y1Y2)
. (29)

Replacing expectations by sample means, we obtain a consistent estimator of λ21
λ11

which is the

coefficient of the regression Y2 on Y1 with no intercept, by 2SLS, using Y1Y2 as an instrument

for Y1. This is the estimator of the measurement error model proposed by Geary (1942).

Interestingly, the quasi-JADE estimator that we shall develop in the next section also satisfies

equation (29) in the case (L, K) = (2, 1). The estimators introduced in this paper can thus be

interpreted as a generalization of Geary’s IV estimator.
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3 Estimation

We start by discussing the issue of estimating the number of factors.

3.1 Estimating the number of factors K

Estimating K when K ≤ L(L−1)
2 and all factors are kurtotic. Assuming that Q is full

column rank and that factor variables show kurtosis excess, then matrix ΩY has rank K (see

Lemma 1). For any i.i.d. sample, let Ω̂Y be the empirical counterpart of ΩY , obtained by

replacing expectations by sample means. We use the sequential testing procedure developed by

Robin and Smith (2000) to estimate the rank of ΩY .10

Monte Carlo simulations show that the rank test, applied to matrix ΩY alone, suffers from

substantial size distortions (see the simulations in the next section). Assuming K ≤ L, the

factor structure provides additional rank conditions that can be used to improve the test’s

properties. We propose the following refinement.

Consider matrices ΩY (ℓ, m) for all (ℓ, m) ∈ ∆L (i.e. ℓ < m). They satisfy the restrictions:

ΩY (ℓ, m) = ΛD4 diag (Λℓ ⊙ Λm) ΛT .

Let w = (w1,2, ..., wL−1,L) be a vector of L(L−1)
2 positive weights. Then,

ΩY,w ≡
∑

(ℓ,m)∈∆L

wℓ,mΩY (ℓ, m) = ΛD4 diag
(
QT w

)
ΛT . (30)

As no column of Q is identically zero, matrix ΩY,w has rank K for almost all w.

It seems natural to weight cumulant matrices more if they are more precise. We therefore

suggest to choose wℓ,m equal to the inverse of the simple average of the asymptotic variances

of the components of the empirical analog Ω̂Y (ℓ, m) of ΩY (ℓ, m). These variances can be

computed by standard bootstrap.

Estimating K when K ≤ L and all factors are skewed or kurtotic. Assuming that Λ

and Q are full column rank and that factor variables have non zero skewness, then matrix ΓY

has rank K (see Lemma 2). One can thus apply the rank test to any root-N estimator Γ̂Y .

10Robin and Smith’s rank test is described in Appendix D.
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More generally, one can use the following version of the rank test, which uses third and

fourth-order information of the data. Lemma 2 shows that, assuming that Λ and Q are full

column rank (so that K ≤ L) and that each factor distribution is either skewed or kurtotic,

matrix ΞY has rank K. One can thus test the rank of any root-N consistent estimator Ξ̂Y .

Alternatively, in the same spirit as in the previous paragraph, remark that, under the

assumption that all factors are skewed or kurtotic, all matrices

ΞY,w = ΓY +
L∑

j=1

wjΩY (j) = Λ
[
D3 + D4 diag

(
ΛT w

)]
QT (31)

have rank K, for almost all weights w = (w1, ..., wL)T ∈ R
L.11 Matrices ΞY,w can therefore

be used to estimate the number of factors K, if K ≤ L. We suggest to set wj equal to the

average of the variances of the components of Γ̂Y divided by the average of the variances of the

components of Ω̂Y (j).

3.2 Cardoso and Souloumiac’s JADE procedure

Assuming no noise, factor loadings satisfy the following system of matrix equations:

ΩY (ℓ, m) = ΛD4 (ℓ, m) ΛT , (ℓ, m) ∈ ∆L, (32)

ΣY = ΛΛT , (33)

for diagonal matrices D4 (ℓ, m) (see Section 2.4).

In an influential paper, Cardoso and Souloumiac (1993) propose the following procedure to

estimate Λ using this system of restrictions.

1. “Whiten” the data, i.e. compute Ỹ = P−Y , where P is a L × K matrix such that

PP T = ΣY (for example, a Cholesky decomposition) and A− is a generalized inverse of

P , e.g. P− =
[
P T P

]−1
P T .

2. Compute ΩeY (ℓ, m), for all (ℓ, m) ∈ ∆L. These matrices satisfy the restrictions:

V T ΩeY (ℓ, m) V = D4 (ℓ, m) ,

11This is because the set

{w ∈ R
L, κ3(Xk) + κ4(Xk)

 
LX

j=1

wjλjk

!
= 0}

has measure zero in R
L, for all k = 1...K.
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where V = P−Λ is an orthogonal matrix of dimensions K.

3. Compute V as an orthogonal matrix minimizing the sum of squares of the off-diagonal

elements of matrices V T ΩeY (ℓ, m)V . Cardoso and Souloumiac (1993) develop a simple and

efficient algorithm to perform this optimization (using Jacobi rotations), that is detailed

in Section B of the Appendix.12

To apply this algorithm on a sample {Y1, ..., YN} of i.i.d. observations, replace expectations

by sample means. The theoretical restrictions then only hold approximately but the joint diago-

nalization algorithm still delivers an orthogonal matrix V̂ such that all matrices V̂ T Ω̂eY (ℓ, m) V̂

are approximately diagonal. An estimate of Λ is then simply obtained as Λ̂ = P̂ V̂ . Cardoso and

Souloumiac (1993) call JADE this empirical procedure (Joint Approximate Diagonalization of

Eigenmatrices).

The JADE algorithm has several attractive properties. As it uses all fourth-order cumulants

of the data, it is much less sensitive to spectrum degeneracy than single diagonalization algo-

rithms (see Cardoso, 1999). Moreover, the cost to pay for these efficiency gains is reasonable,

as algorithms based on Jacobi rotations are fast to converge.

3.3 Asymptotic theory for JADE

As far as we know, there is no derivation of the asymptotic properties of JADE in the ICA

literature. This section aims at filling this gap.

To proceed, let Â1, ..., ÂJ be root-N consistent and asymptotically normal estimators of J

symmetric K × K matrices A1, ..., AJ . Construct Â =
[
Â1, ..., ÂJ

]
and A = [A1, ..., AJ ] by

concatenation. Let VA be the asymptotic variance of N
1
2 vec(Â). The JADE estimator is

V̂ = arg min
V ∈OK

J∑

j=1

off(V T ÂjV ),

where off(M) =
∑

i6=j m2
ij for a matrix M = [mij ], and OK is the set of orthogonal K × K

matrices.

12A MATLAB code of the JADE algorithm is available on Cardoso’s web page:
http://www.tsi.enst.fr/∼cardoso/Algo/Jade/jadeR.m.
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Assume that there exists V ∈ OK such that, for all j = 1, ..., J , V T AjV = Dj , where Dj is

the diagonal matrix with diagonal elements dj1, ..., djK . Define the K × K matrices:

R(Dj) =

[
(djk − djm)

∑J
j′=1(dj′k − dj′m)2

; (k, m) ∈ {1, ..., K}2

]
.

Lastly, let W be the following K2 × JK2 matrix:

W =
[
diag

(
vec (R(D1))

)
, ...,diag

(
vec (R(DJ))

)]
.

We show the following result in Appendix C.

Theorem 6 Assume that
∑J

j=1(djk − djm)2 6= 0 for all k 6= m. Then

N
1
2

(
vec(V̂ ) − vec(V )

)
→
d
N (0, VV ) ,

where:

VV = (IK ⊗ V )W (IJ ⊗ V T ⊗ V T )VA(IJ ⊗ V ⊗ V )W T (IK ⊗ V T ). (34)

Let us consider the particular case of J = 1. In this case, (34) yields the well-known

expression for the variance-covariance matrix of the eigenvectors of a symmetric matrix (e.g.

Anderson, 1963). The diagonal coefficients of matrix W are equal to 1/(d1k − d1m), for k 6= m.

The variance of eigenvectors thus increases when two eigenvalues of A1 get close to each other.

In the general case of more than one matrix (J > 1), precise estimation requires
∑

j(djk −

djm)2 to be away from zero, for all indices (k, m). Cardoso (1999) already noted that joint

diagonalization algorithms seemed less sensitive to the presence of multiple roots than usual

diagonalization techniques.13 Theorem 6 allows to better understand the conditions granting a

good precision.

Basing identification on fourth-order moments, indices are j = (ℓ, m), and matrices Aj and

Dj are of the form: ΩY (ℓ, m) and D4 diag (Λℓ ⊙ Λm), respectively. If there exist k, k′ such that

djk = djk′ for all j, it must be that

λℓkλmkκ4 (Xk) = λℓk′λmk′κ4 (Xk′) ,

13See also the asymptotic distribution of estimators of Common Principal Components derived by Flury (1984,
1986).
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for all ℓ, m. This cannot happen if at most one factor has zero kurtosis excess and the columns

of Λ are not proportional to each other.

This result is not surprising, as the variance of eigenvector estimators blows up when the

model is not identified. Non identification arises in PCA when the variance of the vector of

measurements has multiple eigenvalues (there are then obviously many possible choices for a

basis of the corresponding eigenspace). In ICA this happens when two columns of the matrix

of factor loadings are proportional or when factor distributions lack skewness and/or kurtosis

excess. We shall produce Monte-Carlo simulations to illustrate this point.

Practical remark. In practice, we do not recommend to use formula (34) to compute stan-

dard errors. Instead, we suggest to compute standard errors or coverage intervals by standard

bootstrap (with appropriate recentering). The reason is that the expression in (34) involves

variances of third and/or fourth-order moments of the data, which are difficult to estimate

precisely. Our simulations show extremely imprecise estimates of matrix VA, even with very

large samples (more than 10, 000 observations). In contrast, the bootstrap provides good ap-

proximations of the true variance-covariance matrix of the JADE estimator.

3.4 The quasi-JADE algorithm

When the error components are not negligible, Lemmas 1 and 2 deliver moment restrictions

which identify the first four moments of error variables independently of factor loadings. We

call quasi-JADE the following estimation procedure.

1. Estimate matrices C and/or C of Lemmas 1 and 2. These matrices are easily obtained

by Singular Value Decomposition of matrices ΩY and ΞY .

2. Estimate error variances Var (Uℓ), third-order cumulants κ3 (Uℓ) and/or fourth-order cu-

mulants κ4 (Uℓ) using the restrictions in Lemmas 1 and 2. One should impose the non

negativity of error variances, as well as the positive semi-definiteness of matrix ΣY −ΣU .

3. Proceed to the joint diagonalization (i.e. steps 2 and 3 of the JADE algorithm) of matrices

P−
[
ΓY (ℓ) − κ3 (Uℓ) SpL,ℓ

]
P−T and/or P−

[
ΩY (ℓ, m) − δℓmκ4 (Uℓ) SpL,ℓ

]
P−T , where P
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is a full column rank L × K matrix such that ΣY − ΣU = PP T . We suggest to compute

P as the first K columns of the Cholesky decomposition of matrix ΣY − ΣU . Let V be

the orthogonal matrix of joint eigenvectors. Then Λ = PV .

4. Estimate factor cumulants κ3 (Xk) and κ4 (Xk) by OLS from restrictions:

[
V T P−

[
ΓY (ℓ) − κ3 (Uℓ) SpL,ℓ

]
P−T V

]
k,k

= λℓkκ3 (Xk) ,

[
V T P−

[
ΩY (ℓ, m) − δℓmκ4 (Uℓ) SpL,ℓ

]
P−T V

]
k,k

= λℓkλmkκ4 (Xk) ,

for ℓ, m = 1, ..., L, ℓ ≤ m, and where [A]i,j denotes the (i, j) entry of matrix A.

Quasi-JADE is only marginally more complicated to implement than JADE,14 and is almost

as fast to converge.

Efficiency improvements. As the original JADE algorithm, quasi-JADE is obviously not

efficient. First, it operates a sequence of minimum distance estimations instead of estimating all

parameters jointly. Second, it does not use moment restrictions optimally (the optimal metric).

Third, it does not use all the structural moment restrictions. For example, the diagonal matrices

D4 (ℓ, m) in (10) are related to Λ but we do not use this restriction.

A natural alternative to our approach would be to use all cumulant restrictions (6), (8)

and (10) in estimation. However, these restrictions are highly nonlinear polynomial equations,

which are difficult to solve using standard gradient algorithms or any other general-purpose

solving technique. We shall make this point more precise in the simulation section. Second,

there is considerable evidence that the optimal metric does not outperform the identity metric

in finite samples (see Altonji and Segal, 1994, 1996).

Nevertheless, there is scope for efficiency improvements. For instance, one can use Gener-

alised Least Squares instead of OLS to estimate error cumulants in Step 2 of the algorithm.

Likewise, one can weight the matrices to diagonalize in Step 3. Weights can be some measure of

estimation precision, as outlined in 3.1. In simulations, we found that this method yielded little

14GAUSS codes for quasi-JADE can be downloaded from the first author’s web-page:
http://www.cemfi.es/∼bonhomme/
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N 500 1000 5000 10000

λ11 2.03 (.28) 2.03 (.17) 2.01 (.09) 2.01 (.06)
λ21 .95 (.23) .99 (.14) 1.00 (.07) 1.00 (.05)
λ31 .95 (.23) .99 (.15) .99 (.07) 1.00 (.05)
λ12 .98 (.23) .98 (.15) 1.00 (.06) 1.00 (.05)
λ22 2.05 (.27) 2.03 (.19) 2.01 (.08) 2.01 (.07)
λ32 .97 (.23) .98 (.17) 1.00 (.06) 1.00 (.05)
λ13 .97 (.23) .98 (.15) .99 (.06) 1.00 (.05)
λ23 .97 (.23) .98 (.16) 1.00 (.06) 1.00 (.05)
λ33 2.06 (.27) 2.02 (.19) 2.01 (.09) 2.00 (.05)

Var(U1) .77 (.59) .87 (.43) .96 (.20) .98 (.16)
Var(U2) .76 (.57) .87 (.43) .98 (.20) .98 (.17)
Var(U3) .74 (.56) .86 (.42) .96 (.20) .98 (.16)

Table 1: Quasi-JADE based on the 2nd, 3rd and 4th moment restrictions (log-normal factors,
standard normal errors, Λ = Λ1)

efficiency gains. Note that this weighting procedure is ad hoc. Issues regarding the optimal

weighting of cumulant matrices, based on asymptotic results such as (34), are left for future

research.

4 Monte-Carlo simulations

In this section, we study the finite-sample properties of our estimators with numerical simula-

tions. We first consider the estimation of Λ given the true value of K, the number of factors.

Then, we present simulations estimating K.

4.1 Estimation of factor loadings

Table 1 displays means and standard deviations of the Monte Carlo distributions of factor

loadings estimates obtained from 1000 simulations of samples of various sizes generated by

standardized log-normal factors, standard normal errors and Λ equal to

Λ1 ≡




2 1 1
1 2 1
1 1 2


 .

Monte Carlo standard deviations of estimates are given between brackets. Estimation is based

on all second, third and fourth-order moments of the data and uses the restrictions of Lemma

1.

Table 1 shows that finite sample biases are small and rapidly decrease as N increases. By
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N 500 1000 5000 10000 ∞

κ3 4.51 (1.98) 5.01 (2.36) 5.73 (2.65) 5.89 (2.02) 6.18
κ4 36.1 (38.4) 48.6 (62.4) 77.0 (132.3) 83.3 (104.7) 110.9

Table 2: Empirical skewness and excess kurtosis of a log-normal random variable

comparison, small sample biases are much larger and convergence is much slower for empirical

cumulants. Table 2 shows the means and standard deviations of the empirical skewness and

kurtosis of a log-normal variate, for various sample sizes.15 The striking contrast between Tables

1 and 2 suggests that our algorithm does a good job at extracting the relevant information

from high-order moments of the data, while being relatively immune to the imprecision of their

estimation in finite samples.

We then study the robustness of the JADE and quasi-JADE algorithms to noise (see Table

3). We run the simulations with normal errors, log-normal factors, a sample size of N = 1000

and Λ = Λ1. The standard deviation of errors can take four values: 0.1, 0.5, 1 and 2. The

performance of quasi-JADE deteriorates as the signal-to-noise ratio decreases. However, biases

remain limited even for rather large error variances. By comparison, JADE (ordinary noise-

free ICA) produces large finite sample biases (although N = 1000 is not such a small sample

size). Notice that these biases are severe, even when the magnitude of the error variances is not

especially large (for example for a variance of one; which here implies that Var(Uℓ)/ Var(Yℓ) =

20%).

Next, we compare quasi-JADE to Minimum Distance based on the complete set of moment

restrictions (GMM). The estimation is based on second and fourth-order restrictions:

{
ΣY = ΛΛT + ΣU ,

ΩY = QD4Q
T ,

where ΩY is the 6× 3 matrix of fourth-order cumulants of Y given by (14) and where Q and Q

depend on Λ.

In all the simulations that we performed, GMM proved to be highly unstable. Minimization

with respect to the whole set of parameters (Λ, ΣU , D4) converged (numerically) in none of the

cases that we considered. To obtain a more stable algorithm, admittedly at the cost of lower

15Means and variances were computed from 1000 independent drawings, for each sample size N .
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JADE

Var(Uℓ) .01 .25 1 4

λ̂11 2.00 (.07) 2.11 (.08) 2.36 (.12) 2.81 (.46)
λ21 1.00 (.11) 1.00 (.12) .95 (.24) .72 (.86)
λ31 1.00 (.11) 1.03 (.14) 1.08 (.22) 1.05 (.77)
λ12 1.00 (.11) 1.00 (.12) .97 (.24) .78 (.86)
λ22 2.00 (.07) 2.11 (.07) 2.37 (.12) 2.86 (.32)
λ32 1.00 (.12) 1.03 (.13) 1.08 (.22) 1.08 (.76)
λ13 1.00 (.11) .87 (.13) .61 (.20) .16 (.69)
λ23 1.00 (.11) .87 (.12) .62 (.20) .15 (.67)
λ33 2.00 (.08) 2.02 (.09) 2.13 (.16) 2.52 (.43)

quasi-JADE

Var(Uℓ) .01 .25 1 4

λ11 1.98 (.12) 2.01(.13) 2.03 (.17) 2.02 (.44)
λ21 1.00 (.15) .99 (.12) .99 (.14) .95 (.31)
λ31 1.00 (.16) .99 (.13) .99 (.15) .95 (.32)
λ12 1.00 (.16) .99 (.13) .98 (.15) .97 (.33)
λ22 1.97 (.11) 2.02 (.11) 2.03 (.19) 2.02 (.41)
λ32 .99 (.16) .99 (.13) .98 (.17) .97 (.32)
λ13 1.00 (.16) 1.00 (.14) .98 (.15) .96 (.32)
λ23 1.00 (.16) 1.00 (.13) .98 (.16) .96 (.32)
λ33 1.98 (.11) 2.02 (.11) 2.02 (.19) 2.01 (.42)

Var(U1) .04 (.11) .18 (.22) .87 (.43) 3.77 (.98)
Var(U2) .04 (.11) .17 (.23) .87 (.43) 3.77 (.94)
Var(U3) .04 (.11) .17 (.22) .86 (.42) 3.77 (.97)

Table 3: Robustness to noise of JADE and quasi-JADE (log-normal factors, standard normal
errors, N = 1000, Λ = Λ1)
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Var(Uℓ) .01 .25 1 4

λ11 2.03 (.12) 2.04 (.14) 2.04 (.17) 2.02 (.43)
λ21 .98 (.10) .98 (.10) .98 (.12) .97 (.28)
λ31 .98 (.10) .98 (.11) .99 (.13) .98 (.28)
λ12 .99 (.10) .99 (.11) .99 (.13) .96 (.26)
λ22 2.04 (.13) 2.04 (.12) 2.03 (.17) 2.04 (.44)
λ32 .99 (.10) .99 (.11) .99 (.13) .96 (.27)
λ13 .99 (.11) .98 (.11) .98 (.13) .96 (.28)
λ23 .98 (.10) .99 (.10) .99 (.13) .95 (.27)
λ33 2.04 (.13) 2.04 (.13) 2.03 (.18) 2.00 (.42)

Var(U1) -.09 (.32) .11 (.37) .86 (.44) 3.75 (1.28)
Var(U2) -.11 (.33) .11 (.34) .87 (.42) 3.63 (2.27)
Var(U3) -.12 (.34) .12 (.35) .88 (.45) 3.78 (1.09)

% convergence 99.9% 100.0% 99.8% 84.3%

Table 4: Minimum Distance estimator based on 2nd and 4th order moments (K = 3, log-normal
factors, normal errors, V (U) = .25)

efficiency, we treated the coefficients of D4 as nuisance parameters. Precisely, we minimized

the GMM norm, evaluated at (Λ, ΣU , D4(Λ)), with respect to (Λ, ΣU ) alone and where D4(Λ)

is such that

vec [D4(Λ)] =
(
Q ⊗ Q

)−
vec(ΩY ).

Note that using the optimal metric to estimate D4(Λ) from restriction ΩY = QD4Q
T

given Λ

yielded even greater instability. Incorporating third-order moment restrictions into the algo-

rithm had the same effect.

Table 4 presents simulation results with log-normal factors, normal errors and Λ = Λ1.

Conditional on numerical convergence,16 GMM yields only slightly more precise estimates of

factor loadings than quasi-JADE. However, as error variances get larger, the GMM algorithm

fails to reach convergence more frequently (less than 1% of the time when Var(Uℓ) ≤ 1 but 15%

of the time when Var(Uℓ) = 4). Note also that, for GMM, computing time increases rapidly

with the number of factors.

Next, we investigate the sensitivity of our algorithm to the amount of factor kurtosis. The

sample size is N = 1000. Errors are standard normal variables. To vary the kurtosis, we

generate factors as mixtures of two independent normals.17 Table 5 summarizes Monte Carlo

16Starting values were chosen equal to the true parameters. We declared numerical convergence achieved when
the gradient of the GMM criterion was inferior to 10−3 in absolute value after 5000 Newton iterations.

17Let W1 ∼ N(0, 1/2), and let ρ ∈]0, 1[. Define W2 ∼ N(0, (2 − ρ)/(2 − 2ρ)), independent of W1. Then the
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ρ (Uniform) 2/5 4/7 20/23 40/43 400/403 (Lognormal)
κ4 -6/5 1/2 1 5 10 100 ≈110

λ11 1.94 (.48) 1.66 (.78) 1.76 (.74) 2.03 (.33) 2.01 (.26) 2.01 (.19) 2.03 (20)
λ21 .91 (.48) .97 (.71) .94 (.63) .97 (.30) .98 (.21) .99 (.16) .98 (.15)
λ31 .92 (.48) 1.00 (.69) .96 (.65) .97 (.29) .97 (.21) .98 (.17) .98 (.16)
λ12 .97 (.49) 1.00 (.71) .98 (.65) .96 (.30) .98 (.21) .99 (.19) .98 (.16)
λ22 1.98 (.44) 1.71 (.69) 1.83 (.64) 2.02 (.35) 2.02 (.26) 2.01 (.18) 2.03 (.18)
λ32 .98 (.49) 1.00 (.72) .95 (.66) .97 (.30) .98 (.20) .99 (.18) .98 (.16)
λ13 .96 (.49) 1.12 (.74) 1.05 (.70) .97 (.29) .99 (.20) .99 (.17) .98 (.15)
λ23 .94 (.49) 1.12 (.75) 1.05 (.69) .97 (.29) .98 (.19) .99 (.18) .98 (.15)
λ33 1.97 (.43) 1.83 (.57) 1.89 (.56) 2.03 (.32) 2.03 (.25) 2.02 (.18) 2.03 (.20)

Var(U1) .71 (.65) .92 (.84) .76 (.79) .77 (.63) .88 (.53) .92 (.40) .86 (.44)
Var(U2) .75 (.65) .89 (.83) .69 (.78) .75 (.64) .83 (.55) .93 (.40) .87 (.43)
Var(U3) .74 (.66) .93 (.82) .76 (.80) .77 (.64) .84 (.53) .91 (.40) .86 (.44)

Table 5: Quasi-Jade with factors of increasing kurtosis (factors are normal mixtures, standard
normal errors, N = 1000, Λ = Λ1)

distributions for kurtosis values in 1
2 , 2, 5, 10 and 100. In the first column of Table 5, we

also report results for the case of uniformly distributed factors. The uniform distribution is

platykurtic, with κ4 = −6/5. The last column shows results for log-normal factors, with

kurtosis excess equal to e4 + 2e3 + 3e2 − 6 ≈ 110. Overall, we find that the impact of kurtosis

on the performance of the algorithm is far from negligible. The closer the kurtosis excess is to

zero, the greater the estimator’s bias and the lower its precision.

We now set K < L and compare quasi-JADE based on second, third and fourth-order

moments (using the restrictions of Lemma 1) to quasi-JADE based on second and third-order

moments only (using the restrictions of Lemma 2), which yields consistent estimates when all

factors are skewed. Table 6 reports simulations with log-normal factors, standard normal errors

with variance 1, and matrix Λ is equal to

Λ2 ≡




2 2
2 1
1 2


 . (35)

Table 6 shows, quite surprisingly, that fourth-order moments yield rather small additional

efficiency gains. This illustrative table suggests that an algorithm based on third-order moments

only, and relying on orthogonality up to the third order, is likely to do well in practice, provided

that there is enough skewness in factors. On the other hand, adding moment restrictions does

random variable X defined as W1 with probability ρ and W2 with probability 1−ρ has variance one and kurtosis
excess equal to κ4(ρ) = 3ρ/(4(1 − ρ)).
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N 500 500 1000 1000 5000 5000
Cumulants 2,3,4 2,3 2,3,4 2,3 2,3,4 2,3

λ11 1.95 (.28) 1.93 (.32) 1.98 (.19) 1.97 (.24) 2.00 (.08) 2.00 (.08)
λ21 1.96 (.30) 1.91 (.37) 1.99 (.16) 1.96 (.23) 1.00 (.09) 2.00 (.05)
λ31 .97 (.23) .98 (.25) .98 (.17) .98 (.20) 1.00 (.08) 1.00 (.08)
λ12 2.02 (.24) 2.03 (.27) 2.01 (.17) 2.01 (.20) 1.00 (.08) 2.00 (.08)
λ22 1.02 (.28) 1.05 (.32) 1.00 (.18) 1.02 (.22) 2.00 (.09) 1.00 (.08)
λ32 2.01 (.12) 1.99 (.14) 2.01 (.10) 2.00 (.11) 1.00 (.05) 2.00 (.05)

Var(U1) .98 (.21) 1.01 (.16) .98 (.15) 1.00 (.13) .97 (.09) 1.00 (.06)
Var(U2) .94 (.21) .99 (.20) .96 (.15) 1.00 (.15) .97 (.08) 1.00 (.07)
Var(U3) .94 (.22) 1.00 (.20) .96 (.15) 1.00 (.15) .98 (.09) 1.00 (.07)

Table 6: Comparing the two quasi-JADE algorithms based on Lemma 1 and 2 (log-normal
factors, standard normal errors, Λ = Λ2)

not increase the bias in this case.

Lastly, we investigate the finite-sample performance of our algorithm when the number of

measurements and the number of factors increase. Table 7 illustrates the cases of L = K = 5

and L = K = 10, respectively. In both cases, Λ has entries equal to 2 everywhere on the

diagonal, and equal to one everywhere else. We only report the estimates of the first column

of Λ and the variance of the first error, the other estimates being qualitatively similar. These

simulations show that the performances of our algorithm are only moderately damped by the

number of factors/measurements. We view this as quite remarkable a result as a hundred

of factor loadings is certainly a significant number of parameters to estimate given that no

explanatory variable is observed. In comparison, the GMM algorithm discussed above turned

out to be impractical for L as low as five, computing time becoming prohibitive.

4.2 Estimation of the number of factors

We here report a Monte-Carlo study of the rank tests detailed in 3.1. We first compute the

empirical size of the test based on matrix ΩY for various values of factor kurtosis. The simulation

design is the same as for the results reported in Table 5. The true value of Λ is Λ2 given by

(35), and we test K = 2 against K = 3.

Table 8 shows substantial size distortion. This especially happens when kurtosis excess is

low (in absolute value) – that is, when fourth-order cumulants contain very little information on

the factor structure – or large – that is, when fourth-order moments are imprecisely estimated.
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L = K = 5 L = K = 10
N 500 1000 5000 500 1000 5000

λ11 2.06 (.41) 2.03 (.28) 2.01 (.13) 1.85 (.72) 1.97 (.56) 2.00 (.27)
λ21 .95 (.35) .98 (.25) .99 (.12) .89 (.52) .90 (.43) .98 (.22)
λ31 .95 (.34) .98 (.24) 1.00 (.12) .88 (.53) .90 (.45) .98 (.23)
λ41 .95 (.35) .98 (.24) .99 (.11) .88 (.53) .92 (.43) .98 (.22)
λ51 .95 (.34) .98 (.24) .99 (.12) .88 (.53) .90 (.43) .98 (.22)
λ61 .88 (.54) .91 (.43) .98 (.22)
λ71 .89 (.53) .90 (.44) .98 (.22)
λ81 .88 (.52) .90 (.44) .98 (.23)
λ91 .87 (.53) .91 (.44) .98 (.23)
λ10,1 .88 (.52) .89 (.44) .98 (.22)

Var(U1) .58 (.56) .81 (.44) .95 (.20) .40 (.55) .49 (.53) .88 (.28)

Table 7: Increasing the number of factors and measurements (log-normal factors, standard
normal errors)

ρ - 2/5 4/7 20/23 40/43 400/403
κ4(ρ) -6/5 1/2 1 5 10 100

α =.10 .90 .73 .82 .87 .85 .62
α =.20 .79 .57 .67 .74 .69 .43
α =.30 .67 .44 .54 .61 .57 .29
α =.40 .58 .33 .42 .50 .45 .19
α =.50 .47 .24 .32 .40 .35 .11
α =.60 .37 .16 .22 .32 .26 .05
α =.70 .27 .10 .13 .24 .19 .02
α =.80 .20 .05 .08 .15 .11 .01
α =.90 .10 .02 .04 .06 .04 .00

Table 8: Size of the rank test based on ΩY for increasing kurtosis (factors of normal mixtures,
errors are Gaussian, N = 1000, Λ = Λ2)
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Matrix ΩY ΩY,w ΓY

α =.10 .56 .87 .90
α =.20 .34 .71 .79
α =.30 .20 .56 .69
α =.40 .12 .44 .58
α =.50 .08 .32 .48
α =.60 .05 .21 .38
α =.70 .02 .13 .29
α =.80 .01 .06 .16
α =.90 .00 .01 .07

Table 9: Size of the rank test applied to various matrices: ΩY , ΩY,w and ΓY (log-normal factors,
standard normal errors, N = 1000, Λ = Λ2)

However, for reasonable values of kurtosis excess,18 the risk of underestimating the number of

factors exists but remains limited.

In Section 3.1, we proposed to improve the size properties of the rank test by considering a

weighted average of cumulant matrices ΩY (ℓ, m) – i.e. ΩY,w in equation (30) – instead of ΩY .

Table 9 provides a comparison of rank tests based on different cumulant matrices. We focus

on the case of log-normal factors, normal errors and a sample size of 1000. The first column

reports the size of the rank test based on ΩY , the second column corresponds to matrix ΩY,w,

and the third and last column refers to matrix ΓY (third-order cumulants). The weighting

scheme definitely improves the size of the test of K = 2 against K = 3. However, the rank test

still underrejects noticeably, in particular when the theoretical probability of rejection is low.

Finally, third-order moments are more precisely estimated and, consequently, the empirical size

of the rank test based on ΓY is close to the nominal size (third column).

This confirms that applying the characteristic root test to matrices of high-order cumulants

should be done with some caution when they are too imprecisely estimated. However, the

results in Tables 8 and 9 show that, for reasonable magnitudes of skewness and kurtosis excess

(see footnote 18), the size properties of the rank test based on third and fourth-order cumulant

matrices are satisfactory.

18Stock returns are well-known for presenting high kurtosis. The S&P 500 daily returns for 1986 to 1996 have
an extremely high kurtosis of about 111. This can be ascribed to the October 1987 stock market crash (Duffie
and Pan, 1997). However, between January 1969-December 2004, Lin and Hung (2005), report, for daily 1-, 30-,
100- and 300-day return data on the S&P 500 index, kurtosis values of 36.02, 5.80, 3.77 and 2.99. See also our
analysis of Fama and French’s (1993) data on US stock returns (section 5.2).
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ρ - 2/5 4/7 20/23 40/43 400/403
κ4(ρ) -6/5 1/2 1 5 10 100

α =.10 .99 .81 .81 1.00 1.00 .89
α =.20 .99 .63 .66 1.00 1.00 .80
α =.30 .98 .68 .51 .99 1.00 .72
α =.40 .97 .36 .39 .99 1.00 .64
α =.50 .96 .26 .29 .98 .99 .56
α =.60 .94 .18 .22 .96 .98 .47
α =.70 .93 .11 .16 .92 .96 .35
α =.80 .89 .06 .10 .86 .90 .22
α =.90 .83 .02 .04 .72 .77 .12

Table 10: Power of the improved rank test, ΩY,w, Factors with increasing Kurtosis (standard
normal errors, N = 1000, Λ = Λ2)

We end this section by a study of the power of the rank test based on ΩY,w. Table 10 display

empirical power computations for various levels of kurtosis. The true value of Λ is Λ1 and we

test K = 2 against K = 3. For low significance values (α less than 10%) the power of the test is

good even if factors are excessively leptokurtic. For intermediate values of the kurtosis excess,

the power is good whatever the α-level.

5 Applications

We consider two applications: a factor model for individual data on wages and education

(returns to schooling) and a factor model for stock returns.

5.1 Returns to schooling

In this section, we apply our methodology to the estimation of the returns to schooling. We

consider the relationship between wage and education. Chamberlain and Grilliches (1975, 1977)

provide insightful examples of the use of factor models in this context. We first construct a

second measure of educational attainment, and we estimate a one-factor model to correct for

measurement error in the first education measure. We then apply the methods of this paper

and estimate a second factor.

The data. We use data from the French Labor Force Survey of 1995. This is a large and

representative cross-section of the French labor force which provides detailed information on
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Wage Y Years of Schooling D Diploma D∗

Mean 0 17.7 17.6
Standard error .29 2.64 2.17

Skewness .29 .61 .61
Kurtosis .079 -.015 .18

Covariances

Y 0.086 0.304 0.284
D 0.304 6.95 4.33
D∗ 0.284 4.33 4.71

Table 11: Moments of the variables

individual education. We exclude women, out-of-employment individuals, and workers with

missing data for either (monthly) wages, hours worked or education. We trim the sample of

the first and last percentiles of the wage, hour and education data. We finally obtain a sample

of 21,794 workers.

We divide monthly wages by hours worked to obtain wage rates. We define Y as the residual

of the regression of wage rates on a set of regressors, including a quartic in age. We construct two

education variables. The first one is the “age at the end of school”, which broadly corresponds

to the number of years of schooling (minus 6) in France. This variable, denoted as D, is the

usual regressor in most studies of the returns to schooling. The second one (say “diploma”)

codes the highest diploma obtained by the individual into 16 categories (no diploma, elementary

level, middle school, high school, college, plus various declinations of these different levels into

vocational and non vocational). To make this variable continuous and comparable to D, we

construct a new variable, D∗, equal to the median value of D by diploma.

Table 11 shows the moments of the three variables of interest. The correlation between D

and D∗ is only 0.76, indicating that both measures of education are correlated, yet not perfectly.

The OLS coefficients of the separate regressions of Y on D and on D∗ are 0.044 and 0.060,

respectively. The second measure yields a slightly higher return.

The two education variables are only slightly negatively skewed and exhibit little kurtosis

excess. Yet, the joint distribution of (Y, D, D∗) displays a statistically significant amount of

skewness and kurtosis. To check that, we estimate the three characteristic roots of matrices ΓY
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ΓY ΩY ΩY,w

Rank 0 0 0

Statistic 29994 3646 20.2
Critical value .05 57.40 386.1 2.20

p-value .00 .00 .00

Rank 1 1 1

Statistic 114.0 491.0 2.34
Critical value .05 7.74 45.4 .12

p-value .00 .00 .00

Rank 2 2 2

Statistic 1.10 36.0 .185
Critical value .05 1.32 7.62 .0091

p-value .072 .00 .00

Table 12: Rank tests

and ΩY , as well as their bootstrap standard errors.19 These estimates are: 1.17 (1.14,1.20), .07

(.06,.08) and .007 (.001,.014) for the three CRs of ΓY , and .38 (.28,.49), .15 (.12,.18) and .04

(.03,.05) for those of ΩY . These results are confirmed by the CR test applied to matrices ΓY

and ΩY and reported in Table 12. The null hypothesis that ΓY has rank 2 is not rejected by

the data at the 5% level. The test rejects the hypothesis that the rank of ΩY is less than 3 at

the 1% level. There is thus evidence that the joint distribution of (Y, D, D∗) is not normal.

Estimation results. We started by estimating the matrix of factor loadings under the as-

sumption that K = 1. Factor loadings can then be estimated from covariance calculations only.

We report the PCA estimates in the first column of Table 13 (PCA). The implied return to

education, as measured by λ11
λ21

is .066, higher than the return estimated by OLS but comparable

to the OLS estimate of the regression of Y on D∗. We find that X1 accounts for 23% of the

variance of wages, 67% of the variance of D but 86% of the variance of D∗. These results are

consistent with D∗ being a “better” measure of educational attainment than D.20

We then estimated the one-factor model using high-order moments of the data. Columns 2

and 3 of Table 13 present the estimates of the vector of factor loadings using the quasi-JADE

19As in the rest of this section, 5%-95% confidence intervals are computed by 500 bootstrap replications with
appropriate recentering. Confidence intervals are given between brackets.

20Note that PCA yields the same estimate of λ11
λ21

as instrumenting D by D∗ in the 2SLS regression of Y on
D.

30



K = 1 K = 1 K = 1 K = 2 K = 2
PCA quasi-JADE(4) quasi-JADE(3,4) quasi-JADE(4) quasi-JADE(3,4)

λ̂11 .141 (.138,.145) .154 (.136,166) .142 (.137,.148) .172 (.146,.200) .166 (.145,.182)

λ̂21 2.15 (2.12,2.19) 2.09 (2.02,2.18) 2.13 (2.09,2.20) 2.05 (1.96,2.16) 2.09 (2.02,2.19)

λ̂31 2.01 (1.98,2.03) 2.05 (1.95,2.14) 2.03 (1.96,2.11) 2.02 (1.93,2.12) 2.02 (1.93,2.10)bλ11bλ21
6.6% 7.4% 6.7% 8.5% 7.9%

λ̂12 - - - -.138 (-.212,-.067) -.136 (-.209,-.040)

λ̂22 - - - .360 (.009,.561) .316 (.091,.459)

λ̂32 - - - .475 (.310,.660) .381 (.131,.484)

V̂ (U1) .066 (.065,.067) .052 (.041,.070) .066 (.060,.069) .038 (.000,.060) .040 (.010,.063)

V̂ (U2) 2.31 (2.22,2.40) 2.56 (2.06,2.90) 2.43 (2.04,2.65) 2.61 (1.85,3.04) 2.50 (1.92,2.84)

V̂ (U3) .672 (.604,.745) .426 (.000,.850) .586 (.177,.867) .385 (.000,.766) .500 (.089,.889)

Table 13: Factor loadings and error variances (quasi-JADE(4): uses second and fourth-order
moments; quasi-JADE(3,4): uses second, third and fourth-order moments)

algorithm. In column 2, we report the results for the version of the algorithm using second

and fourth-order cumulants and the restrictions of Lemma 1. In column 3, second, third and

fourth-order cumulants are used and the restrictions of Lemmas 1 and 2 are combined. The

results of all three columns are remarkably similar.

Next, we turned to the estimation of the two-factor model, reported in the last two columns

of Table 13. The estimates of factor loadings associated to the first factor are very close to the

values estimated using the one-factor model. The second factor is positively correlated with

the number of years of schooling D and is negatively correlated with the wage Y .

We then performed a test of overidentifying restrictions, based on the JADE criterion (sum

of squares of the off-diagonal elements of the jointly diagonalized matrices). We bootstrapped

the test statistic 500 times to compute p-values. We found p-values of 26% and 27% for the two

versions of quasi-JADE, with K = 2. Thus, according to this criterion, at all conventional levels,

the data do not reject the validity of the overidentifying restrictions imposed in quasi-JADE.

Notice that, using third-order moments only, we obtained very imprecise estimates (not

reported). This is because the second factor is found to have a nearly symmetric distribution.

We report in Table 14 the estimates of factor cumulants. The results show that the first factor is

skewed to the left, with rather small kurtosis. Moreover, the second factor shows little skewness

but displays much kurtosis excess. This implies that the second factor is essentially identified
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K = 1 K = 1 K = 2 K = 2
quasi-JADE(4) quasi-JADE(3,4) quasi-JADE(4) quasi-JADE(3,4)

κ3(X1) - 1.34 (1.29,1.39) - 1.17 (1.08,1.30)
κ3(X2) - - - .087 (-.709,6.10)
κ4(X1) .612 (.391,.854) .741 (.354,1.02) .627 (.439,.768) .665 (.445,.841)
κ4(X2) - - 13.6 (3.58,196) 15.5 (4.28,580)

Table 14: Factor cumulants (quasi-JADE(4): uses second and fourth-order moments; quasi-
JADE(3,4): uses second, third and fourth-order moments)

from fourth-order moments of the data.

Finally, we tried to investigate the existence of a third factor without success. The estimates

were far too imprecise. In any case, if a third factor exists, it has very little explanatory power

on individual earnings.

Interpretation. We thus obtain the following factor structure:





Y = .17X1 − .14X2 + U1

D = 2X1 + .4X2 + U2

D∗ = 2X1 + .4X2 + U3

(36)

This structure is consistent with the interpretation of E = 2X1 + .4X2 as “true” education,

being measured with error by D and D∗. The number of years of education, D, faces large

measurement errors (Var (U2) = 2.6 and Var (E) = 5.6) in comparison to the other education

measure based on the highest diploma obtained (Var (U3) = .4).

Education results from two independent factors X1 and X2, the interesting factor being

X2, which negatively correlates wages and education. It could be that some specific taste for

education favors career choices with low labor market value (wage) but with high amenity

content (compare Ph.D. versus MBA degrees, and academic versus business careers). Alter-

natively, Card (2001) shows that a negative correlation between wages and education can be

obtained if individual-specific marginal costs of education increase faster, across individuals,

than individual-specific returns to education. The negative correlation component between ed-

ucation and wages could thus reflect the fact that individuals with high innate “ability” avoid

paying their relatively higher cost of education.

Interestingly, model (36) is consistent with a classical Mincer equation, whereby the wage
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depends on education via the linear relationship:

Y = αE + V. (37)

Effectively, given α, model (36) implies (37) if we specify V as

V = (.17 − 2α)X1 − (.14 + .4α)X2 + U1. (38)

In model (37)-(38), E is orthogonal to V if and only if α = 6.8%. This is the value that

was estimated by PCA (i.e. regress Y on D, instrumenting D by D∗) in the first column of

Table 13. For any other value of α, E and V are correlated. In this case, one should not only

worry about measurement error but also about endogeneity biases generated by unobserved

heterogeneity, here captured by factors X1, X2. If α is larger than 6.8%, then the correlation

between education (E) and error (V ) is negative. Whenever α is less than the PCA estimate,

the correlation is positive.

Next, suppose then that the true model is (37)-(38) and that E and V are correlated.

Unfortunately, labor force survey data do not provide a natural instrument for education, that

is a variable Z correlated with E but not with V .21 Because it is possible to produce many linear

combinations of X1 and X2 which satisfy these conditions, it follows that α is not identified.

However, one case is of particular interest. This is when we constrain Z to be independent

of—and not only orthogonal to—the error V . Then, α can take only two values: α = 8.5% or

α = −35%. The first case corresponds to the instrument Z = X1, the second case to Z = X2.

Obviously, α = 8.5% is the only plausible case. By comparison, the OLS estimate of the return

to education, using the number of years of education as education proxy, is 4.4%. The 4.1%

difference between both estimates can be tentatively decomposed as follows: 2.4% is due to

measurement error and 1.7% reflects unobserved heterogeneity.

5.2 Stock returns

In an influential paper, Fama and French (1993) identify three factors explaining a large pro-

portion of the variance of time-series of U.S. excess stock returns, Yℓ (t) = Rℓ(t) − RF (t),

21We experimented with the month of birth without success, the R2 of the first stage regression being too low.
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ℓ = 1, ..., L. In addition to the market return (RM (t) − RF (t), where RF (t) is the risk-free

return), which is the unique factor of the CAPM model, they identify two additional factors:

• SMB(t), or “small minus big”, is the difference between the average of the returns on two

stock portfolios: one containing firms with market value (price time number of shares)

less than the median, and one containing firms with size above the median.

• HML(t), or “high minus low”, is the difference between the average of the returns on two

stock portfolios: one gathering firms with book-to-market ratio (book value of capital

divided by market value, denoted B/M) less that the 30th percentile and another one

containing all firms with B/M ratio above the 70th percentile.

Fama and French show that these three factors explain monthly data on 25 portfolios formed

by intersecting size and book-to-market quintiles remarkably well. Other relevant contributions

by the same authors include Fama and French (1995, 1996) and Davis, Fama and French (2000).

Fama and French’s factors are now widely used in applied finance to summarize the correlations

between bond or stock returns.

In this section we apply quasi-JADE to estimate a linear independent factor model with

three factors. Unlike Fama and French, who construct factors on the basis of economic intuition,

we shall estimate factors blindly.

The data. We use daily US observations between 01/07/1963 and 31/08/2005 of the returns

to 25 stock portfolios formed on size and book-to-market.22 With monthly data, we obtained

similar results, though less precisely estimated. The size and book-to-market breakpoints are

NYSE quintiles. There are 10,616 observations. Table 15 shows the mean, standard error,

skewness and kurtosis of the returns on the 25 portfolios. Returns are net of the risk-free rate

RF , which varies between .003 and .061 over the period. All returns appear strongly leptokurtic,

and somewhat skewed to the left.

22These data can be downloaded from Kenneth French’s website:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Size B/M ratio Mean Standard error Skewness Kurtosis

Small Low .0008 1.10 -.86 13.8
2 .0293 .91 -.87 13.3
3 .0341 .77 -.98 15.1
4 .0428 .71 -1.00 15.4

High .0479 .71 -.97 14.2
2 Low .0123 1.17 -.50 10.0

2 .0251 .91 -.68 12.4
3 .0383 .81 -.67 11.6
4 .0404 .77 -.69 12.9

High .0447 .87 -.55 10.2
3 Low .0148 1.15 -.38 9..8

2 .0302 .88 -.59 12.8
3 .0309 .77 -.62 12.9
4 .0372 .77 -.48 11.9

High .0447 .88 -.66 16.5
4 Low .0220 1.10 -.21 12.0

2 .0209 .87 -.75 18.5
3 .0320 .81 -.92 20.4
4 .0383 .80 -.63 15.7

High .0394 .92 -.57 15.3
Big Low .0198 1.06 -.37 15.8

2 .0214 .95 -.96 27.6
3 .0231 .91 -.90 27.3
4 .0260 .88 -.92 32.2

High .0281 .99 -.57 17.9

Table 15: Moments of the variables
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Size B/M ratio Factor 1 Factor 2 Factor 3 Error variance R2

Small Low .57 .79 -.37 .055 .95
2 .50 .67 -.23 .054 .93
3 .45 .56 -.14 .035 .93
4 .41 .52 -.09 .029 .94

High .43 .52 -.05 .028 .94
2 Low .70 .72 -.50 .102 .92

2 .59 .58 -.26 .049 .94
3 .54 .51 -.17 .066 .89
4 .53 .47 -.10 .079 .84

High .61 .51 -.08 .118 .82
3 Low .71 .61 -.58 .122 .90

2 .62 .47 -.30 .050 .93
3 .58 .40 -.15 .061 .88
4 .60 .37 -.10 .080 .84

High .70 .40 -.06 .095 .85
4 Low .74 .46 -.61 .094 .92

2 .70 .33 -.28 .041 .94
3 .69 .29 -.16 .038 .94
4 .68 .28 -.08 .086 .84

High .77 .30 -.06 .146 .79
Big Low .83 .14 -.52 .125 .87

2 .84 .08 -.33 .034 .96
3 .81 .08 -.23 .077 .89
4 .80 .07 -.12 .061 .91

High .83 .13 -.12 .256 .64

% Variance .544 .258 .099 .099

Skewness -1.21 -.76 -.56 -
Kurtosis 30 28 77 -

Table 16: Factor loadings, factor moments and error variances

Estimation results. Table 16 presents the estimates of factor loadings and error variances,

under the assumption that K = 3. Quasi-JADE was applied using second, third and fourth-

order cumulants. Interestingly, using only third or only fourth-order moments made very little

difference in estimation. Moreover, bootstrapped confidence intervals (not reported) show that

most factor loadings are rather precisely estimated. Overall, the three factors account for 90%

of total variance. The first factor explains 54%, the second factor 26% and the third factor

10%, about the same as the error term. Lastly, one notices that all three factors are skewed to

the left and strongly leptokurtic.

Given that the model is nearly noise-free, we predict factor levels as X̂ (t) = Λ̂−Y (t), where
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a1) Size/X1 b1) Book-to-Market/X1

a2) Size/X2 b2) Book-to-Market/X2

a3) Size/X3 b3) Book-to-Market/X3

Figure 1: Independent factors against quintiles of size and book-to-market, daily Fama French
data, 25 portfolios

37



a1) Size/X1 b1) Book-to-Market/X1

a2) Size/X2 b2) Book-to-Market/X2

a3) Size/X3 b3) Book-to-Market/X3

Figure 2: Independent factors against deciles of size and book-to-market, daily Fama French
data, 100 portfolios
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Λ̂− is the generalized inverse of the estimated matrix of factor loadings Λ̂. When the error

variance cannot be neglected, predicting factor levels requires a more complicated procedure

that is developed in a companion paper (Bonhomme and Robin, 2006).

Figure 1 displays the elements of matrix Λ̂− as a function of size quintiles (panels a)), and

B/M quintiles (panels b)). The three columns are reported from top to bottom of the figure.

Dashed lines represent OLS fit. Panels a2) and b2) show that the second factor is strongly neg-

atively correlated with size and almost uncorrelated with book-to-market. Conversely, panels

a3) and b3) show that the third factor is weakly negatively correlated with size, yet strongly

positively correlated with book-to-market. Lastly, the first factor appears positively correlated

with size and to book-to-market, although the correlation with the latter is weaker. These

results are qualitatively the same if we estimate a three-factor model on 100 portfolios formed

as the intersection of size and book-to-market deciles, as shown by Figure 2. Interestingly, un-

rotated PCA yields similar pictures as Figures 1 and 2. This suggests that unrotated principal

components are approximately independent.

We then provide a direct comparison of these estimated factors to those used by Fama and

French. To do so, we compute Fama and French’s factors and correlate them to X̂t. Panel a)

of Table 17 shows these correlations. We see that the three factors estimated by quasi-JADE

are strongly correlated with the market, size and book-to-market factors constructed by Fama

and French. The correlations are .84, .85 and .90, respectively. Note that Fama and French’s

factors are correlated. For instance, the market return has correlation −.24 and −.58 with

SMB and HML, respectively. For this reason, they cannot be equal to the independent factors

obtained by quasi-JADE. We then apply JADE to market return, SMB and HML, and obtain

new factors which are by construction independent. Panel b) of table 17 reports the correlations

between these new factors and the factors that were initially estimated by quasi-JADE on the

25 portfolios. We find very high correlations (.97, .98 and .93).

It is interesting to evaluate the extent to which these results are driven by the ex-ante

grouping into size and book-to-market cells. Our experiments on stock data grouped by in-
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X1 X2 X3

RM − RF .84 .24 -.41
SMB -.49 .85 -.09
HML -.11 .23 .90

X1 X2 X3

RM − RF .97 -.01 -.09
SMB -.01 .98 -.06
HML .09 .07 .93

a) Fama French b) Independent Fama French

Table 17: Fama French factors versus Quasi-JADE estimates, daily US data, 25 portfolios

dustries23 showed that if the first factor remained strongly linked to market return, size and

book-to-market were much less strongly correlated with the two other factors. This casts some

doubts on the ability of Fama and French’s factors to explain very disaggregate data on stock

returns with the same success.

6 Conclusion

It is well known that non normality is an important source of identification in linear measure-

ment error models. In this paper, we extend this insight to general linear independent factor

models. We prove that L(L − 1)/2 factors can be generically identified from a set of L mea-

surements. Contrary to ordinary Factor Analysis, identification is unambiguously defined up

to sign and permutation normalizations.

We also prove that second, third and/or fourth-order moments of the data provide sufficient

information to identify and estimate the first four moments of at most L factors. We then

extend and adapt a well-known technique of Independent Component Analysis (ICA), Cardoso

and Souloumiac’s (1993) JADE algorithm, to construct estimators of factor loadings in the case

where errors are not negligible. We propose a multi-step procedure (quasi-JADE) in which we

estimate error moments in a first stage, and then apply Cardoso and Souloumiac’s approximate

joint diagonalization algorithm.

The independent factor structure generates many overidentifying restrictions on high-order

moments. This may explain the encouraging Monte Carlo simulation results that we obtained.

In contrast with previous evidence on the use of high-order moments for estimation,24 we find,

23These data can be found in the section “change in industry portfolios” in French’s data library.
24See the results reported in Madansky (1959), and the survey by Aigner et al. (1984).
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for sufficiently non symmetric and/or kurtotic data, small biases and precise estimates, even in

relatively small samples.

The estimation methodology is first applied to earnings and education data. Besides the

common factor that IV and PCA estimates already reveal (explaining the bias toward zero of

the OLS estimate of the returns to the number of years of education on individual earnings),

our method yields an interesting second factor that is negatively correlated with earnings and

positively correlated with education. This is evidence that there exist individual characteristics

which are valued by the education institution but not by the labor market. Moreover, the

exhibited factor structure is consistent with the standard model of education returns if one

allows measurement errors on the education measure and unobserved heterogeneity.

In a second application, we consider data on daily US stock returns, grouped into quintiles of

size and book-to-market ratio. Fixing the number of factors to three, we estimate independent

components which turn out to be strongly correlated with the three factors constructed by

Fama and French (1993). In addition to the market factor, we clearly identify a negative “size”

effect and a positive “book-to-market” effect. However, our experiments with data grouped by

industry suggest that the high correlation between independent factors and Fama and French’s

heuristic constructs partly results from the fact that firm stocks are ex-ante grouped by size

and book-to-market ratio.

In the future, we plan to pursue two directions of research. First, this paper leaves many

methodological questions unanswered. In particular, efficiency issues concerning the quasi-

JADE estimators, as well as the properties of the tests of the number of factors, seem worth

investigating further. Moreover, it would be interesting to extend existing algorithms to deal

with more factors than measurements (K > L). In the ICA literature, this case is referred to

as overcomplete ICA. De Lathauwer (2003) presents an algorithm comparable to JADE that

works for K > L in the case of complex measurements. In the real case, the one of interest in

econometrics, we are not aware of similar semi-parametric methods. As far as we know, our

paper is the first example of a fast and consistent estimation algorithm for an overcomplete

independent factor structure (L factors and L errors). Nevertheless, more work is needed to
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deal with more general overcomplete ICA models.

The second direction of research concerns the extension of the method of this paper to

the case of a very large number of measurements. Bai and Ng (2002) and Bai (2003) provide

extensive analyses of the PCA estimator in this case. Financial and macroeconomic applications

motivate the need to extend ICA methods in this direction.
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APPENDIX

A Mathematical proofs

A.1 Proof of Theorem 1

The proof of proposition (i) is a straightforward consequence of Theorem 10.3.1 in Kagan, Linnik and

Rao (1973).

Theorem 7 (Theorem 10.3.1, Kagan, Linnik and Rao, 1973) Let A and B be two non-

stochastic matrices and let S = (s1, ..., sm)T and R = (r1, ..., rn)T be two random vectors with inde-

pendent components. Assume that AS and BR have the same distribution. If si, for some i ≤ m, is not

normal, then the ith column of A is the multiple of a column of B.

Assume that ΛX +U and Λ̃X̃ + Ũ have the same distribution. The components of vectors (XT , UT )

and (X̃T , ŨT ), respectively, are independent. Let k ≤ K. Since Xk is not normal, Kagan et al.’s result

applies to show that the k’s column of Λ, say Λk, is the multiple of a column of the L× (K + L) matrix

(Λ̃, IL), where IL is the L×L identity matrix. Since every column of matrices Λ and Λ̃ has at least two

non-zero coefficients, it must be that Λk is the multiple of a column of Λ̃.

Let D = diag (dk) be a K × K diagonal matrix and P a permutation matrix such that Λ̃ = ΛDP .

Then, by assumption,

Var (ΛX + U) = Var
(
Λ̃X̃ + Ũ

)
.

Hence, for all ℓ < m,
K∑

k=1

λℓkλmk =

K∑

k=1

λℓkλmkd2
k.

If matrix

Q (Λ) = [λℓ1λm1, ..., λℓKλmK ](ℓ,m)∈∆L

is full column rank, then it must be that

d2
k = 1.

This ends the proof.

A.2 Proof of Theorem 2

To prove Theorem 2, we first prove the following lemma giving conditions under which the joint eigen-

vectors of a set of matrices is uniquely defined (up to sign and permutation).

Lemma 4 Let K and L be any integers. Let A1, ..., AL be matrices of R
K×K . Suppose that there exist

xk =
(
xk

1 , ..., xk
L

)T
∈ R

L and vk ∈ R
K , vk 6= 0, k = 1, ...,K + 1, solutions to the joint diagonalization

problem:

xk
ℓ vk = Aℓv

k, ∀ℓ = 1, ..., L.
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Assume that the set
{
v1, ..., vK

}
is linearly independent, that all vk, k = 1, ...,K+1, have norm one, and

that xk 6= xk′

for all (k, k′) ∈ {1, ...,K}2, k 6= k′. Then there exists k ∈ {1, ...,K} such that vK+1 = ±vk.

Proof. Since
{
v1, ..., vK

}
is a basis of R

K , there exists c = (c1, ..., cK) 6= 0 such that vK+1 = c1v
1 +

... + cKvK . Then, for all ℓ = 1, ..., L,

K∑

k=1

ckxk
ℓ vk =

K∑

ℓ=1

ckAℓv
k

= Aℓ

K∑

ℓ=1

ckvk

= Aℓv
K+1

= xK+1
ℓ vK+1

= xK+1
ℓ

(
K∑

k=1

ckvk

)
.

As (v1, ..., vK) is linearly independent, it follows from the last equality that:

ckxk
ℓ = ckxK+1

ℓ ,

for all (k, ℓ). Hence, for all k:

ckxk = ckxK+1.

As c 6= 0, there exists k such that ck 6= 0. For this k: xk = xK+1. Moreover, as xk 6= xk′

for all k′ 6= k

in {1, ...,K}, it follows that ck′ = 0 for all k′ 6= k. Hence

vK+1 = ckvk.

As both vk and vK+1 have norm one, ck = ±1. The result follows.

The proof of Theorem 2 easily follows.

Fourth-order moments. In the case where U = 0, second and fourth-order cumulant restrictions

(6)-(10) yield:

ΩY (ℓ,m) = ΛD4 diag (Λℓ ⊙ Λm) ΛT , (ℓ,m) ∈ ∆L,

ΣY = ΛΛT .

To show that Λ is identified from this system, let P be the Cholesky decomposition of ΣY , such that

PPT = ΣY − ΣU , and P is a lower triangular L × K full-column rank matrix.

Then P−Λ, where P− is a generalized inverse of P (e.g. P− =
[
PT P

]−1
PT ), is a matrix of joint

orthogonal eigenvectors of:

P−ΩY (ℓ,m) P−T = P−ΛD4 diag (Λℓ ⊙ Λm) ΛT P−T , (ℓ,m) ∈ ∆L.
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In general, there can be infinitely many joint eigenvectors to a set of matrices if all matrices have

multiple roots. Lemma 4 shows that the problem of diagonalizing matrices P−ΩY (ℓ,m) P−T , (ℓ,m) ∈

∆L, has a unique solution up to column sign and permutation if for all (k, k′) ∈ {1...K}2, k 6= k′, there

exists (ℓ,m) ∈ ∆L such that

λℓkλmkκ4 (Xk) 6= λℓk′λmk′κ4 (Xk′) .

As either κ4 (Xk) 6= 0 or κ4 (Xk′) 6= 0, and as any two columns of Λ are linearly independent, this

condition is always satisfied. It follows that V , and thus Λ = PV , are identified (up to column sign and

permutation).

Third-order moments. The same argument applies to third-order cumulant matrices ΓY (ℓ). In-

deed, in the noise-free case third-order restrictions (8) become

ΓY (ℓ) = ΛD3 diag (Λℓ) ΛT , ℓ ∈ {1...L},

where ΓY (ℓ), for all ℓ ∈ {1...L}, is a L × L matrix of third-order cumulants of the data, and D3 is the

diagonal matrix of factor cumulants.

In this case, Lemma 4 shows that the problem of diagonalizing matrices P−ΓY (ℓ) P−T , ℓ ∈ {1...L},

has a unique solution up to column sign and permutation if for all (k, k′) ∈ {1...K}2, k 6= k′, there exists

ℓ ∈ {1...L} such that

λℓkκ3 (Xk) 6= λℓk′κ3 (Xk′) .

As before, this condition is always satisfied.

Third and fourth-order moments. The proof is almost identical to the two previous ones.

Lemma 4 shows that the problem of diagonalizing matrices P−ΩY (ℓ,m) P−T , (ℓ,m) ∈ ∆L, and P−ΓY (ℓ) P−T ,

ℓ ∈ {1...L}, has a unique solution up to column sign and permutation if for all (k, k′) ∈ {1...K}2, k 6= k′,

there exists (ℓ,m) ∈ ∆L such that

λℓkλmkκ4 (Xk) 6= λℓk′λmk′κ4 (Xk′) ,

or there exists ℓ ∈ {1...L} such that

λℓkκ3 (Xk) 6= λℓk′κ3 (Xk′) .

As one of the four moments κ3 (Xk), κ3 (Xk′), κ4 (Xk) and κ4 (Xk′) is non zero, it follows from the

assumptions on Λ that this condition is always satisfied.

A.3 Proof of Lemma 1

1. Let ΩY be defined by (14). As Q has rank K and D4 is non singular, restrictions (15) imply that

ΩY = QD4Q
T ,
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has rank K. It follows that there exists C ∈ R
#∆L×(#∆L−K), full column rank, such that C

T
ΩY = 0.

Since D4Q
T has rank K, it must also be that C

T
Q = 0.

2. Let vech be the operator stacking all elements on and below the main diagonal of a L × L

symmetric matrix column by column into a L(L+1)
2 -vector. Then,

vech (ΩY (ℓ,m)) = vech
(
ΛD4 diag (Λℓ ⊙ Λm) ΛT + δℓmκ4 (Uℓ) SpL,ℓ

)
,

= QD4 (Λℓ ⊙ Λm) + δℓmκ4 (Uℓ) vech
(
SpL,ℓ

)
,

where SpL,ℓ is the sparse matrix of dimension (L,L) with only one 1 in position (ℓ, ℓ). It follows that

C
T

vech (ΩY (ℓ,m)) = δℓmκ4 (Uℓ) C(ℓ,ℓ),

where C(ℓ,ℓ) is the (ℓ, ℓ)th column of C
T
, and the columns of C

T
(the rows of C) are indexed by

(i, j) ∈ ∆L.

Moreover, the second-order restrictions are equivalently written as

vech (ΣY ) = vech
(
ΛΛT + ΣU

)
,

= Q1K + vech (ΣU ) ,

where 1K is a K-dimensional vector of ones. Hence,

C
T

vech (ΣY ) = C
T

vech (ΣU ) =

L∑

ℓ=1

Var (Uℓ) C(ℓ,ℓ).

Lastly, consider

vech (ΓY (ℓ)) =
[
Cum (Yℓ, Yi, Yj) , (i, j) ∈ ∆L

]

= vech
(
ΛD3 diag (Λℓ) ΛT + κ3 (Uℓ) SpL,ℓ

)
.

This vector of third-order moments of Y satisfies the equality

vech (ΓY (ℓ)) = QD3Λℓ + κ3 (Uℓ) vech
(
SpL,ℓ

)
.

It follows that

C
T

vech (ΓY (ℓ)) = κ3 (Uℓ) C(ℓ,ℓ).

3. Lastly, we show that the submatrix
[
C(1,1), ..., C(L,L)

]T
∈ R

L×(#∆L−K) of C is full-row rank. To

show this assertion, partition C as

C =

[
C11 C12

C21 C22

]
,

with C11 ∈ R
#∆L×(#∆L,2−K), C12 ∈ R

#∆L×L, C21 ∈ R
L×(#∆L,2−K) and C22 ∈ R

L×L. To simplify

the notations, suppose that rows C
T

(1,1), ..., C
T

(L,L) are located at the bottom of C, so that
[
C21, C22

]
=
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[
C(1,1), ..., C(L,L)

]T
. Without loss of generality, one can assume that C21 = 0 and that C11 is a basis of

the null space of QT . Now, suppose that C22 is singular. Then there exists a linear combination of the

columns of C22 that is equal to zero. The same linear combination of the columns of C12 is both linearly

independent of C11, as C is full-column rank, and orthogonal to the columns of Q. This contradicts the

assumption that Q has rank K. Consequently, C22 is non singular and
[
C21, C22

]
is full-row rank.

As matrix
[
C(1,1), ..., C(L,L)

]T
is full-row rank, it follows that error variances are identified. Moreover,

it also follows that C(ℓ,ℓ) 6= 0. So, κ3 (Uℓ) and κ4 (Uℓ) are identified.

This ends the proof of Lemma 1.

A.4 Proof of Lemma 2

1. The factor structure implies that

ΞY = [ΓY ,ΩY (1) , ...,ΩY (L)] ,

= Λ
[
D3Q

T ,D4 diag (Λ1) QT , ...,D4 diag (ΛL) QT
]
.

Let γ ∈ R
K such that

γT
[
D3Q

T ,D4 diag (Λ1) QT , ...,D4 diag (ΛL) QT
]

= 0.

As Q has rank K, it follows that γT D3 = 0 and γT D4 diag (Λℓ) = 0 for all ℓ ∈ {1...L}. Then, as Λ is

full column rank, this implies that γT D4 = 0. Lastly, as for all k either κ3 (Xk) 6= 0 or κ4 (Xk) 6= 0, it

follows that γ = 0.

Therefore:
[
D3Q

T ,D4 diag (Λ1) QT , ...,D4 diag (ΛL) QT
]

as rank K. As Λ has rank K by assump-

tion, ΞY has also rank K.

Then, let C ∈ R
L×(L−K) such that

CT ΞY = 0.

As
[
D3Q

T ,D4 diag (Λ1) QT , ...,D4 diag (ΛL) QT
]

is full row rank, it must also be that CT Λ = 0.

2. One thus has

CT ΣY = CT ΛΛT + CT ΣU ,

= CT ΣU

= [Var (U1) C1, ...,Var (UL) CL]

or

CT




Cov (Y1, Yℓ)
...

Cov (YL, Yℓ)


 = Var (Uℓ) Cℓ, ℓ = 1, ..., L,

where CT
ℓ is the ℓth row of C.
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Moreover, matrices ΓY (ℓ) defined by (7) satisfy the equality:

ΓY (ℓ) = ΛD3 diag (Λℓ) ΛT + κ3 (Uℓ) SpL,ℓ .

Hence

CT ΓY (ℓ) = CT ΛD3 diag (Λℓ) ΛT + κ3 (Uℓ) CT SpL,ℓ,

= κ3 (Uℓ)CT SpL,ℓ,

or

CT




Cum (Y1, Yℓ, Yℓ)
...

Cum (YL, Yℓ, Yℓ)


 = κ3 (Uℓ) Cℓ.

Lastly,

ΩY (ℓ, ℓ) = ΛD4 diag (Λℓ ⊙ Λℓ) ΛT + κ4 (Uℓ) SpL,ℓ

implies that

CT ΩY (ℓ, ℓ) = κ4 (Uℓ) CT SpL,ℓ

and

CT




Cum (Y1, Yℓ, Yℓ, Yℓ)
...

Cum (YL, Yℓ, Yℓ, Yℓ)


 = κ4 (Uℓ) Cℓ.

3. Let Λ−ℓ be matrix Λ without its ℓth row. As Λ−ℓ has rank K by assumption, it follows from

equality CT Λ = 0 that Cℓ 6= 0. Otherwise, one would have CT
−ℓΛ−ℓ = 0 for a full (L − 1) × (L − K)

matrix C−ℓ, contradicting the assumption that rank(Λ−ℓ) = K. Hence Var (Uℓ), κ3 (Uℓ) and κ4 (Uℓ) are

identified.

This ends the proof of Lemmas 2 and 3.

B The JADE algorithm

Let A = {Ak, k = 1...K} a set of real symmetric L × L matrices. Let us define the function:

off(A) =
∑

i6=j

a2
ij ,

for all A = [aij ]. Then joint diagonalization of A is achieved by minimizing

K∑

k=1

off(UAkUT ), (B1)

with respect to U orthogonal.

Let θ ∈ [−π, π], let (i, j) ∈ {1...L}2 and let Rij(θ) be the L × L matrix equal to zero everywhere

except at the (i, i), (i, j), (j, i) and (j, j) entries where it is equal to:

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.
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Let i 6= j, and let us define:

Oi,j(θ) =
K∑

k=1

off
(
Rij(θ)AkRij(θ)

T
)
.

Lastly, let hi,j(A) = (aii − aij, aij + aji), and let:

Gi,j =

K∑

k=1

hT
i,j(Ak)hi,j(Ak) = (gij)i,j=1,2 .

Then, Cardoso and Souloumiac (1996) show that θ0 such that:

cos(θ0) =

√
x + r

2r
, sin(θ0) =

√
y

2r(x + r)
,

where x = g11 − g22, y = g12 + g21 and r =
√

x2 + y2, minimizes Oi,j(θ).

This closed-form expression for θ0 allows to minimize (B1) by the following algorithm:

1. Start with U(0) = IL.

2. Begin loop on step s.

3. Begin loop on (i, j).

4. Compute Gi,j .

5. Compute θ0.

6. If θ0 is different enough from zero, continue. Else stop.

7. Compute Rij(θ0)AkRij(θ0)
T and modify A consequently.

8. Update U(s) as U(s + 1) = Rij(θ0)U(s).

9. End loop on (i, j).

10. End loop on s.

C Asymptotic theory of the JADE estimator

First-order conditions. The JADE estimator solves

V̂ = arg min
V ∈OK

J∑

j=1

off(V T ÂjV ).

The Lagrangian associated with the minimization problem is:

L (V, γ) =

J∑

j=1

off(V T ÂjV ) + γT vec
(
V T V − IK

)
,

=
∑

j

∑

m 6=k

(vT
k Âjvm)2 +

∑

k

γkk(vT
k vk − 1) +

∑

m 6=k

γmkvT
k vm,

where γ is a vector of K2 Lagrange multipliers γmk, and vk is the kth column of matrix V .
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Differentiating the Lagrangian with respect to vℓ, for ℓ = 1...K, yields:

∂L
(
V̂ , γ̂

)

∂vℓ
= 2

∑

j

∑

k 6=ℓ

(v̂T
k Âj v̂ℓ)Âj v̂k + 2γ̂ℓℓv̂ℓ +

∑

k 6=ℓ

γ̂kℓv̂k = 0. (C2)

Then, multiplying (C2) by v̂T
m, for m 6= ℓ, gives:

2
∑

j

∑

k 6=ℓ

(v̂T
k Âj v̂ℓ)v̂

T
mÂj v̂k + γ̂mℓ = 0. (C3)

Using that γ̂mℓ = γ̂ℓm by symmetry, it follows from (C3) that

∑

j

∑

k 6=ℓ

(v̂T
k Âj v̂ℓ)v̂

T
mÂj v̂k =

∑

j

∑

k 6=m

(v̂T
k Âj v̂m)v̂T

ℓ Âj v̂k,

or, equivalently, as Âj is symmetric for all j:

∑

j

v̂T
ℓ Âj



∑

k 6=ℓ

v̂kv̂T
k


 Âj v̂m =

∑

j

v̂T
mÂj



∑

k 6=m

v̂kv̂T
k


 Âj v̂ℓ.

Then, as
∑K

k=1 v̂kv̂T
k = V̂ V̂ T = IK we obtain

∑

j

v̂T
ℓ Âj

(
IK − v̂ℓv̂

T
ℓ

)
Âj v̂m =

∑

j

v̂T
mÂj

(
IK − v̂mv̂T

m

)
Âj v̂ℓ,

which we write after rearranging:

∑

j

v̂T
ℓ Âj v̂m

(
v̂T

mÂj v̂m − v̂T
ℓ Âj v̂ℓ

)
= 0. (C4)

Equation (C4) holds for all ℓ < m. The JADE estimator V̂ solves these K(K − 1)/2 non redundant

equations, together with the K(K + 1)/2 orthogonality constraints:

v̂T
ℓ v̂m = δℓm, for all ℓ ≤ m. (C5)

Identification and consistency. Let Ṽ = (ṽ1, ..., ṽK) ∈ OK be such that

Ṽ = arg min
V ∈OK

J∑

j=1

off(V T AjV ).

Then, as: min
V ∈OK

∑J
j=1 off(V T AjV ) = 0 at the true value, it follows that Ṽ T Aj Ṽ = D̃j is diagonal for

all j. As for all k 6= m there exists j ∈ {1...J} such that djk 6= djm, one can apply Lemma 4 to show

that Ṽ is equal to the true V , up to column sign and permutation. This shows the identification of V .

Consistency follows from classical arguments, as the parameter space OK is compact.

Asymptotic distribution. A first-order Taylor expansion of (C4) around the true value V yields:

J∑

j

vT
mÂjvk

(
vT

k Âjvk − vT
mÂjvm

)
+

J∑

j

(
vT

k Âjvk − vT
mÂjvm

)(
vT

mÂj(v̂k − vk) + vT
k Âj(v̂m − vm)

)

+

J∑

j

vT
mÂjvk

(
vT

k Âj(v̂k − vk) − vT
mÂj(v̂m − vm)

)
= op

(
N−1/2

)
. (C6)
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As plim
N→∞

Âj = Aj for all j, and as vT
k Ajvm = 0 for all k 6= m, (C6) yields:

J∑

j

(djk − djm) vT
m

(
Âj − Aj

)
vk +

J∑

j

(djk − djm)
(
vT

mAj(v̂k − vk) + vT
k Aj(v̂m − vm)

)
= op

(
N−1/2

)
,

where djk = vT
k Ajvk are the diagonal elements of V T AjV .

At this stage, it is convenient to define x̂mk ≡ vT
m(v̂k − vk). As vT

mAj = djmvT
m, one has:

J∑

j

(djk − djm) vT
m

(
Âj − Aj

)
vk +

J∑

j

(djk − djm) (djmx̂mk + djkx̂km) = op

(
N−1/2

)
. (C7)

Now, a Taylor expansion of the orthogonality constraints (C5) yields:

x̂mk + x̂km = vT
m(v̂k − vk) + vT

k (v̂m − vm) = 0, for all m, k.

Thus, (C7) can be rewritten as:

J∑

j

(djk − djm)
2
x̂mk = −

J∑

j

(djk − djm) vT
m

(
Âj − Aj

)
vk + op

(
N−1/2

)
. (C8)

Let X̂ = V T
(
V̂ − V

)
. Then equation (C8) is equivalently written, in matrix form, as:

vec
(
X̂
)

= −W
(
IJ ⊗ V T ⊗ V T

) (
vec
(
Â
)
− vec (A)

)
+ op

(
N−1/2

)
,

where W , A and Â have been defined in the text. Note that W is provided that
∑J

j (djk − djm)
2 6= 0

for all k 6= m.

Then, as:

vec
(
X̂
)

=
(
IK ⊗ V T

) (
vec
(
V̂
)
− vec (V )

)
,

it follows that

N
1
2

(
vec
(
V̂
)
− vec (V )

)
= − (IK ⊗ V ) W

(
IJ ⊗ V T ⊗ V T

)
N

1
2

(
vec
(
Â
)
− vec (A)

)
+ op (1) ,

from which

N
1
2

(
vec(V̂ ) − vec(V )

)
→
d
N (0, VV ) ,

where the expression of VV is given by (34).

D Robin and Smith’s (2000) rank test

Let B̂ be a root-N consistent estimator of a (p, q), p ≥ q, matrix B, such that

N1/2 vec
(
B̂ − B

)
d
→ N

(
0,Σvec( bB)

)
,

where Σvec( bB) is definite and rank
(
Σvec( bB)

)
= s, 0 < s ≤ pq.25 Let Σ̂vec( bB) be a consistent estimate of

Σvec( bB). Let B̂ = ĈD̂ÊT be the singular value decomposition of B̂, where Ĉ and Ê are (p, p) and (q, q)

25Note that s < dim (V ) because of the symmetry properties of ΓY and ΩY .
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orthogonal matrices and D̂ is a (q, p) diagonal matrix. Let d̂1 ≥ ... ≥ d̂K denote the diagonal entries of

D̂2 (the eigenvalues of B̂T B̂). For a given null hypothesis: Hr
0 : K = r, the statistics

CRT r ≡ N

q∑

i=r+1

d̂i

has the same limiting distribution as
∑t

i=1 dr
i Z

2
i , where dr

1 ≥ ... ≥ dr
t , t ≤ min{s, (p− r)(q − r)}, are the

non-zero ordered eigenvalues of the matrix

(Êq−r ⊗ Ĉp−r)
T Σ̂vec( bB)(Êq−r ⊗ Ĉp−r),

where Êq−r and Ĉp−r are the last q − r and p − r columns of Ê and Ĉ, respectively, and {Zi}
t
i=1 are

independent standard normal variates.

To estimate K, we apply the following procedure. Start with r = 0. Test H1
0 against H̃1

0 : K > 0.

If H1
0 is rejected, test H2

0 against H̃2
0 : K > 1. And so on until one accepts Hr

0 against H̃r
0 : K > r.

The test p-values can be approximated by drawing many independent values of the limiting statistics

∑t
i=1 dr

i Z
2
i . This procedure delivers a consistent estimate of K if the asymptotic sizes αr

N used for the

sequential tests are such that αr
N = o(1) and −N−1 lnαr

N = o(1).
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