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Abstract

This paper studies large deviation optimal properties of the empirical likelihood sequen-

tial testing (ELST) procedures for selecting moment restrictions. Since moment selection

problems have discrete parameter spaces, the Pitman-type local alternative approach is

not very helpful. By the theory of large deviations, we analyze convergence rates of error

probabilities under �xed distributions. We propose three optimal properties of the ELST

procedures: (i) the generalized Neyman-Pearson optimality, (ii) the overestimation error

optimality, and (iii) the minimax misclassi�cation error optimality.
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1 Introduction

This paper studies large deviation optimal properties of some empirical likelihood-based proce-

dures for selecting moment restrictions. Our problem is to select all correct moment restrictions

from a �xed number of candidate moment restrictions, which possibly include incorrect mo-

ments. In a generalized method of moments (GMM) framework, Andrews (1999) developed sev-

eral moment selection procedures, such as GMM-AIC, GMM-BIC, and GMM sequential testing

procedures. Hong, Preston and Shum (2003) proposed generalized empirical likelihood (GEL)

analogues of GMM-based moment selection procedures.1 These papers derived the consistency

of some moment selection procedures, i.e., the probability of choosing all correct moments con-

verges to one. The purpose of the present paper is to provide another theoretical framework to

evaluate moment selection procedures.

To this end, we focus on large deviation properties of moment selection procedures, i.e.,

convergence rates of error probabilities under �xed distributions. We particularly show some

optimal properties of the empirical likelihood sequential testing (ELST) selection procedures

proposed by Hong, Preston and Shum (2003). We split the moment selection problem into two

estimation problems: (a) estimation of the number of correct moments, and (b) estimation of the

set of correct moments given the number of correct moments. In practice, the implementation

of the above selection procedures solves these problems at the same time. For the problem

(a), we face two kinds of errors: overestimation and underestimation for the number of correct

moments. Overestimation (resp. underestimation) causes inconsistency (resp. ine�ciency) for

the parameter estimator. For the problem (b), we face misclassi�cation error caused by choosing

an incorrect set of moments. Note that these estimation problems have discrete parameter

spaces, and the conventional Pitman-type local alternative approach is not very useful. Instead,

by using large deviation theory, we analyze the convergence rates of the above error probabilities

under some �xed distributions. The large deviation properties can provide additional criteria to

compare moment selection procedures beyond consistency.

We propose three optimal properties of the ELST procedures: (i) the generalized Neyman-

Pearson optimality, (ii) the overestimation error optimality, and (iii) the minimax misclassi�ca-

tion error optimality. (i) and (ii) are about estimation of the number of correct moments. (i)

treats the convergence rates of the underestimation and overestimation probabilities as if those

are the type I and type II error probabilities in hypothesis testing, i.e., under some restriction

on the convergence rate of the underestimation probability, the ELST procedures attain the

1Andrews and Lu (2001) and Hong, Preston and Shum (2003) investigated model selection procedures. This

paper focuses on the moment selection problem.
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optimal convergence rate of the overestimation probability. (ii) considers a general class of mo-

ment selection procedures which contain several existing procedures, and says that the optimal

convergence rate of the overestimation probability is attained by the ELST procedures. (iii)

is about estimation of the set of correct moments given the number of correct moments, and

says that the ELST procedures attain the lower bound of the worst convergence rate of the

misclassi�cation probability.

Recently, several alternatives to the GMM have been developed, such as continuous updating

GMM (Hansen, Heaton and Yaron (1996)), empirical likelihood (Owen (1988) and Qin and

Lawless (1994)), and exponential tilting (Kitamura and Stutzer (1997) and Imbens, Spady and

Johnson (1998)). Newey and Smith (2004) proposed GEL which contains these alternatives as

special cases and showed desirable higher order properties of the GEL estimator. Compared

to higher order analysis which focuses on higher order local properties, large deviation analysis

focuses on the �rst order but global properties of statistical decisions. Kitamura (2001) showed

the generalized Neyman-Pearson optimality of the empirical likelihood overidentifying restriction

test.

In the context of information theory, there are several applications of large deviation theory to

model selection problems, such as Merhav, Gutman and Ziv (1989), Finesso, Liu and Narayan

(1996) (for Markov chain order estimation), Merhav (1989), Chambaz (2006) (for parametric

model selection), Khudanpur and Narayan (2002), and Gassiat and Boucheron (2003) (for hidden

Markov order estimation). This paper extends these results to the moment selection problem.

Compared to the previous results, where �nite sample spaces and parametric models are assumed,

several technical di�culties arise in our continuous sample space and semiparametric setup.

This paper is organized as follows. Section 2 introduces our basic setup. Section 3 presents

main results. Section 4 contains simulation results. Section 5 concludes.

2 Setup

2.1 Moment Selection Problem

We consider the moment selection problem of Andrews (1999). Let fxigni=1 be an iid sequence
of d � 1 random vectors drawn from an unknown probability measure P o and � 2 � � Rp be
a p � 1 vector of unknown parameters. Suppose that we have an M � 1 vector of candidate
moment functions g : Rd ��! RM , where M 2 N is a known constant satisfying p < M <1.
If we assume that all moment restrictions by g are correct, then the model is written as

E [g (xi; �
o)] =

Z
g (x; �o) dP o = 0 (1)
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for some �o 2 �, and we can estimate the model by GMM or GEL. This paper considers the case

where some moment restrictions are incorrect and (1) does not hold in some elements. To avoid

inconsistent estimators for �o, we need to choose correct moments from the set of M moment

functions. Also, to avoid ine�cient estimators, we need to choose all correct moments.

Our notation closely follows that of Andrews (1999). Let c = (c1; : : : ; cM)
0 2 RM be a

moment selection vector for g = (g1; : : : ; gM)
0, that is

cj =

(
0; if gj is not selected

1; if gj is selected
;

for j = 1; : : : ;M . The space for c is

C =
�
c 2 RM : cj = 0 or 1 for j = 1; : : : ;M

	
:

Let jcj =
PM

j=1 cj be the number of moments selected by c, and g
c (x; �) be the jcj � 1 vector of

selected moments by c. De�ne co (�) = (co1 (�) ; : : : ; c
o
M (�))

0 2 RM as

coj (�) =

(
0; if E [gj (xi; �)] 6= 0
1; if E [gj (xi; �)] = 0

;

for j = 1; : : : ;M and � 2 �, i.e., co (�) indicates the set of correct moments at � 2 �. Let

Zo = fc 2 C : c = co (�) for some � 2 �g ;

MZo = fc 2 Zo : jcj � jc0j for all c0 2 Zog ;

i.e., Zo is the set of valid selection vectors co (�) at some � 2 �, and MZo is the set of valid
selection vectors which maximize the number of selected moments in Zo. Similar to Andrews
(1999), we impose the following identi�cation condition.

Assumption 2.1. MZo contains a single element co.

We call co the \true selection vector." Our problem is to estimate co in the discrete parameter

space C. It is clear thatMZo � Zo. If c =2 Zo, then c selects some incorrect moments. Thus,
the GMM or GEL estimator by gc (xi; �) is inconsistent for �

o. If c 2 Zo nMZo, then c selects
correct but relatively small number of moments comparing to jc0j for c0 2 MZo. Thus, the
GMM or GEL estimator by gc (xi; �) is less e�cient than the estimator by g

c0 (xi; �). Note

that Assumption 2.1 implies jcoj > p, i.e., the true model selected by co is overidenti�ed (see

Andrews (1999, p. 548)). To obtain consistent estimators for both co and �o, we need to add an

identi�cation condition for �o, i.e., E
�
gc

o
(xi; �)

�
= 0 has a unique solution �o 2 �. However, to

discuss the properties of estimators only for co, the identi�cation condition of �o is unnecessary.
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2.2 Example: Choice of Instruments

A typical example of the moment selection problem is the choice of valid instruments for linear

instrumental variable (IV) regression models. Let fyi; wigni=1 be a sequence of iid data, and
fzigni=1 be an M � 1 iid sequence of candidate IVs. If all instruments zi are valid, the moment
restrictions of the linear IV regression model are written as

E [g (xi; �
o)] = E [zi (yi � w0i�o)] = 0; (2)

for i = 1; : : : ; n, where xi = (yi; w
0
i; z

0
i)
0 and � 2 Rp. We consider the case where some instruments

zi are invalid and (2) does not hold in some elements. Let zi = (z01i; z
0
2i)

0 with z1i 2 RM1 and

z2i 2 RM2 . Assume that

E [z1i (yi � w0i�)] = 0 for some � 2 �;

E [z2i (yi � w0i�)] 6= 0 for all � 2 �;

i.e., z1i are valid instruments and z2i are invalid ones. If we include some elements of z2i in

IV estimation, the IV estimator becomes inconsistent. If we employ a strict subset of z1i as

instruments, the IV estimator is consistent but less e�cient than the IV estimator by all elements

of z1i. In this case, the true moment selection vector c
o selects gc

o
(xi; �) = z1i (yi � w0i�).

2.3 Empirical Likelihood-Based Moment Selection Procedures

Empirical likelihood is non/semi-parametric likelihood constructed from the moment restrictions

E [g (xi; �)] = 0, that is

L (�) = sup
fpigni=1

(
nY
i=1

pi

����� pi > 0;
nX
i=1

pi = 1;
nX
i=1

pig (xi; �) = 0

)
: (3)

Without the moment restrictions
Pn

i=1 pig (xi; �) = 0, unconstrained empirical likelihood is

obtained as

Lu = sup
fpigni=1

(
nY
i=1

pi

����� pi > 0;
nX
i=1

pi = 1

)
= n�n:

We consider testing the overidentifying restriction:

H0 : E [g (x; �)] = 0 for some � 2 �, H1 : E [g (x; �)] 6= 0 for all � 2 �: (4)

As a test statistic, we can employ the empirical likelihood ratio:

L = �2
�
sup
�2�

logL (�)� logLu
�
= inf

�2�
max
2RM

2
nX
i=1

log (1 + 0g (xi; �)) : (5)
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If the conditioning set of (3) is empty, set L = 1. Qin and Lawless (1994) showed that under
some regularity conditions L

d! �2M�p if H0 is true.

We now introduce an information theoretic interpretation of empirical likelihood. LetM be

the space of probability measures on the Borel �-�eld
�
Rd;Bd

�
. De�ne

P (�) =
�
P 2M :

Z
g (x; �) dP = 0

�
; P =

[
�2�

P (�) :

Using this notation, (4) is written as H0 : P 2 P and H1 : P =2 P . The relative entropy (or
Kullback-Leibler information criterion) for measures P and Q is de�ned as

I (PkQ) =

Z
log

�
dP

dQ

�
dP if P � Q

= 1 otherwise.

Let �n be the empirical measure of fxigni=1. From e.g. Borwein and Lewis (1993), it is known

that (3) is equivalent to

inf
P2P

I (�nkP ) : (6)

Thus, the empirical likelihood ratio test of H0 reduces to the decision rule:

reject H0 if inf
P2P

I (�nkP ) > C; (7)

for some constant C 2 (0;1). Kitamura (2001) investigated the large deviation optimality of
(7). This paper extends the above testing framework to the moment selection problem.

We introduce the following notation:

Pc (�) =

�
P 2M :

Z
gc (x; �) dP = 0

�
;

Pc =
[
�2�

Pc (�) ; Pm =
[
c2Cm

Pc; Cm = fc 2 C : jcj = mg :

Pc is a set of measures which satisfy E [gc (xi; �)] = 0 at some � 2 �, and Pm is a set of measures
which satisfy some m moments. Note that PM � PM�1 � � � � � Pp+1 � Pp =M. Let PM+1

be the empty set by convention. We consider the following empirical likelihood-based moment

selection procedures by Hong, Preston and Shum (2003).

De�nition 2.1 (Empirical likelihood sequential testing procedures).

(i) Estimation of the number of correct moments: Find

m̂d = max

�
j : inf

P2Pj
I (�nkP ) � �j;n

�
; (8)

= max

�
j : min

c2Cj
inf
P2Pc

I (�nkP ) � �j;n
�

(downward testing)

6



i.e., start by j = M and carry out the empirical likelihood ratio test for Hj
0 : P 2 Pj with

progressively smaller j until Hj
0 is accepted. Or compute

m̂u = min

�
j : inf

P2Pj
I (�nkP ) > �j;n

�
� 1; (9)

= min

�
j : min

c2Cj
inf
P2Pc

I (�nkP ) > �j;n
�
� 1 (upward testing)

i.e., start by j = p + 1 and carry out the empirical likelihood ratio test for Hj
0 : P 2 Pj

with progressively larger j until Hj
0 is rejected.

(ii) Estimation of the selection vector: Given m̂ = m̂d or m̂u, �nd

ĉ = arg min
c2Cm̂

�
inf
P2Pc

I (�nkP )
�
; (10)

i.e., �nd the selection vector which minimizes the empirical likelihood ratio infP2Pc I (�nkP )
in Cm̂.

Since infP2Pm̂ I (�nkP ) = minc2Cm̂ finfP2Pc I (�nkP )g, the second step is redundant in prac-
tice. ĉ is obtained as a by-product of the implementation of m̂. We analyze theoretical properties

of m̂ and ĉ separately. Under some regularity conditions, Hong, Preston and Shum (2003) derived

the consistency of m̂ and ĉ. This paper studies large deviation properties of m̂ and ĉ.

2.4 Large Deviations

We consider the following large deviation error probabilities for m̂ and ĉ:

P n (m̂ < m) for each P 2 Pm n Pm+1 or Pm (underestimation)

P n (m̂ > m) for each P 2 Pm n Pm+1 (overestimation) (11)

P n (ĉ 6= c) for each P 2 Pc (misclassi�cation)

where P n is the n-fold product measure of P . If m̂ and ĉ are consistent, these probabilities

converge to zero under �xed P . Since the spaces for m and c are discrete, the Pitman-type

local alternative approach is not useful. Instead, by using large deviation theory, we analyze

the convergence rates of the error probabilities in (11). Since m̂ and ĉ are de�ned as decisions

based on the empirical measure �n (see De�nition 2.1), the large deviation properties of m̂ and

ĉ can be analyzed by those of �n. For our purpose, Sanov's theorem (e.g., Deuschel and Stroock

(1989, Theorem 3.2.17)) is helpful.
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Theorem 2.1 (Sanov). Let � be the Polish space (i.e., complete separable metric space),M (�)

be the space of measures on � endowed with the L�evy metric,2 and P 2M (�). Then

lim sup
n!1

1

n
logP n (�n 2 G) � � inf

Q2G
I (QkP ) ;

for all closed sets G �M (�), and

lim inf
n!1

1

n
logP n (�n 2 H) � � inf

Q2H
I (QkP ) ;

for all open sets H �M (�).

Sanov's theorem says that the large deviation probabilities of �n are characterized by the

relative entropy I. Another powerful large deviation result is Stein's lemma, which is �rst

mentioned in Stein's unpublished work. We use a practical version of the lemma proposed by

Bahadur, Zabell and Gupta (1980, Theorem 2.1).

Lemma 2.1 (Stein). Let P and Q be probability measures on the Borel �-�eld
�
Rd;Bd

�
, and

fAngn2N be a sequence of measurable sets. Then lim infn!1
Qn (An) > 0 implies that

lim inf
n!1

1

n
logP n (An) � �I (QkP ) :

Stein's lemma provides lower bounds of large deviation probabilities in quite general setups.

Note that the lower bound does not depend on fAngn2N. We apply this lemma to derive a lower
bound of the convergence rate of the overestimation probability in (11).

3 Main Results

3.1 Generalized Neyman-Pearson Optimality

We �rst derive the generalized Neyman-Pearson optimality of the ELST procedure for estimating

the number of correct moments. In the original Neyman-Pearson framework, we minimize the

type II error of a test under some restriction of the type I error. In the generalized Neyman-

Pearson framework, we replace those errors with the large deviation analogues: minimize the

2The L�evy metric of P1 and P2 is de�ned as

� (P1; P2) � inf
�
� > 0 : F1 (x� �e)� � � F2 (x) � F1 (x+ �e) + � for all x 2 Rd

	
;

where F1 and F2 are the distribution functions of measures P1 and P2, respectively, and e � (1; : : : ; 1)
0
. The

L�evy metric is compatible with the weak topology onM (e.g., Dembo and Zeitouni (1998, D.2)).
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convergence rate of the type II error under some restriction of the convergence rate of type I error.

This idea was originally proposed by Hoe�ding (1965). Kitamura (2001) showed the generalized

Neyman-Pearson optimality of empirical likelihood for testing overidentifying restrictions. We

extend the generalized Neyman-Pearson framework to the moment selection problem. Consider

a class of estimators that satisfy

sup
P2Pm

lim sup
n!1

1

n
logP n ( ~m < m) � ��; (12)

for each m = p + 1; : : : ;M , where �m 2 (0;1) is a given constant. Among such estimators, an
estimator is called the generalized Neyman-Pearson optimal if it minimizes

lim sup
n!1

1

n
logP n ( ~m > m) ; (13)

uniformly over all P 2 M. If we apply the terminology of hypothesis testing, the underesti-

mation and overestimation probabilities are treated as if those are the type I and type II error

probabilities, respectively. Under the restriction of the convergence rate of the underestimation

probability in (12), we minimize the convergence rate the overestimation probability in (13).

We show that the ELST procedures m̂ = m̂d or m̂u with a �xed critical value �j;n = � has the

generalized Neyman-Pearson optimality.

Let �A denote the complement of a set A. We introduce the following partitions of the space

of measuresM:

�j =

�
Q 2M : inf

P2Pj
I (QkP ) � �

�
(acceptance region for Hj

0 : P 2 Pj) (14)

�j =

�
Q 2M : inf

P2Pj
I (QkP ) > �

�
(rejection region)

for j = p+1; : : : ;M . Let �M+1 be the empty set by convention. Note that �M � �M�1 � � � � �
�p+1. From (14), the underestimation and overestimation probabilities of m̂d and m̂u are written

as

P n (m̂d < m) = P n

 
�n 2

\
m�j�M

�j

!
= P n

�
�n 2 �m

�
; (15)

P n (m̂d > m) = P n

 
�n 2

[
m+1�j�M

�j

!
= P n (�n 2 �m+1) ;

P n (m̂u < m) = P n

 
�n 2

[
p+1�j�m

�j

!
= P n

�
�n 2 �m

�
;

P n (m̂u > m) = P n

 
�n 2

\
p+1�j�m+1

�j

!
= P n (�n 2 �m+1) ;
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for eachm = p+1; : : : ;M . Therefore, in this setup, m̂d and m̂u have the same error probabilities.

Also note that the underestimation and overestimation probabilities are written by the large

deviation probabilities of the empirical measure �n. Let kak be the Euclidean norm of a vector

a. Similarly as Kitamura (2001), we introduce the following assumptions.

Assumption 3.1. Assume that

(i) fxigni=1 is an iid sequence,

(ii) P fsup�2� kg (x; �)k =1g = 0 for all P 2 Pp+1,

(ii) at each � 2 �, g (x; �) is continuous for all x 2 Rd.

All assumptions are very mild. See Kitamura (2001, p.1664) for comments on the assump-

tions. Let ~m be an alternative estimator, which is characterized by partitions
n

m (n) ;
m (n)

oM
m=p+1

ofM such that

P n ( ~m < m) = P n
�
�n 2 
m (n)

�
; P n ( ~m > m) = P n (�n 2 
m+1 (n)) ;

for each m = p+1; : : : ;M . Let 
M+1 (n) be the empty set by convention. Note that ~m contains

the GMM and GEL-based moment selection procedures as special cases. Let B (�; �) be an open

ball with radius � 2 (0;1) around �, A� = [�2AB (�; �) be a �-blowup (or smoothing) of a
set A. The generalized Neyman-Pearson optimality of the ELST procedures m̂ with the �xed

critical value � is obtained as follows.

Theorem 3.1 (Generalized Neyman-Pearson optimality). Suppose that Assumptions 2.1

and 3.1 hold. Then the ELST procedure m̂ = m̂d or m̂u with the critical value �j;n = � satis�es:

(i)

sup
P2Pm

lim sup
n!1

1

n
logP n (m̂ < m) � ��; (16)

for each m = p+ 1; : : :M ;

(ii) for every alternative estimator ~m, which satis�es

sup
P2Pm

lim sup
n!1

1

n
logP n ( ~m < m) � sup

P2Pm
lim sup
n!1

1

n
logP n

�
�n 2

�

m (n)

���
� ��; (17)

for each m = p+ 1; : : :M at some � 2 (0;1), we have

lim sup
n!1

1

n
logQn (m̂ > m) � lim sup

n!1

1

n
logQn ( ~m > m) ; (18)

for each m = p+ 1; : : :M and each Q 2M.
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All proofs are contained in the Appendix. Remarks on the theorem follows.

Remark 3.1. Theorem 3.1 (i) says that the convergence rate of the underestimation probability

of m̂ is exponentially fast for all P 2 Pm (m = p + 1; : : :M) and the rate is determined by the

critical value �. This result o� course implies supP2PmnPm+1 lim sup
n!1

1
n
logP n (m̂ < m) � ��.

Remark 3.2. Theorem 3.1 (ii) says that if the convergence rate of the underestimation proba-

bility of ~m is controlled as in (17), then the convergence rate of the overestimation probability

of m̂ is always smaller than that of ~m uniformly over all Q 2M.

Remark 3.3. In the context of universal hypothesis testing in information theory, this kind

of result is called the generalized Neyman-Pearson �-optimality (Zeitouni and Gutman (1991)).

Since Sanov's theorem has a rough nature, we need to introduce the �-blowup in (17). In

particular, we need an open set to apply Theorem 2.1 (ii).

Remark 3.4. This theorem can be extended to the case where the critical value is �xed for n but

depends on j (i.e., �j;n = �j). As far as the set inclusion relationships �M � �M�1 � � � � � �p+1
are satis�ed, Theorem 3.1 holds by replacing � with �m. Even if the relationships �M � �M�1 �
� � � � �p+1 do not hold, we can still derive Theorem 3.1 (i) by replacing � with �m. For Theorem
3.1 (ii), although we can derive that lim sup

n!1

1
n
logQn (�n 2 �m+1) � lim sup

n!1

1
n
logQn ( ~m > m) for

each m = p + 1; : : : ;M and all Q 2 M, this result is not su�cient to derive Theorem 3.1 (ii)

unless (15) holds.

Remark 3.5. Theorem 3.1 (ii) cannot exclude the possibility that the overestimation probability

converges to one under some Q 2 M, i.e., the both terms in (18) converge to zero. In order to

ensure the consistency of m̂, we need to consider decreasing critical values (�j;n ! 0).

Remark 3.6. We conjecture that the other empirical likelihood-based moment selection criteria

(e.g., AIC-type criterion) also satisfy the generalized Neyman-Pearson optimality. However, since

the criterion-based procedures require to evaluate the criterion for all combinations of c 2 C,
they are computationally more expensive than the ELST procedures.

3.2 Overestimation Error Optimality

In this subsection, we analyze the existing moment selection procedures. Hong, Preston and

Shum (2003, Proposition 2) showed that in order to ensure consistency of the ELST procedures m̂,

the critical values
�
�j;n
	
j;n
need to satisfy limn!1 �j;n = 0 and limn!1 n�j;n = 1 for each

j = p+ 1; : : : ;M .3 Intuitively, by letting �j;n be decreasing to zero, m̂ will tend to take smaller

3In Hong, Preston and Shum (2003), n�n is de�ned as the critical value. Note that
L
2n = infP2P I (�nkP ).
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values than the case of �xed critical values, and thus we can eliminate the cases where the over-

estimation probability goes to one (see Remark 3.5). However, as a cost of obtaining consistency,

the convergence rate of the underestimation probability becomes slower. We can expect that

the convergence rate of the underestimation probability of m̂ under decreasing critical values are

typically non-exponential. For example, Chambaz (2006), Finesso, Liu and Narayan (1996), and

Gassiat and Boucheron (2003) showed such non-exponential convergence phenomena of consis-

tent selection procedures for the order estimation problems in parametric models, Markov chains,

and hidden Markov models, respectively.

In order to analyze large deviation properties of m̂ with decreasing critical values and the

other existing moment selection procedures, we focus on the convergence rate of the overestima-

tion probability. First, we �rst derive the optimal (fastest) convergence rate of overestimation

probabilities for a broad class estimators of the number of correct moments. Then, we show that

such an optimal rate is attained by m̂ with decreasing critical values. Consider the following

class of estimators for the number of correct moments.

De�nition 3.1. An estimator (or procedure) ~m for the number of correct moments is called

regular if for all P 2 Pm n Pm+1 and all m = p+ 1; : : : ;M;

lim inf
n!1

P n ( ~m < m) � �; (19)

holds for some � 2 [0; 1).

Recall that PM+1 is the empty set by convention. We can show that under some regularity

conditions several existing estimators are regular, such as m̂ with decreasing critical values and

the GMM and GEL-based estimators. Also note that this class contains not only consistent

estimators (� = 0, e.g., BIC-type criteria) but also inconsistent ones for underestimation (0 <

� < 1, e.g., AIC-type criteria). In the class of regular estimators, we compare the convergence

rates of the overestimation probabilities. The main result of this subsection is summarized as

follows. Let �m;� = fQ 2M : infP2Pm I (QkP ) � �g.

Theorem 3.2 (Overestimation error optimality). (i) Suppose that Assumptions 2.1 and

3.1 hold and ~m is regular. Then

lim inf
n!1

1

n
logP n ( ~m > m) � � inf

Q2Pm+1
I (QkP ) ; (20)

for each P 2M n Pm+1 and each m = p+ 1; : : : ;M .

(ii) Suppose that Assumptions 2.1 and 3.1 hold, m̂ is regular, and the critical values satisfy

limn!1 �j;n = 0 for each j = p + 1; : : : ;M and �M;�M;n
� �M�1;�M�1;n � � � � � �p+1;�p+1;n

12



for all n 2 N. Then

lim sup
n!1

1

n
logP n (m̂ > m) = � inf

Q2�m+1;0
I (QkP ) ; (21)

for each P 2
�
P 2M n Pm+1 : infQ2Pm+1 I (QkP ) <1

	
and each m = p+ 1; : : : ;M .

(iii) Suppose that Assumptions 2.1 and 3.1 hold, m̂ is regular, and the critical values sat-

isfy limn!1 �j;n = 0 for each j = p + 1; : : : ;M and �M;�M;n
� �M�1;�M�1;n � � � � �

�p+1;�p+1;n for all n 2 N. Moreover, assume that if Q =2 Pj+1, then infP2Pj I (QkP ) <
infP2Pj+1 I (QkP ) for each j = p+ 1; : : : ;M � 1. Then

lim sup
n!1

1

n
logP n (m̂ > m) = � inf

Q2Pm+1
I (QkP ) ; (22)

for all P 2
�
P 2M n Pm+1 : infQ2Pm+1 I (QkP ) <1

	
and all m = p+ 1; : : : ;M .

Remark 3.7. Theorem 3.2 (i) says that in the class of regular estimators the convergence rate of

the overestimation probability is bounded from below by � infQ2Pm+1 I (QkP ). If P 2MnPm+1
satis�es infQ2Pm+1 I (QkP ) < 1, this bound becomes non-trivial. Note that � in (19) has no
e�ect on the lower bound. In other words, even if we employ a inconsistent estimators with � > 0

(e.g., AIC-type criterion), we cannot re�ne the optimal convergence rate of the overestimation

probability.

Remark 3.8. Theorem 3.2 (ii) provides the convergence rate of the overestimation probability

of m̂ in a general setup. Theorem 3.2 (iii) says that under the additional assumption which

ensures �m+1;0 = Pm+1, m̂ attains the lower bound in (20), i.e., m̂ has the overestimation error

optimality.

Remark 3.9. Compared to (18) in Theorem 3.1 (ii), (22) holds only for P 2�
P 2M n Pm+1 : infQ2Pm+1 I (QkP ) <1

	
. However, we always have a non-trivial convergence

rate in this set.

3.3 Minimax Misclassi�cation Optimality

We now consider the optimality of empirical likelihood for estimating the true moment selection

vector. For simplicity, we assume that the true number of moments mo is known. Thus, the

ELST-based estimator for true selection vector is:

ĉ = arg min
c2Cmo

�
inf
P2Pc

I (�nkP )
�
; (23)

13



i.e., choose the selection vector which minimizes the empirical likelihood ratio. Since the param-

eter space Cmo is discrete, it is also reasonable to analyze the large deviation properties of ĉ as

well as the case of m̂. Let

�cmo =

�
� 2M : inf

P2Pc
I (�jjP ) = min

c02Cmo
inf
P2Pc0

I (�jjP )
�
;

be a subset ofM, where c is selected. Note that ĉ is de�ned by the partition f�cmogc2Cmo . We
particularly focus on the misclassi�cation probability of ĉ, i.e., P n (ĉ 6= c) under P 2 Pc. By
using �cmo , the misclassi�cation probability is written as

P n (ĉ 6= c) = P n
�
�n 2 �cmo

�
; (24)

for each P 2 Pc. If ĉ is consistent, (24) converges to zero. Since (24) is written by �n, Sanov's
theorem is useful to analyze the large deviation property. However, (24) is too ambitious as an

optimality criterion for ĉ. As Choirat and Seri (2002) indicated, the globally optimal estimator,

which attains the lower bound of lim inf
n!1

1
n
logP n (ĉ 6= c) for each P 2 Pc, does not exist in general.

Therefore, we consider the maximum of the large deviation misclassi�cation probability:

max
c2Cmo

sup
P2Pc

lim sup
n!1

1

n
logP n (ĉ 6= c) : (25)

Let f
cmogc2Cmo be an alternative partition ofM, and ~c be an alternative estimators de�ned as

~c = c if �n 2 
cmo ; (26)

for all c 2 Cmo . An estimator ~c is called regular if

lim
�!0

max
c2Cmo

sup
P2Pc

lim sup
n!1

1

n
logP

�
�n 2

�

cmo

���
= max

c2Cmo
sup
P2Pc

lim sup
n!1

1

n
logP

�
�n 2

�

cmo

��
:

See Zeitouni and Gutman (1991) for a discussion of this condition. The minimax optimality of

ĉ is obtained as follows.

Theorem 3.3 (Optimality of ĉ). Suppose that Assumptions 2.1 and 3.1 hold, and ~c is regular.

Then

max
c2Cmo

sup
P2Pc

lim sup
n!1

1

n
logP (ĉ 6= c) � max

c2Cmo
sup
P2Pc

lim sup
n!1

1

n
logP (ĉ 6= c) :

Remark 3.10. Theorem 3.3 says that the worst (slowest) convergence rate of the misclassi�ca-

tion probability is minimized by ĉ. The regularity assumption for ~c is required due to a rough

nature of Sanov's theorem.

Remark 3.11. Kitamura and Otsu (2005) analyzed the limit of the maximum large deviation

probability (i.e., limn!1maxc2Cmo supP2Pc
1
n
logP (ĉ 6= c)). We conjecture that ĉ is also minimax

optimal in the sense of Kitamura and Otsu (2005).

14



4 Simulation

To be written. Use the setup of Hong, Preston and Shum (2003).

5 Conclusion

This paper proposes optimal large deviation properties of the empirical likelihood sequential

testing procedures for selecting all correct moment restrictions. We derive three optimal prop-

erties: (i) the generalized Neyman-Pearson optimality, (ii) the overestimation error optimality,

and (iii) the minimax misclassi�cation error optimality. We �nd that empirical likelihood op-

timally controls the large deviation error probabilities and is more preferable than the other

GEL objective functions including GMM. Although it is outside the scope of this paper, we

can expect that similar optimal properties hold for the other empirical likelihood-based selection

procedures (e.g., BIC-type criterion). It is interesting to extend our approach to the other model

selection problems (e.g., lag selection) or discrete parameter estimation problems (e.g., change

point estimation).

A Mathematical Appendix

A.1 Proof of Theorem 3.1

A.1.1 Proof of (i)

From (15), it is su�cient to show that

sup
P2Pm

lim sup
n!1

1

n
logP n (m̂ < m) = sup

P2Pm
lim sup
n!1

1

n
logP n

�
�n 2 �m

�
� ��; (27)

for each m = p + 1; : : : ;M . A similar argument as the proof of Kitamura (2001, Theorem 2)

yields (27).

A.1.2 Proof of (ii)

Pick any m = p+ 1; : : :M . We �rst show that there exists n0 2 N such that

�m+1 � 
m+1 (n) (28)

holds for all n > n0. Suppose (28) does not hold. Then there exists an in�nite sequence of

measures f�`g`2N such that

�` 2 �m+1 and �` 2 
m+1 (n`):

15



Since the set �m+1 =
�
Q 2M : infP2Pm+1 I (QkP ) � �

	
is compact in the weak topology

(Deuschel and Stroock (1989, Ch. 3.2)), there exists a subsequence f`kgk2N such that �`k
converges to a measure � 2 �m+1. For such a �, we can take an open ball B (�; �=2) such

that B (�; �=2) �
�

m+1 (n`0)

��
holds for some subsequence fn`0g`02N. Also, there exists `� 2 N

such that �`� 2 B (�; �=2). Since �`� 2 �m+1, we have

inf
P2Pm+1

I (�`�kP ) < �: (29)

Therefore,

sup
P2Pm+1

lim sup
n!1

1

n
logP n

�
�n 2

�

m+1 (n`0)

���
� sup

P2Pm+1
lim inf
`0!1

1

n`0
logP n`0

�
�n`0 2

�

m+1 (n`0)

���
� sup

P2Pm+1
lim inf
n!1

1

n
logP n (�n 2 B (�; �=2))

� sup
P2Pm+1

�
� inf
Q2B(�;�=2)

I (QkP )
�

� sup
P2Pm+1

[�I (�`�kP )]

> ��; (30)

where the second inequality follows from B (�; �=2) �
�

m+1 (n`0)

��
, the third inequality follows

from Sanov's theorem (the second part of Theorem 2.1), the fourth inequality follows from

�`� 2 B (�; �=2), and the last inequality follows from (29). However, since (17) requires

sup
P2Pm+1

lim sup
n!1

1

n
logP n

�
�n 2

�

m+1 (n)

���
� ��;

we have a contradiction. Therefore, there exists n0 2 N such that (28) holds for all n > n0, and
we have

lim sup
n!1

1

n
logQn (m̂ > m) = lim sup

n!1

1

n
logQn (�n 2 �m+1)

� lim sup
n!1

1

n
logP n (�n 2 
m+1 (n)) = lim sup

n!1

1

n
logP n ( ~m > m) ;

for all Q 2M. The conclusion is obtained.
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A.2 Proof of Theorem 3.2

Proof of (i). This result is shown by applying Stein's lemma (Lemma 2.1). Let

An = f ~m � m+ 1g ;

P 2
�
P 2M n Pm+1 : inf

Q2Pm+1
I (QkP ) <1

�
;

Q 2 Pm+1 n Pm+2:

Pick any m = p+ 1; : : :M . Since ~m is regular, we have

lim inf
n!1

Qn (An) = lim inf
n!1

Qn ( ~m � m+ 1) = 1� lim inf
n!1

Qn ( ~m < m+ 1) � 1� � > 0;

for each Q 2 Pm+1 n Pm+2. Since the assumption of Lemma 2.1 is satis�ed, we have

lim inf
n!1

1

n
logP n ( ~m > m) � lim inf

n!1

1

n
logP n ( ~m � m+ 1) � �I (QkP ) ; (31)

for each P 2M n Pm+1 and all Q 2 Pm+1 n Pm+2. Similarly, we have

lim inf
n!1

Qn (An) � lim inf
n!1

Qn ( ~m � m+ j) = 1� lim inf
n!1

Qn ( ~m < m+ j) > 0;

for each Q 2 Pm+j n Pm+j+1 and each j = 1; : : : ;M �m� 1. Thus, Lemma 2.1 yields

lim inf
n!1

1

n
logP n ( ~m > m) � lim inf

n!1

1

n
logP n ( ~m � m+ j) � �I (QkP ) ; (32)

for each P 2MnPm+1 and each Q 2 Pm+j nPm+j+1. Since Pm+1 =
M�mS
j=1

(Pm+j n Pm+j+1), (31)

and (32) yield the conclusion.

Proof of (ii). De�ne

�j;�j;n =

�
Q 2M : inf

P2Pj
I (QkP ) � �j;n

�
; �j;� =

�
Q 2M : inf

P2Pj
I (QkP ) � �

�
:

Pick any m = p + 1; : : : ;M and any P � 2
�
P 2M n Pm+1 : infQ2Pm+1 I (QkP ) <1

	
. For all

� 2 (0;1), the set �m+1;� is compact in the weak topology (see Deuschel and Stroock (1989,
Ch. 3.2)). Therefore, Sanov's theorem (Theorem 2.1) implies that

lim sup
n!1

1

n
logP �n

�
�n 2 �m;�m;n

�
� lim sup

n!1

1

n
logP �n (�n 2 �m+1;�) � � inf

Q2�m+1;�
I (QkP �) ;

(33)

for all � 2 (0;1). Since the sequence of the sets f�m+1;�g is non-increasing as � # 0, the
sequence

�
infQ2�m+1;� I (QkP �)

	
is non-decreasing as � # 0. Also, from Pm+1 � �m+1;0,�

infQ2�m+1;� I (QkP �)
	
is bounded above by infQ2�m+1;0 I (QkP �) � infQ2Pm+1 I (QkP �) < 1.
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Thus, the sequence
�
infQ2�m+1;� I (QkP �)

	
converges as � # 0 to some limit �I � infQ2�m+1;0 I (QkP �),

and we can take a decreasing sequence of positive numbers f�`g`2N such that
n
infQ2�m+1;�` I (QkP

�)
o

increases to �I as `!1.
Since �m+1;�` is compact and I (QkP ) is lower semicontinuous for Q 2 �m+1;�` , the in�mum

infQ2�m+1;�` I (QkP
�) is attained on the compact set �m+1;�` , i.e., there exists Q` 2 �m+1;�` such

that I (Q`kP �) = infQ2�m+1;�` I (QkP
�).

Now, consider the sequence of the sets fcl (fQ` : ` � `0g)g`02N. Since cl (fQ` : ` � `0g) is
closed and cl (fQ` : ` � `0g) � �m+1;�`0 for all `0 2 N, cl (fQ` : ` � `0g) is compact for all `0 2 N.
Therefore, since fcl (fQ` : ` � `0g)g`02N is a non-increasing sequence of non-empty compact sets,
the Heine-Borel theorem implies that

1T
`0=1

cl (fQ` : ` � `0g) is non-empty.

Pick �Q 2
1T
`0=1

cl (fQ` : ` � `0g). Since I (Q`kP �) � �I for all ` 2 N, we have fQ` : ` � `0g ��
Q 2M : I (QkP �) � �I

	
. Thus, from cl (fQ` : ` � `0g) �

�
Q 2M : I (QkP �) � �I

	
, we have

I
�
�QkP �

�
� �I. On the other hand, since �Q 2 �m+1;�` for all ` 2 N, we have �Q 2 �m+1;0 and

thus �I � infQ2�m+1;0 I (QkP �) � I
�
�QkP �

�
. Collecting these results,

I
�
�QkP �

�
� �I � inf

Q2�m+1;0
I (QkP �) � I

�
�QkP �

�
;

i.e.,
n
infQ2�m+1;�` I (QkP

�)
o
increases to �I = infQ2�m+1;0 I (QkP �) as `!1.

Therefore, from (33), we have

lim sup
n!1

1

n
logP n (m̂ > m) = lim sup

n!1

1

n
logP n

�
�n 2 �m;�m;n

�
� � inf

Q2�m+1;0
I (QkP ) ; (34)

for all P 2
�
P 2M n Pm+1 : infQ2Pm+1 I (QkP ) <1

	
and all m = p+ 1; : : : ;M .

Proof of (iii). Since m̂ is regular, Part (i) implies that

lim inf
n!1

1

n
logP n (m̂ > m) � � inf

Q2Pm+1
I (QkP ) ;

for each P 2
�
P 2M n Pm+1 : infQ2Pm+1 I (QkP ) <1

	
and each m = p + 1; : : : ;M . Thus,

from Part (ii), it is su�cient to show that

�m+1;0 � Pm+1: (35)

Suppose otherwise. Then there exists ~Q 2 �m+1;0 such that ~Q =2 Pm+1. From ~Q 2 �m+1;0, we
have infP2Pm+1 I

�
~QkP

�
= 0. However, from the additional assumption for Part (iii), we have

infP2Pm I
�
~QkP

�
< infP2Pm+1 I

�
~QkP

�
= 0, and this is a contradiction. Therefore, (35) holds

true, and we have

lim sup
n!1

1

n
logP n (m̂ > m) � � inf

Q2�m+1;0
I (QkP ) � � inf

Q2Pm+1
I (QkP ) ;

for each P 2
�
P 2M n Pm+1 : infQ2Pm+1 I (QkP ) <1

	
and each m = p+ 1; : : : ;M .
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A.3 Proof of Theorem 3.3

Sanov's theorem yields that

lim sup
n!1

1

n
logP n (ĉ 6= c) = lim sup

n!1

1

n
logP n

�
�n 2 �cmo

�
� lim sup

n!1

1

n
logP n

�
�n 2 cl

�
�cmo

��
� � inf

Q2cl(�cmo)
I (QjjP ) ;

for each P 2 Pc. Therefore,

lim sup
n!1

1

n
logP n (ĉ 6= c) � max

c2Cmo
sup
P2Pc

"
� inf
Q2cl(�cmo)

I (QjjP )
#
: (36)

Pick any partition f
cmogc2Cmo . By applying Sanov's theorem again,

lim inf
n!1

1

n
logP n

�
�n 2

�

cmo

��� � � inf
Q2(
cmo)

�
I (QjjP ) ;

for each � 2 (0;1). Therefore,

max
c2Cmo

sup
P2Pc

lim inf
n!1

1

n
logP n

�
�n 2

�

cmo

��� � max
c2Cmo

sup
P2Pc

"
� inf
Q2(
cmo)

�
I (QjjP )

#
; (37)

for each � 2 (0;1). The de�nition of �cmo yields that

max
c2Cmo

sup
P2Pc

"
� inf
Q2cl(�cmo)

I (QjjP )
#
� max

c2Cmo
sup
P2Pc

"
� inf
Q2(
cmo)

�
I (QjjP )

#
; (38)

for each � 2 (0;1). Combining (36), (37), and (38),

lim sup
n!1

1

n
logP n (ĉ 6= c) � max

c2Cmo
sup
P2Pc

lim inf
n!1

1

n
logP n

�
�n 2

�

cmo

���
;

for each � 2 (0;1). Therefore, the regularity of ~c yields the conclusion.
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