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•Some history
•"Fishers biggest blunder" - the fiducial argument
•Confidence distributions and confidence curves
•Neyman-Pearson lemma 
•Confidence and likelihood
•Combining information
•To bias-correct or not to bias-correct
•Box-shaped confidence curves - nested families of confidence 
bands

•Applications
Quantile regression on Norwegian income data
Abundance of bowhead whales from Alaskan photo-ID 

data

Outline
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History

Laplace 1774-1786
• Inverse probability: Bayesian 

posteriors from flat priors

( ) ( )
( )

;
;

f x
p

f x t dt
θ

θ =
∫



4

R.A. Fisher (1930) Inverse probability

"to end 150 years of fog and confusion".    
"I know of only one case in mathematics .. 
accepted .. by the most eminent men 
[Laplace and Gauss...] ...to be 
fundamentally false and devoid of 
foundation. Yet that is exactly the position 
in respect to inverse probability ..error on 
a question of prime theoretical 
importance...Inverse probability has, I 
beleive, survived so long in spite of its 
unsatisfactory basis, because its critics 
have until recent times put forward 
nothing to replace it as a rational theory 
of learning by experience."
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Pivots
•Have the same distribution
regardless of the parameter
•Are monotoneous (increasing) 
in the parameter a.s.
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Example
The chi-square pivot for the
empirical variance at v
degrees of freedom yields
the fiducial cdf:
Fiducial density:
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Jerzy Neyman 1930-1941
•Confidence intervals and regions
•Optimality of tests and confidence
regions under monotoneous likelihood
ratio
•Confidence intervals are obtained
from fiducial distributions:
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Alan Birnbaum 1961: Confidence 
curves: an omnibus technique for 
estimation and testing statistical hypotheses.

”incorporating
confidence intervals
and limits at various
limits”

For several
parameters 
”analogous methods
…nested families of
confidence regions”.
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The Bayesian counterrevolution
• Distributional inference.
• Uncertainty presented as posterior distributions.
• Rational updating of information.
• Integrates judgemental and empirical information. 
• Computational power and versatility: MCMC.

But
• The posterior distribution (and likelihood inference) might be 

biased.
• Prior distributions are needed, even when no information is 

available. Flat prior densities are still “informative”.
• The interpretation of the posterior distribution is unclear when the 

prior distribution is not a probability distribution.
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B. Efron
1987: Better bootstrap confidence 
intervals

Efron. 1998. R.A. Fisher in the 21st Century
Fiducial probability = “Fisher's biggest blunder”
“I believe that objective Bayes methods will develop for such problems, 
and that something like fiducial inference will play an important role in 
this development. Maybe Fisher's biggest blunder will become a big hit 
in the 21st century!”
“applied statistics seems to need an effective compromise between
Bayesian and frequentist ideas, and right now there is no substitute in 
sight for the Fisherian synthesis.”
Fiducial distribution  = confidence distribution
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The fate of the fiducial argument – can Fisher and Neyman agree?

“Both Fisher and Neyman would probably have protested against the
use of confidence distributions” (Efron 1998)

"Fisher was intuitively fully convinced of the importance of "fiducial
inference", which he considered the jewel in the crown of the "ideas and 
nomenclature" for which he was responsible" (Zabel 1992)

"most statisticians, unable to separate the good from the bad in Fisher's 
arguments, considered the whole fiducial argument Fisher's biggest 
blunder, or his one great failure, and the whole area fell into disrepute”
(Hampel 2002)

The fiducial argument builds a "bridge between aleatory probabilities 
(the only ones used by Neyman) and epistemic probabilities (the only 
ones used by Bayesians), by implicitly introducing, as a new type, 
frequentist epistemic probabilities." (Hampel 2002)
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Hampel (2002): The fiducial argument builds a "bridge between aleatory
probabilities (the only ones used by Neyman) and epistemic probabilities 
(the only ones used by Bayesians), by implicitly introducing, as a new 
type, frequentist epistemic probabilities.“

•probability is a good term for aleatory probability 
•confidence for epistemic "probability“ – the currency of digested 
information
•likelihood – the currency of raw information in data, brings 
probability and confidence together

•Confidence distributions are not sigma-additive! It distributes
confidence over intervals or nested families of regions
•Dimensions cannot automatically be reduced by integration.
•The confidence curve focus on confidence over regions
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Neyman-Pearson lemma (Schweder and Hjort 2002)

A confidence distribution based on a 
sufficient statistic S with monotone 
likelihood ratio in a scalar parameter 
is uniformly most powerful: 
For any value of the parameter, and 
For any spread functional about it
The spread of the confidence
distribution based on S is 
stochastically less than that based on
another statistic T.
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Confidence and likelihood
Deviance

Null distribution cdf

Confidence from deviance

Profile deviance

Null distribution

Confidence from profile
deviance or other pseudo

likelihood
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Pseudo deviance calibrated to confidence curve.
Confidence curve calibrated to approximate
deviance.
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Combining information

J independent sources.
Confidence curves
Deviance functions

Likelihood synthesis
K is the chi-square cdf
with sum df

Confidence synthesis
Singh, Xie and 
Strawderman (2005). 
H double exponential cdf, 
G the convolution cdf of J
double exponentials. 
Scalar parameter.
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To bias-correct, or not to bias-correct?
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A scalar parameter is median bias-
corrected by b

The bias-corrected deviance is 
calibrated to a confidence curve

For a sample from the Efron-family, 
the calibrated bias-corrected deviance
is to second order the tail-symmetric
confidence curve from the pivot

The confidence curve from the
deviance has maximum power at 
infinitessimal levels of confidence
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Application: Four photo surveys of bowhead whales off Barrow, Alaska. 
Schweder (2003)

1137, 1, 3949, 2, 7520, 3, 6644, 7, 128matures

6211, 0, 999, 0, 6732, 6, 35315, 0, 191immatures

XF85S85F85S 85Survey

# of marked n, recaptured r, and unmarked bowheads u, 
and  # of unique marked X.  Spring and Fall 1985-86.
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Box-shaped confidence curves for curve-parameters
families of simultaneous confidence bands Schweder (2007)

A curve-parameter is of high dimension T.

A box-shaped confidence region is a simultaneous
confidence band.

Beran (1988) adjusts the degree of confidence for 
a point-wise confidence band to make it a 
simultaneous confidence band.

When the point-wise confidence curve is based on
bootstrapping and Efron’s abc-method, the point-
wise confidence curve is adjusted to a box-shaped
confidence curve by the bootstrap distribution of
the maximum point-wise curve.
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Application: Income and wealth survey, Norway 2002. 22496 Males.
95% Quantile regression of capital income on other income (wage), controlled for 
age. 1000 bootstrap replicates.
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Summary
Confidence distributions and confidence curves

- provides distributional inference on par with Bayesian posterior distributions, 
not based on priors

- allows coherent learning

- apply to prediction

- distributes confidence over regions, are not sigma-additive

- might not be proper (the Fieller problem), can be median bias-corrected

- reduce dimension by profiling rather than integration

- keeps aleatory and epistemic probability apart, but provides a bridge between 
the two: probability vs. confidence

- are transformation invariant

- provides optimal inference in simple models
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