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Abstract

We propose non-nested tests for competing conditional moment restriction models using a method
of conditional empirical likelihood, recently suggested by Kitamura, Tripathi and Ahn (2004) and
Zhang and Gijbels (2003). We use the implied conditional probabilities to define our test statistics,
which take into account the full implications of conditional moment restrictions. We develop three
types of non-nested tests: the moment encompassing, Cox-type, and efficient score encompassing
tests. We derive the asymptotic null distributions and investigate their power properties against a
sequence of local alternatives and a fixed global alternative. Our tests have power proerties that
are very distinct from some of the existing tests based on finite-dimensional unconditional moment
restrictions and are consistent against alternatives that cannot be detected by the latter type tests. In
particular, if the support of the moment function is bounded, our Cox-type test is consistent against
all departures from the null hypothesis toward the non-nested alternative hypothesis under very mild
conditions. On the other hand, the moment encompassing and efficient score encompassing tests
require some additional assumptions for consistency which guarantee the non-centrality parameters

to be non-zero. Simulation experiments show that our tests have reasonable finite sample properties.
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1 Introduction

Econometric models are often written in the forms of conditional moment restrictions. While researchers
derive and estimate their conditional moment restriction models, those models are typically non-nested
and should be evaluated by some formal tests. This paper proposes non-nested tests for competing
conditional moment restriction models using a method of empirical likelihood. Our tests are based
on the method of conditional empirical likelihood (CEL) developed by Kitamura, Tripathi and Ahn
(2004) and Zhang and Gijbels (2003).! By using the implied conditional probabilities from CEL,
we develop three CEL-based non-nested tests: the moment encompassing, Cox-type, and efficient score
encompassing tests. Compared to the existing non-nested tests which mainly focus on testing parametric
models or unconditional moment restrictions, our approach tests conditional moment restrictions which
imply an infinite number of unconditional moment restrictions. Our tests are asymptotically equivalent
to some unconditional moment-based tests under the null and local alternative hypotheses. However,
their global power properties under the alternative hypothesis are significantly different. In particular, if
support of the moment function is bounded, the Cox-type test is consistent against all departures from
the null hypothesis toward the non-nested alternative hypothesis under very mild conditions. On the
other hand, the moment encompassing and efficient score encompassing tests require some additional
assumptions for consistency which guarantee the non-zero noncentrality parameters, as is true with
some of the existing non-nested tests.

Since Cox (1961, 1962), non-nested testing for competitive statistical models has become a standard
technique to evaluate specification of a statistical model against specific alternative models.? Singleton
(1985), Ghysels and Hall (1990), and Smith (1992) proposed non-nested testing procedures for uncon-
ditional moment restriction models. Those procedures are extended by Smith (1997) and Ramalho
and Smith (2002) to the generalized empirical likelihood (GEL) context.®> Ramalho and Smith (2002)
focused on the implied unconditional probabilities from the null unconditional moment restrictions,
and derived GEL analogues of the moment encompassing, Cox-type, and parametric encompassing
tests. We extend the approach by Smith (1997) and Ramalho and Smith (2002) to deal with condi-
tional moment restriction models as the null hypotheses, where an infinite number of unconditional
moment restrictions is implied. In particular, we employ the method of CEL to obtain the implied

conditional probabilities from conditional moment restrictions and develop non-nested test statistics

'Kitamura, Tripathi and Ahn’s (2004) smoothed empirical likelihood and Zhang and Gijbels’ (2003) sieve empirical
likelihood are quite similar concepts. To avoid confusion, we follow Kitamura (2003) and adopt a new terminology,

conditional empirical likelihood.
?Examples include Davidson and MacKinnon (1981), Fisher and McAleer (1981), White (1982), Gourieroux, Monfort

and Trognon (1983), Loh (1985), Mizon and Richard (1986), Wooldridge (1990), Godfrey (1998), and Chen and Kuan
(2002), to mention only a few. See also Gourieroux and Monfort (1994), Pesaran and Weeks (2001), and Dhaene (1997)

for a review of non-nested and encompassing tests.
3GEL is originally proposed by Smith (1997), and its higher order properties are investigated by Newey and Smith

(2004).



based on the implied probabilities. Since the CEL-based implied conditional probabilities contain all
information from the null conditional moment restrictions, we can evaluate the specification of the null
model against some specific alternatives.

Since Owen (1988) and Qin and Lawless (1994), the method of empirical likelihood has become
an attractive alternative against the conventional generalized method of moments (GMM) approach.*
Kitamura (2001) and Newey and Smith (2004) showed desirable properties of empirical likelihood for
testing and estimating unconditional moment restriction models, respectively. To deal with conditional
moment restriction models, Kitamura, Tripathi and Ahn (2004) and Zhang and Gijbels (2003) devel-
oped the method of CEL and showed that the CEL estimator is asymptotically normal and efficient.
Tripathi and Kitamura (2003) proposed CEL-based consistent specification tests for conditional mo-
ment restrictions. This paper extends the CEL approach to non-nested testing problems. Compared to
Tripathi and Kitamura’s (2003) specification tests, our tests check the validity of the null model against
some specific alternatives, and our test statistics converge at the parametric rate, i.e., y/n-rate. How-
ever, as a cost of the parametric convergence rate, our tests have the implicit null hypothesis, i.e., the
set of distributions where the tests do not have non-trivial power. Kitamura (2003) employed CEL as a
model selection criterion and proposed a Vuong (1989) type discrimination test for conditional moment
restriction models, which tests whether two competing models have the same distance or divergence
(in terms of the Kullback-Leibler information criterion) from the true model. Our non-nested testing
approach sets one of the competing models as the null hypothesis and checks the validity of the null
model.

This paper is organized as follows. Section 2 introduces our basic set-up and test statistics. In
Sections 3.1 and 3.2, we derive the null distributions and local power properties of the test statistics.
Section 3.3 discusses the consistency of our tests. We provide sufficient conditions for the consistency of
the Cox-type test and compare with the existing unconditional moment-based tests. Section 4 reports
simulation results. Section 5 concludes.

We use the following notation. The abbreviations “a.s.” and “w.p.a.1” mean “almost surely” and
“with probability approaching one,” respectively. ||-|| is the Frobenius norm. A~, Amin (A4), and Apax (A4)
are a g-inverse, the minimum eigenvalue, and the maximum eigenvalue of a matrix A, respectively. I {A}
is the indicator function for an event A. int (A) is the interior of a set A. a(?) means the i-th component

of a vector a.

2 Set-up and Test Statistics

2.1 Non-nested Hypotheses

Suppose that we observe a random sample {z;, z;};;, where z € X C R® and z € R? . Assume that

F. ¢ Fp, where F, and F, are the o-algebra for z and z, respectively. Consider the two competing

*See Owen (2001) for a comprehensive review of the empirical likelihood approach.



conditional moment restrictions:

Hg B [9(2;60”33] =0 as. €, (1)
H, : E[h(z,7)|x] =0 as. z,
where g : R% x B — R% and h : R%= xT' — R% are known functions, and 3, € B C R% and

70 €I C R% are unknown parameters.” Let M 2|z be the space of all conditional measures of z given

x. The spaces of conditional measures that satisfy Hy, and Hj, are written as
gz\:v = Ugen {(Mz|m>:c€X € Mz\x : /g(zaﬁ)d:uzhv =0 as. :E} ) (2)

Hue = User {(qulx)zéé‘( €M, : /h(z,v)duzﬂC =0 a.s. ZL‘} )

0
z|lx

respectively. Let (,u ) N be the true conditional measure of z given x. The hypotheses H, and Hy,
Tre

in (1) are alternatively written as

We assume that the models Hy, and Hj, are non-nested, i.e.,
gz|x & Hz\x and Hz|:z: & gz|z- (3)

Note that the conditional moment restrictions Hy, and Hj, imply the following unconditional moment

restrictions

HY : BE[Qqy(z)g(z 80)] =0, (4)
Hj : E[Qn(z)h(z,7)] =0,

for any matrices of measurable functions @), and @, respectively. Several papers such as Singleton
(1985), Smith (1992), and Ramalho and Smith (2002) proposed non-nested tests between the uncon-
ditional moment restrictions Hg and Hg for some specific choices of Q4 and Qj. However, if we are
interested in the validity of the original conditional moment restriction Hy or Hj, the conventional
non-nested tests for HgU or H% may not be appropriate. For example, suppose that the true joint
measure satisfies E [Q () g(z,80)] = 0 but E[Q, (z) g(z,8y)] # 0 for some Q,. Then although the
original null hypothesis H, is violated, the existing non-nested tests based on HgU cannot reject the

null hypothesis H,.

’The hypotheses H, and Hj should be restrictions on the same conditional distribution z|z. If the conditioning
variables are different, i.e., Hy : E[g(z, 8y)]zg] =0 (a.s. xz4) and Hy, : E[h(z,7¢)|zn] = 0 (a.s. xp), our approach does not
work. However, when we are interested in testing Hy : E{g(z, 8y)|zg, zn] = 0 (a.s. x4, xn) and Hy, : E[h(z,vy)|zg, zn] =0

(a.s. xg,xn), our approach is applicable. See Design I in Section 4 for an example.



To be precise, consider the spaces of conditional measures that satisfy Hg and HY | i.e.,
64, = Usen{ (mn), € Moo [ [ Q@) 0 8)duts, =0 orsome i} (5)

Hz|x = Uyer {(M'Z$>x€?( < Mz\x : //Qh (.1’) h(za’Y)szmd/ix = 0 for some /“La:} )

respectively. Since Hy and Hj, imply HU and Hh, respectively, we have G|, C Qij‘x and H,|, C HzU|:p'

Suppose (“2@) cx € G.ja, 1.6, Hy holds true. We will see that our non-nested test statistics are as-
X

ymptotically normal if (ug|$> N € G|, and generally diverge if (ug‘x) N € Qg‘x \ G.|»- However,
xre TE

non-nested test statistics based on HgU are always asymptotically normal if (ug‘x) e € gg‘x \ Gl

Although it may look plausible to construct some adequate matrix (), based on the asymptotic lin-

ear forms of our non-nested test statistics, those asymptotic linear forms are available only under

(,u2| x) € G|, (not gz‘m \ G.|) and local alternatives. See Section 3.3 for a detailed discussion. This
TEX

paper proposes three CEL-based non-nested tests for the conditional moment restrictions H, against
H,,.

2.2 Conditional Empirical Likelihood

This subsection introduces the CEL approach. CEL is nonparametric likelihood constructed by the

conditional moment restrictions in (1). Let pg for i, = 1,...,n be multinomial conditional weights
K (1)271']

under the null hypothesis Hy, and wj; = W be Nadaraya-Watson kernel weights, where K :
i=1 on

R? — R is a kernel function and b, is a bandwidth parameter. We consider the following maximization

problem using p?i:6

max Z Z wj; log p; (6)

n
{pj'L}J 14— 1] 1

n
Zp?izl, Zp?ig(zj,,@):O, for i=1,...,n.
j=1 j=1

The conditional moment restriction Hy is incorporated in the constraints Z;L 1 p?ig (zj,8) = 0. This
problem can be solved by the Lagrange multiplier method. Let {uf}? | and {\?}? | be the Lagrange

multipliers. The Lagrangian is written as

=30 wosrd - Zm Zpﬂ MY Zpﬂg %8

=1 j=1 =1

The solution for p?i (i.e., the implied conditional probability) is
Wy
L+ M (8) g (2,8)

S Under misspecification, the solution of (6) with respect to p?i can be (even asymptotically) negative. Thus, we do not

ﬁ?z’ (B) = (7)

add non-negativity constraints p?i > 0 here. See Schennach (2006).



for i,j =1,...,n, where XY (3) satisfies:

a wjig (25, 5) _
XN e " ®)

j=1
for i =1,...,n.” If we do not impose the conditional moment restriction Z;‘:l p?ig (25,8) = 0in (6),
the solution of the unrestricted maximization problem is ﬁﬁ = wj; for 7,7 = 1,...,n. Using the implied

conditional probabilities {13?1 (B) ij=1, the profile CEL function based on Hy is defined as:

n n n n
Wi
by (B) =) ILi ) wjlogpf(B) =) Iy wjlog ( v ) ; (9)
; ; " ; Z} 1+ (8) g(2,8)
where I; = I {z; € X, } is a trimming term on a fixed subset X, C X'. This trimming term allows us to
focus on specification testing over regions in X which are empirically more relevant. It also avoids the
boundary problem associated with the kernel estimators, see Tripathi and Kitamura (2003, p.2062).
The CEL estimator is defined as BCEL = argmaxgep g (5). Under Hy, BCEL is consistent and
asymptotically normal (see Kitamura, Tripathi and Ahn (2004)).® In the same manner, we can define
CEL ¢}, (y) based on Hj, and the CEL estimator 4o, for 7y. Kitamura (2003) showed that if H, is
misspecified, BC g1, converges to the pseudo-true value B¢, that is
“pr =argmin F |I; max F [log (14 \g (2, il . 10
BeEL gﬁeB Zx\geRdg [ g( g (2 /6)) | 1} (10)
The pseudo-true value v¢ ; for 4oy is defined in the same manner.
To construct the non-nested test statistics, we employ some y/n-consistent estimators B and 4 for
By and 7, respectively. B and 4 may be the CEL estimators or other \/n-consistent estimators such
as the GMM estimators based on the unconditional moment restrictions in (4). Let 3, and ~, be the
pseudo-true values for B and 4, respectively. Given B, the implied conditional probabilities from H,
are obtained as {]5?1(3) =1 in (7). By comparing ﬁé’z(ﬁ’) and f)% , we develop three non-nested tests:

the moment encompassing, Cox-type, and efficient score encompassing tests.
2.3 Test Statistics

2.3.1 Moment Encompassing Test Statistic

We first define the CEL-based moment encompassing test statistic, which focuses on moment indicators
in the form of m (x4, z;, 5,7) = M (x5, B,7) m (2, B,7), where M (4, B,7) is a dyy, X dpy possibly random
matrix of functions of {z;, z;};—; and m (z;, 8,7) is a dy, X 1 vector of functions of z;. A typical choice of

m (zi, 8,7) is h(z,), which is based on the alternative conditional moment restrictions Hy, in (1). We

"Note that u? satisfies pf =1fori=1,...,n.
81f the trimming term is replaced with I{z; € X,}, where X,, converges to X in an adequate manner, then the CEL

estimator is asymptotically efficient. Since this paper concerns with specification testing, we consider the fixed trimming

term Il



assume that M (z;, 3,4) converges to M (z;, By,7,) uniformly on z; € X, (Assumption 3.2 (iv)). For
cach element of M (z;, 8,7), we allow these cases: (i) constant or function of (43,), (i) function of x;
or (z;, 3,7), and (iii) weighted sum in the form of 2?21 wji f (24, 8,7) or function of the weighted sums.
For brevity, we use the same notation M (z;, 8,~) and omit some arguments such as {z; };; and {z;}]_4
By using the implied conditional probability ﬁ?i (B) and the unrestricted conditional probability ﬁé\if , we

consider the following contrast of estimators for E [m (x4, i, Bg, 7V.)]:
ZI Zpﬂ 37272]75 ’Y _721 Zp]z xhzjvﬁ ’7) (11)

where the first term is a nonparametric sample analog of E, {Eglx [ (4, 2i, Bo, V«)]| using the condi-
tional probability ﬁ?l(ﬁ) implied from Hy, and the second term is a nonparametric sample analog of
E, [Ez|r [m (zi, 2, /3077*)]] using the (unrestricted) kernel weights ﬁ% , where Eg|x denotes the condi-
tional expectation taken under Hy. If the null hypothesis H, is correct, these nonparametric analogues
have the same probability limit and hence we expect that Th; converges to zero. On the other hand,
if Hy is incorrect, the two terms in (11) converge to different probability limits and hence Ty con-
verges to some non-zero constant. The moment indicator m (z;, z;, 5,7) determines the direction of

misspecification. Let

n ) " a |
) :ijim(zj,ﬁ,v)g(z], Zwﬂg zj,8) g (2,8), Gi (B)Zzwjiw.

=1 j=1

The CEL-based moment encompassing test statistic for H, is defined as
M, = nT};®y,Tur, (12)

where

=1
b (B) = —IM(:Bz,ﬁ V) J; (B,7) Vi () gz, B) + Hag (B,7) Adb(ai, 21, B),
v (B7) = fZIsz,B ) Ji (Ba) Vi (B) 7 G (B).

A and ¢(x;, z;, §) are defined in Assumption 3.1 (ii), which assumes the asymptotic linear form for B:

n2(B = Bo) = —n AN T (@i, 24, Bo) + op(1). (13)

=1

The CEL-based moment encompassing test statistic for Hj, is defined in the same manner.



2.3.2 Cox-type Test Statistic

We next define the CEL-based Cox-type test statistic, which focuses on the probability limit of the
GMM-type (or Euclidean) nonparametric likelihood. Let

n
’7) = Zwﬂh (Zja’y) ) Zpﬂ Z], ; Zwﬂ Z]v (Zja’y) .
j=1

Note that A; (7) , iv;’ (7), and V;* () are non-parametric sample analogues of Eje [h(zi,7)] Efw [h(zi,7)],
and |, [h (ziy7y) h (2, 7)/] respectively. By using ﬁfz(ﬁ) and ﬁ% = wj;, we consider the following con-
trast of Euclidean likelihood:”

Z Lihi (3)' VI ()™ hi (7). (14)

Under the null hypothesis Hy, we expect that Tc converges to zero because both of the two terms in Tty
converge to the same probability limit {Eg|m (R (zi, 7)) V()™ 1E§|x [h (2, 'y*)]} . On the other hand,
under the alternative hypothesis Hj;, T¢ will converge to the probability limit
E {sz (R (zi,70)] V(7)™ 1E§|:p [h (i, 70)]} which is non-zero by the non-nestedness assumption (3).

Let Jih (B,fy)'zzyzl wjih (25,7) 9(zj, B)". The CEL-based Cox-type test statistic for H, is defined

as
c, = YrIc, (15)
Véc
where
be = 3O (BA
=1
05 (Bry) = —2Lhi (1) VI (4) T (B,4) Vi (B) " gz B) + He (By) A (i, 2, B),
CB) = 23 Thi ) V) I (5,2 Vi () G (B).
=1

A and (x4, z;, B) are defined in (13). The CEL-based Cox-type test statistic for Hj, is defined in the

same manner.

2.3.3 Efficient Score Encompassing Test Statistic

We finally introduce the CEL-based efficient score encompassing test statistic, which focuses on the

probability limit of the asymptotic linear form of asymptotically efficient estimators for v, under Hy,

? Although we may focus on the contrast of CEL based on p’;(4):

ZI Zpﬂ logpﬂ ZI Zp]llogp]l

the asymptotic representation of the Lagrange multiplier A? (%) in ﬁ;ﬂ- (%) is less tractable under Hy (see Kitamura (2003)).

Therefore, for its simplicity, we analyze the contrast of Euclidean likelihood.



(i.e., the efficient score for estimating v,):'"

n'? (5 =) = —n VI (v IZIGh (Y0)' Vi (v0) ™" b (21, 7o) + 0 (1),
=1

V) = B (1o i) fa] G 0) = B |25 0] 11 o) = B 161 ) W) 6t ).

Let G’f (v) = 2?21 w;iOh (zj,7) /0. By using ﬁgz(ﬁ) and ﬁ% = wjj, we consider the following contrast

of the efficient score:

Ts= =3 LGIA) V@) B () = = 3 LG Q) VG b (). (16)
The CEL-based efficient score encompassing test statistic is defined as

Sy = nTLdgTs, (17)
where
bs = 2 UG,
i=1
0 B) = LG () V)T (B, Vi(8) ™ gl B) + Hs (B,7) Av(wi, 7, B),

Hs(B) = =S LGHGY V) I (5,2 Vi (8) Gi (5).
i=1

The CEL-based efficient score encompassing test statistic for Hj, is defined in the same manner.

2.3.4 Special Case: Test Statistics with the CEL Estimator

Suppose that we use the CEL estimator 3oy for 8y. Then from Kitamura, Tripathi and Ahn (2004),

we can show that under certain regularity conditions, the asymptotic linear form of BC g, 1S written as

n'?(Bogr, — By) = —n V21 (By) 7! ZI Gi (Bo)' Vi (Bo) ™" g (21, Bo) + 0p (1),

where

89('21’ /8)
B

By setting A = I(8,)"" and ¥ (x4, 2;, B) = LiGi (By) Vi (Bo) " ¢ (2i,B0) in (12), (15), and (17), the

CEL-based non-nested test statistics are defined by the following simpler forms,

G (p) = E [ m} Vi(8) = E[g (2. 8) g (z0.8) ] . T(8) = E LG (8) Vi (8) G (8)]

10 Although it requires a lengthy mathematical argument, we can consider the CEL-based parametric encompassing test

statistic, which focuses on the probability limit of the CEL estimator 4y, for v,. Let

Yerr = argmaxZI Zpﬂ /BCEL) Inggz () -

=1 Jj=1
Since we can expect that 7,5 is a consistent estimator for the pseudo-true value v, under Hy, the CEL-based parametric

encompassing test statistic can be constructed by a quadratic form of (Yogr, — YerL)-



(i) the moment encompassing test statistic:
Mycrr = nTJ,\/li']TJ,CELTM’ (18)
&y 0pr = RSS from regression of LV;(3)™Y2J;(8,4)M (x4, B,%) on LVi(B) Y2G:(B),

(ii) the Cox-type test statistic:

Vnlc

CycEL = —F ;
\/ Pc.cEL

éo.cpr, = RSS from regression of 21;V;(8)2J!(3,4)V{" (%) " hi(3) on LVi(B)/*Gi(B),

(19)

(iii) the efficient score encompassing test statistic:
Sg.cBL = nTé'(i)g,CELTS’ (20)
dgcpr, = RSS from regression of I;V;(3)~Y2JM(B3,4)VA) 7 Gh(#) on LVi(B3)YV2G4(B),
where RSS denotes the residual sum of squares.

The asymptotic properties obtained in the next section hold for the above test statistics as well.
The above formulae are also applicable to other semiparametric efficient estimators by Newey (1990)

and Donald, Imbens and Newey (2003) for example.

3 Asymptotic Properties

3.1 Null Distributions

In this subsection, we derive the asymptotic distributions of the CEL-based non-nested test statistics

under the null hypothesis H,. We impose the following assumptions.
Assumption 3.1

(i) {2z}, is ani.i.d. sample on X x R% | x is continuously distributed with density f, X, is compact

and contained in int (X), and inf,cx, f(z) > 0.

(il) By € int(B), and B satisfies n'/?(3 — By) = —n " YV2A W (x4, 2, B) + 0p(1), where A is a
dg x dg non-stochastic matriz, E [(z,z, By)] = 0, and E[||(z, 2, By)||¢] < oo for some & > 2.

(iii) (17 = 7.l = Op(n~1/2).

(iv) K (z) = TI5_,k(2D), where  is a continuously differentiable pdf with support [—1,1], symmetric
around the origin, and inf,c;_f 1y K (x) >0 for some ke (0,1).

(v) by satisfies b, — 0 and b, = O(n™%) for some 0 < o < 5-.

10



Assumption 3.2

(i) Elsupges g (= 8)I|] < oo for some ¢ = 6.

(i) f(z) and Elg(2,80) g (z,By) |z] are twice continuously differentiable on X, E [9g (2, By) /05’ |z]
is continuous on X, f (z) and E[||g (2, B)||° |z]f (&) are uniformly bounded on X, and

ianEX* )\min<E[g (2750)9 (2750)/ ’flf]) > 0.

(iii) g (z,B) is twice continuously differentiable a.s. on a neighborhood By around By, fori=1,...,d,
and j = 1,...,dg, supgeg, 189 (2,8) /08Y)| < di(2) holds a.s. for a real-valued function
di (z) with Edi (2)"] < oo for some n > 6, and for i = 1,...,dy and j,k = 1,...,dg,
SUPges, 1829 (2, 8) J0BYOBE)| < dy (2) holds a.s. for a real-valued function dy (z) with E [dy (2)] <

oo for some ny > 2.

(IV) SUPgzex, M(J;:Ba:}/) - M(£7507’7*)H £> 07 M(m75077*) is uniformly bounded on X*;
E[supgep yer Im (2, 8,7)||°"] < oo for some ¢, > 6, m(z,8,7) is continuously differentiable

a.s. on a neighborhood By x I'y around (Bgy,7v,), and fori =1,...,dm and j = 1,...,dg + d»,
SUDP(3,y)€Box T 10m (2, 8,7) /0 (B',7) G) | < dp (2) holds a.s. for a real-valued function d, (2)
with E [dy, (2)"] < oo for some n,, > 6.

(v) For the moment encompassing test, the probability limit of ® s under H, (denote ®); defined below
(48)) is non-null. For the Cox-type test, the probability limit of g}c under Hy (denote ¢ defined
below (50)) is positive. For the efficient score encompassing test, the probability limit of dg under
H, (denote ®g defined below (51)) is non-null.

(Vl) ianEX* )‘mln(E[h (Z, '7*) h (27 7*), |$]) >0 and SUPgcx, AmaX(E[h (2:, 7*) h (277*)/ ‘x]) < 0.

In Assumption 3.1 (i), although z should be continuous, z can be continuous, discrete, or mixed.!!
Assumption 3.1 (ii) assumes the asymptotic linear form for B that implies the asymptotic normality
of B . This assumption holds for a number of parametric and semiparametric estimators. Assumption
3.1 (iii) imposes the y/n-consistency of 4 to the pseudo-true value ,. Depending on the estimation
method, v, may be different. Assumption 3.1 (iv) and (v) are conditions for the kernel function K
and the bandwidth b,,, respectively. Assumption 3.1 (iv) assumes that the kernel function K is second-
order. Assumption 3.1 (v) implies that the bandwidth b,, can vanish arbitrarily slowly. Tripathi and
Kitamura (2003) and Kitamura, Tripathi and Ahn (2004) employ similar assumptions. Assumption 3.2
(i)-(iii) are conditions for the moment function g (z,3), which are mainly used to derive the uniform
convergence of nonparametric components such as V;(8) and G;(3). Assumption 3.2 (iv) is a set of

conditions for the moment indicator m (z, z, 3,7). For the Cox-type and efficient score encompassing

'We conjecture that it would be possible to allow discrete regressors by applying the trimming argument of An-

drews (1995) and Kitamura, Tripathi and Ahn (2003). In this case, we need to redefine the CEL weight as wj; =

K (ijb_ri ) Haf =}/ (E}Ll K (mjb

n n

) I{x? = m?}), where x5 are continuous regressors and z¢ are discrete ones.
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tests, we take m (z,3,7) = h(z,7). Assumption 3.2 (v) is required to obtain non-degenerate limiting
distributions of test statistics. Assumption 3.2 (vi) guarantees that V" (§) is invertible uniformly on

x; € X, w.p.a.l. Let
9i(B) = Zn:wjig(zjaﬁ)7 JI(B,7) =F [h(zi,7) g (2, 8)" |zi] -
j=1
The null distributions of the CEL-based non-nested test statistics are obtained as follows.
Theorem 3.1 (Null Distributions)
(i) Suppose that Assumptions 3.1 and 3.2 (i)-(v) hold. Then under the null hypothesis Hy,
My Xoank(@ )"

(ii) Suppose that Assumptions 3.1 and 3.2 (i)-(iii), (v), and (vi) hold. Furthermore, Assumption 3.2
(Z’U) holds form(zi,ﬁ 7) =h (zi7 ); A (.%'i,ﬁ,’}/)l = {251(7)_th(ﬁa7)‘2(ﬁ)71g1(6)}/‘7zh(7)71; and
M (x4, 8,7) = 2E [h (2i,7) |z:] Vi (7) 7112 Then under the null hypothesis Hy,

(2

c, % N(0,1).

(iii) Suppose that Assumptions 3.1 and 3.2 (i)-(iii), (v), and (vi) hold. Furthermore, Assumption
3.2 (iv) holds for m(z;,B,7) = h(zi,7), M(zi,8,7) = Gr(y) VI ()™, and M(xi, ,7) =
G () (v)"'. Then under the null hypothesis H,,

d 2
SQ - Xrank(qi'g)'

Therefore, these non-nested test statistics follow the standard limiting distributions. Compared
to the CEL-based specification test statistics by Tripathi and Kitamura (2003), our non-nested test
statistics show the parametric convergence rate. Actually, the proof of Theorem 3.1 indicates that under
the null hypothesis H, the non-nested test statistics M, Cy, and S, are asymptotically equivalent to test
statistics of the unconditional moment restrictions E[1§(58g,7,)] = 0 for a = M, C, and S (defined in
(48), (50), and (51)), respectively. The main effort of the proof is devoted to establish these asymptotic
equivalence results. However, if E[§(83y,7,)] = 0 holds but Hy do not hold, our non-nested test
statistics and the unconditional moment-based test statistics are asymptotically different. See Section
3.3 for a detailed discussion. For (ii) and (iii) of this theorem, the assumptions on m (z,3,7) and
M (x, 8,7) can be replaced with more primitive conditions, such as the conditions obtained by replacing

9(z,8), By, B, and By in Assumption 3.2 (i)-(iii) with A(z,7), 7., I, and T'y, respectively.

2Since §;(3) 2 E[ (2 60)|1:L] =0 un1formly on z; € X. under H, (Lemma A.4), the second term of M (zi,[3,%)" =
2hi(3)'VM(3) T~

tions.

3:(B)Vi(B) " Il (B,4) VI (3) 1 converges to zero uniformly on z; € X, under H, with suitable assump-
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3.2 Local Power

This subsection studies the power properties of the CEL-based non-nested test statistics. We assume
that the joint distribution of (x, z) is fixed, and that there exists a non-stochastic sequence S, € B

such that
Hy, : E g (2, Bo) |2] = n /25, () (21)

holds a.s. for some §;, : X — R%. The null hypothesis Hy is satisfied if &, (z) = 0.* To obtain the

local power properties, we impose the following assumptions.
Assumption 3.3

(i) 6p () is continuous on X , E[||6, (x)]|°] < 0o , |Bon — Boll — 0 as n — oo, By € int (B), and
n/2(3—By,) = —n"1/2A Yo (@i, 2, Bop) F0p(1), where A is a dg x dg non-stochastic matriz,
E (z,2,B,) |z] = n~Y25 (x), 8y (z) is continuous on X, and E[||dy (2)||I°] < oo for some
&> 2.

(ii) f(x) and E[g(z,8) g (z,B)" |z] are twice continuously differentiable on X for each B € By, Elg (2, ) g (2, 8)" |7]
and E[0g (z,) /08 |x] are continuous on X x By, f (x) and
supgeg, Elllg (2, )| |2]f (@) are uniformly bounded on X,

inf(m,ﬁ)eX*xBo Amin(E[g (2, 8) g (2, ﬁ)l z]) > 0, and SUP(z,8)e X, x Bo Amax(Elg (2, 8) g (2, B)I z]) <
Q.

(iii) sup,cy, M (z,3,9) — M (2, By,,7,) || = 0, supgep, M (x, B,7,) is uniformly bounded on X,
E[supgep er Im (z,8,7)[|°"] < oo for some ¢,, > 6, m(z,8,7) is continuously differentiable
a.s. on a neighborhood By x 'y around (B¢,7,), and fori=1,...,dp and j = 1,...,dg + d,,
SUD(3,4)€Box T om9 (z,8,7) /0 (8,7 G) | < dp, (2) holds a.s. for a real-valued function d, (2)
with E [dy, (2)"] < oo for some n,, > 6.

Assumption 3.3 (i), (ii), and (iii) are extensions of Assumptions 3.1 (ii) and 3.2 (ii) and (iv), respec-
tively. Let J; (8,7)=E[m (2, 8,7) g (2i,8)"|i] and X2 (v) be the noncentral chi-squared distribution
with the degree of freedom d and the noncentrality parameter v. The local power properties of the

CEL-based non-nested test statistics are obtained as follows.

Theorem 3.2 (Local Power)

'3 Another way to formulate the local alternatives in the spirit of Singleton (1985, p.402) would be

H, - (1 - %) Elg(e. Bole] + L= E ()] =0,

where 7 € R is a constant. This case can be treated similarly because HY,, now corresponds to Hgy, with 0x(z) =
n{E[g(z Bo)|z] = E[h(z,7)|]} and By, = B,

13



(i) Suppose that Assumptions 3.1 (i) and (iii)-(v), 3.2 (i), (i), and (v), and 3.8 hold. Then under
the local alternative hypothesis Hy,,

d 9 _
MQ 7 Xrank(®y) (/’L/]V[(I)M'MM) ’

where

ping = —E | LM (21, 80,7.) Ji (Bo,v.) Vi (Bo) ™" 0 (xi)} + Hr (8o, v4) AE [0y (21)],

Har (8,7) =B [LM (21, 8,7) i (8,7) Vi (8) " Gi (8)]

(ii) Suppose that Assumptions 3.1 (i) and (iii)-(v), 3.2 (i), (iii), (v), and (vi), and 3.3 (i) and (i)
hold. Furthermore, Assumption 3.3 (iii) holds for m (zi, 8,7) = h (zi,7), M(zi, 8,7) =
{2hi(y) = JHBAVB) 3BV ()", and My, 8,7) = 2B [h(2,7) 2] VI (7). Then

under the local alternative hypothesis Hyy,
Cy % N6 e, 1),
where
o = =28 [LE [b (1) 1] Vi ()7 TP (Bos ) Vi (Bo) ™ 60 (1)) + Ho (o 7.) A [6y ()],

Ho (8,7)=2E [LE [h (2,7) lai) Vi ()7 I (8, Vi () G (8)]

(iii) Suppose that Assumptions 3.1 (i) and (iii)-(v), 3.2 (i), (iii), (v), and (vi), and 3.3 (i) and
(ii) hold. Furthermore, Assumption 3.3 (iii) holds for m (z,3,7) = h(zi,7), M(zi,B,7) =
G (v) VI (y) 7, and M (x4, 8,7) = GH(7)'VI* (v) ™. Then under the local alternative hypothesis
Hgn;

d 9 —
Sg — Xrank(®g) (HfS'(I)SHS) ’

where
Hs = —-E IZG? (’7*>/ V;Lh (7*)_1 th (/307 7*)/ Vi (/6())_1 on ('Tz)} + Hg (/807 7*) AFE [6111 (xl” )

H (8,7)=E LG} (3) VI ()7 I (B,4) Vi (8) 7 G (8)]

For (ii) and (iii) of this theorem, we can replace the assumptions on m (z,3,7) and Mz, 3,~)
with more primitive conditions, such as the conditions obtained by replacing ¢(z, 3), By, B, and By in
Assumptions 3.2 (i) and (iii) and 3.3 (ii) with h(z,7v), 7., I', and T',, respectively. Similar to the existing
non-nested tests, the local power functions are obtained from the standard noncentral distributions.
While the CEL-based specification test by Tripathi and Kitamura (2003) has non-trivial power against
local alternatives with a nonparametric rate (i.e., n_1/2bgs/46h(x)), our CEL-based non-nested tests

have non-trivial power against local alternatives with the parametric rate (i.e., n=/25,(x)). However,
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at the cost of the parametric rate, our non-nested tests require additional conditions that guarantee
non-zero noncentrality parameters.

The proof of Theorem 3.2 implies that under the local alternative hypothesis Hg,, the test statistics
My, Cy4, and S, are asymptotically equivalent to test statistics of the unconditional moment restrictions
E[Y¢(Bg,7v.)] = 0fora= M, C,and S (defined in (48), (50), and (51)), respectively. Thus, we can apply
the results of Singleton (1985) and Ramalho and Smith (2002) to analyze the local power optimality.
We can show that the non-nested tests by M, Cy, and S; have asymptotic local optimal power against
local alternatives (or choices of ¢5(x) and dy(x)) such that puy, = Pupa, po = dcoa, and pg = Pga,

respectively, for some vector or constant a.

3.3 Consistency

We now derive the consistency of the CEL-based non-nested tests under the alternative hypothesis
H,. Assume that under Hj, the estimators 3 and 4 converge to the pseudo-true values 3, and 7,
respectively. Define

N (z,B) = argmaxFE [log (1 +Ng (z,ﬂ)) |x] , (22)
AeR%

which is interpreted as the pseudo-true value of the Lagrange multiplier A (B). From Kitamura (2003),
we can show that max;c (., ex, 1<i<n} IN(B) — M(zi, 8,)|| 2 0 under Hj,. Note that under Hy,

M (x,3,) is generally non-zero. Let

m(zmﬁa’)/) g(z”LaB)/
1+ M (ﬂfi,ﬁ)lg(zi,ﬁ)

7h !’ Zjs (Z aﬁ)l
Jz*(ﬁvﬂy) - Z jll_'_;\g (JZ] 6)

1+ M (2, 8) 9(2i,8) ]

Let B, and I'g be neighborhoods around 3, and 7, respectively. The consistency results are obtained

as follows.
Theorem 3.3 (Consistency)

(1) Suppose that for B, vq, B«, and Iy instead of By, 7+, Bo, and T, respectively, Assumptions 3.1 and
3.2 (i)-(iv) hold. Furthermore, assume that the probability limit of ®y; under Hy, (denote ®par)
is non-null. Then under the alternative hypothesis Hy,, the CEL-based moment encompassing test

by My is consistent if py, P ipar > 0, where
KEnnp = —F [IlM(xla 6*a 70),‘]’5* (5*7 ’70)/ >‘§k] (:L‘i» 6*)] .

(ii) Suppose that for B, Vo, Bx, and Ty instead of By, V., Bo, and T, respectively, Assumptions 3.1
and 8.2 (i)-(iii) and (vi) hold. Furthermore, assume that the probability limit of ¢o under Hy,
(denote ¢, is positive, and Assumption 3.2 (iv) holds for m (z, 8,7) = h(zi,7), M(zi, B,7) =
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h(zj, h(zs, .
2?21 wji%, and M(z;,8,7) = E [W‘%} Then under the alternative

hypothesis Hy,, the CEL-based Cox-type test by Cy is consistent if o /\/énc 7 0, where
/
h 3]
xz] V;h (70)_1E [ (2i, 7o) xz” '

1+ X (i, 8.) 9(zi, B.)

(iii) Suppose that for B, 7o, B«, and Ty instead of By, V., Bo, and Ty, respectively, Assumptions 3.1
and 3.2 (i)-(iii) and (vi) hold. Furthermore, assume that the probability limit of ®g under Hy,
(denote ®pg ) is non-null, and Assumption 3.2 (iv) holds for m (z;, 8,7v) = h(zi,7), M(xi, B,7) =
G (v) VI (y)7F, and M (z;, 8,7) = GP(v)'V] (v)"'. Then under the alternative hypothesis Hy,
the CEL-based efficient score test by Sy is consistent if py, ¢®, gping > 0, where

h (Zi,")/())
1+ )\'Z ($i7 /3*),9(zi7 B*)

—

pns = —E Iz’G? (0)' Vz'h (’Yo)il JZZ (Bs v0) M (4, 8,) | -

The noncentrality parameters gy, phes and puy,g depend on A (x;, 5, ), the limit of the Lagrange
multiplier A/ (B). Since N (B) does not converge to zero under Hy, in general, the asymptotic relation
A (B) = Vi(B) '3 (B) + op(1) no longer holds under Hj,. Thus, it is generally difficult to obtain an
explicit form (or approximation) for the noncentrality parameters in terms of the moment function
9(zi, B,) instead of AJ (z;, 3,).

We now discuss when these tests become consistent against Hy. First, consider the moment en-
compassing and efficient score encompassing tests. Even if the true conditional measure satisfies the
alternative hypothesis Hj, these two tests are inconsistent (i.e., do not have non-trivial asymptotic
power) when i 5, @, s = 0 or py, ¢ @ pupg = 0. Although X (4, 8,) is generally non-zero, we can-
not exclude the cases where the noncentrality parameters y), ), @, ttnns and py, ¢®; o iy,5 become zero. In
particular, it is possible that the marginal measure for x; satisfies p;,;, = 0 or p;,¢ = 0. This drawback,
called the implicit null hypothesis, is common in non-nested and encompassing tests. Using the notation
of Section 2.1, this inconsistency problem can be interpreted as the discrepancy between H., (the set of

conditional measures satisfying Hy) and ’H%E = {(,uz‘x) e € Myt iy 0 ®pasttnar = 0 for some g,

or Hf\x = {(MZ\QE) cEX € Mz|a: : /J’;qu)]:S'/«LhS = 0 for some /’L:c}
Next, we analyze the conditions when the Cox-type test becomes consistent. Since ¢, is finite under
very mild conditions, we focus on the conditions for - # 0. If V/' (vy) = F [h (zi,70) B (2i,70) |$l] is

positive definite (a.s. z;) under Hy, a sufficient condition for - # 0 is

h (2,70) B h(2,70) 0
z] B / 5N (0, B) (e, ) el

— [ nGadr, 2o (23)

over some subset of X', where the conditional measure (P;‘x

) is defined by
TEX

sz*|x 1
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Suppose that 3, is the pseudo-true value of the CEL estimator BCEL and the support of g(z, ) is
bounded for all 5 € B. Then Kitamura (2003) showed that <P*

Z|I) becomes the best approximation
Te

(or projection) of the true conditional measure M(z)lr to the space of conditional measures G|, by the

conditional relative entropy, and it satisfies (P*
zlx

) N € G|, For simplicity, assume that Hy and Hy,
re
are globally nonnested (i.e., .|, NH.|, = #).'* Then <P;|x)xex € G|, implies (Pz*‘x) vex ¢ ., and

hence (23) holds. This result is summarized as follows.

Corollary 3.1 (Sufficient condition for the consistency of the Cox-type test) Suppose thatG.,N
H.jx = ¢ and the same assumptions as Theorem 3.3 (ii) hold for the CEL estimator BCEL. Further-
more, assume that (i) ¢pe < oo; (ii) VI (7o) is positive definite (a.s. x;); and (iii) the support of
9(z, B) is bounded for all § € B. Then the Cox test is consistent against Hy,.

Observe that this corollary does not require somewhat artificial assumptions such as i}, @, tnas #
0 and py,¢®; opps # 0 in the moment encompassing and efficient score encompassing tests, respectively.
Although the bounded support assumption for g(z, 5) may be restrictive in some contexts, this assump-
tion is very easy to check.!> Another important point is that we must use the CEL estimator BC g1 to
obtain the above corollary. If we employ a different estimator, its pseudo-true value 8, may differ from
that of the CEL estimator and the result of Kitamura (2003) is not applicable.'6

Finally, we clarify the difference between the Cox-type test and the existing non-nested tests based

on unconditional moment restrictions. Under the null hypothesis H : (ug‘ x) N € G4, the asymptotic

xe

linear form of T in (14) is written as (see (49) in Appendix A.1)

nPTo =72 "4 (By,v.) + 0p(1). (24)
=1

Based on (24), we may consider the unconditional moment-based test for
Hy' : B[Y{ (B0, 72)] = 0. (25)
If 3 is set as the CEL estimator Sopy, (25) is written in the form of
HgU D B [Qgc (%50:7*)9(27%)} =0

for certain matrix QS (z, By, 7.) (set A = I(Bo)" and o (w4, 2, 89) = LiGi (Bo)' Vi (Bo) ™" 9 (2, Bo)
for (48) in Appendix A.1). As Smith (1997) and Ramalho and Smith (2002) discussed, the uncondi-

tional moment restriction HgU can be tested by using the sample analog Tg =n! Yoy z/JiC(B,’y) or

" Our result can be generalized to partly non-nested models (i.e., G.]s N'H;|, is non-empty). In this case, we need to

modify the definition of non-nested alternatives to guarantee that ( ;\Z)xex ¢ H.|, holds.
"By extending the results of Borwein and Lewis (1993) and Csiszdr (1995) to the conditional moment setup, we

conjecture that this boundedness assumption can be reasonably weakened.
16We expect that this corollary might be extended to the generalized empirical likelihood (GEL) setup. Then, the GEL

criterion functions for estimating the parameters and obtaining the implied conditional probabilities would coincide.
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nly Qg(mi,ﬁ,’y)g(zi,ﬁ). Under the original null hypothesis Hy : (Mg|x> N € G.p2, Tc and TH
[AS

are asymptotically equivalent, i.e.,
n' 2T = n'2TY + 0,(1) % N(0, 60).

Also, under the local alternative hypothesis Hy,,, T and Tg are asymptotically equivalent. However,
Teo and T, g show different properties under the alternative hypothesis Hy, : (,u2| x) N € H.),- Suppose
e

that the assumptions for Corollary 3.1 hold, and let

ggw = Uges {(luz|z)w€X € Mz|x : //Qg (l‘) g(zvﬁ)dﬂz\xdﬂx = 0 for some /’L:p} :

If (Mgw)xex € gzc|x \ G|, (i.e., the original null Hy is violated but HgU holds), then T and TF are

different even asymptotically, i.e.,

To 2 constant (in general), (26)

n'2TY 4 N(0, o).

Although the null hypothesis H, is not satisfied in the region QZC|$ \ G.|» the asymptotic distribution
of Tg does not change from the one under H,;. On the other hand, under ,ug‘x € ggx \ G.|z, We cannot
obtain the asymptotic linear form in (24) nor the results in Lemma A.4. The limit of T in (26) can
be obtained in the same manner as the proof of Theorem 3.3 (i). Moreover, by the same reason, T¢

and T, g have different probability limits under Hy, i.e.,

To 5 pne
Tg 2, EW}ZC(B*,%)} or E[Qg (l‘iaﬁ*v’YO) g(zﬂﬁ*)]

Under the assumptions for Corollary 3.1, the limit p; is always non-zero, but the limit [d}zc (B, 70)]
or E[Qg (x4, BasYo) 9(2iy B4)] is nOt necessary non-zero.

In summary, if the support of g(z, ) is bounded for all § € B, the CEL-based Cox-type test is
consistent against the alternative Hy under mild conditions, but the CEL-based moment encompassing
test and the efficient score encompassing test require additional conditions that guarantee the non-
centrality parameters to be non-zero. In any case, all of our CEL based tests have power properties
that are very distinct from the existing unconditional moment-based tests and are consistent against

alternatives that cannot be detected by the latter type tests.

4 Simulations

This section examines the finite sample properties of our tests against some of the existing non-nested

tests using Monte-Carlo methods.
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4.1 Experimental Design

We consider two simulation designs. In Design I, we consider two competing linear regression models:

fori=1,...,n,

H, : y;= B¢ + Boor1i + ugi (27)
Hy 9 =501 + Yo2%2i + Uni,
where x1; = coxa; + €; for ¢g € {1,2},{xo;} and {e;} are iid. N(0,1), {ug} and {up;} are ii.d.

N(0,4), and the true parameters are given by 5y = (8g1,B02)’ = (1,1)" and v¢ = (701,702)" = (1,1)".
Note that the hypotheses (27) correspond to the conditional moment restrictions in (1) with g(z, 8¢) =

Y — Bor — Bozz1 and h(z,79) =y — Vo1 — VozT2, where z = (y,21,22)" and = = (1, 22)".
On the other hand, in Design II, we consider the following regression models: for i = 1,...,n,
H, : y =0z +ug (28)
Hy, : oy = Y2} + tni,
where {z;}, {ug;} and {up;} are i.i.d. N(0,1) and By = 79 = 1. The hypotheses (28) correspond to (1)
with 9(2750) =Yy- /BO‘T and h(z7’}/0) =Y—- 70x37 where z = (ya {L’)/-
As benchmarks for our simulation experiments, we consider the non-nested tests of Singleton (1985,
eqn. (33), p.404), labelled S, and Ramalho and Smith (2002, Simplified Cox test in Eqn. (4.4), p.108),

labelled SC, respectively. We compute S and SC from the following unconditional moment restrictions
implied by (27) and (28): for Design I,

HgU © B [(1, 21, 29) (yi — Bor — Boa1)] =0 (29)
Hg ) [(1,3311',3322‘), (Yi — Y01 — 7029521')] =0
and, for Design II,
H] : E[(L,2) (y; — Bowi)] = 0 (30)
H}[L] : B [(17:13?)/ (yz — ’Yoxf)] =0.

As another benchmark, we also consider the over-identifying test of Hansen (1982), labelled J, that
tests the validity of HgU in (29) and (30) against general alternatives.

We consider two sample sizes n € {100,200} and fix the number R of Monte Carlo repetitions to
be 1000. Because of very long computing time required for nonlinear optimizations, we do not consider
larger n and R. We use the Gaussian kernel for our CEL-based tests Mg, C,4, and S,. For the bandwidth

by, we consider b, € [0.1,0.2,...,1.0] in our simulations.

4.2 Simulation Results

Tables 1-3 present the rejection probabilities for the tests with nominal size of 5%. The simulation

standard errors are approximately 0.007. Tables 1 and 2 give the results for Design I with ¢y = 1 and
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co = 2, respectively. In both cases, our tests have reasonable size performance if the bandwidth is
in a suitable range. The performance improves generally as n increases. The competitors J and SC
also have little size distortions, though the Singleton’s test S under-rejects in many cases we consider.
In terms of size-corrected powers, the efficient score encompassing test S, dominates M, and C; in
Design 1. When ¢y = 1, the test S which is known to have an optimality property against some local
alternatives, has relatively very good (size-corrected) power performance. However, when ¢y = 2, the
power performance of S deteriorates and is significantly dominated by that of S,. To explain the latter
phenomenon, notice that if the alternative hypothesis Hj in (27) is true, then the GMM estimator
B = (By,B,) converges (in probability) to the pseudo-true value 3, = (1,co/(1 + c2))’ . This implies
that the sample analogue of the unconditional expectation in (29) converges

1 — , o » 1\

- Zz: {(1,-’1311',9021') (yz - b - 521‘11’)} - <0,0, 1+cg> : (31)
Therefore, since the limit in (31) degenerates to zero as ¢y increases, we can see that a test based on
the sample average in (31) will have low power if ¢ is large.

Table 3 reports the simulation results for Design II. In this design, we expect that the tests based

on the unconditional moments in (30) will be inconsistent. It is because, under Hy, the estimator B
converges in probability to the pseudo-true value 5, = 3 and hence the sample average converges to

n

1 ~
- > {(L ;) (yz - Bmz)} 2 By [(Lai) (yi — Bai)] = (0,0), (32)
=
where Eyr is the expectation taken under Hj. This is precisely what happens to the powers of the
tests J, S, and SC in Design II. On the other hand, our tests have non-trivial powers even in this case.
Among the latter tests, M, and C, appear to have better (size-corrected) power performance than Sy

in this design.

5 Conclusion

We propose three types of non-nested tests for competing conditional moment restriction models: the
moment encompassing, Cox-type, and efficient score encompassing tests. The test statistics are based on
the conditional probabilities implied by conditional empirical likelihood. We investigate the asymptotic
properties of the tests under the null and alternative hypotheses. Our tests have power properties
that are very distinct from some of the existing unconditional moment-based tests and are consistent
against alternatives that cannot be detected by the latter tests. In particular, if the support of the
moment function is bounded and a mild regularity condition hold, we show that the Cox-type test is
consistent against all departures from the null hypothesis toward the non-nested alternative hypothesis.
Simulation results illustrate that our tests have reasonable finite sample properties and, in some cases,

dominate some of the existing tests based on unconditional moment restrictions.
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A Mathematical Appendix

Notation. Denote

. . logn
L. = {i:x; e X,1<i<n}, cn:”%,

9;(B) = 9(z,8), hj(v)=h(zj,7), m; (B,7)=m(25,5,7),
Mi(B,7) = M(zi,B,7), Mi(B,v) = M(xi,8,7),

n

Kji = K<xlbn) fz nbszl jis gz ZwﬂgJ
J
nbs, Z 7195 (B a:Z] ’

Vi(B) = E[g:(B)gi(B)|zi] . Vi (B

Ji(B) = E[mi(8,7) g:(8) |z, Ji (B)

1 !/
= s ZKﬂma‘ (8,7)9(8) w] :
noj=1

P 99:8), 1 A i o 1 sy 095(8),
Gl(ﬁ) = Fk |: 8,6/ .’E1:| ’ G’L (6) =F 'I’Lb% jZIK]'L aﬁl ml] .
A.1 Proof of Theorem 3.1
Proof of (i)
An expansion of ﬁ;’z(ﬁ) around M (B) = 0 yields
wj; X N
56 = T yed (1= X(BYg,B) +75) (33)

A (B)'9(B)g;(B) X (B)
(14379, (5))?
Wj; (—)\f(ﬁ)’gj(ﬁ) + 7"j2->, the definition of Ty; in (11) implies

where 7;; = , and )] is a point on the line joining )\f(ﬁ) and 0. Since ﬁgz(ﬁ) - ﬁ% =

7=1

o = LS+ LS, (Zwmzmm >) 3
— ()—I-R(l).

RW satisfies

[0 < me 5.5 g, s3] (s )]} | 2 Z f’i - f@))) (39
Assumption 3.2 (iv) implies
max |[4(B,9)|| = 0, (1). (36)
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>From Assumption 3.2 (i) and (iv) and Tripathi and Kitamura (2004, Lemma C.4),

(B = 1/¢ B A /¢
o] =0 (). o] o () o
>From Lemmas A.1 and A.4,
g(r _ —7+
ma | (ﬂ)]_o (cn) + 0 (n 2 ) (38)

Since (37) and (38) imply that max;er, 1<j<n |5\§,gj(3)| = 0y (1), we have

LS L 209G < 0 (1) by Lemma A.1. Thus, from (35)-(38),

(1—&-)\?/93'([3))
HR(1)H <0,(1)o (nl/Cm) {Op (cn) + 0p (n_%+%)}2 0, (1) = o, (n—1/2) : (39)
where the equality follows from a < 4= < 1 (1 — i) and i + % 3. From (34) and Lemma A.4,
Ty = — ZI M (B,3)' T:(B,4)Vi(B) ™~ g:(B) — % LGB, 4) Fi(B,A)7 + 0, (n712)
i=1
= 7@ 4 R(Q) +0p <n71/2> . (40)

>From (36) and Lemmas A.2 and A.4, R® satisfies

N

max B
16]*

.
- 00 () o @t (G0 =0 (7).

el s

)maXHr

where the last equality follows from o < 3—15 < % (1 — %) and % + % < % Thus, from (40),
Ty = —= ZIM A JdBAY V(B 5u(B) + 0p (n712)
S M o) T (B Vi (B (B) 4 RO 40, (n72). a2
i=1

R®) is implicitly defined and satisfies

IRP)] <

S AN, A) = M; (B 1) Y3 A) Vi) 415
i=1

S M%) Ui(B.A) — (B )Y B) (B
=1

> Mi(Bos 1) B 1 T = Vi) 4P
i=1

3
— |RO|| + IR +||RP)|I.
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D)=

>From Assumption 3.2 (iv) and a similar argument to derive (47) shown below, we have ||R

op (n~ 1/2). Assumption 3.2 (iv) and Lemmas A.1, A.2, and A.4 yield

3 A~ ~ ~ ~ A
IRV < maax 1M (8,7, | e (B, 9) = J: (B, 7.) | max V(5 l”H Zfigme

= 0p(1) {op (n d e +1> +op ( —3+¢ +:>}op(1){op (cn) + 0p <n7+ )} — o <n71/2)7

where the last equality follows from Ci + =2 < % + - +1 0S5 1 and Assumption 3.1 (v). Similarly,

2 -1
n 2
Assumption 3.2 (iv) and Lemmas A.1, A.2, and A.4 1mply that HRC3)|| =0, (n_l/Z). Thus, from (42),

Ty = —% ZIiMz’ (Bos72) i (Boy 1) Vi (Bo) ™ 6(B) + 0p (n—l/Z)
i—1
= —% Z IiM; (B, 7.)' Ji (Bo»74)' Vi (50)*1 {gi (By) + G’Z(B)(B — Bo)} + 0p <n71/2>
i=1

= —% ZIiMi (Bos 1)’ Ji (Bos )’ Vi (50)_1 9i (Bo) + Hy (Bo>74) A% Zw(wi, zi, Bo)
i=1 i=1

+RY 4 0, (n1/?)

= TMa —+ TMb + R(4) + Op (n71/2> 5 (43)

where the second equality follows from an expansion of gz([&) around B = By, and B is a point on the

line joining B and f,. R® is implicitly defined and satisfies

[BO] < |23 54 B i Bor) Vi (80) ™ 1Gi(B) - G %)}HHB—%H
=1

Op (n_1/2>

max || M; (5077*)|\maX|\J (ﬁom*)HmaXHV (Bo) 1HH ZI{G @i(ﬁo)}HHB—ﬁoH

1 ¢ )3 R
gZIiMi (Bos )" Ji (Bos ) Vi (Bo) ™" G (Bo)

IN

. ) g -1 ) —1/2
<+ mac| [ M (B, 7.) || max 1, (8, 7,) || max V3(8) ™| maxc| |G (8o) llop (n /%)

= o, (n*H%) +o, (n—1/2> — o, (n—1/2> ’

where the equality follows from Assumption 3.2 (iv) and Lemmas A.1, A.2, and A.3. Thus, from (43),

we have Ty = Thiq + Ty + 0p (n_1/2). Thie is written as

1 n n R - . B B B 1
Tra = —— D> LB[fileid ™ M; (Bo,v) Ji (Bo,v2)' Vi (Bo) ™" ——K;igi (Bo) + R
i=1 j=1 n
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where R,({r)) is implicitly defined and satisfies

{

|7

IN

% Z IzMz (507 ’7*)/ {jz (BOa ’Y*) - E[ﬁ|:€l]_lj@ (507’7*)}1 ‘71 (60)71 gl (50)
=1

42 S BBl M; (B0, i (B2 { ¥ (80) ™~ BRIV (50) ™ 41 (80)
=1

+ —ZZI { Elfilz]~ }Mi (Bos7.) Ji (Bosv.)' Vi (Bo) ™ #Kﬁgj(ﬁo)

i=1 j=1 n

= RGN+ IR +1IRD|I

>From Assumption 3.2 (iv), Lemmas A.1 and A.2, and Tripathi and Kitamura (2004, Lemma C.1),
we have HR«SZ)H < 0p (2) = 0p(n~Y?) from o < 4. Similarly, we have HRS}H < 0y (2) = op(n~Y2).
Moreover, Assumption 3.2 (iv), Lemmas A.1 and A.2, and Tripathi and Kitamura (2004, eqn. (C.1))
imply HRS{?H < Op () = op(n~Y2). Thus, from (44), we have Ths, = Thiq + 0p (n"Y/?). By applying
the U-statistic arguments of Kitamura, Tripathi and Ahn (2004, pp.1696-1698) and Powell, Stock and

Stoker (1989, Lemma 3.1), we have the asymptotic linear forms for Th/q4:
n?Tyge = ==V " LM; (Bo,v.) i (B, v.)' Vi (Bo) ™ 9i(Bo) + 0p (1) (45)
=1

~From Lemmas A.1, A.2, and A.3, and a weak law of large numbers, we can show that Hj; (Bos7s) RN
E[I;M; (Bo,74)" Ji (Bo, 1) Vi (50)_1 Gi (Bo)] = Hu (Bo,7.). Therefore, Ty satisfies

n Ty = n /2 ZHM (Bosvx) A (@i, 2, By) + 0p(1). (46)
i=1

From (43), (45), and (46), a central limit theorem yields

n?Ty = 2Ty +n*Tog + op (1) = n~t/? Zwiw (B0, 72) + 0p (1)
i=1

4 N(0,®y), (47)

where
and &)y = F [wfw (Bo,Ve) WM (Bos7+)']. >From Lemmas A.1, A.2, and A.3, we can show that dy B

® ). Therefore, we have

A d 2
Mg = nT]/W¢MTM - Xrank(‘I)M)'
Proof of (ii)
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>From (33) and Lemma A.4, T in (?7) is written as

1 n n R !
Te = ﬁ Z;Ii {Z(ﬁ?z(lg) +ﬁ§\z[)hj(’7 }

J=1

= ZI {Z 2uji — wM(B)'gj(B))hm)} G {Z<wﬁxg<a>fgj@>hm>} + RO,
7=1

where R(19) is implicitly defined. From a similar argument to derive (39), R(1¢) satisfies

] <
j=1 j=1
HlEson { iy w)} V) { (w355 ()} s w)}H
i=1 j=1 j=1
e fjfz {iwﬁwhj (%) p ViH) {iwﬂrﬂhj (a)}
i—1 =1 j=1
< o(ur) {opte o (54)) o ) oyt o 17 4)
+o0 (nQ/C"L) {Op (cn) +o0p (n7%+%) }4
= 0p (n_1/2> .
Thus, from Lemma A.4, we have
Te = —— ZI {Z 2wji — wﬂf(ﬁ)'gj(m)hm)} Vi) {ij(zumf(m'g,-(ﬁ))hm)}
J=1 j=1
+o0p <n_l/2>

1< s e ] Don b N N1 2
= YL {2h() = SEEAVB) 9B | VAT {IBAY B a(B))
i=1
+R?) 4o, (n_l/Q) ,
where R(9) is implicitly defined. A similar argument to show (41) yields that HR(QC)H = 0p (n_l/ 2).

By setting

Mi(B,7) = {2hi(y) = B Vi(B) T a(B)Y V()
Mi(ﬁa')/), = 2E[ (’217 )|5B2] Vh( ) ) (Zj?ﬁay):h(zja')/)a

we can apply the same argument as the proof of Theorem 3.1 (i). Thus,

n'?Te =237 48 (By,7.) + 0, (1) % N (0,0¢), (49)

=1
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where

v (B,7) = —LMi(B,7) I (8,9) Vi (B) ' g(zi, B) + He (B, 7) Av(ws, 24, B), (50)

¢c = EWS (Bo,v)’], and He (8,7) = E[L:M; (8,7) I (8,7)' Vi (8) G (B)]. From Lemmas A.1,
A.2, and A.3, we can show that (}SC 2 ¢c. Therefore, we have

T
C,=Y=2 4 N(0,1).
b
|
Proof of (iii)
>From (33) and Lemma A.4, we have
1 n . R . o n . R . R
Ty = > LGIAV(H™ {Z{pgi(ﬁ) - pﬁ}hj(’v)}
i=1 j=1
1 n " o n .
= —;ZI@G?(V)'VZ}’W) ' {Z{wﬂ)‘z (8) gj(ﬁ)}hy(v)} + RU*)
i=1 j=1
1 . Ah NI\ h(aN—1f5 Th/h 2 e ~ s s
= =D LG VA THINBA V) a(B)) + B+ REY
=1
where R(1*) and R(®%) are implicitly defined. Similar arguments to derive (39) and (41) yield HR(ls)H =
Op (n*1/2) and HR(QS) H = 0p (n*1/2), respectively. By setting
Mi(B,7) = G () VI ()™, Mi(B,7) = GE)'V (1), m(25,8,7) = h(25,7)
we can apply the same argument as the proof of Theorem 3.1 (i). Thus,
n1/2TS = n71/2 Z%S (ﬁO?f)/*) + Op (1) i) N (07 (I)S) 5
i=1
where
i (B,7) = ~L:iMi(B,7)" I} (B,9)" Vi () 9(zi, B) + Hs (8,7) A (xi, 2, B), (51)

bg = E["lﬁf (50)7*) 'lp'LS (5077*)/]7 and -HS (577) = E[]ZMZ (5;’7)1 th (677),‘/1 (5)71 GZ (/6)] From Lem-
mas A.1, A.2, and A.3, we can show that &g = ®g. Therefore, we have

5 _ d
Sg = nTé(I)STS - Xfank(@g)‘

A.2 Proof of Theorem 3.2

Proof of (i)

26



Assume that n is large enough so that 3 € By and S, € Bo. Note that Lemmas A.1-A.3 remain
valid when S is replaced by f,,. Thus, from the proof of Tripathi and Kitamura (2003, Lemma B.1),

LX(B) = LVi(B) " 9:(B) + 17,

where [|7]| = op(nl/g) {(maxiel*

2 ~
> i1 wsig5 (Bon) ) + 18 = Bonl® =y wjida (Zj)2}a and the o, (n'/)

term does not depend on ¢ € I,. From the continuity of d;, (x) and f (x), and the compactness of X,

an adapted version of Tripathi and Kitamura (2003, Lemma C.1) yields
> et wiigi (Bon)

Since the adapted versions of Lemmas A.1-A.4 are valid, we can proceed as in the proof of Theorem

maxicr,

= Op (¢n). Thus, Lemma A.4 also remains valid when (3, is replaced by S,,.

3.1 (i) by replacing By with fg,,. Therefore, under Hy,,

n1/2TM = nil/QZTZJ{V[(ﬂona’Y*)"‘Op(l)
i=1

= n_1/22{¢£\4(60n77*)*Ew}ﬁw(ﬁOm’Y*)]}
=1

H{=E [IM; (B0 1) i (Bons 1) Vi (Bon) ™" E [g(23: Bow ]
B [Har (Bus 1) DE (i, 20 Bon) 2]} + 0y (1)

=m0 (Bons v) = B (Bons 1)1} + s + 05 (1)
=1

>From adapted versions of Lemmas A.1-A.3, we can show that &y 2 )y under H,,. Therefore, the
conclusion is obtained. |
Proof of (ii)
A similar argument to the proof of Theorem 3.2 (i) yields that under Hy,,

n1/2TC = n_1/2 Z¢? (/807177*) + Op (1)
i=1

= n—l/QZ{QZ)? (Bonap)/*)_E[wiC (5()7”7*)]}

=1
+{_2E[12E [h’ (Zia 7*) ‘xl]/ ‘/;h (’7*)_1 th (50n77*)/ Vi (ﬁﬂn)_l E [Q(Zz, 5071)’37%“
+E[He (Bops v4) AE [Y(wi, 26, Bon) |l } + 0p (1)

= 0723 {6 (Bons 1) — BE (Bons 1)1} + e + 0p (1)
=1

4 N (1o, d¢) -

>From adapted versions of Lemmas A.1-A.3, we can show that ‘2’0 2 ¢c under Hgy,. Therefore, the

conclusion is obtained. [ ]
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Proof of (iii)
A similar argument to the proof of Theorem 3.2 (i) yields that under Hy,,

nl/ZTS = n71/2z¢is(ﬁon,’7*)+0p(1)

= n_1/2 Z {%S (BOnv’y*) - EW? (ﬁOna’y*)]}

=1
{=EILG} (7.)' VI (1) I (Bons 1) Vi (Bon) ™ E [9(2i: Bon) 4]
+E [Hs (Bon, vi) AE [(wi, i, Bop)|i]]} + 0p (1)

= 072308 By 1) — EIUS (Bons v} + pis + 0y (1)
=1
i} N (:U’S? (I)S) '

~From adapted versions of Lemmas A.1-A.3, we can show that ®g 2 &g under H,,. Therefore, the

conclusion is obtained. |

A.3 Proof of Theorem 3.3

Proof of (i)
Let Ji(3,7) = > i 1wﬂl+§g(7))?;]((); By the definitions of ﬁgi (8) in (7) and Ty in (11),

Ty = ——ZIM ) Ji(B:4) M (B)
_ —n;qum,vo)’Ji(B, YXB) + 0y (1)
_— ZIM (B v0) Ti(B.AY AL (0, B) + 0p (1)
. —;jzlfiwm,vo) Tu(Busro) M (2 8.) + 0y (1)

= pppr t0p(1),

under Hpy, where the second equality follows from Assumption 3.2 (iv), the third equality follows from

max;ey, ||\ (B) — MN(x:,8,)]| 2 0, and the fourth equality follows by applymg similar arguments as

Lemma A.2 and Newey (1994, Lemma B.3). Therefore, we have M,/n 2 P, 0r P bnas under Hy,, and

the conclusion is obtained. |
Proof of (ii)
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Observe that under Hy, : E [hi(vo)|zi] =0,

711‘ (%) = E [hi(vo)|z:]

2
< sup ) sup H I ] =o
(xiGX* x; EXx Z p
where the equality follows from the same argument as Lemmas A.1 and A.4 (replace g;(3) with h;(7)),
and 137 I = 0,(1) (by a law of large numbers). Also, from the definitions of ﬁ?i (B) in (7),

fZIhg Y VA T R (9)

/
~ n

- = wjih;(¥) Th (41 wjih; (%)
o ngmm S P e
1 ‘ h(zi,7v0) . IA'h -1 h (2i,70) =l 1o
B n;w{lﬂz (zi,8,) 9(2i, B.) ] e E[HAZ (zi,8,) 9(zi, 8., } *opll)
I, h (zi,70) xA/ hoo \—1 h (zi; 7o) ol 4o
) ”;LE[1+Az<xi,5*>’g<zi,ﬁ*> R e T e ni L R

= Hpc +Op (1) )

where the second equality follows from Assumption 3.2 (iv) and the third equality follows from the same
argument as Lemma A.l. Combining these results, we have T = pj,c + 0p (1) and thus Cy/y/n i
Uhe/ \/% under Hy. The conclusion is obtained. |
Proof of (iii)
By the definitions of ﬁ?i (8) in (7) and T in (16),

Tg = —= ZIG )HIL(B,A) A (B)

= - LS LG8 (o) VE (r0) T BN B) + 0y (1)

1< _
- _ﬁ Z IZG? (’70)/ V;h (70) ! J’L}}k(ﬁ*a 70)/)\2 (.’L'i, 6*) + Op (1)
=1
= Hps + Op (1) 3

under Hy,, where the second equality follows from Assumption 3.2 (iv), and the third equality follows
from max;es, [|A(B) — M(zi, B,)]|| & 0 and similar arguments to Lemma A.2 and Newey (1994, Lemma

B.3). Therefore, we have S,/n LN 1,5 P ghtns under Hy,, and the conclusion is obtained. |
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A.4 Auxiliary Lemmas

Lemma A.1 Suppose that Assumptions 3.1 (i), (ii), and () and 3.2 (i)-(iii) hold. If nﬂ_ﬂ% — 0,
then

sup (Vi) - Viwo)H =0, (n737E), sup Vi) = Vi (80) | = op (n2EH)
T; EX T;EXy
sup ||V (80) — Elfiled Vi (80)|| = Op (). sup ||V (80) ™ = Elfikaid Vi (89) 7" = 0
T, EXx x; EXx
Proof. See the proof of Tripathi and Kitamura (2003, Lemma C.2). [

Lemma A.2 Suppose that Assumptions 3.1 (i)-(iv) and 3.2 (i)-(iv) hold. If% — 0, then

PN A 1y 1 41 i, 1,1
JiB.A) = B, va)|| = op (nTF @) 4o ()

sup
T; EXy

Ji (Bosv4) = Elfilwil ™ i (B0, 74)

sup = Op (Cn) .

T; EXx
Proof. (First part) An expansion of J;(3,4) around (3,4) = (8¢,7,) and Assumption 3.2 (iii) and
(iv) yield

Ji(B, %) = Ji(Bo, 1)

sup
z; €Xx
om;(B,7) (B - 99;(B) - '
- Zw (m (o) + G _fj)) @%H%ﬂé@(ﬁ—ﬁo))
- ijimj (507’7*)93'(/80),
j=1
< 1B = Boll max |Imy (8o, .| sup Zwldl | +]7 ) mas lg; (Bo) |l sup Zwlm
N 01<< ! 07 I ri€Xe || T ! j ':Y_'Y 1<j<n 70 T €Xe || ’

+15 ~ 50\\ sup ngzdl (2j) dm (%)

$L€X* j 1

— Vx
= R;{+R,{+R;’,

where (8, 7) is a point on the line joining (8, 4) and (8g,7,). From (37), Assumption 3.1 (i) and (iii),
and Tripathi and Kitamura (2003, Lemma C.6), we have

1 1,1, 1
Rgzo (n 2+<m+ ), Rb —Op <’n, 2+<+77m>7 Rg:op (n_1+max{2/7772/77m}>

>From 1 > 6 and 7,, > 6, R/ is negligible. Therefore, the first part is obtained.
(Second part) The second part is obtained from the proof of Newey (1994, Lemma B.3). |
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Lemma A.3 Suppose that Assumptions 3.1 (i), (ii), and (iv) and 3.2 (i)-(iii) hold. If nl% — 0,

1—2
/mbs,

then
sup [[Gi(3) = i (80 = op (n7H7).
xsgg Héz (Bo) — Blfilzi] Gy wo)H o).

Proof. (First part) An expansion of 39 ( 3)/08Y around 3 = 3, and Assumption 3.2 (iii) yield

(k)
sup Zwﬂ Z Wi 85(4)) < sup Zwﬂd2 %) HB ”BOH
o

T;E€EXx j=1 =1 T, €Xx

= o (n /’72> Oy <n_1/2> ,

where the equality follows from Assumption 3.1 (ii) and Tripathi and Kitamura (2003, Lemma C.6).
Therefore, the first part is obtained.
(Second part) The second part is obtained from the proof of Newey (1994, Lemma B.3). |

Lemma A.4 Suppose that Assumptions 3.1 (i), (ii), and (iv) and 3.2 (i)-(iii) hold. If b, = n=% for
I<a< % (1—7) then under Hy
~ D 7l+l
max||3:(B)]| = Op (en) + 0p (n~2*7),

and
—ng(B) + Iirf’

™

LN (B) = LVi(B)

el =0, (1) {0, (3) 0, (7).

Proof. See the proof of Tripathi and Kitamura (2003, Lemma A.1). Note that Assumptions 3.1
(1), (ii), and (iv) and 3.2 (i)-(iii) imply Tripathi and Kitamura (2003, Assumptions 3.1-3.7). [

where
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Table 1. Estimated Sizes and Powers of the tests with nominal size of 5%!7
(Design I, ¢g = 1)
n =100 n = 200
Test b, Size A-P S-P Size A-P S-P
0.7 170 778 528 135 936 .878
M, 0.8 100 777678 .090 .947 923
0.9 064 775 749 .060 .966 .961
1.0 046 781 .796 .029  .960 .969

0.7 070 .500 .399 .038 .600 .703
C, 08 030 .389 .581 .023 462 .848
0.9 010 .281 .684 007 343 .889
1.0 005 .202 .726 .001 .211 .899

0.7 329 970 .823 A74 0 .989 978
Sy 0.8 244 968 .905 1100 996 1992
0.9 164982 945 070 997  .995
1.0 123 989 971 045 999 .999

J 041 926 .934 052 999 .998
S 008 911 .972 007 .997 1.00
SC 055 935 .934 054 999 .999

"Tests My Cy, and Sy refer to the moment encompassing, Cox-type, and efficient score encompassing tests, repectively.
Also, tests J, S, and SC refer to Hansen’s (1982) overidentifying test, Singleton’s (1985) test, and Ramalho and Smith’s
(2002) simplified Cox test, respectively. A-P and S-P denote Actual Power and Size-Corrected Power, respectively.
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Table 2. Estimated Sizes and Powers of the tests with nominal size of 5%
(Design I, ¢y = 2)
n =100 n = 200
Test b, Size A-P S-P Size A-P S-P
0.7 176 537 .262 138 752 517
M, 0.8 .104 500 .357 084 .745 .644
0.9 071 460 415 .057 732 711
1.0 039 442 473 038 .716 .748

0.7 064 272 221 .036  .244 327
C, 08 029 165 .309 .021 147 467
0.9 013 .095 .390 .008 .076 .584
1.0 003 .046 .403 .001 .036 .601

0.7 325 953 .807 A75 0 .986 0 .971
Sy 0.8 230 957 .876 A17 0 .987 981
0.9 164 965 .908 071 988 .985
1.0 126958 .931 039 992 .994

J 044 563 .572 .056 .868 .865
S 021 .554 .666 023 .863 .906
SC 055 589 .582 .053 .878 .876

S Tests My Cy, and Sy refer to the moment encompassing, Cox-type, and efficient score encompassing tests, repectively.
Also, tests J, S, and SC refer to Hansen’s (1982) overidentifying test, Singleton’s (1985) test, and Ramalho and Smith’s
(2002) simplified Cox test, respectively. A-P and S-P denote Actual Power and Size-Corrected Power, respectively.
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Table 3. Estimated Sizes and Powers of the tests with nominal size of 5%
(Design II)
n =100 n = 200
Test b, Size A-P S-P Size A-P S-P
0.1 062 .624 .502 .043 .635 .696
M, 0.2 018 .604 913 .015 .608 .959
0.3 .009 .538 .967 .008 .568 .984
0.4 .007 452 984 .004 471 981

0.1 164 685 .428 112 670 454
C, 02 061 .660 .639 .040 .675 .675
0.3 029 .664 .803 027 .680 .883
0.4 .018 .644 897 017 707 948

0.1 095 292 140 078 334 234
Sy 0.2 053 356 .339 .040 414 .486
0.3 034 412 589 027 427 729
0.4 .020 433 .791 .017 489 .837

J 048 .027 .027 053 .040 .034
S 011 .021 .158 009 .031 .172
SC 008 075 .174 .004 .070 .165

Y Tests My Cy, and Sy refer to the moment encompassing, Cox-type, and efficient score encompassing tests, repectively.
Also, tests J, S, and SC refer to Hansen’s (1982) overidentifying test, Singleton’s (1985) test, and Ramalho and Smith’s
(2002) simplified Cox test, respectively. A-P and S-P denote Actual Power and Size-Corrected Power, respectively.
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