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Abstract

We propose new estimation and inference methods for quantile regression mod-

els based on the method of empirical likelihood and its extensions. We consider

four concepts of nonparametric likelihood—conditional empirical likelihood (CEL),

smoothed conditional empirical likelihood (SCEL), usual empirical likelihood (EL),

and smoothed empirical likelihood (SEL)—and investigate the statistical properties

of the derived estimators and test statistics. Our extensions to the empirical likeli-

hood approach effectively deal with several problems of existing quantile regression

estimation and inference methods, such as the efficiency of the estimators, variance

estimation to construct confidence sets, and higher order refinements of confidence

sets. In order to avoid practical and technical problems of non-smooth objective

functions, we introduce kernel smoothing on quantile restrictions. As extensions, we

consider multiple quantile regression models, tests for homoskedasticity and symme-

try, confidence sets without parameter estimation, and consistent specification tests

for quantile regression models.
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1 Introduction

This paper studies new estimation and inference methods for quantile regression models based on the method

of empirical likelihood and its extensions. Our extensions to the empirical likelihood approach effectively

deal with several problems of existing quantile regression estimation and inference methods, such as the

efficiency of the estimators, variance estimation to construct confidence sets, and higher order refinements

of confidence sets. In order to avoid practical and technical problems of non-smooth objective functions, we

introduce kernel smoothing on quantile restrictions. We consider four concepts of nonparametric likelihood—

conditional empirical likelihood (CEL), smoothed conditional empirical likelihood (SCEL), usual empirical

likelihood (EL), and smoothed empirical likelihood (SEL)—and investigate statistical properties of the de-

rived estimators and test statistics. Each method has different advantages and disadvantages compared to

conventional estimation and inference methods. Particularly, (i) the CEL and SCEL estimators are asymp-

totically efficient; (ii) all of the EL-based test statistics provide valid confidence sets without estimating the

variances of estimators; (iii) SCEL- and SEL-based estimation and inference can be conducted by a Newton-

type algorithm; (iv) SEL is Bartlett correctable and provides higher order refinement of the confidence sets;

(v) however, CEL, SCEL, and SEL require some kernel smoothing, in which the choices of the kernel function

and bandwidth may be arbitrary.

Since the seminal works of Koenker and Bassett (1978a,b), quantile regression has become a standard tool

of empirical economic analysis, particularly in the fields of labor and public economics.1 A familiar special

case of quantile regression is the least absolute deviation (LAD) regression, in which the quantile of interest is

the median. Since the distributional form of the error term is unspecified except for the conditional quantile

restriction, quantile regression is regarded as a semiparametric model, which is robust to misspecification

of the distributional form of the error term. There are five important features to consider when analyzing

quantile regression models.

(i) Efficiency: Koenker and Bassett’s (1978a) conventional quantile regression estimator is not efficient

under the conditional quantile restriction, which is an asymptotically equivalent representation of a

quantile regression model. Indeed, the conventional estimator is based on an unconditional moment

restriction, which is an implication of the conditional quantile restriction. Based on the efficient

score of quantile regression models, Newey and Powell (1990) proposed an efficient quantile regression

estimator. However, implementation of Newey and Powell’s (1990) efficient estimator requires a sample
1See Buchinsky (1998) for a review of quantile regression. For empirical applications of quantile regression, see the special

issue of Empirical Economics (vol. 26:1).
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splitting device for estimating the efficient score and estimation of the optimal weight, which is the

conditional error density function evaluated at zero.

(ii) Variance estimation: Since the asymptotic variances of quantile regression estimators contain the

conditional error density function evaluated at zero, variance estimation for constructing confidence

sets is an important issue. The Wald-type test statistics and confidence sets (i.e., estimate ± 1.96 ×

standard error) require some variance estimator. Several variance estimation methods are proposed

and compared, such as the order statistic, kernel smoothing, and bootstrap methods.2

(iii) Non-smooth moment restriction: Since the moment restrictions implied by quantile regression

models contain indicator functions, we need to deal with non-smooth objective functions for estimation

and inference. Thus, we cannot apply the usual argument based on Taylor expansions for discussing

the asymptotic properties of estimators and test statistics, particularly for higher order properties.

(iv) Algorithm: Due to the non-smoothness of the implied moment restrictions, the choice of an algorithm

to implement quantile regression estimation is a substantial practical issue. Koenker and Bassett’s

(1978a) conventional estimator employs a linear programming algorithm, which is stable and globally

convergent by a finite number of iterations. We could use some generalized method of moments (GMM)

type estimation to improve efficiency by including additional moment restrictions. However, in this

case, we would not have such a linear programming representation for the optimization problem of the

estimator. Thus, we would have to apply some non-derivative optimization algorithm, such as Nelder

and Mead’s (1965) simplex method or simulated annealing.

(v) Censoring: In contrast to the conditional mean restrictions of mean regression models, the conditional

quantile restriction is useful for identifying censored regression (or Tobit) models. Since Powell (1984,

1986), several semiparametric methods for censored regression models are provided by using conditional

quantile restrictions.

This paper considers uncensored quantile regression models and therefore deals with (i)-(iv). Extension to

censored regression models is an important topic for future research.3

In this paper, we apply the method of EL by Owen (1988, 1990, 1991) and CEL by Kitamura, Tripathi,

and Ahn (2003) and Zhang and Gijbels (2003) to quantile regression models, and propose new estimation

2See Buchinsky (1995b) and Koenker (1994) for simulation results and comparisons of these methods.
3The author is currently working on this extension, which introduces additional kernel smoothing for the indicator function

by censoring.
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and inference methods.4 EL is a data-driven nonparametric method of estimation and inference for mo-

ment restriction models, which does not require weight matrix estimation like GMM and is invariant to

linear transformations of moment restrictions.5 Qin and Lawless (1994) showed that the EL estimator is

asymptotically (first-order) equivalent to the optimally weighted GMM estimator by Hansen (1982), and

that the EL ratio test statistics for parameter restrictions has the chi-square limiting distribution. Newey

and Smith (2003) and Kitamura (2001) derived desirable properties of the EL approach from the viewpoints

of higher-order bias and large deviation properties, respectively. CEL is an extension of EL to attain the effi-

ciency bound for conditional moment restriction models, which imply infinitely many unconditional moment

restrictions. LeBlanc and Crowley (1995) proposed a local likelihood approach to construct nonparametric

likelihood for conditional moment restriction models. Although LeBlanc and Crowley (1995) showed that

their approach is applicable to quantile regression by a numerical example, they did not provide any formal

statistical theory. Kitamura, Tripathi, and Ahn (2003) assumed sufficiently smooth moment restrictions,

and derived the consistency, asymptotic normality, and efficiency of the CEL estimator. Therefore, the

CEL estimator is asymptotically equivalent to the optimal instrumental variable GMM estimator by Newey

(1990, 1993), which attains the semiparametric efficiency bound derived by Chamberlain (1987). Zhang and

Gijbels’ (2003) setup allows for non-smooth moment restrictions and nonparametric regression models.6 In

contrast to Zhang and Gijbels (2003), Kitamura, Tripathi, and Ahn (2003) proposed the CEL ratio test

statistic for parameter restrictions and derived its chi-square limiting distribution. These previous results

show that EL and CEL have similar properties as usual parametric likelihood. Kitamura (2003) extended

the CEL approach to possibly misspecified models, proposed the CEL-based measure of fit for conditional

models, and discussed quantile regression models as an example.

In the quantile regression setup, we first show the consistency, asymptotic normality, and efficiency of the

CEL estimator. An important advantage of the CEL estimator is that we do not need to estimate the optimal

weight of Newey and Powell’s (1990) efficient estimator; the optimal weight is automatically incorporated in

CEL. In addition, we derive the chi-square limiting distribution of the CEL ratio test statistic for parameter

restrictions. However, in contrast to the conventional inefficient quantile regression estimator by Koenker

and Bassett (1978a), the optimization problem for CEL estimation does not have a linear programming

4A note on terminology. CEL is called “smoothed” and “sieve” empirical likelihood in Kitamura, Tripathi, and Ahn (2003)
and Zhang and Gijbels (2003), respectively. Since we introduce additional smoothing on moment restrictions, we describe their
method as “conditional” empirical likelihood in order to avoid confusion, which is adopted by Kitamura (2003).

5See Owen (2001) for a review of empirical likelihood.
6Otsu (2003a) extended the CEL approach to semiparametric models, i.e., conditional moment restriction models including

unknown functions, and proposed the penalized empirical likelihood estimator (PELE).
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representation. Since CEL is non-smooth with respect to unknown parameters, we must use some non-

derivative optimization algorithm, which tends to have multiple local optima and converge slowly, for the

implementation of CEL-based method. To solve this practical problem, we introduce kernel smoothing

to the conditional quantile restriction. By replacing the conditional quantile restriction with a smoothed

counterpart, we derive the SCEL estimator and SCEL ratio test statistic. Since the SCEL objective function

is smooth with respect to unknown parameters, we can apply a popular Newton-type optimization algorithm.

We show that the SCEL estimator and SCEL ratio test statistic are asymptotically equivalent to the CEL

estimator and CEL ratio test statistic, respectively. Furthermore, by inverting the CEL or SCEL ratio test

statistic, we can construct valid confidence sets for unknown parameters. In contrast to the conventional

Wald-type confidence sets, both the CEL- and SCEL-based confidence sets avoid variance estimation for

constructing confidence sets. While the Wald-type confidence set relies on a local quadratic approximation

of likelihood, shapes of the CEL- and SCEL-based confidence sets are determined by observed data and are

not necessarily symmetric around the estimates.

Higher order refinement of confidence sets is another reason for smoothing the moment restrictions. Due

to technical difficulties for analyzing higher order properties in the conditional quantile restriction setup, we

consider an unconditional quantile restriction, which is an implication of the conditional quantile restriction.

In order to obtain higher order refinements for the EL ratio we must use Taylor series approximations,

which require sufficiently smooth moment restrictions. For the LAD regression model, Horowitz (1998)

considered a kernel-smoothed objective function, and derived higher order refinements of the t and Wald

test statistics by bootstrapping. For distribution quantiles, Chen and Hall (1993) employed a smoothed

moment restriction and obtained the Bartlett correction of their EL ratio test statistic. From the smoothed

counterpart of the unconditional quantile restriction, we propose SEL, and derive the Bartlett correction of

the SEL ratio test, which is an extension of Chen and Hall’s (1993) result to the quantile regression setup.

Using the Bartlett correction, the rejection probability error of the SEL ratio test becomes O(n−2), which is

better than the conventional rejection probability error, O(n−1). Similarly to the cases of CEL and SCEL,

the EL- and SEL-based confidence sets do not require variance estimation, and shapes of the confidence

sets are automatically determined by data. After the completion of this draft, the author was informed

that Whang (2003) independently derived similar results, i.e., the Bartlett correction for the SEL ratio test.

While Whang’s (2003) main purpose is to compare SEL to the bootstrap, this paper merely intends to

provide a motivation for smoothing the quantile restriction and focuses mainly on the comparison to the

conventional method (for detailed discussion, see Section 5).
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As extensions, we consider multiple quantile regression models, tests for homoskedasticity and symmetry

of error terms, confidence sets without parameter estimation, and consistent specification tests for quantile

regression models. The CEL- or SCEL-based tests for homoskedasticity and symmetry are convenient tools

for analyzing the distributional form of error terms. The CEL- or SCEL-based confidence set without

parameter estimation, which is an extension of Tripathi and Kitamura’s (2001) canonical version of the

CEL ratio test statistic, is easy to implement if the number of unknown parameters is small. The CEL- or

SCEL-based consistent specification test for quantile regression models, which is an extension of Tripathi

and Kitamura’s (2002) CEL ratio specification test statistic, is an important diagnostic statistic to check

the validity of specification of the quantile regression models.

This paper is organized as follows. Section 2 describes the basic setup and background. In Section 3, we

introduce CEL and derive the statistical properties of the CEL estimator and CEL ratio test statistic for

quantile regression. In Section 4, we propose the SCEL estimator and SCEL ratio test statistic, and derive

the statistical properties. Section 5 considers the unconditional quantile restriction, and investigates EL- and

SEL-based inference methods; we also derive the Bartlett correction for SEL. Section 6 provides extensions

of the proposed methods, multiple quantile regression, homoskedasticity and symmetry tests, confidence sets

without estimation, and specification tests. Section 7 concludes. Appendices contain mathematical proofs

and preliminary lemma.

The author is currently working on a Monte Carlo simulation and empirical application of the proposed

methods. The simulation setup is based on that of Horowitz (1998). The empirical example is wage regression

based on CPS data by Buchinsky (1994) and Bierens and Ginther (2001). Preliminary results are available

from the author’s website (http://www.ssc.wisc.edu/∼totsu/quantile.htm).

2 Setup and background

In this section, we describe the basic setup and background for quantile regression models. Let {yi : i =

1, . . . , n} be a scalar random sample used as a regressand and {xi : i = 1, . . . , n} be a q × 1 vector of

random samples used as regressors. Letting Fy|x be the conditional distribution function of y given x, the

τth conditional quantile function of y given x is defined as Qτ (y|x) ≡ inf{y|Fy|x(y|x) ≥ τ}. The (linear)

quantile regression model is written as

yi = x′iβ0 + εi, Qτ (yi|xi) = x′iβ0, (1)
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for i = 1, . . . , n, where τ ∈ (0, 1) is a fixed and known quantile of interest, β0 is a q × 1 vector of unknown

parameters, and εi is the error term.7 As τ increases from 0 to 1, we can trace the entire conditional

distribution of y given x. In general, β0 and εi vary with the value of τ . If τ = 0.5, (1) corresponds

to the LAD regression model. The mth element of the regression coefficients β0m = ∂Qτ (yi|xi)/∂xim is

interpreted as the marginal change in the τth conditional quantile Qτ (yi|xi) by the marginal change in xim.

Let z ≡ (y, x′)′. Apart from the conditional quantile restriction (1), the distribution form of z is unspecified;

therefore, the quantile regression model is regarded as a semiparametric model. Furthermore, note that

compared to the conditional mean restriction E[y|x] = x′β0, the conditional quantile restriction is robust to

outliers in y.

Assume that z is continuously distributed with the joint density fz and conditional density fy|x. Then

the conditional quantile Qτ (y|x) satisfies
∫ Qτ (y|x)
−∞ fy|x(y|x)dy = τ , and the quantile regression model (1) is

equivalent to the following conditional moment restriction,

E[g(z, β0)|x] ≡ E[τ − I(y − x′β0 ≤ 0)|x] = 0 (conditional quantile restriction), (2)

where I(·) is the indicator function. CEL and SCEL discussed in the following sections are constructed from

this conditional moment restriction.

The conventional quantile regression estimator by Koenker and Bassett (1978a) is defined as

β̂KB ≡ arg min
β∈B

1
n

n∑
i=1

ρτ (yi − x′iβ), (3)

where ρτ (ε) ≡ ε(τ − I(ε ≤ 0)) is the so-called check function. Let fε|x be the conditional density of ε given

x. Koenker and Bassett (1978a) showed that under certain regularity conditions,

n1/2(β̂KB − β0) d→ N(0, VKB),

where

VKB ≡ τ(1− τ)E[fε|x(0|x)xx′]−1E[xx′]E[fε|x(0|x)xx′]−1.

To construct the confidence set of β0, we usually estimate the variance VKB , which contains the conditional

error density evaluated at zero (i.e., fε|x(0|x)). While several variance estimation methods have been pro-

posed, such as the order statistics, kernel smoothing estimation, and bootstrapping, our EL-based methods

avoid the variance estimation for constructing confidence sets.
7Under certain additional regularity conditions, our methods can be easily extended to nonlinear parametric regression

models or parametric transformation models, such as the Box-Cox transformation model by Buchinsky (1995a).
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Since the first-order condition for the minimization problem in (3) is written as n−1
∑n
i=1 xi(τ − I(yi −

x′iβ̂KB ≤ 0)) = op(n−1/2), β̂KB can be interpreted as the GMM estimator of the following unconditional

moment restriction,

E[xg(z, β0)] = E[x(τ − I(y − x′β0 ≤ 0))] = 0 (unconditional quantile restriction). (4)

Since the conditional quantile restriction (2) implies infinitely many unconditional moment restrictions in

the form of E[ψ(x)(τ − I(y − x′β ≤ 0))] = 0 for any arbitrary function ψ, (4) is an implication of (2) (i.e.,

ψ(x) = x). Therefore, β̂KB is not efficient under the conditional quantile restriction (2). This result is

analogous to the inefficiency of the OLS estimator under the conditional mean restriction like E[y|x] = x′β0

(see Chamberlain (1987)).

Since β̂KB is based on the unconditional quantile restriction (4), β̂KB and the GMM estimator for

(4) (i.e., β̂GMM ≡ arg minβ∈B n−1
∑n
i=1 g(zi, β)2x′ixi) are asymptotically equivalent.8 We can gain the

efficiency of the GMM estimator by adding moment restrictions in the form of E[ψ(x)(τ − I(y − x′β ≤

0))] = 0. However, an important difference between β̂KB and β̂GMM in practice is the existence of a linear

programming representation for the optimization problems. Since the minimization problem of β̂KB in (3)

has a linear programming representation, we can apply, for example, the simplex method by Barrodale and

Roberts (1973), which is globally convergent in a finite number of iterations.9 On the other hand, since

the minimization problem of β̂GMM does not have a linear programming representation, we must apply

some non-derivative optimization algorithm, such as Nelder and Mead’s (1965) simplex method or simulated

annealing, which has typically multiple local optima and converges slowly. Therefore, although the GMM

approach is useful for discussing the theoretical properties of quantile regression estimators, the conventional

estimator β̂KB is more appropriate in practice. Our SCEL and SEL methods do not require non-derivative

optimization due to smoothing on the moment restrictions.

To attain the semiparametric efficiency bound for the conditional quantile restriction (2), Newey and

Powell (1990) proposed the optimally weighted quantile regression estimator,10 that is

β̂NP ≡ arg min
β∈B

1
n

n∑
i=1

fε|x(0|xi)ρτ (yi − x′iβ). (5)

The asymptotic distribution of β̂NP is

n1/2(β̂NP − β0) d→ N(0, VNP ),
8Note that (4) is just identified and g(z, β0) is scalar.
9Note that the simplex method for solving linear programming problems is different from Nelder and Mead’s (1965) simplex

method for optimizing non-smooth objective functions.
10Newey and Powell (1990) allows censored regression models.
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where

VNP ≡ τ(1− τ)E[fε|x(0|x)2xx′]−1.

The optimal weight is the conditional error density evaluated at zero (fε|x(0|xi)), which also appears in the

variance VNP . Note that if the conditional density evaluated at zero is independent of x (i.e., fε|x(0|x) =

fε(0)), β̂NP = β̂KB and then the variance is simplified to

VKB = VNP =
τ(1− τ)
fε(0)2

E[xx′]−1. (6)

In Section 6.2, we propose CEL- and SCEL-based test statistics for testing fε|x(0|x) = fε(0). Using non-

parametric estimation of a component including fε|x(0|xi) and a sample splitting device for estimating the

efficient score, Newey and Powell (1990) proposed a two-step estimation procedure for β̂NP . The estimates

depend both on the method of nonparametric estimation of fε|x(0|xi) and on the way of splitting the sam-

ple. Since the CEL and SCEL methods, as discussed in the following sections, automatically incorporate the

optimal weight, the CEL and SCEL estimators do not require any preliminary nonparametric estimation of

fε|x(0|xi) or the sample splitting device for the efficient estimation of β0.

Based upon β̂KB or β̂NP , the Wald-type confidence set for the mth component of β0 is obtained as

(β̂•m − zα/2
√

(V̂•)mm, β̂•m + zα/2

√
(V̂•)mm ),

where zα/2 is (1− α/2)-th quantile of a standard normal variable, • is KB or NP , and (V̂•)mm is (m,m)th

component of a consistent estimator for the variance of β̂•m. Note that the above confidence set requires

estimation of the variance V̂• that contains fε|x(0|xi); in addition, the shape of the confidence set is restricted

to be symmetric around β̂•. Our EL-based confidence sets do not require variance estimation. Furthermore,

the shapes of confidence sets are automatically determined by observed data (i.e., confidence sets may be

asymmetric around the estimators).

3 Conditional empirical likelihood

In this section, we introduce the notion of CEL and derive asymptotic properties of the CEL estimator

and CEL ratio test statistic for quantile regression models. The idea of CEL was proposed by Kitamura,

Tripathi, and Ahn (2003) and Zhang and Gijbels (2003). However, Kitamura, Tripathi, and Ahn (2003)

ruled out non-smooth moment restrictions like the conditional quantile restriction. While Zhang and Gijbels

(2003) discussed quantile regression as an example, we provide a formal argument for asymptotic properties
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of the CEL estimator and CEL ratio test. Consider a discrete distribution with support on {z1, . . . , zn} ×

{x1, . . . , xn}. We do not make any notational distinction among a random variable, the value taken by it,

and its discrete support. The distinction should be clear from the context. Let pji ≡ Pr{z = zj |x = xi} be

the conditional probability mass of z given x. For information about Pr{z|x = xi}, only a single observation,

zi, is available. By borrowing sample information from nearby observations around xi, we can construct the

nonparametric likelihood for the conditional quantile restriction E[g(z, β0)|x] = 0. Let wji be weight for the

sample information from nearby data, which is defined as

wji ≡
K(xj−xibn

)∑n
j=1K(xj−xibn

)
,

where K : Rq 7→ R is a kernel function and bn is a bandwidth parameter. Using wji, the local empirical

likelihood at xi is defined as
n∑
j=1

wji log pji,

which is interpreted as the nonparametric kernel smoothing estimator for E[log p·i|xi]. Let B be the pa-

rameter space of β. Based on this local likelihood, consider the following maximization problem for each

β ∈ B,

max
{pji}ni,j=1

n∑
i=1

n∑
j=1

wji log pji (7)

s.t. pji ≥ 0,
n∑
j=1

pji = 1,
n∑
j=1

pjig(zj , β) = 0, i, j = 1, . . . , n.

Using the Lagrange multiplier method, the maximizer of (7) is written as

p̂ji =
wji

1 + λi(β)g(zj , β)
,

where λi(β), the Lagrange multiplier for the restriction
∑n
j=1 pjig(zj , β) = 0, satisfies11

n∑
j=1

wjig(zj , β)
1 + λi(β)g(zj , β)

= 0. (8)

Without the restrictions
∑n
j=1 pjig(zj , β) = 0 for i = 1, . . . , n, the maximizer of (7) is p̃ji = wji. Using p̂ji

and p̃ji, the conditional empirical log-likelihood ratio (CELR) is defined as

CELR(β) ≡
n∑
i=1

Iin

( n∑
j=1

wji log p̂ji −
n∑
j=1

wji log p̃ji
)

= −
n∑
i=1

Iin

n∑
j=1

wji log(1 + λi(β)g(zj , β)), (9)

11Note that in our quantile regression setup, λi(β) and g(z, β) are scalar.
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where Iin ≡ I(xi ∈ Xn) is a trimming term to avoid the boundary bias of kernel estimators, and Xn is a

subset of the support of x, X (see, Ai (1997) and Ai and Chen (1999)). Let XL and XU be known boundary

points of X , and ι be a q × 1 vector of ones. Xn is defined as [XL + bµnι,XU − bµnι] for some 0 < µ < 1.

In general, the computation of the CELR requires a numerical solution for λi(β) in (8). However, for the

quantile restriction g(z, β), there exists an analytical solution for λi(β) (see LeBlanc and Crowley (1995,

p.100) and Kitamura (2003)), i.e.,

λ̂i(β) =
τ −

∑n
j=1 wjiI(yj − x′jβ ≤ 0)

τ(1− τ)
≡ τ −Wi(β)

τ(1− τ)
. (10)

By plugging (10) into (9), CELR(β) can be written as

CELR(β) = −
n∑
i=1

Iin

[
(1−Wi(β)) log

(1−Wi(β)
1− τ

)
+Wi(β) log

(Wi(β)
τ

)]
. (11)

The conditional empirical likelihood estimator (CELE) is defined as

β̂CEL ≡ arg max
β∈B

CELR(β). (12)

Since CELR(β) is non-smooth for β, we must use some non-derivative optimization algorithm, such as Nelder

and Mead’s (1965) simplex method or simulated annealing. However, in this case, we do not need to nest

the computational routine for λi(β).

Assumptions for the asymptotic properties of the CELE are as follows.

Assumption 1. Assume that

(i) {yi, x′i : i = 1, . . . , n} are i.i.d.,

(ii) the support of x, X , is compact,

(iii) let x1i be the constant term, and (yi, x2i, . . . , xqi) is continuously distributed with the joint density

function fz and the conditional density function fy|x of yi given xi = x for i = 1, . . . , n,

(iv) the density function of x, fx, is strictly positive and continuous on X , and supx∈X fx(x) <∞.

Assumption 2. Assume that

(i) E[g(z, β0)|x] ≡ E[τ − I(y − x′β0 ≤ 0)|x] = 0 almost surely for almost every x ∈ X ,

(ii) the parameter space for β, B, is compact,

(iii) β0 ∈ int(B).
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Assumption 3. Assume that

(i) fε|x(0|x) > 0 for every x ∈ X , where fε|x is the conditional density for εi given xi = x,

(ii) fε|x(ε|x) is Lipschitz continuous (i.e., |fε|x(ε1|x)−fε|x(ε2|x)| ≤ f1|ε1−ε2| for some constant 0 < f1 <∞

and every ε1, ε2, and x ∈ X ),

(iii) there exists a constant 0 < f2 <∞ such that fε|x(ε|x) < f2 for every ε and x ∈ X ,

(iv) E[fε|x(0|x)2xx′] is positive definite.

Assumption 4. Assume that

(i) for v = (v1, . . . , vq)′, K(v) =
∏q
i=1 κ(vi), where κ : R → R is a continuously differentiable density

function with support [−1, 1]. Furthermore, κ is symmetric around the origin,

(ii) bqn ∝ n−η, where 0 < η < 1/2.

Assumption 5. Assume that when we solve (8) with respect to {λi(β) : i = 1, . . . , n} for each β ∈ B, we

search only on the set {λ ∈ R : ||λ|| ≤ Λn} with Λn = o(1).

Assumption 1 (i) excludes dependent data. If the moment restriction {g(zi, β) : i = 1, . . . , n} were a

martingale difference sequence, we expect that similar results would hold under certain additional regularity

conditions.12 However, the extension to weakly dependent processes, in which we have to deal with the

long-run variance matrix of moment restrictions, is a challenging task.13 Assumption 1 (ii) implies that

all moments of x exist, and excludes unbounded regressors x. The compactness assumption of X can be

dropped by employing a trimming argument of Kitamura, Tripathi, and Ahn (2003). Assumption 1 (iii) is

required to derive the conditional quantile restriction (2) from the quantile regression model (1). Assumption

1 (iii) and (iv) exclude discrete regressors like dummy variables. This assumption can be dropped by

using a trimming argument to control for small density values of fx (see Andrews (1995)). If we include

discrete regressors, the weight wji for constructing CEL should be modified to wji =
{
K(x

c
j−x

c
i

bn
)I(xdj =

xdi )
}
/
{∑n

j=1K(x
c
j−x

c
i

bn
)I(xdj = xdi )

}
, where xc and xd are continuous and discrete regressors, respectively. If

all regressors are discrete, we can use the minimum distance estimator by Chamberlain (1994).

Assumption 2 (i) is the conditional quantile restriction, which assumes that the quantile regression model

(1) is correctly specified. This assumption combined with Assumptions 1 and 3 (i) guarantees the global
12Weiss (1991) derived asymptotic properties of the conventional LAD estimator under dependent data with a martingale

structure.
13For unconditional moment restriction models, Kitamura (1997) extended the empirical likelihood method to weakly depen-

dent data by employing a blocking procedure.

12



identification of β0 ∈ B (see, e.g., the proof of Kim and White (2002, Lemma 1)). Instead of assuming

the correct specification (2), Kim and White (2002) considered (4) as the model of interest, and allowed

the quantile regression model (1) to be misspecified. In that case, the solution of (4) with respect to β0

is regarded as the “pseudo-true” parameters. Kitamura (2003) generalized the misspecification analysis

to conditional moment restriction models, and showed that the CELE also converges to some pseudo-true

value. Assumption 2 (ii) and (iii) are used for obtaining the consistency and asymptotic normality of the

CEL estimator, respectively. Assumption 3, which is based on Powell (1986) and Kim and White (2002), is

a set of standard regularity conditions on the conditional density fε|x.

Assumption 4 (i) constrains the shape of the kernel function K. This assumption implies that K belongs

to the class of second order product kernels. In order for p̂ji to take only positive values, we rule out

kernels whose orders are higher than two. Assumption 4 (ii) is a condition on the bandwidth bn. Due to

the boundedness of g(z, β) ≡ τ − I(y − x′β0 ≤ 0), this simple condition on bn is sufficient in our setup (see

Zhang and Gijbels (2003, Theorem 3)). The optimal choices of K and bn are open questions.14 Assumption

5, which is employed by Kitamura, Tripathi, and Ahn (2003, Assumption 3.6), controls the order of the

Lagrange multiplier λi(β) and simplifies the proof of Theorem 3.2. Since λ̂i(β) converges to zero under (2),

this assumption is innocuous in practice.

Under these assumptions, we obtain the consistency and asymptotic normality of the CELE, β̂CEL.

Theorem 3.1. Suppose that Assumptions 1-5 hold. Then

(i) β̂CEL − β0 = op(1),

(ii) n1/2(β̂CEL − β0) d→ N(0, V ), where V ≡ τ(1− τ)E[fε|x(0|x)2xx′]−1.

Therefore, the CELE, β̂CEL, is consistent, asymptotically normal, and efficient, i.e., β̂CEL is asymptot-

ically equivalent to Newey and Powell’s (1990) efficient estimator β̂NP in (5). In contrast to Newey and

Powell’s (1990) efficient estimator, we do not need to estimate the optimal weight fε|x(0|xi), which is auto-

matically incorporated in the construction of CEL. Since the non-smooth optimization problem for β̂CEL in

(12) does not have any linear programming representation, we must use some non-derivative optimization

algorithm to implement CEL estimation.

Now consider a test of nonlinear parameter restrictions on β0, that is

H0 : R(β0) = 0,
14For the bandwidth bn, Kitamura, Tripathi, and Ahn (2003) suggested to use the bandwidth obtained in the process of

estimation of optimal instrumental variables by Newey (1993). For the kernel K, Kitamura, Tripathi, and Ahn (2003) employed
the Gaussian kernel in the simulation.
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where R : B → Rr is an r × 1 vector of functions with r ≤ q. For testing H0, we can use the Wald test

statistic with a quadratic form of R(β̂)′[Var(R(β̂))]−1R(β̂), where β̂ is some
√
n-consistent estimator of β0,

such as β̂KB , β̂NP , or β̂CEL. However, the Wald test statistic requires estimation of Var(R(β̂)) and is not

invariant to how the parameter restrictions R are specified. The likelihood ratio test statistic avoids these

problems. The constrained CELE under H0 is

β̂RCEL ≡ arg max
β∈B

CELR(β) s.t. R(β) = 0.

Following Kitamura, Tripathi, and Ahn (2003), the CELR test statistic under H0 is defined as

LRn ≡ 2{CELR(β̂CEL)− CELR(β̂RCEL)}. (13)

The derivation of the asymptotic distribution of LRn requires the following assumption regarding R.

Assumption 6. Assume that R : B → Rr is twice continuously differentiable and rank
(
∂R(β0)
∂β′

)
= r.

This standard assumption is used to derive an alternative representation of the constrained CELE β̂RCEL.

The asymptotic distribution of LRn is obtained as follows.

Theorem 3.2. Suppose that Assumptions 1-6 hold. Then under H0,

LRn
d→ χ2

r.

This result is analogous to that of the usual likelihood ratio test. Note that the CELR test statistic does

not require any variance estimation, and is invariant to the specification of R. Based on the CELR test

statistic, we can construct asymptotically valid confidence sets for β0. The (1 − α) × 100% confidence set

for the mth component of β0 is obtained as{
βm : min

β1,... ,βm−1,βm+1,... ,βq
2{CELR(β̂CEL)− CELR(β)} ≤ χ2

1,α

}
, (14)

where χ2
1,α is the (1− α)× 100% critical value of the χ2

1 distribution. Similar to usual empirical likelihood,

the above confidence set automatically satisfies natural range restrictions, and the shape of the confidence

set is determined by observed data (i.e., it is not necessarily symmetric around the estimator, β̂CEL).

In practice, (14) is computed as follows. First, set the support of βm, Bm ∈ R. If there is no prior

information for Bm, we can set the support to be a large interval around the conventional estimator β̂KB,m;

e.g., set Bm = [ β̂KB,m − 5
√

(V̂KB)mm, β̂KB,m + 5
√

(V̂KB)mm ]. Next, search over the set Bm, and find the

root for minβ1,... ,βm−1,βm+1,... ,βq 2{CELR(β̂CEL)− CELR(β)} = χ2
1,α with respect to βm. To find the root,

we can use some one-dimensional optimization algorithm, such as the Bracketing algorithm (see, e.g., Judd

(1998, p.95)).
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4 Smoothed conditional empirical likelihood

In this section, we introduce SCEL and derive asymptotic properties of the SCEL estimator and SCEL

ratio test statistic. An important drawback of the CEL approach is the lack of practical algorithm for

implementation. Due to the non-smoothness of the CEL objective function in (9) or (11), the implementation

of the CEL estimation requires some non-derivative algorithm, which tends to have multiple local optima and

be computationally expensive. Hence, we introduce kernel smoothing on the non-smooth moment restriction

g(z, β) ≡ τ − I(y − x′β) in order to obtain a smooth objective function. Once the objective function is

smooth, we can apply a popular Newton-type algorithm. The idea of the smoothed moment restriction is

proposed by Horowitz (1998) in the unconditional median restriction model. We extend Horowitz’s (1998)

idea to the conditional quantile restriction setup.

By replacing the indicator function in g(z, β) with a smooth integrated kernel function H (i.e., the

first-order derivative H(1) corresponds to the kernel function), the smoothed counterpart of the conditional

quantile restriction function g(z, β) is defined as

g̃(z, β) ≡ τ −H
(
−y − x

′β

hn

)
, (15)

where hn is the bandwidth for H that converges to 0 as n→∞. Note that E[g̃(z, β0)|x] = 0 does not hold

exactly. Intuitively, if hn converges to 0 with a sufficiently fast rate, estimators and test statistics based on

g(z, β) and g̃(z, β) are asymptotically (first-order) equivalent.

Based on the CELR in (9), the smoothed conditional empirical likelihood ratio (SCELR) is defined by

replacing g(z, β) with g̃(z, β), that is

SCELR(β) ≡ −
n∑
i=1

Iin

n∑
j=1

wji log(1 + λ̃i(β)g̃(zj , β)), (16)

where λ̃i(β) satisfies

n∑
j=1

wjig̃(zj , β)
1 + λ̃i(β)g̃(zj , β)

= 0. (17)

The smoothed conditional empirical likelihood estimator (SCELE) is

β̂SCEL ≡ arg max
β∈B

SCELR(β).

Since there is generally no analytical solution for λ̃i(β) as (10), the implementation of the SCELE requires

numerical optimization for λ̃i(β). First, for each β ∈ B, λ̃i(β) (i = 1, . . . , n) is obtained by solving (17) or
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equivalently by computing

arg max
λ̃i

n∑
j=1

wji log(1 + λ̃ig̃(zj , β)),

which is a globally concave optimization problem. Next, by nesting the optimization routine for λ̃i(β), the

SCELE β̂SCEL is obtained as the maximizer of SCELR(β) with respect to β. Since SCELR(β) is smooth

for β, we can apply a Newton-type optimization algorithm for computing β̂SCEL, which is more practical

and faster than a non-derivative algorithm.

Instead of smoothing the moment restriction g(z, β), we can also consider a smoothed counterpart of the

explicit formula of the CELR in (11), that is

SCELR∗(β) = −
n∑
i=1

Iin

[
(1− W̃i(β)) log

(1− W̃i(β)
1− τ

)
+ W̃i(β) log

(W̃i(β)
τ

)]
, (18)

where W̃i(β) ≡
∑n
j=1 wjiH

(
−yj−x

′
jβ

hn

)
. Although SCELR∗(β) is not identical to SCELR(β) in (16), we can

expect that similar asymptotic properties will hold. The advantage of using SCELR∗(β) is that we can avoid

the computation to obtain λ̃i(β) from (17).

Similarly to the CELR test statistic in (13), the SCELR test statistic for nonlinear parameter restrictions

H0 : R(β0) = 0 is defined as

L̃Rn ≡ 2{SCELR(β̂SCEL)− SCELR(β̂RSCEL)}, (19)

where β̂RSCEL is the constrained SCELE under H0, that is

β̂RSCEL ≡ arg max
β∈B

SCELR(β) s.t. R(β) = 0.

Additional assumptions to obtain the asymptotic properties of the SCELE and SCELR test statistic are

as follows.

Assumption 7. Assume that

(i) H : R → R is bounded, differentiable everywhere, H(v) = 0 if v ≤ −1, H(v) = 1 if v ≥ 1, and H(1)(v)

is symmetric about v = 0, bounded, and Lipschitz continuous,

(ii) hn ∝ n−ξ, where 0 < ξ < 1/2.

Assumption 8. Assume that when we solve (17) with respect to {λ̃i(β) : i = 1, . . . , n} for each β ∈ B, we

search only on the set {λ̃ ∈ R : ||λ̃|| ≤ Λ̃n} with Λ̃n = o(1).
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Assumption 7 (i) and (ii) are conditions on the integrated kernel function H and its bandwidth hn,

respectively. In order to derive higher order properties, we need stronger assumptions on H and hn, such as

higher order of the kernel function H(1)(v) and stronger order conditions on hn (see Section 5). The optimal

choices of H and hn are also challenging questions. Horowitz (1998) suggested to use Müller’s (1984) optimal

higher order integrated kernel for H, and Hall and Horowitz’s (1990) optimal bandwidth of LAD regression

models for hn. Assumption 8, which controls the order of λ̃i(β), is analogous to Assumption 5.

Under these additional assumptions, the asymptotic properties of the SCELE and CELR test statistic

are obtained as follows.

Theorem 4.1. Suppose that Assumptions 1-5, 7, and 8 hold. Then

(i) β̂SCEL − β0 = op(1),

(ii) n1/2(β̂SCEL − β0) d→ N(0, V ).

Theorem 4.2. Suppose that Assumptions 1-8 hold. Then under H0

L̃Rn
d→ χ2

r.

Therefore, the SCELE and SCELR test statistic are asymptotically (first-order) equivalent to the CELE

and CELR test statistic, respectively. Due to the smoothness of the objective function, the SCEL-based

methods are easier to implement than the CEL-based methods. The asymptotically valid confidence set is

constructed by the similar manner as (14), that is

{
βm : min

β1,... ,βm−1,βm+1,... ,βq
2{SCELR(β̂SCEL)− SCELR(β)} ≤ χ2

1,α

}
. (20)

Similar to the CEL-based confidence set (14), the above confidence set does not require variance estimation,

automatically satisfies natural range restrictions, and the shape of the confidence set is determined by data.

The implementation is similar as the CEL-base confidence set except for the fact that we can use a Newton-

type algorithm.

5 Unconditional quantile restriction: higher order refinement

So far, we have focused on the conditional quantile restriction (2). In the previous two sections, we show

that the CELE and SCELE are asymptotically first-order equivalent to Newey and Powell’s (1990) efficient

estimator. In the standard unconditional moment restriction setup, in which sufficiently smooth moment
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restrictions are assumed, Newey and Smith (2003) and Kitamura (2001) provided favorable results for the

EL approach relative to the GMM approach, based on higher order bias and large deviation properties,

respectively. However, due to technical difficulties, it is challenging to extend the above results to the

conditional moment restriction setup even for sufficiently smooth moment restrictions.15

Hence, in this section, we consider an unconditional moment restriction, which is relatively easier to

analyze higher order properties, and derive the Bartlett correction for the SEL-based confidence set. We

consider the following unconditional moment restriction,

E[gu(z, β0)] ≡ E[xg(z, β0)] = E[x(τ − I(y − x′β0 ≤ 0))] = 0, (21)

which is implied from the conditional quantile restriction (2). Koenker and Bassett’s (1978a) conventional

quantile regression estimator is asymptotically equivalent to the optimally weighted GMM estimator for (21).

This result is analogous to the efficiency of the OLS estimator for the projection model, i.e., E[x(y−x′β0)] = 0.

For unconditional moment restriction models, we can employ usual empirical likelihood by Owen (1988),

that is

max
{pi}ni=1

n∑
i=1

log pi (22)

s.t. pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pigu(zi, β) = 0, i = 1, . . . , n,

for each β ∈ B, where pi ≡ Pr{z = zi} is the unconditional probability mass at zi. Using the Lagrange

multiplier method, the maximizer of (22) is written as

p̂i =
1

n(1 + γ(β)′gu(zi, β))
,

where the Lagrange multiplier γ(β) satisfies
n∑
i=1

gu(zi, β)
1 + γ(β)′gu(zi, β)

= 0. (23)

Without the restriction
∑n
i=1 pig(zi, β) = 0, the maximizer of (22) is p̃i = n−1. Using p̂i and p̃i, the empirical

likelihood ratio (ELR) is defined as

ELR(β) ≡
n∑
i=1

log p̂i −
n∑
i=1

log p̃i

= −
n∑
i=1

log(1 + γ(β)′gu(zi, β)). (24)

15The difficulties are mainly due to kernel smoothing in CEL or SCEL. By using local polynomial smoothing with variable
bandwidth, Linton (2002) derived a higher order asymptotic expansion of Newey’s (1990, 1993) optimal instrumental variables
GMM estimator.
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To derive the asymptotic distribution of ELR(β0), we impose the following assumptions.

Assumption 9. Assume that

(i) E[gu(z, β0)] = 0 for β0 ∈ B,

(ii) E[g(z, β0)2xx′] is finite and has full rank.

The result for the asymptotic distribution of ELR(β0) does not require the full rank assumption in

Assumption 9 (ii). In that case, since β0 satisfying E[gu(z, β0)] = 0 is not necessarily unique, the confidence

set will not shrink to a single point as n → ∞.16 However, in order to derive higher order properties of

the SEL ratio, we require this assumption. As a special case of Owen (2001, Theorem 3.4), we obtain the

following corollary.

Corollary 5.1. Suppose that Assumptions 1 and 9 hold. Then

−2ELR(β0) d→ χ2
q.

Therefore, even if the unconditional moment restriction (21) is non-smooth with respect to β0, the ELR

follows the limiting chi-square distribution. The EL-based confidence set for β0 is constructed as

{β : −2ELR(β) ≤ χ2
q,α}. (25)

However, Chen and Hall (1993, p.1169) showed that in the case of distribution quantiles (i.e., x is constant),

we cannot improve the coverage accuracy of the confidence set (25) with order higher than n−1/2 because of

the non-smoothness of the unconditional moment restriction gu(z, β). Moreover, to establish an Edgeworth

expansion for the ELR, we must use Taylor series approximations, which require sufficiently smooth mo-

ment restrictions. Therefore, similarly to (15), we consider the following smoothed unconditional quantile

restriction, that is

g̃u(z, β) ≡ xg̃(z, β) = x
(
τ −H

(
−y − x

′β

hn

))
,

where H is the integrated kernel function and hn is the bandwidth. By replacing gu(z, β) in (24) with

g̃u(z, β), the smoothed empirical likelihood ratio (SELR) is defined as

SELR(β) ≡ −
n∑
i=1

log(1 + γ̃(β)′g̃u(zi, β)), (26)

16In other words, we do not need any identification assumption to show the asymptotic distribution of ELR(β0). Otsu (2003b)
extended the empirical likelihood inference under no or weak identification assumption to nonlinear and time-series models.
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where γ̃(β) satisfies

n∑
i=1

g̃u(zi, β)
1 + γ̃(β)′g̃u(zi, β)

= 0. (27)

The derivation of the asymptotic distribution of SELR(β0) requires the following assumptions.

Assumption 10. Assume that

(i) x and ε = y − x′β0 are independent (i.e., fε|x = fε),

(ii) H(1)(v) ≡ dH(v)
dv is a p-th order kernel function, that is

∫ 1

−1

vjH(1)(v)dv =

 1 if j = 0,
0 if 1 ≤ j ≤ p− 1,
CH if j = p,

where CH is a positive constant,

(iii) f
(p−1)
ε exists in a neighborhood of 0 and is continuous at 0,

(iv) nh2p
n → 0.

Although the above assumptions are too strong for the first-order asymptotic distribution of SELR(β0),

we need these assumptions to establish the Edgeworth expansion and Bartlett correction. Assumption 10

(i) implies that fε|x(0|x) = fε(0) and therefore Koenker and Bassett’s (1978a) conventional estimator is

efficient.17 Even though the conventional estimator is efficient, the Bartlett correction of the SELR provides

more precise confidence sets for β0. Assumption 10 (ii) requires H(1) to be a higher order kernel function,

which controls the remainder term in the asymptotic expansion of the SELR. Assumption 10 (iii), employed

by Chen and Hall (1993, p.1170), controls the order of E[g̃(z, β0)]. Assumption 10 (iv) ensures that hn

converges with a sufficiently quick rate so that the difference between ELR(β0) and SELR(β0) is negligible.

Currently, there is no statistical theory for the choice of hn. We may apply a suggestion by Horowitz (1998,

p.1338), which is based on the optimal bandwidth for the LAD t statistic.

Theorem 5.1. Suppose that Assumptions 1, 3, 7, 9, and 10 hold. Then

−2SELR(β0) d→ χ2
q.

17Horowitz (1998) dropped this assumption and derived higher order refinements for the t and Wald test statistics by
bootstrapping.
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Therefore, SELR(β0) is asymptotically first-order equivalent to ELR(β0). The valid confidence set for β0

is constructed as

{β : −2SELR(β) ≤ χ2
q,α}. (28)

In addition to Assumption 10, suppose that there exist sufficiently higher order moments for εi and xi. We

also assume that a multivariate analog of Cramér’s condition in Chen and Hall (1993, pp.1178-1179) holds,

i.e., for sufficiently small hn, we impose a boundedness condition for the characteristic function of a stacked

vector of sufficiently higher-order power functions of g̃u(zi, β).18 Then, similarly to Chen and Hall (1993,

Theorem 3.2), we can establish an Edgeworth expansion and show that the order of the coverage error of

(28) is O(n−1), i.e.,

Pr
{
−2SELR(β0) ≤ t

}
= Pr{χ2

q ≤ t}+O(n−1).

In order to discuss higher order properties, we introduce additional notation. Let

gi ≡ E[g̃(zi, β0)2xix′i]
−1/2xig̃(zi, β0),

gj1···jm ≡ n−1
n∑
i=1

gj1i · · · g
jm
i ,

αj1···jm ≡ n−1
n∑
i=1

E[gj1i · · · g
jm
i ],

Aj1···jm ≡ n−1
n∑
i=1

(gj1i · · · g
jm
i − α

j1···jm),

where gji is the jth component of gi. Note that gj1···jm = Aj1···jm + αj1···jm by definition, and Aj1···jm =

Op(n−1/2) by the central limit theorem. By a similar argument as DiCiccio, Hall, and Romano (1991), we

obtain the signed root approximation for SELR(β0) (see Appendix B for the derivation), that is

−2SELR(β0) = nR′R+Op((n−1/2 + hpn)3), (29)

where R = R1 +R2 +R3, R1 = Op(n−1/2 +hpn), R2 = Op((n−1/2 +hpn)2), and R3 = Op((n−1/2 +hpn)3). The

jth components of R1, R2, and R3 are written as

Rj1 ≡ gj ,

Rj2 ≡ −1
2
gkAjk +

1
3
gkgmαjkm,

Rj3 ≡ 3
8
gkAjmAkm +

1
3
gkglAjkm − 5

12
gkglαjkmAlm − 5

12
gkglαklmAjm +

4
9
gkglgmαjknαlmn − 1

4
gkglgmαjklm,

18If xi is constant (i.e., β is the distribution quantile), nhn logn→ 0 as n→∞ ensures Cramér’s condition.
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where repeated indices are summed over in the usual summation convention. In order to derive the Bartlett

correction, suppose that supn n3h2p
n <∞, which is used for deriving expansions of E[nRj1R

j
3] and E[nRj2R

j
2].

Under the validity of the Edgeworth expansion for the distribution of n1/2R, we can apply a similar argument

as DiCiccio, Hall, and Romano (1991, p.1055); the higher order refinement for the SELR is obtained as

Pr
{
−2SELR(β0){E[n(R′R)/q]}−1 ≤ t

}
= Pr{χ2

q ≤ t}+O(n−2). (30)

Intuitively, the Bartlett correction is a multiplicative finite sample correction that ensures that the mean of

the corrected statistic matches the mean of the limiting chi-square distribution (i.e., q). Since the asymptotic

expansion for E[−2SELR(β0)] does not exist in general, we use the higher order approximation for E[nR′R/q]

as a correction factor. The Bartlett correction term {E[n(R′R)/q]}−1 is written as (see Appendix B for the

derivation),

{E[n(R′R)/q]}−1 = 1− an−1 +O(n−2), (31)

where

a ≡ q−1
(1

2
αjjkk − 1

3
αjklαjkl

)
.

Therefore, from (30) and (31), the Bartlett correction for the SELR is obtained as

Pr
{
−2SELR(β0)(1− an−1) ≤ t

}
= Pr{χ2

q ≤ t}+O(n−2), (32)

and the higher order refined confidence set is constructed as

{β : −2SELR(β)(1− an−1) ≤ χ2
q,α}.

The Bartlett correction, i.e., the multiplication of (1− an−1) to −2SELR(β0), reduces the rate of the error

for the rejection probability from O(n−1) to O(n−2). The correction factor a can be consistently estimated

by the sample analog. Baggerly (1998) showed that in the member of the Cressie and Read’s (1984) family

of discrepancy statistics, only empirical likelihood is Bartlett correctable. Thus, for example, exponential

tilting likelihood (Kitamura and Stutzer (1997) and Imbens, Spady, and Johnson (1998)) and the continuous

updating GMM objective function (Hansen, Heaton, and Yaron (1996)) are not Bartlett correctable. This

result is due to the forms of the third- and fourth-order joint cumulants of the signed root of Cressie and

Read’s (1984) discrepancy statistics. We can expect that the same result will hold in our setup under some

suitable regularity conditions for H and hn.
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As mentioned earlier, after the completion of this draft, the author was informed that Whang (2003)

independently derived similar results, i.e., the Bartlett correction for the SELR. In contrast to Assumption

10 (i), Whang (2003) allows for some dependence between x and ε, establishes the Edgeworth expansion with

rigorous proof, and extends the Bartlett correctability to censored regression models. However, Whang’s

(2003) main purpose is to compare the SELR to the bootstrap; this section is intended merely to provide

a motivation for smoothing the quantile restriction. Based on Chen and Cui (2002, 2003), the author is

currently working on extensions of the Bartlett correctability to (i) overidentified unconditional quantile

restriction models (i.e., E[ψ(x)g(z, β0)] = 0); and (ii) quantile restriction models with nuisance parameters.

6 Extensions

6.1 Multiple quantile regression

Instead of a single quantile regression model for a specific value of quantile τ , this subsection considers the

following multiple quantile regression model at different values of quantile τM ≡ (τ1, . . . , τL), that is

yi = x′iβ
`
0 + ε`i , Qτ`(yi|xi) = x′iβ

`
0, ` = 1, . . . , L, (33)

where 0 < τ1 < · · · < τL < 1 without loss of generality. Multiple quantile regression is useful for testing

parameter restrictions among different quantiles, such as the homoskedasticity and symmetry restrictions of

the error term (see next subsection). In order to impose cross-restrictions for βM0 ≡ (β1′
0 , . . . , β

L′
0 )′, we need

to estimate simultaneously the whole parameter vector βM0 . To apply the empirical likelihood approach, we

use the following conditional moment restrictions for (33),

E[(g1(z, β1
0), . . . , gL(z, βL0 ))′|x] = 0,

where g`(z, β`0) ≡ τ` − I(y − x′β`0 ≤ 0). In this case, CEL and SCEL are defined by replacing g(z, β0) and

g̃(z, β0) with (g1(z, β1
0), . . . , gL(z, βL0 ))′ and (g̃1(z, β1

0), . . . , g̃L(z, βL0 ))′ in (9) and (16), respectively. Since

the statistical properties of the CEL and SCEL estimators and their test statistics in Sections 3 and 4 do not

depend on the dimension of conditional moment restrictions, we obtain similar results as the single quantile

case under some analogous regularity conditions to Assumptions 1-7. The asymptotic distribution of the

CELE and SCELE for βM0 (denote β̂MCEL and β̂MSCEL, respectively) is obtained as19

n1/2(β̂MCEL − βM0 ) a= n1/2(β̂MSCEL − βM0 ) d→ N(0, VM ),

19Since the estimates for any pair of βa
0 and βb

0 are different in general, the estimated quantile regression lines (i.e., x′β̂a and

x′β̂b) cross each other at some point of x. Therefore, we need to check that those crosses do not appear within the relevant
range of x.
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where

(VM )ab ≡ (min{τa, τb} − τaτb)E[fεa|x(0|x)fεb|x(0|x)xx′]−1.

Note that the asymptotic variance for β̂`CEL or β̂`SCEL is same as that of the single quantile case. The CEL-

(or SCEL-) based parameter restriction test statistics in (13) (or (19)) and confidence sets in (14) (or (20))

are obtained by a similar manner. Similarly to the single quantile case, we require neither estimation of the

optimal weights for efficient estimation nor variance estimation for obtaining the confidence set.

6.2 Tests for homoskedasticity and symmetry

In this subsection, we propose the CEL- and SCEL-based test statistics for homoskedasticity and symmetry of

the error term by using the multiple quantile regression estimators β̂MCEL and β̂MSCEL.20 These test statistics

are useful for investigating the shape of the conditional distribution Fy|x. Since the homoskedasticity and

symmetry restrictions are written as cross parameter restrictions on (β1
0 , . . . , β

L
0 ), we can use the CELR or

SCELR test statistic in (13) or (19), respectively.

First, consider a test for homoskedasticity. If the conditional error density evaluated at zero does not

depend on x (i.e., fε|x(0|x) = fε(0)), then any pair of quantile regression parameters differs only in the

intercepts and all the slope coefficients are identical (i.e., multiple quantile regression lines are parallel).

Moreover, in this case, Koenker and Bassett’s (1978a) conventional quantile regression estimator β̂KB is

efficient (see (6)). Letting β`0m be the mth component of β`0, the homoskedasticity restriction is written as

Hhomo
0 : β1

0m = · · · = βL0m for m = 2, . . . , q. (34)

Let β̂M,homo
CEL and β̂M,homo

SCEL be the CELE and SCELE under the restriction Hhomo
0 , respectively. By applying

Theorems 3.2 and 4.2, the asymptotic distribution of the CELR and SCELR test statistics for Hhomo
0 is

obtained as

2{CELR(β̂MCEL)− CELR(β̂M,homo
CEL )} a= 2{SCELR(β̂MSCEL)− SCELR(β̂M,homo

SCEL )} d→ χ2
Lq−(L+q−1). (35)

Next, consider a test for symmetry. If the conditional density of the error term, fε|x, is symmetric around

zero, multiple quantile regression coefficients (β1
0 , . . . , β

L
0 ) also show a symmetric pattern. Suppose that L

is an odd number, τL−` = 1 − τ`+1 for ` = 0, · · · , (L − 1)/2 − 1, and τ1+(L−1)/2 = 0.5 (median). In words,

20While our test statistics are based on multiple quantile regression of discrete points of quantiles, Koenker and Xiao (2002)
considered a continuous quantile regression process, and proposed test statistics for location shift and location-scale shift models
by a similar manner as the Kolmogorov-Smirnov test.
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the quantile points (τ1, · · · , τL) are located symmetrically around the median. From Buchinsky (1998), the

parameter restriction implied by the symmetric error density is written as

Hsym
0 :

1
2

(βL−` + β`+1) = β1+(L−1)/2 for ` = 0, · · · , (L− 1)/2− 1. (36)

Let β̂M,sym
CEL and β̂M,sym

SCEL be the CELE and SCELE under the restriction Hsym
0 , respectively. Similar to (35),

the asymptotic distribution of the CELR and SCELR test statistics for Hsym
0 is obtained as

2{CELR(β̂MCEL)− CELR(β̂M,sym
CEL )} a= 2{SCELR(β̂MSCEL)− SCELR(β̂M,sym

SCEL )} d→ χ2
(L−1)q/2. (37)

We can conduct a joint test for Hhomo
0 and Hsym

0 by a similar manner. Note that compared to existing test

statistics, such as the minimum distance or GMM test statistics, the CELR and SCELR test statistics do

not need to estimate or choose some weight matrix.

6.3 Confidence set without estimation

In this subsection, we propose CEL- and SCEL-based confidence sets that do not require any estimation of

parameters. The CEL- and SCEL-based confidence sets in (14) and (20), respectively, require parameter

estimation for concentrating out nuisance parameters. However, if we are interested in the joint confidence

set of β0, we can employ Tripathi and Kitamura’s (2001) canonical version of the CELR test statistic and

obtain a valid confidence set without estimating parameters. This confidence set is particularly useful if the

number of parameters is small.

While the CELR test statistic in (13) follows the chi-square limiting distribution, Tripathi and Kita-

mura (2001) showed that a normalized version of CELR(β0) (denote LR∗(β0)) follows the normal limiting

distribution under the null hypothesis H0 : E[g(z, β0)|x] = 0. The normalized test statistic is defined as

LR∗(β0) ≡ {−2bq/2n CELR(β0)− bq/2n Tn(β0)}/σ, (38)

where

Tn(β0) ≡
n∑
i=1

n∑
j=1,j 6=i

Iinw
2
ji

( n∑
j=1

wjig(zj , β0)2
)−1

g(zj , β0)2,

σ2 ≡ 2
{∫

[−2,2]q

(∫
[−1,1]q

K(v)K(u− v)dv
)2

du
}
.

Note that σ is a constant and can be computed numerically. Tn(β0) is a correction term for the bias

in −2CELR(β0). Since Assumptions 1-4 satisfy Tripathi and Kitamura’s (2001) regularity conditions, we

obtain the following corollary.
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Corollary 6.1. Suppose that Assumptions 1-4 hold. Furthermore, assume that bqn ∝ n−η, where 0 < η <

1/3. Then

LR∗(β0) d→ N(0, 1).

If the conditional moment restriction is correctly specified, we can use LR∗(β0) as a test statistic for

the simple parameter hypothesis H0 : β0 = β. If researchers are interested in testing the validity of some

specific values of β, LR∗(β) is a convenient test statistic. Since LR∗(β0) does not contain any parameter

estimator, we avoid the optimization problem for the non-smooth objective function CELR(β). In this case,

the confidence set for β0 is constructed as

{
β : |LR∗(β)| ≤ zα/2

}
, (39)

where zα/2 is the (1− α/2)× 100% critical value for the standard normal distribution. If the dimension of

β0 is small (typically, fewer than three), (39) is a convenient way for obtaining joint confidence sets. The

SCELR-based test statistic (i.e., {−2bq/2n SCELR(β0)− bq/2n Tn(β0)}/σ) and confidence set can be derived by

a similar manner.

6.4 Specification test for conditional quantile restriction

In this subsection, we propose CEL- and SCEL-based consistent specification tests for the quantile regres-

sion model. The specification test is useful to check the validity of specified functional forms and included

regressors. We extend Tripathi and Kitamura’s (2002) CEL-based specification test statistic to the quan-

tile regression setup. Since Tripathi and Kitamura (2002) ruled out non-smooth moment restrictions, this

extension is not trivial. The null hypothesis is

H0 : Pr{E[g(z, β)|x] = 0} = 1 for some β ∈ B,

and the alternative is that H0 is false. Zheng (1998) and Bierens and Ginther (2001) developed consistent

specification tests for H0, which are based on a kernel smoothing method and integrated conditional moment

test, respectively. Kim and White (2002) proposed a convenient specification test based on the information

matrix equality, which is however inconsistent for H0. Our CEL-based specification test statistic is consistent

and is obtained as a by-product of the CEL estimation.

Let β̂ be some
√
n-consistent estimator for β0, such as Koenker and Bassett’s (1978a) conventional

quantile regression estimator, CELE, or SCELE. Following Tripathi and Kitamura (2002), the CEL-based
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specification test statistic for H0 is obtained by replacing β0 in (38) with β̂, that is

LR∗(β̂) ≡ {−2bq/2n CELR(β̂)− bq/2n Tn(β̂)}/σ. (40)

If β̂ is the CELE, CELR(β̂) is obtained as the maximized objective function of the CEL estimation. The

following theorem is an extension of Tripathi and Kitamura’s (2002) results to the non-smooth conditional

quantile restriction setup.

Theorem 6.1. Suppose that Assumptions 1-5 hold. Furthermore, assume that bqn ∝ n−η, where 0 < η <

1/3. Then

LR∗(β̂) d→ N(0, 1).

Under additional regularity conditions, we can also show the asymptotic distribution of LR∗(β̂) under

local alternatives. Under sufficiently smooth moment restrictions, Tripathi and Kitamura (2002) showed the

asymptotic optimality of the CELR-based specification test in terms of average local power. We can expect

that the same result will hold in our setup. The SCELR-based test statistic (i.e., {−2bq/2n SCELR(β̂) −

b
q/2
n Tn(β̂)}/σ) can be derived by a similar manner as the CEL case.

7 Conclusion

In this paper we propose new estimation and inference methods for quantile regression models. Our methods

are based on empirical likelihood and its extensions, i.e., conditional empirical likelihood, smoothed condi-

tional empirical likelihood, usual empirical likelihood, and smoothed empirical likelihood. The advantages of

the proposed methods are that (i) the conditional empirical likelihood and smoothed conditional empirical

likelihood estimators are asymptotically efficient for the quantile regression model; (ii) all of the empirical

likelihood-based test statistics provide valid confidence sets without variance estimation of the estimators;

(iii) the smoothed conditional empirical likelihood and smoothed empirical likelihood methods can be im-

plemented by a Newton-type algorithm; and (iv) smoothed empirical likelihood is Bartlett correctable, and

provides higher order refinements of the derived confidence sets. However, we introduce kernel smoothing

devices, in which we need to choose the kernel function and bandwidth. Based on the proposed methods, we

provide four extensions, i.e., multiple quantile regression models, tests for homoskedasticity and symmetry,

confidence sets without parameter estimation, and consistent specification tests for quantile regression.

In order to investigate finite sample performance of the proposed methods, we are now conducting Monte

Carlo simulations based on the setup of Horowitz (1998). In addition, we plan to include an empirical
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example of wage regression by Buchinsky (1994). Preliminary simulation results show better performance of

our methods than conventional methods, both in terms of point estimates and confidence sets. Preliminary

results are available from the author’s website (http://www.ssc.wisc.edu/∼totsu/quantile.htm).

Directions for future research include higher order comparisons of efficient estimators, choice rules for

bandwidths, inclusion of endogenous regressors, and extensions to censored regression models, selection

models, semiparametric models (e.g., partially linear quantile regression models), and weakly dependent

data.
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A Mathematical proofs

Notation

Let c denote a generic constant, which may vary from case to case, and define

δ ≡ β − β0, f̂i ≡
1
nbqn

n∑
j=1

K
(xj − xi

bn

)
,

ĝ(xi, β) ≡
n∑
j=1

wjig(zj , β), ˜̂g(xi, β) ≡
n∑
j=1

wjig̃(zj , β),

V̂ (xi, β) ≡
n∑
j=1

wjig(zj , β)2, ˜̂
V (xi, β) ≡

n∑
j=1

wjig̃(zj , β)2, V (xi, β) ≡ E[g(z, β)2|xi].

Proof of Theorem 3.1

Check the assumptions of Zhang and Gijbels (2003, Theorems 2 and 3), i.e., conditions (X0), (K0), and

(P1)-(P9) in Zhang and Gijbels (2003).

(X0) is satisfied by Assumption 1 (ii) and (iv). (K0) is satisfied by Assumption 4 (i) (i.e., the symmetry of

κ implies
∫
[−1,1]q

vK(v)dv = 0, and the continuity and compact support of κ imply
∫
[−1,1]q

K(v)(1+δ0)/δ0dv <

∞ for every δ0 > 0). (P1) is equivalent to Assumption 2 (i). Since |g(z, β)| = |τ − I(y − x′β ≤ 0)| ≤ τ + 1,

E[supβ∈B |g(z, β)|α0 ] ≤ |τ+1|α0 <∞ for every α0 > 0 (i.e., (P2) is satisfied), and supx∈X ,β∈B E[g(z, β)4|x] ≤

(τ + 1)4 <∞ (i.e., (P3) is satisfied).

Note that

E[g(z, β)2|x] = τ2 + (−2τ + 1)E[I(ε ≤ x′δ)|x] = τ2 + (−2τ + 1)
∫ x′δ

−∞
fε|x(ε|x)dε.

From Assumption 3 (iii), E[g(z, β)2|x] is finite. From Assumption 1 (iii), E[g(z, β)2|x] is continuous with

respect to x ∈ X and β ∈ B. Furthermore, since 0 ≤
∫ x′δ
−∞ fε|x(ε|x)dε ≤ 1, E[g(z, β)2|x] ≥ min{τ2, (τ−1)2} >

0 for every 0 < τ < 1, x ∈ X , and β ∈ B. Then (P4) is satisfied.

From Assumption 2 (i),

E[g(z, β)|x] = E[g(z, β)|x]− E[g(z, β0)|x] = −E[I(ε ≤ x′δ)|x] + E[I(ε ≤ 0)|x] = −
∫ x′δ

0

fε|x(ε|x)dε.

By Leibniz’s formula, Cauchy-Schwartz inequality, and Assumptions 1 (ii) and 3 (iv),

sup
x∈X ,β∈B

∥∥∥∂E[g(z, β)|x]
∂β

∥∥∥ = sup
x∈X ,β∈B

∥∥∥−∂ ∫ x′δ0
fε|x(ε|x)dε
∂δ

∥∥∥ = sup
x∈X ,β∈B

||fε|x(x′δ|x)x||

≤ sup
x∈X ,β∈B

||fε|x(x′δ|x)|| sup
x∈X
||x|| ≤ f2 sup

x∈X
||x|| <∞.
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Then (P5) is satisfied.

Let F ≡ {g(z, β) : β ∈ B}, and N (ν, L1,F) be the covering number for F by the L1-norm, i.e., the

smallest number of ν−balls in L1 metric required for covering F . It is verified that F belongs to the type I

class in Andrews (1994) (i.e., set h(·) in Andrews (1994, p. 2270) as g(z, β)). Furthermore, from Andrews

(1994, p. 2284), the type I class in Andrews (1994) is a subset of the VC-subgraph class defined in, e.g., van

der Vaart and Wellner (1996). From van der Vaart and Wellner (1996, Theorem 2.6.4), the upper bound of

the covering number for the VC-subgraph class is written as

N (ν, L1,F) ≤ cν1−V (F),

where V (F) is the VC-index defined in van der Vaart and Wellner (1996, p. 135). Since V (F) > 1 by the

definition of V (F), (P6) is satisfied.

From Assumption 1 (iii),

sup
x∈X ,β∈B

|E[g(z, β)|x+ x∗]− E[g(z, β)|x]| = sup
x∈X ,β∈B

| − E[I(ε ≤ (x+ x∗)′δ)|x+ x∗] + E[I(ε ≤ x′δ)|x]|

= sup
x∈X ,β∈B

∣∣∣−∫ (x+x∗)′δ

x′δ

fε|x(ε|x)dε
∣∣∣→ 0,

and

sup
x∈X ,β∈B

|E[g(z, β)2|x+ x∗]− E[g(z, β)2|x]| = sup
x∈X ,β∈B

|(−2τ + 1){E[I(ε ≤ (x+ x∗)′δ)|x+ x∗]− E[I(ε ≤ x′δ)|x]}|

= sup
x∈X ,β∈B

∣∣∣(−2τ + 1)
∫ (x+x∗)′δ

x′δ

fε|x(ε|x)dε
∣∣∣→ 0,

as x∗ → 0. Then the first part of (P7) is satisfied. Assumptions 1 (iii) and 3 (i) yield that there exists f0

such that |ε| < f0 implies fε|x(ε|x) > f0 for every x ∈ X . Thus,

sup
||β−β0||≥c0

|E[g(z, β)]| = sup
||δ||≥c0

∣∣∣−Ex[∫ x′δ

0

fε|x(ε|x)dε
]∣∣∣ ≥ sup

||δ||≥c0

∣∣∣Ex[∫ x′δ

0

f0I(−f0 ≤ ε ≤ f0)dε
]∣∣∣ > 0

for every c0 > 0, and,

sup
c2n≥||β−β0||≥c1n

|E[g(z, β)]| ≥ sup
c2n≥||δ||≥c1n

∣∣∣Ex[∫ x′δ

0

f0I(−f0 ≤ ε ≤ f0)dε
]∣∣∣ ≥ sup

c2n≥||δ||≥c1n
||f0Ex[min{f0, x′δ}]|| ≥ cc1n.

for every 0 < c1n < c2n → 0. Then the second part of (P7) is satisfied.

From Assumptions 1 (ii) and (iii) and 3 (iii) and a Taylor expansion,

E[|g(z, β)− g(z, β0)|2|x] = E[I(ε ≤ x′δ)|x] + E[I(ε ≤ 0)|x]− 2E[I(ε ≤ x′δ)I(ε ≤ 0)|x]

= Fε|x(x′δ|x) + Fε|x(0|x)− 2E[I(ε ≤ x′δ)I(ε ≤ 0)|x] ≤ |Fε|x(x′δ|x)− Fε|x(0|x)|

= |fε|x(ε∗|x)x′δ| ≤ f2||x||||δ|| ≤ c||δ||,
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where ε∗ is a point joining 0 and x′δ. Then the first part of (P8) is satisfied. Moreover, from Assumption 3

(ii) and (iii) and Taylor expansions,

|E[g(z, β)|x+ x∗]− E[g(z, β)|x]| = | − Fε|x((x+ x∗)′δ) + Fε|x(x′δ)|

≤ | − fε|x(ε∗∗|x)(x+ x∗)′δ + fε|x(ε∗∗∗|x)x′δ| ≤
∣∣∣f1|ε∗∗ − ε∗∗∗|x′δ∣∣∣+ f2

∣∣∣x∗′δ∣∣∣ = O(||x∗||)||δ|| = o(||δ||),

as x∗ → 0, where ε∗∗ (ε∗∗∗, respectively) is point joining 0 and x′δ ((x + x∗)′δ, respectively). Then the

second part of (P8) is satisfied. Therefore, the regularity conditions of Zhang and Gijbels (2003, Theorem 2

and 3) are implied by Assumptions 1-5.

Proof of Theorem 3.2

From Lemma C.8 and β̂CEL = Op(n−1/2), a quadratic expansion of CEL is derived as

CELR(β̂CEL)− CELR(β0) = −n(β̂CEL − β0)′Ā− 1
2
n(β̂CEL − β0)′B̄(β̂CEL − β0) + op(1), (41)

where Ā ≡ n−1
∑n
i=1Ai, B̄ ≡ n−1

∑n
i=1Bi, and

Ai ≡ Iin
∂E[g(z, β0)|xi]

∂β
V (xi, β0)−1g(zi, β0), Bi ≡ Iin

∂E[g(z, β0)|xi]
∂β

V (xi, β0)−1 ∂E[g(z, β0)|xi]
∂β′

The asymptotic linear form for β̂CEL is

n1/2(β̂CEL − β0) = −B̄−1(n1/2Ā) + op(1). (42)

Since rank
(
∂R(β0)
∂β

)
= r (Assumption 6), it contains a nonsingular r×r submatrix. Without loss of generality,

it can be assumed that
[

∂R(β0)
∂β(q−r+1) , · · · , ∂R(β0)

∂β(q)

]
is such a submatrix. Let α ≡ (β(1), . . . , β(p−r)). Using the

implicit function theorem, there exist a neighborhood B0 of β0, an open set A0 containing α0, and twice

differentiable function r : A0 → Rr, such that every β ∈ B0 can be expressed as β = R̃(α) ≡
[

α
r(α)

]
for some α ∈ A0. Note that R̃ is twice continuously differentiable and rank

(
∂R(α0)
∂α

)
= q − r. Therefore,

the restricted CELE is expressed as β̂RCEL = R̃(α̂CEL), where α̂CEL ≡ arg maxα∈A′ CELR(R̃(α)). Let

D ≡ ∂R̃(α0)
∂α′ . Similar to (41), the quadratic expansion of CELR(R̃(α̂CEL))− CELR(β0) is obtained as

CELR(R̃(α̂CEL))− CELR(β0) = −n(α̂CEL − α0)′D′Ā− 1
2
n(α̂CEL − α0)′D′B̄D(α̂CEL − α0) + op(1).

(43)

The asymptotic linear form for α̂CEL is

n1/2(α̂CEL − α0) = −(D′B̄D)−1D′(n1/2Ā) + op(1). (44)
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From (41)-(44), the CELR test statistic is written as

LRn = 2{CELR(β̂CEL)− CELR(R̃(α̂CEL))}

= −2n1/2(β̂CEL − β0)′(n1/2Ā)− n1/2(β̂CEL − β0)′B̄n1/2(β̂CEL − β0)

+2n1/2(α̂CEL − α0)′D′(n1/2Ā) + n1/2(α̂CEL − α0)′D′B̄Dn1/2(α̂CEL − α0) + op(1)

= (n1/2Ā)′B̄−
1
2 [Iq − B̄

1
2D(D′B̄D)−1D′B̄

1
2 ]B̄−

1
2 (n1/2Ā) + op(1).

By the central limit theorem of Pollard (1984, Theorem5, p.141), B̄−
1
2 (n1/2Ā) d→ N(0, Iq). From rank(D) =

q − r, the matrix [Iq − B̄
1
2D(D′B̄D)−1D′B̄

1
2 ] is idempotent with rank r. Therefore, LRn

d→ χ2(r).

Proof of Theorem 4.1

(17) implies that for each β ∈ B and i = 1, . . . , n,

0 =
n∑
j=1

wji
g̃(zj , β)

1 + λ̃i(β)g̃(zj , β)

=
n∑
j=1

wjig̃(zj , β)
[
1− λ̃i(β)g̃(zj , β) +

(λ̃i(β)g̃(zj , β))2

1 + λ̃i(β)g̃(zj , β)

]
. (45)

From Lemma C.4 and infx∈Xn,β∈B V (x, β) > 0, infx∈Xn,β∈B
˜̂
V (x, β) > 0 with probability 1 and Iin

˜̂
V (xi, β)−1

is well-defined. Thus, from (45), Iinλ̃i(β) is written as

Iinλ̃i(β) = Iin
˜̂
V (xi, β)−1˜̂g(xi, β) + Iin

˜̂
V (xi, β)−1r̃i, (46)

where r̃i ≡
∑n
j=1 wjig̃(zj , β) (λ̃i(β)g̃(zj ,β))2

1+λ̃i(β)g̃(zj ,β)
. From (17),

n∑
j=1

wji
(λ̃i(β)g̃(zj , β))2

1 + λ̃i(β)g̃(zj , β)
=

n∑
j=1

wjiλ̃i(β)g̃(zj , β), (47)

and therefore

Iin|r̃i| ≤ Iin max
1≤j≤n

|g̃(zj , β)|
n∑
j=1

wjiλ̃i(β)g̃(zj , β) ≤ Iinc
n∑
j=1

wjiλ̃i(β)g̃(zj , β)

≤ c max
1≤i,j≤n

sup
β∈B

Iin|λ̃i(β)g̃(zj , β)| = op(1), (48)

uniformly for i = 1, . . . , n and β ∈ B. The second inequality follows from the boundedness of g̃(zj , α) (As-

sumption 7 (i)), and the equality follows from Assumption 8, which ensures Pr{max1≤i,j≤n supβ∈B |λ̃i(β)g̃(zj , β)| =

op(1)} = 1 as n→∞. Using max1≤i≤n supβ∈B Iin
˜̂
V (xi, β) = Op(1) (by Lemma C.4), (46) yields

Iinλ̃i(β) = Iin
˜̂
V (xi, β)−1˜̂g(xi, β) + op(1), (49)
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uniformly for i = 1, . . . , n and β ∈ B. By the Taylor expansion, for i = 1, . . . , n and each β ∈ B,

n∑
j=1

wji log(1 + λ̃i(β)g̃(zj , β)) =
n∑
j=1

wji

[
λ̃i(β)g̃(zj , β)− 1

2
(λ̃i(β)g̃(zj , β))2 + ζ̃ji

]
,

where for some finite c > 0, Pr{|ζ̃ji| ≤ c|λ̃i(β)g̃(zj , β)|3, 1 ≤ i, j ≤ n} → 1 as n→∞. Hence, using (49),

n−1SCELR(β) = − 1
n

n∑
i=1

Iin

[ n∑
j=1

wjiλ̃i(β)g̃(zj , β)− 1
2

n∑
j=1

wji(λ̃i(β)g̃(zj , β))2 +
n∑
j=1

wjiζ̃ji

]
= − 1

n

n∑
i=1

Iin

[
λ̃i(β)˜̂g(xi, β)− 1

2
λ̃i(β) ˜̂

V (xi, β)−1λ̃i(β) +
n∑
j=1

wjiζ̃ji

]
= − 1

2n

n∑
i=1

Iin

[
˜̂g(xi, β) ˜̂

V (xi, β)−1˜̂g(xi, β) + 2
n∑
j=1

wjiζ̃ji

]
.

The second term is∣∣∣ 1
n

n∑
i=1

Iin

n∑
j=1

wjiζ̃ji

∣∣∣ ≤ c

n

n∑
i=1

n∑
j=1

Iinwji|λ̃i(β)g̃(zj , β)|3 ≤ c

n
Iin max

1≤i,j≤n
sup
β∈B
|λ̃i(β)g̃(zj , β)|3

n∑
i=1

n∑
j=1

wji = op(1),

uniformly for i = 1, . . . , n and β ∈ B. The equality follows from Assumption 8. Thus, the quadratic

expansion of the SCELR is

n−1SCELR(β) = − 1
2n

n∑
i=1

Iin˜̂g(xi, β) ˜̂
V (xi, β)−1˜̂g(xi, β) + op(1),

uniformly for β ∈ B. From Lemma C.2 and C.4,

max
1≤i≤n

sup
β∈B

Iin|˜̂g(xi, β) ˜̂
V (xi, β)−1˜̂g(xi, β)− ĝ(xi, β)V̂ (xi, β)−1ĝ(xi, β)|

≤ max
1≤i≤n

sup
β∈B

Iin

[
|(˜̂g(xi, β)− ĝ(xi, β)) ˜̂

V (xi, β)−1˜̂g(xi, β)|+ |ĝ(xi, β) ˜̂
V (xi, β)−1(˜̂g(xi, β)− ĝ(xi, β))|

+|ĝ(xi, β)( ˜̂
V (xi, β)−1 − V̂ (xi, β)−1)ĝ(xi, β)|

]
= op(1).

From Lemma C.7, n−1SCELR(β) = n−1CELR(β) + op(1) uniformly for β ∈ B. Therefore, the SCELE is

asymptotically equivalent to the CELE. The conclusion is obtained.

Proof of Theorem 4.2

From Lemma C.9 and β̂SCEL = Op(n−1/2), a quadratic expansion of SCEL is derived as

SCELR(β̂SCEL)− SCELR(β0) = −n(β̂SCEL − β0)′ ˜̄A− 1
2
n(β̂SCEL − β0)′B̄(β̂SCEL − β0) + op(1), (50)
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where ˜̄A ≡ n−1
∑n
i=1 Ãi, B̄ ≡ n−1

∑n
i=1Bi, and

Ãi ≡ Iin
∂E[g(z, β0)|xi]

∂β
V (xi, β0)−1g̃(zi, β0), Bi ≡ Iin

∂E[g(z, β0)|xi]
∂β

V (xi, β0)−1 ∂E[g(z, β0)|xi]
∂β′

The asymptotic linear form for β̂SCEL is

n1/2(β̂SCEL − β0) = −B̄−1(n1/2 ˜̄A) + op(1). (51)

Similar to the proof of Theorem 3.2, the restricted SCELE is expressed as β̂RSCEL = R̃(α̂SCEL), where

α̂SCEL ≡ arg maxα∈A′ SCELR(R̃(α)). Therefore, by a similar argument as the proof of Theorem 3.2,

L̃Rn = 2{SCELR(β̂SCEL)− SCELR(R̃(α̂SCEL))}

= −2n1/2(β̂SCEL − β0)′(n1/2 ˜̄A)− n1/2(β̂SCEL − β0)′B̄n1/2(β̂SCEL − β0)

+2n1/2(α̂SCEL − α0)′D′(n1/2 ˜̄A) + n1/2(α̂SCEL − α0)′D′B̄Dn1/2(α̂SCEL − α0) + op(1)

= (n1/2 ˜̄A)′B̄−
1
2 [Iq − B̄

1
2D(D′B̄D)−1D′B̄

1
2 ]B̄−

1
2 (n1/2 ˜̄A) + op(1).

By the central limit theorem of Pollard (1984, Theorem5, p.141), a similar argument as the proof of Lemma

C.2, and n1/2hn → 0 (Assumption 7 (ii)),

B̄−1/2(n1/2 ˜̄A) = B̄−1/2(n1/2Ā) + B̄−1/2(n1/2 ˜̄A− n1/2Ā)

= B̄−1/2(n1/2Ā) +O(n1/2hn)→ N(0, Iq).

From rank(D) = q − r, the matrix [Iq − B̄
1
2D(D′B̄D)−1D′B̄

1
2 ] is idempotent with rank r. Therefore,

L̃Rn
d→ χ2(r).

Proof of Theorem 5.1

See Appendix B.

Proof of Theorem 6.1

LR∗(β̂) is decomposed as

LR∗(β̂) = {LR∗(β̂)− LR∗(β0)}+ LR∗(β0)

= σ−1
{
−2b

q
2
n (CELR(β̂)− CELR(β0))− b

q
2
n (Tn(β̂)− Tn(β0))

}
+ LR∗(β0)

= Op(b
q
2
n )− σ−1nb

q
2
n (Tn(β̂)− Tn(β0)) + LR∗(β0),
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The third equality follows from Theorem 3.2. Since LR∗(β0) d→ N(0, 1) (Corollary 6.1), it is sufficient to

show that b
q
2
n (Tn(β̂)− Tn(β0)) = op(1). By the definition of Tn(β),

b
q
2
n (Tn(β̂)− Tn(β0)) = b

q
2
n

n∑
i=1

n∑
j=1,j 6=i

Iinw
2
ji

{
V̂ (xi, β̂)−1(g(zj , β̂)2 − g(zj , β0)2) + (V̂ (xi, β̂)−1 − V̂ (xi, β0)−1)g(zj , β0)2

}
.

Let Kmax be the maximum of K(·) (since K(·) is a continuous function with compact support, the maximum

always exists), δ̂ ≡ β̂ − β0, and δ∗ be a point joining 0 and δ̂. The first term is

b
q
2
n

n∑
i=1

IinV̂ (xi, β̂)−1
n∑

j=1,j 6=i

w2
ji(g(zj , β̂)2 − g(zj , β0)2)

≤ b
q
2
n

n∑
i=1

IinOp(1)Kmaxf̂
−1
i

n∑
j=1,j 6=i

1
nbqn

wji(g(zj , β̂)2 − g(zj , β0)2)

= Op(n−1b
− q2
n )

n∑
i=1

n∑
j=1,j 6=i

Iinwji(1− 2τ)
(
I(yj − x′j β̂ ≤ 0)− I(yj − x′jβ0 ≤ 0)

)
= Op(n−1b

− q2
n )(1− 2τ)

n∑
i=1

Iin

(
τ − E[I(y − x′β̂ ≤ 0)|xi] + op(n−1/2)

)
= Op(n−1b

− q2
n )(1− 2τ)

n∑
i=1

Iin

(
Fε|x(0|xi)− Fε|x(x′iδ̂|xi) + op(n−1/2)

)
= Op(n−1b

− q2
n )(1− 2τ)

n∑
i=1

Iin

(
−fε|x(x′iδ

∗)x′iδ̂
)

= Op(n−1b
− q2
n )Op(n1/2) = Op(n

−1+qη
2 ) = op(1),

where the first inequality follows from Lemma C.3, the first equality follows from the definition of g(z, β) and

the uniform convergence of the kernel density estimator f̂i, the second equality follows from Lemma C.5, the

fourth equality follows from the Taylor expansion, and the fifth equality follows from β̂ − β0 = Op(n−1/2)

and Assumption 3 (iii). Similarly, the second term is

b
q
2
n

n∑
i=1

n∑
j=1,j 6=i

Iinw
2
ji(V̂ (xi, β̂)−1 − V̂ (xi, β0)−1)g(zj , β0)2

≤ b
q
2
n

n∑
i=1

Iin(V̂ (xi, β̂)−1 − V̂ (xi, β0)−1)Kmaxf̂
−1
i

n∑
j=1,j 6=i

1
nbqn

wjig(zj , β0)2

= Op(n−1b
− q2
n )

n∑
i=1

Iin(V̂ (xi, β̂)−1 − V̂ (xi, β0)−1).

Now, similar to the first term, Iin(V̂ (xi, β̂)−V̂ (xi, β0)) = Iin
∑n
j=1 wji(1−2τ)

(
I(yj−x′j β̂ ≤ 0)−I(yj−x′jβ0 ≤

0)
)

= Op(n−1/2). Thus, from Tripathi and Kitamura (2002, Lemma C.5), Iin(V̂ −1(xi, β̂) − V̂ −1(xi, β0)) =

Op(n−1/2). Therefore, the second term is also op(1), and the conclusion is obtained.
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B Derivation of (29) and (31)

First, derive an expansion for γ ≡ E[g̃(zi, β0)2xix′i]
1/2γ̃(β0). By Lemma C.10, γ = Op(n−1/2 + hpn), and by

the central limit theorem and Assumption 7, gj = Aj + αj = Op(n−1/2 + hpn). A Taylor expansion of (27)

yields

0 = gj − γkgjk + γkγlgjkl − γkγlγmgjklm +Op
(
(n−1/2 + hpn)4

)
.

Using αjk = δjk, where δjk is the Kronecker delta,

γj = gj − γkAjk + γkγlAjkl + γkγlαjkl − γkγlγmαjklm +Op
(
(n−1/2 + hpn)4

)
.

Expanding occurrences of γk, γl, and γm in Op
(
(n−1/2 + hpn)3

)
terms,

γkAjk = gkAjk − glAjkAkl + glgmαklmAjk +Op
(
(n−1/2 + hpn)4

)
,

γkγlAjkl = gkglAjkl +Op
(
(n−1/2 + hpn)4

)
,

γkγlαjkl = gkglαjkl − glgmαjklAkm + glgmgnαjklαkmn − gkgmαjklAlm + gkgmgnαjklαlmn

+Op
(
(n−1/2 + hpn)4

)
,

γkγlγmαjklm = gkglgmαjklm +Op
(
(n−1/2 + hpn)4

)
.

Combining these terms, the expansion of γ is written as

γj = gj − gkAjk + glAjkAkl − glgmαklmAjk + gkglAjkl + gkglαjkl

−2glgmαjklAkm + 2glgmgnαjklαkmn − gkglgmαjklm +Op
(
(n−1/2 + hpn)4

)
.

Next, derive an expansion for SELR(β0).

−2n−1SELR(β0) =
2
n

n∑
i=1

log(1 + γ′gi)

= 2
(
γjgj − 1

2
γjγkgjk +

1
3
γjγkγlgjkl − 1

4
γjγkγlγmgjklm

)
+Op

(
(n−1/2 + hpn)5

)
= 2

(
γjgj − 1

2
γjγj − 1

2
γjγkAjk +

1
3
gjgkglAjkl +

1
3
γjγkγlαjkl − 1

4
gjgkglgmαjklm

)
+Op

(
(n−1/2 + hpn)5

)
.
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Expanding occurrences of γj , γk, γl, and γm in Op
(
(n−1/2 + hpn)4

)
terms,

γjgj − 1
2
γjγj =

1
2
gjgj − 1

2
gkgkAjkAjk − 1

2
gkgkglglαjklαjkl + gkgkglαjklAjk +Op

(
(n−1/2 + hpn)5

)
,

γjγkAjk = gjgkAjk − 2gjglAjkAkl + 2gjglgmαklmAjk +Op
(
(n−1/2 + hpn)5

)
,

γjγkγlαjkl = gjgkglαjkl − 3gkglgmαjklAjm − 3gkglgmgnαjklαjmn +Op
(
(n−1/2 + hpn)5

)
.

Combining these terms, the expansion of SELR(β0) is written as

−2n−1SELR(β0) = gjgj − gjgkAjk +
2
3
gjgkglαjkl + gjgkAjlAkl +

2
3
gjgkglAjkl − 2gjgkglαjkmAlm

+gjgkglgmαjknαlmn − 1
2
gjgkglgmαjklm +Op

(
(n−1/2 + hpn)5

)
. (52)

The signed root expansion (29) is obtained by comparing the terms of (52) and R′R.

Using nh2p
n → 0 (Assumption 10 (iv)),

−2SELR(β0) = ngjgj +Op
(
n(n−1/2 + hpn)3

)
= (n1/2Aj + n1/2αj)(n1/2Aj + n1/2αj) +Op

(
n(n−1/2 + hpn)3

)
= (n1/2Aj +O(n1/2hpn))(n1/2Aj +O(n1/2hpn)) +Op

(
n−1/2

)
d→ χ2

q.

Therefore, the conclusion of Theorem 5.1 is obtained.

Finally, derive the Bartlett correction term in (31). Note that

E[RjRj ] = E[Rj1R
j
1] + 2E[Rj1R

j
2] + 2E[Rj1R

j
3] + E[Rj2R

j
2] +Op(n−3).

By some lengthy calculations, each term is evaluated as

E[Rj1R
j
1] = n−1q +O(h2p

n ),

E[Rj1R
j
2] = n−2

(1
3
αjklαjkl − 1

2
αjjkk +

1
2
nq
)

+O(h2p
n ),

E[Rj1R
j
3] = n−2

(43
72
αjklαjkl − 73

72
αjjkαkll +

5
8
αjjkk − 3

8
nq
)

+Op(n−3 + h2p
n ),

E[Rj2R
j
2] = n−2

(
− 7

36
αjklαjkl +

1
36
αjjkαkll +

1
4
αjjkk − 1

4
nq
)

+Op(n−3 + h2p
n ).

Since supn n3h2p
n <∞, O(h2p

n ) = O(n−3) and Op(n−3 + h2p
n ) = Op(n−3). Combining these terms yields

E[nRjRj ] = q + n−1
(1

2
αjjkk − 1

3
αjklαjkl

)
+Op(n−2).

Therefore, (31) is derived.
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C Auxiliary lemma

Lemma C.1. Suppose that Assumptions 1-4 hold. Then

max
1≤i≤n

sup
β∈B

Iin|ĝ(xi, β)− E[g(z, β)|xi]| = op(1).

Proof. This lemma is a special case of Zhang and Gijbels (2003, Lemma 3). As shown in the proof of

Theorem 3.1, Assumptions 1-4 imply the assumptions of Zhang and Gijbels (2003, Lemma 3).

Lemma C.2. Suppose that Assumptions 1-4, and 7 hold. Then

max
1≤i≤n

sup
β∈B

Iin|˜̂g(xi, β)− E[g(z, β)|xi]| = op(1).

Proof. By the triangle inequality and Lemma C.1,

max
1≤i≤n

sup
β∈B

Iin|˜̂g(xi, β)− E[g(z, β)|xi]|

≤ max
1≤i≤n

sup
β∈B

Iin|˜̂g(xi, β)− ĝ(xi, β)|+ max
1≤i≤n

sup
β∈B

Iin|ĝ(xi, β)− E[g(z, β)|xi]|

= max
1≤i≤n

sup
β∈B

Iin|˜̂g(xi, β)− ĝ(xi, β)|+ op(1).

Thus, it is sufficient to check the stochastic order of the first term.

|˜̂g(xi, β)− ĝ(xi, β)| =
∣∣∣ n∑
j=1

wji

(
I(yj − x′jβ ≤ 0)−H

(
−
yj − x′jβ

hn

))∣∣∣
≤

n∑
j=1

wji

∣∣∣I(yj − x′jβ ≤ 0)−H
(
−
yj − x′jβ

hn

)∣∣∣
=

n∑
j=1

wjiI(|yj − x′jβ| ≤ hn)
∣∣∣I(yj − x′jβ ≤ 0)−H

(
−
yj − x′jβ

hn

)∣∣∣
≤

n∑
j=1

wjiI(|yj − x′jβ| ≤ hn)

=
n∑
j=1

wji(I(εj ≤ hn + x′jδ)− I(εj ≤ −hn + x′jδ))

≤
n∑
j=1

wji

∣∣∣I(εj ≤ hn + x′jδ)− Fε|x(hn + x′iδ)
∣∣∣+

n∑
j=1

wji

∣∣∣I(εj ≤ −hn + x′jδ)− Fε|x(−hn + x′iδ)
∣∣∣

+
∣∣∣Fε|x(hn + x′iδ)− Fε|x(−hn + x′iδ)

∣∣∣.
The second equality follows from the fact that the summand differs from zero only if |yj − x′jβ| ≤ hn by

Assumption 7 (i). The second inequality follows from
∣∣∣I(yj − x′jβ ≤ 0)−H

(
−yj−x

′
jβ

hn

)∣∣∣ ≤ 1 by Assumption
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7 (i). The first and third inequalities follow from the triangular inequality. By Lemma C.1, the first and

second terms are

max
1≤i≤n

sup
β∈B

Iin

∣∣∣ n∑
j=1

wjiI(εj ≤ hn + x′jδ)− Fε|x(hn + x′iδ)
∣∣∣ = op(1),

and

max
1≤i≤n

sup
β∈B

Iin

∣∣∣ n∑
j=1

wjiI(εj ≤ −hn + x′jδ)− Fε|x(−hn + x′iδ)
∣∣∣ = op(1),

respectively. By Assumption 3 (ii) and a Taylor expansion, the third term is∣∣∣F (hn + x′iδ)− F (−hn + x′iδ)
∣∣∣ = hn

∣∣∣fε|x(x′iδ + h∗)− fε|x(x′iδ − h∗∗)
∣∣∣

≤ f1hn|h∗ + h∗∗| = Op(hn),

where h∗ and h∗∗ are points on the line joining 0 and hn. Therefore, max1≤i≤n supβ∈B Iin|˜̂g(xi, β)−ĝ(xi, β)| =

op(1), and then the conclusion is obtained.

Lemma C.3. Suppose that Assumptions 1-4 hold. Then

max
1≤i≤n

sup
β∈B

Iin|V̂ (xi, β)− V (xi, β)| = op(1).

Proof. This lemma is a special case of Zhang and Gijbels (2003, Lemma 4). As shown in the proof of

Theorem 3.1, Assumptions 1-4 imply the assumptions of Zhang and Gijbels (2003, Lemma 4).

Lemma C.4. Suppose that Assumptions 1-4, and 7 hold. Then

max
1≤i≤n

sup
β∈B

Iin| ˜̂V (xi, β)− V (xi, β)| = op(1).

Proof. By the triangle inequality and Lemma C.3,

max
1≤i≤n

sup
β∈B

Iin| ˜̂V (xi, β)− V (xi, β)|

≤ max
1≤i≤n

sup
β∈B

Iin| ˜̂V (xi, β)− V̂ (xi, β)|+ max
1≤i≤n

sup
β∈B

Iin|V̂ (xi, β)− V (xi, β)|

= max
1≤i≤n

sup
β∈B

Iin| ˜̂V (xi, β)− V̂ (xi, β)|+ op(1).
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Thus, it is sufficient to check the stochastic order of the first term.

| ˜̂V (xi, β)− V̂ (xi, β)| =
∣∣∣ n∑
j=1

wji

(
τ −H

(
−
yj − x′jβ

hn

))2

−
n∑
j=1

wji(τ − I(yj − x′jβ ≤ 0))2
∣∣∣

≤
n∑
j=1

wji

∣∣∣2τ(I(yj − x′jβ ≤ 0)−H
(
−
yj − x′jβ

hn

))∣∣∣+
n∑
j=1

wji

∣∣∣H(−yj − x′jβ
hn

)2

− I(yj − x′jβ ≤ 0)
∣∣∣

=
n∑
j=1

wjiI(|yj − x′jβ| ≤ hn)
{∣∣∣2τ(I(yj − x′jβ ≤ 0)−H

(
−
yj − x′jβ

hn

))∣∣∣+
∣∣∣H(−yj − x′jβ

hn

)2

− I(yj − x′jβ ≤ 0)
∣∣∣}

≤
n∑
j=1

wjiI(|yj − x′jβ| ≤ hn)(2τ + 1).

The second equality follows from the fact that the summand differs from zero only if |yj − x′jβ| ≤ hn

by Assumption 7 (i). The second inequality follows from the boundedness of H and I(·). By the same

argument as in Lemma C.2, it is shown that max1≤i≤n supβ∈B Iin|
˜̂
V (xi, β) − V̂ (xi, β)| = op(1). Therefore,

the conclusion is obtained.

Lemma C.5. Suppose that Assumptions 1-4 hold. Then

n∑
j=1

wji(g(zj , β)− g(zj , β0))− E[g(z, β)|xi] = op(max{||β − β0||, n−1/2}),

uniformly for x ∈ Xn, ||β − β0|| ≤ rn → 0.

Proof. This lemma is a special case of Zhang and Gijbels (2003, Lemma 7). As shown in the proof of

Theorem 3.1, Assumptions 1-4 imply the assumptions of Zhang and Gijbels (2003, Lemma 7).

Lemma C.6. Suppose that Assumptions 1-4, and 7 hold. Then

n∑
j=1

wji(g̃(zj , β)− g̃(zj , β0))− E[g(z, β)|xi] = op(max{||β − β0||, n−1/2}),

uniformly for x ∈ Xn, ||β − β0|| ≤ rn → 0.

Proof. From the triangular inequality and Lemma C.5,

n∑
j=1

wji(g̃(zj , β)− g̃(zj , β0))− E[g(z, β)|xi]

≤
n∑
j=1

wji|g̃(zj , β)− g(zj , β)|+
n∑
j=1

wji|g̃(zj , β0)− g(zj , β0)|+
n∑
j=1

wji|(g(zj , β)− g(zj , β0))− E[g(z, β)|xi]|

=
n∑
j=1

wji|g̃(zj , β)− g(zj , β)|+
n∑
j=1

wji|g̃(zj , β0)− g(zj , β0)|+ op(max{||β − β0||, n−1/2}),
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uniformly for x ∈ Xn, ||β − β0|| ≤ rn → 0. From the proof of Lemma C.2,

n∑
j=1

wji|g̃(zj , β)− g(zj , β)| ≤ O(hn),

uniformly for β ∈ B. Using hn = o(n−1/2) (Assumption 7 (ii)), the conclusion is obtained.

Lemma C.7. Suppose that Assumptions 1-5 hold. Then

n−1CELR(β) = − 1
2n

n∑
i=1

Iinĝ(xi, β)V̂ (xi, β)−1ĝ(xi, β) + op(1),

uniformly for β ∈ B.

Proof. (8) implies that for each β ∈ B and i = 1, . . . , n,

0 =
n∑
j=1

wji
g(zj , β)

1 + λi(β)g(zj , β)

=
n∑
j=1

wjig(zj , β)
[
1− λi(β)g(zj , β) +

(λi(β)g(zj , β))2

1 + λi(β)g(zj , β)

]
. (53)

From Lemma C.3 and infx∈Xn,β∈B V (x, β) > 0, infx∈Xn,β∈B V̂ (x, β) > 0 with probability 1 and IinV̂ (xi, β)−1

is well-defined. Thus, solving for λi(β) in (53) yields

Iinλi(β) = IinV̂ (xi, β)−1ĝ(xi, β) + IinV̂ (xi, β)−1ri, (54)

where ri ≡
∑n
j=1 wjig(zj , β) (λi(β)g(zj ,β))2

1+λi(β)g(zj ,β) . From (8),

n∑
j=1

wji
(λi(β)g(zj , β))2

1 + λi(β)g(zj , β)
=

n∑
j=1

wjiλi(β)g(zj , β), (55)

and therefore

Iin|ri| ≤ Iin max
1≤j≤n

|g(zj , β)|
n∑
j=1

wjiλi(β)g(zj , β) ≤ Iinc
n∑
j=1

wjiλi(β)g(zj , β)

≤ c max
1≤i,j≤n

sup
β∈B

Iin|λi(β)g(zj , β)| = op(1), (56)

uniformly for i = 1, . . . , n and β ∈ B. The second inequality follows from the boundedness of g(zj , α), and

the equality follows from Assumption 5, which ensures Pr{max1≤i,j≤n supβ∈B |λi(β)g(zj , β)| = op(1)} = 1

as n→∞. Using max1≤i≤n supβ∈B IinV̂ (xi, β) = Op(1) (by Lemma C.3), (54) yields

Iinλi(β) = IinV̂ (xi, β)−1ĝ(xi, β) + op(1), (57)
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uniformly for i = 1, . . . , n and β ∈ B. By the Taylor expansion, for i = 1, . . . , n and each β ∈ B,

n∑
j=1

wji log(1 + λi(β)g(zj , β)) =
n∑
j=1

wji

[
λi(β)g(zj , β)− 1

2
(λi(β)g(zj , β))2 + ζji

]
,

where for some finite c > 0, Pr{|ζji| ≤ c|λi(β)g(zj , β)|3, 1 ≤ i, j ≤ n} → 1 as n→∞. Hence, using (57),

n−1CELR(β) = − 1
n

n∑
i=1

Iin

[ n∑
j=1

wjiλi(β)g(zj , β)− 1
2

n∑
j=1

wji(λi(β)g(zj , β))2 +
n∑
j=1

wjiζji

]
= − 1

n

n∑
i=1

Iin

[
λi(β)ĝ(xi, β)− 1

2
λi(β)V̂ (xi, β)−1λi(β) +

n∑
j=1

wjiζji

]
= − 1

2n

n∑
i=1

Iin

[
ĝ(xi, β)V̂ (xi, β)−1ĝ(xi, β) + 2

n∑
j=1

wjiζji

]
.

The second term is∣∣∣ 1
n

n∑
i=1

Iin

n∑
j=1

wjiζji

∣∣∣ ≤ c

n

n∑
i=1

n∑
j=1

wjiIin|λi(β)g(zj , β)|3 ≤ c

n
max

1≤i,j≤n
sup
β∈B

Iin|λi(β)g(zj , β)|3
n∑
i=1

n∑
j=1

wji = op(1),

uniformly for i = 1, . . . , n and β ∈ B. The equality follows from Assumption 5. Thus, the quadratic

expansion of the CELR is

n−1CELR(β) = − 1
2n

n∑
i=1

Iinĝ(xi, β)V̂ (xi, β)−1ĝ(xi, β) + op(1),

uniformly for β ∈ B. The conclusion is obtained.

Lemma C.8. Suppose that Assumptions 1-5 hold. Then

CELR(β)− CELR(β0) = −(β − β0)′
n∑
i=1

Ai −
1
2

(β − β0)′
( n∑
i=1

Bi

)
(β − β0) + op(max{n||β − β0||2, 1}),

uniformly for β ∈ B such that ||β − β0|| ≤ rn → 0, where

Ai ≡ Iin
∂E[g(z, β0)|xi]

∂β
V (xi, β0)−1g(zi, β0), Bi ≡ Iin

∂E[g(z, β0)|xi]
∂β

V (xi, β0)−1 ∂E[g(z, β0)|xi]
∂β′

.
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Proof. From Lemma C.7,

n−1(CELR(β)− CELR(β0))

= − 1
2n

n∑
i=1

Iinĝ(xi, β)V̂ (xi, β)−1ĝ(xi, β) +
1

2n

n∑
i=1

Iinĝ(xi, β0)V̂ (xi, β0)−1ĝ(xi, β0) + op(1)

= − 1
2n

n∑
i=1

Iin

[
ĝ(xi, β)V̂ (xi, β0)−1ĝ(xi, β)− ĝ(xi, β0)V̂ (xi, β0)−1ĝ(xi, β0)

]
+ op(1)

= − 1
2n

n∑
i=1

Iin(ĝ(xi, β)− ĝ(xi, β0))V̂ (xi, β0)−1(ĝ(xi, β) + ĝ(xi, β0)) + op(1)

= − 1
2n

n∑
i=1

IinH(xi, β)
n∑
j=1

wji(g(zj , β) + g(zj , β0)) + op(1)

= − 1
2n

n∑
j=1

( n∑
i=1

IinwjiH(xi, β)
)

(g(zj , β) + g(zj , β0)) + op(1),

uniformly for β ∈ B such that ||β − β0|| ≤ rn, where the term (1 + op(1)) is omitted, H(xi, β) ≡ (ĝ(xi, β)−

ĝ(xi, β0))V̂ (xi, β0)−1, the second equality follows from Lemma C.3, and the last equality follows from the

exchange of the order of summations. From Zhang and Gijbels (2003, Lemma 7 and 8),

n∑
i=1

IinwjiH(xi, β) =
n∑
i=1

Iinwji

(
E[g(z, β)|xi]V (xi, β0)−1(1 + op(1)) + op(max{||β − β0||, n−1/2})

)
= E[g(z, β)|xj ]V (xj , β0)−1(1 + op(1)) + op(max{||β − β0||, n−1/2}),

uniformly for β ∈ B such that ||β − β0|| ≤ rn and x ∈ Xn. Therefore, by omitting the term (1 + op(1))

CELR(β)− CELR(β0)

= − 1
2n

n∑
j=1

Ijn

(
E[g(z, β)|xj ]V (xj , β0)−1 + op(max{||β − β0||, n−1/2})

)
(g(zj , β) + g(zj , β0)) + op(1)

= − 1
2n

n∑
j=1

IjnE[g(z, β)|xj ]V (xj , β0)−1(g(zj , β)− g(zj , β0))− 1
2n

n∑
j=1

IjnE[g(z, β)|xj ]V (xj , β0)−12g(zj , β0)

−op(max{||β − β0||, n−1/2}) 1
2n

n∑
j=1

Ijn(g(zj , β)− g(zj , β0) + 2g(zj , β0))

= − 1
2n

n∑
j=1

IjnE[g(z, β)|xj ]V (xj , β0)−1E[g(z, β)|xj ]−
1
n

n∑
j=1

IjnE[g(z, β)|xj ]V (xj , β0)−1g(zj , β0)

+op(max{||β − β0||2, n−1})

= −1
2

(β − β0)′
[ 1
n

n∑
j=1

Ijn
∂E[g(z, β0)|xj ]

∂β
V (xj , β0)−1 ∂E[g(z, β0)|xj ]

∂β′

]
(β − β0)

−(β − β0)′
1
n

n∑
j=1

Ijn
∂E[g(z, β0)|xj ]

∂β
V (xj , β0)−1g(zj , β0) + op(max{||β − β0||2, n−1})
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The third equality follows from Zhang and Gijbels (2003, Lemma 9 and 10). The fourth equality follows

from the continuity of E[g(z, β0)|x] with respect to β and Taylor expansion. Therefore, the conclusion is

obtained.

Lemma C.9. Suppose that Assumptions 1-4, 7, and 8 hold. Then

SCELR(β)− SCELR(β0) = −(β − β0)′
n∑
i=1

Ãi −
1
2

(β − β0)′
( n∑
i=1

Bi

)
(β − β0) + op(max{n||β − β0||2, 1}),

uniformly for β ∈ B such that ||β − β0|| ≤ rn → 0, where

Ãi ≡ Iin
∂E[g(z, β0)|xi]

∂β
V (xi, β0)−1g̃(zi, β0), Bi ≡ Iin

∂E[g(z, β0)|xi]
∂β

V (xi, β0)−1 ∂E[g(z, β0)|xi]
∂β′

.

Proof. The proof is similar to Lemma C.8; instead of Lemma C.5, use Lemma C.6.

Lemma C.10. Suppose that Assumptions 1, 3, 7, 9, and 10 hold. Then

γ̃(β0) = Op(n−1/2 + hpn).

Proof. Let g̃ui ≡ g̃u(zi, β0), γ̃ ≡ γ̃(β0), and γ̃ = ||γ̃||θ, where θ is a unit vector. From (27),

0 =
1
n

∣∣∣ n∑
i=1

−θ′g̃ui
1 + γ̃′g̃ui

∣∣∣ =
1
n

∣∣∣ n∑
i=1

||γ̃||θ′g̃uig̃′uiθ
1 + γ̃′g̃ui

− θ′
n∑
i=1

g̃ui

∣∣∣
≥ 1

n

∣∣∣ n∑
i=1

||γ̃||θ′g̃uig̃′uiθ
1 + γ̃′gui

∣∣∣− 1
n

∣∣∣θ′ n∑
i=1

g̃ui

∣∣∣
≥ ||γ̃||∣∣1 + ||γ̃||max1≤i≤n ||g̃ui||

∣∣ 1
n

∣∣∣θ′ n∑
i=1

g̃uig̃
′
uiθ
∣∣∣− 1

n

∣∣∣θ′ n∑
i=1

g̃ui

∣∣∣.
The second inequality follows from p̂i = n−1(1 + γ̃′gui)−1 ≥ 0. Letting max1≤i≤n ||xi|| ≡M <∞ (since the

support of x is compact),

max
1≤i≤n

||g̃ui|| ≤M max
1≤i≤n

∣∣∣τ −H(−yi − x′iβ
hn

)∣∣∣ ≤ 2M,

where the second inequality follows from Assumption 7 (i). Thus, letting ḡu1 ≡ n−1
∑n
i=1 g̃ui and ḡu2 ≡

n−1
∑n
i=1 g̃uig̃

′
ui,

||γ̃||θ′ḡu2θ ≤ |θ′ḡu1|
∣∣1 + ||γ̃|| max

1≤i≤n
||g̃ui||

∣∣ ≤ |θ′ḡu1|+ 2||γ̃|| |θ′ḡu1|M

and then

||γ̃||
(
θ′ḡu2θ − 2M |θ′ḡu1|

)
≤ |θ′ḡu1|.
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By Assumption 9 and the weak law of large numbers, θ′ḡu2θ = Op(1). By the central limit theorem,

ḡu1 − E[ḡu1] = Op(n−1/2). By Assumptions 1, 2 (ii), and 7, E[ḡu1] = O(hpn). Combining these results,

||γ̃||{Op(1) +O(1)Op(n−1/2 + hpn)} ≤ Op(n−1/2 + hpn).

From Assumption 10 (ii), γ̃(β0) = Op(n−1/2 + hpn). The conclusion is obtained.
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