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Abstract

A time-varying quantile can be �tted to a sequence of observations
by formulating a time series model for the corresponding population
quantile and iteratively applying a suitably modi�ed state space sig-
nal extraction algorithm. Quantiles estimated in this way provide
information on various aspects of a time series, including dispersion,
asymmetry and, for �nancial applications, value at risk. Tests for the
constancy of quantiles, and associated contrasts, are constructed using
indicator variables; these tests have a similar form to stationarity tests
and, under the null hypothesis, their asymptotic distributions belong
to the Cramér von Mises family. Estimates of the quantiles at the end
of the series provide the basis for forecasting. As such they o¤er an
alternative to conditional quantile autoregressions and, at the same
time, give some insight into their structure and potential drawbacks.
KEYWORDS: Dispersion; quantile regression; signal extraction;

state space smoother; stationarity tests; value at risk.
JEL Classi�cation: C14, C22

1 Introduction

In modelling the evolution of a time series, we may wish to take account of
changes in many aspects of the distribution over time rather than in just
the mean or, as is often the case in �nance, the variance. In a cross-section,
the sample quantiles provide valuable and easily interpretable information;
indeed if enough of them are calculated they e¤ectively provide a compre-
hensive description of the whole distribution. It is not di¢ cult to capture the
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evolution of such quantiles over time. For example, Harvey and Bernstein
(2003) use standard unobserved component (UC) models to extract under-
lying trends from the time series of quantiles computed for the U.S. wage
distribution.
Estimating time-varying quantiles for a single series is far more di¢ cult.

The problem is a fundamental one from the statistical point of view. Fur-
thermore it is of considerable practical importance, particularly in areas like
�nance where questions of, for example, value at risk (VaR) appeals directly
to a knowledge of certain quantiles of portfolio returns; see the RiskMetrics
approach of J.P. Morgan (1996) and the discussion in Christo¤ersen, Hahn
and Inoue (2001). Engle and Manganelli (2004) highlight this particular is-
sue, as do Chernozhukov and Umantsev (2001). They propose the use of
various nonlinear conditional autoregressive value at risk (CAViaR) models
to make one-step ahead predictions of VaR in time series of stock returns.
These models are based on quantile regression (QR); see the recent mono-
graph by Koenker (2005). As with linear quantile autoregressions (QARs),
the properties and applications of which have recently been investigated by
Koenker and Xiao (2006), the conditioning on past observations enables es-
timation to be carried out by standard QR estimation procedures, usually
based on linear programming, and the construction of forecasts is immedi-
ate. Engle and Manganelli have to resort to trying to capture the behavior of
tail quantiles in returns by nonlinear functions of past observations because
linear functions lack the necessary �exibility. But in doing so they encounter
a fundamental problem, namely what functional form should be chosen? A
good deal of their article is concerned with devising methods for dealing this
issue.
Treating the problem as one of signal extraction provides an altogether

di¤erent line of attack. Estimating quantiles in this way provides a descrip-
tion of the series, while the estimates at the end form the basis for predictions.
This approach seems entirely natural and once it is adopted a much clearer in-
dication is given as to the way in which past observations should be weighted
for prediction in a nonlinear quantile autoregression. The motivation for
what we are doing is provided by the simplest case, namely stock market
returns. The base model is that returns are independently and identically
distributed (IID). By allowing the quantiles to evolve over time, it becomes
possible to capture a changing distribution. Movements may be stationary
or non-stationary, but they will usually be slowly changing. Figure 1 shows
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Figure 1: Quantiles �tted to GM returns

2000 daily returns for General Motors1 together with smoothed estimates for
quantiles obtained from a model that assumes that they are generated by
random walks. The implications for forecasting are obvious.
The distinction between models motivated by description and those set up

to deal directly with prediction is a fundamental one in time series. Structural
time series models (STMs) are formulated in terms of unobserved compo-
nents, such as trends and cycles, that have a direct interpretation; see Harvey
(1989). Signal extraction, or smoothing, provides estimates of these compo-
nents over the whole sample, while the (�ltered) estimates at the end provide
the basis for nowcasting and forecasting. Autoregressive and autoregressive-
integrated-moving average (ARIMA) models, on the other hand, are con-
structed primarily with a view to forecasting. In a linear Gaussian world,

1The stock returns data used as illustrations are taken from Engle and Manganelli
(2004). Their sample runs from April 7th, 1986, to April 7th, 1999. The large (absolute)
values near the beginning of �gure 1 are associated with the great crash of 1987.
The histogram of the series from observation 501 to 2000 (avoiding the 1987 crash)

shows heavy tails but no clear evidence of skewness. The excess kurtosis is 1.547 and the
associated test statistic, distributed as �21 under normality, is 149.5. On the other hand,
skewness is 0.039 with an associated test statistic of only 0.37.

3



the reduced form of an STM is an ARIMAmodel and questions regarding the
merits of STMs for forecasting revolve round the gains, or losses, from the
implied restrictions on the reduced form and the guidance, or lack of it, given
to the selection of a suitable model; see the discussion in Harvey (2006) and
Durbin and Koopman (2001). Once nonlinearity and non-Gaussianity enter
the picture, the two approaches can be very di¤erent. For example, chang-
ing variance can be captured by a model from the generalized autoregressive
conditional heteroscedasticity (GARCH) class, where conditional variance
is a function of past observations, or by a stochastic volatility (SV) model
in which the variance is a dynamic unobserved component; see the recent
collection of readings by Shephard (2005).
Section 2 of the paper reviews the basic ideas of quantiles and QR and

notes that the criterion of choosing the estimated quantile so as to minimize
the sum of absolute values around it can be obtained from a model in which
the observations are generated by an asymmetric double exponential distri-
bution. In section 3 this distribution is combined with a time series model,
such as a stationary �rst-order autoregressive process or a random walk, to
produce the criterion function used as the basis for extracting time-varying
quantiles. Di¤erentiating this criterion function leads to a set of equations
which, when solved, generalize the de�ning characteristic of a sample quantile
to the dynamic setting. We present an algorithm for computing the quan-
tiles and investigate how well it works. The algorithm iterates the Kalman
�lter and associated (�xed-interval) smoother until convergence, taking spe-
cial care in the way it deals with cusp solutions, that is when a quantile
passes through an observation. The models for the quantiles usually depend
on only one or two parameters. Section 4 suggests that these parameters be
estimated by cross-validation and a set of simulation experiments examine
the e¤ectiveness of this approach.
Section 5 details the various aspects of a distribution that can be captured

by time�varying quantiles. We �rst note that the inter-quartile range pro-
vides an alternative to GARCH and SV models for estimating and predicting
dispersion and that the assumptions needed to compute it are much less re-
strictive2. We then go on to observe that di¤erent quantile-based ranges can

2Standard GARCH and SV model specify the complete distribution of the observations.
Our method for extracting time-varying quantiles is also based on a model, albeit one that
only serves as a device to get a suitable criterion function. However, in certain special
cases the same criterion function can be obtained by appealing to cubic spline methodology,
which some would regard as nonparametric.
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provide constrasts between movements near the centre of the distribution
and those near the tails. Other contrasts can be designed to capture asym-
metries, while the 1% and 5% quantiles provide estimates of VaR. Engle
and Manganelli (2004, p369) observe, in connection with CAViaR models,
that one of their attractions is that they are useful �..for situations with con-
stant volatilities but changing error distributions..� The same is true of our
time-varying quantiles for the lower tails.
Section 6 presents a stationarity test for the null hypothesis that a quan-

tile is time-invariant against the alternative that it is slowly changing. This
test is based on binomial quantile indicators - sometimes called �quantile hits�
- and is a generalization of a test proposed by DeJong, Amsler and Schmidt
(2006) for the constancy of the median. Tests for the constancy of contrasts
between quantiles are then proposed and illustrated with data on returns.
QAR and CAViaR models are discussed in section 7. We suggest that

conditional autoregressive speci�cations, especially linear ones, are in�uenced
too much by Gaussian notions even though on the surface the emphasis on
quantiles appears to escape from Gaussianity. One consequence is that these
models may not be robust to additive outliers. The functional forms proposed
by Engle and Manganelli (2004) are assessed with respect to robustness and
compared with speci�cations implied by the signal extraction approach. A
way of combining the two approaches then emerges.
So far as we know, the only work which is related to our approach to

extracting time-varying quantiles is by Bosch et al (1995). Their paper con-
cerns cubic spline quantile regression and since they do not apply it to time
series the connections may not be apparent. Bosch et al (1995) propose a
quadratic programming algorithm, but this appears to be very computation-
ally intensive. The stochastic trend models that we use lead to estimated
quantiles that are, in fact, splines. Our state space smoothing algorithm can
be applied to cubic spline quantile regression by modifying it to deal with
irregular observations.

2 Quantiles and quantile regression

Let Q(�) - or, when there is no risk of confusion, Q - denote the � � th
quantile. The probability that an observation is less than Q(�) is � ; where
0 < � < 1: Given a set of T observations, yt; t = 1; ::; T; (which may be from
a cross-section or a time series), the sample quantile, eQ(�); can be obtained
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by sorting the observations in ascending order. However, it is also given as
the solution to minimizing

S� =
X
t

�� (yt �Q) =
X
yt<Q

(� � 1)(yt �Q) +
X
yt�Q

�(yt �Q)

=
X
t

(� � I(yt �Q < 0)) (yt �Q) (1)

with respect to Q; where �� (:) is the check function and I(:) is the indicator
function. Di¤erentiating (minus) S� at all points where this is possible givesX

IQ(yt �Q(�));

where

IQ(yt �Qt(�)) =
�
� � 1; if yt < Qt(�)
� ; if yt > Qt(�)

(2)

de�nes the quantile indicator for the more general case where the quantile
may be time-varying. Since �� (:) is not di¤erentiable at zero, IQ(0) is not
determined.
The sample quantile, eQ(�); is such that, if T� is an integer, there are T�

observations below the quantile and T (1��) above. In this case any value ofeQ between the T� � th smallest observation and the one immediately above
will make

P
IQ(yt � eQ) = 0: If T� is not an integer, eQ will coincide with

one observation. This observation is the one for which
P
IQ(yt� eQ) changes

sign. These statements need to be modi�ed slightly if several observations
take the same value and coincide with eQ: Taking this point on board, a
general de�nition of a sample ��quantile is a point such that the number of
observations smaller, that is yt < eQ; is no more than [T� ] while the number
greater is no more than [T (1� �)]:
In quantile regression, the quantile, Qt(�); corresponding to the t � th

observation is a linear function of explanatory variables, xt; that is Qt = x0t�.
The quantile regression estimates are obtained by minimizing

P
t �� (yt�x0t�)

with respect to the parameter vector �: Estimates may be computed by linear
programming as described in Koenker (2005). In quantile autoregression Qt
is a linear combination of past observations.
If the observations are assumed to come from an asymmetric double ex-

ponential distribution

p(ytjQt) = �(1� �)!�1 exp(�!�1�� (yt �Qt)); (3)
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where ! is a scale parameter, maximising the log-likelihood function is equiv-
alent to minimising the criterion function S� in (1). Thus the model de�nes
Qt as a (population) quantile by the condition that the probability of a value
below is � while the form of the distribution leads to the maximum likeli-
hood (ML) estimator satisfying the conditions for a sample quantile, when
Q is constant, or a quantile regression estimate. Since quantiles are �tted
separately, there is no notion of an overall model for the whole distribution
and assuming the distribution (3) for one quantile is not compatible with as-
suming it for another. Setting up this particular parametric model is simply
a convenient device that leads to the appropriate criterion function for what
is essentially a nonparametric estimator.

3 Signal extraction

A model-based framework for estimating time-varying quantiles, Qt(�); can
be set up by assuming that they are generated by a Gaussian stochastic
process and are connected to the observations through a measurement equa-
tion

yt = Qt(�) + "t(�); t = 1; :::; T; (4)

where Pr(yt � Qt < 0) = Pr("t < 0) = � with 0 < � < 1: The problem
is then one of signal extraction with the model for Qt(�) being treated as
a transition equation. By assuming that the disturbance term, "t; has an
asymmetric double exponential distribution, as in (3), we end up choosing
the estimated quantiles so as to minimise

P
t �� (yt �Qt) subject to a set of

constraints imposed by the time series model for the quantile.
We will focus attention on three time series models, all of which are able

to produce quantiles that change relatively slowly over time with varying
degrees of smoothness. However, the theory can be applied to any linear
time series model.

3.1 Models for evolving quantiles

The simplest model for a stationary time-varying quantile is a �rst-order
autoregressive process

Qt(�) = (1� �)Qy� + ��Qt�1(�) + �t(�); j�� j < 1; t = 1; :::; T; (5)
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where �t(�) is normally and independently distributed with mean zero and
variance �2�(�); that is �t(�) � NID(0; �2�(�)); �� is the autoregressive para-
meter and Qy� is the unconditional mean of Qt(�). In what follows the �
appendage will be dropped where there is no ambiguity.
The random walk quantile is obtained by setting � = 1 so that

Qt = Qt�1 + �t; t = 2; :::; T:

The initial value, Q1, is assumed to be drawn from a N(0; �) distribution.
Letting � ! 1 gives a di¤use prior; see Durbin and Koopman (2001). A
nonstationary quantile can also be modelled by a local linear trend

Qt = Qt�1 + �t�1 + �t; (6)

�t = �t�1 + �t;

where �t is the slope and �t is NID(0; �
2
�). It is well known that, in a

Gaussian model, setting

V ar

�
�t
�t

�
= �2�

�
1=3 1=2
1=2 1

�
(7)

results in the smoothed estimates being a cubic spline; see, for example, Kohn
et al (1992) and Harvey and Koopman (2000).

3.2 Derivation and properties

If we assume an asymmetric double exponential distribution for the distur-
bance term in (4) and let the quantile be a �rst-order autoregression, as in
(5), the logarithm of the joint density for the observations and the quantiles
is, ignoring terms independent of quantiles,

J = log p(y1; ::; yT ; Q1; ::; QT )

= �1
2

(1� �2)(Q1 �Qy)2
�2�

� 1
2

TX
t=2

�2t
�2�
�

TX
t=1

�� (yt �Qt)
!

: (8)

Given the observations, the estimated time-varying quantiles, eQ1; ::; eQT ; are
the values of the Q0ts that maximise J: In other words they are the conditional
modes.
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When "t is NID(0; �2) we may replace Qt by the mean, �t; and write

yt = �t + "t; t = 1; :::; T (9)

and J is rede�ned with �� (yt � Qt)=! in (8) replaced by (yt � �t)2=2�2:
Di¤erentiating J with respect to �t; t = 1; :::; T; setting to zero and solving
gives the modes, e�t; t = 1; :::; T; of the conditional distributions of the �0ts:
For a multivariate Gaussian distribution these are the conditional expecta-
tions, which by de�nition are the smoothed (minimum mean square error)
estimators; see Durbin and Koopman (2001).
Returning to the quantiles and di¤erentiating with respect to Qt gives

@J

@Qt
=
�Qt�1 � (1 + �2)Qt + �Qt+1 + (1� �)2Qy

�2�
+
1

!
IQ (yt �Qt) ; (10)

for t = 2; : : : ; T � 1, and, at the endpoints,

@J

@Q1
= �(1� �

2)(Q1 �Qy)
�2�

+
[� (Q2 � �Q1)� �(1� �)Qy]

�2�
+
1

!
IQ (y1 �Q1)

and
@J

@QT
=
� (QT � �QT�1) + (1� �)Qy

�2�
+
1

!
IQ (yT �QT )

where IQ (yt �Qt) is de�ned as in (2). For t = 2; ::; T �1; setting @J=@Qt to
zero gives an equation that is satis�ed by the estimated quantiles, eQt; eQt�1
and eQt+1; and similarly for t = 1 and T . If a solution is on a cusp, that
is eQt = yt; then IQ (yt �Qt) is not de�ned as the check function is not
di¤erentiable at zero. Note that, when it does exist, the second derivative is
negative.
For the random walk we can write the �rst term as �Q12=2� and let

� ! 1; noting that � = �2�=(1 � �2): The derivatives of J are a simpli�ed
version of those in (10) with the �rst term in @J=@Q1 dropping out. It is
easy to see that the terms associated with the random walk, that is ignoring
the IQ0s; sum to zero. On the other hand, when Qt is stationary, summing
the terms in the derivatives not involving the IQ0ts yields

(T � 2)(1� �)2Qy + 2(1� �)Qy � (1� �)Q1 � (1� �)2
T�1X
t=2

Qt � (1� �)QT
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divided by �2�: However, setting

eQy = (1� �)( eQ1 + eQT ) + (1� �)2PT�1
t=2

eQt
(T � 2)(1� �)2 + 2(1� �) (11)

ensures that the sum is zero at the mode3.
Establishing that the derivatives of that part of the criterion function

associated with the time series model for the quantile sum to zero enables us
to establish a fundamental property4 of time-varying quantiles, namely that
the number of observations that are less than the corresponding quantile, that
is yt < eQt; is no more than [T� ] while the number greater is no more than
[T (1� �)]:
The proof is as follows. Suppose that there is a single cusp solution at

t = s so eQs = ys: All the derivatives of J can be set to zero apart from
the one at s. Call G the sum of the terms in J that do not depend on the
function �� (:). Then from (10)X

t6=s

@G

@Qt
=
X
t6=s

IQt

and if
XT

t=1
@G=@Qt = 0; it follows that

X
t6=s

IQt +
@G

@Qs
= 0

Now a small increase in eQs gives IQ(ys � eQs) a value of � � 1; while a small
decrease makes it equal to � ; so

� (1� �) � @G

@Qs
� �

Hence
�� �

X
t6=s

IQ(yt � eQt) � 1� � :
3The same result is obtained if Qy is treated as random and its estimator is obtained

by solving @J=@Qy = 0:
4A similar property holds for regression quantiles though, as Koenker (2005, p35-7)

observes, the number of cusps rarely exceeds the number of explanatory variables.
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When there are k cusps a similar argument leads to

�k� �
X
t=2C

IQ(yt � eQt) � k (1� �)
where C is the set of all s, s = 1; : : : ; T , such that eQs is on a cusp. Now
suppose that n denotes the number of observations (strictly) below the cor-
responding quantile while n = (T � n � k) is the number (strictly) above.
Then, abbreviating IQ(yt � eQt) to IQt;X

t=2C

IQt = n (� � 1) + (T � n� k) � = T� � n� k�

Now
P

t=2C IQt � �k� implies n � [�T ] because
P

t=2C IQt would be less
than �k� if n were greater than [�T ]. Similarly,

P
t=2C IQt � k(1 � �)

implies n � [(1� �)T ] because
P

t=2C IQt = n� (1� �)T + k (1� �) would
be greater than k(1� �) if n were to exceed [(1� �)T ].

3.3 The form of the solution

In a Gaussian model, (9), a little algebra leads to the classicWiener-Kolmogorov
(WK) formula for a doubly in�nite sample. For the AR(1) model

e�t = �+ g

gy
(yt � �)

where � = E(�t); g = �2�=((1 � �L)(1 � �L�1)) is the autocovariance gen-
erating function (ACGF), L is the lag operator, and gy = g + �2": The WK
formula has the attraction that for simple models g=gy can be expanded to
give an explicit expression for the weights. Here

e�t = �+ q��

�(1� �2)

1X
j=�1

�jjj(yt+j � �) (12)

where q� = �2�=�
2
" and � = (q� + 1+ �

2)=2��
h�
q� + 1 + �

2
�2 � 4�2i1=2 =2�.

This expression is still valid for the random walk except that � disappears
because the weights sum to one.
In order to proceed in a similar way with quantiles, we need to take

account of cusp solutions by de�ning the corresponding IQ0ts as the values
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that give equality of the associated derivative of J: Then we can set @J=@Qt
in (10) equal to zero to giveeQt �Qy

g
=
1

!
IQ(yt � eQt) (13)

for a doubly in�nite sample with Qy known. Using the lag operator yields

eQt = Qy + �2�
!

1X
j=�1

�jjj

1� �2
IQ(yt+j � eQt+j) (14)

It is reassuring to note that a change in scale does not alter the form of the
solution: if the observations are multiplied by a constant, then the quantile is
multiplied by the same constant, as is the quasi �signal-noise�ratio q = �2�=!.
An expression for extracting quantiles that has a similar form to (12) can

be obtained by adding ( eQt�Qy)=! to both sides of (13) and re-arranging to
give eQt = Qy + g

g!y

h eQt �Qy + IQ(yt � eQt)i (15)

where g!y = g + !: (This is not an ACGF, but it can be treated as though it
were). Thus, we obtain

eQt = Qy + q�

�(1� �2)

1X
j=�1

�jjj[ eQt+j �Qy + IQ(yt+j � eQt+j)] (16)

where � is as de�ned for (12) but with q� replaced by q. Since the solution
satis�es (14), it must be the case that multiplying the observations by a
constant means that the quantile is multiplied by the same constant, but
that q; and hence �; adapt accordingly. The argument leading to (15) carries
over to any stationary linear model for the quantiles, with the ACGF, g;
being appropriately modi�ed. This formulation suggests a procedure for
computing the eQ0ts in which synthetic �observations�, bQt � bQy + IQ(yt �bQt); are constructed using current estimates, bQt; and inserted in a standard
smoothing algorithm which is iterated to convergence.
For the random walk, expression (14) can no longer be obtained. In (16)

the weights sum to one, so Qy drops out giving

eQt = 1� �
1 + �

1X
j=�1

�jjj[ eQt+j + IQ(yt+j � eQt+j)] (17)
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When the quantiles change over time they may be estimated non-parametrically.
The simplest option is to compute them from a moving window; see, for ex-
ample, Kuester et al (2006). More generally a quantile may be estimated at
any point in time by minimising a local check function, that is

min
hX

j=�h

K(
j

h
)�� (yt+j �Qt)

where K(:) is a weighting kernel and h is a bandwidth; see Yu and Jones
(1998). Di¤erentiating with respect to Qt and setting to zero de�nes an
estimator, bQt; in the same way as was done in section 2. That is bQt must
satisfy

hX
j=�h

K(
j

h
)IQ(yt+j � bQt) = 0

with IQ(yt+j� bQt) de�ned appropriately if yt+j = bQt: Adding and subtractingbQt to each of the IQ(yt+j � bQt) terms in the sum leads to

bQt = 1Ph
j=�hK(j=h)

hX
j=�h

K(
j

h
)[ bQt + IQ(yt+j � bQt)]:

It is interesting to compare this with the weighting scheme implied by the
random walk model where K(j=h) is replaced by �jjj so giving an (in�nite)
exponential decay. An integrated random walk implies a kernel with a slower
decline for the weights near the centre; see Harvey and Koopman (2000). The
time series model determines the shape of the kernel while the q plays the
same role as the bandwidth. Note also that in the model-based formula, bQt+j
is used instead of bQt when j is not zero.
Of course, the model-based approach has the advantage that it auto-

matically determines a weighting pattern at the end of the sample that is
consistent with the one in the middle.

3.4 Algorithms for computing time-varying quantiles

An algorithm for computing time-varying quantiles needs to �nd values ofeQt; t = 1; ::; t; that set each of the derivatives of J in (10) equal to zero when
the corresponding eQt is not set equal to yt: We �rst describe a very simple
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recursive procedure, focussing on the random walk and AR(1), and then set
out a general recursion based on the Kalman �lter and smoother. The two
methods are compared in the last sub-section and a way of combining them
is proposed. It is assumed that parameters such as q are known; estimation
is considered in the next section.

3.4.1 Simple recursion

Suppose that we knew the value of all the eQ0ts except one, say at time s. Then
the remaining value could be obtained by choosing it so that J is maximized.
For a RW or AR(1), the solution would depend on eQs�1 and eQs+1. It could
be an interior solution or a cusp solution ( eQs = ys), depending on the values
of eQs�1, eQs+1 and ys. The simple algorithm described below solves iteratively
all the equations @J=@Qt = 0; t = 1; :::; T; starting from an appropriate initial
condition and continuing until convergence to the conditional mode.
To obtain the estimated sequence, bQ(i)1 ; : : : ; bQ(i)T from bQ(i�1)1 ; : : : ; bQ(i�1)T

we perform the following calculations for t = 1; : : : ; T , for the RW. De�ne
Jt (Qt) as the derivative @J=@Qt, calculated at Qt�1 = bQ(i)t�1, Qt+1 = bQ(i�1)t+1 .
If Jt (Qt) is positive for Qt < yt and negative for Qt > yt, then the solution
is on a cusp point, i.e. we set bQ(i)t = yt: Otherwise, if both the left limit and
the right limit of Jt (Qt) for Qt ! yt are positive then the solution bQ(i)t must
satisfy bQ(i)t > yt. Therefore bQ(i)t is set equal to the value that solves

bQ(i)t�1 � 2Qt + bQ(i�1)t+1 +
�2�
!
(� � 1) = 0; (18)

which, by (10), ensures that the derivative @J=@Qt is equal to zero. Finally,
if both the left limit and the right limit of Jt (Qt) for Qt ! yt are negative
then the solution bQ(i)t must satisfy bQ(i)t < yt. Therefore bQ(i)t is set equal to
the value that solves

bQ(i)t�1 � 2Qt + bQ(i�1)t+1 +
�2�
!
� = 0. (19)

Equations (18) and (19) are modi�ed in a straightforward way to deal with
the endpoints t = 1 and t = T .
For the AR(1) model the above scheme is modi�ed in an obvious way

from (10) and bQy is re-calculated at the end of each iteration using (11). The
algorithm can be generalised to handle other models using the state space
form.
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3.4.2 State space smoothing

The state space form (SSF) for a univariate Gaussian time series is:

yt = z0t�t + "t; "t � NID(0; ht); t = 1; :::; T (20)

�t = Tt�t�1+�t; �t � NID(0;Qt)

where �t is an m� 1 state vector, zt is a non-stochastic m� 1 vector, ht is
a positive scalar, Tt is an m�m non-stochastic transition matrix and Qt is
an m�m positive de�nite covariance matrix. The speci�cation is completed
by assuming that �1 � N(a1j0; P1j0) and that the disturbances "t and �t are
uncorrelated with each other and with the initial state.
The joint density of the observations and the states is, ignoring terms not

involving the states,

J = �1
2

TX
t=1

(yt � z0t�t)2=ht �
1

2

TX
t=2

�0tQ
�1
t �t �

1

2
(�1�a1j0)0P�11j0(�1�a1j0):

(21)
Di¤erentiating J with respect to each element of �t gives

@J

@�1
= z1h

�1
1 (y1 � z01�1)�P�11j0(�1�a1j0) +T

0
2Q

�1
2 (�2�T2�1)

@J

@�t
= zth

�1
t (yt � z0t�t)�Q�1

t (�t�Tt�t�1) +T0t+1Q�1
t+1 (�t+1�Tt+1�t) ;

t=2; : : : ; T � 1;
@J

@�T
= zTh

�1
T (yT � z0T�T )�Q�1

T (�T�TT�T�1) : (22)

The smoothed estimates, e�t; satisfy the equations obtained by setting these
derivatives equal to zero. They may be computed e¢ ciently by the Kalman
�lter and associated smoother (KFS) as described in Durbin and Koopman
(2001, pp. 70-73). If all the elements in the state are nonstationary and given
a di¤use prior, that is �1 � N(0; �I); the last term in (21) disappears. The
treatment of the di¤use prior in the KFS is not trivial but methods exist for
dealing with it; see de Jong (1989) and Durbin and Koopman (2001). An
algorithm is available as a subroutine in the SsfPack set of programs within
Ox; see Koopman et al (1999).
In a time invariant model the subscripts on zt; ht;Tt and Qt can be

dropped. Assuming, for simplicity, that this is the case, let us set z0�t =
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Qt(�) and assume that "t has an asymmetric double exponential distribution,
(3). Then

J = � 1
!

X
�� (yt�z0�t)�

1

2

X
�0tQ

�1�t�
1

2
(�1�a1j0)0P�11j0(�1�a1j0) (23)

and the �rst term in each of the three equations of (22), that is zth�1t (yt � z0t�t) ;
is replaced by z!�1IQ(yt � z0�t): Adding and subtracting z!�1z0�t yields

z!�1[z0�t + IQ(yt � z0�t)]� z!�1z0�t; t = 1; : : : ; T: (24)

This suggests that we set up an iterative procedure in which the estimate of
the state at the j-th iteration, e�(j)t ; is computed from the KFS applied to a
set of synthetic observations constructed as

by(j�1)t = z0b�(j�1)t + IQ(yt � z0b�(j�1)t ): (25)

If, at a particular iteration, the solution to the t � th equation in (22) is
on a cusp, ht is set equal to zero rather than ! and the original observa-
tion yt, rather than the transformed one, is fed into �ltering and smoothing
algorithm. This forces the KFS to set the estimated quantile equal to the
corresponding observation. The iterations are carried out until the b�(j)0t s
converge.
The SSF for a random walk quantile is trivial, while for the local linear

trend, (6), �t = (Qt; �t)
0 and z0 = (1 0): For an AR(1), the stationary zero

mean component, Qt�Qy; is initiated with its unconditional distribution as
in (8). In a Gaussian model, the mean, Qy; would normally be included in the
state as well by treating it as stochastic but time invariant (ie Qyt = Qyt�1)
with a di¤use prior. However, since the smoother is being repeated, an
alternative strategy is to update it using (11) at each iteration. Casting
more general models in SSF is straightforward; see, for example, Harvey
(1989, ch2).
For a model in SSF with a di¤use prior placed on the initial state, the fun-

damental property of dynamic quantiles, stated in sub-section 3.2, is satis�ed
if summing the derivatives with respect to the second term in (21) yields a
term

PT
t=1At�t; where At; t = 1; ::; T is an m �m matrix, the �rst row of

which contains only zeroes. A su¢ cient condition is that the �rst column of
T� I consists of zeroes. This condition is satis�ed by the local linear trend;
note that the covariance matrix in (7) is positive de�nite.
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Figure 2: Behaviour of the convergence criterion C(j) � 104, iterations 25
through 300.

3.4.3 Combined algorithm

Figure 2 shows a plot of the convergence criterion

C(j) =
X
t

�
Q̂
(j)
t � Q̂(j�1)t

�2
=
X
t

�
Q̂
(j�1)
t

�2
; j = 1; 2; :::

for the simple and state space algorithms, obtained during the estimation of
the 5% quantile of the returns of General Motors, as shown in �gure 1. Typi-
cally, the KFS algorithm is faster while the simple one makes relatively small
changes at each step. The jumps for the KFS algorithm occur when there
is a change in the points designated as cusps, but there is no corresponding
increase in the objective function J: As can be seen from �gure 3 the simple
algorithm needs many more iterations to reach the same level of J as the
KFS one. Results for other models and data sets show a similar pattern.
In the empirical sections of the paper we have combined the two algo-

rithms by running the KFS �rst and then using the simple algorithm to
check or �ne tune the estimates. The procedure stops5 when C(j) in the

5Alternatively, one can use as a convergence criterion the norm of the gradient of J
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Figure 3: Objective function J (iterations 1 to 1200).

simple algorithm falls below a pre-assigned tolerance level.
Initial estimates for series with no trend, such as returns, are given by

the �xed quantiles. More generally we might compute the median and then
add the relevant �xed sample quantile estimated from the residuals.
Note that when q is zero, that is the quantile is constant, there is usually

only one cusp, while for a value of in�nity, obtained when ! = 0; there are
T cusps because all quantiles pass through all observations.

4 Parameter estimation

It is apparent from the previous discussion that random walk quantiles de-
pend only on q: For an AR(1) there is an additional parameter, �: The scale
parameter ! is of no interest since the model is not intended to be a descrip-
tion of a data generating process. For the same reason, ML estimation is not

(more precisely, of the subvector obtained by eliminating the components that correspond
to cusp points) or the largest derivative of J in absolute value, scaled by the value of J .
An advantage of such criteria is that, unlike C(j), their values can be compared for the
KFS and simple algorithms. However, we found no particular advantage in adopting these
alternatives as convergence criteria.
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an option. We therefore consider cross validation (CV). A set of Monte Carlo
experiments provide evidence on how successful CV is at yielding estimated
quantiles that closely match the true ones.

4.1 Cross -validation

ML estimation of unknown parameters is easily carried out for Gaussian UC
models of the form (9) using the prediction errors from the Kalman �lter.
The cross validation criterion is

CV =

TX
t=1

(yt � e�(�t)t )2;

where e�(�t)t is the smoothed estimator of �t when yt is dropped, but in the
Gaussian case it can be computed from a single pass of the the KFS; see
de Jong (1988). Kohn, Ansley and Wong (1992) compare ML and CV es-
timators for models of this kind and conclude, on the basis of Monte Carlo
experiments that, even though ML tends to perform better, CV represents a
viable alternative.
In the present context, the appropriate cross validation function is

CV (�) =
TX
t=1

�� (yt � eQ(�t)t ) (26)

where eQ(�t)t is the smoothed value at time t when yt is dropped. Unfortu-
nately, there appears to be no simple way of computing this from the KFS
except by a �brute force�approach in which all T observations are dropped
one at a time. Our experience indicates that the best way to proceed is
by iterating the KFS to compute initial estimates of the quantiles, as in
sub-section 3.4.3, and then using the simple algorithm to calculate the CV
criterion by dropping observations one at a time. The number of iterations
of the simple algorithm for each t is usually not large as the starting values
of the quantiles obtained from dropping an adjacent observation tend to be
close to the solution.6This process is repeated for di¤erent values of the pa-
rameters and the minimum of the CV function found by a search procedure.

6Computational savings might be made by only using a limited number of observations
around the one that is dropped. In other words, one can choose an integer � such that the
di¤erence between the estimate of eQ(�t)t computed using the full set of observations and
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In order to guard against local minima we use a grid search (with respect to
q1=2).
Figure 1 shows random walk quantiles for the �rst 2000 observations of

GM. The estimates of q1=2 obtained by CV are 0.09, 0.06, 0.01, 0.06 and
0.08 for the 5%, 25 %, 50%, 75% and 95% respectively. As we will see in
section 6, test statistics for all these quantiles reject the null hypothesis of
time invariance at the 1% level of signi�cance. We also estimated the 1%
quantile. In this case, q1=2 was estimated as 0.04 and a plot of the quantile
shows relatively little variation. Indeed, the test of constancy was unable
to reject the null hypothesis of time-invariance. These �ndings may be a
re�ection of the di¢ culty of estimating a 1% quantile. Indeed the asymptotic
standard error associated with the estimator of a �xed 1% quantile is about
three times that of the 5% quantile for the normal distribution and �ve times
for Laplace; the formula is given in Koenker (2005, p 71-2).

4.2 Choice of model for di¤erent quantiles

We could, in principle, have di¤erent models for di¤erent quantiles. However,
there is a strong case for having the same model (albeit with di¤erent para-
meters). For modeling returns, the main concern is to have slowly changing
quantiles and so RW and local linear trend speci�cations are appropriate.
More generally having the same model enables us to obtain a time invariant
distribution around a time-varying median as a special case. The RW and
local linear trend models are additive and so if two quantiles follow one of
these models then so does their di¤erence. Thus, for example, the di¤erence
between Q (:05) and the median, Q (:5), may be slowly changing, or even
time invariant, even though the individual quantiles are changing rapidly.
How do the q0s vary with �? The Monte Carlo experiments reported

below are designed to throw some light on this question. First we give an
example. Figure 4 shows 288 monthly �gures on US in�ation7 from 1981(7) to
2005(6). Although �tting a random walk plus noise with STAMP gives some
residual serial correlation, the model is a reasonable one. The �gure shows
the smoothed estimates of the level together with estimates of the median

the one computed using only yt+j , j = ��; : : : ;�2;�1; 1; 2; : : : ; � is negligible. Such a
procedure requires a number of operations that is O(T ) for each signal-noise ratio rather
than O(T 2): The cut-o¤, �; needs to increase as the signal-noise ratio goes down.

7To be precise, the �rst di¤erence of the logarithm of the personal consumer expenditure
de�ator (all) as given by Stock and Watson (2005).
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Figure 4: Time-varying quantiles and mean �tted to monthly US in�ation

and other quantiles, also modelled as random walks. The CV estimates of
q1=2 for the 10%, 25%, 50%, 75% and 90% quantiles are 0.004, 0.008, 0.004,
0.006 and 0.008 respectively.

4.3 Scaling

So far the quasi signal-noise ratio, q; has been expressed relative to ! which
is not a variance but is treated as such when the KFS is run. In general, q
is not meaningful as a parameter and, as was noted in sub-section 3.3, it is
not scale invariant. This creates di¢ culties for a search procedure because
the user has no idea of what constitutes a plausible range of values and
numerical instabilities may result by mixing estimated quantiles with scale
invariant indicators in the synthetic observations. On the other hand the
signal-noise ratio, q� = �2�=�

2
"; upon which the MMSLE of the time-varying

mean, �t; in an AR(1) or random walk model depends, is scale invariant and
easily estimated. For a symmetric noise distribution, the mean is the same
as the median and so comparability with the calculations for the mean could
provide the basis for a strategy for estimating a series with a time-varying
median.
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If �2� and �
2
" are given, the estimator of the median given by the mode of

J satis�es (16) with
q = �2�=! =

p
8�"q� (27)

since it is contructed under the assumption that the noise has a double ex-
ponential (Laplace) distribution for which �2" = 8!2: If q; q� and �2" have
all been estimated, (27) should be approximately true. In the US in�ation
example of the previous sub-section eq� = 0:011 and e�" = 0:0015: Expres-
sion (27) gives eq1=2 ' 0:007 which is of a similar order of magnitude to the
estimate of 0:004 obtained by CV.
The weighting patterns in the expressions for the mean and median, that

is (12) and (16), decay at di¤erent rates as � depends on q in one case and
q� in the other. However, if we add ( eQt � Qy)=�2" rather than ( eQt � Qy)=!
to both sides of (13) then q is rede�ned so as to be equal to q�. Furthermore
the synthetic observation in (16) becomes

eQt+j �Qy +p8�":IQ(yt+j � eQt+j)
so the part involving the indicator changes in proportion to the quantile when
there is a change in scale. The attraction of proceeding in this way is the
comparability with the calculations for the MMSLE and the fact that key
quantities no longer depend on scale. The disadvantage is that it requires an
estimate of �" and making such an estimate an integral part of the calcula-
tions for a median is not appropriate. An alternative approach is based on
noting that the same e¤ect could be obtained by dividing the observations
by
p
8�": This suggests the following strategy for estimating any quantile,

not just the median.
(i) Estimate the model assuming Gaussianity to give eq� and e�"; if heavy-

tails are suspected trim the residuals, add to the trend to creat new obser-
vations and re-estimate the parameters.
(ii) Divide the observations by

p
8e�":

(iii) Estimate q using eq� as a starting value or as a guide to a suitable
range.
(iv) Rescale q and the (original) observations (by multiplying by

p
8e�")

for estimating the quantile.
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4.4 Monte Carlo experiments

Firstly, we generated 200 realizations of size 100 from a random walk plus
Laplace noise model, that is

yt = Qt + "t; Qt = Qt�1 + �t; t = 1; :::; 100

where Qt = Qt(0:5) and "t has a Laplace (double exponential) distribution
with parameter ! = 0:5, while �t is normally distributed with variance �

2
�.

Pseudo random numbers were generated by using the Modi�ed Park and
Miller generator as implemented in Ox. The cross validation procedure was
used to estimate the median of each of the simulated samples. The results
are presented in Table 1 for a range of values of q1=2 as given by ��=

p
!. In

all cases the median of the estimates is slightly lower than the true value.
However, since the ultimate goal is to extract the median from an observed
time series, we compare the CV estimator with infeasible estimators that
require knowledge of the true quantiles (columns 6 and 7). For each simulated
sample and each point on the grid of parameter values we computed the MSE
and mean absolute deviation (MAD) associated with the estimated median,
that is

MSE(��) = T
�1

TX
t=1

( bQt�Qt)2; and MAD(��) = T
�1

TX
t=1

j bQt�Qtj:
The values of q1=2 displayed in columns 5 and 6 are those that minimise
the average of, respectively, MSE(��) and MAD(��) across all simulated
samples. Hence they are in some sense optimal. We see that cross validation,
even with a small sample size, results in an estimator that is very close to
these infeasible estimators.
Table 2 illustrates a Monte Carlo experiment with the same design as in

table 1 except that the sample size increased from 100 to 500. It is reas-
suring that the median of the CV estimates is even closer to the medians of
the infeasible estimators (again displayed in columns 5 and 6) and that the
distribution becomes more concentrated.

Next we examine what happens when CV is used to extract quantiles
other than the median from these realizations. Table 3 shows that, for the
25% quantile, CV selects a value of q that is smaller than the one that
minimizes the meanMSE or MAD across all realizations. However, the values
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Cross validation Infeasible
q� q1=2 25% Median 75% MSE MAD
:005 0:14 0:07 0:12 0:20 0:13 0:13
:125 0:71 0:40 0:55 0:90 0:60 0:65
:5 1:41 0:85 1:25 1:65 1:20 1:25

Table 1: Empirical distribution of the cross validation estimator of the square
root of the quasi signal - noise ratio for the median. T = 100. The data
generating process is Gaussian random walk plus Laplace noise with ! = 0:5.
Columns 5 and 6 contain the median of the empirical distribution of two
infeasible estimators.

Cross validation Infeasible
q1=2 25% Median 75% min MSE min MAD
0:14 0:11 0:13 0:19 0:13 0:13
0:71 0:50 0:65 0:75 0:65 0:65
1:41 1:00 1:20 1:40 1:30 1:30

Table 2: Empirical distribution of the cross validation estimator of the square
root of the quasi signal - noise ratio for the median. The data generating
process is as in table 1, but with T = 500.
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Cross validation Infeasible
q1=2 25% Median 75% min MSE min MAD
0:14 0:09 0:12 0:18 0:12 0:11
0:71 0:40 0:60 0:65 0:65 0:65
1:41 0:90 1:00 1:20 1:30 1:30

Table 3: Empirical distribution of the cross validation estimator of the square
root of the quasi signal - noise ratio for the �rst quartile. The data generating
process is as in table 1 with T = 500

Cross validation
q1=2 25% Median 75% min MSE min MAD
0:14 0:07 0:10 0:15 0:11 0:11
0:71 0:40 0:50 0:60 0:60 0:60
1:41 0:70 0:80 0:95 1:30 1:30

Table 4: Empirical distribution of the cross validation estimator of the pseudo
signal - noise ratio for the 10% quantile. The data generating process is as
in table 1 with T = 500

of MSE and MAD are not very sensitive to q around the minimum, so that
in practice the indicators calculated at the median of the CV estimator are
less than 10% larger than the ones computed at the optimum. Given that
the optimum is obtained by computing an infeasible estimator, we regard
this result as an indication that the CV estimator performs well. Similar
conclusions can be drawn about the 10% quantile; see table 4. It is worth
noting that, despite the fact that the optimal signal noise ratios - as judged
by the infeasible estimates - are virtually the same for all quantiles of the
distribution, our CV procedure seems to select lower ratios as we move from
the median towards the tail.
We next consider an experiment where "t is Gaussian. Its variance is

set to two so as to be the same as the variance of the Laplace measurement
errors used in the previous experiments. Hence the values of q used in the
previous experiments satisfy (27). The estimation results, shown in table
5, are comparable with those in table 3. The CV estimator performs even
better when the distribution of "t is (scaled) Student t with three degrees of
freedom, as table 6 indicates. These results show that our �ndings are not
restricted to Laplace disturbances.
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Cross validation
��=

p
! 25% Median 75% min MSE min MAD

0:14 0:09 0:11 0:15 0:10 0:10
0:71 0:40 0:50 0:60 0:55 0:55
1:41 0:90 1:00 1:20 1:20 1:20

Table 5: Empirical distribution of the cross validation estimator of the square
root of the quasi signal - noise ratio for the �rst quartile. The data generating
process is Gaussian random walk plus Gaussian noise with �2" = 2 and T =
500.

Cross validation Infeasible
q1=2 25% Median 75% min MSE min MAD
0:14 0:10 0:14 0:19 0:13 0:13
0:71 0:55 0:70 0:80 0:70 0:70
1:41 1:20 1:35 1:60 1:35 1:35

Table 6: Empirical distribution of the cross validation estimator of the square
root of the quasi signal - noise ratio for the �rst quartile. The data generat-
ing process is Gaussian random walk plus scaled Student t noise with three
degrees of freedom and variance equal to 2, T = 500 .
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5 Dispersion and Asymmetry

The time-varying quantiles provide a comprehensive description of the dis-
tribution of the observations and the way it changes over time. The choice
of quantiles will depend on what aspects of the distribution are to be high-
lighted. The lower quantiles, in particular 1% and 5%, are particularly im-
portant in characterizing value at risk over the period in question. A contrast
between quantiles may be used to focus attention on changes in dispersion
or asymmetry.

5.1 Dispersion

The contrasts between complementary quantiles, that is

D(�) = Qt(1� �)�Qt(�); � < 0:5; t = 1; ::; T

yield measures of dispersion. A means of capturing an evolving interquartile
range, D(0:25); provides an alternative to GARCH and stochastic volatil-
ity models. As Bickel and Lehmann (1976) remark �Once outside the nor-
mal model, scale provides a more natural measure of dispersion than vari-
ance......and o¤ers substantial advantages from the robustness8 viewpoint�.
Note that dividing the 5%-95% range by 3.25 is known to give a good es-
timate of the standard deviation for a wide range of distributions; see, for
example, the recent study by Taylor (2005).
Figure 5 shows the interquartile range for the US in�ation series of �gure

4. It is worth stressing that this is not dependent on any measure of location.

5.1.1 Imposing symmetry

If the distribution is assumed to be symmetric around zero, better estimates
of Qt(�) and Qt(1� �) can be obtained by assuming that one is the negative
of the other. This can be done simply by estimating the (1� 2�)th quantile
for jytj. Thus to compute eQt(0:75) = � eQt(0:25) we estimate the median for
jytj : Doubling this series gives the interquartile range.

8Koenker and Zhao (1996, p794) quote this observation and then go on to model scale
(of a zero mean series) as a linear combination of past absolute values of the observations
( rather than variance as a linear combination of past squares as in GARCH). They then
�t the model by quantile regression. As we will argue later - in section 7 - this type of
approach is not robust to additive outliers.
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Figure 5: Interquartile range for monthly US in�ation from 1981(7) to
2005(6).
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Figure 6: 25% and 5% quantiles estimated from absolute values of GM re-
turns, together with SD from smoothed squared observations
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Figure 6 shows estimates of the standard deviation of the GM series
obtained by �tting a random walk plus noise to the squared observations
and then taking the square root of the smoothed estimates9. These can be
compared with the estimates of the interquartile range and the 5%-95% range
obtained by doubling the 50% and 90% quantiles of the absolute values. CV
estimates of q1=2; obtained using the observations from 1 to 2000, are 0.11
and 0.06 for the 90% and 50% quantiles respectively. (These are close to the
values obtained for the corresponding individual quantiles, that is 5%/95%
and 25%/75%). The graph shows only observations 300 to 600 in order to
highlight the di¤erences emanating from the large outliers around 400. As
can be seen the quantile ranges are less volatile than the variance estimates.

5.1.2 Tail dispersion

A comparison between the interquartile range and the interdecile range (0:1
to 0:9); or the 0:05 to 0:95 range, could be particularly informative in pointing
to di¤erent behaviour in the tails. These contrasts can be constructed with
or without symmetry imposed.
We generated 500 observations from a scale mixture of two Gaussian

distributions with time-varying weights and variances chosen so as to keep the
overall variance constant over time. Speci�cally, while the variance of the �rst
component was set equal to one, the variance of the second component was
allowed to increase, as a linear function of time, from 20 to 80. The weights
used to produce the mixture were adjusted so as to keep the overall variance
constant, at a value of ten.10 As a result, the shape of the distribution changes
over time, with the tails becoming heavier. Figure 7 shows the absolute values
of the series and random walk 98%, 90% and 50% quantiles �tted by CV. As
can be seen, the estimated quantiles track the true quantiles, corresponding
to 1%, 5% and 25% in the original series, quite well.
Some notion of the way in which tail dispersion changes can be obtained

by plotting the ratio of the 0:05 to 0:95 range to the interquartile range

9This approach can be regarded as a combination of Riskmetrics and unobserved com-
ponents. Fitting an SV model would give similar results.
10When a stochastic volatility model was estimated by quasi-maximum likelihood, it

produced a constant variance
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Figure 7: Absolute values of simulated series, true quantiles and random
walk 98%, 90% and 50% quantiles �tted by CV.

(without imposing symmetry), that is

eD(0:05)eD(0:25) = eQt(0:95)� eQt(0:05)eQt(0:75)� eQt(0:25) : (28)

For a normal distribution this ratio is 2.44, for t3 it is 3.08 and for a Cauchy
6.31. Figure 8 shows the 5% and 25 % quantiles and the plot of (28) for the
GM series.

5.2 Asymmetry

For a symmetric distribution

S(�) = Qt(�) +Qt(1� �)� 2Qt(0:5); � < 0:5 (29)

is zero for all t = 1; ::; T . Hence a plot of this contrast shows how the
asymmetry captured by the complementary quantiles, Qt(�) and Qt(1� �);
changes over time.
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Figure 8: Interquartile, 5%-95% range and (lower graph) their ratio

If there is reason to suspect asymmetry, changes in tail dispersion can be
investigated by plotting

S(0:05=0:25) =
eQt(0:05)� eQt(0:5)eQt(0:25)� eQt(0:5)

and similarly for eQt(0:75) and eQt(0:95):
6 Tests of time invariance (IQ tests)

Before estimating a time-varying quantile it may be prudent to test the null
hypothesis that it is constant. Such a test may be based on the sample
quantile indicator or quantic, IQ(yt � eQ(�)): If the alternative hypothesis is
that Qt(�) follows a random walk, a modi�ed version of the basic station-
arity test is appropriate; see Nyblom (1989). This test is usually applied
to the residuals from a sample mean and because the sum of the residu-
als is zero, the asymptotic distribution of the test statistic is the integral
of squared Brownian bridges and this is known to be a Cramér-von Mises
(CvM) distribution; the 1%, 5% and 10% critical values are 0.743, 0.461
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and 0.347 respectively. Nyblom and Harvey (2001) show that the test has
high power against an integrated random walk while Harvey and Streibel
(1998) note that it is also has a locally best invariant (LBI) interpretation
as a test of constancy against a highly persistent stationary AR(1) process.
This makes it entirely appropriate for the kind of situation11 we have in mind
for time-varying quantiles.
Assume that under the null hypothesis the observations are IID. The

population quantile indicators, IQ(yt � Q(�)); have a mean of zero and a
variance of �(1 � �): The quantics sum to zero if, when an observation is
equal12 to the sample quantile, the corresponding quantic is de�ned to ensure
that this is the case. Hence the stationarity test statistic

�� =
1

T 2�(1� �)

TX
t=1

 
tX
i=1

IQ(yi � eQ(�))!2 (30)

has the CvM distribution (asymptotically). De Jong, Amsler and Schmidt
(2006) give a rigorous proof for the case of the median.13 Carrying over their
assumptions to the case of quantiles and IID observations we �nd that all
that is required is that Q(�) be the unique population ��quantile and that
yt �Q(�) has a continuous positive density in the neighbourhood of zero.
Test statistics for GM are shown in the table below for a range of quan-

tiles. All, including the median,14 reject the null hypothesis of time invariance
at the 1% level of signi�cance. However, the test statistic for � = 0:01 is only
0.289 which is not signi�cant at the 10% level. This is consistent with the
small estimate obtained for the signal-noise ratio. Similarly the statistic is
0.354 for � = 0:99 which is only just signi�cant at the 10% level.
11Linton and Whang (2006) have studied the properties of the quantilogram, the cor-

relogram of quantics (quantile hits) and an associated portmanteau test.
12If T� is an integer, the sample quantile will normally lie at some point between ob-

servations so the mean of the quantics is automatically zero. Furthermore the sample
variance is exactly the same as the population variance.
13De Jong, Amsler and Schmidt (2006) are primarily concerned with a more general

version of the median test when there is serial correlation under the null hypothesis.
Assuming strict stationarity (and a mixing condition) they modify the test of Kwiatkowski
et al (1992) - the KPSS test - so that it has the CvM distribution under the null. Similar
modi�cations could be made to quantile tests. More general tests, for both stationary and
nonstationary series are currently under investigation.
14De Jong et al (2006) reject constancy of the median for some weekly exchange rates.

A plot of the estimated median for GM shows that is it close to zero most of the time
apart from a spell near the beginning of the series and a shorter one near the end.
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� :05 :25 :50 :75 :95
�� 1:823 1:026 2:526 1:544 2:962

A test based on a quantic contrast can be useful in pointing to speci�c
departures from a time-invariant distribution. A quantic contrast of the form

aIQt(� 1) + bIQt(� 2); t = 1; :::; T;

where a and b are constants, has a mean of zero and a variance15 that can
be obtained by using the formula

cov(IQt(� 1); IQt(� 2)) = � 1(1� � 2); � 2 > � 1; (31)

derived in the appendix. Tests statistics analogous to �� ; constructed from
the sample quantic constrasts, again have the CvM distribution when the
observations are IID.
A test of constant dispersion can be based on the complementary quantic

contrast
DIQt(�) = IQt(1� �)� IQt(�); � < 0:5: (32)

This mirrors the quantile contrast, Qt(1� �)� Qt(�); used as a measure of
dispersion. It follows from (31) that the variance of (32) is 2�(1 � 2�): For
GM, the test statistics for the interquartile range and the 5%/95% range
are 3.589 and 3.210 respectively. Thus both decisively reject.
A test of changing asymmetry may be based on

SIQt(�) = IQt(�) + IQt(1� �); � < 0:5: (33)

The variance of SIQt(�) is 2� and it is uncorrelated withDIQ(�): The sample
values are �1 when yt < ~Q (�) ; 1 when yt > ~Q (1� �) and zero otherwise.
For GM the asymmetry test statistics are 0.133 and 0.039 for � = 0:25 and
� = 0:05 respectively. Thus neither rejects at the 10% level of signi�cance.

7 Prediction, speci�cation testing and condi-
tional quantile autoregression

In this section we investigate the relationship between our methods for pre-
dicting quantiles and those based on conditional quantile autoregressive mod-
els.
15When both T�1 and T�2 are integers the sample and population covariance are exactly

the same; see the earlier footnote on variances.
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7.1 Filtering and Prediction

The smoothed estimate of a quantile at the end of the sample, eQT jT ; is the
�ltered estimate or �nowcast�. Predictions, eQT+jjT ; j = 1; 2; :::; are made
by straightforwardly extending these estimates according to the time series
model for the quantile. For a random walk the predictions are eQT jT for all
lead times, while for a more general model in SSF, eQT+jjT = z0Tj e�T : As
new observations become available, the full set of smoothed estimates should
theoretically be calculated, though this should not be very time consuming
given the starting value will normally be close to the �nal solution. Further-
more, it may be quite reasonable to drop the earlier observations by having
a cut-o¤, �; such that only observations from t = T � � + 1 to T are used.
Insight into the form of the �ltered estimator can be obtained from the

weighting pattern used in the �lter from which it is computed by repeated
applications; compare the weights used to compute the smoothed estimates
in sub-section 3.3. For a random walk quantile and a semi-in�nite sample
the �ltered estimator must satisfy

eQtjt = (1� �) 1X
j=0

�j[ eQt�jjt + IQ(yt�j � eQt�jjt)] (34)

where eQt�jjt is the smoothed estimator ofQt�j based on information at time t;
see, for example, Whittle (1983, p69). Thus eQtjt is an exponentially weighted
moving average of the synthetic observations, eQt�jjt + IQ(yt�j � eQt�jjt):
7.2 Speci�cation and diagnostic testing

The one-step ahead prediction indicators in a post sample period are de�ned
by e�t = IQ(yt � eQtjt�1); t = T + 1; :::; T + L

If these can be treated as being serially independent, the test statistic

�(�) =

PT+L
t=T+1 IQ(yt � eQtjt�1)p

L�(1� �)
(35)

is asymptotically standard normal. (The negative of the numerator is L times
the proportion of observations below the predicted quantile minus �): The
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Figure 9: One-step ahead forecasts of the 25% quantile for GM from 2001 to
2500

suggestion is that this be used to give an internal check on the model; see
also Engle and Manganelli (2004, section 5).
Figure 9 shows the one-step ahead forecasts of the 25% quantile for GM

from observation 2001 to 2500. As expected these �ltered estimates are more
variable than the smoothed estimates shown in �gure 1. The proportion of
observations below the predicted value is 0.27. The test statistic, �(0:25); is
-1.43.

7.3 Quantile autoregression

In quantile autoregression (QAR), the (conditional) quantile is assumed to
be a linear combination of past observations; see, for example, Komunjer
(2005), Koenker (2005, p.126-8, 260-5) and the references therein. Koenker
and Xiao (2006) allow for di¤erent coe¢ cients for each quantile, so that

Qt(�) = �0;� + �1;�yt�1 + :::+ �p;�yt�p; t = p+ 1; :::; T:

If the sets of coe¢ cients of lagged observations, that is �1;� ; ::; �p;� ; are the
same for all � , the quantiles will only di¤er by a constant amount. Koenker
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and Xiao (2006) provide a test of this hypothesis and give some examples of
�tting conditional quantiles to real data.
In a Gaussian signal plus noise model, the optimal (MMSE) forecast, the

conditional mean, is a linear function of past observations. This implies an
autoregressive representation, though, if the lag is in�nite, an ARMA model
might be more practical. When the Gaussian assumption is dropped there
are two responses. The �rst is to stay within the autoregressive framework
and assume that the disturbance has some non-Gaussian distribution. The
second is to put a non-Gaussian distribution on the noise and possibly on the
signal as well. If a model with non-Gaussian additive noise is appropriate
the consequence is that the conditional mean is no longer a linear function
of past observations. Hence the MMSE will, in general, be non-linear. A
potentially serious practical implication is that if the additive noise is drawn
from a heavy-tailed distribution, the autoregressive forecasts will be sensitive
to outliers induced in the lagged observations. Assuming a non-Gaussian
distribution for the innovations driving the autoregression does not deal with
this problem.
The above considerations are directly relevant to the formulation of dy-

namic quantile models. While the QAR model is useful in some situations, it
is not appropriate for capturing slowly changing quantiles in series of returns.
It could be adapted by letting the quantile in (4) be

Qt(�) = �0;� + �1;�Qt�1(�) + :::+ �p;�Qt�p(�) + �t(�);

where �t(�); like "t(�); has an asymmetric double exponential distribution.
Indeed, the cubic spline LP algorithm of Koenker et al (1994) is essentially
�tting a model of this form.

7.4 Nonlinear QAR and CAViaR

Engle and Manganelli (2004) suggest a general nonlinear dynamic quantile
model in which the conditional quantile is

Qt(�) = �0 +

qX
i=1

�iQt�i(�) +
rX
j=1

�jf(yt�j): (36)

The information set in f() can be expanded to include exogenous variables.
This is their CAViaR speci�cation. Suggested forms include the symmetric
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absolute value
Qt(�) = �0 + �Qt�1(�) +  jyt�1j (37)

and a more general speci�cation that allows for di¤erent weights on positive
and negative returns. Both are assumed to be mean reverting. They also
propose an adaptive model

Qt(�) = Qt�1(�) + f[1 + exp(G[yt�1 �Qt�1(�)])]�1 � �g; (38)

where G is some positive number, and an indirect GARCH (1,1) model

Qt(�) = (�0 + �Q
2
t�1(�) + �1y

2
t�1)

1=2: (39)

There is no theoretical guidance as to suitable functional forms for CAViaR
models and Engle and Manganelli (2004) place a good deal of emphasis on
developing diagnostic cheching procedures. However, it might be possible to
design CAViaR speci�cations based on the notion that they should provide a
reasonable approximation to the �ltered estimators of time-varying quantiles
that come from signal plus noise models. Under this interpretation, Qt(�) in
(36) is not the actual quantile so a change in notation to bQtjt�1(�) is helpful.
Similarly the lagged values, which are approximations to smoothed estima-
tors calculated as though they were �ltered estimators, are best written asbQt�jjt�1�j(�); j = 1; :::; q: The idea is then to compute the bQtjt�1(�)0s - for
given parameters - with a single recursion16. The parameters are estimated,
as in CAViaR, by minimizing the check function formed from the one-step
ahead prediction errors.
For a random walk quantile, a CAViaR approximation to the recursion

that yields (34) is

bQtjt�1 = bQt�1jt�2 + (1� �)(byt�1 � bQt�1jt�2)
with byt = bQtjt�1 + IQ(yt�1 � bQt�1jt�2): This simpli�es to

bQtjt�1 = bQt�1jt�2 + (1� �)b�t�1; (40)

where b�t = IQ(yt � bQtjt�1)
16The recursion could perhaps be initialized with bQ0tjt�1s set equal to the �xed quantile

computed from a small number of observations at the beginning of the sample.
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is an indicator that plays an analogous role to that of the innovation, or
one-step ahead prediction error, in the standard Kalman �lter. More gen-
erally, the CAViaR approximation can be obtained from the Kalman �lter
for the underlying UC model with the innovations given by b�t: For the inte-
grated random walk quantile, this �lter can, if desired, be written as a single
recursion bQtjt�1 = 2 bQt�1jt�2 � bQt�2jt�3 + k1b�t�1 + k2b�t�2;
where k1 and k2 depend on the signal-noise ratio.
The recursion in (40) has the same form as the limiting case (G!1) of

the adaptive CAViaR model, (38). Other CAViaR speci�cations are some-
what di¤erent from what might be expected from the �ltered estimators
given by UC speci�cation. One consequence is that models like (37) and
(39), which are based on actual values, rather than indicators, may su¤er
from a lack of robustness to additive outliers. That this is the case is clear
from an examination of �gure 1 in Engle and Manganelli (2004, p373). More
generally, recent evidence on predictive performance in Kuester et al (2006,
p 80-1) indicates a preference for the adaptive speci�cation.
Some of the CAViaR models su¤er from a lack of identi�ability if the

quantile in question is time invariant. This is apparent in (36) where a time
invariant quantile is obtained if either �j = �i = 0 for all i and non-zero
j and �0 6= 0; or �1 = 1 and all the other coe¢ cients are zero. The same
thing happens with the indirect GARCH speci�cation (39) and indeed with
GARCH models in general; see Andrews (2001, p 711). These di¢ culties do
not arise if we adopt functional forms suggested by signal extraction.

8 Conclusion

Our approach to estimating time-varying quantiles is, we believe, conceptu-
ally very simple. Furthermore the algorithm based on the KFS appears to
be quite e¢ cient, though there is clearly scope for improving the �modi�ed
brute force�cross-validation procedure. There is also a need for investigating
how, for example, bootstrap procedures might be able to provide a viable
method of assessing precision and how the methods might be extended to
jointly estimating several quantiles. Including explanatory variables, for ex-
ample to pick up breaks, is quite straightforward in principle but needs to
be investigated in practice.
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The cross-validation criterion appears to work well. Monte Carlo exper-
iments carried out for the Laplace distribution show that the CV estimates
are close to the true values. There is a slight tendency to underestimate but
this appears to have no adverse implications for the accuracy with which the
true quantiles are estimated.
The estimation of time-varying quantiles opens up a wealth of possibilities

for capturing the evolving distribution of a time series. In particular the lower
quantiles can be used to directly estimate the evolution of value at risk, VaR,
while changes in dispersion and asymmetry can be highlighted by suitably
constructed contrasts. Tests of whether quantiles and contrasts change over
time are proposed and their use illustrated with real data.

At the end of the series, a �ltered estimate of the current state of a
quantile (or quantiles) provides the basis for making forecasts. As new ob-
servations become available, updating can be carried out quite e¢ ciently.
The form of the �ltering equations suggests ways of modifying the CaViaR
speci�cations proposed by Engle and Manganelli (2004). Combining the two
approaches could prove fruitful and merits further investigation.
Newey and Powell (1987) have proposed expectiles as a complement to

quantiles. Our algorithm for computing time-varying quantiles can also be
applied to expectiles. Indeed it is somewhat easier since there is no need to
take account of cusp solutions and convergence is rapidly achieved by the
iterative Kalman �lter and smoother algorithm. Tests of time invariance of
expectiles can also be constructed by adapting stationarity tests in much the
same way as was done for quantiles. Possible gains from using expectiles and
associated tests have not been investigated here, but are a topic for future
research.
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Appendix: Correlation between quantics
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Tests involving more than one quantic need to take account of the cor-
relation between them. To �nd the covariance of the � 1 and � 2 population
quantics with � 2 > � 1, their product must be evaluated and weighted by (i)
� 1 when yt < Q (� 1), (ii) � 2�� 1 when yt > Q (� 1) but yt < Q (� 2), (iii) 1�� 2
when yt > Q (� 2) : This gives

(� 2 � 1) (� 1 � 1) � 1 + (� 2 � 1) � 1 (� 2 � � 1) + � 2� 1 (1� � 2)

and on collecting terms we obtain (31). It follows that the correlation between
the population quantics for � 1 and � 2 is

� 1(1� � 2)p
� 1(1� � 1)� 2(1� � 2)

; � 2 > � 1

The correlation between the complementary quantics, IQt(�) and IQt(1��);
is simply �=(1� �).

REFERENCES

Andrews, D.W.K. (2001). Testing when a parameter is on the bound-
ary of the maintained hypothesis. Econometrica, 69, 683-734.
Andrews. D.F., Tukey, J. W., Bickel, P. J. (1972): Robust esti-

mates of location. Princeton: Princeton University Press.
Bosch, R.J.,Ye, Y. and G.G. Woodworth (1995). A convergent

algorithm for quantile regression with smoothing splines, Computational Sta-
tistics and Data analysis, 19, 613-30.
Chernozhukov, V. and Umantsev, L., (2001). Conditional value-at-

risk: aspects of modeling and estimation. Empirical Economics 26, 271-292.
Christoffersen, P., Hahn, J. and A. Inoue (2001). Testing and

comparing Value-at-Risk measures. Journal of Empirical Finance, 8, 325-42.
de Jong, P. (1988). A cross-validation �lter for time series models.

Biometrika 75, 594-600.
de Jong, P., 1989. Smoothing and interpolation with the state-space

model. Journal of the American Statistical Association 84, 1085-1088.
de Jong, R.M., Amsler, C. and P. Schmidt (2006). A robust version

of the KPSS test based on indicators, Journal of Econometrics, (to appear).
Durbin, J., and S.J. Koopman (2000): Time series analysis of non

Gaussian observations based on state space models from both classical and
Bayesian perspectives, Journal of the Royal Statistical Society B, 62, 3�56.

40



Durbin, J., Koopman, S.J., 2001. Time series analysis by state space
methods. Oxford University Press, Oxford.
Engle, R.F., and Manganelli, S. (2004): CAViaR: Conditional Au-

toregressive Value at Risk by Regression Quantiles, Journal of Business and
Economic Statistics, 22, 367�381.
Harvey A.C., 1989. Forecasting, structural time series models and the

Kalman �lter Cambridge: Cambridge University Press.
Harvey A.C., 2006. Forecasting with Unobserved Components Time

Series Models. Handbook of Economic Forecasting, edited by G Elliot, C
Granger and A Timmermann. North Holland: Amsterdam.
Harvey, A.C. and J. Bernstein (2003). Measurement and testing of

inequality from time series deciles with an application to US wages. Review
of Economics and Statistics, 85, 141-52.
Harvey, A. C., and M. Streibel (1998). Testing for a slowly changing

level with special reference to stochastic volatility. Journal of Econometrics
87, 167-89.
Harvey, A.C., and S.J Koopman (2000). Signal extraction and the

formulation of unobserved components models, Econometrics Journal, 3, 84-
107.
Koenker, R. (2005) Quantile regression. Cambridge: Cambridge Uni-

versity Press.
Koenker, R. and Q. Zhao (1996). Conditional quantile estimation

and inference for ARCH models. Econometric Theory 12, 793-813.
Koenker, R., Pin, N.G. and S. Portnoy, (1994), Quantile smooth-

ing splines. Biometrika, 81, 673-80.
Koenker, R and Z. Xiao (2006). Quantile autoregression (with dis-

cussion), Journal of the American Statistical Association, to appear.
Kohn, R, Ansley, C F and C-H Wong (1992), Nonparametric spline

regression with autoregressive moving average errors, Biometrika 79, 335-46.
Komunjer, I. (2005). Quasi-maximum likelihood estimation for condi-

tional quantiles. Journal of Econometrics, 128, 137-64.
Koopman, S.J., N. Shephard and J. Doornik (1999). Statistical al-

gorithms for models in state space using SsfPack 2.2. Econometrics Journal,
2, 113-66.
Kuester, K., Mittnik, S. and Paolella, M.S. (2006). Value-at-

risk prediction: a comparison of alternative strategies. Journal of Financial
Econometrics 4, 53-89.

41



Kwiatkowski, D., Phillips, P.C.B., Schmidt P., and Y.Shin (1992).
Testing the null hypothesis of stationarity against the alternative of a unit
root: How sure are we that economic time series have a unit root? Journal
of Econometrics 44, 159-78.
Linton, O. and Y-J Whang (2006). The quantilogram: with an ap-

plication to evaluating directional predictability. Journal of Econometrics
(to appear).
Morgan, J.P. (1996). RiskMetrics. Technical Document, 4th edition.

New York.
Newey, W K and J.L.Powell (1987). Asymmetric Least Squares

Estimation and Testing, Econometrica, 55, 819-847.
Nyblom, J.(1989). Testing for the constancy of parameters over time.

Journal of the American Statistical Association 84, 223-30.
Nyblom, J., and A.C.Harvey (2001). Testing against smooth sto-

chastic trends, Journal of Applied Econometrics, 16, 415-29.
Shephard, N (2005). Stochastic Volatility. Oxford: Oxford University

Press.
Stock, J.H. and M.W.Watson (2005) Has in�ation become harder

to forecast? Mimeo. www.wws.princeton.edu/mwatson/wp.html.
Taylor, J (2005). Generating volatility forecasts from value at risk

estimates. Management Science, 51, 712-25.
Whittle, P. (1983) Prediction and Regulation, 2nd ed. Oxford: Black-

well.
Yu, K. and M.C. Jones (1998), Local linear quantile regression, Jour-

nal of the American Statistical Association, 93, 228-37.

42


