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While democracy often leads to the tyranny of the majority, alternatives that have been proposed

by economists suffer even more severe problems related to multiple inefficient equilibria and budget

balance. A simple mechanism, Quadratic Voting (QV), resolves all of these concerns, offering a

practical and efficient alternative to one-man-one-vote. Voters making a binary decision purchase

votes from a centralized clearing house paying the square of the number of votes purchased. Funds

raised are returned to participants is an essentially arbitrary manner. We show that, under standard

conditions, QV achieves full efficiency in large populations in any Bayesian equilibrium. Even

when these conditions are relaxed in a variety of ways, QV achieves very high efficiency, especially

compared to majority rule. The quadratic form is essentially unique because it is the only function

with a linear derivative.
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(D)emocracy is the worst form of government, except all the others that have been tried.

– Sir Winston S. Churchill

1 Introduction

Prohibitions on gay marriage seem destined to be remembered as a classic example of the “tyranny

of the majority” that has plauged democracy since the ancient world. While in many countries

an increasingly narrow majority of voters oppose the practice, the value it brings to those directly

affected seems likely to be an order of magnitude larger than the costs accruing to those opposed,

as we discuss in greater detail in Section 2. Majority rule, however, offers no opportunity to express

intensity of preference, allowing such inefficient policies to persist. While most developed countries

have institutions, such as independent judiciaries and log-rolling, that help protect minorities, these

are often slow, insufficient and plauged with their own inefficiencies. In this paper we propose

and analyze a simple, efficient and robust mechanism, Quadratic Voting (QV), that could break

Churchill’s pessimistic conclusion about collective decision-making.

Voters use a quasi-linear currency to purchase votes for or against a proposed changed from

the status quo from a planner (with arbitrarily many votes to supply) and pay the square of the

number of votes they purchase. Funds raised are distributed back to the voters in essentially any

way desired.1 In Section 4 we show that, under independent private values the drawn from any

distribution with a finite mean and values on both sides of the origin, a Bayesian equilibrium exists

regardless of the number of voters. More importantly, in any such equilibrium the inefficiency of

the mechanism relative to the welfare-maximizing choice dies off at a rate that depends on the tail

properties of the distribution. If distribution has thin tails (all moments finite), then inefficiency

dies at rate 1/N, where N is the number of voters; if it has a tail matching that of the US income

distribution, inefficiency dies at rate 1/
√
N. In either case inefficiency is quantitatively small for

reasonable population sizes FILL IN.

QV builds on the “Quadratic Mechanism” of Groves and Ledyard (1977a) for the provision of

continuous public goods under complete information in Walrasian econoimes.2 However, to our

knowledge, QV for discrete collective decisions and our game theoretic, incomplete information,

finite population analysis are novel to this paper.3 In particular while under complete information

essentially any convex cost function results in efficiency (Maskin, 1999), under imperfect information

1The only constraint is that each voter must receive back the same fraction of the funds paid in directly by her.
2As a matter of intellectual history, Weyl arrived at the idea of QV independently of Groves and Ledyard (1977a),

much as Clarke (1971) and Groves (1973) arrived at the mechanism of Vickrey (1961) independently; Weyl became
aware of the Groves and Ledyard (1977a) paper after circulating a first draft of this paper.

3Goeree and Zhang (2013) simultaneously and independently proposed a similar, but distinct, mechanism that we
discuss in greater detail in Subsection 7.3. However like Groves and Ledyard (1977a) and Hylland and Zeckhauser
(1980) their analysis only considers the Walrasian limit and not convergence towards it.
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the quadratic form is crucial, as Hylland and Zeckhauser (1980) showed in unpublished work.4

Adapting their continuous logic to our binary setting, in a large market, where no voter has a

significant impact on the chance of a tie occurring, the marginal benefit of a vote is proportional

to a voter’s value. For voters to purchase votes proportional to their values, thereby insuring

efficiency, their marginal cost of purchasing votes must therefore be proportional to the number of

votes purchased, as voters equate the marginal benefit of a vote to its marginal cost. The square

is the unique cost function with this property. As a result, we show in Section 5 that the only

vote-buying rule that are robustly limit-efficient in the way that QV is have zero first derivative at

the origin and a strictly positive, but finite, second derivative. That is they are equivalent to QV

about the origin, which is the only relevant point in the limit.

While this essentially unique optimality of QV is a compelling motivation for considering it, for

it to be a practical mechanism it must be robust to a much broader range of environments than

the simple one in which our main results are established. Thus in Section 6 we relax a number of

the assumptions underlying our basic analysis. We allow for various forms of collusion and other

manipulations, imperfect knowledge of the value distribution by voters, imperfect voter rationality,

common values and small populations. In all cases the efficiency of QV remains extremely high

under reasonable conditions, sometimes converging even faster to perfect efficiency than in our

baseline analysis. Most importantly, QV consistently outperforms standard majority rule.

This contrasts sharply with the other mechanisms economists have proposed for making binary

collective decisions, as we discuss in Section 7. Perhaps the widely known proposal is the application

proposed by Tideman and Tullock (1976) of the Vickrey (1961)-Clarke (1971)-Groves (1973) (VCG)

mechanism. In this mechanism, voters report their valuations and, if and only if their report changes

the outcome, pay the amount by which all other voters valued the outcome prior to their input. In

addition to its efficient equilibrium, however, this mechanism has an infinite number of inefficient

equilibria in which, for example, any two voters may receive their desired outcome at zero cost by

both reporting values extreme enough to ensure that neither is unilaterally pivotal. In addition

the mechanism often requires resources to be destroyed in order to operate and suffers from a

number of other crippling flaws highlighted by Ausubel and Milgrom (2005) and Rothkopf (2007)

that make VCG, in Rothkopf’s words, “not practical”. The Expected Externality mechanism of

Arrow (1979) and d’Aspremont and Gérard-Varet (1979), and a recent variant proposed by Goeree

and Zhang (2013), eliminate the budget surplus problem and somewhat mitigate the collusion

challenge but require the planner, and all agents, to know the distribution of valuations. Other

mechanisms(Hurwicz, 1977; Maskin, 1999; Walker, 1981; Crémer and McLean, 1988) rely even

more heavily on details of the information structure and/or have a large multiplicity of equilibria.

4Again, Weyl was unaware of of the Hylland and Zeckhauser work, whose intuition is more closely related to
that behind our work than is Groves and Ledyard’s, until the first version of this paper was circulated. Weyl is
now collaborating with Hylland and Zeckhauser to finally publish their paper; more details on this collaboration are
discussed below, especially in our concluding Section 9.
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In addition to our formal analyses, we have more informally investigated the robustness of QV

along numerous other dimensions. The surprising resilience of this simple mechanism, which, unlike

the others discussed above, is not “fitted” to any specific context, has persuaded us that it has

great promise for practical applications. We therefore, in Section 8, briefly discuss some of the

applications that we and others are developing in other work. From the most easily-implemented

to the most ambitious these are committee decision-making with an artificial currency, corporate

governance, the assembly of complementary goods subject to holdout problems, international gov-

ernance institutions, representative bodies, referenda (like those on gay marriage) and elections of

representatives.

In Section 9 we conclude by discussing directions we are taking and that others might take to

extend and apply the analysis here. Most proofs and some formal development of the robustness of

QV are contained in appendices that follow the main text. While most of the paper is intended to

be accessible to a broad audience of economists, Section 4-6 (with the exception of Subsection 5.1)

are more technical in nature and can be skipped by readers with a more applied interest. Conversely

Sections 2 and 8 contain little formal content and are primarily intended for motivation; thus more

theoretically-inclined readers may wish to skip these sections.

2 Motivation

According to the Census, in 2010 lesbian, gay, bisexual and transgender (LGBT) voters constituted

approximately 4% of the population of California and voters in same-sex couple households con-

stitute approximately .7% of California’s population. Given that, according to a survey by The

Wedding Report, the average wedding alone costs more than $25,000 and LGBT couples are on

average wealthier than non-LGBT couples5, it seems reasonable to suppose that the benefit of mar-

riage to the same-sex household couples is at least $100,000 per voter and given both the option

value and dignity concerns it seems likely that the option to marry is worth at least $20,000 to

other LGBT voters. This implies a per-capita (across the whole population) willingness-to-pay to

see Proposition 8 defeated by LGBT voters of $1360.

Assuming that LGBT voters voted on California’s 2008 Proposition 8, which banned gay mar-

riage, at the same rates as other voters in the population and that all LGBT voters opposed the

measure, the measure’s passage by 52% to 48% implies that, among the 96% of non-LGBT voters,

the measure was supported 52% to 44%. Assuming that, on average, these not-directly-affected

voters had on average the same willingness to pay (for ideological or ethical reasons) to see the

initiative go their way and that this was no greater than $5000 on average (which seems quite high)

the average willingness-to-pay resulting from non-LGBT voters is $400 in favor of Proposition 8.

5See Experian Marketing’s 2013 Lesbian, Gay, Bisexual, Transgender Demographic Report.
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Thus, unless this calculation is significantly off, Proposition 8 seems a clear example of Pareto-

inefficient tyranny of the majority. If a proposition involving appropriate transfers could have

been arranged that committed the state never to ban gay marriage, it likely would have received

overwhelming support. However, arranging such transfers to achieve Pareto-improvements, begin-

ning from Pareto-inefficient allocations, is typically infeasible in large-scale political contexts both

because of the incentives they create for rent-seeking (Coate and Morris, 1995) (viz. passing oppres-

sive measures just to be paid off) and because of incomplete information (Mailath and Postelwaite,

1990) (viz. individuals claiming to oppose gay marriage just to receive a payment). Nonetheless,

Proposition 8 seems likely to have not just been unjust in the sense many of have claimed but

also inefficient in the standard utilitarian sense and a system that would systematically avoid such

tyranny of the majority would likely be Pareto-improving, or nearly so, by a substantial amount.

Of course, the fact that majority rule and other social institutions fail to accurately incorporate

the intensity of preferences means that a calculation like that above is inherently guesswork. Even

if its conclusions are incorrect, it makes clear that replacing majority rule with a system that is

capable of accurately reflecting the intensity of voter preferences has the potential to bring large

aggregate welfare gains. In fact Proposition 8 is merely one small, if salient, example of problem of

tyranny of the majority about which political theorists have been concerned at least since the time

of Aristotle (c. 350 B.C.E.b). Other examples arise in nearly every walk of life, from the trivial to

the epochal:

• Voters voting on a meeting time end up picking a date slightly preferred by a majority that

excludes most members of the minority from being able to attend at all.

• A promising recruitment candidate with a relatively narrow focus is rejected because they

cannot muster a majority in a diverse economics department.

• Latin American polities elect redistributive populist governments that wreck their economies

and Middle Eastern polities elect divisive sectarian governments that lead to coups and civil

wars.

• International organizations ride roughshod over the sovereignty of small member states on

issues central to their national interest, while swamping great powers in endless coalition

building to pass needed measures.

The best-functioning organizations typically have mechanisms in place designed to make such in-

efficient outcomes less likely, such as log-rolling, favor-trading, lobbying, absolute protections of

minority rights, etc. These checks and balances, however, are both often insufficient and carry with

them inefficiencies in the form of governmental paralysis and corruption that are all too familiar.

A practical formal mechanism that can, as the market economy does for private goods, facilitate

efficient trade on collective decisions, is therefore badly needed.
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3 Mechanism, Model and Intuition

We now formally define and analyze our proposed mechanism. To emphasize the independence

of the mechanism from the details of the modeling environment, we define it prior to most of the

details of the model we use to study it.

3.1 The Quadratic Voting mechanism

N voters i = 1, . . . , N must make a binary collective decision that impacts all of their welfare

of whether to stick with the status quo or adopt and alternative. Every voter has some amount

of currency (possibly unlimited). Under the Quadratic Voting (QV) mechanism, each voter may

purchase votes vi ∈ R for which she pays the square of the votes she purchases v2i out of her currency.

The alternative is adopted if and only if V ≡
∑

i vi > 0.

For definiteness, we assume that each voter receives 1
N−1 of the revenues paid in by all other

voters and none of the revenue collected directly from him; however none of the results below depend

on this particular redistributive scheme. Any rule in which all revenues are returned and each voter

receives the same share of the revenues she herself pays suffices to establish essentially all results

that follow. Thus voters pay out, on net, v2i − 1
N−1

∑
j 6=i v

2
j .

Remark 1. QV is budget balanced as

∑
i

(
v2i −

1

N − 1

∑
j 6=i

v2j

)
=
∑
i

v2i −
N − 1

N − 1

∑
j

v2j = 0.

3.2 Baseline model

To analyze QV we now make the standard assumptions of the expected utility-maximizing, inde-

pendent private values environment with quasilinear utility that is used so frequently in mechanism

design theory. Some of these assumptions are relaxed in Section 6.

Each voter has a value, ui ∈ R, measured in units of the currency, for the alternative realizing.

Voters are expected wealth maximizers and have unlimited units of the currency. Voter i thus

chooses her vi to maximize

Ei
[
ui1V−i+vi>0 − v2i

]
.

where V−i ≡
∑

j 6=i vi. Values are drawn independently and identically across voters from an

atomless distribution F with a bounded density f and support on (u, u) ⊆ R, where u < 0 < u. We

assume f has either all moments finite or finite first and second moments and a regularly varying

(viz. Pareto) tails. This covers essentially every distribution we are aware of that has been used

in economic analysis of preferences or income. We denote the mean of f as µ and its standard
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deviation as σ2. If it has Pareto tails we refer to its lower Pareto tail as α− and the constant on

the Pareto tail as k− and its upper Pareto tail as α+ and constant k+; if it has all moments finite

we say α− = α+ =∞. Our assumption of finite first two moments implies α−, α+ > 2. If it is has

exponentially dying tails on one or both sides we denote α on that side as ∞.

We define the welfare achieved as
U ·1V >0−U ·1V≤0

2(U ·1U>0−U ·1U≤0)
+ 1

2
, where U ≡

∑
i ui and the expected

welfare, E[W ], as the ex-ante expectation of this. Note that (expected) welfare is always between

0 and 1, assuming U is not (identically) 0; 0 arises from (always) making the wrong decision and 1

arises from (always) making the right decision. Expected inefficiency (EI), E[I], is 1− E[W ].

3.3 “Perfectly competitive” analysis

Consider a “type-symmetric” equilibrium in which each voter uses the same function v to map from

her type u to the number of votes she buys. Then, at this equilibrium, the distribution, call it P ,

of the sum of votes of N − 1 voters’ votes, from the perspective of the remaining voter, is the same

for all voters. Thus a voter with utility u maximizes, over her choice of v, u [1− P (−v)] − v2 as

1 − P (−v) is the chance of the alternative being adopted. Assuming P ’s density exists, p(−v) is

the density of an individual being pivotal by buying an additional vote, which we refer to as the

density of pivotality.

As we argue extensively in the next section, in any equilibrium for a large population the

dependence of the density of pivotality on v, at least over the range of values of v that all but a

tiny measure of voters would consider buying, is very small. Intuitively, in a large population no

individual has a significant influence at equilibrium on the chance of an election being tied as she

is a small part of the aggregate votes being purchased. Otherwise she would have an incentive to

act cheaply as a dictator, which could not be an equilibrium as other individuals would have an

incentive to do the same. Effectively the difference between Proposition 8 passing or failing by 400

votes is very small and few voters would consider buying more than 400 votes. Thus, as with a

price in a market for private goods, the density of pivotality is something which any small individual

in a large society may take as fixed and given by the invisible hand of the market. Thus, for the

purposes of our intuitive analysis in this subsection we take p as constant.

By taking the derivative of her utility, we obtain that an individual’s marginal benefit from

buying a small additional unit of vote is pu, the density of pivotality multiplied by her value. Her

marginal cost of buying an additional vote is evidently 2v. Equating these and noting that the cost

of a vote purchase is convex while its benefit is linear, her optimal vote is given by

v(u) =
p

2
u. (3.1)

The decision is thus made based on the sign of V =
∑

i
p
2
ui which is evidently the same as the

sign of U . Thus, because each individual buys votes proportional to her value, the decision is always
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made based on the sign of the sum of values, maximizing social welfare. The reason is that the

derivative of the square is linear in the number of votes and the marginal benefit of voting is linear

in value because p is constant. As a result, under QV, a voter who intends only her own gain is led

by an invisible hand to promote an end which was no part of her intention.

4 Main Results

The argument of the previous section relied on a number of unproven suppositions, namely the

type-symmetry of equilibrium, the existence of a density of pivotality and its constancy just as

the efficiency of the market economy for the provision of private goods depends on all participants

facing the same prices, the existence of prices that clear the market and the constancy of prices

as a function of the quantities chosen by participants. Neither of these sets of assumptions are

satisfied exactly when the number of individuals is finite. However, recent work has shown that

these assumptions are approximately satisfied in large, but finite, market mechanisms such as the

double auction (Satterthwaite and Williams, 1989; Rustichini, Satterthwaite and Williams, 1994;

Cripps and Swinkels, 2006; Azevedo, Weyl and White, 2013). In this section we show the same is

true of QV, completing the analogy.

4.1 Existence

We begin by establishing the existence of a monotone, type-symmetric equilibrium in finite popu-

lations, before moving on in the next subsection to show that all equilibria in large markets behave

approximately as desired and then using the approximations to calculate the rate at which efficiency

obtains.

Lemma 1. For any N > 1 there exists a type-symmetric Bayesian Nash Equilibrium v that is

monotone increasing.

While purely technical, this result reassures us that the substantive results in the following sub-

sections are not vacuous. For the most part, the proof is just a standard combination of techniques

from Reny (1999) and Reny (2011). However, two small innovations are worth noting. First, the

existence of different types, rather than players, with conflicting preferences (with values of different

signs) is used to ensure reciprocal upper semi-continuity. Second, Reny (2011)’s result is extended

to unbounded value distributions whose first moments exist.

4.2 Characterization

While our proof is more general, we focus exposition on the case when the distribution has a

bounded distribution; that is u and u are both finite. Equilibrium differs greatly depending on
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Figure 1: Approximate equilibrium behavior when µ = 0, σ = 1 and E
[
u3
]

= 0. On the left curves
represent p(−v)/2 for various values of N . Rays represent v

u for various values u. Intersections are
optima for individuals with the relevant values

whether µ = 0 or µ 6= 0 and we now characterize the nature of equilibrium in each case.

While non-generic, the case when µ = 0 corresponds most closely to the simplest intuition for

why p is approximately constant in the limit. Furthermore, despite its non-genericity, it may arise

frequently in the equilibrium of a broader political game where candidates or candidate initiatives

converge toward efficiency (Ledyard, 1984). For both reasons we begin by discussing this case. In

particular, we show that any equilibrium has all individuals buying vote approximately (for large

N) in proportion to their values, as we conjectured. As a result, p, the distribution of the sum

of any N − 1 votes, has a mean of approximately 0. As the number of voters grows larger, its

standard deviation grows as well, though on the order of 4
√
N rather than

√
N because, as it grows,

the p declines and thus individuals buy fewer votes. Thus the standard
√
N growth of the standard

deviation is “split” (geometrically) between a decline in p and thus votes and a growth in the

standard deviation. As a result each individual purchases votes that die at a rate 1
4√N

, for a cost

that dies at a rate 1√
N

, leading to aggregate votes that grow at a rate N
3
4 and aggregate revenue

that grows at a rate
√
N .

By the central limit theorem, p is approximately normal and as its standard deviation rises

it becomes flatter and wider about its peak near 0. Furthermore individuals buy fewer votes as p

diminishes and thus move less far along the distribution. Thus all individuals perceive approximately

equal densities of pivotality, an approximation that grows increasingly accurate as N increases.

This behavior is pictured in Figure 1. This shows our computational solutions for our asymptotic

approximate equilibria values of p(−v) in a case when µ = 0 for various values of N . Optimal

votes-purchased-to-utility ratios for individuals with various values u are pictured based on the

first-order condition, p(−v) = v
2u

. The rays emanating from the origin are the value of the right-

hand side of this first-order condition for various values of u. If p were identical across individuals,
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then all rays would intersect p at the same level of p. This is not exactly true, as we see: in

particular, individuals with extreme values intersect further down the slope of the distribution

than do individuals with modest values. As a result, they will be under-weighted, causing some

inefficiency in finite populations, as we discuss in the next subsection. However, as N grows large

every individual converges to purchasing according to approximately the same linear proportion

(even in proportionate terms) of their value as p grows wide and flat, as formally stated in the

following lemma.

Lemma 2. When µ = 0, in any equilibrium vi(u) = pN
2

(
1 + εi(u,N)

N

)
u where pN ≡

√
2

√
σ 4
√

2π(N−1)
and for all i, |εi(u,N)| < ε(u) and ε(u) FILL IN.

While this sort of equilibrium is perhaps the simplest way in which p can come to be approx-

imately constant for all individuals, it cannot constitute an equilibrium when µ 6= 0. To see this,

suppose that µ > 0 and all individuals purchased votes approximately in proportion to their. Then

the mean of the distribution of votes would grow relative to its standard deviation as the former is

proportional to N while the latter is proportional to
√
N . By standard large deviation arguments,

this would imply an exponential decay of p(0) in N and thus of the number of votes bought by

any individual. Because exponential decay is much faster than linear, the total number of votes

bought by all individuals would similarly decay essentially exponentially to 0, along with the the

chance of the alternative not being adopted. But then any individual with negative value would

have an incentive to buy enough votes to guarantee the alternative would not be adopted, as she

could do this at very small cost in exchange for a change of probability of the outcome near unity.

But clearly this would not involve vote purchases proportionate to value and thus would break the

proposed equilibrium.

The actual equilibrium incorporates precisely this feature that breaks the other proposed equi-

librium. Let us focus, without loss of generality, on the case when µ > 0. Equilibrium strategies

exhibit a discontinuity, with most types pursuing the “moderate” strategy of buying votes approxi-

mately proportional to their values and a small group of “extremists” with u near u buying enough

votes to single-handedly bring the election close to a tie. These extremists are necessary to the

equilibrium, as it is their behavior that increases the chance of a tie back to a non-trivial level,

encouraging the moderates to buy a small, but not exponentially small, number of votes. In par-

ticular, in order for the extremists to be willing to buy “the whole vote”, but for there not to be a

growing number of such extremists, the mean of the number of votes purchased by N−1 individuals

must asymptote to a constant and so the number of votes bought by any moderate must die at a

rate 1
N

, thus her expenditure must die at rate 1
N2 and total expenditures by all moderates at rate 1

N
.

In order for this to occur, the chance of a tie, which again is all driven by the event of an extremist

existing, must die at rate 1
N

and thus the probability that any given individual is an extremist, the

measure of types that pursue this strategy, must die at rate 1
N2 . Thus equilibrium occurs because
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Figure 2: Approximate equilibrium behavior when u is uniform on [−1, 2]. On the left is the behavior of
the extremists. The bell curves represent the approximate density of pivotality p(−v) for various
values of N . The rays represent, as in Figure 1, v/u for various various values of u. On the
right is the behavior of the“moderates. The curves and rays are as on the left, but in a region
local to the second, smaller peak resulting from the event that an extremist exists. On the right
all intersections are optimal, but on the left there are often three intersections; the furthest left
intersection is an optimum if and only if the area below the corresponding curve and above
the ray is at least the area above the curve and below the ray. Otherwise the optimum is the
intersection near the origin, as is the focus in the right panel

the moderates’ fear of the extremists keeps them buying sufficient votes to deter all but the most

diehard extremists from usurping the vote.

The behavior of the two groups is illustrated in Figure 2 in the case when u is uniform on [−1, 2].

The left panel shows p(−v) over a relatively large range of v values. This looks normal with the

peak growing sharper and a bit more extreme as N grows large. Individuals with positive or small

negative values have rays that do not intersect the peak. However, the rays for larger negative

values intersect the peak, and thus have three intersection points with p. The middle intersection is

a local minimum, but the other two intersections are local maxima. Which is the global maximum

depends on whether the area below the peak and above the ray is greater or less than the area

beneath the ray and above the v-axis. If former area is greater, the optimal action is to act as an

extremist, buying enough votes to ensure defeat of the alternative with high probability. This is

true only for values of u very close to u = −1, ensuring that only the most extreme individuals

follow the extremist strategy.

The right panel shows matters from the perspective of moderate voters who do not “go over

the peak”. Their global optimum is the first intersection with the distribution, near a smaller local

peak created by the possibility of the extremist existing near the origin. The small probability of

the extremist existing pushes this peak down toward zero rapidly so that moderates span over a

small part of the range. This reduces the effective slope for them and causes them to choose to

buy votes approximately in proportion to their values. The slight, and asymptotically vanishing,
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bias favors positive votes as in the event of the extremist existing moderates who buy positive votes

make a tie more likely.

In the case of an unbounded distribution, and particularly the case of Pareto tails, the basic

structure of equilibrium is similar but the relevant computations are more involved. As the popula-

tion grows larger, the threshold for extremist behavior gets pushed increasingly far into the tails of

the distribution and, as a result, the probability of an extremist dies more slowly as a larger prob-

ability is required to maintain sufficient voting by moderates. The following lemma summarizes

these results.

Lemma 3. When µ > (<)0, in any equilibrium, if u > (<) − sign(µ)
√

pN
2
N |µ|

(
1 + νi(N)√

N

)
, then

vi(u) = pN
2

(
1 +

√
log(N)εi(u,N)

N
α+3

2(α+1)

)
u where pN = 2

(
α

(α+1)N2α(kµ)2α+1

) 1
α+1

, α and k are are the val-

ues for the sign opposite to that of µ, for all i, |εi(u,N)| < ε(u), ε(u) FILL IN, |νi(u,N)| <
FILL IN. Furthermore in any equilibrium if ui < (>)− sign(µ)

√
pN
2
N |µ|

(
1 + νi(N)√

N

)
then vi(u) =

−pN
2
Nµ

(
1 + ζi(N,u)√

N

)
where |ζi(u,N)| < ζ(u) and ζ(u) FILL IN.

Our logic above emphasizes why an equilibrium of the form we describe exists rather than di-

rectly establishing that every equilibrium must take this form. Much of the proofs in the appendices

are concerned with this uniqueness. Our basic argument is simply that the distribution of sums of

independent and not necessarily identically distributed random variables converge to a distribution

that is, at least near its mean, approximately normal and approximately identical when the behavior

of any individual is removed. This implies that optimal behavior for all agents must be approxi-

mately identical and that the set of such behaviors possible is of low dimension, determined only

by the small set of parameters of such normal distributions. This small number of behaviors can

be whittled, by contradictions, down to the cases we highlight above. These contradictions roughly

take the form of our argument that no equilibrium in which all individuals buy votes approximately

in proportion to their values is possible when µ 6= 0.

Furthermore, within these behaviors, equilibrating forces imply uniqueness. In the µ = 0 case

as pN increases votes increase, raising the standard deviation of aggregate votes and thus reducing

pN . In the µ 6= 0 case if the number of extremists increases this raises the pN , there by raising the

number of votes purchased and reducing the number of individuals who wish to be extremists by

making this behavior more costly.

4.3 Efficiency

The characterization of equilibrium in the previous subsection implies that limiting behavior corre-

sponds to our basic argument in Subsection 3.3 and thus that in the limit full efficiency is obtained.

However, it characterizes equilibrium behavior much more tightly than this and allows us to compute

rates and constants of convergence, which constitute our main theorem.
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Theorem 1. If µ = 0 then E[I] ≤ A
N

. If µ 6= 0 then E[I] ≤ B

N
α−1
α+1

where α is from the side of the

distribution opposite to the sign of µ.

The rate of convergence to efficiency thus depends, except in the case when µ = 0, on the

thickness of the tails of the distribution of values. When the distribution has thin or no tails

(α = ∞) then convergence is at the same 1
N

rate when µ 6= 0 as when µ = 0. However, when the

distribution has Pareto tails, convergence is slower. For example, when α = 3, a high estimate for

the top-end of the US income distribution (Diamond and Saez, 2011), convergence is at a rate of
1√
N

. If the distribution is extremely fat tailed, like the most extreme estimates of the top end of the

income distribution in the United States of α = 1.5, convergence is at a rate of 1
5√N

. Intuitively, the

fatter the tails of the distribution of valuations the more extreme pool of individuals there exists

as candidate extremists. Deterring these extremists requires individuals to buy a large number of

votes, which can only occur when the extremists triumph and ruin efficiency with sufficiently large

probability.

OTHER COMPARATIVE STATICS ON CONSTANTS

NUMERICAL RESULTS

5 Uniqueness

At first blush the square rule appears somewhat arbitrary. Wouldn’t other convex rules work as

well? It is well-known, for example, that in complete information environments where Groves and

Ledyard (1977a) first proposed a Quadratic Mechanism (for continuous public goods), many other

rules do work (Maskin, 1999).

We address these queries in two ways in this section. First, we consider a broader class of

parametric rules that nests QV along with democracy and dictatorship and provide a simple analysis

showing why QV is the only efficient rule. Second, we provide a more fundamental, axiomatic

characterization showing that QV is essentially the unique optimal rule satisfying certain properties;

unfortunately the proof and interpretation of this characterization is somewhat more technical.

5.1 Convex power voting

The most natural class of mechanisms that nests QV are those where votes may be bought at the

cost of some power greater than unity of the number of votes purchased. With a few complications

and limitations, the approach taken in the previous section can be used to validate the intuitive

“perfectly competitive” analysis of Subsection 3.3 applied to these mechanisms as well. Thus in

this section we analyze this broader class of mechanisms in this intuitive manner.

Under these broader regimes, the cost of vote purchase are |v|x, where x > 1. The marginal

benefit of buying an additional vote is again pu while its cost is now sign(v)x|v|x−1. Again solving
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for the first-order condition for optimal vote purchases we obtain

v?(u) =
(p
x

) 1
x−1

sign(u)|u|
1

x−1 = k|u|
2−x
x−1u,

where k is a constant across voters. Thus the decision is made based on the sign of
∑

i |u|
2−x
x−1u

rather than the sign of U . When x = 2 these are identical, but otherwise different individuals are

weighted differently depending on the magnitude of their values. If x < 2 then 2 − x > 0 and

greater weight is placed on individuals with larger values: intensity of preference is over-weighted.

If x > 2 then 2 − x < 0 and greater weight is placed on individuals with smaller values: intensity

of preference is under-weighted.

Two limits of this mechanism are particularly salient. In the limit as x → ∞, 2−x
x−1 → −1 and

each individual has a weight inversely proportional to the magnitude of her value. Thus every

individual has just one vote effectively and the decision is made by simple majority rule. That is,

as x→∞, convex power vote buying converges to standard majority rule.

On the other hand, in the limit as x→ 1 the weight placed on an individual with a slightly higher

magnitude value becomes arbitrarily larger than that placed on an individual with a slightly lower

magnitude of value. Thus the weight placed on the single individual (assuming there is one) with

the largest magnitude of value, the greatest intensity, becomes larger than the weight placed on all

other individuals and that individual acts as dictator. Thus linear vote-buying yields dictatorship

of the most intense (likely wealthiest), not efficiency. Similar result have been obtained through a

variety of other concepts of equilibrium in the market for votes (Dekel, Jackson and Wolinsky, 2008;

Casella, Llorente-Saguer and Palfrey, 2012). It is also consistent with a classical tradition dating

at least to Olson (1965) that in resource-driven politics the most concentrated interests win. This

may be an important reason for the hostility among the public to vote buying.

Intermediate values of x 6= 2 will resemble various forms of government discussed in political

theory. Low values of x will have most weight placed on a small group of voters with very intense

preferences; given that intensity is measured in dollars and the wealth distribution is likely to be

more dispersed, especially at the top, than is the distribution of idiosyncratic preferences this will

resemble an oligarchy. High values of x will over-weight individuals with weak preferences without

being purely democratic and will thus resemble some form of republican government. Because

Aristotle (c. 350 B.C.E.b) did not have a continuous spectrum along which these various forms

of government he compared could be placed, it was not clear to him as it is through this analysis

where his “golden mean” (Aristotle, c. 350 B.C.E.a) lies, though he clearly understood why other

forms do not perform as well.6

6In fact, his logic in adjudicating between democracy and oligarchy in Book Six, Part III of Politics is similar to
our logic that interests of all individuals should be linearly aggregated in a utilitarian fashion, and that incentives
for information revelation must be correctly designed to ensure this is possible:

Democrats say that justice is that to which the majority agree, oligarchs that to which the wealthier class;
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5.2 Axiomatic characterization

While the set of convex power voting schemes is which to embed QV, clearly it is not exhaustive

of mechanisms for binary collective decisions. As we know from a large literature briefly surveyed

in Section 7 below, many other mechanisms exist that are efficient in the classical non-cooperative,

indepdent private values model set up in Subsection 3.2. As we discuss in the next section, the most

important thing that differentiates QV from these other mechanisms is its robustness to a range of

environments that deviate from these simple assumptions by allowing features like collusion. There

is, however, no guarantee that QV is the only mechanism that is limit-efficient in the most classical

environment and also similarly robust nor do we know how to even state, much less prove, such a

result.

It is therefore useful to complement these robustness properties by identifying a set of properties

or axioms sufficient to uniquely characterize QV. Each of these properties is loosely associated with

some of the robustness results, though no direct formal relationship exists. We now briefly discuss

the set of axioms we have identified and then state the characterization of QV in terms fo the join

of these axioms. While we reserve fully formal definitions of the class of mechanisms in which this

characterization result applies to Appendix D, we assume (essentially without loss of generality)

that individuals report to the mechanism some scalar real number ri and make a net transfer ti(r)

to the mechanism.

Axiom 1 (Detail-Freeness). The rules of the mechanism are fixed independent of the value distri-

ubtion.

One of the most fundamental desirable features of QV is that it does not rely on the planner

having knowledge of the underlying distribution of valuations, which we call Detail-Freeness. It is

this lack of detail-dependence that gives QV a reasonable prospect of being robust to alternative

informational environments involving aggregate uncertainty or common values as discussed respec-

tively in Subsection 6.2 and 6.4. However in the context of the standard models we have thus far

been considering, this property has no meaning unless other claims are made about the mechanism

in their opinion the decision should be given according to the amount of property. In both principles
there is some inequality and injustice. For if justice is the will of the few, any one person who has more
wealth than all the rest of the rich put together, ought, upon the oligarchical principle, to have the sole
power- but this would be tyranny; or if justice is the will of the majority, as I was before saying, they
will unjustly confiscate the property of the wealthy minority. To find a principle of equality which they
both agree we must inquire into their respective ideas of justice...For example, suppose that there are
ten rich and twenty poor, and some measure is approved by six of the rich and is disapproved by fifteen
of the poor, and the remaining four of the rich join with the party of the poor, and the remaining five
of the poor with that of the rich; in such a case the will of those whose qualifications, when both sides
are added up, are the greatest, should prevail...But, although it may be difficult in theory to know what
is just and equal, the practical difficulty of inducing those to forbear who can, if they like, encroach, is
far greater...
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which hold over a range of distributions, because otherwise there would be no domain over which

the rules would be held fixed. These claims are embodied in our second axiom.

Axiom 2 (Robust Limit Efficiency). For any fixed distribution of values f satisfying the proper-

ties discussed in Subsection 3.2, the mechanism yields expected inefficency bounded above for all

equilibria by a quantity that approaches 0 as N →∞. Furthermore this remains true even if value

are scaled upwards by an arbitrary function s(N) > 0, that is the value distribution is not fixed as

f but varies with N as fN(v) = f
(

v
s(N)

)
for a fixed f .

Section 4 show that QV is robustly efficient in large populations in the sense that its expected

inefficiency is bounded above, in all equilibria, by a quantity that approaches 0 as N grows large

regardless of the distribution of values so long as this distribution satisfies some basic regularity

properties. If all values are scaled up by a constant that depends on N this makes no difference to

this efficiency result. However, in large populations the density of pivotality declines so that if values

are not scaled up then the votes bought by any individual dwindle and thus only the properties of

a mechanism over a small number of votes matter. Thus if we were not to scale up values as N

grows, limit efficiency would only require a quadratic shape local to the origin of 0 votes. However,

if efficiency is required even if values are scaled up by an arbitrary factor of N , then shapes that

fail to be quadratic globally will lead to inefficiency for the same reasons outlined in the previous

subsection: they fail to have a derivative proportional to the number of votes purchased over the

range individuals purchase votes. Thus we use this stronger notion of robust lmit efficiency to tie

down QV precisely.

Another reason why efficiency under scaled-up distributions is desirable is that there are many

reasons (such as imperfect voter rationality or expressive motivations for voting) to believe the

number of votes individuals purchase may not dwindle to zero even for a fixed value distribution in

practice as we discuss in Subsection 6.3. The global linear derivative property of QV is importance

to its efficient performance in such settings.

Axiom 3 (Separability). ti(r) = tii (ri) + t−ii (r−i). That is transfers can be additively separated

into two components, one of which depends on an individual’s actions and one of which depends

only on the actions of other individuals.

A basic source of the extreme suceptibility of the VCG mechanism to trivial collusive manip-

ulations is that the payments each individual makes, based on her actions, depend on the actions

of others. This allows two individuals to each make extreme reports that insulate the other from

making any payments based on these reports. A simple design feature detering such behavior is

requiring that the payments each individual makes depending on her own report be additively sep-

arable from any payments that she makes or receives depending on others’ reports. Many standard

auction formats that are more resilient against collusion, such as the all-pay auction and (condi-

16



tional on the allocation) the first-price auction, are separable. Thus separability plays a role in

QV’s relative resilience to collusion discussed in Subsection 6.1 below.

However, this connection is tenuous as the Expected Externality mechanism discussed in Sub-

section 7.3 below is also highly suceptible to collusion and is separable. We believe, but have not

yet shown, that Axiom 3 can be replaced with a combination of ex-post symmetry (all individuals

are ex-post treated symmetrically given their actions) and budget balance. The reason is that these

properties rule out VCG or similar mechanisms that can only be robustly limit efficient and bud-

get balanced through using ex-post asymmetric refund procedures (Green, Kohlberg and Laffont,

1976). However, we have not been able yet to rule out the existence of non-VCG-like schemes that

are robustly limit efficient and budget balanced in an ex-post symmetric fashion.

Axiom 4 (Scale-invarance). tii is independent of N .

Transfer rules that asymptotically approach a quadratic rule will be just as robustly limit efficient

as QV is regardless of their behavior in small populations. In fact, the rule can be arbitrary up

to any finite N and be equivalent to QV above this N and still be robustly limit efficient. Thus

to tie down QV precisely requires scale invariance. Obviously other arbitrary rules may perform

very poorly in small (or even quite large but finite) populations, while QV performs quite well as

discussed in Subsection 6.5 below. Scale invariance is thus related to QV’s relative resilience to

population sizes.

Theorem 2. Any mechanism satisfying Axioms 1-4 is equivalent (up to renaming reports) to QV

with some multiplier on the quadratic cost. More precisely, any mechanism satisfying these axioms

has corresponding to it a collection of functions {vi(r)}Ni=1 such that tii (ri) = ai+bv2i (r) for some set

of constants {(ai)}Ni=1 and a common-across-individuals constant b and the decision rule is A = 1

if
∑

i vi(r) > 0 and A = 0 if
∑

i vi(r) < 0. Furthermore QV satisfies the axioms.

Axioms 1-4 thus define QV uniquely up to the arbitrary common-across-individuals cost of votes

(per unit of vote squared) and the design of the budget-balancing transfers. In addition to uniquely

defining QV up to these factors, it clarifies which aspects of QV are arbitrary (budget-balancing

transfers and common multiplicative constants) and which are necessary (the quadratic shape and

the common-across-individuals cost of voting).

6 Robustness

While QV is essentially uniquely limit-efficient in the class of mechanisms we discussed in the

previous section, there are many other efficient mechanisms, as we discuss in the next section, that

do not fall into this class. The fundamental virtue that therefore recommends QV to us is not its

efficiency in the narrow settings we focus on above but rather the robustness of its efficiency to a
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wide range of changes in the economic environment. We have analyzed the mechanism in a range

of environments with varying degrees of formalism to understand this robustness. In this section

we report the results of our analysis in what we consider to be the five most important robustness

checks. While this is still a small number compared to the wide range of concerns one could

have about the performance of QV in practice, the robustness of QV across this range of settings,

especially when compared to other mechanisms (see the next section), has lead us by Occam’s Razor

(Blumer, anad David Haussler and Warmuth, 1987) to the view that QV is a plausible, practical

and robust mechanism for collective decision-making in a range of contexts.

6.1 Collusion and other manipulations

One of the most severe limitations of existing efficient mechanisms for binary collective decisions

is their sensitivity to collusion. As we discuss in the next section, any two individuals can, at

approximately or sometimes literally zero cost, obtain their desired outcome under the VCG and

Expected Externality mechanisms if their behavior is properly coordinated. An important question

therefore is whether QV is more robust to such coordination.

The first thing to note is that any efficacious collusive group, one that maximizes the joint

payoffs of its members, will always have all members purchasing the same number of votes. The

reason is that the utility of the group depends only on the aggregate number of votes it buys and the

aggregate payments it makes. Conditional on the first, the second is minimized when all individuals

split evenly the aggregate votes because the quadratic function is convex.

The second thing to note is that a collusive group of size m will buy m times as many votes

per unit of aggregate utility as its individual members would buy if they had such a utility. This

can be interpreted in two ways. In the first interpretation, the cost that they face for a marginal

vote is lower than for an individual because the aggregate votes are spread out more thinly and

thus run less quickly into the increasing marginal cost of votes. Alternatively, suppose that every

individual in the group had the same utility. Each would create positive externalities on the others

for each vote she purchased of the same magnitude of the value she obtains from a vote. Collusion

internalizes these externalities, magnifying the optimal amount the group would vote.

These two different effects of collusion, leveling votes within the group and magnifying the

votes it purchases, have very different impacts on efficiency. The first impacts revenue raised and

redistribution, but will never bias the decision, and is greater to the extent that the vote purchases

of individuals prior to collusion would have been very heterogeneous. The second may well bias

the decision and occurs most strongly in the reverse circumstance: when the vote purchases of

individuals are relatively homogeneous. Because this second form of collusion has greater potential

harm, we focus on it below.

This sort of collusion is most harmful when it involves a large number with large values pointing
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in the same direction. The results we obtain therefore depend on which individuals are involved in

collusion. We consider two different cases. In the first, “worst-case” scenario individuals are system-

atically the m most extreme individuals in some direction. In the second, “average case” scenario

individuals colluding are drawn randomly from the same distribution as the whole population.

In either case, there are (at least) three basic challenges that limit the efficacy of such a collusive

group. First, the group must be relatively large to have a significant impact as its optimal vote

purchases are only magnified by a factor of the group size. Second, individual members of the

group will face strong unilateral incentives for deviation. Third, collusion will meet with offsetting

reactions by other non-colluding agents that may undermine the efficacy of the collusion and even

make it counter-productive. We now informally discuss and state propositions formally establishing

the limits each of these forces places on the possibility of collusion.

First, consider the necessary size of a coalition that can significantly impact efficiency. Suppose,

just to chose one possible case, that µ = 0, that the utility distribution is bounded and that the

coalition is composed of the most extreme individuals in one direction. The magnitude of the total

value of the group will be approximately proportional to its size m and they will thus optimally

buy votes proportional to m2. On the other hand, the total value of all other individuals in the

aggregate is of size
√
N as this is the order of magnitude of the standard deviation of the sum

of mean-zero random variables. Thus as long as m = O( 4
√
N) it is unlikely that this group will

outweigh the direction of the preferences of other individuals. Similar calculations to these may be

made for other scenarios and are summarized in the following proposition.

Proposition 1. If there is a single perfect collusive group of size m and other individuals play as

in equilibrium, E[I]→ 0 as N grows large as long as

1. µ = 0, colluders are drawn as in the average case and m = O
(

3
√
N
)

,

2. µ = 0, colluders are drawn as in the worst case and m = O
(
N

α−2
2(2α−1)

)
,

3. µ 6= 0, colluders are drawn as in the average case and m = O
(
N

4
3(1+α)

)
or

4. µ 6= 0, colluders are drawn as in the worst case and m = O
(
N

α−1
(α+1)(2α+1)

)
.

Here α denotes the smaller of the two α values in 2) and that from the side opposite to µ in sign

in 3) and 4).

These results show that in many cases successful collusion requires large coalitions that will

be hard to form in the face of authorities attempting to detect collusion. This contrasts with the

VCG and Expected Externality mechanism where a coalition of two can nearly costlessly achieve

arbitrary efficiency.

19



However, these results are quite weak in some cases. When α is small, µ = 0 and the coalition

is drawn from the most extreme individuals or when µ 6= 0 and α is large, even small coalitions

are quite dangerous for efficiency. In these cases we must consider the other challenges to collusion

discussed above.

As Theorem 1 shows, QV’s efficiency occurs at all equilibria; thus its efficiency is “coalition-

proof” in the sense of Bernheim, Peleg and Whinston (1987), again unlikely VCG. In fact, unilateral

incentives for deviation (without any other equilibrating reactions) rule out most collusion under

QV. The only collusion that is unilaterally incentive compatible (assuming all other, non-colluding

individuals act as in unilateral equilibrium) is an “extremist conspiracy” of individuals seeking to

overrule the will of the mean when µ 6= 0. Such a conspiracy may, if sufficiently large, may be

incentive compatible for the conspiring individuals because the fact that they expect the conspiracy

to succeed raises for them the chance that the election will be tied and thus their unilaterally

optimal vote purchases.

Proposition 2. When µ = 0 there are always unilateral deviation incentives for any collusive

behavior for large N and the size of marginal deviation incentives is at least proportional to the

deviation from unilateral behavior. When µ 6= 0 a collusive agreement causing inefficiency with

no unilateral deviation incentives is possible only when m = Ω
(
N

1
1+α

)
in the worst case and

m = Ω
(
N

4
1+α

)
in the average case.

Thus unilateral deviation incentives are likely to create important challenges to collusion, espe-

cially when µ = 0, because such collusion actually makes a tie more likely and thus decreases the

optimal unilateral vote purchases for each colluding individual. Such unilateral deviation incentives

also provide some deterrence to collusion when µ 6= 0 and α is not too large. However, when

α is large and µ 6= 0 in either the average or worst case collusion may be individually incentive

compatible.

However, the mechanism through which it incentive compatible is that it raises the chance of

extremist behavior and therefor of a tie. If this prospect were known not only by the colluding

individuals but also by other individuals it would trigger them also to buy more votes, making

collusion partly or wholly self-defeating. In particular, consider a game where the collusive group

can act in perfect coordination but is known by all other voters to do so. In order to overrule

the social interest, the group will have to have a total utility which, when multiplied by m, is on

the order of Nµ because everyone will anticipate their collusive actions and buy votes in the same

proportion the collusive group does to their utility, except that the collusive group is able to by

votes by a factor of m more cheaply than others. The conditions under which this can occur are

summarized in the following proposition.

Proposition 3. If there is known to be a single perfect collusive group of size m, in any equilibrium

E[I]→ 0 as N grows large as long as
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1. µ = 0, colluders are drawn as in the average case and m = O
(

3
√
N
)

,

2. µ = 0, colluders are drawn as in the worst case and m = O
(
N

α−2
2(2α−1)

)
,

3. µ 6= 0, colluders are drawn as in the average case and m = O
(
N

2
3

)
,

4. µ 6= 0, colluders are drawn as in the worst case and m = O
(
N

α−1
2α−1

)
.

Here α denotes the larger of the two α values in 2) and that from the side opposite to µ in sign in

3) and 4).

Note that in the remaining problematic case, when µ 6= 0 and α is large, m must be of size N
2
3

or
√
N depending on whether we are in the average or worst case for collusion to prevent limiting

efficiency if the collusion is “detected” by other voters. Thus either private or public monitoring of

collusion is likely to make it difficult for collusive agreements to succeed unless they are implausibly

and dangerously large. We thus conclude that while collusion, if not adequately policed, may

damage the efficiency of QV, it is unlikely to do so in a devastating manner in large populations.

A similar analysis may be applied to a single individual who fraudulently “de-mergers”, repre-

senting herself as more than a single individual. Such de-merger attacks are known to be highly

effective against VCG as discussed in the next section. Logic very similar to that above yields the

following limits on the efficacy on such fraudulent activity.

Proposition 4. If a single individual can fraudulently misrepresent herself as l individuals, in any

equilibrium E[I]→ 0 as N grows large as long as

1. µ = 0, the fraudulent individual is drawn randomly, other individuals behave either as if they

were aware or not aware of the fraudulent behavior and l = O
(√

N
)

,

2. µ = 0, the fraudulent individual is drawn randomly, other individuals behave either as if they

were aware or not aware of the fraudulent behavior and and l = O
(
N

α−1
2α

)
,

3. µ 6= 0, the fraudulent individual is drawn randomly, other individuals behave as in the equilib-

rium without fraud and l = O
(
N

2
1+α

)
,

4. µ 6= 0, the fraudulent individual is the most extreme individual in the population, other indi-

viduals behave as in the equilibrium without fraud and l = O
(
N

α
α(α+1)

)
,

5. µ 6= 0, the fraudulent individual is drawn randomly, all other individuals are aware of the

fraudulent behavior, an equilibrium is played given this common knowledge of fraud and l =

O (N) or
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6. µ 6= 0, the fraudulent individual is the most extreme individual in the population, all other

individuals are aware of the fraudulent behavior, an equilibrium is played given this common

knowledge of fraud and l = O
(
N

α−1
α

)
.

Here α denotes the smaller of the two α values in 2) and that from the side opposite to µ in sign

in 3) and 4).

Thus the number of identities that a perpetrator of a fraud would have have to take on to

significantly impact efficiency is even larger than the size of an effective collusive group. Such

large-scale fraud is likely to be detected and thus is unlikely to be a serious threat.

6.2 Aggregate uncertainty

Our baseline model assumes that the distribution of utilities is commonly known and thus that,

except in the knife-edge case when µ = 0, there is no uncertainty about the optimal action. This

both seems unrealistic and makes the informational problem somewhat trivial in large populations.7

It thus seems natural to consider how QV performs when the distribution of valuations is uncertain

amongst the voters.

Consider the simplest possible case of aggregate uncertainty, when there is an unknown scalar

parameter γ ∈
(
γ, γ
)
⊆ R that determines the density of valuations, f(u|γ), has a prior density

distribution g and and is affiliated with u, that is it orders f by first-order stochastic dominance

(Milgrom, 1981; Milgrom and Weber, 1982). We maintain all of our assumptions on the distribution

from above also assume that g is non-atomic and that our assumptions apply to the unconditional

distribution of u. Assume that ∃γ−, γ+ ∈
(
γ, γ
)

: E[u|γ+] > 0 > E[u|γ−]. The following lemma

characterizes the nature of equilibrium in a large population in an intuitive way: there exists a

threshold γ? such that if γ > γ? then the alternative is chosen with probability near 1 and if γ < γ?

then the alternative is chosen with probability near 0.

Lemma 4. Under the assumptions of this section, there exists a unique γ? ∈
(
γ, γ
)

such that in

any equilibrium as N →∞, P(V > 0|γ)→ 1 if γ > γ? and P(V > 0|γ)→ 0 if γ < γ?.

This lemma greatly simplifies the analysis of equilibrium for several reasons. First, note that

there is also a unique γ0 : E[u|γ+] > 0 > E[u|γ−] whenever γ+ > 0 > γ−. As a result, perfect

limiting efficiency is achieved if and only if γ0 = γ?. Second, by the analysis of Good and Mayer

(1975) and Chamberlain and Rothschild (1981), for large N all ties occur when γ is very close to

γ?. This leads to a very simple description of equilibrium behavior.

7However, as McLean and Postelwaite (2013) argue, it may be the existence of an efficient mechanism given
aggregate certainty that provides correct incentives for individuals to reveal their information to the group and thus
create this aggregate certainty. Thus aggregate certainty may be the appropriate framework for analysis of a robust
mechanism like QV even if it would admit other, non-robust mechanisms as described in Subsection 7.4 below.
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Lemma 5. At any equilibrium vi(u) =
[
g(γ?|u)+εi(u,N)

N

]
u where |εi(u,N)| ≤FILL IN.

This characterization states that, in large populations individuals buy votes in proportion to

the chance they perceive of γ? realizing. This in turn leads to a simple integral equation for γ?:

E [g (γ?|u)u|γ?] = 0. (6.1)

We have not been able to derive from this fully general results about efficiency. However, we

have studied several examples that admit an analytic solution of Equation 6.1; others can easily

be studied by solving Equation 6.1 computationally. A common thread running throughout these

analyses is the “Bayesian Underdog Effect” identified by Myatt (2012) in the context costly, but

otherwise standard, voting. Suppose, without loss of generality, that E[u] > 0 so that the alternative

is the ex-ante “favorite” in welfare terms and that the status quo is the ex-ante “underdog”. If

efficiency were to result, that is if γ? = γ0, then individuals with u < 0 would tend to put a higher

probability on γ? intuitively because their own utility is a poll of one person indicating a lower value

of γ. Because the alternative is the favorite lowering γ increases the chance of a tie: Republicans

believed that in 2012 a close election was more likely than did Democrats. This Bayesian Underdog

Effect thus raises the votes of the ex-ante underdog and thus γ?, leading to inefficiency because

there are some values of γ ∈ (γ0, γ
?) when the favorite should win but the alternative does. We

have not been able to identify general conditions under which this logic is valid as it is based on a

frequentist intuition, while it is the Bayesian probability of γ? that is relevant. However, it plays

an important role in all of the examples we have explored.

In the following examples, efficiency and inefficiency are computed as Section 4, but with an

additional average taken over all possible realizations of γ according to the measure over γ. All

calculations underlying the following examples, and more details about them, appear in Appendix

F.

Example 1. Suppose that u is equal to γ plus normally distributed noise with standard deviation

σ2
1 and that γ is normally distributed with mean µ and variance σ2

2. Then majority-rules voting is

limit-efficient and QV is not.
σ2
1

2(σ2
1+σ

2
2)
µ = γ? > γ0 = 0. For large N and a fixed σ2

2 maximal limit-EI

occurs as σ2
1 → ∞; globally maximal limit-EI occurs when µ

σ2
2
≈ ±1.6 and equals approximately

2.2%. Typically it is much less; for example if σ2
1 → ∞ but µ

σ2
is less than 75 or greater than 3

inefficiency is below 1% and if σ2
1 = σ2

2 then inefficiency is always below .5%.

Because the normal distribution is symmetric, standard voting, which always selects the pref-

erence of the median voter, achieves perfect efficiency in this example, while QV is not perfectly

efficient. However, even in the worst case, QV still achieves more than 97% efficiency; usually it

does much better. We now consider an example based on a set-up proposed by Krishna and Morgan

(2012) to study costly voting.
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Example 2. Suppose that γ is the fraction of individuals who have positive value, but that the

distribution of the magnitude of value conditional on its sign is fixed and commonly known. Let

µ+, µ be respectively the mean magnitude of values for those with positive and negative values

respectively. Assume that γ follows a Beta distribution. Then EI is never greater than 5% for QV

and it can be arbitrarily large for majority-rules voting. In the special case when γ has a uniform

distribution, QV dominates voting, which may have EI as high as 25% while for QV it is never

greater than 3%. For “most” parameter ranges QV appears to outperform majority-rules voting,

often quite significantly.

Finally we consider an example similar to the previous one but calibrated to the evaluation of

Proposition 8 in California discussed in Section 2 above.

Example 3. Suppose that 4% of the electorate is commonly known to oppose the alternative and

is willing to pay on average $34k to see it defeated. Suppose that the other 96% of the electorate

is willing to pay on average $5k to either support or oppose the alternative with the intensity of

their values being independent of γ. γ is the fraction of the 96% that support the alternative and

is assumed to have a Beta distribution with parameters set so that on the mean fraction of the

population in favor of the alternative is 52%. Then QV is always superior to majority rule and the

gap is larger the smaller is the standard deviation of the vote share. When the standard deviation

of the population share supporting the alternative is 5 percentage points (well above the margin of

error in most individual polls), QV has 4% EI and majority rule 47% EI. Even when the standard

deviation is 20 percentage points QV achieves 1.2% EI while majority rule has 7%.

Thus QV appears to perform quite well in a reasonable large range of scenarios with aggregate

uncertainty and “usually” outperforms majority rule quite significantly. However, it is certainly not

perfectly efficient. Much of this small inefficiency, however, arises from the fact that we considered

fairly large amounts of aggregate uncertainty relative to what seems plausible given the extensive

polling that typically leads up to large collective decisions like elections. McLean and Postelwaite

(2013) argue that it is generically possible, by giving small monetary or social reward for correct

predictions, to incentivize sufficient information revelation about the aggregate state using such

polling to effectively restore aggregate certainty in a large population.

To the extent that this is true, we may expect QV to be closer to perfect efficiency in practice

than the analysis above indicates: people mostly form their views about the chance of a tie in real

elections based on public data, not personal preference. This will tend to homogenize views about

the chance of a poll and reduce the distortive Bayesian Underdog Effect. In a future draft we plan

to prove a formal result about the size of a poll relative to the population size required to restore

general limit efficiency.
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6.3 Voter behavior

The famous “paradox of voting” (Downs, 1957) holds that in a large society voting is irrational if

it requires even a small cost because the chances of being pivotal are miniscule. Yet in practice

we observe a large fraction of the population turning out to vote. This suggests weaknesses in the

simplistic instrumental models of voter behavior we have thus far employed. In this subsection we

consider how QV would perform if individuals behaved according to models capable of explaining

observed turnout.

A basic challenge in doing this is that many models that aim at explaining turnout aim only

at that; they are not comprehensive models that make predictions about behavior conditional on

turning out. It is thus hard to determine what implications they have for the operation of QV.

Some formulations, such as voting to tell others that one has voted (DellaVigna et al., 2013), would

imply that behavior conditional on voting will follow standard rational choice. In fact, significant

evidence exists that, conditional on voting at all, voters do behave quite strategically and even

fairly consistently with rational choice theory (Kawai and Watanabe, 2013; Spenkuch, 2013). Thus

it may be that our preceding analysis is an accurate prediction of voting behavior in QV, given that

we assumed universal turnout.

However, we consider the two models discussed in a survey on the paradox of voting by Blais

(2000) that would clearly lead to different behavior even conditional on voting.8 In the first model

individuals overestimate the chance of their being pivotal. In the second, individuals gain some

direct, “expressive” utility for each of their votes in addition to a chance of changing the outcome.

Both of these mechanisms will tend to raise the number of aggregate votes purchased. However,

they will not typically endanger the efficiency of QV; in fact they will typically make it more

robust by deterring extremists and making the multiple of utility that individuals buy in votes

more homogeneous than it is in our baseline analysis.

First, suppose that individuals misestimate p(−v) as e (p(−v), ε) where e is smooth and e, e1, e2(0) >

0 > e11, e12 and, but that individuals never take a strictly dominated actions. ε is a random variable

drawn from (ε, ε) ⊆ R according to a smooth distribution h that is independent of u and embodies

the extent to which individuals over-estimate the chance of being pivotal. Our assumptions on e

ensure that over-estimation is greater the small is the chance of being pivotal; individuals may even

underestimate the chance when it is very large.9 This is consistent with experimental evidence

8There are many other potential models of voter behavior that may have extrapolations to behavior in QV, such
as others surveyed by Dhillon and Peralta (2002). However, we could not figure out a natural way to operationalize
these other theories and suspected they would yield similar results. Analysis of QV under these other theories would
be an interesting direction for future research.

9An alternative model that we have also considered by do not report here for brevity is one where individuals
overestimate the chance of their being pivotal unless they pay a cost to obtain a better estimate. In this case QV
behaves more like majority rule, thus losing some of its efficiency benefits over majority rule. However, it may
perform better for finite populations as this is the case that most effectively deters extremists and it always continues
to outperform majority rule, at least if the costs of acquiring information about p are excluded. If these are included,
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reported by Blais. Our assumption of independence of ε from u ensures that no type of individual

systematically over-estimates more than others conditional on the true chance of their being pivotal

with a marginal vote. However, individuals with endogenously different chances of being pivotal

(because of the number of votes their value induces them to buy) may over-estimate to differing

extents.

FILL IN.

Second, suppose that, in addition to the instrumental utility each individual earns, each also

receives a benefit
(
x(ε) + ξ(ε)∑

i|vi|

)
uv where x, ξ are smooth and x, ξ, x′, ξ′ > 0. ε is again an

independent-of-u random variable. x represents a per-unit-of-value expressive utility for each vote

she purchases and ξ is a per-unit-of-value expressive utility she earns from the fraction of total

votes cast that she represents. These two possibilities correspond to two different interpretations of

expressive utility in the literature. The first corresponds to traditional expressivist accounts, such

as that of Fiorina (1976), where expression creates a personal psychological benefit for the voter.

The second corresponds to a more semi-instrumental motive, suggested by Myerson (2000), where

voters vote to influence perceptions of political support, assuming only aggregate vote shares are

reported by the media. As we will see, which force operates is irrelevant from the perspective of

our analysis.

FILL IN.

Thus neither overestimation of the chance of being pivotal nor expressive utility is likely to

reduce, and may even enhance, the efficiency of QV. We thus do not think that non-instrumental

voter behavior is a significant threat to QV’s efficiency. Yet it is also not clear that the sort of voter

behavior that exists under current institutions would carry over to a society that implemented QV.

The sense of civic duty, expressive value, signaling, etc. that supports voting under present in-

stitutions is arguably an outgrowth of the historical development of democratic social institutions

(Lipset, 1960) that were geared towards ensuring the implementation of majority rule despite the

fact that under voluntary voting formal democratic institutions can implement very different out-

comes.10 A society that adopted QV might evolve political institutions and values that were more

similar to the instrumental and individualistic values that developed along side market economies

(Greif, 1994; Bruni and Sugden, 2013), as such values would be conducive to the success and spirit

of QV .

6.4 Common values

In our analysis above we assumed that elections served to aggregate preferences. Yet in his pio-

neering work on the aggregation of preferences, de Condorcet (1785) argued that voting also works

majority rule may perform better.
10In fact, under some conditions voluntary, costly voting implements more efficient outcomes than if everyone

votes, as the cost screens intensity of preference (Ledyard, 1984; Borgers, 2004). See Subsection 7.5 for more detail.
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to aggregate information, even when preferences are known to be aligned across individuals. In

this subsection we consider how effective QV is at aggregating information, instead of or along side

preferences.

We begin by considering the simplest information aggregation setting, that of pure common

interest considered by de Condorcet. McLennan (1998) shows that the optimal information aggre-

gation procedure using the actions available to agents is always an equilibrium. By essentially the

same argument this is also true of QV. However, because QV allows expression of cardinal values,

it allows the expression of strictly more information and thus, for generic information structures,

achieves more efficient information aggregation in some equilibrium than voting does in any equi-

librium. The one complicating factor is that under QV individuals must pay for their votes and

thus interests are not perfectly aligned. However, anything that can be implemented using cardinal

reports can be implemented through arbitrarily small cardinal reports that are therefore incentive

compatible. Furthermore, the wider gradations of deviations possible under cardinal utilities makes

it harder to sustain inefficient equilibria, implying that under fairly broad conditions the optimal

first-best information aggregation is the unique equilibrium of QV even in finite populations.

More explicitly, suppose that there is a finite-dimensional parameter θ drawn from a commonly

known distribution smooth and non-atomic density g from a set
(
θ1, θ1

)
× · · · ×

(
θT , θT

)
⊆ RT .

Individual i has a utility function, u(θ)1V >0 − v2i + 1
N−1

∑
j 6=i v

2
j ; thus individuals have common

preferences over the choice, though conflicting preferences over transfers for vote purchases. Indi-

vidual i receives a signal si ∈
(
s1, s1

)
× · · · ×

(
sS, sS

)
⊆ RS drawn independently and identically

according to a smooth and non-atomic density h conditional on θ.

Theorem 3. Suppose that T = S = 1 and that h(s|θ) forms an exponential family with a single-

dimensional sufficient statistic. Then there exists an equilibrium under QV in which 1V >0 =

1E[u(θ)|s1,...,sN ]>0 but no such equilibrium exists under majority rule. More broadly, there always

exists an equilibrium under QV that outperforms the best equilibrium under majority rule in EI.

Under FILL IN CONDITIONS, this best QV equilibrium is unique.

As Feddersen and Pesendorfer (1997) argue, most collective decisions involve a mixture of con-

flicting preferences and dispersed information. They show that in large, majority-rule elections this

mixture does not prevent information aggregation because a large number of individuals who consti-

tute a small fraction of the population and are close to being indifferent conditional on information

leading to an expected tie vote on the basis of their information. The fact that all information

aggregation occurs through the votes of a narrow segment of the population, however, does put

important limits on information aggregation. If, for example, all individuals have some minimum

intensity of preferences, information does not aggregate and if those who are nearly indifferent also

have very poor information, information aggregates very slowly. Under QV, by contrast, information

aggregates by small adjustments to all individuals’ vote quantities rather than large adjustments to
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a small fraction of the population’s votes. This leads to information aggregation in settings where

it does not under majority rule and faster aggregation even when it does, but very slowly, under

majority rule, as the next two example illustrate.

Example 4. Suppose that each individual’s value vi = µ+εi where µ is a common value component

and εi is the individual’s idiosyncratic preference. µ and εi are drawn identically and independently

(in the latter case across individuals) from a distribution that equals −1 with .5 probability and

1 with .5 probability. Individuals receive signals si that are drawn independently and identically

conditional on µ, taking on the same value as µ with probability p ∈ (.5, 1) and −µ with probability

1− p. Then as N →∞ in any QV equilibrium the alternative is implemented if and only if µ = 1,

which is efficient. Under majority rule the alternative is implemented with probability .5 regardless

of µ.

FILL IN EXAMPLES.

More generally, following theorem describes the conditions under and rates at which information

aggregates with preference heterogeneity under QV.

Theorem 4. FILL IN

6.5 Small populations

All of the preceding analysis is relevant to large or very large populations. The efficiency bounds

we provide for finite populations are very weak for small N . It is therefore unclear from the above

analysis whether QV performs well, and better than standard mechanisms like majority rule, when

N is small.

To address this concern, we computationally solved for an approximate equilibrium of QV using

standard computational techniques for various value distributions as described in Appendix I.11 The

value distributions we considered were the Normal distribution and the Pearson Type I distribution,

a generalization of the Beta distribution with two additional parameters representing the support

of the distribution. We considered very small populations, with N ranging from 2 to 10. We

summarize our qualitative findings here and discuss the quantitative results in Appendix I.

1. The worst relative performs of QV comes in cases with N = 10 when the value distributions

have small variance and a mean and median of these same sign. These are cases when majority

rule would and QV would yield the same efficient answer in large populations as “the majority

is right”. Majority rule appears to approximate this large population behavior more quickly

than QV does and thus to outperform QV. Over all the specifications we tried the largest

11We never discovered a case when a given value distribution led to convergence to two different equilibria depending
on initialization or other execution details. However it is possible the results below reflect only the behavior at one
equilibrium and not at others.

28



gap was a case of the Pearson distribution where QV achieve EI of 15% and majority rule

had an EI of about half that, 7.5%. Deviating from these conditions in any way led QV to

outperform majority rule, as the next points discuss.

2. Even for the value distributions in the previous bullet point, when Nwas very small, QV

outperformed majority rule. With N = 2, QV never had an EI above 12.5% for any specifi-

cation we considered. Majority rule typically had EI between 15% and 25%. For the Pearson

distribution giving the worst case result from 1), EI was 22% under majority rule. Under a

Uniform distribution on [−1, 1] QV had EI of 8% while majority rule had EI of 22%. Under

a standard Normal distribution QV had EI indistinguishable from 0 while majority rule had

EI of 24%. This appears to be the result of QV accounting for intensity as majority rule

does not, given that majority rule simply flips a coin when a tie between the two individuals

occurs, while QV typically decides in favor of the more intense individual.

3. Regardless of N when the distribution had mean 0, QV outperformed majority rule. In all

cases we considered with a mean of 0 QV never had EI exceeding 7% and only exceeded 3%

in two cases (Uniform distributions with N < 5). In these cases majority rule never had

EI below 15% and it ranged between 15% and 25% fairly evenly, suffering from greater EI

whenN was even and thus ties were possible than when N was odd and thus ties impossible.

This appears to be because in these cases there is not particular tendency of the majority

to be right or wrong and QV’s accounting for intensity allows it to typically outperform

somewhat arbitrary majority rule. Goeree and Zhang (2013) find similar and related results

in a laboratory experiment using a variant on QV in this case discussed further in Subsection

7.3 below.

4. Even when, in large populations, the majority should be right as in 1), QV outperformed

majority rule when the variance was sufficiently large relative to the mean. When values

followed a Normal distribution with mean .2 and standard deviation 1.5, even in the most

relatively unfavorable case (N = 10) for QV, QV had an EI of 7% while majority rule had an

EI of 18%. When values followed a Pearson distribution with mean of approximately .059 and

standard deviation of approximately .44 even in the most unfavorable case for QV (N = 10),

QV had EI of 8% while majority rule had 19%. This appears to be because when the standard

deviation is large relative to the mean, at least in sufficiently small populations, behavior is

close to the case when the mean equals 0.

5. QV outperformed majority rule most starkly when the mean and the median of the distribution

had opposite signs. In these cases QV never had EI above 5% while majority rule never hand

EI below 14%. This smallest gap occurred when N = 3 and thus it was quite likely that the

majority was right. For most population sizes the gap was significantly larger. This suggests
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that the large population prediction of QV’s solving the “tyranny of the majority” problem

arising under majority rule hold in small populations as well.

The above results are strikingly consistent with the results we obtained under aggregate uncertainty

in Subsection 6.2 above. QV certainly is not perfectly efficient, and may fall even farther short of

perfect efficiency than it did there. In some cases, particularly when the majority is right in large

populations, QV underperforms majority rule. But QV appears much more robustly efficient than

majority rule and outperforms it in most cases. However, in cases where there is a strong prior

reason to believe that the majority is right, majority rule appears to perform better in both contexts.

7 Relationship to Other Mechanisms

Thus QV appears not only, in some sense uniquely, efficient under standard conditions but also

robust to a range of deviations from these standard conditions. We now compare these conclusions

to the properties of other mechanisms economists have proposed; these comparisons are summarized

in Table 1.

7.1 Voting

Because most of the paper has been devoted to comparing QV to majority voting, we only briefly

summarize our findings here and discuss comparisons to super- and sub-majority voting. Like QV,

voting, in all its forms, is simple, budget balanced, detail-free and in fact requires no transfers.

Also, unlike QV, every individual has a simple dominant strategy to vote in favor of their preferred

alternative. However, under the standard conditions discussed in Subsection 3.2 it may be extremely

inefficient, achieving an expected efficiency approaching 0 in many cases. In small populations it

nearly always continues to be dominated by QV. It is somewhat more robust to collusion than is

QV along some dimensions (a colluding group may accomplish less unless it is even larger than

needed under QV), but along others it is less robust (incentives for unilateral deviation are smaller

and reactions by those outside the colluding group are non-existent). Under aggregate uncertainty

majority rule may sometimes outperform QV but typically does far worse. When values are common

and interests aligned, QV allows much more information to be communicated than does voting.

Ledyard and Palfrey (1994) and Ledyard and Palfrey (2002) show that in large populations

if the distribution of valuations is known then by choosing the threshold for voting equal to the

quantile corresponding to its mean, the limit-efficiency of voting may be restored. This mechanism

suffers from the same limitations of the mechanisms, discussed in Subsections 7.3 and 7.4 below,

that require the planner to know the distribution of valuations. For any fixed super- or sub-majority

rule, voting performs worse than it would under a simple majority rule.
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7.2 The Vickrey-Clarke-Groves mechanism

The most canonical mechanism that has been suggested by economists as an alternative to demo-

cratic decision-making is the Vickrey (1961)-Clarke (1971)-Groves (1973) (VCG) mechanism. First

applied to discrete collective decisions by Tideman and Tullock (1976), under this mechanism indi-

viduals report their cardinal value for the alternative and the decision is chosen based on the sign

of the sum of the reports. Any individual who is pivotal in the sense that, had she reported 0,

the decision would have gone the other way pays the amount by which all those other than her

preferred the decision she opposed. In addition to sharing with QV its detail-freeness, this system

is appealing because if every individual plays the weakly-dominant strategy of reporting her valu-

ation truthfully then, in an extremely broad range of circumstances, VCG implements the efficient

outcome. VCG is fully efficient in a sense that is very robust to the information structure and the

number of participating individuals, unlike QV.

Despite this, somewhat narrow but much remarked-upon (Bergemann and Morris, 2005; Chung

and Ely, 2007) sense of robustness, the VCG mechanism has almost never been used for collective

choices. The reason that VCG is “lovely, but lonely” (Ausubel and Milgrom, 2005) is that a number

of other severe failures of robustness make it “not practical” (Rothkopf, 2007). These flaws were

recognized by the originators of the mechanism from the start (Vickrey, 1961; Groves and Ledyard,

1977b), though their severity and implications for implementing VCG were not well-understood

until more recently (Tideman and Tullock, 1977) when the first laboratory experiments based on

the simplest Tideman and Tullock (1976) environments gave disastrous results (Attiyeh, Franciosi

and Isaac, 2000).

Perhaps the most severe defect of the VCG is that, in addition to its efficient equilibria, VCG

has a very large number of other equilibria, including, for any two individuals, equilibria where

they attain their desired outcome and make no payments. In particular, any two individuals may

announce sufficiently large values in the same direction so that neither is individually pivotal.

Anticipating this, other individuals can do no better than to report 0. Similarly, any individual

who can pretend to be two individuals can “break” the mechanism. Thus VCG is extremely sensitive

to any deviation from the supposition that individuals will play their unilaterally weakly dominant

strategies and experimental results, reviewed in the above-cited papers, confirm that in practice

VCG rarely behaves this way.

VCG has many other problems as well, which are discussed extensively in the above-cited papers

a few of which we briefly list here. Any revenue raised must be destroyed to avoid creating perverse

incentives, which may be hard for the government to commit to; absent such a commitment, the

scheme falls apart.12 Even when such commitments are possible, the revenue that must be destroyed

12Some have suggested schemes to get around this problem in large populations. See, for example, the work of
(Bailey, 1997). However these schemes also eliminate the perfect small population efficiency of VCG. Perhaps more
importantly, these variants take an already complex and fragile system and make it more complex and more fragile
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can often be greater than the improvement in efficiency over even simple mechanisms like majority

rule (Groves and Ledyard, 1977b; Attiyeh, Franciosi and Isaac, 2000). VCG requires much larger

liquidity among participants than does QV; individuals must have in cash the full magnitude of their

value and place this into escrow when submitting their report. Unless this “bankruptcy” problem

is addressed, individuals have an incentive to exaggerate their report and fall back on judgement-

proofness if called upon to pay (which occurs with very small probability in a large population).

Under QV payments are limited with probability 1 to a very small portion of underlying values and

are certain conditional on the report made.

7.3 Expected Externality mechanism

The next-most canonical mechanism economists have suggested is the Expected Externality (EE)

mechanism of Arrow (1979) and d’Aspremont and Gérard-Varet (1979), which was first applied to

binary collective decisions by Goeree and Li (2008). This is similar to VCG, except that individuals

pay the planner’s ex-ante expectation of their VCG payments rather than their actual payments.

Because individuals can thus not affect others’ payments, the revenue raised may be refunded

much as under QV, though, like QV, the mechanism is Bayesian rather than having a dominant-

strategy equilibrium. QV was partly inspired by this mechanism as, in the case when µ = 0, these

EE payments are approximately quadratic in large populations. The intuition is much like that

underlying the Dupuit (1844)-Harberger (1964) triangle as an approximation to the welfare loss from

distortions. Because the distribution of the sum of other individuals’ valuations are approximately

uniform about 0 when µ = 0 by the arguments in Subsection 4.2, both the probability of being

pivotal and the average amount by which individuals are pivotal grow linearly with the individual’s

report. Thus EE payments grow like a Harberger triangle.

In fact, it was from this logic that Weyl originally derived QV. However, this is at most a starting

point for QV, as when µ 6= 0 EE payments are nothing like quadratic and in the richer information

environments we consider they are not even well-defined. However, Goeree and Zhang (2013) take

this logic more literally and propose a mechanism, limited to the case when µ = 0, in which

individuals pay the exact quadratic approximation to their EE payments. This quadratic schedule

has a coefficient on it that depends on the number of individuals and the standard deviation of

their value and thus, like EE, depends on the planner knowing the distribution of valuations. Thus

both the EE and Goeree and Zhang mechanisms are not detail-free and only apply under aggregate

certainty (and the later also requires µ = 0). Additionally, when when µ 6= 0, the EE mechanism

suffers from essentially the same collusion problem as VCG in large populations, though this is less

well-known.13 Thus, outside the extremely non-generic case when it is common knowledge that

along other dimensions.
13Suppose two individuals report − 2µ

3 . Each will make vanishingly small EE payments as the probability of either
of these reports being pivotal is exponentially small in N by standard large deviation theory results. However,
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µ = 0, neither EE nor the Goeree and Zhang mechanism may plausibly be used.

7.4 Other mechanisms proposed by economists

The mechanisms discussed in the previous three subsections are those taken most seriously because

other mechanisms proposed by economists are known to suffer many of the same weaknesses more

severely or without as many corresponding benefits. However, for the sake of completeness, we

briefly list a few other well-known proposals noting their defects:

1. Implement the alternative if and only if µ > 0: In addition to requiring the planner to know

the distribution of valuations, this suggestion places great and easily-abused power in the

hands of the authority charged with determining the sign of µ (Maskin, 1999).

2. Maskin (1999)’s mechanism: In this mechanism, all individuals are asked to report µ and

the alternative is implemented if and only if all report µ > 0. If all do not agree, all agents

are “killed” (pay a very large and inefficient penalty). In addition to requiring aggregate

certainty, this mechanism is likely to be difficult to commit to and has a very large multiplicity

of inefficient equilibria.

3. Crémer and McLean (1988)-McAfee and Reny (1992)-style mechanisms: These mechanisms

are conceptually similar to Maskin’s, but adapted to the context with aggregate uncertainty.

Roughly, individuals are asked (via their report of their type) to guess other individuals’

report of their type and are given large rewards for guessing correctly. Like the Maskin

mechanism, this mechanism has a large multiplicity of equilibria (McLean and Postelwaite,

2013) and, perhaps more importantly, depends both on the mechanism designer having a

very precise knowledge of the distribution of types and on individuals having preferences that

are “appropriately” correlated with their beliefs about other individuals’ types (Heifetz and

Neeman, 2006).

A number of other mechanisms requiring individuals to have complete information have been pro-

posed (Hurwicz, 1977; Walker, 1981). As a result, these mechanisms are even more fragile than

are those discussed above (Bailey, 1994). Other mechanisms rely very sensitively on the absence of

heterogeneity in risk attitudes and beliefs and on detailed knowledge by the planner (Thompson,

1966). All of these mechanisms are also quite complicated to explain and strain credibility along

a variety of other practical dimensions. While there is not the space here to discuss all of these in

detail, a large literature has established their impracticability; see Tideman (2006) for a detailed

and excellent survey from which much of the discussion here is derived. An important reason, we

believe, for their limitations, and for those of the VCG and EE mechanisms, is that they are tightly

together they will ensure the outcome goes in the inefficient direction.
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“fitted” to the particular modeling environments they were designed to optimize within. Like a high

degree polynomial fitted to a small number of data points, their ability to achieve good outcomes

in tightly defined modeling environments is perhaps not surprising .

7.5 Mechanisms used in practice

What gives us confidence in the applicability of QV is not, or at least not only, its strong asymptotic

performance under standard conditions. It is instead or in addition that an extremely simple

mechanism, derivable in a variety of ways but not obviously related to any particular modeling,

performs so well in a variety of environments. Continuing the analogy, we view QV as being like a

linear (or perhaps quadratic) regression which turns out to have a very high degree of fit to a large

number of data points, an event unlikely to happen by accident or because of over-fitting. Occam’s

Razor (Blumer, anad David Haussler and Warmuth, 1987) therefore suggests to us that QV is likely

to be a useful mechanism in practice.

One measure of the simplicity that gives us this confidence is the ease of applying QV is that,

like the double auction, it is straightforward to compare it to existing social institutions and look for

institutions that may approximate it. One suggestion of an approximating institution arises from

the work of Ledyard (1984); see also Myerson (2000) and Krishna and Morgan (2012). Ledyard

considers a model where individuals have non-pecuniary costs of voting. If these costs are all strictly

positive and follow a non-atomic distribution independent of voters’ values, then the “representative

voter” with a given value effectively faces a quadratic cost as a function of the fraction of cost types

she represents who vote by the same argument underlying the analogy to Harberger’s triangle in

Subsection 7.3 in the limit as the population size grows large and thus both the density of pivotality

and thus turn out grow very small. Thus non-pecuniary costs of voting may approximate QV and

thus efficiency.

While there may be some truth in this argument, Ledyard argues that it is unlikely to provide a

good approximation to reality as it requires turn out to approach zero in large populations, which

is rarely observed in practice. If some voters have zero or negative non-pecuniary costs of voting

or overestimate their chance of being pivotal to such an extent that turnout remains large in large

elections, as much empirical research on voting suggests (Blais, 2000), the result clearly fails while

we showed in Subsection 6.3 that QV remains as efficient or even may be more efficient than if voters

are “standard”. Thus costly voting does not seem a promising approximation to QV in practice.

More plausible are genuinely costly activities undertaken to influence collective decisions, such

as log-rolling on committees and legislative bodies and lobbying, campaigning or out-right illegal

vote-buying in elections. At first blush, most of these appear fairly linear and thus unlikely to

well-approximate QV, though they may somewhat mitigate the tyranny of the majority problem of

democracy. However, at least in some contexts, costs appear to be convex. In votes on committees

35



it is usually easy for any individual to influence one vote of a colleague, harder to obtain the second,

even harder to sway the third and so forth. This is shown clearly in the recent film Lincoln in the

context of legislative log-rolling and vote-buying. Similar effects may occur campaigning, where

it is typically much easier for individuals to influence their close friends or at least those they are

acquainted with than to influence those further away from them. Exactly how close various contexts

come to approximating QV is an interesting empirical question, discussed further in Section 9.

8 Applications

What is clear, however, is that none of the institutions discussed in the previous subsection ap-

proximates QV with much precision. The situation might be compared to the institutions of

informal trading barter and reciprocity that are thought to have preceded more formalized ex-

change economies and to persist in less developed societies (Sahlins, 1972). While much of the

famous substantivist-formalist debate concerns the degree to which such institutions approximated

the market, there is near-consensus that the emergence of formalized market economies allowed

exchange to occur more efficiently, between larger numbers of individuals, over a broader temporal

and spatial extent and at lower cost (Greif, 1994). Similarly we believe that, to whatever extent

some informal practical institutions resemble QV, its formalization is likely to improve welfare.

Therefore, in this section we discuss several contexts where we believe it could improve the

allocation of public goods compared with existing mechanisms. We begin with the most modest

applications that are likely to be feasible over the shortest time horizons and gradually build to those

that, if implemented, could have the greatest impact on social welfare. Weyl and Eric Posner (see

below) have founded a start-up venture, Collective Decision Engines, that is designing software to

ease implementation in these applications. As demand for the various applications becomes clearer,

tailored versions of the software fitted to particular applications will be developed. Posner and Weyl

(In Preparation) will address wider range of concerns and questions related to these applications

than is feasible here or in other academic work.

8.1 Private sector

The easiest, near-term application is likely that to the decision-making of committees that repeat-

edly interact such as recruitment committees in academic departments or honors-granting commit-

tees. Such groups would likely use artificial currency in lieu of actual money, which would allow

Pareto improvements over majority rule internal to the decision process but would not permit global

Kaldor-Hicks efficiency (Budish, 2011). We have had detailed discussions with a number of such

committees and expect implementations in this setting to begin in several locations by year’s end.

Somewhat more ambitious are applications to decision-making within small- and medium-sized
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start-up firms on issues such as appointment scheduling, product develop, amenities, etc. Such firms

often make many decisions collectively and are open to experimentation with innovative means of

organization. Either artificial or actual currency seems feasible in such contexts, depending on the

firm culture. Weyl presented at one such firm, Applico (a mobile strategy firm with approximately

100 employees that Weyl sits on the board of directors of), and the firm plans to implement QV in

several areas in the coming months.

More ambitious is the use of QV for the governance of public corporations, as advocated by

Posner and Weyl (Forthcoming). Posner and Weyl propose an alternative implementation, Square

Root Voting (SRV ), in which investors obtain votes in proxy battles equal to the square root of

the number of shares they own. Such an implementation is different more in design than in type

from existing minority shareholder protections, such as poison pills, and thus has attracted some

attention on Wall Street. Similar discussions are underway about the use of QV for corporate

restructuring (Posner and Weyl, 2013). More serious discussions have taken place in South Korea,

where concerns about tunneling by the families that control large the large “chaebol” conglomerates

have become a focal point of national politics under the banner of “economic democracy” under

which the new president was elected (Posner, Weyl and Yi, 2013). In fact, Weyl and Yi presented in

front of the Action for Economic Democracy Caucus, a group of 11 members of the ruling Saenuri

party, who expressed interest in legislation to amend the South Korean Commercial Code to allow

the use of SRV for corporate governance.

8.2 Public sector

As important as such private applications are, the most important public goods are provided by var-

ious levels of the public sector. Probably the most plausible applications in the short term are ones

where money already plays an important role, such as in the assembly of complementary goods that

would otherwise be subject to holdout by coercive means (Kominers and Weyl, 2012b). Kominers

and Weyl (2012a) advocate allowing any potential purchaser of a large number of complementary

goods (such as land, spectrum, patents, etc.) to make an offer for the package of goods and having

the current owners decide by QV whether to accept the offer, thus avoiding holdout. They show

this procedure has many advantages in terms of ex-post efficiency, property right protection and

fairness over traditional “eminent domain” procedures.

The next most modest such applications would be to decisions about local public goods and

amenities, such as New York’s bike share (Posner, 2013). State, local or national referenda, as we

used to motivate the paper, are another promising, though much more ambitious, application. At

least as important but perhaps somewhat more plausible in the medium term is the use of QV to

formalize log-rolling in representative bodies. Rather than inefficient expenditures on pork-barrel

projects being used to buy votes close to linearly, representatives could directly use funds from their
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district to (at quadratic cost) purchase influence on national legislation. Weyl, in collaboration with

Hylland and Zeckhauser, plans to show that if representatives act to maximize the interests of those

in their district, as they should if elected by QV, then the resulting decisions in a QV-governed

representative body will be efficient as well.

Likely the most important application of such a representative property of QV would be to

governance of international organizations, such as the European Union, the United Nations, the

International Monetary Fund and the World Trade Organization. Such organizations have long

been plagued by an inability to make decisions that respect national sovereignty when particular

nation’s vital interests are at stake while simultaneously allowing efficient decisions on issues that

primarily impact great powers (Posner and Sykes, 2014). This has led to great disappointment

about the capacity for large-scale international cooperation (Mearsheimer, 1994–1995). QV could

offer a method for overcoming these stumbling blocks.

Of course prejudices in democratic culture and theory against the use of money will make such

implementations an uphill battle. However, we believe that in the long-term such concerns can be

overcome for several reasons:

1. Much of the resistance comes from linear vote buying, which we have shown is highly ineffi-

cient and dictatorial in effect. Once the public becomes acquainted with quadratic rules this

resistance may fade.

2. It is not clear that QV would actually increase the eventual influence of the wealthy relative to

the status quo, as presently wealth can buy significant influence close to linearly by advertising,

lobbying and, in some countries with weak institutions, vote-buying campaigns designed to

influence nearly indifferent swing voters. Such campaigns would have far less impact if votes

were more costly and the difference between a small vote in favor and against was smaller,

as it would be under QV. This process might more generally elevate the quality of public

discourse.

3. It seems little more than prejudice that wealth has such a powerful influence over the allocation

of private goods in most societies while not (at least formally) impacting the allocation of

public goods. Allowing wealth to formally influence public goods allocation would increase

the incentive to work, which could then be offset by increasing social insurance both directly

through the redistribution of QV proceeds and by raising progressive taxes (Kaplow, 2002).

Many philosophers have argued (Walzer, 1983; Satz, 2010; Sandel, 2012) that some private

goods should be walled off from the influence of wealth; perhaps that is right. But we see no

reason why the technological constraints of non-rivalry and non-excludability should imply

that all public goods fall into this category while nearly all private goods should be governed

by the market.

38



4. If the concern about the influence of wealth persists, versions of QV, using artificial currency

or coefficients in front of the costs of votes that are proportional to income, can easily be used

to remove concerns about undue influence of wealth while still improving efficiency. However,

some efficiency gains in the exchange between public and private goods would obviously be

lost.

In their collaboration, Hylland et al. plan to explore these arguments further, as well as the broader

relationship between QV and ideas in democratic theory.

9 Conclusion

Economics as a discipline has typically been skeptical of the ability of political and public deci-

sions to be made efficiently in the way many economists believe private decision can be. While

economists disagree about the degree of market failures and thus the extent to which inherently

inefficient collective action must be substituted for potentially inefficient private action, there is

broad consensus that limits exist on the efficiency of allocation of public goods in practice that

do not exist for private goods. This is reflected in formal results such as those of Arrow (1951),

Gibbard (1973) and Satterthwaite (1975) that contrast with the fundamental welfare theorems and

in informal attitudes in work such as Friedman (1962).

In this paper we have argued that this, if accurate regarding existing institutions, is only an arti-

fact of those institutions. Public goods pose no fundamentally different challenges to those posed by

private goods. In fact, the mechanism we propose, has a number of symmetries with market mech-

anisms for the allocation of private goods, such as the double auction. It is a Bayesian, separable,

budget balanced that is simple to explain rather than a VCG mechanism which is dominant strat-

egy, generally not budget balanced and opaque to most participants. It is perfectly efficient only

with large numbers of voters, but out-performs natural alternatives when there are a small number

of voters. Collusion is possible and potentially profitable, but requires a significant fraction of the

market to participate in order to be viable, generates unilateral incentives for deviation and will be

exploited by to the harm of the colluders by other market participants if discovered. Equilibrium is

summarized by a small-dimensional price-like object (the density of pivotality and the threshold for

extreme behavior) and it is the constancy of these across voters that induces efficiency. In fact the

symmetries between competitive markets and QV extend further when one considers issues, such

as incentives for information acquisition, that are beyond the scope of our analysis here.

This symmetry suggests both applied and theoretical directions for future research. On the

applied side, experimental work on QV would be highly complementary with the practical im-

plementations of QV we discussed in Section 8, helping to both shape practical application and

providing a more realistic setting for testing than might be available in lab experiments such as

those considered by Goeree and Zhang (2013). This parallels the way in which mechanisms for the
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allocation of private goods have co-evolved with laboratory and field testing of those mechanisms

(Roth, 2002; Milgrom, 2004). We are aware of some such experiments in progress at the Universidad

de los Andes. Another standard analytic approach in the allocation of private goods is to study

how well markets conform to the idealized conditions under which the welfare theorems apply; this

is much of the focus of the field of industrial organization. A natural analog is to consider empir-

ically how well practical institutions, such as lobbying, log-rolling and other informal institutions

discussed in Subsection 7.5 correspond to an efficient quadratic rule mapping costly expenditures

to influence on the decision and thus how efficient the allocation of public goods is in practice in

various settings. Also interesting would be work on projecting structurally how QV might change

outcomes, as we did in an extremely rough way for the case of Proposition 8; we are aware of work

in this direction related to the governance of chaebol in South Korea that is currently in progress.

On the theoretical side, a more formal statement of the sense in which the Arrow, Gibbard

and Satterthwaite results may be misleading about the distinctions between private and public

goods would be useful. In particular, building off of Hylland and Zeckhauser (1980), Weyl plans a

collaboration with Hylland and Zeckhauser to show that the welfare theorems apply to an economy

where public goods are allocated by QV and that if strategy-proofness is relaxed in precisely the

same way that makes the double auction to be “approximately strategy-proof” in large markets

the welfare theorems can be approximated using QV in finite populations. In the process, this

collaboration plans to develop variants on QV that are valid without external quasilinear numeraires,

which allow for direct reporting of types and approximate strategy-proofness in a sense similar to,

but stronger than, that in Azevedo and Budish (2013) and allow for multiple alternatives (rather

than a binary choice) as well as endogenous agenda setting. Exploration of robustness of QV beyond

the limited settings we were able to formally study here would also be valuable. Also valuable would

be analysis of the likely and socially desirable impact of implementation of formal rules based on QV

on informal ethical and social institutions. A large theoretical and cultural edifice has been built

to complement, and cushion the failings of, democracy. The institutions that could grow around a

more formally efficient paradigm would be of great interest.
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Appendix

A Existence

We establish Lemma 1 by means of two sublemma that establish intermediate results. A type-

symmetric Bayesian Nash equilibrium is a Bayesian Nash equilibrium in which each individual uses

the same strategy v : R → R. We refer to such an equilibrium simply by the equilibrium strategy

v.

Sublemma 1. Suppose that u, u ∈ R and that individuals can buy votes in increments of ι > 0

(permissible vote purchase are integers multiplied by ι), rather than in any continuous amount.

Then a monotone-increasing, type-symmetric Bayesian Nash equilibrium v exists for any N .

Proof. We simply verify conditions for Reny (2011)’s Theorem 4.5 which guarantees the existence

of a monotone type-symmetric pure strategy Bayesian Nash equilibrium. First, note that the

game is clearly symmetric in the sense of Reny’s definition: type spaces, action spaces, probability

distributions, etc. are all interchangeable across agents. Second, we show that values satisfy the

Single Crossing Condition (SCC) for games of incomplete information. By the reasoning in Section

1 of the paper, expected utility of an individual i with value ui is

uiProb (vi + V−i > 0)− v2i + γ (v−i) ,

where γ is some, irrelevant, smooth function of v−i ≡ (v1, v2, . . . , vi−1, vi+1, . . . , vn) and V−i ≡∑
j 6=i vj. Note that Prob (vi + V−i > 0) is a weakly increasing function and that ui enters this

expression nowhere except multiplying it. This immediately implies SCC. Third, note that no

individual will ever buy votes less than −
√
−u nor bigger than

√
u as such actions are strictly

dominated by buying 0 votes given that Prob (vi + V−i > 0) is bounded between 0 and 1. Thus,

without loss of generality, we may restrict attention to vote values defined by integers between⌊
−
√
−u
ι

⌋
and

⌈√
u
ι

⌉
multiplied by ι. This is a finite set of actions, as ι > 0, and thus we have a

finite action space and a bounded, single-dimensional, real type space. Thus, fourth, by Reny’s

Proposition 4.4 (and in particular Remark 2), because the action set is finite and SCC holds, each

individual’s set of monotone pure strategies is non-empty and join-closed. Fifth, Reny’s conditions

G.1-5 follow from his Proposition 3.1 because each player’s type space is a closed interval in R,

type-distributions are atomless and their action sets are a finite (and thus compact) subset of the

real line. Finally, condition G.6 is trivially satisfied as the action set is finite.

Sublemma 2. Suppose that u < 0 < u. Then a monotone-increasing, type-symmetric Bayesian

Nash equilibrium v exists for any N .
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Proof. We prove this result by showing existence in an alternative game with 2N players; in partic-

ular, for each player i in the original game we consider a game with two players i+ and i−. Every

player i+ has utility ui+ drawn from (0, u) iid according to the pdf f(u|u > 0) and every player i−

has utility ui− drawn from (u, 0) iid f(u|u < 0). Let q− = Prob(u < 0) > 0 by the full support

assumption and q+ = Prob(u > 0) > 0 by the same assumption; note q−+ q+ = 1 because f has no

atom at 0. The game is exactly like QV, except that, iid across i, player i+ “exists” with probability

q+ and player q− “exists” with probability q− = 1− q+.

More formally, each player i+ has type-conditional expected utility

q+

[
ui+Prob

(
vi+ + Ṽ−i > 0

)
− v2i+ + γ (v−i)

]
where Ṽ−i =

∑
j 6=i 1cjvj+ +

(
1− 1cj

)
vj− and {ci}ni=1 are iid Bernoulli random variables with success

probability q+. Note that any (type-symmetric-among-players-of-the-same-sign) monotone, pure

strategy equilibrium (SPSSMPSE) in this game (v−, v+) corresponds to a (type-symmetric) MPSE

(SMPSE) in the original game v where v is the function that has value v− when u < 0 and v+

when u > 0 and value 0 when u = 0 because the payoff of player i in the original game is just the

sum of the payoffs of players i− and i+. The converse is also true: a SMPSE in the original game

corresponds to one in this game, simply splitting players.

Now we show that this auxiliary game has a SPSSMPSE for any N . First, note that the

game is payoff secure. Each player i+ can ε-secure her payoff if at
(
vi+ ,v−i+

)
, where v−i+ is the

strategy of all other players, by playing
√

ε
2u

+ 1vi+ as long as vi+ ≤
√
u and we can restrict our

attention to strategies such that this is the case by the reasoning in the proof of Sublemma A and

mutatis mutandis for player i−. Second note that the game is reciprocally upper semi-continuous as

whenever the payoff of any player i+ jumps upward the payoffs of all players −i− jump downward

at the same point and mutatis mutants for players i− (their payoffs from the unique potential

discontinuity driven by the vote threshold always have opposite signs). Therefore by Proposition

3.2 of Reny (1999), this game is better-reply secure. Thus, following the strategy of Reny (2011)’s

proof of Corollary 5.2 in Appendix A.7, Remark 3.1 in Reny (1999) and Lemma A.13 of Reny (2011)

imply that it suffices for existence of a SPSSMPSE to show that, for any ε > 0, this game has an ε

equilibrium in type-symmetric-among-players-of-the-same-sign monotone pure strategies.

Fix ε. By Sublemma A and the above observation of equivalence between equilibria in the

original and modified game, if the bid space is discretized by any ι an equilibrium exists. Let

ι? ≡ min

{
ε

4
√

max {u,−u}
,

√
ε

8

}
.

We claim that the exact equilibrium for the ι? discretization of the game is an ε-equilibrium of the

continuous game; clearly this equilibrium is symmetric-among-players-of-the-same-sign, monotone
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and pure. To see that it constitutes an ε-equilibrium, consider any best response of any type, u > 0,

of a player i+ if she had access to all continuous votes to the ι?-discretized equilibrium play of all

other players and call this v?. If, rather than playing v?, i+ instead plays ι?
⌈
v?

ι?

⌉
she achieves utility

no worse than (
ι?
⌈
v?

ι?

⌉)2

− (v?)2 ≤
(
v?+ι

?)2 − (v?)2 = (ι?)2 + 2ι?v?

below the payoff if she plays v?. But ι?
⌈
v?

ι?

⌉
is a strategy available in the ι?-discretization of the

game and thus, at type u, i+ must earn a utility at least as high as if she played ι?
⌈
v?

ι?

⌉
in the

ι? discretization equilibrium. But note the any strategy greater than
√
u is strictly dominated in

the continuous game and thus (ι?)2 + 2ι?v? < (ι?)2 + 2ι?
√
u. Thus the ι? discretization equilibrium

strategy for type u of player i+ is a

(ι?)2 + 2ι?
√
u ≤ min

{
ε2

16u
+
ε

4
,

√
εu

4
+
ε

4

}
≤ ε

4
+

ε

2
4
3

< ε

best-reply for type u of player i+ of the continuous game. But this is true for any type u of player

i+ and thus the ι? discretization strategy is an ε-best reply for player i+. Applying the same logic

to players i− establishes that the claim and completes the proof.

In some ways constructing this auxiliary game is a bit artificial. But the existence of types with

both strictly positive and strictly negative utility is not only necessary to make this proof work, but

also necessary for equilibrium to exist in the continuous game, as the following example shows.

Example 5. Consider QV with values drawn from an atomless distribution on (0, u) where u > 0

and with continuous votes. Then note that no pure strategy equilibrium exists if ties are broken

in any way other than in favor of the alternative (which is the opposite of the way in the text we

assume ties are broken). To see this suppose otherwise. First imagine there is an equilibrium in

which all individuals buy 0 votes. Clearly this is not an equilibrium as every type would do better

to buy a sufficiently small number of votes to break the tie. Instead suppose there is an equilibrium

in which any type of any player chose to buy a positive number of votes with any probability. This

clearly is not an equilibrium either as this player could always buy fewer votes and still break the

tie; in fact, no player every has a best response in this game, other than possibly 0 and that only

when, with probability 1 all other players are buying positive votes. Thus no equilibrium exists.

Players with values of both signs are ensure reciprocal upper semi-continuity, or more intuitively,

that there is no problem with exact ties as there are players pulling (with at least some probability)

in both directions. The proof strategy we use in the proof of Sublemma 2 may be of some broader

interest; it shows that rather than having to show that another player must have a payoff jump

down whenever one player’s payoff jumps up all one need show is that whenever one type of player

i’s payoff jumps up there is some positive probability mass of player j 6= i types that have payoffs
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that jump down. This holds more broadly and we invoke this strategy in the proof of the main

theorem now without repeating the construction.

Proof of Lemma 1. This game is (effectively) better-reply secure by the same arguments as in the

proof of Sublemma 2 and thus it suffices to show that an equilibrium in symmetric, monotone, pure

strategies exists for every .

Fix ε > 0. Because the first moment of the distribution exists, there exists a u? ∈ R+ such that

n

ˆ ∞
u?

uf(u)du,−n
ˆ −u?
−∞

uf(u)du <
ε

10
. (A.1)

Consider the auxiliary game where with bounded values and distribution over these values f (u|u ∈ (−u?, u?)).
This game has a monotone, pure strategy, symmetric equilibrium by Subemma 2; call this equi-

librium v?. Consider the strategy, v̂ in the original game which plays v? in this auxiliary game

on (−u?, u?), v? (−u?) on (u, 0) \ (u?, 0) and v? (u?) on (0, u) \ (0, u?). Note that this strategy is

monotone. We claim that v̂ is an ε-equilibrium of the original game.

To see this, first note that the probability of any type in UE ≡ (u, u) \ (−u?, u?) being drawn by

any of n−1 individuals is strictly less than ε
5E[|u||u∈UE ]

by Bonferroni’s inequality and the construction

of inequality A.1. Fix a player i and call the event that any other player draws a type in this set

E. Then player i’s payoff expected utility is

Prob(E)πi,E (vi) + (1− Prob(E))πi,¬E (vi) + E [γ (v−i)] , (A.2)

where πi,E is the player’s expected payoff (less γ) in the state that E occurs and and πi,¬E is her

payoff if E does not occur. Call a strategy v u?-undominated if −
√
−u? ≤ v ≤

√
u. Note that

πi,E is bounded below by Prob (u < 0)E [u|u < 0] − u? and above by Prob (u > 0) (E [u|u > 0])

assuming the player uses a strategy that is u?-undominated. The reason is that the worst she can

do with a u?-undominated strategy is to pay u? and received her less desired outcome every time,

in which case her expected utility is E [u|u < 0]. The best she can ever do is to pay nothing and

always achieve her desired outcome, in which case her expected utility is Prob (u > 0) (E [u|u > 0]).

Thus the maximum gain in πi,E that player i could achieve by moving from a strategy that is

(u?, u?)-undominated is

Prob (u > 0) (E [u|u > 0])− (Prob (u < 0)E [u|u < 0]− u?) = E [|u|] + u? ≤ 2E [|u||u ∈ UE] ,

as E [|u||u ∈ UE] ≥ E [|u|] as UE only contains values that are sufficiently large in absolute value

and in particular bigger than u? so that E [|u||u ∈ UE] ≥ u?. Clearly v̂ is u?-undominated as it is

an equilibrium in a game where no player has a type greater in absolute magnitude than u?. Thus

the first term of equation A.2 can never be more than 2
5
ε greater than the value it achieves at v̂.
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Next, consider the second term of expression A.2. Note that this is precisely the payoff to player

i if all other players acted as if they were in the auxiliary game; conditional on no other individual

having a type in UE the distribution of types of other players is precisely f (u|u ∈ (−u?, u?)). The

only improvements, therefore, over v̂ possible in this term are on UE, given that v̂ agree with v? on

(−u?, u?) and, conditional on ¬E, v? is a best response for these types by construction.

Consider the maximum possible gain that could be achieved on UE compared to the strategy of

always playing 0 on these states. By the same logic as above, this gain is no greater than

Prob (UE)E [|u||u ∈ UE] <
2

5
ε

by construction, adding the two terms in inequality A.1. However, by the SCC, which we know ap-

plies to this game by the same logic as in the proof of Sublemma A and the fact that v? (−u?) , v? (u?)

are best responses14 for types −u?, u? respectively, v̂’s prescribed strategy on UE always is weakly

better than 0 for types in UE. Thus the maximum gain to the second term of expression A.2 that

can be achieved by a strategy other than v̂ is 2
5
ε. Thus the maximum gain that can be achieved by

moving to any other strategy to the full expression A.2 is 4
5
ε < ε and thus if all players play v̂ this

is an ε equilibrium, completing the proof.

This argument provides a generic strategy for extending Reny (2011)’s argument to the case

of an unbounded type space if the first moment of the types exist and utility takes a standard

multiplicative form. This approach may be of some use in structural auction and other mechanism

design problems where an unbounded type-space is more convenient than a bounded type-space.

B Characterization

C Efficiency

D Uniqueness

E Collusion

F Aggregate Uncertainty

Proof of Lemma 4. FILL IN

14Except, of course, in the case when (u, 0) \ (u?, 0) or (0, u) \ (0, u?) are empty, in which case the result holds
trivially for that side and thus can be ignored.
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Proof of Lemma 5. FILL IN.

Before beginning the specific examples, we derive some general facts about Equation 6.1. By

Bayes’s rule

E [g (γ?|u)u|γ?] =

ˆ
u

u
f (u|γ?) g (γ?)

f(u)
f (u|γ?) du = g (γ?)

ˆ
u

u
f 2 (u|γ?)
f(u)

du.

Thus any γ? solving
´
u
uf

2(u|γ?)
f(u)

du = 0 also solves E [g (γ?|u)u|γ?] = 0 and thus is an equilibrium

value of γ?.

Proof of Example 1. We assume, throughout and without loss of generality given the symmetry of

the normal distribution, that µ > 0. The marginal distribution of u is N (µ, σ2
1 + σ2

2) while the

γ-conditional distribution is N (γ, σ2
1) by standard properties of the normal distribution. We use

this to solve out for γ?:

ˆ
u

u
f 2 (u|γ?)
f(u)

du = 0 ⇐⇒
ˆ
u

ue

(u−µ)2

2(σ21+σ22)
− (u−γ?)2

σ21 = 0 ⇐⇒ (u− µ)2

2 (σ2
1 + σ2

2)
− (u− γ?)2

σ2
1

= au2 + b

for some constants a and b independent of u as this is the only quadratic form symmetric about

0, and symmetry about 0 is clearly necessary to yield a 0 expectation given the normal form of the

density.

(u− µ)2

2 (σ2
1 + σ2

2)
− (u− γ?)2

σ2
1

=
σ2
1 (u− µ)2 − 2 (σ2

1 + σ2
2) (u− γ?)2

2 (σ2
1 + σ2

2)σ2
1

= au2 + b− 2
σ2
1µ− 2 (σ2

1 + σ2
2) γ?

2 (σ2
1 + σ2

2)σ2
1

u.

Thus γ? solves

2
σ2
1µ− 2 (σ2

1 + σ2
2) γ?

2 (σ2
1 + σ2

2)σ2
1

= 0 ⇐⇒ γ? =
σ2
1

2 (σ2
1 + σ2

2)
µ.

In a large population, the first-best welfare is proportional to E [|γ|] = σ2

√
2
π
e
− µ2

2σ22 +µ
[
1− 2Φ

(
− µ
σ2

)]
.

Welfare loss relative to this occurs in a large population when γ ∈ (0, γ?) and, in these cases, is

proportional to |γ|. This loss equals

ˆ σ21

2(σ21+σ22)
µ

0

γe
− (γ−µ)2

2nσ22

σ2
√

2π
dγ
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Figure 3: EI for the joint normal example when σ1 →∞ (left) and σ1 = σ2 (right) as a function of µ
σ2

.

which is clearly monotonically increasing in
σ2
1

2(σ2
1+σ

2
2)
µ, which in turn monotonically increases in

σ2
1. We can further compute analytically using Mathematica that

ˆ σ21

2(σ21+σ22)
µ

0

γe
− (γ−µ)2

2σ2

σ2
√

2π
dγ = µ

[
Φ

(
µ

σ2

)
− Φ

(
µ (σ2

1 + 2σ2
2)

2σ2 (σ2
1 + σ2

2)

)]
−

σ2

e−µ
2(σ21+2σ22)

2

8σ22(σ21+σ22)
2

− e
− µ2

2σ22


√

2π
.

Thus EI is

x

[
Φ (x)− Φ

(
x(σ2

1+2σ2
2)

2(σ2
1+σ

2
2)

)]
− e

−
x2(σ21+2σ22)

2

8(σ21+σ22)
2

−e−
x2

2√
2π

2
(√

2
π
e−

x2

2 + x [1− 2Φ (−x)]
)

where x ≡ µ
σ2

. In the limit as σ1 →∞ this becomes

x
[
Φ (x)− Φ

(
x
2

)]
− e−

x2

8 −e−
x2

2√
2π

2
(√

2
π
e−

x2

2 + x [1− 2Φ (−x)]
)

and when σ1 = σ2

x
[
Φ (x)− Φ

(
3x
4

)]
− e−

9x2

32 −e−
x2

2√
2π

2
(√

2
π
e−

x2

2 + x [1− 2Φ (−x)]
) .

Figure 3 shows the EI expression in both of these cases. The results reported in the text can be

read directly off these plots.
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Proof of Example 2. The average value conditional on γ is γµ+ − (1 − γ)µ− so that γ0 = µ−
µ−+µ+

.

f(u|γ) = γ for u > 0 and f(u|γ) = 1− γ for u < 0. As a result, f(u) = E[γ] for u > 0 and 1−E[u]

for u < 0. Thus γ? solves

µ+
γ2

E[γ]
− µ−

(1− γ)2

1− E(γ)
= 0 =⇒ γ2k = (1− γ)2,

where k ≡ µ+(1−E[γ])
µ−E[γ] . Solving this quadratic equation yields

γ =
−1±

√
k

k − 1
.

The solution must be in the interval [0, 1] , which the negative solution never is and the positive

solution always is. Thus

γ? =

√
k − 1

k − 1
=

1√
k + 1

.

Efficiency results if and only if γ0 = γ?, that is if

1

1 +
√
k

=
µ−

µ− + µ+

⇐⇒
√
k =

µ+

µ−
⇐⇒

µ2
+

µ2
−

=
µ+ (1− E[γ])

µ−E[γ]
⇐⇒ µ+E[γ] = µ− (1− E[γ]) ,

hat is the election is an expected welfare tie ex-ante.

µ+

µ−
√
k

=

√
µ+E[γ]

µ− (1− E[γ])

so that µ+
µ−

> (<)
√
k ⇐⇒ µ+E[γ] > (<)µ− (1− E[γ]). Thus

γ0 < (>)γ? ⇐⇒ µ+E[γ] > (<)µ− (1− E[γ]) ,

the Bayesian Underdog Effect.

Under majority rules the threshold in γ for implementing the alternative with high probability

is 1/2. For each regime we compute EI as

1−
´ γt
0

[µ− (1− γ)− µ+γ]h(γ)dγ +
´ 1
γt

[µ+γ − µ− (1− γ)]h(γ)dγ´ γ0
0

[µ− (1− γ)− µ+γ]h(γ)dγ +
´ 1
γ0

[µ+γ − µ− (1− γ)]h(γ)dγ
,
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Figure 4: EI of QV compared to majority rule in the Krishna and Morgan (2012) example with γ distributed
uniform (left), β(15, 10) (center) and β(10, 1) (right). Both axes are on a log-scale, though labeled
linearly; the x-axis, measures r = µ+

µ−
.

where γt is the appropriate threshold value f γ. Using this method and explicit integration on

Mathematica, we computed the relative (to the first best) efficiency of QV and majority-rules

assuming g follows a Beta distribution. Note that, if one divides the numerator and denominator

by µ−,

´ γt
0

[µ− (1− γ)− µ+γ]h(γ)dγ +
´ 1
γt

[µ+γ − µ− (1− γ)]h(γ)dγ´ γ0
0

[µ− (1− γ)− µ+γ]h(γ)dγ +
´ 1
γ0

[µ+γ − µ− (1− γ)]h(γ)dγ
=

´ γt
0

[
(1− γ)− µ+

µ−
γ
]
h(γ)dγ +

´ 1

γt

[
µ+
µ−
γ − (1− γ)

]
h(γ)dγ

´ γ0
0

[
(1− γ)− µ+

µ−
γ
]
h(γ)dγ +

´ 1

γ0

[
µ+
µ−
γ − (1− γ)

]
h(γ)dγ

,

So EI depends only on the ratio r ≡ µ+
µ−

and on the parameters of the Beta distribution, not on

both µ+ and µ− independently

Figure 4 shows three examples that are representative of the more than 100 cases we experi-

mented with. Whenever α = β (the distribution of γ is symmetric), QV always dominates majority

rule as it does in the left panel shown, which is α = β = 1, the uniform distribution. Majority

obviously performs best when r, shown on the horizontal axis, is near to unity. When α is larger

than β, majority rule may out-perform QV near r = 1. This is shown in the center and right panels

where (α, β) = (15, 10) and (10, 1) respectively. The larger α is relative to β, the larger the region

over which voting outperforms QV. However, it is precisely in these cases where, if r is very small,

voting is most dramatically inefficient. Intuitively majority may outperform QV by blindly favoring

the majority which is almost always in favor of taking the action forα� β, while QV may be a bit

too conservative in favoring the action because of the Bayesian Underdog Effect. However this blind

favoritism towards the majority view can be highly destructive under majority rule, but not under

QV, when the minority has an intense preference. In fact, while voting becomes highly inefficient

when the minority preference becomes very intense, QVB actually becomes closer to the first best.

In all cases (shown here and that we have sampled) QV’s efficiency is above 90\% and usually it is

well above this.

56



0.05 0.10 0.15 0.20

0.02

0.05

0.10

0.20

0.50

1.00

Majority rule

QV

Figure 5: EI as a function of the standard deviation of the total vote share in favor of Proposition 8. The
vertical axis is on a logarithmic scale with linear labels.

Proof of Example 3. 4% of the population is certainly opposed to the alternative and willing to

pay on average $34k to oppose it. A fraction γ of the remaining 96% of the population opposes

supports the alternative. On average, independent of γ, the proponents and opponents in the 96%

are willing to pay $5k to get their way. The average value from implementing the alternative is

therefore $4800(2γ − 1)− 1360 and γ0 = .64.

Individuals in the 4% receive no signal about γ and thus f(u|γ) for this group is simply f(u).

For proponents of the alternative among the 96%, f(u|γ) is, by the logic of the previous proof,

.96f(u)γ and for opponents among the 96% .96f(u)(1− γ); f(u) is formed by taking expectations

over γ as in the previous proof. Using the same techniques derivations as there we can solve for γ?.

To calibrate, we assume that a Beta distribution of γ and that

.96
α

α + β
= .96E[γ] = .52.

Solving this out implies that α = 1.18β. The variance of γ is given by the standard formula for the

variance of a Beta distributed variable:

αβ

(α + β)2 (α + β + 1)
= 1.18β2

2.182β2(2.18β+1)
= .25

2.18β+1
.

Thus the standard deviation of the total fraction of the population supporting the alternative

is .96·.5√
2.18β+1

= .48√
2.18β+1

and thus if the standard deviation of the vote share for the alternative under

standard voting is σ then β =
.45(.23−σ2)

σ2 . Figure 5 shows the dominance of QV.
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G Voter Behavior

H Common Values

I Small Populations

To calculate approximate equilibria for small populations we used standard computational game

theory techniques for solving for equilibria.We began by initializing voting functions for each in-

dividual separately to vi0(u) = u
2
, so as to allow for the potential identification of asymmetric

equilibria.15 We then entered a loop to calculate equilibrium values of vi0 for each individual until

it “converged” in the sense that the “update error” εt defined in the loop below being less than

.005 or until 8N loop iterations had passed, in which case it was determined that the loop was

not converging. These and all other numbers below were obtained by trial-and-error to involve the

minimum computation time necessary for consistent and reliable results. The loop in period t ran

the following steps:

1. If t mod N=0 check to see if all individuals have converged or if t = 8N . If either has

occurred, terminate. If not, continue the loop.

2. For individual i = t mod N + 1 , draw 500, 000 random values for each of the other N −
1 individuals. Use each set of draws to calculate the sum of all other votes using vit−1.

Tabulate a histogram of these values on 5000-point, evenly-spaced grid from the lowest to

the highest observed value of the sum of other votes. To this pure empirical PDF, fit a 13th

degree polynomial approximation for smoothing that minimizes mean-squared error to the

pure empirical PDF.

3. Divide the support of u, or in the case of the normal distribution the mean of u plus and minus

5.8 standard deviations, into 5000 evenly-spaced grid points. For each grid point, numerically

solve for the number of votes maximizing expected utility using Newton’s Method on the

first-order condition vi(u) = p(−v)
2
u, with an approximation accurate two significant digits.

Approximate this function using a piecewise cubic spline interpolation (except in the case

when N = 2 and the distribution is uniform, in which case a 10th degree polynomial offers a

better approximation consistently).

4. Calculate the Euclidean norm between this function and vit−1. If this is less than .005 label

individual i as “converged”; if it is greater than .005 label individual i as “not converged”.

5. Store this as vit and for all j 6= t mod Nreplace set vjt ≡ vjt−1.

15Other initialization values were tried, including asymmetric ones, but very similar results were typically obtained
though often after more interactions.
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Figure 6: Approximate equilibrium voting function for N = 10 given values are drawn from a standard
Normal distribution.

6. Loop.

Before moving forward, the distribution of the sum of votes was inspected visually to ensure that

there was only one solution to the first-order conditions and that it corresponded to a maximum in

the final results. Then, using the output values of viT , where T was the final period of the loop, we

calculated Expected Inefficiency (EI) as follows

1. Draw 500,000 random values of each individual. Let uji but thejth utility values for individual

i. Let Uj ≡
∑N

i=1 u
j
i , Vj ≡

∑N
i=1 viT

(
uji
)

and let Mj ≡ 2
∑N

i=1 1uji≥0
−N .

2. EI of QV is

1

2
+

1

500, 000

500,000∑
j=1

Uj1Vj≥0 − Uj1Vj<0

2
(
Uj1Uj≥0 − Uj1Uj<0

)
and of majority rule16 is

1

2
+

1

500, 000

500,000∑
j=1

Uj

(
1Mj>0 +

1Mj=0

2

)
− Uj

(
1Mj<0 +

1Mj=0

2

)
2
(
Uj1Uj≥0 − Uj1Uj<0

) .

The distributions considered were the Normal distribution, with parameters µ and σ2, and the

Pearson Type I distribution with parameters u and u for the bounds of the support, α and β for the

shape and position within these bounds. We tried many values for these parameters and N ranging

from 2 to 10. In this appendix we only show results that directly support claims in the text.

16Note that ties are non-generic under QV and thus we simply assume they are broken in favor of the alternative,
but under majority rule they matter and thus are broken by a coin flip.
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Figure 7: Expected efficiency of QV and majority rule under a uniform value distribution for the various
values of N (horizontal axis) and different upper and lower bounds for the distribution (the
colors, correspond to the legend at right). The dark plots are QV, the light plots majority rule.

Figure 6 shows the converged voting rule when N = 10 and values are drawn from a standard

normal distribution. The shape is close to linear but has a gentle version of the S-shape that

would be predicted by the characterization in Subsection 4.2: individuals with large values in either

direction buy fewer votes per unit of value because they are less likely to be pivotal with a marginal

vote.

Figure 7 shows our first set of results, for the uniform distribution varying over different ranges

of the bounds and different values of N . Expected efficiency, rather than expected inefficiency, is

graphed. For N below 4 and/or an upper bound on the distribution less than 1.33 QV always

outperforms majority rule. However as the mean and the median shift up and N becomes large,

majority rule outperforms QV, though never by a large amount.

Figure 8 shows results for Normal distributions with varying µ and σ2 (as well as N) in the left

panel and varying µ holding σ2 fixed at 1 in the right panel. In the left panel, all cases with µ = 0

have QV dominating. Even when the µ = .2 QV dominates except in the case when N = 10 and

σ = .5; for larger σ or smaller N , QV again dominates. The right panel varies the mean over a wider

range and exhibits a wider range of behaviors as a consequence. For N = 10, where the gap between

QV and majority rule is largest, QV’s performance is non-monotone in the mean, falling and then

rising, while majority rule monotonically improves as the mean grows larger, leading majority rule

to outperform QV by 4-5 percentage points in some cases.

Finally, Figure 9 highlights our most striking results, which occur under various version of the

Pearson Type I distribution. In the left panel is pictured a case where the support of the distribution
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Figure 8: Expected efficiency of QV and majority rule under a Normal value distribution for the various
values of N (horizontal axis) and means and variances (the colors, correspond to the legend at
right). The dark plots are QV, the light plots majority rule.

Figure 9: Expected efficiency of QV and majority rule under a Pearson Type I. The left panel shows cases
with, a negative median but positive mean, where QV consistently outperforms majority rule.
These have u = −1 and u = 1.5, with the values of α and β varying by colors as indicated at
the legend at right. The right panel shows cases, with a positive mean and median, where QV
sometimes underperforms majority rule. There u = −u = −1.
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is right-skewed but β > α so that the mean of the distribution is positive while its median is negative.

The different colors represent different values of α and β, which increase in tandem across curves

thereby holding the mean approximately constant while reducing the variance. In all cases in this

class, QV dramatically outperforms majority rule, achieving near-perfect efficiency, though this is

most extreme when the variance is smallest. In the right panel is pictured a case when the support

of the distribution is symmetric: [−1, 1]. β is fixed at 2 and α > 2 varies. As it increases (moving

towards brighter/lighter colors, the mean increases and the variance declines, making the setting less

favorable to QV. When α is only 2.25 QV still significantly dominates majority rule for all values of

N . However as α rises, especially for large N , QV’s performs declines (though in a concave fashion;

if α increase further beyond this point it begins to improve again) while majority rule improves.

Once α = 3 QV only outperforms majority rule for small even numbers of N where tie breaking is

important.
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