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Abstract

This paper investigates several empirical issues regarding quasi-maximum likelihood
estimation of Smooth Transition Autoregressive (STAR) models with GARCH errors
(STAR-GARCH) and STAR models with Smooth Transition GARCH errors (STAR-
STGARCH). Empirical evidence is provided to show that different algorithms produce
substantially different estimates for the same model. Consequently, the interpretation
of the model can differ according to the choice of algorithm. Convergence, the choice
of different algorithms for maximising the likelihood function, and the sensitivity of the
estimates to outliers and extreme observations, are examined using daily data for S&P
500, Hang Seng and Nikkei 225 for the period January 1986 to April 2000.
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1 Introduction

Non-linear time series models, especially regime switching models, have recently become
popular for analysing many economic and financial time series. However, recent interest in time
series has concentrated not only on the conditional mean, but also on the conditional variance.
Such widespread interest and application have been due mainly to the success of Engle’s (1982)
Autoregressive Conditional Heteroscedasiticity (ARCH), and Bollerslev’s (1986) Generalised
Autoregressive Conditional Heteroscedasiticity (GARCH), models in capturing time varying
volatility. Naturally, combining non-linear models with GARCH errors would provide a flexible
class of model to describe the non-linear dynamics in both the conditional mean and the
conditional variance. T'wo of the most popular specifications in the class of non-linear models is
the (stationary) Smooth Transition Autoregressive - GARCH (STAR-GARCH) and the STAR
- Smooth Transition GARCH (STAR-STGARCH) models.

Although STAR-GARCH and STAR-STGARCH are popular and have been used widely in
forecasting (see Franses, Neele and van Dijk (1998), Lundbergh and Terdsvirta (1999, 2000)),
the statistical and structural properties of these models have not yet been fully established.
Furthermore, the existing diagnostic tests for these models assume consistency and asymptotic
normality, but these assumed statistical properties have not been examined in detail because
the regularity conditions were unknown until recently. Moreover, information criteria such
as the Akaike Information Criterion (AIC) and Schwarz Bayesian Criterion (SBC) may not
be useful for gauging the adequacy of these models, especially with regard to the conditional
mean, as the properties of the log-likelihood functions are also presently unknown.

Recently, Chan and McAleer (2002) established some structural and statistical properties
for the STAR-GARCH model as extensions of the results in Ling and McAleer (2002c) for
the GARCH(p, ¢) model. These structural and statistical properties are novel for the GARCH
component of STAR-GARCH. However, few structural properties are known, and the statistical
properties are as yet unknown, for the STAR component.

Furthermore, estimation of non-linear models such as STAR and STAR-GARCH is not en-
tirely straightforward. Lundbergh and Terasvirta (1999) and van Dijk, Terasvirta and Franses
(2002) observed that the convergence of the Quasi-Maximum Likelihood Estimator (QMLE) for
STAR models is sensitive to initial values. A related issue, which has not yet been investigated
fully in this literature, is the performance of different optimisation algorithms in maximising
the likelihood functions. Due to the highly non-linear nature of the likelihood function for
STAR-type models, it is likely to have many different parameter sets that are observationally
equivalent. Therefore, different algorithms are likely to produce substantially different esti-
mates, with no known solution. This reflects the importance of obtaining the structural and
statistical properties of STAR-type models.

This paper provides empirical evidence to show that different algorithms produce substan-

tially different estimates for the same model. Consequently, the interpretation of the model



can differ according to the choice of algorithm. Moreover, forecast performances may also be
affected. This is contrary to the common belief that different algorithms will produce similar
estimates (Lundbergh and Terésvirta (2000)). This paper also shows that the convergence of
the QMLE for the STAR-STGARCH model depends on the choice of transition functions.

The second part of the paper examines the effects of extreme observations and outliers on
the QMLE for the STAR-GARCH and STAR-STGARCH models. This is of interest because
STAR-type models were not designed specifically to accommodate extreme observations and
outliers. However, these models are often used to analyse financial time series, which frequently
exhibit excessive kurtosis. Therefore, it is important to investigate the robustness of the QMLE
for STAR-type models in the presence of extreme observations and outliers in order to determine
how best to accommodate such data.

This paper also provides empirical evidence to show that the effects of extreme observations
and outliers on the QMLE for the STAR component in a STAR-GARCH model depend on
the choice of transition functions. The effects of such data on the QMLE for the GARCH
component are similar to those for ARMA-GARCH, as reported in Verhoeven and McAleer
(1999). This result has not previously been investigated. Moreover, empirical evidence also
suggests that the QMLE for STAR-STGARCH models is sensitive to the presence of extreme
observations and outliers.

The plan of the paper is as follows. Section 2 gives a brief outline of recent theoretical
developments for the GARCH, STAR, STAR-GARCH and STAR-STGARCH models, as an
indication of a lack of knowledge of the structural and statistical properties of STAR - type
models. Section 3 discusses the data. Section 4 presents a detailed discussion of various
optimisation algorithms and their effects on the QMLE for STAR-GARCH models. Section 5
investigates the effects of extreme observations and outliers on the estimates for both STAR-
GARCH and STAR-STGARCH models. Section 6 gives some concluding remarks.

2 Models

This section provides a brief discussion of recent theoretical developments in modelling
GARCH, STAR, STAR-GARCH and STAR-STGARCH. Model definitions, characterisitics and
statistical properties will be discussed, with an emphasis on the importance of deriving the

structural and statistical properties of the models, where possible.

2.1 ARCH/GARCH
Consider the ARMA(r, s) model:
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in which &, is said to follow an Autoregressive Conditional Heteroscedasticity, ARCH(p), process
if
Et =TtV ht (22)

where
n ~ 4.0.d.(0, 1) (2.3)
p
hi =w+ Z g}, (2.4)
i=1

and w >0, o; > 0 for all 7 =1, .., p, are sufficient conditions for h; > 0 for all £ =1,..,T. This
model was proposed by Engle (1982) to relax the traditional assumption of a constant one-
period forecast variance. Engle showed that this model has a constant unconditional variance
but a time-varying conditional variance.

Engle (1982) showed that &; is second-order stationary (that is, the second moment of &; is

finite) if and only if all the roots of the characteristic polynomial

(1- Xp:aizi) =0
i=1

lie outside the unit circle. It was assumed that the process e; starts infinitely far in the
past, with finite 2mth moment. This assumption is clearly not possible to check in practice.
However, Engle (1982) also derived the regularity condition for the existence of the moments
for ARCH(1), specifically the 2mth moment exists if and only if

m
o [Jei-1) <1
7j=1

Milhgj (1985) avoided Engle’s assumption and showed that &, is second-order stationary if
and only if

p
Y i<l (2.5)
=1

He also derived the regularity condition for the existence of moments without the restrictive
assumption. Milhgj’s result is identical to Engle’s in the case of ARCH(1) with normal 7, but
cannot be given an explicit form in the case of ARCH(p) and m > 2.

It is interesting to note that equation (2.5) is not a necessary condition for the strict station-
arity of the ARCH(p) model. The necessary and sufficient condition for the strict stationarity
of ARCH(p) was derived by Bougerol and Picard (1992).

Engle (1982) suggested two possible methods for estimating the parameters in equations
(2.1) and (2.4) namely, the Least Squares Estimator (LSE) and the Maximum Likelihood
Estimator (MLE). The LSE is given as

T T
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where & = (wo, a1, ..., @) and &, = (1, €2, s €7 py1)'- Weiss (1986) and Pantula (1989) showed

that 4 is consistent and asymptotic normal if
E() < o0

which is a rather strong condition.
The conditional log-likelihood function of (2.1) given observations &;, ¢ = 1,..,7T, can be

written as:
2

T
-1

t=1
so that the MLE is given as

0 = argmax;.ol(9)

assuming that § € ©, a compact subset of RF*'. Engle (1982) showed that the information
matrix of this function is block-diagonal, which implies the parameters in the conditional mean
and the conditional variance can be estimated separately without loss of asymptotic efficiency.
The estimated errors given by the estimated conditional mean equation can be used to estimate
the equation of the conditional variance.

Moreover, the MLE is referred to as the Quasi-MLE (QMLE) when 7 is not normal. Weiss
(1986) and Pantula (1989) showed that the QMLE is consistent and asymptotic normal if

E(g}) < o0.

This result was extended by Ling and McAleer (2002c), who showed that the QMLE is consistent
and asymptotic normal if
E(e}) < co.

The Berndt, Hall, Hall, Hausman (1974) algorithm (BHHH) is often used to determine ¢ but,
as suggested by Mak, Wong and Li (1997), this algorithm has convergence problems if the
initial values are not sufficiently close to the final solutions. In such cases, a Newton-Raphson
procedure should be used.

Bollerslev (1986) extended ARCH by including the lags of the conditional variance to yield
the GARCH(p, ¢) model, namely

p q
hi = w+ Z e+ Z Bihi_; (2.8)
i=1 i=1

where w > 0, a; > 0 for all s = 1,..,p, B; > 0 for all + = 1,..,¢, are sufficient conditions for
hy >0forallt=1,.,T. If 8; =0, for all 7, then GARCH(p, ¢) reduces to an ARCH(p) model.
All the mathematical and statistical properties of GARCH hold for ARCH, in general, except

for one case which will be mentioned below.



The necessary and sufficient condition for the second-order stationarity of (2.8) was estab-
lished by Bollerslev (1986) as

p q
Z o; + Z Bz < 1.
=1 =1

Nelson (1990) derived the necessary and sufficient log-moment condition for strict stationarity
and ergodicity for GARCH(1,1) as

E(In(ain; + £1)) < 0.

This condition allows a; + (1 to exceed 1, in which case the variance is not finite (i.e. E(e?) =
00). Note that this condition holds for GARCH(1,1) but not for ARCH(1), that is, E(In(ay7n?)) <
0 does not ensure strict stationarity and ergodicity for ARCH(1), because the condition is de-
rived under the assumption that 5; # 0. This condition is not easy to apply in practice as it is
the mean of an unknown random variable, and also involves unknown parameters. Moreover,
in the presence of extreme observations and outliers, a;n? + 3; could become negative, in which
case the condition would not be defined.

For GARCH(p, ¢), the necessary and sufficient condition for strict stationarity and ergod-
icity was established by Bougeral and Picard (1992) (see Nelson (1990) for results pertaining
to the GARCH(1,1) model). The necessary and sufficient condition for the existence of the
2mth moment of the GARCH(1,1) model was provided by Bollerslev (1986), who also provided
the necessary and sufficient condition for the fourth-order moments of the GARCH(1,2) and
GARCH(2,1) models. He and Terdsvirta (1999a) obtained the moment conditions of a fam-
ily of GARCH(1,1) models using a similar method as in Bollerslev (1986). Ling and McAleer
(2002b) derived the sufficient condition for the existence of the stationary solution of this family
of GARCH(1,1) models, showed that He and Terasvirta’s (1999a) condition was necessary but
not sufficient, and provided the sufficient condition.

He and Terdsvirta (1999b) examined the fourth moment structure of the GARCH(p,q)
process. Ling and McAleer (2002a) showed that their condition was necessary but not sufficient
for the existence of the fourth moment, and provided the sufficient condition. In the case of

GARCH(1,1), the fourth moment condition under normality is given by
(1 + B1)* +2a2 < 1. (2.9)

Ling (1999) obtained a sufficient condition for the existence of the 2mth moment for the
GARCH(p, q¢) model, based on Theorem 2.1 in Ling and Li (1997) and Theorem 2 in Tweedie
(1988). The sufficient condition is given as

plE(AF™)] <1



where p(A) = max{eigenvalues of a matrix A}, and A, is given by:

( oy opn; Bin? Bz \
_ Tp—yx@p-1) Op-1x1 Op-1)xq

A, =
! (e%] Qp 51 Bq )

O(q—l)xp I(q—1)><(q—1) O(q—1)><1

Unlike Bollerslev (1986) and He and Terésvirta (1999a,b), Ling’s method does not assume
that the GARCH(p, ¢) process starts infinitely far in the past with finite 2mth moment, and
has a far simpler form than Milhgj’s (1985) result. This condition is also necessary for the
existence of the 2mth moment, as demonstrated by Ling and McAleer (2002a). Thus, the
moment structure of the GARCH(p, ¢) model has now been fully established. As an extension
of the GARCH(p, ¢) process, Ling and McAleer (2002a) also derived the necessary and sufficient
conditions for the 2mth moment of the asymmetric power GARCH(p, ¢) model of Ding et al.
(1993).

The parameters in a GARCH(p, ¢) model are often estimated by MLE, or by QMLE when
the normality of 7; is not assumed. The log-likelihood function of GARCH(p,q) is identical to
that of (2.7), except for the definition of h;. Naturally, h; in this case follows the definition of
(2.8) instead of (2.4). For GARCH(1,1), Lee and Hansen (1994) and Lumsdaine (1996) showed
that the QMLE is consistent and asymptotic normal if

Elln(cun; + 61)] < o0, B # 0.

Ling and Li (1997) showed that the local QMLE for GARCH(p, q) is consistent and asymptotic
normal if
E(g}) < c0.

For the global QMLE, Ling and McAleer (2002c) showed that
E(e}) < 00

is sufficient for consistency, and
E(ef) < 00

is sufficient for asymptotic normality.

The QMLE is often more efficient than LSE for ARMA-GARCH(p, ¢) models. This result
was first observed by Engle (1982) through a simple fixed design regression model with an
ARCH(1) process. Pantula (1989) also showed that the MLE is more efficient than LSE for
an AR model with ARCH(1) errors. The QMLE is efficient only if 7; is normal. When 7,
is not normal, adaptive estimation is useful to obtain efficient estimators. Some useful refer-
ences include Bickel (1982), Robinson (1988), Stoker (1991) and Ling and McAleer (2002d).



This estimation method is not yet available in most econometric software packages due to its
computational complexity, which explains in part the popularity of MLE.

It is important to note that the choice of lag length in the conditional variance equation has
not been well investigated in the literature. Engle (1982) proposed an LM test for ARCH effects,
and used the test to decide the appropriate lag length. Bollerslev (1986) used a similar test
to decide the lag length of GARCH in an empirical example, but admitted that his choice was
arbitrary. Some researchers choose the lag length for their models based on model adequacy,
using criteria such as the AIC and SBC, while others choose their models based on in-sample
forecast performance.

A distinct characteristic of GARCH-type models is their ability to capture volatility clus-
tering. If the shock from the previous period is high (low), the large (small) value of €7 ; will
then influence h;. The GARCH model can also be fitted to leptokurtic financial data and can
be adapted for conditional Student t-distributed (GARCH-t) errors. The GARCH model also
offers computational advantages over extended versions thereof. For example, the log-likelihood
function of GARCH is relatively simple. However, there are several deficiencies in the linear
GARCH model, as observed by Nelson (1991). First, it is an empirical regularity that the
impact of a large negative shock is greater than a large positive shock, but a small positive
shock has a larger impact than a small negative shock. This type of asymmetric behaviour
cannot be captured by the symmetric GARCH model as the conditional variance is a function
only of past squared errors and past conditional variances.

Moreover, it is important to impose a restriction on the parameters in GARCH models to
ensure the positivity of the conditional variances. These restrictions can create difficulties in

estimating GARCH, especially when the data exhibit extreme observations and outliers.

2.2 STAR, STAR-GARCH and STAR-STGARCH

Non-linear time series models have become very popular in recent years. As regime switching
models are very popular in the class of non-linear models, it is of interest to investigate regime
switching models with GARCH errors. Regime switching models will be discussed here, with
an emphasis on Smooth Transition Autoregressive (STAR) models.

Tong (1978) and Tong and Lim (1980) proposed the Threshold Autoregressive (TAR) model.
The TAR model assumes that the regimes switch from one to another, as determined by the

threshold variables, s, relative to the threshold value, c. Consider the two regime case:

Y = (11 + Z b1:Y1—ir1)(1 — (st — ¢)) + (pa1 + Z Goiyr—ir1)L (st — ) + &4, (2.10)
i=2

i=2
where

0, s4<c
1, St 2 C.

- ={



Model (2.10) can also be written as:

Yt =

{d’n + Z::Q Gr1ilYi—iv1 T &, St <c
21 + ZLQ G2iYt—i+1 + €, St > cC.

The threshold variable, s;, is usually (but not always) defined as a linear combination of the

lagged values of y;, that is,

k
St = E T Yt—i
i=1

which is often referred to as a Self Exciting TAR (SETAR). van Dijk, Terésvirta and Frances
(2002) relaxed this definition of threshold variables to include non-linear combinations of the
lags of y; and other exogenous variables.

Equation (2.10) is similar to a standard model of structural change, apart from the definition
of threshold variable and threshold value, which assumes that the regimes switch from one to
another instantly. To allow for a smooth transition, TeraSvirta (1994) proposed the Smooth

Transition Autoregressive (STAR) model:
yr = (ou + Z GriY—i+1) (1 — G557, ¢)) + (¢ + Z boiy—i+1)G (5657, ¢) + €, (2.11)
i=2 i=2

in which G(s¢;7, ¢) is the transition function, assumed to be twice differentiable, ranging from
0 to 1, and v is the rate of transition.

Although two regimes will suffice in many empirical cases, it is straightforward to extend
(2.10) to more than two regimes. Denoting ¢; = (¢;1, ...d;)" and z; = (y4—1, ---, Yt—r)’, €quation
(2.10) can be rewritten as

ye = (¢hze) (1 = I(s: = ¢)) + (doze) I (51 — ¢) + &4

An m-regime TAR (or Multiple Regime TAR, MRTAR) model can be written as
v =Y bl (se—ci1) — (s — ) + e (2.12)
i=1

where ¢; < ¢y < .... < ¢, and

0, s4<t or 1=m

I(s; — i) = {

1, s4 21 or 1=0.

For any s; € [¢; 1,¢), vy = ¢iay + ¢ for all i = 1...m. Therefore, the regime is determined
by the threshold variable, s;, relative to the threshold value, ¢;. In order to incorporate the
idea of smooth transition in equation (2.10), replace the function I(s; — ¢;) in (2.12) with the

transition function G(sy; 7, ¢;) for all 7, yielding
m
Yt = Z Gixt(Gii (56571, cim1) — Gi(s6; i, €i)) + € (2.13)
i=1
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where G;(s4; 74, ¢;) is assumed to be a twice differentiable function ranging from 0 to 1, Gy = 1
and G,,, = 0. Equation (2.13) is known as the Multiple Regime Smooth Transition Autoregres-
sive (MRSTAR) model.

An extension of the basic model permits the parameter vector ¢; to change over time, which
is known as the Time Varying STAR (TV-STAR) model (van Dijk, Lundbergh and Terésvirta
(2000)).

There are many choices of transition function, with the most popular being the first-order

logistic function:
1

T 1+ exp(—(s: — 0))

G(s1;7,¢)

with the following properties:
lim G(s4;v,¢) =0
St—>—00

lim G(st7,¢) =1

St—> 00
1
G(s30,0) = 5

lim G(s;7,¢) =0

Y——00

lim G(s¢;7,¢) — 1.

Y—00

A STAR model with a logistic transition function is the Logistic STAR (LSTAR). Although
the logistic function is used frequently, other choices include the Exponential STAR (ESTAR)
model:

G(si;1,0) =1—exp(—y(se —0)%), 7>0
and the n'-order LSTAR:

n

G(st;7v,¢) = (1 4+ exp(—y H(St —-a))7 v>0, ¢<c¢ Vi<jy.
i=1

In order to use this model effectively, it is important to choose the appropriate transition
function and threshold variable. There exist many LM-type tests to determine the appropriate
choice of G(s4;7,c¢) and s; (a comprehensive survey of the modelling strategy under the STAR
framework is given in van Dijk, Terdsvirta and Franses (2000)).

Generally, the modelling cycle starts with a test of parameter constancy, such as testing
whether STAR is more appropriate than a simple linear AR model. Assuming that LSTAR

with two regimes is the preferred model, a test of parameter constancy is given by

Hao: 11 = ¢21, P12 = Poo.

10



Parameters within the transition function, v and ¢, are not involved in the null hypothesis,

yielding unidentified nuisance parameters. Consider the null hypothesis of linearity as a test of
Hpy:v=0
in which .
G(s;0,c) = 3
so that the STAR model can be written as

_ o1 ‘; o21 n b12 ;‘ $a22 Yoo1 + &1

Yt

which is linear, regardless of the truth of H4,. Thus, it is important to include parameters
in the transition function for purposes of testing. This problem can be avoided by expressing
the transition function by its Taylor expansion around v = 0, which is a simple but important
technique for hypothesis testing with STAR-~type models.

When the transition function and the threshold variable have been determined, the param-
eters in STAR can be estimated by Non-linear Least Square (NLS). If

Yt = F($t§¢) + &t

the NLS estimator is given by

T T
¢ = argming Z(yt — F(x4;9))* = argminyg Zs?
t=1 t=1
If ¢; is normal, NLS is equivalent to MLE, otherwise NLS can be interpreted as QMLE.
Wooldridge (1994) and Pdtscher and Prucha (1997) demonstrated that the NLS is consistent
and asymptotic normal under suitable regularity conditions.

STAR models, especially LSTAR models, have been successfully applied in a number of
areas. Terdsvirta and Anderson (1992) and Terdsvirta, Tjgstheim and Granger (1994) char-
acterised the different dynamics of industrial production indexes for various OECD countries
during expansions and recessions using LSTAR models. Moreover, Lundbergh and Terasvirta
(2000) examined the forecast performances of the LSTAR model for unemployment rates in
Denmark and Australia, arguing that many unemployment rates exhibit asymmetries in that
the rate of increase is often higher than the rate of decrease. Their results showed that the
STAR model is superior to its AR counterpart.

A STAR-GARCH model allows ¢; in equation (2.13) to follow a GARCH process, as defined
in (2.8). Lundbergh and Terdsvirta (1999) give a comprehensive exposition of this model,
but do not provide any statistical properties or regularity conditions for the existence of its
moments or for stationarity. Chan and McAleer (2002) recently established the structural and
asymptotic properties of the STAR-GARCH model.

11



A further extension of the STAR-GARCH model is to incorporate the concept of regime
switching in the GARCH component, resulting in the STAR-Smooth Transition GARCH (STAR-
STGARCH) model. Let 6; = (6io, ..., Oiprq))’s Tt = (1,671,679, €7 _ps Puct,y oy u—g)' and H;
be a at least twice differentiable for all 7« > 0, with Hy = 1 and H,, = 0. Denote a new threshold
variable as

= Z GiEt
i=1

with threshold values d; € R for all i. Then the STAR-STGARCH model is the same as
equation (2.13), with
et = eV

where
m

hy = Z(egrt)(Hi—l(Tt; Cim1,dic1) — Hi(14: &, d;)) (2.14)

i=1
The choice of H; is similar to that of GG;, but is not restricted to equal G; in the general case.

STAR-STGARCH is novel and has a number of distinct characteristics. First, it is non-
linear, not only in the conditional mean, but also in the conditional variance. The GARCH
component is useful for capturing volatility clustering, while the threshold variables and thresh-
old values are useful if the data exhibit regime switching behaviour for varying v, and ;. STAR-
STGARCH also exhibits asymmetries as it can be represented by setting the threshold value

to 0. Consider a simple two-regime case, with r, = ¢;, d = 0 and

_ 1
1 +exp(—=£(g, — 0))

so that equation (2.14) can be rewritten as

H(St; 6: 0)

he = (0100)(1 — H(e; €, 0)) + (6514) H (e4; €, 0)).
Thus, in the extreme cases where ¢, -+ —o0 and ¢; — 00,

hy = (61T)
he = (051)

respectively. Therefore, the first regime is associated with ¢; < 0 and the second regime with
gt > 0.

Although this model is potentially useful for data that exhibit non-linearity and threshold
behaviour, there are as yet no theoretical results regarding the moment structure or statistical
properties of the MLE. Furthermore, as asymmetric behaviour is permitted, the information
matrix for this model is no longer block diagonal and the two stage estimation method is no
longer valid. It is also important to note that, as observed in van Dijk, Terdsvirta and Franses
(2000), the MLE for both STAR-GARCH and STAR-STGARCH is extremely sensitive to initial

12



values. The choice of algorithm in approximating the optimal solution is also crucial in terms
of convergence. These problems may be resolved by understanding the statistical properties
and moment structure of the model.

There are several LM-type specification tests to analyse the most appropriate model. Lund-
bergh and Terdsvirta (1999) and van Dijk, Terdsvirta and Frances (2000) provide a list of such
tests. However, these tests are based on the assumption that the model is stationary and er-
godic, a condition which has not yet been established. Therefore, it is important to evaluate
empirical examples using STAR-GARCH and STAR-STGARCH with regard to their reliability
and stability.

Evaluating forecast performance is also problematic. As noted by van Dijk, Terdsvirta
and Franses (2000), even though non-linear time series often capture certain characteristics of
the data better than do linear models, the forecast performance of the former is not always
superior, and is sometimes even worse. Clements and Hendry (1998) and Diebold and Nason

(1990) discuss various reasons for this phenomenon.

3 Data

Following Lundbergh and Terdsvirta (1999), all regimes for each model estimated below are
assumed to follow an AR(1) process, ¢, is assumed to be GARCH(1,1), s; is set equal to y;_1,
and 7r; is set equal to &; 1.

All models are estimated using three different stock indices, namely Standard and Poor’s
500 Composite Index (S&P), Hang Seng Index and Nikkei 225 Index. The data were obtained
through the DataStream database service and the sample is from 1/1/1986 to 11/4/2000, giving
a total of 3725 data points for each index.

S&P 500 is possibly the most widely used financial data series for empirical purposes.
The S&P data used below can be related closely to the Monte Carlo experiments in Chan
and McAleer (2002), which concentrate on the conditional variance and not on the conditional
mean. As the S&P series do not contain a significant conditional mean component, the empirical
results reported below display a similar pattern to the experimental results in Chan and McAleer
(2002).

Of primary concern are stock returns, R;, which are calculated as

Y, - Y,
R =———"=
! Y

where Y; denotes the index at time ¢.
The returns for S&P 500, Hang Seng and Nikkei 225 are given in Figures 1-3:
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Figure 1: S&P Returns
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Figure 2: Hang Seng Returns
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Figure 3: Nikkei 225 Returns

S&P appears to be less volatile than either Nikkei 225 or Hang Seng, especially during the early
to late 1990’s (observations 1500 to 3000) before the Asian economic and financial crises. S&P
also has fewer extreme observations and outliers than Nikkei and Hang Seng.

Nikkei seems to have more positive shocks than S&P and Hang Seng. Although Nikkei
seems more volatile, the volatility is relatively low compared with Hang Seng, which seems to
be the most volatile. There are some obvious outliers and extreme observations for all three
indices. Hang Seng also appears to have the highest number of outliers.

An obvious similarity among the three indices is the enormous decrease in returns at obser-
vation 474, which corresponds with the share market crash in October 1987. This is also the
most significant outlier in the three indices. The second largest decrease in returns is observa-
tion 894 for Hang Seng, which corresponds with the Tianenman Square incident in Beijing on
4 June 1989.

4 Optimisation Algorithms

Estimation for STAR-type models is problematic as their novelty means that existing econo-
metric software packages do not yet have appropriate algorithms programmed. STAR can be
estimated by Non-linear Least Squares (NLS) (see van Dijk, Terdsvirta and Franses (2000)).
STAR-GARCH can be estimated by a two-stage procedure, which involves estimating STAR by
NLS, then using the residuals to estimate GARCH by QMLE (see Chan and McAleer (2002)).
However, this procedure is not appropriate for STAR-STGARCH, for which the information

matrix is not block diagonal, so the estimates have to be obtained simultaneously. It is worth
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noting that NLS is equivalent to MLE under the assumption of normality. If this assumption
does not hold, then NLS is equivalent to QMLE.

In practice, estimation of STAR and STAR-GARCH models can be problematic. An at-
tempt was made in EViews to estimate LSTAR by NLS with s; = Y;_; for S&P 500, Hang
Seng and Nikkei, but was unsuccessful because of computational problems in calculating the
near singular Hessian matrix.

A GAUSS version 3 program was used to estimate various STAR-type models by optimis-
ing the respective likelihood functions. Several attempts were made to estimate LSTAR and
ESTAR for S&P, Hang Seng and Nikkei, for which the estimates of the variance did not con-
verge. This suggests three possibilities: (i) the variance is not constant, so that STAR-GARCH
should be used; (ii) the use of alternative optimisation algorithms (see for example, Luenberger
(1989)); and (iii) the use of alternative initial values.

In order to investigate the effects of different algorithms on the estimates of STAR-GARCH
models, two were chosen to maximise the log-likelihood function of a LSTAR-GARCH model,
as defined in equations (2.13) and (2.8), using S&P, Hang Seng and Nikkei data. The two algo-
rithms used are the Newton method and Broyden-Fletcher-Goldfarb-Shanno method (BFGS),
a quasi-Newton method, with the same initial values, yielding the estimates in Table 1 (one

asterisk denotes significance at the 5% level and two asterisks denote significance at 1%).

S&P Hang Seng Nikkei
Newton BFGS Newton BFGS Newton BFGS
d11 | 1.7833%F  _3.0150%* | -0.2238%* 0.0142 | -0.2796** -1.5166**
b1 | 1.1204%F  -4.1005%* | 2.0523*%*  -4.9601** | -0.1930**  0.1396**
Bo1 | -0.2862%%  3.0088** | 0.2260** 0.0007 | 0.0013** 1.5131**
Boo | -1.3476%%  3.8090%* | -1.8170%*F  (0.3180** 0.0126  -0.2892**
A | 2.4515%*  1.4818** | 4.3080**  3.9604** | 1.6278**  1.0020**
¢ | 0.8634** -0.0402*%F | -0.0162** -0.8311** | -2.0104** -0.0586**
@ 1.17e-6  1.17e-6** | 7.08e-6**  7.10e-6** | 3.2e-6** 3.21e-6**
& | 0.0753**  0.0754*%F | 0.1488**F  0.1486** | 0.1475**  0.1465**
B | 0.9166%* 0.9166%* | 0.8394%*  (.8394** | 0.8519%*  (.8529%*

Table 1: LSTAR-GARCH Estimates

As shown in Table 1, the two algorithms produce different estimates for the conditional
mean but not of the conditional variance. In fact, a similar set of estimates for the conditional
variance can be obtained by estimating a simple AR(1)-GARCH(1,1) model using the Berndt-
Hall-Hall-Hausman (BHHH) algorithm. This suggests that only the estimates of the conditional
mean are sensitive to the choice of algorithm, which is contrary to the findings in Lundbergh
and Terdsvirta (2000).
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In particular, the high threshold values for Hang Seng imply that the first regime domi-
nates the second. However, since BFGS gives substantially different estimates from Newton, it
is difficult to determine which set of estimates will produce better forecasts. Moreover, the esti-
mates from the two algorithms are highly significant, which makes interpretation problematic.
As robustness to the choice of algorithm is not in evidence here, this stresses the importance
of establishing regularity conditions for consistency and asymptotic normality.

A possible explanation of these differences is that the Hessian matrix of the log-likelihood
function of the LSTAR-GARCH model is not accurately approximated by BFGS, in which case
the covariance matrix will also be unreliable. Another possibility is that there exists more than
one optimum for the log-likelihood function, or that it is flat. This is supported by the similar

mean likelihood scores of the two algorithms, as shown in Table 2.

Index Newton BFGS
S&P 4.24018 4.24018
Hang Seng | 3.75686 3.75664
Nikkei 3.92471  3.92487

Table 2: Maximum Likelihood Score

As the structural and statistical properties of the STAR-GARCH models have not yet been

established, it is difficult to provide a clear and unambiguous explanation for this result.

5 Extreme Observations and Outliers

The technical definitions of extreme observations and outliers are somewhat arbitrary. Ex-
treme observations are often referred to as being 2 to 3 standard deviations from the mean.
Outliers are often defined as being more than 3 standard deviations from the mean. The
difference between extreme observations and outliers is that outliers can also be defined as
observations that were not generated from the same population as the other observations in
the sample.

Stock returns often contain more extreme observations and outliers as compared with a
normal distribution. Consequently, the distribution seems to have fatter tails, or excessive
kurtosis, than a normal distribution.

In order to examine the effects of extreme observations and outliers on the estimates for
LSTAR-GARCH, ESTAR-GARCH and ESTAR-LSTGARCH, each of the data sets is adjusted

using the following trimming algorithm:

1. Calculate the standard deviation for the sample;

2. If an observation is 4 times larger than the standard deviation, it is reduced to 4 times

the standard deviation;

17



3. If an observation is between 3 and 4 times larger than the standard deviation, it is reduced

to 3 times the standard deviation;

4. If an observation is between 2.5 and 3 times larger than the standard deviation, it is

reduced to 2.5 times the standard deviation;
5. Repeat steps 1 to 4 above for every observation in the sample.

An LSTAR-GARCH model, as defined in equations (2.8) and (2.13), is estimated using both
the adjusted and unadjusted S&P, Hang Seng and Nikkei data. The Newton algorithm is used

in each case. The estimates can be found in Table 3.

S&P Hang Seng Nikkei
Unadjusted Adjusted | Unadjusted Adjusted | Unadjusted Adjusted
d11 | 1.7833%F  _1.7092%F | -0.2238%%  _0.5797F* | -0.2796%*  -0.6837**
G1o | 1.1204%F  2.1950%% | 2.0523%F  _4.4924%* | -0.1930%*  (.8175**
$o1 | -0.2862%%  1.5478%F | (.2260** 0.6832%* 0.0013%*  (0.3890**
Boo | -1.3476%%  -0.2446*%* | -1.8170%*  -4.9560** 0.0126 0.1554%*
2.4515%%  2.9175%* | 4.3080**  15.6068** | 1.6278** 1.0431**

v

¢ 0.8634**  (.1849** -0.0162 -0.1252%* | -2.0104**  (0.7372**
w 1.17e-6 3.87e-7** | 7.08e-6**  5.44e-6** | 3.22e-6**  2.05e-6**
o 0.0753**  0.0378** | 0.1488%** 0.1022%* 0.1475**  (0.1017**
B 0.9166**  0.9579** | 0.8394** 0.8750%* 0.8519*%*  (.8909**

Table 3: LSTAR-GARCH Estimates for Adjusted and Unadjusted Data

As shown in Table 3, ¢15 exceeds 1 using both the adjusted and unadjusted S&P data,
which suggests that the first regime follows a non-stationary process. The same is also true for
Hang Seng. However, as no theoretical results on non-stationary STAR-type models are yet
available, it is difficult to interpret these estimates.

In all three cases, the values of & decreased and those of 3 increased when the data were
adjusted, which agrees with other findings in the literature (see, for example, Verhoeven and
McAleer (1999)). However, the effects of extreme observations and outliers on the estimates
of STAR are not entirely clear, though it appears that, if such data have a positive (negative)
effect on ¢, they will have a negative (positive) effect on 4. This is an unusual result as there is
no obvious reason why the threshold value should be related to the transition rate. However,
for S&P and Hang Seng, the threshold values are closer to 0 with the adjusted data, suggesting
that the adjusted data exhibit asymmetric behaviour. Moreover, it appears that if ¢12 increases
(decreases) after the data are adjusted, then ¢y, will also increase (decrease), which suggests
that extreme observations and outliers have the same effects on the coefficients of y;_; in both

regimes.
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A similar analysis is conducted to examine the effects of extreme observations and outliers
for ESTAR-GARCH. The estimates are given in Table 4.

S&P Hang Seng Nikkei
Unadjusted Adjusted | Unadjusted Adjusted | Unadjusted Adjusted
P11 | -0.7497F%  -0.5490%* | -0.9955%F  -0.4233%* | -0.4250%%  _0.2144%*
12 0.0790 -2.3958%* | -0.9307** 0.0004 0.1168%*  0.6474**
¢o1 | 0.0008** 1.8336** | 0.0013**  0.0013** | 0.0011**  0.3901**
o 0.0360 0.9974%% | 0.1269**  0.1126** 0.0137 0.1911%*

A 0.9474%F  0.7736** | 0.7997** 1.2412%* 1.6688**  0.8317**
& -3.0813**  -0.5821** | -4.3532*%*F  -2.5382%* | -2.1846**  0.7273**
w 1.22e-6**  3.87e-T** | 7.27e-T**  6.07e-6** | 3.22e-6**  2.05e-6**
o 0.0767**  0.0378** | 0.1506**  0.1076** 0.1475%%  0.1017**
i 0.9149*%%  0.9579** | 0.8370**  0.8669** 0.8519*%*  0.8909**

Table 4: ESTAR-GARCH Estimates for Adjusted and Unadjusted Data

The estimates of ESTAR-GARCH using the unadjusted data seem more plausible than
those for LSTAR-GARCH in Table 3. All the regimes follow a stationary AR(1) process, but
the low threshold values suggest that the second regime would dominate the first for all three
indices. Furthermore, the estimates for the GARCH component are very similar to those for
LSTAR-GARCH and, for Nikkei, the GARCH estimates are identical! This suggests that the
choice of transition function for the conditional mean does not affect the GARCH estimates.

The effects of extreme observations and outliers on the transition rate, 4, and the threshold
value, ¢, for ESTAR-GARCH seem to be different from LSTAR-GARCH. In particular the
inverse relationship between 4 and ¢ is no longer valid. However, the estimated threshold values
increased when the adjusted data were used. For all three data sets, the estimated threshold
values using the adjusted data were closer to 0 than for the unadjusted data. Furthermore, the
sign of the estimated threshold value changed from negative to positive for Nikkei.

However, the effects of extreme observations and outliers on the estimates of the transition
rates are unclear. The effects of such data on ¢12 and qb;g for ESTAR-GARCH are different from
LSTAR-GARCH. In this case, if extreme observations and outliers have positive (negative)
effects on ¢1o, they have negative (positive) effects on ¢y for both S&P and Hang Seng.
However, extreme observations and outliers have negative effects on both ¢A12 and qﬁ;Q for Nikkei.

There does not seem to be a clear pattern between the estimates using the adjusted and
unadjusted data. However, due to the increase in the threshold value, the second regime
no longer dominates the first, so that the adjusted data exhibit regime switching behaviour.
Empirical evidence suggests that the estimate of the threshold value is sensitive to the sign

and magnitude of outliers. If the magnitude of positive outliers is greater (smaller) than their

19



negative counterparts, the threshold estimate will be greater (smaller) than 0. This result
explains the low threshold estimates, because the magnitude of the negative outliers is often
larger than the positive outliers for all three indices, and also the increase in the threshold
estimates when the magnitude of the outliers is reduced.

These results also show that the effects of outliers and extreme observations on the estimates
of STAR-GARCH are sensitive to the choice of transition function. Moreover, the convergence
of the estimates also seems to be sensitive to the choice of transition function for STAR-
STGARCH. The choice of transition function, and their convergence of the algorithm, are

summarised in Table 5.

Transition function Unadjusted data
mean variance S&P Hang Seng Nikkei
Logistic Logistic Yes Yes No
Logistic Exponential No Yes No
Exponential Logistic Yes Yes Yes
Exponential Exponential No No No

Table 5: Convergence with Different Transition Functions

As Table 5 shows, the exponential/logistic combination converges for all three indices. The
estimates for the three data sets are given in Table 6.

The estimates of the extreme threshold values, which indicate that one regime dominates
the other, suggest that two regimes are unnecessary for either the conditional mean or the
conditional variance for S&P and Nikkei. For the same reason, two regimes for the conditional
variance are also unnecessary for Hang Seng. However, the estimated threshold value of the
conditional mean, ¢, for Hang Seng is close to 0, which indicates the data exhibit asymmetric
behaviour and two regimes are present for the conditional mean.

All the estimates are highly significant. Moreover, the estimates from a single regime are
similar to those using an AR(1)-GARCH(1,1) model for S&P and Nikkei, which reinforces the

conclusion that two regimes are not present.
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S&P Hang Seng Nikkei
G | 04167 | -0.1124%*F | 1.5339%*
G | 0.0862%* | -0.6694%* | 0.0991%*
Go1 | 0.0007** | 0.8880%* | -0.7500%*
oo | 0.0350%% | _1.8741%* | 1.2881%*
4| 1.5140%*% | 2.3182%* | 0.3103**
¢ | -2.3757%% | 0.2280%* | -1.8928%*
Wy

1.184e-06%* | 6.88e-6%* | 3.15e-06**
@ | 0.7662%F | 0.1488%*% | 0.1465**
B | 0.9149%% | 0.8394%* | (.8520%*
Wy | 4.362e-03%* | 1.24e-3*%* | 3.896e-03%*
dy | 0.1186%* | 0.0170%* | 0.0331%*
By | 0.00008464 |  0.0096 0.035**
€ | 3.1153%% | 2.7183*%* | 3.1020**
d | 2.9595%% | 2.5338%* | 2.9643**

Table 6: ESTAR-LSTARGARCH Estimates for S&P, Hang Seng and Nikkei

Estimates for ESTAR-LSTGARCH for two sets of adjusted data are given in Table 7,
because the Newton method did not converge using the adjusted Hang Seng data. However,
the estimates did converge using the BFGS algorithm, which supports the findings in Section
3 that the estimates are sensitive to the choice of algorithm.

It appears that extreme observations and outliers have little impact on cz, which suggests
there is no regime switching behaviour in the GARCH component for either adjusted or un-
adjusted data. For each data set, only the first regime is required. Interestingly, c; decreased
and f; increased after the data were adjusted. The same outcome holds for ¢y and S, for S&P,
but not for Nikkei.

Furthermore, the effects of extreme observations and outliers on 4 and ¢ are also unclear.
Both (/512 and ¢;2 decreased for S&P and Nikkei when the adjusted data were used, which
is surprising as the effects of extreme observations and outliers for ESTAR-STGARCH are
expected to be similar to those for ESTAR-GARCH.

For S&P, two regimes were required before the data were adjusted, but only the second
regime is significant for the adjusted data. The estimated threshold value increased for Nikkei

when the adjusted data were used, but the second regime was still insignificant.
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S&P Nikkei
é11 | -0.0590%* | -0.7316%*
Bro | -0.8052%* | -0.2209%*
$o1 | 1.5970%F | 0.0013%*
G | 0.0017 | 0.0108
A | 1.7790%* | 1.5160%*
¢ | -0.1433%* | -2.1709%*
Wi | 3.75e-T** | 2.00e-6**
@1 | 0.0378%* | 0.1021**
Bi | 0.9579%*% | 0.8906**
Wy | 1.10e-3%* | 2.38e-3%*
@y | 0.0363%* | 0.0687**
3 | 0.0154%* | 0.0080**
£ | 2.9537%* | 2.9638**
d | 2.7692%* | 2.8433**

Table 7: ESTAR-LSTGARCH Estimates for the Adjusted S&P and Nikkei

6 Conclusion

This paper provided a survey of recent theoretical developments for analysing the GARCH,
STAR, STAR-GARCH and STAR-STGARCH models. The difficulties in evaluating some of
these models because of the absence of structural and/or statistical properties, particularly, the
regularity conditions for consistency and asymptotic normality, were emphasized.

Empirical evidence using the S&P, Hang Seng and Nikkei indexes showed that the QMLE
for STAR-GARCH models are sensitive to the choice of optimisation algorithm. This does
not agree with previous results in the literature. It was also shown that the estimates for
STAR-GARCH and STAR-STGARCH are also highly sensitive to extreme observations and
outliers. Furthermore, the effects of extreme observations and outliers on the estimates of
STAR-GARCH depend on the choice of transition function.

The effects of extreme observations and outliers on the estimates for STAR-STGARCH are
unclear, but the effects are not the same as for STAR-GARCH. Furthermore, the convergence
of the estimates is sensitive to the choice of algorithm. This sensitivity could arise through

model misspecification, as well as through the properties of the log-likelihood functions.
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