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Abstract

This paper investigates the asymptotic theory for a vector ARMA-GARCH
model. The conditions for the strict stationarity, ergodicity, and the higher-
order moments of the model are established. Consistency of the quasi- maxi-
mum likelihood estimator (QMLE) is proved under only the second-order mo-
ment condition. This consistency result is new, even for the univariate ARCH
and GARCH models. Moreover, the asymptotic normality of the QMLE for
the vector ARCH model is obtained under only the second-order moment of
the unconditional errors, and the finite fourth-order moment of the conditional
errors. Under additional moment conditions, the asymptotic normality of the
QMLE is also obtained for the vector ARMA-ARCH and ARMA-GARCH
models, as well as a consistent estimator of the asymptotic covariance.

1 INTRODUCTION

The primary feature of the autoregressive conditional heteroskedasticity (ARCH)
model, as proposed by Engle (1982), is that the conditional variance of the errors
varies over time. Such conditional variances have been strongly supported by a huge
body of empirical research, especially in stock returns, interest rates, and foreign

exchange markets. Following Engle’s pathbreaking idea, many alternatives have
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been proposed to model conditional variances, forming an immense ARCH family;
see, for example, the surveys of Bollerslev, Chou and Kroner (1992), Bollerslev,
Engle and Nelson (1994), and Li, Ling and McAleer (1999). Of these models, the
most popular is undoubtedly the generalised ARCH (GARCH) model of Bollerslev
(1986). Some multivariate extensions of these models have been proposed; see, for
example, Engle, Granger and Kraft (1984), Bollerslev, Engle and Wooldridge (1988),
Engle and Rodrigues (1989), Ling and Deng (1993), Engle and Kroner (1995), Wong
and Li (1997), and Li, Ling and Wong (1999), among others. However, apart from
Ling and Deng (1993) and Li, Ling and Wong (1998), it seems that no asymptotic
theory of the estimators has been established for these multivariate ARCH-type
models. In most of these multivariate extensions, the primary purpose has been
to investigate the structure of the model, as in Engle and Kroner (1995), and the
reporting of empirical findings.

In this paper, we propose a vector ARMA-GARCH model which includes the
multivariate GARCH model of Bollerslev (1990) as a special case. The sufficient
conditions for the strict stationarity and ergodicity, and a causal representation of
the vector ARMA-GARCH model, are obtained as extensions of Ling and Li (1997).
Based on Tweedie (1988), a simple sufficient condition for the higher-order moments
of the model is also obtained.

The main part of this paper investigates the asymptotic theory of the quasi-
maximum likelihood estimator (QMLE) for the vector ARMA-GARCH model. Con-
sistency of the QMLE is proved under only the second-order moment condition.
Jeantheau (1998) proved consistency for the constant conditional mean drift model
with vector GARCH errors. His result is based on a modified result in Pfanzagl
(1969), in which it is assumed that the initial values consisting of the infinite past
observations are known. In practice, of course, this is not possible.

In the univariate case, the QMLE based on any fixed initial values has been

investigated by Weiss (1986), Pantula (1989), Lee and Hansen (1994), Lumsdaine



(1996), and Ling and Li (1997). Weiss (1986) and Ling and Li (1997) use the
conditions of Basawa, Feigin and Heyde (1976), whereby their consistency results
rely on the assumption that the fourth-order moments exist. Lee and Hansen (1994)
and Lumsdaine (1996) use the conditions of Amemiya (1985, pages 106-111), but
their methods are only valid for the simple GARCH (1,1) model and cannot be
extended to more general cases. Moreover, the conditional errors, that is, 7y when
m = 1 in equation (2.3) in the next section, are required to have the (2 + k)th
(k > 0) finite moment by Lee and Hansen (1994), and the 32nd finite moment by
Lumsdaine (1996).

The consistency result in this paper is based on a uniform convergence as a
modification of a theorem in Amemiya (1985, page 116). Moreover, the consistency
of the QMLE for the vector ARMA-GARCH model is obtained only under the
second-order moment condition. This result is new, even for the univariate ARCH
and GARCH models. For the univariate GARCH (1,1) model, our consistency result
also avoids the requirement of the higher-order moment of the conditional errors, as
in Lee and Hansen (1994) and Lumsdaine (1996).

This paper also investigates the asymptotic normality of the QMLE. For the
ARCH model, asymptotic normality requires only the second-order moment of the
unconditional errors, and the finite fourth-order moment of the conditional errors.
The corresponding result for univariate ARCH requires the fourth-order moment,
as in Weiss (1986) and Pantula (1989). The conditions for asymptotic normality of
the GARCH (1,1) model in Lee and Hansen (1994) and Lumsdaine (1996) are quite
weak. However, their GARCH(1,1) model explicitly excludes the special case of the
ARCH(1) model because they assume that B; # 0 (see equation (2.7) in the next
section) for purposes of identifiability. Under additional moment conditions, the
asymptotic normality of the QMLE for the general vector ARMA-GARCH model
is also obtained. Given the uniform convergence result, the proof of asymptotic

normality does not need to explore the third-order derivative of the quasi-likelihood



function. Hence, our method is simpler than those in Weiss (1986), Lee and Hansen
(1994), Lumsdaine (1996), and Ling and Li (1997).

It is worth emphasizing that, unlike Lumsdaine (1996) and Ling and Li (1997),
Lee and Hansen (1994) do not assume that the conditional errors 7 are i.i.d instead
of a series of strictly stationary and ergodic martingale difference. Although it is
possible to use this weaker assumption for our model, for simplicity we use the i.i.d.
assumption.

The paper is organized as follows. Section 2 defines the vector ARMA-GARCH
model and investigates its properties. Section 3 presents the quasi-likelihood func-
tion and gives a uniform convergence result. Section 4 establishes the consistency
of the QMLE and Section 5 develops its asymptotic normality. Concluding remarks
are offered in Section 6. All proofs are given in Appendices A and B.

Throughout this paper, we use the following notation. |- | denotes the absolute
value of a univariate variable or the determinant of a matrix. || - || denotes the
Euclidean norm of a matrix or vector. A’ denotes the transpose of the matrix or
vector A. O(1) (or o(1)) denotes a series of non-stochastic variables that are bounded
(or converge to zero). O,(1) (or 0,(1)) denotes a series of random variables that are
bounded (or converge to zero) in probability. —, (or —L ) denotes convergence
in probability (or in distribution). p(A) denotes the eigenvalue of the matrix A with

largest absolute value.

2 THE MODEL AND ITS PROPERTIES

Bollerslev (1990) presented an m—dimensional multivariate conditional covariance

model, namely,

Y, = E(Yy|Fi 1) +eot, Var(eo| Fi 1) = Dol'o Doy, (2.1)
where F, is the past information available up to time ¢, Do, = diag(ha\?,- - -, ha!%),

and
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in which 04;; = 0¢j. The main feature of this model is that the conditional correla-

tion E(s()iteojt\ﬂ_l)/\/E(E%it|.7-'t_1)E(£§jt|.7-'t_1) = 09;; is constant over time, where
1 # j and gg; is the ith element of gy;. By assuming that
r s

hoit = wo; + ; a(),-jegitfj + j;b()i]‘h()itj, i=1,---,m, (2.2)
Bollerslev (1990) modeled the exchange rates of the German mark, French franc,
and British pound against the U.S. dollar. His results provided evidence that the as-
sumption of constant correlations was adequate. Tse (2000) developed the Lagrange
multiplier test for the hypothesis of constant correlation in Bollerslev’s model, and
provided evidence that the hypothesis was adequate for spot and futures prices, and
foreign exchange rates.

It is possible to provide a straightforward explanation for the hypothesis of con-
stant correlation. Suppose that hg; captures completely the past information, with
FEhyy = EeZ,. Then ng; = &?oﬁh&i/ ? will be independent of the past information.
Thus, for each 4, {nyy,t = 0,+1,+2,---} will be a sequence of independently and
identically distributed (i.i.d.) random variables, with zero mean and variance 1. In
general, 1o;; and 7, are correlated for 7 # j, and hence it is natural to assume that
Not = (Mo1es -+ Mome)” 18 @ sequence of i.i.d. random vectors, with zero mean and

covariance I'y. Thus, we can write

got = Dynot- (2-3)

Obviously, €o; in (2.1) has the same conditional covariance matrix as that in (2.3).
Now, the remaining problem is how to define hgy;; so that it can capture com-
pletely the past information. It is obvious that hg; may have as many different

forms as in the univariate case. In the multivariate case, hg; should contain some



past information, not only from ¢;; but also from £¢;;. Hence, a simple specification
such as (2.2) is likely to be inadequate. In particular, if it is desired to explain the
relationships of the volatilities across different markets, it would be necessary to
accommodate some interdependence of the £gy;; or the hg; in the model. Note that
Dy, depends only on (Ao, -+, homt)’, denoted by Hg. It is natural to define Hyy
in the form of (2.5) below, which has also been used by Jeantheau (1998). Speci-
fying the conditional mean part as the vector ARMA model, we define the vector

ARMA-GARCH model as follows:

®o(L)(Y: — po) = Wo(L)eot, (2.4)
ot = Dogtior, Hor = Wo + Y Avi€or—i + »_ BoiHot—i, (2.5)
i=1 i=1
where Dy, and 7y, are defined as in (2.3), ®o(L) = I, — 1 L — --- — Dy, LP and

Uo(L) = I;y+¥o1 L+ - -+, L7 are polynomials in L, I} is the k x k identity matrix,
and £y, = (€31, "+, €am)- The true parameter vector is denoted by Ay = (¢}, 65, 04,
where @y = vec(to, Pot, -+, Pop, Yor, « -+, Yoq), 00 = vec(Wy, Ao1,- -+, Aor, Bot, -+,
Bys), and g = (0021, * s O0m,15 00325 ** * s O0m.25 " * > Oomm—1) - Lhis model was used
to analyze the Hang Seng index and Standard and Poor’s 500 Composite index by
Wong, Li and Ling (2000). They found that the off-diagonal elements in Ay, are
significantly different from zero, and hence can be used to explain the volatility
relationship between the two markets.

The model for the unknown parameter A = (¢’, ', 0’)’, with ¢, 0, and o defined

in a similar manner to g, dy, and g, respectively, is
O(L)(Y; — p) = ¥(L)es, (2.6)
H =W +> A_;+> BiH,, (2.7)

i=1 i=1
where Hy = (hy, -+, ht)'s €1 = (€2,,---,€2,)", and ®(L) and ¥(L) are defined in a

similar manner to ®¢(L) and ¥y(L), respectively. First, the £, are computed from the

observations Y7, - - -, ¥y, from (2.6), with initial value Yy = (Yp, -+, Yi_,, €0, -, €1-¢)-
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Then H, can be calculated from (2.7), with initial values &y = (o, -+, &1_s, Ho, « - -,
H, ;). We assume that the parameter space © is a compact subspace of Euclidean
space, such that Ay is an interior point in © and, for each A\ € ©, it is assumed that:

Assumption 1. All the roots of |®(L)| = 0 and all the roots of |U(L)| = 0 are
outside the unit circle.

Assumption 2. ®(L) and ¥(L) are left coprime (i.e., if ®(L) = U(L)®,(L)
and W(L) = U(L)V,(L), then U(L) is unimodular with constant determinant), and
satisfy other identifiability conditions given in Dunsmuir and Hannan (1976).

Assumption 3. I is a finite and positive definite symmetric matrix, with the
elements on the diagonal being 1 and p(I') having a positive lower bound over ©
; all the elements of A; and B; are nonnegative, ¢ = 1,---,r, j = 1,---,s; each
element of W has positive lower and upper bounds over ©; and all the roots of
|, — Y0, AL — Y5, B;L'| = 0 are outside the unit circle.

Assumption 4. I, —>"_, A;L* and Y%, B;L are left coprime; and satisfy other
identifiability conditions given in Jeantheau (1998) (see also Dunsmuir and Hannan
(1976)).

In Assumptions 2 and 4, we use the identifiability conditions in Dunsmuir and
Hannan (1976) and Jeantheau (1998). These conditions may be too strong. Alter-
natively, we can use other identifiability conditions, such as the final form or echelon
form in Liitkepohl (1991, Chapter 7), under which the results in this paper for con-
sistency and asymptotic normality will still hold with some minor modifications.
These identifiability conditions are sufficient for the proofs of (B.3) and (B.6) in
Appendix B.

Note that, under Assumption 4, By # 0 and hence the ARCH and GARCH
models are nonnested. We define the ARMA-ARCH model as follows:

®o(L)(Y: — po) = Wo(L)eor, (2.8)

T
ot = Dogior, Hoe = Wo+ Y Avi€or—i- (2.9)

=1



Similarly, under Assumption 2, it is not allowed that all the coefficients in the ARMA
model are zero, so that the ARMA-ARCH model does not include the following

ARCH model as a special case:

Y;g = U + Eot, (2.10)

ot = Dogior, Hoe = Wo+ Y Avi€ori- (2.11)

i=1
In models (2.8)-(2.9) and (2.10)-(2.11), we assume that all the components of Ay;,
1 = 1,---,r, are positive. In practice, this assumption may be too strong. If the
parameter matrices A; are assumed to have the nested reduced-rank form, as in Ahn
and Reinsel (1988), then the results in this and following sections will still hold with
some minor modifications.

The unknown parameter ARCH and ARMA-ARCH models are similarly defined
as models (2.6)-(2.7). The true parameter \g = (¢}, 0y, 0g)’, With do = vec(Wy, Ao1,
-+, Agr), 09 being defined as in models (2.4)-(2.5), and ¢y being defined as in models
(2.4)-(2.5) for models (2.8)-(2.9), and ¢y = po for models (2.10)-(2.11). Similarly,
define the unknown parameter A and the parametric space ©, with 0 < aéjk < aij <
agyy, < 0o, where a;j; is the (j, k)th component of A;, aéjk and af;, are independent
of \,i=1,---,r,and j,k=1,---,m".

The following theorem gives some basic properties of models (2.4)-(2.5). When
m = 1, the result in Theorem 2.1 reduces to that in Ling and Li (1997) and the result
in Theorem 2.2 reduces to Theorem 6.2 in Ling (1999). When the ARMA model
is replaced by a constant mean drift, the second-order stationarity and ergodicity
condition in Theorem 2.1 appears to be the same as Proposition 3.1 in Jeantheau
(1998). Our proof is different from that in his paper and provides a useful causal
expansion. Also note that, in the following theorems, Assumptions 2 and 4 are not
imposed and hence these results hold for models (2.8)-(2.9) and models (2.10)-2.11).

However, for these two special cases, the matrix Ag; below can simply be replaced

by its (1,1) block.



THEOREM 2.1. Under Assumptions 1 and 8, models (2.4)-(2.5) possess an
Fi-measurable second-order stationary solution {Y;, €0, Hot}, which is unique, given
the no;, where Fy is a o—field generated by {nox : k < t}. The solutions {Y;} and

{Ho} have the following causal representations:

Y, = Y TorEor—k, a., (2.12)
k=0
() Jj
H()t = WO + Z CI ( H AOt—i) é-t—j—la a.s., (2.13)
j=1 i=1

!

where @51 (L)Wo(L) = 32 Torl*, & = [(7o:Wo)',0,-++, 0, W5, 0, -, 01y gymscas
that is, the subvector consisting of the first m components is oWy and the subvector
consisting of the (rm~+1)th to (r+1)mth components is Wo; fjos = diag(Mars, ** * > Mot ) »
d=(0,---,0,1,0,- -+, 0) s (r+s)m with the subvector consisting of the (rm + 1)th

to (r + 1)mth columns being I, and

Tlot Aot e fotAor | TlotBot e Mot Bos
~ Im(rfl) Om(rfl)xm Om(rfl)xms
A()t =
AOl e AOT ‘ BOl e BOS
Om(s—l)xm'r Im(s—l) Om(s—l)xm

Hence, {Y;, €01, Hot} are strictly stationary and ergodic.
THEOREM 2.2. Suppose that the assumptions of Theorem 2.1 hold. If
p[E(fl%%k)] < 1, with k being a strictly positive integer, then the 2kth moments of

{Y}, et} are finite, where Ay, is defined as in Theorem 2.1, and A®* is the Kronecker

product of the k matrices A.

3 QUASI- MAXIMUM LIKELIHOOD ESTIMA-
TOR

The estimators of the parameters in models (2.4)-(2.5) are obtained by maximizing,

conditional on (Yj, &),

1 1 1
L,(\) = ” L), L) = -3 In|D,I'D,| — 5s;(DtFDt)—let, (3.1)
t=1



where L, ()) takes the form of the Gaussian log-likelihood, and D, = diag(h%Q, e

hi,{f ). Since we do not assume that 7y is normal, the estimators from (3.1) are the
quasi-maximum likelihood estimators (QMLE). Note that the processes ¢; and D;,
1 < 0, are unobserved, and hence they are only some chosen constant vectors. Thus,
L, () is the likelihood function which is not conditional on the true (Yj, &) and, in
practice, we work with this likelihood function.

For convenience, we introduce the unobserved process {(e§, Hy) : t = 0,£1,+2,-- -},

which satisfies

(L) (Yy — p) = ¥(L)ey, (3-2)
Hf =W + )Y A#&_;+> BiH;_,, (3.3)
i=1 =1
where &8 = (¢2,---,e2,) and Hf = (h$;, -, hSy,)"- Denote Yy = (Yo, Y_q,- ). The

unobserved log-likelihood function conditional on Y is
€ 1 & € € 1 € € 1 € (e e\—1 €
Ly(A) = n POYHCYRRHOVES D) In |DiT'Di| — 95t (DiTD5) e, (3.4)
t=1

where Df = diag(h{,,---,hS,). When A = Xy, we have ¢ = ey, Hf = Hy and
D§ = Dgy. The primary difference in the likelihoods (3.1) and (3.4) is that (3.1)
is conditional on any initial values, while (3.4) is conditional on the infinite past
observations. In practice, the use of (3.4) is not possible. Jeantheau (1998) inves-
tigated the likelihood (3.4) for models (2.4)-(2.5) with p = ¢ = 0, that is, with
the conditional mean part identified as the constant drift. By modifying a result in
Pfanzagl (1969), he proved the consistency of the QMLE for a special case of models
(2.4)-(2.5). An improvement on his result requires only the second-order moment
condition. However, the method of his proof is valid only for the log-likelihood
function (3.4) and it is not clear whether his result also holds for the likelihood
(3.1).

The likelihood function L, (A\) and the unobserved log-likelihood function LZ ()
for models (2.8)-(2.9) and models (2.10)-(2.11) are similarly defined as in (3.1) and

(3.4).
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The following uniform convergence theorem is a modification of Theorem 4.2.1
in Amemiya (1985). This theorem, as well as Lemma 4.5 in the next Section, makes
it possible to prove the consistency of the QMLE from the likelihood (3.1) under
only a second-order moment condition.

THEOREM 3.1.2 Let g(y, 0) be a measurable function of y in Euclidean space
for each 6 € ©, a compact subset of R™ (Euclidean m—space), and a continuous
function of 0 € © for each y. Suppose that vy, is a sequence of strictly stationary

and ergodic time series, such that Eg(y:,0) = 0 and E supyeg |9(y:,0)| < 0o. Then

SUPgee |1 Xiey 9y, 0)| = 0p(1).
4 CONSISTENCY OF THE QMLE

In (3.4), Df is evaluated by an infinite expansion of (3.3). We need to show that
such an expansion is convergent. In general, all the roots of |I,, — 37 | A, L' —

*_ B;L*| = 0 lying outside the unit circle does not ensure that all the roots of
I, — Y5 BiL*| = 0 are outside the unit circle. However, since all the elements of
A; and B; are negative, we have the following lemma.

LEMMA 4.1. Under Assumption 8, all the roots of |I, — 5, B;L*| = 0 are
outside the unit circle.

We first present five lemmas. Lemma 4.2 ensures the identification of \y. Lem-
mas 4.3, 4.4 and 4.6 ensure that the likelihood L, () of the ARMA-GARCH, ARMA-
ARCH and ARCH models converges uniformly in the whole parameter space, with
its limit attaining a unique maximum at \y. Lemma 4.5 is important for the proof
of Lemma 4.6 under the second-order moment condition.

LEMMA 4.2. Suppose that Y; is generated by models (2.4)-(2.5) satisfying As-
sumptions 1-4, or models (2.8)-(2.9) satisfying Assumptions 1-8, or models (2.10)-
(2.11) satisfying Assumption 3. Let c, and ¢ be constant vectors, with the same
dimensions as ¢ and 6, respectively. Then cfp((?s;'/agp) =0 a.s. only ifc, =0, and

d(OHE /08) = 0 a.s. only if c = 0.

11



LEMMA 4.3. Define L(\) = E[l{(\)]. Under the assumptions of Lemma 4.2,
L()\) exists for all A € © and supycg |LS(A) — L(A)| = 0,(1).

LEMMA 4.4. Under the assumptions of Lemma 4.2, L(\) achieves a unique
maximum at Ag.

LEMMA 4.5. Let X; be a strictly stationary and ergodic time series, with
E|Xi| < 00, and & be a sequence of random variables such that

S (6] < C and ™' 3 6] = o).

Then n=t 30 1 Xi& = 0,(1).

LEMMA 4.6. Under the assumptions of Lemma 4.2, supyce | LS (A) — Ly (A)| =
0,(1).

Based on the above lemmas, we now have the following consistency theorem.

THEOREM 4.1. Denote \, as the solution to maxyce L,()\). Under the as-

sumptions of Lemma 4.2, Ao —p Ao-

5 ASYMPTOTIC NORMALITY OF THE QMLE

To prove the asymptotic normality of the QMLE, it is inevitable to explore the
second derivative of the likelihood. The method adopted by Weiss (1986), Lee and
Hansen (1994), Lumsdaine (1996) and Ling and Li (1997) uses the third derivative
of the likelihood. By using Theorem 3.1, our method requires only the second
derivative of the likelihood, which simplifies the proof and reduces the requirement
for higher-order moments.

For the general models (2.4)-(2.5), the asymptotic normality of the QMLE would
require the existence of the sixth moment. However, for models (2.8)-(2.9) or models
(2.10)-(2.11), the moment requirements are weaker. Now we can state some basic
results.

LEMMA 5.1. Suppose that Y; is generated by models (2.4)-(2.5) satisfying As-

sumptions 1-4, or models (2.8)-(2.9) satisfying Assumptions 1-8, or models (2.10)-
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(2.11) satisfying Assumption 8. Then, it follows that

Os§ _, 0¢§
DiT'D;
aQO ( t t ) 8@,

6I
Oe;

€ €\— age
y (DiTD;)~" =%

o'

Esup >0, (5.1)

< o0 and E[
€O

where a matriz A > 0 means that A is positive definite.

LEMMA 5.2. Suppose that Y; is generated by models (2.4)-(2.5) satisfying
Assumptions 1-4 and E||Y;||* < oo, or models (2.8)-(2.9) satisfying Assumptions 1-
3 and E||Y;||* < oo, or models (2.10)-(2.11) satisfying Assumption 8 and E||no||* <
oo. Then Qo = E[(0l§, /OX)(0l§,/ON)] is finite. Furthermore, if Qo > 0, then

L Ol
ﬁt:la)\ ‘

where 05, /O = 0I5 JOM| 5, and Olot/OX = Ol /0|y, -
LEMMA 5.3. Suppose that Y; is generated by models (2.4)-(2.5) satisfying

N(0,Qp),

Assumptions 1-4 and E||Y;]|® < oo, or models (2.8)-(2.9) satisfying Assumptions
1-8 and E||Yy||* < oo, or models (2.10)-(2.11) satisfying Assumption 3. Then,

OHf

€— € E— aHe
5 DE2ASDE af\f < o0, (5.2)

FEsup

where X = (¢, 8", AS = G016 + AGie, AS = diag(e I 'nt, - - el 10f), € =
(0,-+-, 0,1,0---,0)" of which the ith element is 1, nf = (05, -, n5.) and 7f =

diag(nS,, -+, n%,) with n5, = 5, /h&/?, i =1
1t mt it et/ 'Yt

LEMMA 5.4. Under the assumptions of Lemma 5.3,

’.-.’m'

1 & 0% %I

— - E t1l=o0,(1
(a)  sup n;max [aAaA'H %(L);

1 [ s o
b — b = 0,(1).
() supl 2 [aAaX aAaxH (1)

By straightforward calculation, we can show that

— 621; _ ES\O 25\00
EOZE[aAaA/]AO__( EIXUO %P’P ’
where X5, = E[(8e5,/0)\) (DyToDoy)  (9es,/0N)] +E[(DHS,/ON) Do2C Dy (OHS,
JON)]/4, S5, = E[(0Hg /0N Dg?] C1P/2, 025,/0N = 0e/0N|n,, OHS/ON =
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OHE/ON |5y, P = (In @ Ty K, C1 = (Chy, - -+, Chm), Cis is an m x m matrix with
the (¢,4)th component being 1 and the other components zero, K = dvec(I') /0o’ is
a constant matrix, and C = I'y' ® [y + I,,,, where A® B = (a;;b;;) for two matrices

A = (a;j) and B = (b;j). In practice, ¥, is evaluated by

where T, = L5,

A Oe Oe 1 X [0H] A OH,
Z": — ! DFD _1—~t] +_ [—~tD_ZCnD_2 X )
A n = L?A( {L'Dy) N5 4ntzzl ox ! LN s
n !
= o [MD ] C\P, P=(In®T,)K, Co =T 0T + L.
t= A

LEMMA 5.5. Under the assumptions of Lemma 5.3, ||%|| < co and %, =
Yo + 0,(1) for any sequence A, such that A\, — Ao = 0p(1). If gt ® Ty > I,,, then
— > 0.

From the proof, we can see that the sixth-order moment in models (2.4)-(2.5)
is required only for Lemma 5.4(a), while the fourth-order moment is sufficient for
Lemma 5.4(b). If we can show that the convergent rate of the QMLE is O,(n~'/2),
then the fourth-order moment is sufficient for models (2.4)-(2.5). However, it would
seem that proving the rate of convergence is quite difficult.

LEMMA 5.6. Under the assumptions of Lemma 5.2, if \/n(A, — Xo) = O,(1),

then

aIs lg alg, Al
DAON X ON |,

1 & o a,]
n 2; [8)\ 8)\'] An = Dot opll)

M=

= Op(l)a

THEOREM 5.1. Suppose that Y; is generated by models (2.4)-(2.5) satisfy-
ing Assumptions 1-4 and E||Y||® < oo, or models (2.8)-(2.9) satisfying Assump-
tions 1-3 and E||Y;||* < oo, or models (2.10)-(2.11) satisfying Assumption 8 and
E||no||* < 0co. If Qo > 0 and T ®Tg > Iy, then v/n(An—Xo) =2 N(0,55'Q%51).

Furthermore, ¥y and €y can be estimated consistently by 3, and Qn, respectively.
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When m = 1 or 2, we can show that ['y;' ® 'y > I,,,, and hence, in this case,
—Y > 0. However, it is difficult to prove I'y! ® 'y > I,,, for the general case. When
[y = I, it is straightforward to show that —X; > 0 and €2, are positive definite.
When 7 follows a symmetric distribution,

_ dp By _ @0

a5 a6
in which 6 = (&, ¢"),
858;
dp
Y. < Y50 12500 )
o = \ sy, tPP )

where Y50 = E[0HS,/06Dy>CDy20HS,/08")/4 and Y550 = E[0HS,/06Dy%|C1P/2.

_,0e§,, 1 OHS,

_,0H
agpl]—i_ZE[ agp 2 0t

EwO = E[ ot B ],

Dy2CD

(DoiTo Do)

Furthermore, if 7y, is normal, it follows that —>5 = €. Note that the QMLE here is
the global maximum over the whole parameter space. The requirement of the sixth-
order moment is quite strong for models (2.4)-(2.5), and is used only because we
need to verify the uniform convergence of the second derivative of the log-likelihood
function, that is, Lemma 5.4(a). If we consider only the local QMLE, then the
fourth-order moment is sufficient. For univariate cases, such proofs can be found in

Ling and Li (1998) and Ling and McAleer (1999).

6 CONCLUSION

This paper presented the asymptotic theory for a vector ARMA-GARCH model. An
explanation of the proposed model was offered. Using a similar idea, different mul-
tivariate models such as E-GARCH, threshold GARCH, and asymmetric GARCH
can be proposed for modelling multivariate conditional heteroskedasticity. The con-
ditions for the strict stationarity and ergodicity of the vector ARMA-GARCH model
were obtained. A simple sufficient condition for the higher-order moments of the
model was also provided. We established a uniform convergence result by modify-

ing a theorem in Amemiya (1985). Based on the uniform convergence result, the
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consistency of the QMLE was obtained under only the second-order moment condi-
tion. Unlike Weiss (1986) and Pantula (1989) for the univariate case, the asymptotic
normality of the QMLE for the vector ARCH model requires only the second-order
moment of the unconditional errors, and the finite fourth-order moment of the condi-
tional errors. The asymptotic normality of the QMLE for the vector ARMA-ARCH
model was proved using the fourth-order moment, which is an extension of Weiss
(1986) and Pantula (1989). For the general vector ARMA-GARCH model, the
asymptotic normality of the QMLE requires the assumption that the sixth-order
moment exists. Whether this result will hold under some weaker moment condi-

tions remains to be proved.

NOTES

1.For models (2.8)-(2.9) and (2.10)-(2.11), B; in Assumption 3 reduces to the zero matrix,
where s =1,---,s..

2. The Co-editor has suggested that this theorem may not be new, consisting of Lemma 2.4

and footnote 18 of Newey and McFadden (1994).
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A APPENDIX: PROOFS OF THEOREMS 2.1-
2.2

Proof of Theorem 2.1. Multiplying (2.5) by 7y, yields

T S
g0t = TjotWo + Z Mot Avi€ot—i + Z Mot Boi Hot—i- (A.1)

i=1 i=1
Now rewrite (A.1) in vector form as
Xy = AuXy1 + &, (A.2)
where X; = (Zos -+ 5 Eos—rs1, Hops =+ Hby_s.1)" and & is defined as in (2.9). Let

n J B
Snp = &+ Z ( H Aot—it1) &y, (A.3)
Jj=1

where n = 1,2, ---. Denote the kth element of (ngl flOt,i) & j—1 by sp:. We have

]~
= e;gEHAtzgtjl

J
= H A()t i Egt —j—1 = 6kAJ (A.4)
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where e, = (0,---,0,1,0,---,0) m(r+s)x1 @nd 1 appears in the kth position, ¢* = E§

is a constant vector, and

AOl T AOT BOl Tt BOS
~ T Om(r-1)xm Om(r—1)xms
i-| (r-1) (Anx . (r=1)x (A5)
01 e Or 01 e BOS
Om(s—l)xmr ’ Im(s—l) Om(s—l)xm

By direct calculation, we know that the characteristic polynomial of A is

flz) = |z|(r+s)m|l ZA 2z~ Z Biz™". (A.6)

By Assumption 3, it is obvious that all the roots of f(z) lie inside the unit circle.
Thus, p(A) < 1 and hence each component of A? is O(p'). Therefore, the right-hand
side of (A.4) is equal to O(p’). Note that 7 is a sequence of i.i.d. random matrices,
and each element of AOt and &; is non-negative. We know that each component of
Sn+ converges almost surely (a.s.) as n — oo, as does S, ;. Denote the limit of S, ;
by X;. We have
© J

Xy = &+ 322—1 (i_l_IlAOtfi) §—j-1, (A.7)
with the first-order moment being finite.

It is easy to verify that X, satisfies (A.2). Hence, there exists an F;—measurable
second-order solution eq; to (2.5) with sth element o = 10isv/hoit = Toit (€L, +1Xt)1/ 2
with the representation (2.13).

Now we show that such a solution is unique to (2.5). Let e be another F,—
measurable second-order stationary solution of (2.5). As in (A.2), we have xM =
A X + &, where X0 = (& ... &Y HY oo HO Y, and HY = W, +
Y Ag &Y+ 50 By HY, with &Y = (6407 1Y Let U, = X, — X{". Then
U, is first-order stationary and, by (A.2), U; = ([T~ OAOt :)Ui_n_1. Denote the kth
component of U; as ug,. Then, as each element of A, is nonnegative,

sl < 1T Aovci)Urcns| < (T Aoecs) Vil (A.8)

=0 =0
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where e, is defined as in (A.4), and |Uy| is defined as (|uie], -+, [Urto)me|). As U
is first-order stationary and JF;—measurable, by (A.8), we have
E|ukt| S G;CE(H AOt—i)E|Ut—n—1| = e%ﬁ"c’{ —0 (A.g)
=0
as n — oo, where ¢f = E|Uy| is a constant vector. So ug; = 0 a.s., that is, X; = t(l)

a.s.. Thus, h; = hz(-tl) a.s., and hence gy, = e(()? = nOith(l){tQ a.s.. That is, eg; satisfying
(2.5) is unique.
For the unique solution ¢, by the usual method, we can show that there exists
a unique F;—measurable second-order stationary solution Y; satisfying (2.4), with
the expansion given by
00
Vi = Y Yoo (A.10)
k=0
Note that the solution {Y;, o, Hoi} is a fixed function of a sequence of i.i.d. random
vectors 7y, and hence is strictly stationary and ergodic. This completes the proof.
O
The proof of Theorem 2.2 first transforms models (2.4)-(2.5) into a Markov
chain and then uses Tweedie’s criterion. Let {X;;¢ = 1,2,---} be a temporally
homogeneous Markov chain with a locally compact completely separable metric
state space (S, B). The transition probability is P(z, A) = Pr(X, € A|X,_1 = ),
where x € S and A € B. Tweedie’s criterion is the following lemma.
LEMMA A.1. (Tweedie, 1988, Theorem 2) Suppose that { X} is a Feller chain.
(1) If there ezists, for some compact set A € B, a non-negative function g and e > 0

satisfying

[ P@dyg) < glo)—=,  we A (A.11)

then there exists a o-finite invariant measure u for P with 0 < u(A) < oo; (2)

Furthermore, if

[ )] Ple.dy)g(v)] <o, (A12)
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then p is finite, and hence m = pu/u(S) is an invariant probability; (3) Furthermore,
if

/AC P(z,dy)g(y) < g(z) — f(z), =z €A (A.13)

then i admits a finite f-moment, i.e.

/S p(dy) f(y) < oo. (A.14)

The following two lemmas are preliminary results for the proof of Theorem 2.2.

LEMMA A.2. Suppose that E(|[no||?*) < oo and p[E(AZF)] < 1. Then there
erists a vector M > 0 such that [I,, — E(A$F)|M > 0, where a vector B > 0 means
that each element of B is positive.

Proof. From the condition given, I, — F(A$F) is invertible. Since each element
of E(AZ*) is non-negative, we can choose a vector Ly > 0 such that

M = (I, — B(AF)) 'Ly = Ly + Y_[E(A$F)')'L, > 0.
i=1

Thus, (I, — E(A$F)]M = Ly > 0. This completes the proof. O

LEMMA A.3. Suppose that there is a vector M > 0 such that

[, — E(ASFY 1M > 0. (A.15)

Then there exists a compact set A = {z : i = (D19 z,)F < A} ¢ RUT9™
with Ry = (0,00), a function gi(x), and k > 0 such that the function g, defined by
g(z) = 1+ (z%%)' M, satisfies

E(g(X)| X1 = 2) < g(a) + g1(z),  we Ry, (A.16)
and
E(g(Xy)|Xie1=2) <(1—k)g(x), x € A°, (A.17)

where A® = RU+9™ — A x; is the ith component of x, maxyca g1(x) < Co, X, is

defined as in (A.2), and Cy, k and A are positive constants not depending on z.
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Proof. We illustrate the proof for £ = 3. The technique for k£ # 3 is analogous.

For any z € R{™™ by straightforward algebra, we can show that

E[(& + Apz)®*) M
= (@) B(AG)'M + CIM + 2'CyM + (2%°)' O3 M

< (x®3)'B(ASM + c(1 + 7 + &), (A.18)

where C7, (5 and (5 are some constant vectors or matrices with non-negative el-
ements, which do not depend on z, and ¢ =max{all components of CiM, C4M
and CiM}.

By (A.2) and (A.18), we have

Elg(X)|X; 1 =2] = 1+ E[(&+ Apz)**|' M
< 1+ (@)Y BAF)M + gi(w)

= 14 (%)M — (z%3)M* + g, ()
(@) M*  gi(2)

= g(x)[1— , A.19
D=0t e (419
where M* = [I,, — E(AZ®)IM and g,(z)=c(1 + & + &?).
Denote
A= {z: <A zx€ R(()Hs)m}, ¢; = min{all components of M*},
co = max{all components of M}, c3 = min{all components of M}.

It is obvious that A is a compact set on R(()Hs)m. Since M*, M > 0, it follows that

¢1,C2,c3 > 0. From (A.19), we can show that
Elg(X,)| Xom1 = a] < g() + g1(a), @ € RGT™, (A.20)

where maxze 4 g1(2) < Co(A), and Cy(A) is a constant not depending on z.

Let A > max{1/cy,1}. When z € A°,

c3A < 33 < g(x) < 1+ e < 2007 (A.21)
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Thus,

($®3)1M* Clj3 _ ¢y

= A.22
g(x) T 203 2cy’ ( )
and furthermore, since 1 + Z < 27 as ¢ € A°, we can show that
o) colo) € (A.23)
g(x) 3 T A

where C' is a positive constant not depending on z and A. By (A.19), and (A.22)-
(A.23), as x € AS,

Bly(X)I X1 =] < @)1 - o + ).

Provided 0 < ¢;1/4cs < k < ¢1/2¢5 and A > maz{l, 1/cy, C/(c1/2¢o — K)}, then
Elg(Xy)|Xi—1 = 2] < g(z)(1 — k). This completes the proof. O
Proof of Theorem 2.2. Obviously, X; defined as in (A.2) is a Markov chain

ym

with state space R(()T"Ls It is straightforward to prove that, for each bounded

continuous function g on RV ™™, E[g(X,)|X;_, = z] is continuous in z, that is,
{Xi} is a Feller chain. In a similar manner to Lemma A.3, in the following we
illustrate only that the conditions (A.11)-(A.13) are satisfied for k& = 3.

From Lemmas A.2 and A.3, we know that there exists a vector M > 0, a compact

set A= {z: 2 = (2™ 2,)3 < A} € RU™™ and £ > 0 such that the function

defined by g(z) = 1 + (z®3)' M satisfies
Elg(X,)| X1 = 2] < g(z) + g1 (2), = € R{T™ (A.24)
and
Elg(Xy)| X1 =2] < (1 —k)g(x), © € A, (A.25)

where max,e4 g1(z) < Cp, and Cy, k and A are positive constants not depending
on .
Since g(x) > 1, it follows that E[g(X:)|X;—1 = z) < g(x) — k. By Lemma A.1,

there exists a o-finite invariant measure p for P with 0 < p(A) < occ.

24



Denote co = max{all components of M} and c3 = min{all components of M}.
From (A.24), as z € A, it is easy to show that
(r+s)m

Elg(X)|Xpn=12] < 14e( Y} )’ +a(@)

i=1
< Al < 09,

where A; is a constant not depending on z. Hence,

/ da:{/ (z,dy)g(y)}

< /A 1(dz) Blg(X3)| Xoer = 2] < Avp(A) < oo

This shows that { X;} has a finite invariant measure u, and hence 7 = u/u(R; (r+s)m ™
is an invariant probability measure of { X;}, that is, there exists a strictly stationary
solution satisfying (A.2), still denoted by X;.

Let f(z) be the function on RT ™™ defined by f(z) = c3x(XV 9™ 2;)3. Then,
by (A.25), as x € A, we have

/ACP(%dy)g(y) < Elg(X,)| Xy = ]

< g9(7) — Kg(z) < g(x) — f(2).

By Lemma A.1(3), we know that E[f(X,)] = cskE[(X5T9™ 24)3] < oo, where 7
is the stationary distribution of {X;}, where z;; is the i-th component of X;. Thus,
Eq|leot||® < oo, where m; are the stationary distributions of {eo;}. Now, since
Eq|l0t||® < oo, it is easy to show that E,,||Y;||® < oo, where 7, is the stationary
distribution of Y;.

By Hélder’s inequality, By ||eo|/? < (Enr,|le0e]|?¥)* < co. Similarly, we have
E.||Yi||> < oo. Thus, {Y;, 0} is a second-order stationary solution of models (2.4)-
(2.5). Furthermore, by Theorem 2.1, the solution {Y}, &g} is unique and ergodic.
Thus, the process {Y;, eo;:} satisfying models (2.4)-(2.5) has a finite 2kth moment.

This completes the proof. O
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B APPENDIX: PROOFS OF RESULTS IN SEC-
TIONS 3-5

Proof of Theorem 3.1. The proof is similar to that of Theorem 4.2.1 in Amem-
ina (1985), except that the Kolmogorov law of large numbers is replaced by the
ergodic theorem. This completes the proof. O

Proof of Lemma 4.1. Note that
~ O O
At(o_éy

where A is defined as in (A.5), B = Box Bos
Ins—1) Om(s—1)xm

matrix A > the matrix B” means that each component of A is larger than or equal

), and here "the

to the corresponding component of B. Thus, we have
ﬁt(g_g>- (B.1)

By Assumption 3, p(A) < 1, and hence 3¢ , A’ converges to a finite limit as & — oo.
By (B.1), ¥ , B also converges to a finite limit as k¥ — oo, and hence p(B) < 1,
which is equivalent to all the roots of |I,, — >¢_, B;L!| = 0 lying outside the unit
circle. This completes the proof. O

In the following, we prove Lemmas 4.2-4.4 and 4.6 and Theorem 4.1 only for
models (2.4)-(2.5). The proofs for models (2.8)-(2.9) and (2.10)-(2.11) are similar
and simpler, and hence are omitted.

Proof of Lemma 4.2. First, by (3.2),

Oes
oy’

& = W(L) BV - p), ok =N D)[-B(1), X1 ® L), (B.2)

where X; 1 = (Y, —u/,---,Y) o1 — u’,sf_l,---,sf_qﬂ), and the above vector
differentiation follows rules in Liitkepohl (1993, Appendix A). Denote U; = 0e§/0¢’
and V; = [—®(1), X;—1 ® I,,]. Then

Ut + \I’1Ut71 +---+ ‘IJqUt,q = V;g (B.3)

26



If Ui, = 0 as., then Vic, = 0 a.s.. Let ¢; be the vector consisting of the first m
elements of c,, while ¢, is the vector consisting of the remaining elements of c,.
Then —®(1)c; + (X;—1 ®I,)ca = 0. Since X;_1 is not degenerate, (X;_ 1 ® I;y)ce = 0
and ®(1)c; = 0. By Assumption 1, ®(1) is of full rank, and hence ¢; = 0. By
Assumption 2, we can show that ¢, = 0. Thus, ¢, = 0.

Next, by (3.3),

Hf = (In =Y B;L) "W+ (3 ALY, (B.4)
=1 =1
OH¢ s . N
85; = (In — Y. BL"Y (I, H_, ® I,), (B.5)
=1

where HE | = (& ,,---,&" ,HE |-+, HE ). Denoting Uy, = 0HF/96' and Vi, =

(I, ijffl ® Ip,), we have the following recursive equation:
Ui = BiUyp—1 + -+ - + BsUrp—s + Var. (B.6)

If Ujie = 0 a.s., then Vi;e = 0 a.s.. By Assumptions 3-4, in a similar manner to
Vic, = 0, we can conclude ¢ = 0 (also refer to the proof of Proposition 3.4 in
Jeantheau (1998)). This completes the proof. O

Proof of Lemma 4.3. As the parameter space © is compact, all the roots of
®(L) lie outside the unit circle, and the roots of a polynomial are continuous func-
tions of its coefficients, there exist constants cy,c; > 0 and 0 < p < 1, independent
of all A € ©, such that

o
leill < co+ e ) e'lViil| = . (B.7)
1=0

Thus, Esup,ce |€§|[* < oo by Theorem 2.1. Note that, by Assumption 3, | D{L Df|
has a lower bound uniformly over ©. We have E sup,.o[ef (D{T'Df)'§] < co. By
Assumption 3 and Lemma 4.1, we can show that
0 .
IH < e2tes ) dilVeil|* = e, (B.8)
=1
where co,c3 > 0 and 0 < p; < 1 are constants independent of all A € ©. Thus,

Esup,ce ||Hf|| < 0o, and hence Esup,.q |D{I'Dj| < co. By Jensen’s inequality,
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Esupyce In|DTDE|| < oco. Thus, E|lf(A)] < oo for all A € ©. Let g(Yy,\) =
lf — Elf, where Y, = (Y},Y;4,---). Then Esup,.¢ |g9(Y,;,A\)| < oo. Further-
more, since g(Y,, ) is strictly stationary with Eg(Y,,A) = 0, by Theorem 3.1,
SupPyeo P 01 9(Yy, A)| = 0p(1). This completes the proof. O

Proof of Lemma 4.4. First,

—EIn | DI Dj| — Elef (DT D;)™"e]
= —En|DiTDf| — E[(f — o + o) (DT D;) " (€5 — €01 + €0r)]
= {~EWn|D{TDf| - Ele, (DT D5) ™ eo]}

—E[(e} — e0t) (DT D;) ™ (ef — €0)] = L1(A) + La(). (B.9)

Ly () obtains its maximum at zero, and this occurs if and only if €f = ;. Thus,

Oeg
oy’

g5 — eor = (o — o) =0. (B.10)

p*
By Lemma 4.2, we know that equation (B.10) holds if and only if ¢ = ¢y.
Li(\) = —En|DIDY| — EBtr(M,)

= —[—E ln |Mt| + EtT(Mt)] - Eln |DOtFODOt|a (B.].].)

where M, = (D{T' D{)~*/?(Dy,TgDy,;)(D{T'DS)~Y/2. Note that, for any positive defi-
nite matrix M, —f(M) = —In |M|+trM > m (see Lemma A.6 in Johansen (1995)),

and hence

When M, = I,,,, we have f(M;) = f(I,,) = —m. If M, # I,,,, then f(M;) < f(I,), so
that Ef(M;) < Ef(I,) with equality only if M; = I, with probability one. Thus,
Li(A) reaches its maximum —m — FEIn(Dy[yDy;), and this occurs if and only if
DiT'D; = Dy I'gDy;. From the definition of I', we have h;; = ho;:, and hence I' = I'y.
Note that

<
max L)) < max Li(\) + max La(N).
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maxyce L(A) = —m—FE In(Dy g Dy;) if and only if maxyce Lo(A) = 0 and maxce Ly
(A) = —m — Eln(Dyl'yDy;), which occurs if and only if ¢ = ¢y, I' = Ty and
hit = hoit. From ¢ = ¢y and hy = hg;, we have

. OH;
(B = Hot)l ey = 5tl(ous) (6 = 6) = 0 (B.13)

with probability one, where 0* lies between ¢ and Jy. By Lemma 4.2, (B.13) holds
if and only if 6 = &y. Thus, L(\) is uniquely maximised at Ag. This completes the
proof. O

Proof of Lemma 4.5. First, for any positive constant M,

ol
|— S X&I(|X) > M) < & = > IX(X] > M), (B.14)

tl tl

where I(-) is the indicator function. For any small €,k > 0, since E|X;| < oo, there

exists a constant M, such that

( Ztht (| X4 > My)| > n)

t 1

<25(l; > Xl (%] > M)
< O (332 irx > )

K t—1

C €
< — F - B.1
< [ laldF () < 5. (B-15)

where F'(x) is the distribution of X;. For such a constant My, by the given condition,

there exists a positive integer N such that, when n > IV,

P (% fjxtgtmxt\ < Mp)| > m> <P (% tg; &) > m/M0)> < g (B.16)

t=1
By (B.15) and (B.16),asn > N, P (|n"' ¥F; X;&| > 2k) < ¢, thatis,n™' Y7 | X;& =

0,(1). This completes the proof. O
Proof of Lemma 4.6. For convenience, let the initial values be Y; = 0 and
€o = 0. When the initial values are not equal to zero, the proof is similar. By

Assumption 1, €f and €, have the expansions:

t—1

= Z k(Y — 1), €0 =Y Tp(Yieg — 1), (B.17)
k=0 k=0
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where @ 1(L)U(L) = 22, Tx Lk, By (B.17),

e — &4l < f; 1Yk — pll (B.18)
where 0 < o1 < 1, and ¢; and p; are constants independent of the parameter A. By
Assumption 3 and Lemma 4.1, we have

H; ZFk[W—i— X:ALZ € il, He = ZFkW-i— X:ALZ &k, (B.19)
k=0 i=1 i=1
where (I, — Y, B;L) ! = Y2 T+ L*. By (B.19)
I — Bl < 3 db(er + ol i), (B.20)
where 0 < g < 1, and ¢y, c3 and g, are constants independent of the parameter \.
By (B.18) and (B.20), we have

Esup(e, — ei)? = O(0") and Esup |h, — hy| = O(0"), (B.21)
V) Y]

where i = 1,---,m, 0 < o < 1, and O(-) holds uniformly in all ¢. Since h;; has a

lower bound, by (B.21), it follows that

1 n
— > Esup|ln|D;I'D;| — In |D,I'Dy||
t=1 €O
= In [ =2
2 ! (hu) H

=1

t=1 A€EO

1 n
[ﬁ ZEsup

™11 hé, — hi

< ~N Esup | 2% —*

_izzl ni3 Aeg it ]
m 1 n

- oM |23 Esupl -
i=1 t=1 A€
m 1 n

=0(1) Y.~ 3-0(e) = o(1). (B.22)
i=1 v =1

Again, since h;, and h;; have a lower bound uniformly in all ¢, ¢ and A,

2 m

<>

=1

6

1 1

Vi hit

Eit
hzt

6§f + (&5 — ait)Q 0(1), (B.23)

>
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where O(1) holds uniformly in all ¢. We have

e (DT DE) g6 — EQ(DtFDt)’let‘

= [2¢f Df 'TH(Df el — Dy ley) — (e Df !t — gD, DD e — Dy ')

6

m 2 1/2 m 2
& Eit Eit
< 1t e O O 1
(Z\/h_ wz—) Il (Z h,-t>”
<> {1kl e |+t - low
S he "VRE VR
+> [||5§|| g5 — €it| + (€5, — 5it)2] 0(1)
=1
= O(l)th + O(l)RQt: (B.24)

where O(1) holds uniformly in all ¢ and the second inequality comes from (B.23).
By (B.7) and (B.21), it is easy to show that n~ ' Y7, sup,ce Ra = 0p(1). Thus,

it is sufficient to show that n= ' Y7, sup,co Rt = 0,(1). Let X; = ;2 and & =
he 12 h, 1/2|2

SUDyco , where ¢} is defined by (B.7). Then, X; is a strictly station-

ary and ergodic time series, with EX; < oo and |&| < C, a constant. Furthermore,
by (B.21),
- hy, — hy
— & = sup =
n ; n ;)\69 VA& hi (VRS + Vi)
1 i |hiy — hit (hiy + hzt)
T =1 Ae© hzthzt(v ¢+ Vhit)?

0(1)— Zsup By — h
PYC)
1 n

= 0(1)= ZOP(Qt) = op(1).

ny

IN

IA

By Lemma 4.5, n~! Y1 X¢SUPyeo

B 12 _ h—l/Q‘ = 0,(1). Similarly, we can show

that n=!' Y7 | X;sup,ce

RSP - 1/2‘ = 0p(1). Thus,

—Zsupth < Z{ Z[thup

N 321 A0 t=1 A€EO

he /2 h_w” } = 0,(1).

hS /2 h_l/Q‘

+ X, sup

This completes the proof. O
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Proof of Theorem 4.1. First, the space © is compact and )\ is an interior
point in ©. Second, L, () is continuous in A € O and is a measurable function of
Y;,t=1,---,nfor all A € ©. Third, by Lemmas 4.3-4.4, L (A\) —, L()) uniformly

in ©. From Lemma 4.6, we have

sup [Ln(A) = L(A)| < Sup 1L, (A) — L(A) | + sup Ly, (A) — Ly (A)] = 0,(1).

Fourth, Lemma 4.4 showed that L()\) has a unique maximum at \g. Thus, we have
established all the conditions for consistency in Theorem 4.1.1 in Amemiya (1985).
This completes the proof. O

Proof of Lemma 5.1. In the proof of Lemma 4.3, we have shown that
E sup,ce ||€6||? < 0o. With the same argument, it can be shown that E sup, g || (0§
/0p)||> < oco. Since D{T'DE has a lower bound uniformly for all A € ©, we have
Esup,ce || (05 /0p) (DT DS) " (025/0¢')|| < oo. Let ¢ be any constant vector
with the same dimension as . If ¢/E[(0sf /0p) (DT Ds) = (0e5/ d¢')]c = 0, then
d(0e¢ /0p) (DT DE) 1?2 = 0 a.s., and hence ¢'0cf /Op = 0 a.s.. By Lemma 4.2,
¢ = 0. Thus E[(0e /0¢)(DI' D)~ (9e5/0¢')] > 0. This completes the proof. O

Proof of Lemma 5.2. First,

olf e _ 10H¢

dp = oy D) ey 90 Di™*G, (B.25)
%fo ZB L)~ Z A;L)( g;t) (B.26)
% - éaff DG, (B.27)
glj _ ;61)%00( )VeC(F*1 ~-T'Df lstst DT, (B.28)
where &f = diag(e$;, -+ ,e5,), G = — G0 ns, I = (1,---,1)..1, and 7§ and 7§

are defined as in Lemma 5.3. When A\ = ), nf = 1y and, in this case, we denote (;
and 75 by (o and 75,, respectively.

For models (2.10)-(2.11),
(‘3H :

= -2 ZA S (B.29)
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Since |e57 ;| < hS,/oui; and oy > aly; >0, j=1,---,mand i =1,---,7, we have

3Ht De 2|| < 1ZZ| Jt— z| (B.30)

j=1li=1 Jt

Jjt— Z|

where k1 and ko are some constants independent of A\. Furthermore, since all the
terms in Ohy /08 appear in hS,, ||(OH{ /06) Di~%|| < M, a constant independent of
A. Since Eng;, < oo and E||{y||* < 00, it follows that Q < oco.

For models (2.4)-(2.5), since (B.25)-(B.26), E||Co||? < 0o, E||Y;||* < oo and Dy,
has a lower bound, we have

OH,

ol§ Oeg
EH OtHQ 0t||2

—EII D0t2||2E\ICot\I2 < 00.

Similarly, we can show that E||0l§,/04||* is finite. It is obvious that F||dI,/0c|* <
oo. Thus, we also have 2y < co. In a similar manner, it can be shown that 2y < oo
for models (2.8)-(2.9).

Let Sy = Y1, 0I5, /OA, where ¢ is a constant vector with the same dimension
as A. Then S, is a martingale array with respect to F;. By the given assump-
tions, ES, /n = ¢ E[0l§,/0\0l, /0N |c > 0. Using the central limit theorem of Stout
(1974), n~'/28, converges to N(0,c'Qc) in distribution. Finally, by the Cramér-
Wold device, n~'/2 37, 0I5, /O converges to N(0, ) in distribution.

In a similar manner to the proof of Lemma 4.6, we can show that

Z Hazgt azOt

Thus, n~ Y23 | 0ly;/OX converges to N(0,€) in distribution. This completes the

proof. O
Proof of Lemma 5.3. For models (2.10)-(2.11), from the proof of Lemma 5.2,

we have shown that
sup ||(OHF /ON)D{2|| < C < 0o with probability one,
V)

where C' is a nonrandom constant. Furthermore,

sup || Af]] < w1 |nf]|* < malle]]” < maer?,
A€O
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where ef is defined as in (B.7). Thus, Esup,.e |[(QHf /ON) D§2AD{~2(0HE /ON)||
< Q.

For models (2.8)-(2.9),

O0Hf " 0=
a(p/ _QZAZ € Za t/’

where £} is defined as in (B.26). Thus, with probability one,

aH; 8@ i

.| 0e¢
Di?|| < 122 ” || t||< zZZH

j=1li=1 j=1l1=1

15 I, (B.31)

where k1 and k9 are constants independent of A. Since all the components in 8H§' /06

also appear in D¢?, we have

OH{

a5 DIl < C < oo, (B.32)

sup 1

where C' is a nonrandom constant independent of A. By (B.31)-(B.32), it is easy to
show that, if E||Y;||* < oo, Esup,ee ||(DHf /ON)D§2AS D2 (OHS/ dN)|| < .
For models (2.4)-(2.5), since E||Y;]|® < oo,

6 3 3H€ (OH;
Esu CIAEDSE 2 t <CFE su ¢
AegH )\ M H PH 8)\'

where C' is a nonrandom constant independent of A. This completes the proof. O

Proof of Lemma 5.4. By direct differentiation of (B.25) and (B.27)-(B.28),

we have
27€
Ol _ R _R® _R®, (B.33)
ONON
where
RV = %t (perpg 1 % g LoH; peacpi2 28
o\ oN 4 9 oN
(3) _ (€ 9 865 € e\ —1
R = (ef ® m)ﬁvec l oY (DT Dy) ]

De 2 [ﬁsr lDe 1+A€D€ 1] gi\%

’

Kl lme De- 2} 19H;
2 9\



and A¢, A¢ and 7 are defined as in Lemma 5.3. By Lemmas 5.1 and 5.3, we have
E supycqo Rgl) < 00 and E'supycg R@ < o0o. Similarly, we can show that E'sup,.¢g

R® < co. Thus, by (B.33), Esup,ce ||025/0AON|| < co. Furthermore,

27€ e ) ) aHE/ a
s = G DT e DE i - oD
an; = _1 aHtel De—2 8§t
9600’ 2 98 b 9o’
a ! - =€ _
aj = (T @) I, ®T K,
62l§ 1 -1 el e e e 1
Oodo’ - 5’6 (F ® Im)[Im - (F Dt 1€y Dt ® Im)

—(I, @ TED e DE Y1, @ THK.

In a similar manner, it is straightforward to show that Esup,.g ||0%/0pd0’|| < oo,
Esup,g ||0%5/0600'|| < oo and Esup,eg ||0%l5/00d0'|| < oco. Finally, by the
triangle inequality, we can show that Esup,.g ||0%l{/0NON|| < oco. By Theorem
3.1, (a) holds. The proof of (b) is similar to that of Lemma 4.6, and hence the
details are omitted. This completes the proof. O

Proof of Lemma 5.5. By Lemmas 5.1 and 5.3, we know ||3y|| < oco. By
Lemma 5.4, we have ¥, = Xy + 0,(1).

Let ¢ be a constant vector with the same dimension as §. If ¢/ E[0HS,/00Dy,*0
H§,/06"|c = 0, then ¢ (0H,/06)Dy,? = 0 and hence ¢OHE, /05 = 0. By Lemma 4.2,
¢ = 0. Thus, E[0HS, /05Dy, 0HS, /068" > 0.

L5 Doz 0 c 1D g
0 P! C{ Im2/2 0 P

By the condition given, C' > 21I,,,. Thus, it is easy to show that ( g, 101/2 ) is
1 1Im?

positive by Theorem 14.8.5 in Harville (1997). Since P'P = K'(I';' ® I'y1)K and

Denote

E[0HS, /06 Dy,*0HS,/0d'] are positive, we know that 5 is positive.

E[%0 (Dg, Ty D) "1 22] 0 Y00 Sisoo
- = dp oy’ + ¥ 14
0 ( 0 0 DI
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where Yy = E [(Gﬂgé/agp)D&QCD&Z(GH&/BQD')] /4, Zpso0 = (Zps0; Zpo0), Lpso =
E [(0Hs,/0¢) Doy’ C Dy’ (0Hs,/06")] /4, Syo0 = E |(0Hg,/0) Do’ C1P/2. Let ¢ =
(c},ch)" be any constant vector with the same dimension as A, and let ¢; have the
same dimension as ¢, i.e. m + (p + ¢)m? for models (2.4)-(2.5) and (2.8)-(2.9),
and m for models (2.10)-(2.11). If —'Soc = 0, then ¢} E[(0gh,/0p)(DoLoDg;)
(0gg:/0¢")]cy = 0. By Lemma 5.1, ¢; = 0. Thus, ch¥s50co = 0. As we have shown
that s is positive definite, co = 0. Thus, —X; is positive definite. This completes
the proof. O

Proof of Lemma 5.6. We only present the proof for models (2.4)-(2.5). The
proofs for models (2.8)-(2.9) and models (2.10)-(2.11) are similar, except that (B.29)-
(B.30) are used to avoid the requirement of moments. In the following, ¢; and p; are

some constants independent of A, with 0 < p; < 1. By (B.2), we can show that

886 o0 .
|Ia(;|IS02+03Zp“1HE—iHEXu- (B.34)
=1

Since Xy, is a strictly stationary time series with FX? < oo, we have (see Chung,

1968, p.93)

Oe;
= 0,(1). B.35
ﬁf?%’zi‘gg“a@“ op(1) (B.35)

By (B.5), (B.7),(B.8) and (B.26), it follows that

OHf o
3; | <catesy pbl|Yisil|® = Xon. (B.36)
=1

sup ||
A€O
Since Xo; is a strictly stationary time series with EX2, < oo, we have

1 OH
— —t|| = 0,(1). B.37
\/ﬁgg%liggH a5 | = (1) (B.37)

In the following, (; is defined as in (B.27) and 7§ and 7§ are defined as in Lemma

€

5.3. Denote 75, 0y, ¢; and Dj by n%,, 15, Cae and Dy, respectively, when A = A,,.
By (B.35) and (B.37),

1 1/2 172, |€oit]
Mhie — Moitl < |€qi — €0itl —75 + it — hols th}Zd/g

nit 0it '“nat
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- 0e§
< Vna = Mo)lll—575—= max( t|| )
mé \/_ 1<t< ,\‘{n
el 7 s | )
h(l)/fhdé? \/ﬁ1<t<n 61/2 O\
= 0p(1) + 0p(1) Imost, (B.38)
where 0,(1) holds uniformly in all ¢, i =1,---,m, and A}, and A}, lie in between A,
and \,. From (B.38), we have
Gt = Corll = 755 5 — 70T 00|

< il 7oel 1105 = T
+2/[7ine — Toe 11175 moel | + 1175, — 7hoe|[*/| TG

= 0p(1) + 0p(1)] |0z, (B.39)

where 0,(1) holds uniformly in all ¢. By (B.37),

. . 1 Ok
~hail = IWAG = 30| max 5 s,

max |h ;!

1<t<n | Mt

= o(1), (B.40)
where A%, lies in between A\ and A,. By (B.39)-(B.40),

107 %Gne = Doy “Gorl | < 11057 = Do 1110l + D711/t — &ot

= 0p(1) + 0p(1)] |10t . (B.41)

By (B.41),

HDe 2Cnt€ntD;;2 - OtQCOtCOt 0t2||
-2 2 —2 2
< 2[|D5; %G — DGl D Coul| + 11Dy *Cne — Dl |

= 0p(1) + 0p(1)]|11g, I (B.42)

In a similar manner to (B.37), we can show that

P| 1Y = Xaa, (B.43)
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where ¢ = 1,---,m. By (B.42)-(B.43), we can show that

OHE, . ,OHS, OH} aH'
|| a)\tD 2§ntgnt nt aj\t_ a;t OtZCOtCOt OtH
OH¢, ,0Hg,  OH; aH'
< H a/\tDOtQCOtCOt 65\ a)?t COtCot Ot||
OH,
+|| axtHQ[Op(l)+0p(1)‘|770t”4]
OHS, OH|,  OH}
< 2|3 OtHH OtIHIDOtCOtCOt ot |
O\
OH, aH' oOHE,
+H—~t 0tH 105 Goroe Da’ || + |13 2 lop(1) + 0p(1) [170¢]I]
O\ )
m 8HI
f ()I|f ZXsnll 0t||||<0t||2
—= VR = o)l P Xaie) 1ot > + X551 + [[m0e]|*)0p(1)
\/_ =1
m 8H{)t
= op(1 [Zsttll I+ ZXsn + X5 (1 + (1m0l *)
= op(1 )X;‘(1+ Hth ), (B.44)

where O, (1) and 0,(1) hold uniformly in all ¢. Note that X; (1 + ||no:||*) is strictly
stationary, with E[X;(1 + ||nu||*)] = EX;E(1 + ||ne||*) < oo. By the ergodic
theorem, we have n™' 27 | X7 (1 + ||not||*) = O,(1). Thus, by (B. 44), we have

aH; o o OHF, € QH! o OH,
. Z || tD QCntCntD ? o\ - 85\07: o COtCOt ot a)\(,)tH Op(l)- (B'45)
Similarly, we can show that
Oe€
- nt De PDE - Ds PDe 1¥~nt
n tz:l H ) nt‘snt( ) 6(P
Oe¢ _ , _,0e
— a;t (Do:ToDot) *e0se0;(DosT Do) 16(;“ = 0,(1), (B.46)
and
o, ols, 0I5, Olf,
— = 0,(1). B.47
ntleao oo’ 8080’” o(1) ( )

Thus, by (B.45)-(B.47) and the triangle inequality, we can show that

oIe, 0lc, OIS,
n;”m axN DA ax” %(1):

(B.48)
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Thus, (a) holds. In a similar manner to the proof of Lemma 4.6, we can show that

13 OIS, Ol Ol Ol
a2y v o ol = o)

t=1

(B.49)

Note that (9l5,/0M)(0l5,/ON') is strictly stationary and ergodic with E||(9l§,/0N)
(015,/ON)|| < oo. By the ergodic theorem, we have n=' 37, |[(9l§,/ON) (I, /ON)|
= Qg + 0,(1). Furthermore, by (B.48)-(B.49), (b) holds. This completes the proof.
O

Proof of Theorem 5.1. We need only to verify the conditions of Theorem
4.1.3 in Amemiya (1985). First, by Theorem 4.1, the QMLE ), of )\, is consistent.
Second, n~ 'Y}, (012/ONON) exists and is continuous in ©. Third, by Lemmas
5.4-5.5, we can immediately obtain that n™' 37, (912,/0A0N') converges to Xy > 0
for any sequence )\,, such that A\, — Ag in probability. Fourth, by Lemma 5.2,
n~1/2 3" (dlg:/ON) converges to N (0, €)) in distribution. Thus, we have established
all the conditions in Theorem 4.1.3 in Amemiya (1985), and hence n'/2(\, —\) con-
verges to N (0,2, X, ). Finally, by Lemmas 5.5-5.6, 3y and €2 can be estimated

consistently by ¥, and €, respectively. This completes the proof. O
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