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Recursive Modelling of Symmetric and Asymmetric 
Volatility in the Presence of Extreme Observations 



 

Abstract 
 
This paper is concerned with recursive estimation, testing and forecasting of the asymmetric 

volatility of daily returns in Standard and Poor's 500 Composite Index and the Nikkei 225 

Index in the presence of extreme observations, or significant spikes in the volatility of daily 

returns.  For each of the two data sets, the empirical analysis increases the sample size up to 

12000 observations recursively to examine the effects of extreme observations on: (i) the 

Quasi Maximum Likelihood Estimates (QMLE) of the GARCH(1,1) and asymmetric 

GJR(1,1) parameters; (ii) the associated asymptotic and robust t-ratios of the QMLE; (iii) 

recursive statistical testing of the asymmetry parameter in GJR(1,1); (iv) the sufficient second 

and fourth moment conditions for consistency and asymptotic normality, respectively, of the 

QMLE of GARCH(1,1) and GJR(1,1); and (v) the forecast performance of the GARCH(1,1) 

and GJR(1,1) models for periods with significant spikes in volatility and for periods of 

relative calm. 

 

Keywords:  Outliers, extreme observations, time-varying volatility, symmetry, asymmetry, 

leverage, moment conditions, recursive modelling, structural change. 
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1  Introduction 

 

Given the importance of risk in economic and financial markets, and the use of volatility in 

evaluating risks, asymmetric shocks and leverage effects, it is not surprising that time-varying 

volatility has become an active area of research in finance in recent years.  Engle (1982) 

captured the time-varying nature of volatility by developing the autoregressive conditional 

heteroscedasticity (ARCH(p)) model.  Bollerslev (1986) generalized the ARCH model to 

GARCH (p, q), which has subsequently become the most popular model of time-varying 

symmetric volatility in practice.  The GARCH specification has several attractive features, 

namely the ability to accommodate key stylised facts of volatility in financial data, such as 

the persistence of volatility and volatility clusters, and leptokurtic data, as well as 

mathematical and computational simplicity. Glosten, Jagannathan and Runkle (1993) 

modified the GARCH(p,q) model to GJR(p,q) by accommodating the asymmetric responses 

of volatility to positive and negative shocks.  The ease of interpretation and application has 

also made the GJR(p,q) model very popular among financial practitioners. 

 

A number of important structural properties of the models and the asymptotic theory 

underlying a variety of estimation methods have recently been established for GARCH and 

GJR.  These theoretical developments provide a solid foundation for applying the various 

models in practice (see Li, Ling and McAleer (2002) for a survey of recent theoretical results 

associated with GARCH models). 

 

Extreme observations and outliers, or significant spikes in volatility, are commonly observed 

in high frequency financial time series.  Such observations can adversely affect the estimates 

of the parameters and forecasts of volatility.  Questions arise as to how these aberrant 
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observations should be accommodated in estimation, testing and forecasting.  In this paper, 

we investigate the optimal number of observations to be used from two large data sets that 

include extreme observations.  

 

Using the daily returns in Standard and Poor's Composite 500 Index (S&P 500) and the 

Nikkei 225 Index, the paper is concerned with recursive estimation, testing and forecasting of 

the symmetric and asymmetric volatility of daily returns in the presence of extreme 

observations.  The empirical analysis increases the sample size recursively up to 12000 

observations in order to examine the effects of extreme observations in the data on: (i) the 

Quasi Maximum Likelihood Estimates (QMLE) of the GARCH(1,1) and asymmetric 

GJR(1,1) parameters; (ii) the associated asymptotic and robust t-ratios of the QMLE of 

GARCH(1,1) and GJR(1,1); (iii) recursive statistical testing of the asymmetry parameter in 

GJR(1,1); (iv) the sufficient second and fourth moment conditions for consistency and 

asymptotic normality, respectively, of the QMLE of GARCH(1,1) and GJR(1,1); and (v) the 

forecast performances of GARCH(1,1) and GJR(1,1) for periods with significant spikes in 

volatility and for periods of relative calm. 

 

Several interesting results emerge from the empirical analysis, namely: expanding the sample 

size recursively and including an extreme observation does not necessarily improve the 

accuracy of predicting future extreme observations; the parameter estimates of the 

GARCH(1,1) and GJR(1,1) processes, their associated asymptotic and robust t-ratios, the 

second and fourth moment regularity conditions, and various forecast performance measures, 

are all highly volatile in small samples, but stabilise when an extreme observation is included 

in the estimation period at sample sizes in excess of 2000; increasing the sample size 

recursively beyond an extreme observation is unnecessary; the robust t-ratios are, in general, 
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dramatically superior to their asymptotic counterparts; the second moment condition is 

always satisfied in the case of S&P 500, but not so in the case of Nikkei 225;  if the 

conditional (or standardised) error is normal, the fourth moment condition is generally 

satisfied for S&P 500 but not for Nikkei 225; if the conditional error follows a fatter-tailed 

distribution such as the )5(t  distribution, the fourth moment condition is generally not 

satisfied; increasing the sample size recursively does not necessarily lead to the moment 

conditions being satisfied; increasing the sample size recursively does not necessarily lead to 

improved forecasts; the GARCH(1,1) and GJR(1,1) models are superior to the RiskMetrics 

model in forecasting volatility; and neither GARCH(1,1) nor GJR(1,1) dominates the other.  

 

The plan of the paper is as follows. Section 2 presents the structural properties of the 

GARCH(1,1) and GJR(1,1) models and the associated asymptotic theory.  Section 3 

describes the data.  The empirical estimates and forecasts are analysed in Section 4.  Some 

concluding remarks are given in Section 5. 

 

2 The Symmetric GARCH and Asymmetric GJR Models 

 

Both volatility models to be estimated are associated with a stationary AR(1) conditional 

means (for the logarithmic returns of the S&P 500 and Nikkei 225 Indexes) given by 

ttt yy εφµ ++= −1  ,  1<φ .       (1) 
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2.1 GARCH(1,1)  

 

For the GARCH(1,1) model, the conditional variance of the unconditional shock tε  is given 

by 

ttt hηε =            (2) 

1
2

1 −− ++= ttt hh βαεω          (3) 

where tη  is a sequence of normally, independently and identically distributed random 

variables with zero mean and unit variance.  Sufficient conditions for th  to be positive, and 

hence for the GARCH process to exist, are that 0>ω , 0≥α , and 0≥β .  The ARCH (or 

α ) effect indicates the short run persistence of shocks, while the GARCH (or β ) effect 

indicates the contribution of shocks to long run persistence (namely, βα + ).  

 

Several structural properties have been established for the GARCH(1,1) process in order to 

define the unconditional moments of tε .   The second moment of tε  exists, that is ∞<2
tEε , 

if 1<+ βα , which is sufficient to ensure that the GARCH(1,1) process is strictly stationary 

and ergodic (see Bollerslev (1986) and Ling and Li (1997)).  A sufficient condition for the 

existence of the fourth moment of tε  is 12 22 <++ βαβαk  (see Bollerslev (1986)), where 

k  is the conditional fourth moment of tη .  Under the assumption of conditional normality, 

3)( 4 =≡ ttEk η , so that the condition becomes  

123 22
)( <++≡ βαβαNGS .        (4)   

A common alternative assumption is that tη  is distributed according to the t distribution with 

4>ν  degrees of freedom, in which case )4/()2(3 −−= ννk , with 93 ≤≤ k .  In the extreme 

case 5=ν , the condition becomes  
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129 22
)( <++≡ βαβαtGS .        (5)   

More generally, Ling and McAleer (2002a) derived the necessary and sufficient conditions 

for the existence of all the moments of the GARCH(p,q) model.  

 

For the GARCH(1,1) model, Nelson (1991) obtained the necessary and sufficient log-

moment condition for strict stationarity and ergodicity as: 

.0))(ln( 2 <+ βαη tE          (6) 

A difficulty in applying the necessary and sufficient condition in (4) is that it is a function of 

a random variable and unknown parameters, and hence needs to be simulated or estimated.  

Unlike the second moment condition, the log-moment condition allows βα +  > 1, in which 

case ∞=2
tEε .  The condition for a finite variance of the GARCH(1,1) process is 1<+ βα  

and, as given above, the condition for finite fourth moment under normality is (4).  The 

fourth moment condition is clearly more stringent than its second moment counterpart, which 

in turn is stronger then the log-moment condition.  

 

In the absence of normality of tη , the parameters of the GARCH(1,1) model are typically 

estimated by the maximum likelihood method to obtain Quasi-Maximum Likelihood 

Estimators (QMLE).  Ling and McAleer (2002b) showed that the QMLE for GARCH(p,q) is 

consistent if the second moment of the unconditional shocks is finite.  For GARCH(p,q), 

Ling and Li (1997) demonstrated that the local QMLE is asymptotically normal if the fourth 

moment of the unconditional shocks is finite, while Ling and McAleer (2002b) proved that 

the global QMLE is asymptotically normal if the sixth moment is finite.  
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2.2 GJR(1,1)  

 

For the GARCH model, positive shocks are assumed to have the same effect on conditional 

volatility as negative shocks. In order to accommodate asymmetric behaviour, the GJR(1,1) 

model incorporates a stochastic indicator variable 1−tI  in the conditional variance equation, as 

follows:  

1
2

11 )( −−− +++= tttt hIh βεγαω         (7) 

where 1−tI  takes the value 1 when 01 <−tε , and 0 otherwise.  The indicator variable 

differentiates between positive and negative shocks, so that asymmetric effects in the data are 

captured by γ , with 0>γ .  The asymmetric effect, γ , measures the contribution of shocks 

to both short run persistence, 
2
γα + , and long run persistence, 

2
γβα ++ .  

 

Ling and McAleer (2002c) established the sufficient conditions for the second moment of tε  

(under symmetry of the standardised shock) and fourth moment of tε  to exist as 

1
2

<++
γβα  and 1

2
2

2
22 <+++++

γαγβγβαβα kkk , respectively.  If it is assumed that 

tη  is distributed as )1,0(N , the fourth moment condition becomes 

 1
2

3323
2

22
)( <+++++≡

γαγβγβαβαNGJRS .      (8)   

However, if tη  is distributed as )5(t , then the fourth moment condition is given as 

 1
2

9929
2

22
)( <+++++≡

γαγβγβαβαtGJRS .       (9)   
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These conditions make it clear that the admissible region of ),( βα  for second- and fourth-

order stationarity of the asymmetric GJR(1,1) model is smaller than that for its symmetric 

GARCH(1,1) counterpart, as the asymmetry of the model increases its uncertainty.  

 

Although the regularity conditions for the existence of moments for the GJR model are now 

known, there are as yet no theoretical results regarding the statistical properties of the model.  

In practice, it is assumed that the QMLE are consistent and asymptotically normal. 

 

3 Data 

 

The daily closing values of the S&P 500 Index for the period 3 January 1950 to 5 May 1998, 

and of the Nikkei 225 Index for the period 10 May 1951 to 22 April 1998, were extracted 

from the Datastream database.  The daily return for each index was calculated as the ratio of 

the close-to-close change in the index to the previous trading day’s close. 

 

These two indexes were chosen for the availability of daily observations over an extended 

period.  The sample period for each index was chosen such that each series has 12000 

observations covering approximately the same time period as the other.  The long sample 

periods include many significant spikes in the volatility of each set of daily returns, as well as 

many episodes of relative calm.  An important date in the sample period is 19 October 1987 

in the USA, or 20 October 1987 in Japan, as this is when the largest volatility spikes for both 

series occurred1.  Consequently, this data set offers an invaluable opportunity to study the 

effects of extreme observations on the estimation, testing and forecasting of volatility over an 

extended period.   

                                                 
1 We shall henceforth refer to this observation by the US date of 19 October 1987. 
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Various subsets of the data are used for estimation, testing and forecasting.  In order to 

evaluate the effects of extreme observations on estimation, 12000 observations of each series 

are used, with the sample period for each series ending on 7 May 1997.  For the evaluation of 

forecasting performance, various measures based on one-period ahead forecasts over two 

separate “out-of-sample” periods are used, each consisting of 250 observations; the first of 

these, starting from 8 May 1997 for both series, includes some significant spikes in the 

volatility of daily returns, while the second, ending on 7 May 1997 for both series, is a period 

of relative calm.  

 

4 Empirical Results 

 

4.1 Estimation Results 

 

In order to evaluate the effects of increasing the sample size and including extreme 

observations, the GARCH(1,1) and GJR(1,1) models are estimated recursively.  In each set of 

estimates, the end observation of the sample is fixed at 7 May 1997.  For the S&P 500 series, 

the sample begins with 200 observations from 23 July 1996 to 7 May 1997, and is then 

expanded backward recursively until it reaches 12000 observations at 3 January 1950.  For  

Nikkei 225, the sample expands from the 200 observations over the period 1 August 1996 to 

7 May 1997 to the 12000 observations over the period 10 May 1951 to 7 May 1997. 

 

Figures 1A and 1B show the estimated values of the ARCH parameter α  of the GARCH(1,1) 

model as the sample size is increased recursively using the S&P 500 and Nikkei 225 data 
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sets, respectively2.  The actual volatility of the daily returns is shown in the lower half of each 

figure to indicate where the volatility spikes occur.  It is clear that the estimates of α  are 

highly volatile when the sample sizes are below 2400.  Significant spikes in the actual 

volatility correspond to huge variations in the estimates of α .  The most obvious feature 

common to both figures is the huge shift in the α  estimates with the 19 October 1987 spike 

in volatility, after which the variations in the α  estimates are much smaller in magnitude.  

Other notable features are the general U-shape in the middle of Figure 1A and the cyclical 

pattern in Figure 1B, both of which indicate that α  is not constant over time. 

 

Figures 2A and 2B present the asymptotic t-ratios, as well as the robust t-ratios of Bollerslev 

and Wooldridge (1992), for estimates of α  in the GARCH(1,1) model.  The robust t-ratios 

are designed to be insensitive to departures from normality, especially extreme observations. 

Both sets of t-ratios in each figure are somewhat erratic at small sample sizes and are more 

sensitive to extreme observations before the inclusion of the 19 October 1987 spike, but when 

the sample size exceeds 400 both t-ratios exceed the critical value for the null hypothesis that 

0=α .  The effects of significant spikes in volatility on the two sets of t-ratios are also 

dramatically different.  Each spike in volatility increases the asymptotic t-ratios but decreases 

the robust t-ratios, with the magnitudes of the shifts being far greater for the asymptotic t-

ratios.  It is worth noting the huge increase in the asymptotic t-ratios when the 19 October 

1987 spike is included.  In contrast, the impact of this extreme observation on the robust t-

ratios is barely visible.  

 

                                                 
2 Throughout the rest of the paper, the “A” figures represent results for S&P 500 and the “B” figures represent 
results for Nikkei 225.  
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Estimates of the GARCH parameter β  of the GARCH(1,1) model are given in Figures 3A 

and 3B.  These are virtually mirror images of the estimates of α , with the β  estimates 

moving in the opposite direction to those of α .  There is also much variability in the β  

estimates at sample sizes below 2400.  As the sample size is increased beyond 2400, Figure 

3A shows an inverted U-shape while Figure 3B shows a cyclical pattern.  The spikes in 

volatility also have larger impacts on the β  estimates when the sample size is small. 

 

Figures 4A and 4B show the t-ratios for the β  estimates in the GARCH(1,1) model.  Both 

the asymptotic and robust t-ratios in each of these figures show greater variability for sample 

sizes below 2500, prior to the inclusion of the 19 October 1987 spike in volatility.  After the 

inclusion of this extreme observation, both t-ratios become much smoother, especially the 

robust t-ratios.  Throughout all sample sizes, both t-ratios for each data set exceed the critical 

value for the null hypothesis that 0=β . 

 

The second moment condition for stationarity and consistency of the GARCH(1,1) model, as 

discussed above, is 1<+ βα .  Figures 5A and 5B show the value of the estimated βα + .  

Spikes in the volatility of returns have large impacts on this value when the sample size is 

below 2400.  For large sample sizes, and with the inclusion of the 19 October 1987 spike, this 

value is less volatile, but it is also not constant.  It is significant to note that the second 

moment condition is satisfied for all sample sizes in the backward recursions with the S&P 

500 data, but the same does not hold true with the Nikkei 225 data. 

 

Since the fourth moment condition for asymptotic normality is condition (4) when tη  is 

distributed as )1,0(N , and condition (5) when tη  is distributed as )5(t , Figures 6A and 6B 
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show the values of )( NGS  and )(tGS .  As discussed previously, )( NGS  is smaller and hence is 

more likely to be less than unity.  Its value in the recursions follows a pattern that is identical 

to that of the second moment condition, and is less than unity for most of the S&P 500 

sample, but is greater than unity for most of the Nikkei 225 sample.  While following the 

same pattern in fluctuations, )(tGS  is greater in value and exceeds unity for all sample ranges 

in both data sets that include the 19 October 1987 volatility spike. 

 

Figures 7A and 7B show the α estimates for the GJR(1,1) model having severe fluctuations 

at small sample sizes, with negative values occurring for sample sizes below 1400 

observations for both S&P 500 and Nikkei 225.  As in the GARCH(1,1) model, the 

fluctuations are less severe at  sample sizes above 2400, after the inclusion of the 19 October 

1987 volatility spike.  The estimated value of α  does not appear to be constant in this model. 

 

The graphs of the t-ratios for the α  estimates of the GJR(1,1) model in Figure 8A and 8B are 

dramatically different from those of their GARCH(1,1) counterparts.  Absent from both 

Figures 8A and 8B are the dramatic shifts in the asymptotic t-ratios when the 19 October 

1987 volatility spike is included.  Instead the figures show volatility spikes in the distant past 

having much larger impacts on the α  t-ratios, especially the asymptotic t-ratios, of the 

GJR(1,1) model.  Another significant difference is that the t-ratios do not exceed the critical 

value for the hypothesis that 0=α  until the sample size exceeds 2500 for both S&P 500 and 

Nikkei 225. 

 

The general pattern of the β  estimates of the GJR(1,1) model shown in Figures 9A and 9B 

are similar to those of the GARCH(1,1) model.  There are large fluctuations for sample sizes 

below 2400, but they disappear once the sample size expands beyond the inclusion of the 19 
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October 1987 observation.  The persistent variability of the β  estimates as the sample is 

expanded is also present in each of these two figures. 

 

In Figures 10A and 10B, the graphs of the t-ratios for the β  estimates of the GJR(1,1) model 

are almost identical to those of the GARCH(1,1) models in Figures 4A and 4B, except when 

the sample size is below 1000.  Both t-ratios are volatile for small sample sizes, especially 

with the Nikkei 225 data, but are less so when the samples are expanded beyond the 19 

October 1987 extreme observation. 

 

Figures 11A and 11B display the asymmetry, or γ , estimates of the GJR(1,1) model.  In both 

cases, large fluctuations in the estimates of γ  are observed for small sample sizes.  When the 

samples exceed 2500 observations, the fluctuations are greatly reduced, but the estimated 

values of γ  continue to change over time. 

 

The graphs of the t-ratios for the γ  estimates of the GJR(1,1) model in Figures 12A and 12B 

show volatility spikes having significantly different impacts on the two t-ratios.  Each 

extreme observation has a large and positive impact on the asymptotic t-ratio, but a smaller 

and negative impact on its robust counterpart.  While the asymptotic t-ratios always exceed 

the critical value for the null hypothesis that 0=γ  when the sample size exceeds 500, the 

robust t-ratios do not always exceed the same critical value. 

 

The results of testing the second moment condition for the GJR(1,1) model, as shown in 

Figures 13A and 13B, are very similar to those for the GARCH(1,1) model.  The second 

moment condition requires 1
2

<++
γβα .  Figure 13A show that the estimate of 

2
γβα ++  
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for S&P 500 is volatile for small sample sizes, more stable for large sample sizes, and does 

not exceed unity at any stage.  The estimates for Nikkei 225 show a similar tendency to be 

volatile for small sample sizes, but they differ in that the second moment condition is not 

always satisfied. 

 

Figures 14A and 14B show the values of )(NGJRS  and )(tGJRS , which are required to be less 

than unity by conditions (8) and (9), respectively.  With S&P 500, both )(NGJRS  and )(tGJRS  

are very volatile for small sample sizes, but much less volatile for samples with more than 

2500 observations.  Moreover, )(NGJRS  does not exceed unity for most sample sizes, except 

for some sample sizes between 8000 and 9000 observations, while )(tGJRS  exceeds unity for 

all sample sizes above 2500 observations.  With Nikkei 225, there is also greater volatility in 

both )(NGJRS  and )(tGJRS  when the sample size is small, and significant increases in the values 

of )( NGJRS  and )(tGJRS  when there is a large volatility shock.  The values of )(NGJRS  and )(tGJRS , 

however, both exceed unity for most sample sizes.   

 

4.2 Forecasting Results 

 

In order to evaluate the effects of increasing sample sizes and including extreme observations 

on the forecast performance of the GARCH(1,1) and GJR(1,1) models, similar backward 

recursions are used.  For each model, two sets of forecasts are performed.  In the first set of 

forecasts, the forecast period is the 250 trading days starting from 8 May 1997, which 

includes an extreme observation at 27 October 1997.  Estimation of the parameters to obtain 

these forecasts is in the same manner as the backward recursions explained above, with 

sample sizes ranging from 200 observations to 5000 observations.  For each sample size, 250 
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one-day ahead forecasts are made, covering the period 8 May 1997 to 5 May 1998 in the case 

of S&P 500, and the period 8 May 1997 to 22 April 1998 in the case of Nikkei 225.  The 

prediction errors from these 250 forecasts are then combined in three measures of forecast 

performance, namely mean absolute prediction error (MAPE), mean absolute percentage 

prediction error (MAPPE), and root mean square prediction error (RMSPE). 

 

The forecast performance measures of the GARCH(1,1) model for the 250 days starting from 

8 May 1997 are graphed in Figures 15A to 17B.  Not surprisingly, MAPE and MAPPE show 

very similar patterns.  They both vary substantially for small sample sizes and both reach 

their respective minima at sample sizes below 2500.  The effect of including the 19 October 

1987 extreme observation is to increase both measures substantially, and then to stabilise at 

higher levels.  This leads to the important and useful conclusion that expanding the sample 

size for estimation by including an extreme observation does not necessarily improve the 

accuracy of predicting future extreme observations.  This conclusion applies to both the S&P 

500 and Nikkei 225 data sets. 

 

Figures 17A and 17B show that RMSPE is also highly volatile for small sample sizes.  Again, 

the inclusion of the 19 October 1987 observation spike leads to a deterioration in forecast 

performance, especially in the case of Nikkei 225.  There does, however, seem to be 

increased stability in forecast performance after the volatility spike. 

 

The second set of forecasts is for the 250-trading day period ending on 7 May 1997, which 

does not contain any large spikes in the volatility of returns.  The same backward recursion 

procedure is used for estimation, with the samples for estimation recurring backwards from 2 
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May 1996.  The same three procedures for averaging of one-day ahead forecasts are also used 

to obtain the forecast performance measures.   

 

Figures 18A and 18B show that MAPE for the GARCH(1,1) model is relatively stable and 

reaches its minimum at a small sample size, namely about 850 for S&P 500, and 350 for 

Nikkei 225.  The inclusion of the 19 October 1987 extreme observation spike shifts up both 

trends and smoothes them, so that the inclusion of extreme observations in the estimation 

period does not necessarily help in prediction for a relatively calm period. 

 

Figures 19A and 19B show that MAPPE reaches its minimum at the same sample size as the 

MAPE measure, but is more volatile, especially at sample sizes below 1000.  Again, the 

effect of including the 19 October 1987 extreme observation in the estimation sample is to 

shift the measure up, more so in the case of Nikkei 225. 

 

Figures 20A and 20B for RMSPE show a less consistent pattern, with RMSPE for S&P 500 

and for Nikkei 225 reacting differently to the 19 October 1987 observation spike.  With the 

inclusion of this extreme observation, RMSPE for S&P 500 stabilises and commences on a 

slight but clear downward trend, while RMSPE for Nikkei 225 shifts up and stabilizes at a 

relatively constant level. 

 

Figures 21A to 23B show the forecast performances of the GJR(1,1) model for the forecast 

period beginning on 8 May 1997.  All three measures achieve their respective minima at very 

low sample sizes of around 300 observations.  These, however, are not indicative of the 

forecast performances over other small sample ranges.  In fact, all three measures are highly 

volatile when sample sizes are below 2500 observations.  The major impact of including the 
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19 October 1987 volatility spike on each of the three measures is to reduce the fluctuations 

significantly.  The other important point to note is that the forecast performance measures 

stabilise at higher levels when the sample sizes increase beyond 2500 observations. 

 

The forecast performances of the GJR(1,1) model for the relatively calm forecast period 

ending on 7 May 1997, as shown in Figures 24A to 26B, are also highly volatile for small 

sample sizes.  The three measures for S&P 500 exhibit significantly different trends as 

sample sizes are increased.  In Figures 24A and 25A, MAPE and MAPPE both reach their 

respective minima at around 1000 observations, while RMSPE in Figure 26A follows a 

general downward trend.  The performance measures for Nikkei 225, however, are closer to 

each other. 

 

While the 19 October 1987 volatility spike reduces the fluctuations of all three measures, it 

affects the trends differently.  The inclusion of this extreme observation shifts up MAPE for 

both S&P 500 and Nikkei 225, as well as MAPPE for Nikkei 225, but not the other measures.   

 

Comparing each forecasting performance graph for the GARCH(1,1) model in Figures 15A 

to 20B against the corresponding graph for the GJR(1,1) model in Figures 21A to 26B, it is 

not straightforward to determine which model is superior.  In order to examine the results 

more closely, forecast performance measures for 250 one-day ahead forecasts, based on a 

fixed sample size of 5000, are given in Table 13.  Moreover, the RiskMetrics procedure4 is 

used to calculate the corresponding forecast performance measures over the same period to 

serve as a benchmark. 

                                                 
3 Comparisons of forecast performance based on sample sizes of 1000, 2000, 3000, and 4000 are also available, 
with the results being qualitatively similar to those reported in Table 1. 
4 Explained in Kim and Mina (2001), pp. 8-10. 
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[Insert Table 1 here] 

 

The much smaller values in the GARCH(1,1) and GJR(1,1) columns in Table 1, as compared 

with the corresponding values in the RiskMetrics column, indicate that the GARCH(1,1) and 

GJR(1,1) models perform much better than the RiskMetrics benchmark.  Comparing 

GARCH(1,1) against GJR(1,1), the two models perform equally well, with neither model 

being consistently better than the other.  The GJR(1,1) model generally appears to perform 

better with the S&P 500 data, whereas the GARCH(1,1) model is better in some cases with 

Nikkei 225. 

 

5 Concluding Remarks 

 

This paper has investigated the effects of increasing sample sizes recursively, both with and 

without the inclusion of extreme observations, on the parameter estimates, t-tests, moment 

conditions and forecasts of the GARCH(1,1) and GJR(1,1) models, using S&P 500 and 

Nikkei 225 data.  The results indicate that for these sets of data, the ARCH and GARCH 

parameter estimates, their asymptotic and robust t-ratios, the second and fourth moment 

regularity conditions, and various forecast performance measures for both models, are all 

highly volatile for small sample sizes.  However, when an extreme observation is included in 

the estimation period for sample sizes above 2000, all the sample estimates and their 

associated statistics seem to stabilise.  An important implication of these results is that 

increasing the sample sizes recursively beyond the extreme observation is unnecessary. 
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Another important result is that the robust t-ratios are dramatically superior to the asymptotic 

t-ratios, especially in the presence of high volatility in the returns.  The second moment 

condition for stationarity is always satisfied for both the GARCH(1,1) and GJR(1,1) models 

in the case of S&P 500, but not so in the case of Nikkei 225.  Similar results hold for the 

fourth moment condition for asymptotic normality under the assumption of normality of the 

conditional errors.  For S&P 500, this condition is generally satisfied for both models, but for 

Nikkei 225, the same condition is usually violated.  If it is assumed that the conditional error 

follows a fatter-tailed distribution such as )5(t , then the fourth moment condition is generally 

not satisfied for both models and both data sets when an extreme observation such as 19 

October 1987 is included, regardless of the sample sizes used.   

 

For most measures of forecasting performance, the inclusion of an extreme observation in the 

sample used for estimation leads to a marked deterioration in forecasting performance of both 

models, especially if the forecasting period is volatile.  Increasing the sample sizes 

recursively does not necessarily improve the forecasting performance of either model.  Both 

the GARCH(1,1) and GJR(1,1) models show superior forecasting performance to the 

RiskMetrics model.  In choosing between the two models, however, superiority in forecasting 

performance depends on the data set used. 
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Table 1: Comparison of forecast performance measures 
 

Model 
Sample Forecast 

Measure GARCH(1,1) GJR(1,1) RiskMetrics 

MAPE 0.000139 0.000132 0.001950 

MAPPE 289 251 3924 

S&P 500  

8 May 1997 to 
5 May 1998 RMSPE 0.000379 0.000375 0.001959 

MAPE 0.000068 0.000068 0.001938 

MAPPE 11879 11598 335336 

S&P 500  
3 May 1996 to 
7 May 1997 RMSPE 0.000113 0.000113 0.001941 

MAPE 0.000318 0.000321 0.002181 

MAPPE 467692 533934 2912579 

Nikkei 225  

8 May 1997 to 
22 April 1998 RMSPE 0.000587 0.000589 0.002215 

MAPE 0.000172 0.000170 0.002179 

MAPPE 40485 48686 834564 

Nikkei 225  

23 May 1996 
to 7 May 1997 RMSPE 0.000275 0.000268 0.002197 

 

Note: Each model uses 5000 observations to obtain 250 one-day ahead forecasts covering 

the periods indicated.  The prediction errors from these 250 forecasts are combined to 

form three measures of forecast performance, namely mean absolute prediction error 

(MAPE), mean absolute percentage prediction error (MAPPE), and root mean square 

prediction error (RMSPE). 
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Figure 1A: α Estimates of GARCH(1,1)
S&P 500
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Figure 1B: α Estimates of GARCH(1,1)
Nikkei 225

0

0.05

0.1

0.15

0.2

0.25

20
0

10
00

18
00

26
00

34
00

42
00

50
00

58
00

66
00

74
00

82
00

90
00

98
00

10
60

0

11
40

0

Number of Observations

Al
ph

a

0

0.01

0.02

0.03

Ac
tu

al
 V

ol
at

ilit
yAlpha

Volatility

 
 

Figure 2A: α t-ratios of GARCH(1,1)
S&P 500
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Figure 2B: α t-ratios of GARCH(1,1)
Nikkei 225
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Figure 3A: β Estimates of GARCH(1,1)
S&P 500
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Figure 3B: β Estimates of GARCH(1,1)
Nikkei 225
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Figure 4A: β t-ratios of GARCH(1,1)
S&P 500
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Figure 4B: β t-ratios of GARCH(1,1)
Nikkei 225
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Figure 5A: Second Moments for GARCH(1,1)
S&P 500
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Figure 5B: Second Moments for GARCH(1,1)
Nikkei 225
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Figure 6A: Fourth Moments for GARCH(1,1)
S&P 500
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Figure 6B: Fourth Moments for GARCH(1,1)
Nikkei 225
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Figure 7A: α Estimates of GJR-GARCH(1,1)
S&P 500
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Figure 7B: α Estimates of GJR-GARCH(1,1)
Nikkei 225
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Figure 8A: α t-ratios of GJR-GARCH(1,1)
S&P 500
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Figure 8B: α t-ratios of GJR-GARCH(1,1)
Nikkei 225
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Figure 9A: β Estimates of GJR-GARCH(1,1)
S&P 500
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Figure 9B: β Estimates of GJR-GARCH(1,1)
Nikkei 225
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Figure 10A: β t-ratios of GJR-GARCH(1,1)
S&P 500
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Figure 10B: β t-ratios of GJR-GARCH(1,1)
Nikkei 225
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Figure 11A: γ Estimates of GJR-GARCH(1,1)
S&P 500
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Figure 11B: γ Estimates of GJR-GARCH(1,1)
Nikkei 225
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Figure 12A: γ t-ratios of GJR-GARCH(1,1)
S&P 500
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Figure 12B: γ t-ratios of GJR-GARCH(1,1)
Nikkei 225
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Figure 13A: Second Moments for GJR-GARCH(1,1)
S&P 500
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Figure 13B: Second Moments for GJR-GARCH(1,1)
Nikkei 225
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Figure 14A: Fourth Moments for GJR-GARCH(1,1)
S&P 500
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Figure 14B: Fourth Moments for GJR-GARCH(1,1)
Nikkei 225
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Figure 15A: GARCH(1,1) Forecast Performance 
for 8/5/97 to 5/5/98 (including October 1997) 
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Figure 15B: GARCH(1,1) Forecast Performance 
for 8/5/97 to 22/4/98 (including October 1997)
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Figure 16A: GARCH(1,1) Forecast Performance 
for 8/5/97 to 5/5/98 (including October 1997)

S&P 500

150

200

250

300

350

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

Number of Observations

M
AP

PE

0

0.01

0.02

0.03

0.04

0.05

0.06

Ac
tu

al
 V

ol
at

ilit
y

MAPPE

Volatility

Figure 16B: GARCH(1,1) Forecast Performance 
for 8/5/97 to 22/4/98 (including October 1997)
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Figure 17A: GARCH(1,1) Forecast Performance 
for 8/5/97 to 5/5/98 (including October 1997)
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Figure 17B: GARCH(1,1) Forecast Performance 
for 8/5/97 to 22/4/98 (including October 1997)

Nikkei 225

0.000570

0.000575

0.000580

0.000585

0.000590

0.000595

0.000600

0.000605

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

Number of Observations

R
M

SP
E

0.00

0.01

0.01

0.02

0.02

0.03

0.03

Ac
tu

al
 V

ol
at

ilit
y

RMSPE

Volatility

 
 

Figure 18A: GARCH(1,1) Forecast Performance 
for 3/5/96 to 7/5/97 (excluding October 1997)
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Figure 18B: GARCH(1,1) Forecast Performance 
for 23/5/96 to 7/5/97 (excluding October 1997)
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Figure 19A: GARCH(1,1) Forecast Performance 
for 3/5/96 to 7/5/97 (excluding October 1997)
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Figure 19B: GARCH(1,1) Forecast Performance 
for 23/5/96 to 7/5/97 (excluding October 1997)
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Figure 20A: GARCH(1,1) Forecast Performance 
for 3/5/96 to 7/5/97 (excluding October 1997)
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Figure 20B: GARCH(1,1) Forecast Performance 
for 23/5/96 to 7/5/97 (excluding October 1997)
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Figure 21A: GJR-GARCH(1,1) Forecast Performance 
for 8/5/97 to 5/5/98 (including October 1997)
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Figure 21B: GJR-GARCH(1,1) Forecast Performance 
for 8/5/97 to 22/4/98 (including October 1997)
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Figure 22A: GJR-GARCH(1,1) Forecast Performance 
for 8/5/97 to 5/5/98 (including October 1997)
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Figure 22B: GJR-GARCH(1,1) Forecast Performance 
for 8/5/97 to 22/4/98 (including October 1997)
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Figure 23A: GJR-GARCH(1,1) Forecast Performance 
for 8/5/97 to 5/5/98 (including October 1997)
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Figure 23B: GJR-GARCH(1,1) Forecast Performance 
for 8/5/97 to 22/4/98 (including October 1997)
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Figure 24A: GJR-GARCH(1,1) Forecast Performance 
for 3/5/96 to 7/5/97 (excluding October 1997)
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Figure 24B: GJR-GARCH(1,1) Forecast Performance 
for 23/5/96 to 7/5/97 (excluding October 1997)
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Figure 25A: GJR-GARCH(1,1) Forecast Performance 
for 3/5/96 to 7/5/97 (excluding October 1997)
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Figure 25B: GJR-GARCH(1,1) Forecast Performance 
for 23/5/96 to 7/5/97 (excluding October 1997)
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Figure 26A: GJR-GARCH(1,1) Forecast Performance 
for 3/5/96 to 7/5/97 (excluding October 1997)
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Figure 26B: GJR-GARCH(1,1) Forecast Performance 
for 23/5/96 to 7/5/97 (excluding October 1997)
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