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Abstract 

Although the GARCH model has been quite successful in capturing important empirical 

aspects of financial data, particularly for the symmetric effects of volatility, it has had far less 

success in capturing the effects of extreme observations, outliers and skewness in returns. 

This paper examines the GARCH model under various non-normal error distributions in 

order to evaluate skewness and leptokurtosis. The empirical results show that GARCH 

models estimated using asymmetric leptokurtic distributions are superior to their counterparts 

estimated under normality, in terms of: (i) capturing skewness and leptokurtosis; (ii) the 

maximized log-likelihood values; and (iii) isolating the ARCH and GARCH parameter 

estimates from the adverse effects of outliers. Overall, the flexible asymmetric Student-t 

distribution performs best in terms of capturing the non-normal aspects of the data. 

 

Keywords: Asymmetric volatility, Conditional non-normality, Skewness, Leptokurtosis, 

Outliers, Location parameter.  
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1.  Introduction 

 

In finance, knowledge of the stochastic process underlying asset returns is essential for 

making correct investment decisions as it provides essential information about the riskiness 

of assets. The key underlying assumption of most financial models, such as the Black-

Scholes option pricing model (BSM) and the capital asset pricing model (CAPM), is that the 

(logarithmic) returns are independently and identically distributed (i.i.d.) normal variates.  

 

Unfortunately, the i.i.d. assumption about empirical returns underlying these financial models is 

typically not satisfied as financial returns are not, in general, normally distributed. Even if the 

underlying returns were normally distributed, the returns of portfolios that use dynamic 

strategies or include options on these assets will not be [13].  Furthermore, investors view upside 

and downside risks differently, with a preference for positively skewed returns, implying that 

more than the first two moments of returns may be priced in equilibrium.  In short, the basic 

assumption of normality is highly suspect.  

 

A pervasive temporal feature of asset price movements is the conditional dependency in the 

second moment. Such conditional dependency has been widely established through 

generalised autoregressive conditional heteroskedasticity (GARCH(p,q)) models [1].   

Although these models generate reasonable amounts of excess kurtosis for high frequency 

(e.g. daily or weekly) data, the empirical distribution of returns conditioned on the current 

level of volatility is not normally distributed, as is frequently assumed. Since the suggestion 

of the Student-t distribution in [1], there has been an endless search beyond the normality 

assumption to model the empirical distribution of conditional returns.  

 

The main purpose of this paper is to examine alternative probability density functions (pdf) 

for conditional returns, with particular emphasis on how well these capture fat tails and 

asymmetry. Such an empirical examination is important for finance practitioners as the shape 

of the conditional distribution also affects the means and variances, and hence the upside and 

downside probabilities of returns.   
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This paper is organised into six sections. Section 2 presents the specification of the mean-

variance model. Section 3 discusses some important issues with maximum likelihood 

estimation, while Section 4 describes the alternative probability density functions used in the 

paper.  The data and empirical results are discussed in Section 5, with special attention on 

leptokurtosis, asymmetry and the location parameter. Section 6 concludes the paper. 

 

2. Specification of the mean-variance model 

 

Consider the following specification of a GARCH(1,1) model, where the conditional mean 

(or log-returns) is given by an AR(1) process:  

 ttt yy εϕµ ++= −1 ,     1|| <ϕ  (1) 

where ( )tt hf ,0~ε , and the conditional variance of the residuals is given by a general 

GARCH(1,1) process: 

1
2

11)( −−− ++= tttt hGh βεεω .       (2) 

The conditional variance of tε  can be used to obtain the normalized (or standardized) error, 

t

t
t h

εη = , which is assumed to be i.i.d. ),1,0( θf .  Sufficient conditions for positivity of the 

conditional variance are ω > 0, G(εt-1)  ≥ 0, and β ≥ 0, where G(εt-1)  is a response function 

which models the effect of lagged shocks, εt-1, on the conditional volatility.  When G(εt-1)  is 

a constant (α), equation (2) reduces to the standard GARCH(1,1) model [1].  

 

Although the simple GARCH(1,1) model is usually a good starting point when modelling 

financial returns, there is substantial evidence that suggests that time-varying asymmetry  is a 

major component of volatility dynamics [8]. Hence, to avoid misspecification of the 

conditional variance equation, we include a leverage term, namely GJR [4].  

Now, )0()( 11 <+= −− tt IG εγαε , where I(.) is an indicator function which equals 1 

when εt-1 < 0, and zero otherwise.  In this model, good news (or positive shocks, εt > 0) have 

an impact of 02 ≥tαε  on volatility, while bad news (or negative shocks, εt < 0) have an 

impact of 0)( 2 ≥+ tεγα . The leverage term usually arises when the unconditional returns are 



 4

skewed, resulting in a positive (negative) γ estimate when the returns are negatively 

(positively) skewed, on average.1 

 

For the GJR-GARCH(1,1) model [4], assuming that the standardized residuals are 

symmetrically distributed, the second moment regularity condition is 1
2
1

<++ βαγ [15].  It 

follows that the unconditional variance implied by the GJR-GARCH(1,1) model 

is






 ++−

=−=
βαγ

ωεε
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ttt EEhE .  The necessary and sufficient condition for the 

existence of the unconditional fourth moment of the distribution of εt 

is 1
2

2 222 <+++++ γααγβγαββ kkk , where k is the kurtosis of ηt. When the fourth 

moment condition is satisfied, the kurtosis for the unconditional distribution of εt 

becomes
)
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= .  Hence, using a conditional 

distribution with low kurtosis, high kurtosis of the unconditional distribution can be captured 

from variations in volatility over time.   Furthermore, additional kurtosis may be induced 

when the conditional distribution is assumed to be leptokurtic (k > 3).   

 

3. Maximum likelihood estimation (MLE) 

 

The most common technique of estimating mean-variance models is by maximising the log-

likelihood function, in which the returns are generated by a specific mean-variance model 

with an assumed pdf, fyt. There are three properties of an estimator that are important, 

consistency, efficiency, and asymptotic normality. Although the property of efficiency is not 

always attained in large samples, the property of consistency is always required.    

Consistency of the (quasi-) maximum likelihood estimator, or (Q)MLE, of the parameters of 

the mean and variance equations requires the expected (Q)MLE to have a unique maximum 

                                                 
1 In this model, skewness in returns can be partly captured by the correlation between the covariance of returns 
with the level of volatility.      
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at the true value of the parameters. Proving consistency and asymptotic normality of the 

(Q)MLE of dependent processes, such as for GARCH-type models, is not always 

straightforward.  Sufficient conditions for the consistency and asymptotic normality of the 

QMLE of the GARCH(1,1) model have been established under the following set of 

assumptions [2,11,15,16,22]: (i) normality; (ii) correct specification of the mean and variance 

equation;2 (iii) strict stationarity of ηt; and (iv) various additional moment conditions on εt.   

Efficiency of the (Q)MLE rests on the assumption of the true underlying pdf.  For estimation 

purposes, if the normal pdf is not the true conditional density, the resulting maximum 

likelihood estimates are quasi-maximum likelihood estimates (QMLE).  Although the 

asymptotic standard errors can be estimated consistently using QMLE, subject to the 

regularity conditions, the penalty is that they will not attain the Cramer-Rao bound.  The loss 

of efficiency is directly related to the divergence of the true conditional distribution from the 

assumed normality, and is much greater for the QMLE of the variance than the mean 

equation [14].  Furthermore, fat tails without skewness are less serious [5].   

 

Consistency is preserved for the normal distribution, under the above regularity conditions, 

but may be problematic when non-normality is used, and may yield inconsistent estimates of 

some moments when the assumed pdf is false [6].   

 

Newey and Steigerwald [18] show that the identification condition can still hold for a non-

Gaussian QMLE of the relative scale parameter if either (i) the conditional mean is 

identically zero; or (ii) both the assumed (theoretical) and true (empirical) pdf’s are unimodal 

and conditionally symmetric about zero. When the symmetry condition is not satisfied, the 

correct specification of the conditional mean and variance is no longer sufficient to ensure 

consistency of the QMLE as the mean and variance are not necessarily the natural location 

and scale parameters, respectively. They show that an additional location parameter (ξ) is 

necessary to identify (and anchor) the location of the distribution in order to satisfy the 

identification condition for consistency. The location parameter accounts for asymmetry of 

ηt, that is, the discrepancy between the conditional mean and mode, and can be introduced in 

either the: (i) conditional mean equation; or (ii) distribution function. Thus, the conditional 
                                                 
2 Hence, consistency may fail due to omitted dependency. 
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mean expressed in terms of the conditional location equation becomes3 

)(1 ξηϕµ −++= − tttt hyy , so that4 ξ
ε

η +=
t

t
t

h
 and mode[εt] = 0. If there is heavy mass in the 

negative tail, making the distribution negatively skewed, the mean will be pulled in the 

direction of the skewness (to the left) and will no longer coincide with the natural location 

(mode) of the distribution.  As a result, the location parameter is required to adjust for the 

discrepancy between the mean and the mode, thereby accounting for the skewness.   

 

4. Alternative probability density functions 

 

There are three parameters that define a pdf, namely (i) location; (ii) scale; and (iii) shape.   

The location parameter (mean, median, or mode) specifies the abscissa (x-axis) locations of 

the range of values. As the location parameter is the midpoint for symmetric distributions,  as 

it shifts, the pdf shifts without a change in shape.  The scale parameter (variance) measures 

the spread or variability of a pdf, and sets the scale (unit) of measurement of the values in the 

range of the pdf.  As the scale changes, the pdf compresses (expands), but retains its shape. 

The shape parameter (skewness and kurtosis5) determines how the variation is distributed 

about the location, and determines the form of a distribution within the general family of 

distributions. As the shape parameter changes, the properties of the pdf change.    

 

In general, the desirable properties of a pdf are that: (i) it must be sufficiently flexible so as to 

generate a range of shapes;  (ii) the shape parameters must explain the skewness and kurtosis 

that may be encountered in finance; and (iii) it must be estimable.  A trade-off for using pdf’s 

with more flexible shapes is that it increases the impact of sampling errors on the parameter 

estimates.    

   

                                                 
3 Newey and Steigerwald [18] point out that to retain the mean as the conditional mean of ty , it must be 
assumed that E[ληt - ξ] = λ E[ηt]-ξ = 0, that is, E[ηt] = ξ/λ. 
4 Hence, it must now be assumed that E[ηt]= E[εt/√ht + ξ] = ξ and E[εtξ] = 0. 
5 It is important to note that kurtosis is both a measure of peakedness and fat tails of the distribution. 
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In this paper, we estimate the mean-variance model using standardized pdf’s6 with a variety 

of shapes, all of which have been used previously in the finance literature.  These are the: (i) 

asymmetric Student-t distribution (asStudent-t) [7]; (ii) asymmetric generalised error 

distribution (asGED) [21]; (iii) the asymmetric generalised t-distribution (asGTD) [20]; (iv) 

Gram-Charlier (Type A) distribution [9,12]; and (v) Pearson Type IV distribution [17,19]; 

 

Both the symmetric Student-t distribution and GED have one parameter (ν) to capture 

leptokurtosis.  The implied kurtosis of the Student-t distribution is 3
4

6
+

−
=
ν

k  for all ν > 4, 

while the implied kurtosis of the GED is 
2)3(

)5()1(

ν

νν

Γ

ΓΓ
=k .  It follows that the Student-t distribution 

is leptokurtic when 4 < ν ≤  25, whereas the GED is leptokurtic when 1 < ν < 2.  The greatest 

amount of kurtosis that can be generated by the GED is 6 (the Laplace distribution), which is 

twice the implied kurtosis of the normal distribution, and (two-thirds) less than can be 

captured by the Student-t distribution.  Compared with the Student-t distribution, for 

equivalent kurtosis (k = 6), the GED is substantially more peaked (0.71 versus 0.47), with a 

higher pdf between 0-0.3σ and 2-6σ, but with substantially thinners tails (outside ±6σ).   

Hence, although the GED distribution may be better able to capture peaks, it is far worse for 

capturing fat tails. 

 

A distribution that provides more flexibility than the Student-t distribution or GED is the 

GTD.  This distribution has two parameters to control leptokurtosis, providing flexibility in 

the tails (ν) as well as in the peakedness (r).  The GTD nests seven other well-known 

distributions, including the Student-t distribution (when r = 2) and GED (ν = ∞).  The 

kurtosis implied by the GED is
2)2,3(

),1()4,5(

rr

rrrrk
−

Β

Β
−

Β
=

ν

νν

.  Compared with the Student-t distribution 

(when ν = 6), reducing r from 2 to 1 has the effect of increasing the peakedness of the 

distribution (the height increases from 0.47 to 0.95), as well as fattening the tails (outside 

                                                 
6 The mathematical expressions for these standardised probability density functions are given in the endnotes of 
Table I (see also [10]). 
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±2.8σ).  It does this by decreasing the density within 0.5-2.8σ.   For both the GED and GTD, 

asymmetry is introduced by adding indicator functions. 

 

The Gram-Charlier (Type A) distribution is an approximate pdf generated by a simple 

polynomial expansion of the normal density function, where the skewness (s) and kurtosis (k) 

appear directly as parameters.  At an implied kurtosis of 6, the Gram-Charlier distribution is 

substantially more peaked than the Student-t distribution, but less peaked than GED.  It puts a 

higher density around 2-4σ, rather than in the tails, which is approximately normal.  

 

Of the asymmetric distributions discussed above, the Pearson Type IV distribution has the 

most flexible shape, covering a very large area in the β1-β2-plane.   For this distribution, δ 

and r are measures of skewness and kurtosis around the mean, respectively.  The necessary 

condition for the Type IV distribution is 0 < q < 1, where 
)34)(632(4 22

)3(2 2

sksk
sq

k

−−−
=

+
 [10].7  Type 

IV distribution nests the Student-t distribution with δ=0 and 3 < k < 9.  Furthermore, the 

possible area of the beta points for the asStudent-t distribution lies entirely within the Type 

IV area. The Type IV distribution can be more leptokurtic than the Student-t distribution 

when 3 < r < 4.  For the Type IV distribution, the implied skewness is determined by δ when 

r is small, and by δ and r when the distribution is closer to the boundary of the Type IV 

region. When r is high, the flexibility of skewness about the mean is low and the kurtosis 

becomes independent of skewness.  The minimum value of the square of skewness is zero 

when δ = 0 (Type VII (symmetric) distribution), and its maximum value is 32 when r → 3 

and δ2 → ∞. When the magnitude of δ reaches a certain value (the transition line of Type V), 

r must decrease in order to allow for any further increase in absolute skewness.  Thus, the 

peakedness and fatness of the tails are adjusted to accommodate any further increase in 

skewness.  When δ = 0, 3
63
−

+=
r

k .  Hence, the Type IV distribution converges to the normal 

distribution when r → ∞. The kurtosis increases exponentially when r → 3, resulting in 

higher density very far away (> 10σ) in the tails.  As a result, the peakedness does not change 

substantially. 
 
                                                 
7 This condition must be met for the imaginary roots of the quadratic function to exist. 



 9

5. Data and empirical results 

 

5.1 Data 

 

The data consist of the daily close-to-close logarithmic returns of the National Association of 

Securities Dealers Automated Quotation (NASDAQ) Composite Index (IXIC), the Australian 

All Ordinaries Index (AOI), and Kuala Lumpur SE Composite Index (KLSE), from 1990-

2000.  A large sample size (2500) issued to reduce the effects of sampling errors on the 

estimates.  The algorithm used for maximum likelihood estimation is Newton-Raphson, and 

all the optimisation routines are coded in GAUSS.  

 

5.2 Empirical results 

 

The parameter estimates and some diagnostics for the AR(1)-GJR-GARCH(1,1) model under 

various pdf’s are reported in Table 1 for IXIC.8  

  

5.2.1 Leptokurtosis 

 

For all series, the specification of the mean-variance model under conditional normality 

captures much, but not all, of the excess kurtosis of the unconditional returns.   Compared 

with the kurtosis of the unconditional returns, which varies from 8.11 for AOI to 31.13 for 

KLSE, the kurtosis of the conditional returns is substantially lower, varying over a relatively 

narrow range from 4.47 to 5.98.       

 

Additional leptokurtosis can be captured when the conditional returns are assumed to be 

leptokurtic. For the symmetric distributions, the greatest amount of kurtosis is implied by the 

Student-t distribution (up to 8.00), followed by GTD (up to 4.39), and GED (up to 4.36).  The 

fit of the model, measured in terms of the MLL values, can be substantially improved using 

leptokurtic distributions.  Overall, the symmetric GTD provides the best fit, which can be 

attributed to its greater flexibility, as it has two parameters to control the shape of the 

distribution, one for peakedness and the other for fat tails, both of which are measures of 
                                                 
8 Results for the two other returns series are available from the authors upon request. 
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kurtosis.  This also implies that there may be some trade-off in capturing fat tails and 

peakedness for the Student-t distribution.  

 

Allowing greater flexibility in the shape of the distribution by introducing asymmetry results 

in a greater degree of implied kurtosis.  The kurtosis of the asymmetric leptokurtic 

distributions implied from the estimated parameters ranges from 3.48 for the Gram-Charlier 

distribution, to 8.22 for the Type IV distribution, and 8.81 for the asStudent-t distribution. 

Overall, Type IV and asStudent-t distributions best capture leptokurtosis, leaving the least 

amount of unexplained residual kurtosis.    

 

As expected, capturing fat tails through a leptokurtic distribution substantially decreases the 

demands on the volatility model, as is evidenced by the significantly decreased QMLE of α 

and γ, and increased volatility persistence, as measured by β.  

 

5.2.2 Asymmetry 

 

Based on the Lagrange multiplier test statistic for asymmetry (LM(A)) [3], the presence of 

time-varying non-linearity beyond ARCH effects (at the 5% significance level) is rejected for 

all indices, except IXIC.  For this series, there is evidence of a sign bias, as well as of a 

positive and a negative size bias in the conditional returns.  The sign of the t-ratio indicates 

that negative shocks cause a larger increase in volatility than positive shocks.  Modelling sign 

asymmetries by including a leverage term in the volatility model reduces the LM(A) statistics 

only slightly.  Furthermore, despite the fact that the LM(A) statistic is insignificant for both 

AOI and KLSE, the γ estimate is statistically significant for these series.9  This implies that 

the leverage term does not fully accommodate the impacts of positive and negative shocks on 

volatility, as captured by the LM(A) test [3].10  

 

                                                 
9 The LM(A) statistic [3], which tests for unconditional skewness (and kurtosis), rejects the presence of non-
linearities beyond ARCH effects in the conditional returns.  The finding of a significant QMLE of γ in all series 
is a result of conditional skewness.  This is further demonstrated by the fact that for IXIC, when the 
unconditional skewness of the conditional returns is captured by the Type IV distribution, the LM(A) statistic 
becomes insignificant. 
10 This is because the four moments that are specified in the GJR-GARCH(1,1) model are inflexible, that is, 
although the model captures S2/3 and K1/2, it does not capture all aspects of asymmetry and excess kurtosis. 
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Allowing time-varying asymmetries to be captured by the leverage term in the volatility 

model does little to reduce the empirical skewness of the conditional returns.  Only for AOI is 

the skewness of the conditional returns smaller when the leverage term is included (-0.30 

versus -0.36).  This may be related to that fact that, for this series, the α estimate is 

insignificant. Consistent with these findings, when we allow for non-time-varying asymmetry 

in the conditional distribution, the leverage term is little affected.  Adding the leverage term 

to the GARCH(1,1)-Type IV model does little to improve the maximized likelihood function 

[19], concluding that accommodating skewness through the Type IV distribution means there 

is "nothing" left to capture through the conditional variance.  When asymmetries are captured 

through modelling the time-varying third moment, the statistical significance of the leverage 

term is substantially reduced [17].  This implies that the leverage term in the variance 

equation only partially captures the time-varying third moment.   

 

Inference on skewness and kurtosis are highly dependent in all asymmetric distributions, in 

particular, the Type IV and asStudent-t distributions: the larger (smaller) the skewness, the 

larger (smaller) the kurtosis.11 This is consistent with the empirical results for the asStudent-t 

distribution, in that the implied kurtosis of the distribution substantially increases when 

skewness is introduced.  For KLSE, this results in overshooting of kurtosis, as well as 

skewness.  

 

For both asGED and asGTD, where asymmetry is introduced by adding indicator functions, 

there appears to be some trade-off between capturing excess kurtosis and excess skewness.  

For example, when asymmetry is introduced into the GTD for IXIC, the residual skewness 

decreases from -0.64 to -0.32, whereas the residual kurtosis increases from 1.37 to 1.95.  For 

these distributions, the fit of the model improves substantially when asymmetry is 

accommodated, implying that skewness may be more important than kurtosis. 

 

An important feature that is consistent across the returns series is that the flexible Type IV 

distribution best describes the data, both in terms of having the lowest sum of the absolute 

residual skewness and residual kurtosis, and in terms of having the highest MLL values.  The 

normal distribution performs the worst.   Furthermore, the QMLE estimates of the mean-
                                                 
11 The reverse is not necessarily true.  
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variance model converge when the Type IV or asStudent-t distribution is used,  implying that 

asset returns may be distributed as asStudent-t.  

 

5.2.3 Location parameter 

 

If the symmetry condition is not satisfied, that is, when the assumed or true conditional 

returns are skewed, correct specification of the mean and variance equation may not suffice 

to ensure consistency because the mean is not the natural location parameter of the error 

distribution [18].  Consequently, a location parameter has been included to provide a 

diagnostic test of whether the symmetry condition is satisfied [7]. 

 

For the three returns series (IXIC, KLSE, and AOI), the location parameter is negative and 

(marginally) significant when the volatility model is estimated under conditional symmetry 

and when the leverage term is not included.  As the unconditional returns for these series are 

negatively skewed, the mean of the distribution will be shifted to the left. It follows that a 

positive correction is necessary for consistency as the mean is now no longer the natural 

location of the distribution.  Including the leverage term in the variance equation changes the 

sign of the estimated location parameter: for the negatively skewed returns series (IXIC and 

AOI), the location parameter becomes positive, while the location parameter becomes 

negative for the positively skewed returns series (KLSE).   Furthermore, for the negatively 

(positively) skewed series, the sign asymmetry (Asym) increases (decreases).  These findings 

imply that the location parameter may account for some of the time-varying skewness.     

 

The location parameter is generally found to be significant when the variance equations are 

estimated under conditional asymmetry.  For the Type IV and asStudent-t distributions, the 

location parameter is positive when the conditional returns are negatively skewed (IXIC), and 

negative when the conditional returns are positively skewed (KLSE).  The significance of the 

location parameter is consistent with expectations as both the location (ξ) and skewness (δ) 

parameters shift the location of the distribution relative to the origin, though in opposite 

directions.  When the distribution is negatively skewed, δ is negative, shifting the location of 

the distribution to the left, relative to the origin.  As a result, the location parameter will be 

positive, shifting the distribution back to the origin.  The total effect will be that the shape of 
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the distribution is changed.  If a location parameter is not included, skewness around the 

natural location parameter (median or mode) is estimated, which is generally insignificant.12   

 

6. Conclusion 

 

The empirical results of this paper show there are benefits to estimating conditional mean-

variance models using conditional non-time-varying asymmetric leptokurtic distributions 

instead of a normal distribution.  In particular, asymmetric distributions are capable of 

capturing outlying observations, which cannot be adequately captured by a time-varying 

conditional variance.  As expected, the benefits of estimating GARCH models using 

asymmetric leptokurtic distributions are more substantial for highly volatile series, which 

have a higher degree of non-normality.  The results also show that constant skewness of the 

unconditional returns does not help in capturing time-varying asymmetries.  Hence, a more 

rewarding direction for future research may be to accommodate time variations in the third 

moment. 
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Table 1. QMLE of the AR(1)-GJR-GARCH(1,1) model for IXIC 

 Normal Student-t asStudent-t  GTD  asGTD GED asGED  Type IV 

Gram-

Charlier  

µ 1.040e-4 1.540e-05 -4.440e-05 -1.160e-05 3..310e-4 1.060e-4 2.560e-4 -4.540e-05 -1.940e-4 

ϕ 1.678e-1* 1.621e-1* 1.464e-1* 1.616e-1* 1..538e-1* 1.628e-1* 1.525e-1* 1.443e-1* 1.407e-1* 

ω 3.517e-6* 2.195e-6* 2.062e-6* 2.108e-6* 1.651e-6* 2.722e-6* 2.523e-6* 2.033e-6* 2.788e-6* 

α 6.346e-2* 4.677e-1* 5.158e-2* 4.575e-2* 5.508e-2* 5.387e-2* 5.878e-2* 5.213e-2* 6.137e-2* 

γ 1.216e-1* 1.132e-1* 1.054e-1* 1.127e-1* 1.042e-1* 1.152e-1* 1.055e-1* 1.026e-1* 1.057e-1* 

β 8.556e-1* 8.867e-1* 8.880e-1* 8.891e-1* 8.812e-1* 8.739e-1* 8.735e-1* 8.885e-1* 8.743e-1* 

1/ν  1.270e-1* 1.226e-1* 1.590e-1* 1.584e-1*     

(ν-2)      -5.369e-1* -4.67e-1*   

r    2.242* 2.297*   8.177*  

δ   -1.039*  -0.142*  -1.35e-1* -2.917*  

ξ 5.210e-2 9.990e-2 1.032* 9.944e-2* 2.564e-1* 9.310e-2 2.377e-1* 9.710e-1* 7.77e-2 

s         -0.395* 

k         0.666* 

Asym 0.343 0.292 0.329 0.289 0.346 0.319 0.358 0.337 0.367 

MLL 3.144 3.162 3.171 3.163 3.169 3.158 3.166 3.172 3.162 

Diagnostics:         

Mean 0.052 0.062 0.07 0.065 0.039 0.052 0.026 1.042 0.085 

Residual Mean        0.000 -0.038 0.187 -0.034 0.004 -0.034 0.232 0.971 0.010 

Standard deviation 1.000 1.003 1.006 1.002 1.000 1.002 1.005 1.002 0.992 

Skewness -0.614 -0.636 -0.644 -0.638 -0.643 -0.626 -0.617 -0.645 -0.633 

Residual Skewness -0.614 -0.636 -0.093 -0.638 -0.322 -0.626 -0.061 -0.062 -0.239 

Kurtosis 4.977 5.097 5.088 5.107 5.105 5.039 5.001 5.085 4.987 

Residual Kurtosis 1.977 0.548 0.14 1.37 1.949 1.174 1.453 0.318 1.321 
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Table 1 (continued) 
LM(N) 563* 626* 626* 631* 633* 596* 575* 625* 578* 

Q(12) 7.477 8.127 7.901 6.837 7.613 7.545 7.251 8.112 12.993 

Q(12)^2 5.861 5.812 6.196 5.834 6.031 5.830 5.968 7.158 6.595 

Sign 3.972* 4.148* 4.395* 4.248* 4.147* 4.019* 3.769* 1.835* 4.542* 

Size(+) -2.854* -2.867* -3.082* -2.882* -2.964* -2.854* -2.776* -1.411 -3.23* 

Size(-) -2.049* -2.501* -2.564* -2.543* -2.509* -2.314* -1.892 -1.978* -2.397* 

LM(A) 16.19* 17.17* 19.37* 18.21* 17.18* 16.25* 14.71* 4.65 21.05* 

 

*  denotes significance at the 5%  level based on heteroskedasticity-consistent standard errors.  Asym is measured as (α+γ)/α.  LM(N) is the 
LM statistic for normality of ηt  (LM(N)=N(S2/6 + (K-3)2/24), which is asymptotically χ2 distributed with two degrees of freedom under the 
null hypothesis of normality).  Q(12) is the Ljung-Box test statistic for serial correlation in ηt with 12 lags.  Q(12)2 is the Ljung-Box test 
statistic for an ARCH process based on ηt

2.  Under the null hypotheses of uncorrelated and conditionally homoskedastic errors, respectively, 
the test statistics are asymptotically χ2 distributed with 12 degrees of freedom.  The t-ratios for the coefficients b1, b2, and b3 are the sign 
bias, the positive size bias, and the negative size bias test statistics, respectively, as suggested in [3], and are based on the following auxiliary 
regression model: ηt

2 = a + b1 St
- + b2 St

+ηt-1 + b3 St
-ηt-1 + νt. Under the null hypothesis that b1 = b2 = b3= 0, the joint test statistic for 

asymmetry (LM(A)) is asymptotically χ2 distributed with 3 degrees of freedom. The density functions are as follows: for the normal 
distribution: )
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