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This paper investigates the asymptotic theory for a vector autoregressive moving
average—generalized autoregressive conditional heteroskedadiddRilA-
GARCH) model The conditions for the strict stationarjtyre ergodicityand the
higher order moments of the model are establist@ahsistency of the quasi-
maximum-likelihood estimato QMLE) is proved under only the second-order
moment conditionThis consistency result is newven for the univariate auto-
regressive conditional heteroskedastidiyRCH) and GARCH modelsMore-

over, the asymptotic normality of the QMLE for the vector ARCH model is
obtained under only the second-order moment of the unconditional errors and
the finite fourth-order moment of the conditional errotnder additional mo-
ment conditionsthe asymptotic normality of the QMLE is also obtained for the
vector ARMA-ARCH and ARMA-GARCH models and also a consistent estima-
tor of the asymptotic covariance

1. INTRODUCTION

The primary feature of the autoregressive conditional heteroskedagA&igH)
model as proposed by Engl€l982), is that the conditional variance of the
errors varies over timeSuch conditional variances have been strongly sup-
ported by a huge body of empirical researelpecially in stock returnsn-
terest ratesand foreign exchange markeEollowing Engle’s pathbreaking idea
many alternatives have been proposed to model conditional variafoces

ing an immense ARCH familysee for example the surveys of Bollerslev
Chou and Kroner(1992, Bollersley Englg and Nelson(1994), and Li, Ling,

and McAleer(2002. Of these modelsthe most popular is undoubtedly the
generalized autoregressive conditional heteroskedastiGi&§RCH) model of
Bollerslev (1986. Some multivariate extensions of these models have been
propose¢i see for example Engle Granger and Kraft(1984), Bollersley En-

gle, and Wooldridgg1988, Engle and Rodriguedl 989, Ling and Deng 1993,
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Engle and Kronef1995, Wong and Li(1997), and Li, Ling, and Wong(1999),
among othersHowever apart from Ling and Deng1993 and Li, Ling, and
Wong (1998, it seems that no asymptotic theory of the estimators has been
established for these multivariate ARCH-type modétsmost of these multi-
variate extensionghe primary purpose has been to investigate the structure
of the model as in Engle and Krong1995, and to report of empirical findings

In this paperwe propose a vector autoregressive moving average—GARCH
(ARMA-GARCH) model that includes the multivariate GARCH model of Bol-
lerslev (1990 as a special cas@&he sufficient conditions for the strict station-
arity and ergodicityand a causal representation of the vector ARMA-GARCH
model are obtained as extensions of Ling and(LB97). Based on Tweedie
(1988, a simple sufficient condition for the higher order moments of the model
is also obtained

The main part of this paper investigates the asymptotic theory of the quasi-
maximum-likelihood estimatafQMLE) for the vector ARMA-GARCH model
Consistency of the QMLE is proved under only the second-order moment con-
dition. Jeantheau1998 proves consistency for the constant conditional mean
drift model with vector GARCH errotdis result is based on a modified result
in Pfanzagl(1969, in which it is assumed that the initial values consisting of
the infinite past observations are knowln practice of course this is not
possible

In the univariate caseéhe QMLE based on any fixed initial values has been
investigated by Weis§1986, Pantula(1989, Lee and Hanse1994), Lums-
daine (1996, and Ling and Li(1997). Weiss (1986 and Ling and Li(1997
use the conditions of Basawigeign and Heydg1976), whereby their consis-Q2
tency results rely on the assumption that the fourth-order moments egest
and Hanseii1994 and Lumsdain€1996 use the conditions of Amemiy@985
pp. 106—11), but their methods are only valid for the simple GARQL)
model and cannot be extended to more general cddescover the condi-
tional errors that is no; whenm = 1 in equation(2.3) in the next sectiopare
required to have th& + «)th (x > 0) finite moment by Lee and Hans¢€h994)
and the 32nd finite moment by Lumsdai(fe996.

The consistency result in this paper is based on a uniform convergence as a
modification of a theorem in Amemiyél985 p. 116). Moreover the consis-
tency of the QMLE for the vector ARMA-GARCH model is obtained only un-
der the second-order moment conditidhis result is neweven for the univariate
ARCH and GARCH modelsFor the univariate GARCH, 1) model our con-
sistency result also avoids the requirement of the higher order moment of the
conditional errorsas in Lee and Hansei1994 and Lumsdaing1996.

This paper also investigates the asymptotic normality of the QMidE the
vector ARCH model asymptotic normality requires only the second-order
moment of the unconditional errors and the finite fourth-order moment of the
conditional errorsThe corresponding result for univariate ARCH requires the
fourth-order momentas in Weiss(1986 and Pantulg1989. The conditions
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for asymptotic normality of the GARCH,1) model in Lee and Hans€1994)
and Lumsdain€1996 are quite weakHowever their GARCH(1,1) model ex-
plicitly excludes the special case of the ARCH model because they assume
that B, # 0 (see equatior{2.7) in Section 2 for purposes of identifiability
Under additional moment conditionthe asymptotic normality of the QMLE
for the general vector ARMA-GARCH model is also obtain&iven the uni-
form convergence resullthe proof of asymptotic normality does not need to
explore the third-order derivative of the quasi-likelihood functiblence our
method is simpler than those in Weigk986), Lee and Hansel994), Lums-
daine(1996, and Ling and Li(1997).

It is worth emphasizing thatinlike Lumsdaing€1996 and Ling and Li(1997),
Lee and Hansefl994) do not assume that the conditional errggs are inde-
pendently and identically distributddi.d) instead of a series of strictly station-
ary and ergodic martingale differencédthough it is possible to use this weaker
assumption for our modgfor simplicity we use the.i.d. assumption

The paper is organized as followSection 2 defines the vector ARMA-
GARCH model and investigates its properti€&ection 3 presents the quasi-
likelihood function and gives a uniform convergence restgiction 4 establishes
the consistency of the QMLENd Section 5 develops its asymptotic normality
Concluding remarks are offered in Section/l proofs are given in Appen-
dixes A and B

Throughout this papewe use the following notatioriThe term|-| denotes
the absolute value of a univariate variable or the determinant of a métfix
denotes the Euclidean norm of a matrix or vec#drdenotes the transpose of
the matrix or vectoA; O(1) (or o(1)) denotes a series of nonstochastic vari-
ables that are boundédr converge to zeno O,(1) (or oy(1)) denotes a series
of random variables that are boundgut converge to zepain probability, —,
(or —,) denotes convergence in probabiliiyr in distribution; p(A) denotes
the eigenvalue of the matri& with largest absolute value

2. THE MODEL AND ITS PROPERTIES

Bollerslev (1990 presents amm-dimensional multivariate conditional covari-
ance modelnamely

Y, = E(Y [ A1) + o, Var(eg| F—1) = Dot Io Dot (2.1)

where F is the past information available up to tim& Dy =
diag(h3s?,...,h32), and

1 0'012 e O-O:lm
0021 1 0023
FO - )
Oom,1 Oomm-1 1
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in which ogj = og;. The main feature of this model is that the conditional
correlationE (e £o;t |]-},1)/\/E(s§it|]-},1)E(s§jt|]-},l) = oyg;j iS constant over
time, wherei # | andeg; is theith element ofsy,. By assuming

r S
hoir = Woi + _Elaou 8hit—j + _Zlbou Noit—j s i=1....m (2.2)
1= 1=

that is with only i-specific effectsBollerslev(1990 models the exchange rates
of the German martkFrench frangcand British pound against the.8l dollar.
His results provide evidence that the assumption of constant correlations is ad-
equate Tse (2000 has developed the Lagrange multiplier test for the hypoth-
esis of constant correlation in Bollerslev's model and provides evidence that
the hypothesis is adequate for spot and futures prices and for foreign exchange
rates

It is possible to provide a straightforward explanation for the hypothesis of
constant correlatianSuppose thahg; captures completely the past informa-
tion, with Ehy;; = Eed,. Thenne, = &g hoii’? will be independent of the past
information Thus for eachi, {ng,t = 0,=1,£2,...} will be a sequence of
i.i.d. random variablgswith zero mean and variance arla general no; and
nojr are correlated foi # j, and hence it is natural to assume that =
(Mo1t,---»Mome)’ 1S @ sequence ofiid. random vectorswith zero mean and co-
variancel,. Thus we can write

€ot = Dot Mot (2.3)
Obviously ey in (2.1) has the same conditional covariance matrix as that
in (2.3).

Now, the remaining problem is how to defir®,, so that it can capture
completely the past informatioft is obvious thathy, may have as many dif-
ferent forms as in the univariate cade the multivariate casehy; should
contain some past informatipnot only fromeg;; but also fromeg;. Hence a
simple specification such d8.2) is likely to be inadequatdn particular if it
is desired to explain the relationships of the volatilities across different mar-
kets it would be necessary to accommodate some interdependence &f;the
€ojt> Noit, andhg;; in the model Note thatDy; depends only ofihgy, ..., homt)’,
denoted byHg,. It is natural to defineHy, in the form of (2.5), which follows
which has also been used by Jeanth@d®98. Specifying the conditional mean
part as the vector ARMA modeWe define the vector ARMA-GARCH model

as follows
Do(L)(Y; — po) = Yo(L) &gy, (2.4)
r S
€ot = Dot Mots Hor = Wo + _ElAOi Eor—i t+ 21 Boi Hot—i»  (2.5)
i= i=
whereDy; andnq are defined as ii2.3), ®o(L) = I, — Pl — --- — g, LP

and¥o(L) = I, + WL + -+ + Yo% are polynomials irL, I, is thek X k
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identity matrix and 8y = (&2y,...,&3+)'. The true parameter vector is de-
noted by Ao = (¢g,80,0¢)", where ¢ = ved o, Poss . . ., Pop, ¥ou, - - - » Yog),
6o = vedWo, Aoss - .-, Aor, Bog,...,Bos), and oo = (00215, 0om1, 0032 - - - »
Oom2;---,0omm-1)". This model was used to analyze the Hang Seng index and
Standard and Poor’s 500 Composite index by Wdngand Ling(2000. They
found that the off-diagonal elements #y, are significantly different from
zero and hence can be used to explain the volatility relationship between the
two markets

The model for the unknown parameter= (¢',6’,0’)’, with ¢, 6, and o
defined in a similar manner t@,, 6y, andoy, respectivelyis

P(L)(Y,— ) =V(L)e, (2.6)
H, = W+ i Ad_ i+ i BiHei, (2.7)
i=1 i=1

whereH, = (hy,...,hmw)', & = (3,...,€2)’, and®(L) and¥(L) are defined
in a similar manner taby(L) and ¥,(L), respectively First, the &, are com-
puted from the observation¥,...,Y,, from (2.6), with initial value Y, =
(Yo,...,Y1-p, €0,...,€1-g). ThenH; can be calculated froni2.7), with initial
valuesgq = (&p,...,&1_r,Ho,...,Hi_s). We assume that the parameter sp@ce
is a compact subspace of Euclidean spaoeh thatA is an interior point in®
and for eachA € 0, we make the following assumptions

Assumption 1 All the roots of |®(L)| = 0 and all the roots of¥(L)| =0
are outside the unit circle

Assumption 2 The terms®(L) andW¥(L) are left coprime(i.e,, if ®(L) =
U(L)®4(L) and¥(L) = U(L)W¥y(L), thenU(L) is unimodular with constant
determinantand satisfy other identifiability conditions given in Dunsmuir and
Hannan(1976.

Assumption 3 The termrI is a finite and positive definite symmetric ma-
trix, with the elements on the diagonal being 1 gnd’) having a positive
lower bound ove®; all the elements ofA; andB; are nonnegativeé = 1,...,r,

j =1...,s each element ofV has positive lower and upper bounds ower
and all the roots ofl,, — >_;A L' — X7 ;B/L'| = 0 are outside the unit
circle.

Assumption 4 The expressions, — >;_; A L' andX;_; B,L" are left co-
prime and satisfy other identifiability conditions given in Jeanth@298 (see
also Dunsmuir and Hannah976).

In Assumptions 2 and,4ve use the identifiability conditions in Dunsmuir
and Hannar{1976 and Jeanthea(1998. These conditions may be too strong
Alternatively we can use other identifiability conditionsuch as the final form
or echelon form in Liitkepoh{1991, Ch. 7), under which the results in thiQ3
paper for consistency and asymptotic normality will still hold with some minor
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modifications These identifiability conditions are sufficient for the proofs of
(B.3) and(B.6) in Appendix B

Note that under Assumption 4Bs # 0 and hence the ARCH and GARCH
models are nonnesteWe define the ARMA-ARCH model as follows

Do(L) (Y — mo) = Yo(L) &gy, (2.8)
r
€0t = Dot Mot» Hot = Wo + X Agi Bori- (2.9
-1

Similarly, under Assumption ,2it is not allowed that all the coefficients in the
ARMA model are zerpso that the ARMA-ARCH model does not include the
following ARCH model as a special case

Yo = ot o (2.10)

r
ot = Dot Mot Hot = Wo + _21A0i Eot-i- (2.11)
i-

In models(2.8) and(2.9) and(2.10) and(2.11), we assume that all the compo-
nents ofAg, i = 1,...,r, are positive In practice this assumption may be too
strong If the parameter matrice&; are assumed to have the nested reduced-
rank form as in Ahn and Reins€ll988), then the results in this and the follow-
ing sections will still hold with some minor modifications

The unknown parameter ARCH and ARMA-ARCH models are defined sim-
ilarly to models(2.6) and (2.7). The true parametek, = (¢g, 54, 0¢3)’, with
8o = vedWp, Agt, ..., Ao ), 0g being defined as in model®.4) and (2.5), and
¢o being defined as in model®.4) and (2.5) for models(2.8) and (2.9),
and ¢y = uo for models(2.10) and (2.11). Similarly, define the unknown
parameterA and the parametric spade, with 0 < a{jk = aj = aj < oo,
whereay is the (j, k)th component of;, ai'jk and ajj, are independent of,
i=1,...,randj,k=1,...,m?

The following theorem gives some basic properties of mog@afs and(2.5).
Whenm = 1, the result in Theorem.2 reduces to that in Ling and (1997)
and the result in Theorem2reduces to Theoremdin Ling (1999 (see also
Ling and McAleey 20023 2002h. When the ARMA model is replaced by a
constant mean drifthe second-order stationarity and ergodicity condition in
Theorem 21 appears to be the same as Propositidni Jeantheay1998.
Our proof is different from that in his paper and provides a useful causal ex-
pansion Also note thatin the following theoremsAssumptions 2 and 4 are
not imposed and hence these results hold for mo@® and(2.9) and mod-
els(2.10) and(2.11). However for these two special casabe matrixAy, which
follows, can simply be replaced by it4,1) block

THEOREM 21. Under Assumptions 1 and 3, models (2.4) and (2.5) possess
an F-measurable second-order stationary solut{df o, Ho }, Which is unique,
given thenq, where % is a o-field generated byn: k = t}. The solutions
{Y;} and{Hq} have the following causal representations:
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Y, = k§_‘,0 Yok€ork» &S, (2.12)
o i
Hoy =Wo + > ¢’ (HAOti>§tj1’ as., (2.13)
=1 i=1

Whereq)al(L)\I,O(L) = 2E(;OYOkI-ka ét = [(ﬁOtWO),aO""705W()/’0""70]Er+s)m><11
that is the sulpector consisting of the first m componentsiigW, and the
subvector consisting of them + 1)th to (r + 1)mth components is W7o =
diag(méys-- - Méme), € = (0,...,0,110,0,...,0)mx(r+9m With the subvector con-
sisting of the(rm + 1)th to (r + 1)mth columns being,}); and

ﬁOt AOl cee ﬁOt AOr 7770[ BOl o ﬁOt BOS
AOt _ Im(rfl) Om(r71)><m Om(rfl)Xms
Aoy » Aor ‘ Bos B Bos
Om(sfl)xmr Im(sfl) Om(sfl)xm

HencelY;, eor, Ho} are strictly stationary and ergodic.

THEOREM 22. Suppose that the assumptions of Theorem 2.1 hold. If
p[E(A$¥)] < 1, with k being a strictly positive integer, then tikth mo-
ments of Y, eo;} are finite, whereA, is defined as in Theorem 2.1 an®Ais
the Krénecker product of the k matrices A.

3. QUASI-MAXIMUM-LIKELIHOOD ESTIMATOR

The estimators of the parameters in modg@ld) and(2.5) are obtained by max-
imizing, conditional on(Yy, &),

12 1 1 ) .
L,(A) = H 2 [((A), (M) = _5 In|DtFDt| - 5 g{(D,I'Dy) &, (3.1)
t=1

whereL (1)) takes the form of the Gaussian log-likelihood dxd= diag(h¥/?,
...,h¥2). Because we do not assume thgt is normaJ the estimators from
(3.1) are the QMLEsNote that the processesandD;, i = 0, are unobserved
and hence they are only some chosen constant vedtous L,(A) is the like-
lihood function that is not conditional on the tr(¥,, £,) and in practice we
work with this likelihood function

For conveniencewe introduce the unobserved procéés’,Hf):t = 0,£1,
+2,...}, which satisfies

(L)Y, — p) = w(L)es, (3.2)
He =W+ i A ge + i B He;, (3.3)
i=1 i=1
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wheresf = (e52,...,e:2) andH¢ = (hg,...,hs,) . DenoteYy = (Yp,Y_1,...).
The unobserved log-likelihood function conditional ¥his

10 1 1 i
L) = DI, g = =5 INDEIDE| = = o (DFTD) ef,  (3.4)
t=1

whereD¢ = diag(hys, ..., hg). WhenA = Aq, we havesf = o, Hf = Hqt, and
Df = Dq. The primary difference in the likelihood8.1) and(3.4) is that(3.1)

is conditional on any initial valugsvhereaq3.4) is conditional on the infinite
past observations$n practice the use 0f3.4) is not possibleJeanthea1998
investigates the likelihoo(B.4) for models(2.4) and(2.5) with p = q = 0, that
is, with the conditional mean part identified as the constant.dBijtmodifying

a result in Pfanzagl1969, he proves the consistency of the QMLE for a spe-
cial case of model§2.4) and(2.5). An improvement on his result requires only
the second-order moment conditidfiowever the method of his proof is valid
only for the log-likelihood functior(3.4), and it is not clear whether his result
also holds for the likelihood3.1).

The likelihood functionL,(A) and the unobserved log-likelihood function
Lz(A) for models(2.8) and (2.9) and models(2.10) and (2.11) are similarly
defined as in3.1) and(3.4).

The following uniform convergence theorem is a modification of Theo-
rem 42.1 in Amemiya(1985. This theoremand also Lemma.5 in the next
section makes it possible to prove the consistency of the QMLE from the like-
lihood (3.1) under only a second-order moment condition

THEOREM 31.2 Let g(y,6) be a measurable function of y in Euclidean
space for eacly € O, a compact subset of R(Euclidean m-space), and
a continuous function of € O for each y. Suppose that ¥6 a sequence
of strictly stationary and ergodic time series, such that(¥g?) = 0 and

Esupee|9(V,0)| < co. Thensupee|n ™t 2iL19(y:,0)] = 0p().

4. CONSISTENCY OF THE QMLE

In (3.4), Df is evaluated by an infinite expansion (@3). We need to show that
such an expansion is convergeimt general all the roots of| I, — >{_; A L' —

2B, L'| = 0 lying outside the unit circle does not ensure that all the roots of
|lm — 21 BiL'| = 0 are outside the unit circlédowever because all the ele-
ments ofA; andB; are negativewe have the following lemma

LEMMA 4.1. Under Assumption 3, all the roots gf, — >;_,B,L'| = 0 are
outside the unit circle.

We first present five lemmad.emma 42 ensures the identification ofy.
Lemmas 43, 4.4, and 46 ensure that the likelihoodl,(A) of the ARMA-
GARCH, ARMA-ARCH, and ARCH models converges uniformly in the whole
parameter spaceavith its limit attaining a unique maximum at,. Lemma 45
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is important for the proof of Lemma.@ under the second-order moment
condition

LEMMA 4.2. Suppose that ,Yis generated by models (2.4) and (2.5)
satisfying Assumptions 1-4, or models (2.8) and (2.9) satisfying Assumptions
1-3, or models (2.10) and (2.11) satisfying Assumption 3. Leard c be
constant vectors, with the same dimensionsgaand 8, respectively. Then
c,(def /dg) = 0 a.s. only if ¢ = 0, and ¢ (aHg /08) = 0 a.s. only if c= 0.

LEMMA 4.3. Define L(A) = E[If(A)]. Under the assumptions of Lemma
4.2, L(2) exists for alla € © andsup,ce|L{(A) — L(A)] = 0p(1).

LEMMA 4.4. Under the assumptions of Lemma 4.2A) achieves a unique
maximum af,.

LEMMA 4 .5. Let X be a strictly stationary and ergodic time series, with
E|X| < o0, and&; be a sequence of random variables such that

supl&|=C  and 'Y [&]=0,(D).
t=1

1=t=n
Then mt 3L X & = 0,(1).

LEMMA 4.6. Under the assumptions of Lemma 4pce|LS(A) —
Ln()\)| = Op(l)-

Based on the preceding lemmage now have the following consistency
theorem

THEOREM 41. DenotAe?\n as the solution tanax,cq L,(A). Under the as-
sumptions of Lemma 4.2,, —, A,.

5. ASYMPTOTIC NORMALITY OF THE QMLE

To prove the asymptotic normality of the QMLE is inevitable to explore the
second derivative of the likelihoo@he method adopted by Weis£986), Lee
and Hanser{1994), Lumsdaine(1996), and Ling and Li(1997) uses the third
derivative of the likelihoodBy using Theorem 3, our method requires only
the second derivative of the likelihopdthich simplifies the proof and reduces
the requirement for higher order moments

For the general model&.4) and(2.5), the asymptotic normality of the QMLE
would require the existence of the sixth momerdbwever for models(2.8)
and (2.9) or models(2.10) and (2.11), the moment requirements are weaker
Now we can state some basic results

LEMMA 5.1. Suppose that,¥Ys generated by models (2.4) and (2.5) satis-
fying Assumptions 1-4, or models (2.8) and (2.9) satisfying Assumptions 1-3,
or models (2.10) and (2.11) satisfying Assumption 3. Then, it follows that
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oe; oe;

< oo and E
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— (DfIDy) ‘]>o,
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DsTDE)
(D¢TDY) ; "

E su
P do de

AEO

!

(5.1)
where a matrix A> 0 means that A is positive definite.

LEMMA 5.2. Suppose that;¥Ys generated by models (2.4) and (2.5) satis-
fying Assumptions 1-4 and||&|* < co, or models (2.8) and (2.9) satisfying
Assumptions 1-3 and||&|* < oo, or models (2.10) and (2.11) satisfying As-
sumption 3 and Eng|* < 0. ThenQq = E[(3l§; /0A) (31§ /dA")] is finite. Fur-
thermore if Qp > 0, then

1 i Aoy NG.0.)
= N % 9 b
VD=V 0

whereal§/0A = alF/oA[,, and dlgi /IA = ol /IA|,,.

LEMMA 5.3. Suppose that,¥s generated by models (2.4) and (2.5) satis-
fying Assumptions 1-4 and||i|® < co, or models (2.8) and (2.9) satisfying
Assumptions 1-3 and||&|* < oo, or models (2.10) and (2.11) satisfying As-
sumption 3. Then,
tE, HtE

JH 5 5 Jd
= Dt67 Af Dt57 —
JA N

E sup < oo, (5.2)

AEO
whered = (¢',8"), A = 7T Yi¢ + A, AS = diag(e, I 5., e, ),
e = (0,...,0,1,0,...,0)" of which the ith element is ki = (n5,...,n5) , and
7if = diag(ns, ..., m5) With s = e5/hsv2,i=1,...,m.

LEMMA 5.4. Under the assumptions of Lemma 5.3,

@ 10 02 £ 02§ n
a) sup||l - - =0,(1),
,\eg n (<1 AN AN P

10 g 021,
b) sup|| — —_— = =0,(1).
®) ety nt_zl[aAaA' XN (L

By straightforward calculatignwe can show that
DIPTID )

NNEA I
O TLaAIN | Yoo 5 PP ’

where 330 = E[(98§/01) (Do Ty Doy) *(9e6:/0X')] + E[(0HG /0A) Do X
CDo*(@HG: /9X)]/4, 3550 = E[(0HG /0A)Det*JC1P/2, defe/aN = def/aX |,
OHG /0N = dH /N [,,, P = (Im ® Tx HK, Cy = (Cyy,...,Cim), Cy is an
m X m matrix with the(i,i)th component being 1 and the other components
zerq K = dvedT)/do’ is a constant matrixandC = Iy 2 O I, + I, where
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A © B = (ajby) for two matricesA = (g;) andB = (by). In practice 2 is
evaluated by

wherel, = T'[; ,

. 1 OH/ . oH,
35 = D,TD + = — D26, D2 — | ,
A nz{ (BeTD)™ a/\']* 4n§1[a)t tomnTt a)v]xn
. oH,
Sie = = Z[ : tz]Aclp, P=(,® MK,
2nt An

C,=0,10T, +1,,.

LEMMA 5.5. Under the assumptions of Lemma 5|3, < oo and 3, =
S0 + 0,(1) for any sequenca,, such thatk, — Ao = 0y(1). If [ © IH = Iy,
then—3q > 0.

From the proafwe can see that the sixth-order moment in mod2) and
(2.5) is required only for Lemma.8(a), whereas the fourth-order moment is
sufficient for Lemma 54(b). If we can show that the convergent rate of the
QMLE is O,(n~%?), then the fourth-order moment is sufficient for modelst)
and(2.5). However it would seem that proving the rate of convergence is quite
difficult.

LEMMA 5.6. Under the assumptions of Lemma 5.2MA(A,, — Ag) =
Op(1), then

@ E[L o gh i] = 0p(1),
1
n

THEOREM /1. Suppose that.Yis generated by models (2.4) and (2.5)
satisfying Assumptions 1-4 and¥g|® < oo, or models (2.8) and (2.9) satis-
fying Assumptions 1-3 and|%&|* < co, or models (2.10) and (2.11) satisfy-
ing Assumption 3 and |E;0t|| < co. If Qg >0andIy? © Iy = Iy, then
\/—()1 Ao) —r N(O, 20 10y351). Furthermore 34 and Q, can be estimated
consistently by, and {},,, respectively.

Whenm =1 or 2 we can show thak; * © I, = |, and hencein this case
—3, > 0. Howevey it is difficult to proveTy * © Iy = I, for the general case
WhenIy = |, it is straightforward to show that>, > 0 andQ are positive
definite Whennq, follows a symmetric distribution
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alg ol

0
dp do’ 3 0
0, =E| 9% and  so=—( ¢ ,
alg, ol 0 3%
a6 08’
in which§ = (8",0"),
des, de§ 1| oHg, aH§
2,0=E x (Dot Ty Doy) ™+ O,t} + - E[ o Doi? CDo? (:t],
de dp 4 dp de
250 25(7-0
S50 = 1 ,
® o PP

where 350 = E[0H§, /06Dg? CDy20HG,/06']1/4 and 35,0 = E[IHS/
08D¢2]1C, P/2. Furthermoreif 7, is normal it follows that —3, = Q,. Note

that the QMLE here is the global maximum over the whole parameter space
The requirement of the sixth-order moment is quite strong for ma@eds and

(2.5) and is used only because we need to verify the uniform convergence of
the second derivative of the log-likelihood functjahat is Lemma 54(a). If

we consider only the local QMLEhen the fourth-order moment is sufficient
For univariate casesuch proofs can be found in Ling and (998 and Ling

and McAleer(20029.

6. CONCLUSION

This paper presented the asymptotic theory for a vector ARMA-GARCH model
An explanation of the proposed model was offerdding a similar ideadif-
ferent multivariate models such as E-GARCHreshold GARCHand asym-
metric GARCH can be proposed for modeling multivariate conditional
heteroskedasticityThe conditions for the strict stationarity and ergodicity of
the vector ARMA-GARCH model were obtained simple sufficient condi-
tion for the higher order moments of the model was also provité¢sl estab-
lished a uniform convergence result by modifying a theorem in Amemiya
(1985. Based on the uniform convergence regsthle consistency of the QMLE
was obtained under only the second-order moment conditioike Weiss
(1986 and Pantuld1989 for the univariate case¢he asymptotic normality of
the QMLE for the vector ARCH model requires only the second-order mo-
ment of the unconditional errors and the finite fourth-order moment of the
conditional errors The asymptotic normality of the QMLE for the vector
ARMA-ARCH model was proved using the fourth-order momewlich is an
extension of Weis$1986 and Pantuld1989. For the general vector ARMA-
GARCH mode] the asymptotic normality of the QMLE requires the assump-
tion that the sixth-order moment existd/hether this result will hold under
some weaker moment conditions remains to be proved
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NOTES

1. For models(2.8) and (2.9) and (2.10) and (2.11), B; in Assumption 3 reduces to the zero
matrix, wherei = 1,...,s.

2. The co-editor has suggested that this theorem may not beaoawsisting of Lemma.2 and
footnote 18 of Newey and McFaddéh994).
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APPENDIX A: PROOFS OF THEOREMS.2
AND 2.2

Proof of Theorem 2.1. Multiplying (2.5) by 7)o, yields

r S
Eor = TlotWo + 2 ot Agi Eor—i T Z Tlot Boi Hot—i - (A.1)

i=1 i=1

Now rewrite (A.1) in vector form as

X, = Ag X1 + &, (A.2)
whereX; = (&4;,...,86t—r+1, Hotr -+ +» Hoi—si 1)’ @ndé; is defined as in2.9). Let Q7
n j 5
S«,t =&+ (HAOKi+1> ftij (A.3)
j=1\i=1
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wheren = 1,2,.... Denote thekth element of(H‘}ZlAOt,i)gt,j,1 by s, . We have

i
E|Sn,t‘ = QQE<HA0ti)§tjl
-1

i
= eﬁ(H EAOli>E§lj1 =gAlc, (A.4)
=1

whereg, = (0,...,0,1,0,...,0),,+5x1 @and 1 appears in thith position c* = E¢; is a
constant vectgrand

Aoy Ao By Bos
A _ Im(rfl) Om(r71)><m Om(r71)><ms (A5)

Aoy Ao, Bo, Bos

Om(sfl)xmr Im(sfl) Om(sfl)xm
By direct calculationwe know that the characteristic polynomial &fis
r . S )
f(2) =279, - DAz -> Bz (A.6)
i=1 i=1

By Assumption 3it is obvious that all the roots df(z) lie inside the unit circleThus
p(A) < 1, and hence each component@fis O(p'). Therefore the right-hand side of
(A.4) is equal toO( pl). Note thati is a sequence ofiid. random matrices and each
element ofAy andé¢, is nonnegativeWe know that each component 8f ; converges
almost surely(a.s.) asn — oo, as doesS, ;. Denote the limit ofS, ; by X;. We have

o [
Xp =&+ 2 <HA0ti ) ft—j—lv (A7)

j=1\i=1

with the first-order moment being finite

It is easy to verify thak; satisfies(A.2). Hence there exists atf;-measurable second-
order solutioneg, to (2.5) with ith elementegi; = 10 A/ Noit = Moit (Elm+i %) Y2, with the
representation2.13).

Now we show that such a solution is unique(f¥b). Let st(l) be anotherr-measur-
able second-order stationary solution(af5). As in (A.2), we haveX” = Ay X +
&, whereX® = (82, 8% L HY o HEL ) andH® = W + S, Ay Y +

S By HY with 8 = (eP2,..., 02y Let U, = X, — X*. ThenU, is first-order
stationary angby (A.2), U; = (IT'_o Ao )U;_n_1. Denote thekth component ofU;
asu ;. Then as each element &, is nonnegative

n n

[Uy| = |q,<<HA0ti>Utnl| = q(HA0ti>Ulnl’ (A.8)
i=0 i=0

whereeg is defined as inA.4) and|U,| is defined as(|uyl,...,|Ur+smt|)’- As Uy is

first-order stationary andr-measurableby (A.8), we have

n
Elug| = QQE<HA0H> ElU_n_1| = (A%} — 0 (A.9)
i=o
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asn — oo, wherec; = E|U;| is a constant vectoBouy = 0 as, that is X, = X” as.
Thus hy = h{¥ as., and hencesy = &b’ = 1o h&2 as. That is eq; satisfying(2.5) is
unique

For the unique solutioreq;, by the usual methgdve can show that there exists a
unique F-measurable second-order stationary solutpeatisfying(2.4), with the ex-
pansion given by

Y = kE Yok €ot—k- (A.10)
=0

Note that the solutionY,, eq;, Hot} is a fixed function of a sequence af.d. random
vectorsne and hence is strictly stationary and ergodibis completes the proof H

The proof of Theorem .2 first transforms model&.4) and(2.5) into a Markov chain
and then uses Tweedie’s criteridoet {X;t = 1,2,...} be a temporally homogeneous
Markov chain with a locally compact completely separable metric state i@t
The transition probability i®(x, A) = Pr(X, € A/ X,—1 = X), wherex € SandA € B.
Tweedie’s criterion is the following lemma

LEMMA A .1. (Tweedie 1988 Theorem 2. Suppose tha{X;} is a Feller chain. Q8

(1) If there exist, for some compact seA3, a nonnegative function g and> 0
satisfying

fAc P(x,dy)g(y) =g(x) —&, X€EAS (A.11)

then there exists a-finite invariant measurg for P with 0 < w(A) < oo.
(2) Furthermore, if

[ i [ Ji P(x,dy>g<y)]<oo, (A12)
A A°

thenp is finite, and hencer = u/w(S) is an invariant probability.
(3) Furthermore, if

Lc P(x,dy)g(y) =g(x) —f(x), XxEAS (A.13)

thenu admits a finite -moment, that is,
f w(dy) f(y) < co. (A.14)
S

The following two lemmas are preliminary results for the proof of Theore?n 2

LEMMA A .2. Suppose that B7q ) < oo and p[E(AZ¥)] < 1. Then there exists a
vector M> 0 such thafl,, — E(A&¥)’]M > 0, where a vector B> 0 means that each
element of B is positive.
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Proof. From the condition givenl,, — E(AZ¥) is invertible Because each element
of E(A®¥) is nonnegativewe can choose a vecttr > 0 such that

M :=[I,— E(ARY)' ] 'Ly =L, + X [E(ARY)'T'L, > 0.
i=1
Thus [I, — E(AZ)'IM = L, > 0. This completes the proof u
LEMMA A .3. Suppose that there is a vector M 0 such that
[1,,— E(AZ%) 1M > 0. (A.15)
Then there exists a compact seEA(x: %X = (3{,9Mx )k = A} € Ry ™™ with Ry =

(0,00), a function g(x), and x > 0 such that the function g, defined byxy = 1 +
(x®K)'M, satisfies

E(@(X)[ X1 =X =g +0g,(x), xERy™™, (A.16)
and
E(g(X)|X 1 =% =(1-1g(x), XEAS (A.17)

where & = RC9™ — A x; is the ith component of xmaxea g1(X) < Co, X; is defined
asin (A.2), and G, k, and A are positive constants not depending on x.

Proof. We illustrate the proof fok = 3. The technique fok # 3 is analogous
For anyx € Ry "™, by straightforward algebrave can show that

E[(£ + A ®3]'M
= (X®3)'E(AF®)'M + C{M + x'C3M + (x®2)'CsM
= (x®3)E(AS®)'M + c(1+ % + %?), (A.18)

whereC,, C,, andCz are some constant vectors or matrices with nonnegative elements
which do not depend or andc = maxJ{all components of M, C;M, and GM}.
By (A.2) and(A.18), we have

E[9(X) X1 = X] =1+ E[(& + AxX)®°]'M
=1+ (X®)EAR®)'M + g,(X)

=14+ (x®3)'M — (x®3)'M* + g,(X)

(x®3)'M* 91(X)]
=g(x)[1— + s A.19
o )[ 90 g (A19)
whereM* = [, — E(A®3)'IM andg;(x) = c(1 + X + %2).
Denote
A={x:x3=A,xERY™M, ¢, = min{all components of NI},

¢, = max{all components of M ¢; = min{all components of M
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It is obvious thatA is a compact set oRy "™ BecauseM* M > 0, it follows that
C1,Cy,C3 > 0. From (A.19), we can show that

E[9(X)|X 1 =x]=g(x) + g(x), xERY™M (A.20)

where maxea g1(x) < Co(A) andCy(A) is a constant not depending @n
Let A > max{1/c,,1}. Whenx € A®,

A <X3=g(X) =1+c,%3=2c,%5 (A.21)
Thus

x®3)' M * %3

T 22
and furthermorgbecause ¥ X = 2% asx € A°, we can show that
9 _ s _C (A.23)

g(x) — cx® A’

whereC is a positive constant not dependingxandA. By (A.19), (A.22), and(A.23),
asx € A°,

N G E
E[g(xt)|xll—X]_g(x)<1 26, + A)_

Provided 0< c¢;/4c, < k < c¢1/2c, and A > max{1, 1/c,, C/(cy/2¢c, — «)}, then
E[g(Xt)|Xi—1 = X] = g(X)(1 — «). This completes the proof u

Proof of Theorem 2.2. Obviously X; defined as in(A.2) is a Markov chain with
state spac&y "¥™ It is straightforward to prove thafor each bounded continuous
function g on RS ™9™, E[g(X,)| %1 = X] is continuous inx, that is {X,} is a Feller
chain In a similar manner to Lemma .3, in the following discussion we illustrate
only that the condition$A.11)—(A.13) are satisfied fok = 3.

From Lemmas A and A3, we know that there exists a vectigk > 0, a compact set
A={x:23=(Z"¥"x)% = A} € RI™™, andk > 0 such that the function defined
by g(x) =1 + (x®3)’'M satisfies

E[Q(X)|X 1 =x]=g(x) + g(x), xERY™M (A.24)
and
E[g(X)[X 1 =XI=(1-x)g(x), XEAS (A.25)

where maxea g1(x) < Co andCy, k, andA are positive constants not dependingxon
Becauseg(x) = 1, it follows that E[ g(X)|X;—1 = X) = g(X) — k. By Lemma Al, Q9
there exists ar-finite invariant measurg for P with 0 < u(A) < co.
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Denotec, = max{all components of M andcz = min{all components of M. From
(A.24), asx € A, it is easy to show that

(r+s)ym

3
E[g(xt)|xtlzx]51+02< Z Xi) + g1(x)

i=1

=A; <oo,

whereA; is a constant not depending anHence

J e [ Povanan

= LM(dX)E[g(Xt)|Xt—1 =x]=Au(A) <co.

This shows thafX;} has a finite invariant measuge and hencer = u/w (RS ™9™) is
an invariant probability measure ¢X;}; that is there exists a strictly stationary solu-
tion satisfying(A.2), still denoted byX;.

Let f(x) be the function orRy "™ defined byf(x) = csx(S{";¥™x,)® Then by
(A.25), asx € A°, we have

L P(x,dy)g(y) = E[g(X)[Xi—1 = X]

= g(x) — kg(x) = g(x) — f(x).

By Lemma A1(3), we know thatE, [ f(X)] = cs«kE[(S{",¥™x,)3] < oo, where
is the stationary distribution ofX.}, where x;; is the ith component ofX;. Thus
E.leall® < oo, where 7, are the stationary distributions dfq}. Now, because
E..leall® < oo, it is easy to show thaE_||Y,|® < oo, where, is the stationary dis-
tribution of ;.

By Holder’s inequality E, [leq > < (E,, leq]®™)Y* < co. Similarly, we have
E,.,|Y? < co. Thus {Y;, eq:} is a second-order stationary solution of mod@s}) and
(2.5). Furthermoreby Theorem 21, the solution{Y;, o} is unique and ergodicThus
the procesqY,, eo} satisfying modelg2.4) and (2.5) has a finite Xth moment This
completes the proof u

APPENDIX B: PROOFS OF RESULTS
IN SECTIONS 3-5
Proof of Theorem 3.1. The proof is similar to that of Theorem21 in Amemiya

(1985, except that the Kolmogorov law of large numbers is replaced by the ergodic
theorem This completes the proof
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Proof of Lemma 4.1. Note that

/0 O
A= -,
o B

whereA is defined as inA.5), B = (B‘” -

m(s-1)  Om(s—1)xm

Bos ), and here “the matrixA > the

matrix B” means that each componentAfis larger than or equal to the corresponding
component oB. Thus we have

(o o
A><O Bi>' (B.1)

By Assumption 3p(A) < 1, and henceS{_, A’ converges to a finite limit ak — co.
By (B.1), Eik:o B' also converges to a finite limit ds— oo, and hencep (B) < 1, which
is equivalent to all the roots df,,, — X;_; B;L'| = 0 lying outside the unit circleThis
completes the proof |

In the following discussionwe prove Lemmas .2-44, Lemma 46, and Theo-
rem 41 only for modelg2.4) and(2.5). The proofs for model§2.8) and(2.9) and(2.10)
and(2.11) are similar and simpler and hence are omitted

Proof of Lemma 4.2. First, by (3.2),

&f

ad
ef = V(L) R(L)(Y, — ), P THL[-2(D), X1 @ I, (B.2)

’

whereXi—1 = (Y3 — u',o., Y pia — M,&( 1,....80 1) and the preceding vector
differentiation follows rules in Liitkepoh{1993 Appendix A). DenoteU; = def/d¢’
andV, = [-®(1), X1 ® In]. Then

U+ WU+ -+ WU =V, (B.3)

If Uic, = 0 as, thenVic, = 0 as. Let ¢, be the vector consisting of the first ele-
ments ofc,, whereasc; is the vector consisting of the remaining elementgofThen
—®(1)c; + (Xi—1 ® Im)ca = 0. BecauseX;_; is not degenerajgX;—1 & Im)c, = 0
and®(1)c; = 0. By Assumption 1®(1) is of full rank, and hence; = 0. By Assump-
tion 2, we can show that, = 0. Thus ¢, = 0.

Next, by (3.3),

He = (lm—isi L‘)l{w+<iAiLi>§f], (B.4)
aHtg _ _ - i o Je
5 - <Im E_BIL ) (lmr H171® lm)s (BS)

where Ag ; = (8¢ 4,...,8¢ 1, HE 1,...,HE 5). Denoting Uy, = 9H/98" and Vi, =
(Ims HE1 ® 11m), we have the following recursive equation

Uy = ByUy g + oo + BUy g+ Vi (B.6)
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If Uyc = 0 as, thenVyc = 0 as. By Assumptions 3 and,4n a similar manner to
Vic, = 0, we can conclude = 0 (also refer to Jeantheali998 the proof of Proposi-
tion 3.4). This completes the proof u

Proof of Lemma 4.3. As the parameter spa¢eis compactall the roots ofb (L) lie
outside the unit circleand the roots of a polynomial are continuous functions of its
coefficients there exist constants,c; > 0 and 0< p < 1, independent of alA € O,
such that

legl = co+ ¢ 2 o' [Yeeil = & (B.7)
i—o

Thus Esup,ce|&f]? < oo by Theorem 2. Note thaf by Assumption 3|DfI'Ds| has
a lower bound uniformly ove®. We haveE sup,ce[&f (DFIDf) tef] < co. By As-
sumption 3 and Lemma.4 we can show that

IHE = ¢ + ¢ 2 0 [ Yeei |2 = &y (B.8)
i1

o
wherec,,c; > 0 and 0< p; < 1 are constants independent of all€ ©. Thus
EsupcellHe| < oo, and henceEsup,ce|DfI'Df| < oo. By Jensen’s inequality
Esup.ce|IN|DFTD¢|| < co. Thus E|If(A)] < oo forall A € ©. Letg(Y;, A) = I§ — EIf,
whereY; = (Y, Yi—1,...). ThenEsupee|g(Y;, A)| < co. Furthermorgbecausey(Y;, A)
is strictly stationary withEg(Y;, A) = 0, by Theorem 3L, sup,ce N * 21 9(Y;, A)| =
0p(1). This completes the proof |

Proof of Lemma 4.4. First,

— EIn|DfTD;| — E[sf (D TDY) ]

—EIn|DfIDf| — E[(sf — go¢ + 80t)’(Dt€er)71(8f — et €0t)]

{-EIn|DfTDf| — E[eq(DfTDY) teqr I}

— E[(ef — £0))'(D{ D) (& — £00)] = L1(A) + Lp(A). (B.9)
The termL,(A) obtains its maximum at zeyr@nd this occurs if and only iff = &q.
Thus
EN
& —eo= 7| (=) =0. (B.10)
o o

By Lemma 42, we know that equatiofB.10) holds if and only if¢ = ¢q.

L1(A)

—EIn|D{I'Df| — Etr(M,)

~[~EIn[M,| + Etr(M,)] — EIn| D, Ty Do, (B.11) Q10

whereM, = (DfTDf) Y2(Dgy, I, Do) (DF 'Df) 2. Note thaf for any positive definite
matrix M, —f(M) = —In|M| + trM = m (see Johanseri995 Lemma A6), and hence

— EIn|M,| + Etr(M,) = m. (B.12)
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When M, = |, we havef(M,) = f(l,,) = —m. If M; # |, thenf(M,) < f(l,), SO
that Ef (M,) = Ef(l,,) with equality only if M; = I,,, with probability one Thus L1(A)
reaches its maximum-m — EIn(Dy I5Dg;), and this occurs if and only iDfT'Df =
Dot IToDot. From the definition ofl’, we haveh; = hgi;, and hencd” = Ij. Note that

maxL(A) = maxL,(A) + maxL,(A).
AEO AEO AEO

The expression maxeL(A) = —m — EIn(Dg 5 Dgy) if and only if maxecoLo(A) =0
and maxece Ly (A) = —m — EIn(Dg I Do), Which occurs if and only ifp = ¢g, I' =
Iy, andh; = hgie. From ¢ = ¢ andh;; = hg;;, we have

IHE
PYY

(Hf - H0t)|¢:¢0 = (6—380)=0 (B.13)

(¢0,6%)

with probability one wheres* lies between and §,. By Lemma 42, (B.13) holds if
and only if§ = 8p. Thus L(A) is uniquely maximized at,. This completes the pr#bf

Proof of Lemma 4.5. First, for any positive constani,

=

Sk
= NQ)

§Xt§t|(|xt|>M) lext\l(\xt\>'\/|), (B.14)

wherel (-) is the indicator functionFor any smalk, k > 0, becauseE| X;| < oo, there
exists a constar¥ly such that

(| -]

a E Xe&e (| X ] > M)
t=1
t_Elxtft|(|Xt| > Mo)

C 1.0
;E<52|xtl<xt| > Mo>>

t=1

I

x|~

E

Sl

)

IA

c
i IX|dF(x) < g (B.15)

K Jix|>M,

whereF(x) is the distribution ofX;. For such a constarily, by the given condition
there exists a positive integéf such thatwhenn > N,

. (B.16)

NI m

12 1.2
P( _legtl(‘X[|SM0) >K>SP<_Z|§t|>K/Mo)><
==} N1
By (B.15) and(B.16), asn > N, P(|n™1 3, X, & | > 2k) < e, thatisn ™t > X & =
0p(1). This completes the proof |

Proof of Lemma 4.6. For conveniencglet the initial values béf, = 0 andgy = 0.
When the initial values are not equal to zetioe proof is similarBy Assumption 1e¢
ande; have the expansions
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oo t—1

e = 2N (Yek—m), &= 2 NV~ ), (B.17)
k=0 k=0

where® (L)W (L) = 22, Y L*. By (B.17),

lef — el = ¢ X ofYek— ml, (B.18)

where 0< p; < 1 andc; and g; are constants independent of the paramateBy
Assumption 3 and LemmaX we have

%) r t—1 r
He= > rk[w+ (2 A L‘)§fk], Ho=> rk[w+ <2 A L‘>§lk], (B.19)
k=0 i=1 k=0 i=1

where(l, — 251 B L)1 = 3 T L*. By (B.19)

H Hts - Ht ” = 2 .le((cz + C3H§t6—k - ét—k”), (B-ZO)

k=t

where 0< g, < 1 andc;,, c3, andp, are constants independent of the paramgtd3y
(B.18) and(B.20), we have

E sup(ef —&¢)? = O(0") and  Esup/hg—hy|=0(e"), (B.21)
AEO

AEO

wherei =1,...,m 0 < p < 1, andO(-) holds uniformly in allt. Becauséh; has a lower
bound by (B.21), it follows that

1 n
= > E sup|In|DETDs| — In| D, I'Dy |
Ni=1 aeco
=3 =3 Esup|in| —
i=1| Nt=1 2reo h;
m n h h
i=1| Nt=1 reo it
m 1 n
=0(1) X | = X Esuplhi — hy|
i=1| Nt=1 aeo
m l n .
=0 X ~ X 0le") = o) (B.22)
i=1 t=1

+ (e — sit)2:| o), (B.23)

&
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whereO(1) holds uniformly in allt. We have
|ef (DETD;) *ef — {(D,I'Dy) &,
|2 DE r- 1(DE . i Dt_lat) - (StE'DtE_l - S{Dt_l)r_l(Dté_l &= Dt_lst)‘

m 2\1/2 m 2
<§ > |sf|0(1)+<§ )0(1)

e

Eit
Vi Vb

8

&t
i m

ﬁpe el per| =L 2}0(1)
= t it V— \/— it ’\/h—ft '\/h_lt
+ 3 [eflles — ol + (o5 ~ 5210
~ ORy + Oy, (B.24)

where O(1) holds uniformly in allt and the second inequality comes frdiB.23).
By (B.7) and (B.21), it is easy to show thah X, supece Ra = 0p(1). Thus
it is sufficient to show than™* XL, sup,ce Ry = 0p(1). Let X = &2 and & =
SUPeo | N~ Y2 — h¥2|2 wheree; is defined by(B.7). Then X is a strictly stationary
and ergodic time seriewith EX; < co and|&;| = C, a constantFurthermoreby (B.21),

1n n
_Eft: ; e

Ni=1

hﬁ - hil 2
hi hy (g + hy )

i B hlt |(hﬁ + hlt)
t=1A 0 h,[ hIt hg +

1
n

=0(1) - 2 sup| hi — hy |

=0() - 2 Op(e") = 0p(1).

By Lemma 45, n"* 3L, X;sup,ce | Y2 — ;2|2 = 0,(1). Similarly, we can show
thatn™* X, X,Sup,eo [N Y% — h¥?| =0 (1). Thus

l n m l n
= > SupRy = E -2 X, sup|hi~*2 — hi /2|2
N¢=1e0 Ny AEO
+ X, sup|hi /2~ hm]} = 0y(1).
AEO

This completes the proof u

Proof of Theorem 4.1. First, the spacé® is compact and is an interior point ino.
SecondL,(A) is continuous iMm € © and is a measurable function 4f t = ,nfor
all A € @. Third, by Lemmas 4 and 44, L;,(A) —p L(A) uniformly in ©. From Lemma
4.6, we have
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sup|L,(A) = L(A)] = sup|L5(A) — L(A)] + sup|L5(A) — Ly(A)] = 0,(D).
AEOG AEOG AEBG

Fourth Lemma 44 showed that (1) has a unigue maximum at,. Thus we have es-
tablished all the conditions for consistency in Theoreth#4in Amemiya(1985. This
completes the proof u

Proof of Lemma 5.1.In the proof of Lemma 48, we have shown that
E Sup.ce l£5]12 < 0. With the same argumepnit can be shown thaE sup,ce | (9ef/
d¢p)|? < oo. BecauseDsI'Df has a lower bound uniformly for alhk € ©, we have
E sup,ee(def /00) (DETDE) L (def /dp')| < oo. Let ¢ be any constant vector with
the same dimension as. If c'E[(def /o) (DFIDE) (def/dp')]c = 0O, then
¢’ (e /9@) (DEIDE) Y2 = 0 as, and hence'def /dg = 0 as. By Lemma 42, ¢ = 0.
ThusE[(def /9@) (DETDE) L (9 /d@’)] > 0. This completes the proof n

Proof of Lemma 5.2. First,

g def’ 1 oHE

FP (DfIDf) *ef — 2 o0 D %4, (B.25)
OH¢ SV < N\ /(. 058

P Im— > BiL >SAL 28— ), (B.26)
¢ i=1 i=1 dp

alg 1oHE

B 2w D (®:27)
e 1 aved (I ,

a; == —80'( )vec(r’l— IIDf tefef DEIITY), (B.28)

whereg; = diag(e$;, ..., e50), & = — AT Ins, T = (L,...,1)w1, andnf and7f are
defined as in Lemma.B. Wheni = Aq, n¢ = 1o and in this casewe denotel, and s
by {ot and7§;, respectively

For models(2.10) and(2.11),

oHg
ou'

r
= _ZZAI gt*,i. (B.29)
i=1

Becausdsﬁ"‘_i| = hi/a;; anday; = ai'ij >0,j=1,....,mandi =1,...,r, we have

OH¢’

L <k, (B.30)
o

e—2
Dy

where k; and k, are some constants independentiofFurthermore because all the
terms inohy /08 appear inhg, |(0Hs /06) D2 < M, a constant independent af
BecauseEng, < co andE|{q]|? < oo, it follows that Qg < co.
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For models(2.4) and (2.5), becausegB.25) and (B.26), E[{o]? < oo, E[Y|* < 00, Q11
andDg, has a lower boundve have

&’

ot
dp

2

=2E

2

2 .
EflZotl* < oo.

2

alg,
de

o
&5t

de

—2
Dot

Similarly, we can show thaE||dls,/d5(? is finite. It is obvious thatE||dl§,/do|? < co.
Thus we also havelg < oco. In a similar mannerit can be shown tha€, < oo for
models(2.8) and(2.9).

Let § = XL, c'dl§/0A, wherec is a constant vector with the same dimension
as A. Then S, is a martingale array with respect tg. By the given assumptions
ES/n = c’'E[0l§/0Adl§,/0A' ]c > 0. Using the central limit theorem of Stoyt974),
n~—Y2s, converges tdN(0, c’Qqc) in distribution Finally, by the Cramér—Wold devige
n~Y23L0l§/0x converges taN(0, Qo) in distribution

In a similar manner to the proof of Lemmab4we can show that

1 2 lalg  alg
— - 21 =0, (1.
n 1221 EY D) (L
Thus n™Y23 ., dl,, /0A converges ttN(0, Q) in distribution This completes the proof

Proof of Lemma 5.3. For models(2.10) and (2.11), from the proof of Lemma 2,
we have shown that

sup|(aHg /oA DE 2| < C < oo with probability one
AEO

whereC is a nonrandom constarfurthermore

sup| ATl = kol f (12 = wyllef]® = Kaei?,
r€6

where & is defined as in(B.7). Thus Esupce|(@Hs /0A)Df 2A;DE 2(9Hs/
)| < co.
For models(2.8) and(2.9),

oH¢ d L, o0&l
;=2 2 Agli —,,
de i=1 e

whereg; is defined as in(B.26). Thus with probability one

8H_f Dte—z
de

lefil

=633t

=1i=1 hft

,
€
def

dp

,
€
def

dIp

‘, (B.31)

m r
=Ky 2
i=1i=1

wherek, andk, are constants independentofBecause all the componentsdH;' /06
also appear iDf?, we have

’

oH¢
28

sup Df 2

AEO

<C< oo, (B.32)
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whereC is a nonrandom constant independenioBy (B.31) and(B.32), it is easy to
show thatif E[[Y;[* < oo, Esup,ce [(9Hf /01)D¢~2A¢ Df 2 (9H/ 9X')| < oo.
For models(2.4) and(2.5), becausé||Y;||® < oo,

€’ €
t t

oH oH OHE oHf
— D 2A5Df 72— - ;
A %

— A —
A LN

E sup = CEsup

AEO

‘<oo,

whereC is a nonrandom constant independenfofhis completes the proof u

Proof of Lemma 5.4. By direct differentiation of(B.25) and(B.27) and(B.28), we

have
2| €

S g g RO (B.33)
IAIN' ' ' o '
where

def’ def 1 oHE aH
RY = — (DfID§) * —=-, R®=>—-Df2A;Df 2 —,

A N 4 A N

, ] def’ B

R = (ef ®|m>§vec[ -5 (D€TDY) ]

@ I)a 18Hf'D72
—Vvec| - — N
G®Im N 2 9x !
1oHs o ef
~ %o Df ?[Hf T *Dft + A{Df ] o

and A, A<, and ¢ are defined as in Lemma.® By Lemmas 51 and 53, we have
Esupco RY < o0 and Esupce R? < co. Similarly, we can show thaE sup.ce
R® < 0. Thus by (B.33), Esup,ce|02l/dAdX | < co. Furthermore

92l oef 1 9H¢ d

t o _ 7= (ef Dte—lr—l ® Dte—lr—l)lc _ -t Dte—z ﬁ’
dpdo’ dp 2 dp do’
g 1 oHE De-2 AL,
389’ 2 98 ' do”

4 C _ _

= = (T @) (I, ® T HK,

dJo
021§ 1 B i e
—— = KT @)l — D tefef D@ 1)
dodo’ 2

— (Ihn®T D¢ tefef DFH](1, @ T HK.

In a similar mannerit is straightforward to show thaE sup,ce |02l /dpdo’ | < oo,
E SUpce |021£/3800" | < oo, andE sup,ce 021§ /d0do’ || < co. Finally, by the triangle
inequality we can show thaE sup,ce[02£/dAdX | < co. By Theorem 3L, (a) holds
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The proof of(b) is similar to that of Lemma .8, and hence the details are omittddhis
completes the proof |

Proof of Lemma 5.5. By Lemmas 51 and 53, we know || < co. By Lemma 54,
we haveX, = 3o + 0p(1).

Let ¢ be a constant vector with the same dimensiondasf c’E[oHg, /98Dy
Hs, /98" Jc = 0, thenc' (9Hg, /08)Dg2 = 0 and hence’dHS, /96 = 0. By Lemma 42,
¢ = 0. Thus E[9Hg; /08Dg dHg/35"] > 0.

Denote

1 9Hg 1 IHS
B 2Dz 0|/C G \[ZD2—2 0
Sso=E[[2 a8 I 95

0 pr )\ I/ 0 P

C,
12 /2
Theorem 145 in Harville (1997. BecauseP'P = K'(Iy! ® IzHK and
E[0H§, /06Dg*9Hs, /98" ] are positivewe know thats 5, is positive

By the condition givenC = 2I,,. Thus it is easy to show tha((f, > is positive by

e 6801}
E| — (Dg[yDg) t—| O 200 2es00
5= [(w(mom) e +< w0  Fesro)

0 0 20517'0 250

where 3,0 = E[(9H§; /0¢) Dy? CDo?(9HS/00")1/4, S 4500 = (2450, 2600)s Ss0 =
E[(9H; /0¢) D> CDo(9HS,/38")1/4, and 3,0 = E[(9H§ /d¢)Doi?] C1P/2. Let ¢ =
(ci,c5)’ be any constant vector with the same dimension asd letc; have the same
dimension asp, that is m+ (p + g)m? for models(2.4) and(2.5) and(2.8) and(2.9)
and m for models(2.10) and (2.11). If —c¢'Soc = 0, thenc]E[(def,/d¢) (Do I, Do) 2
(deor/de’)]cy = 0. By Lemma 51, ¢; = 0. Thus c,35,C, = 0. As we have shown that
350 IS positive definite c, = 0. Thus —3 is positive definite This completes the
proof. u

Proof of Lemma 5.6. We only present the proof for mode(2.4) and (2.5). The
proofs for modelg2.8) and(2.9) and modelg2.10) and(2.11) are similar except that
(B.29) and(B.30) are used to avoid the requirement of momemsthe following ¢;
and p; are some constants independenipfvith 0 < p; < 1. By (B.2), we can show
that

def
de

BecauseXy, is a strictly stationary time series withX% < co, we have(see Chung
1968 p. 93)

= C2+C3_Z pilYeil =Xy (B.34)

€
-t

dep

1
— max sup

= 0,(1). B.
\/ﬁ 1=t=n \co op( ) ( 35)
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By (B.5), (B.7), (B.8), and(B.26), it follows that

€

sup
AEO

=Gyt Cs D, pb| Yeei 2 = Xa. (B.36)

i=1
BecauseXy, is a strictly stationary time series wiBX2, < co, we have

1 ‘
— max sup|| —=

= 0,(1). B.37
AN 1=t=n co 0p(1) (B.37)

In the following discussion{; is defined as in(B.27) and 7 andn; are defined as in
Lemma 53. Denotens, 75, {t, andD¢ by 05, 75 {nt, @andDS;, respectivelywhenA =
An. By (B.35) and(B.37),

| £oit |
‘n;it - 770it| = |8:it - 80it| hel/2 + |hrs1|lt/2 - hél/tz| /2| €l/2
nit Oit ' 'nit
de¢

= I, o) i

A%) Q12

1
— 5> = MmaXx
hﬁﬁ/z\/ﬁ 1=t=n

B | —— max 1 ohg
hgi?hii/? " Vn a=t=n\ || g2 oA |||,
= 0y(1) + 0,(D)[moit |5 (B.38)
whereo,(1) holds uniformly in allt, i = 1,...,m, and A3, and A%, lie betweeni, and

An. From(B.38), we have
H{m — ot ” = H f]reltrnil"]ren — Mot F0717I0t ”
= |95l o175 — o7

+ 2]75 = Aol ITo 1ol + 175 = 70| * ITo |

whereog(1) holds uniformly in allt. By (B.37),

= 0,(1) + 0, (D) moell% (B.39)
max |t~ hgd| = INT(L, ~ o)l <=
1=t=n nit ot n 0 \/ﬁ 1=t=n Nsn

=0,(1), (B.40)

where A%, lies in betweemg and A,,. By (B.39) and(B.40),
IDst ?4nt — Dot* Lotl = D52 = Dot? ol + 1D 2 ¢ — €t

= 0,(1) + 0p(Dnot |12 (B.41)
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By (B.41),
IDS 2 ¢niéiiDit 2 — Dot ot £6t Dor” |
= 2|Df; ?4nt — Dot? &l Doc®doill + D 24ne — Dot &l
= 0p(D) + 0, (D) me- (B.42)

In a similar manner t@B.37), we can show that

2ne

dAIA

sup

AEO

S%+w§y&mﬂV5xw, (B.43)
=

wherei = 1,...,m. By (B.42) and(B.43), we can show that

’

aHS o, OHS aHg o, OHg
6/{ Dnt ZgntngntZ 6/{ - 8;\ D0t2§0t§OtD0t2 6)~\
aHe | ] T o OHg
a_gDOtzfmmeOtza_;* ax D0t2§0t§0tD0t2 oA
€’ 2
+ | == || [0p(D) + 0 (Dl mocll*]
aHg  aHG || || 9HE, B L
= ﬁ_ﬁ W ‘|D0t2§0t§OtD0t2”
aHS  aHg, || <112
= — — | D040t &6 Dol + || === || [0p(D) + 0p(D)moe1*]
EN an
1 L AH,
=—0,(D|Vn(A,— A Ko || —— 2
Jn o )[Vn(A, o)i:E1 sit|| ox 1Yol

1 B B m 2
N NN (An = A0)I? (iEZI-X?,it) 1Zot? + XZ:(1+ ot *) 0p(2)

m 6H(r)I m 2 ) 4
=0,(1) > Xai o 2 Xaie | + X5 @+ o)
i=1 i=1
= 0p(DXF (1 + o), (B.44)

whereO,(1) ando,(1) hold uniformly in allt. Note thatX; (1 + [no*) is strictly sta-
tionary with E[X; (1 + [no]*)] = EX*E(1 + |no*) < co. By the ergodic theorenwe
haven™* 3L, X (1 + [no*) = Op(1). Thus by (B.44), we have

IHS OHS  9Hg, ot

e—2 ’ e—2 —2 ’ —2 oH
Py Dht “&nidnDse ax _WDOl Lot ot Dot W

n
>
t=1

=0,(1).  (B.45)
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Similarly, we can show that

1
n¢

5

Ni=1

’
e

deg _
- P (DOt Io DOt)
3

‘ g dlg  alg Al

€ € € €
alg alg,  al§, alg,

0N N JA IN
(a) holds In a simila

g ol alye dly

5 €)1 1 -t 88
D5T'Ds) Sntsnt(D S TDS)

, . Oggp
&0 £0t(Do¢ [Doy) ™ o

’
€

Jp

=0,(1) (B.46)

H = 0,(). (B.47)

by (B.45)—(B.47) and the triangle inequalityve can show that

= 0,(1). (B.48)
r manner to the proof of Lemmab4we can show that

— 0,(1). (B.49)

aA OX 9A AN

Note that (al§,/dA)(dl5./0N) is strictly stationary and ergodic withE|(dl§,/0A)
(015,/0A")| < oo. By the ergodic theoremwe haven 3 [(9l§./0A) (91§ /0N)| =
Qo + 0p(1). Furthermore by (B.48) and (B.49), (b) holds This completes the proof

Proof of Theorem 5.1. We need only to verify the conditions of Theoreni.d in
Amemiya (1985. First, by Theorem 41, the QMLE A, of Aq is consistentSecond
Nt (012/0A0)X") exists and is continuous i®. Third, by Lemmas % and 55,
we can immediately obtain that™*>{ (dl2/0A0X’) converges toZ, > 0 for
any sequencei,, such thati, — Ag in probability Fourth by Lemma 52,
n~Y23 1 (3l /0A) converges tdN(0, Q) in distribution Thus we have established all
the conditions in Theorem.#3 in Amemiya (1985, and hencenV2(A, — Aq) con-
verges taN(0,3510,351). Finally, by Lemmas % and 56, 3 and(), can be estimated
consistently bys., and ()., respectively This completes the proof u



