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Abstract

The centipede paradox is the antagonism between the outcome from the BI (backward
induction) theory in a centipede game and people�s responses to it. We weaken the underlying
postulates of the BI theory so that payo¤s may be incomparable for the players depending
upon bounded cognitive abilities. In this case, a player may follow inertia when decision
nodes have some distance from the start. In the CIB (conscious choice/inertial behavior)
theory which we develop, when the players have high cognitive abilities, it exhibits the same
behavior as the BI theory, but when at least one has a low ability, it induces quite opposite
outcomes selecting the actions of continuation to the end area of the centipede game. To
examine this result, we consider the degree of reversed causality, which is the discrepancy
from hypothetical evaluations of future possibilities to the present choice. When at least one
player has low cognitive ability of payo¤s, the degree of reversed causality takes a low value,
meaning that the game ends near the last end node. We argue that these results explain
the antagonism shown by people for a chain-store game reported by Reinhard Selten. The
developments as a whole form a resolution of the centipede paradox.

Key Words: Centipede Games, BI theory, Cognitive Bounds for Payo¤s, Inertia, CIB theory,
Degree of Reversed Causality

1 Introduction

We have met some paradoxical results from the BI (backward induction) theory in game theory.
Two results directly relevant to this paper are the chain-store paradox and the centipede paradox
due to Selten [24] and Rosenthal [22]; the latter shows the di¢ culty in a clearer manner than
the former. We focus on the centipede paradox and attempt to give its resolution. Selten states
what the paradox is for chain-store games; his statement is directly applied to centipede games.
We modify the BI theory to the CIB (conscious-choice/ inertial behavior) theory by introducing
players�bounded cognitive abilities for payo¤s and a postulate based on inertial behavior. The
new theory keeps the same prediction as the BI theory when cognitive bounds are large enough,
but it dictates quite opposite results when they are low. We measure the degree of reversed
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Figure 1: Classical centipede games

causality on these results. In this introduction, we discuss the background of the paradox and
how we approach it.

Look at the centipede game of length 100 in Fig.1: Players 1 and 2 alternatively choose action
c (continue) or d (down, �nish), except for the decision node x100 where either choice goes to
an end node. The BI theory starts with the hypothetical consideration of player 2�s decision
making at x100 and suggests to choose d since payo¤ 203 from d is larger than payo¤ 202 from
c. Assuming this, player 1 chooses d at x99, the theory continues suggesting the player at each
decision node to choose d, and �nally, 1 chooses d at the �rst node x1. We call these choices
the BI outcome, denoted by dn: There is a large discrepancy between the starting hypothesis of
reaching the decision node x100 and the resulting outcome to �nish the game at x1.

A paradox is an antagonism between an authoritative view and some other view.1 Selten
[24], pp.132-133 expresses clearly what he means by the chain-store paradox.

(*) ... If I had to play the game in the role of the chain-store, I would follow deterrence theory
(which is opposite to the BI theory). . . . I get the impression that most people share this inclination.
My experiences suggest that mathematically trained persons recognize the logical validity of
the induction argument, but they refuse to accept it as a guide to practical behavior.

The antagonism (*) is between the outcome from the BI theory and the responses of �mathe-
matically trained persons�. The BI theory is authoritative in that it is rigorously formulated
and has been accepted by many people. Selten asked his colleagues about the �rst sentence of
(*), with the explanation of the derivation of the BI outcome. They, including Selten himself,
refused the theoretical conclusion because it is far from a guide to practical behavior. This can
be applied to the centipede game; we regard (*) as stated for the centipede game.2

The paradox has still remained but experimental game theory has shown large deviations
from the outcomes form the BI theory (see Garciao-Pola, et.al [7] for an exhaustive survey). In
experiments, subjects are typically taken from university students, and �mathematically trained
persons�are often avoided. In the present paper, we take �mathematically trained persons�as

1A logical paradox means that a theory includes a sentence entailing a contradiction such as Russel�s paradox
(see Mendelson [20], p.1 to p.9). The centipede paradox is not a logical paradox in that the BI theory contradicts
some other reference.

2 In the chain-store game, the deterrent strategy can be a threat to stop retailers to enter the market. In a
centipede game, a player�s choice d is not a threat because it terminates the game immediately.
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one side of the paradox; we call them the Selten people. They are mathematical trained but are
still ordinary people. Also, the experimental literature focuses on small centipede games, e.g.,
the centipede games studied in [7] are of length 6. On the other hand, our central concern is a
relatively long centipede games.

In order to study the centipede paradox as a whole, we ask the following questions:

Q-o: What are the classes of centipede games and variants?
Q-i : What is the conceptual bases of the BI theory? What are wrong?
Q-ii : What is our modi�cation, the CIB theory, of the BI theory?
Q-iii : How do we evaluate the resulting outcomes?
Q-iv : Do the Selten people accept or refuse the outcome of the CIB theory?

Question Q-o classi�es the scopes of extant and prospective results. Then, Q-i to Q-iv are to
have a full consideration of a reconciliation of the antagonism. Here, we discuss these questions
and describe corresponding developments in the paper. After all, we assert that these steps form
a resolution of the centipede paradox.

Q-o: Centipede games and variants: In Section 2, we characterize the class of centipede
games by Individual Motive (IM) and Cooperation Motive (CM). Condition IM is the main con-
dition which together with the players�interactions leads to the BI outcome d100, but Condition
CM could be the force to have the refusal. The argument against d100 includes the following:

O1 : its cause-e¤ect has a large discrepancy from the hypothesis of reaching x100
to the e¤ect of leading to the realization outcome z1;

O2 : the payo¤s in the last area of G100 are much larger than those in the beginning.

Condition CM implies O2, but O1 is a general phenomenon leading to O2, under CM. It is
shown that the pre-centipede games requiring only IM are necessary and su¢ cient for the BI
theory to dn. The class of pre-centipede games include many games irrelevant to the centipede
paradox. On the other hand, the class of centipede games corresponds to the centipede paradox
in the proper sense conceptually as well as technically.

Q-i : Conceptual bases of the BI theory: It consists of the following postulates;

P0E (Evaluations of outcomes): decision making requires evaluations of future outcomes;

P0M (Mathematical induction): the principle of mathematical induction is used;

P1 (Complete comparability): payo¤s are perfectly comparable;
P2 (Forget the bygones): the past is ignored and the future is only taken into account.

Postulate P0E is basic for decision making in that it values the available options. In the cen-
tipede game G2 of Fig.1, player 1 compares between choices d and c; but for choice c; he values
the consequence from choice c; which requires him to think hypothetically about player 2�s choice
at x2:3 In general, he values each future outcome and then comes back to the present decision
making.4 P0E alone does not distinguish between near and far futures, and O1 states that when
the future is far from now, P0E includes a serious di¢ culty. In Section 6. We introduce the
concept of the reversed causality degree based on P0E to evaluate the predicted outcomes from
our CIB theory.

3We count G1 as a centipede game for mathematical convenience.
4P0E has some similarity to �counterfactual�(cf., Lewis [17] and Menzies-Beebee [21]). It retraces the process

from a possible event which has not actually happen at present to a past cause. P0E �rst evaluates future possible
outcomes, and then, it gives decision making. Thus, P0E conceptually di¤ers from �counterfactual�.
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Postulate P0M is fundamental for mathematical studies involving some generality or abstract
components, even about �nite targets.5 A study about G2 does not involve such generality.
On the other hand, it is more natural to see G100 in a more abstract manner. In this sense,
mathematical induction is used for G100. In this paper, we use P0M as a research method but
do not touch it as a research target.

Although P1 is standard in the literature of game theory/economics; utility theory without
P1 has recently been studied (cf., Fishburn [6], Dubra, et al. [4], Kaneko [9]). Postulate P2 is
well expressed by the phrase �let bygones be bygones,�and the BI theory depends only upon
the future payo¤s. The point of P2 is to focus only on the future payo¤s, while P0E states the
need of the future payo¤s for decision making but does not exclude some data from the history.
In fact, P1 and IM prevent CM from being e¤ective through interactions between the players.
We relax P1 and P2 so as to �nd a way out from the paradox.

Q-ii : Our modi�cation of the BI theory: The CIB theory is a modi�cation of the BI
theory by weakening P1 and P2. It allows various new behavioral outcomes having choice c. To
weaken P1, we adopt Kaneko�s [9] expected utility theory with probability grids; utility values
are measured by a payo¤ ruler with payo¤ scales based on the bounded cognitive ability of a
player. When he has a low cognitive ability, his ruler has rough grids and his preferences may
show incompatibilities between two payo¤s.

To weaken P2, we introduce the concept of inertial choice. The general idea is:

(#): unless a new stimulus comes, the object continues to move in the same manner
as before, and if some comes, it may change the move responding to it.

In a centipede game, the player at a decision node xt in some distance from the start x1 follows
the same choice c as before, unless he has a new stimulus. This is rephrased as �when the
decision node has an enough distance from x1 and the choices c and d are incomparable or c
is preferred to d, he follows the inertial choice c.�Here, a distance and incomparability play a
crucial role to express the notion of inertia. The structure of a centipede game guarantees that
the hypothesis of xt being reached imply that c has been always chosen before xt. The cause
for �inertia�is included in the hypothesis on xt to be reached.6 ;7

In Section 5, we argue that the behavioral result from the CIB theory is represented by the
pair of behavioral plans in the form

c`dn�` (0 � ` � n) (1)

for a centipede game with length n: That is, action c is taken up to the decision node x` and
then d is chosen to the end of the game. This c`dn�` will be called the canonical CIB solution.
When there are multiple CIB solutions, the canonical one is regarded as the representative.

Q-iii : Evaluations of behavior by the reversed causality degree. Notice that the Selten
people refuse the BI outcome dn and possible reasons for the refusal are O1, particularly, O2.
To represent the underlying idea of O1 and O2, we introduce the degree of reversed causality
RCn between the hypothesis and the resulting outcome. It represents the discrepancy between

5cf., Mendelson [20], Kleene [14], Section 7.
6A modi�cation of P1 was given in Kaneko [10] in the context of the St.Petersburg game. There, a participant

makes a decision to buy or not a ticket only once. This game has no room for inertia.
7This idea was used in Marschak-Selten [18] to introduce an inertial behavior in a repeated game in that unless

a player �nds an enough motivation to change behavior, he would keep the same action. In a broader sense, the
concept of convention in Lewis [16] uses a similar idea.
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the cause-e¤ect stated in O1, and is proximate to the payo¤ discrepancy of O2. For example,
consider the BI outcome d100 in G100: The degree RC100 is 100 representing the discrepancy
between the maximum hypothesis z101 and the resulting outcome z1; which is the maximum
in the centipede game G100 of Fig.1. In the case of c`d100�` in (1) with n = 100; the value is
calculated as RC100 = 100� `:

Q-iv : Applications of RCn to the outcomes of the CIB theory. Thus, it is a crucial
question for a resolution of the centipede paradox how ` is close to n: First, Theorem 5.2 shows
that under some condition on the payo¤ rulers, there are only two cases; for a canonical CBI
solution �;

� =

�
cn or cn�1d if the cognitive abilities are small
dn if they are large.

(2)

Equivalently, RC100 = (0 or 1) or n depending upon the cognitive abilities. The condition is
stringent. In more general settings, we will discuss if there is a tendency quite compatible with
(2). We will give an a¢ rmative answer to this question, which we call the behavioral divide.

Re�ecting upon how the Selten people think about the steps Q-o to Q-iv, we argue that
these steps form a resolution of the centipede paradox, though there remain various questions.

Finally, we give a few comments on related works. There have been, thus far, three groups of
works on the centipede paradox in the literature. One is represented by Aumann [1] about logical
validity on the BI theory from the viewpoint of epistemic game theory and he showed its validity
but not discussed a resolution. The other two groups have taken moves in the same direction as
ours; the CIB theory shares similar objects with both literatures of Bayesian game theory (cf.,
Binmore [2], Kreps [15]) and of behavioral/experimental game theory (cf., McKelvey-Palfrey
[19], Kawagoe-Takizawa [13], Ho-Su [8], and Garcia-Pola, et al. [7]). These show some possible
deviations from the d-behavior; they did not explicitly discuss what the centipede paradox is.

The present paper constitutes of six sections in addition to this introduction. Section 2 gives
de�nitions of a few classes of centipede games, and discusses the foundations of the BI theory.
Sections 3 and 4 introduce the CIB theory, and we presents various theorems in the CIB theory.
Section 5 gives central results, and give an algorithm with which a Selten person is taught how
to play a centipede game with the CIB theory. Section 6 introduces the concept of reversed
causality degree and discusses its behavior over canonical CIB solutions for various lengths of
centipede games. Section 7 concludes the paper and gives some comments on possible extensions
of the CIB theory. Proofs of the results in each section will be given in its last subsection.

2 Centipede Games and the BI solution

We de�ne centipede games and a BI solution. In order to have the clear scopes of the BI theory
and of the CIB theory, we give the de�nitions in a quite formal manner with a few examples. A
centipede game is de�ned by two conditions on the payo¤ functions, and a pre-centipede game
is de�ned by one of them. We prove that the BI outcome dn is a BI solution if and only if the
game is a pre-centipede game.
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2.1 Basic de�nitions for a centipede game

We consider a 2-person game with perfect information given as Gn = (Xn; Zn; �; fc; dg; (g1; g2));
where

C1 Xn = fx1; :::; xng is the set of decision nodes;
C2 Zn = fz1; :::; zn; zn+1g is the set of end nodes;
C3 � is the player assignment over Xn with �(t) = 1 if t is odd and �(t) = 2 if t is even;

C4 for t � n; player �(t) at node xt chooses either action c or d; where c connects xt
to xt+1 (xt+1 = zn+1 if t = n) and d connects xt to zt;

C5 gi : Zn ! R+ is a one-to-one monetary payo¤ function for i = 1; 2;

where R+ is the set of nonnegative real numbers. Players 1 and 2 alternatively move, and the
player assigned at node xt is denoted by �(t): C1 to C4 require the game structure of Gn to be
the same as that of Fig.1. Here, we take R+ to be the region of either payo¤ function; here,
payo¤s are monetary. C5 also requires all payo¤s to be distinct for each player. Theorem 5.2
assumes that the payo¤ functions takes integral values.

We specify either when we need to be more speci�c.

De�nition 2.1 (Centipede game): We say that Gn is a centipede game i¤

Individualistic Motive (IM) g�(t)(zt) > g�(t)(zt+1) for all t � n; (3)

Cooperative Motive (CM) g�(t)(zt) < g�(t)(zt+2) for all t � n� 1: (4)

IM represents the individual motive for player �(t) at a decision node xt to choose d, as
long as the next player �(t + 1) behaves in the same manner: On the other hand, CM is the
cooperative motive for player �(t) at any decision node xt to continue the game. CM is given
by Garcia-Pola, et at. [7], p.396, (1), and IM corresponds to [7], p.396, (2).8

Combining (3) and (4), we have:

g�(t)(zt+1) < g�(t)(zt+2) for all t � n� 1: (5)

His payo¤ values g�(t)(zt); g�(t)(zt+1); and g�(t)(zt+2) form a dent ; the value gets once smaller
and then larger. The other player �(t+ 1)�s IM prevents the achievement of CM for �(t). This
is a cause of the centipede paradox. If we require only CM, it may be the case that the payo¤
functions may have no dents, i.e., they are monotone increasing; in this case, the players simply
choose c at every decision node zt; and we have no paradox.

Numerical examples are informative to understand the above conditions and centipede games.

Example 2.1 (Classical centipede 1): The game of Fig.1 is given by the payo¤ functions
(g1(zt); g2(zt)): for zt 2 Z100;

(g1(zt); g2(zt)) =

�
(2t; 2t) if t is odd
(2t� 3; 2t+ 3) if t is even.

(6)

8Their individual motive condition is formulated using the term �the payo¤ value of the non-deciding player
in a position� Although the formulation is ambiguous, it is observed from the other part of the paper that their
intention is the same as our IM.
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Figure 2: Classical centipede game

Figure 3: Shapes of an sk-concave centipede

These satisfy both (3) and (4). Fig.2 depicts these payo¤ functions g1(zt) and g2(zt): Player
�(t)�s payo¤ values g�(t)(zt); g�(t)(zt+1); and g�(t)(zt+2) form a dent, which overlaps with the
dent from g�(t+1)(zt+1); g�(t+1)(zt+2); and g�(t+1)(zt+2) for player �(t+ 1): These functions are
linear in the sense that the dents are linearly lined up.

For better understanding of the centipede paradox, we will consider some subclass of cen-
tipede games. We say that Gn is sk-concave i¤ for t � n� 1;

g�(t)(zt)� g�(t)(zt+1) and g�(t)(zt+2)� g�(t)(zt) are weakly decreasing. (7)

Thus, the di¤erences corresponding to both IM and CM are weakly decreasing. Hence, the
di¤erence g�(t)(zt+2) � g�(t)(zt+1) of (5) is also weakly decreasing, since it is expressed as
[g�(t)(zt+2) � g�(t)(zt)] + [g�(t)(zt) � g�(t)(zt+1)]: When both are constant, the centipede game
is sk-linear.

If we replace �weak decreasing�in (7) by �weak increasing�; a centipede game Gn is said to
be sk-convex. In the literature on experimental studies since McKelvey-Palfrey [19], sk-convex
centipede games have often been studied. In this class, both IM and CM are getting larger as
the game goes further. The centipede paradox targets centipede games with relatively large n;
but sk-convexity is not well compatible with large n in that monetary payo¤s in experiments
may be too large. For the main development of this paper, we will focus on sk-concave centipede
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Figure 4: Sk-convex centipede game

games. Nevertheless, it would be informative to look at what happens in the outside of the class
of sk-concave centipede games.

The game in Fig.4 is an sk-convex centipede game with length 10, where the payo¤ function
of player i is given as the square value (gi(zt))2 of gi(zt) given by (6) for t = 1; :::; 11. As
mentioned, the payo¤ values could be absurd for large n such as 100:9

Nevertheless, we consider the broader class of games than that of centipede games. To
consider the role of CM. When Gn satis�es IM, we call Gn a pre-centipede game. The class of
pre-centipede games is very large, but it is a useful benchmark for our development from the BI
theory to the CIB theory. It will be proved in Section 2.2 that the class of pre-centipede games
is equivalent to that of games such that the BI theory entails the BI outcomes. Also, some basic
theorems in the CIB theory rely only upon (3).

Fig.5 gives three examples, where the �rst two satisfy only IM but violates CM and the third
violates IM but not CM.10 Neither game requires interactive decision making in that in the �rst
two, player 1 can simply choose action d at x1 because no future possibilities give higher payo¤s11

and in the third, each player chooses c: These games are free from the centipede paradox. The
centipede paradox is created by the con�ict between IM and CM.

In contrast to pre-centipede games, centipede games contain germ of cooperation, which is
expressed in Lemma 2.1.h1i: h2i is the dual of h1i: A proof is given in Section 2.3.
Lemma 2.1(Wishfulness). Let Gn be a centipede game and let ` be a given number with
` � n. Then,
h1i(Germ of cooperation) g�(`)(zt) < g�(`)(z`) if t < ` or t = ` + 1; and g�(`�1)(zt) <
g�(`�1)(z`+1) if t < `+ 1;

h2i(Dual of h1i) g�(`)(z`) < g�(`)(zt) if t > `+ 1; and g�(`�1)(z`+1) < g�(`�1)(zt) if t > `+ 1:

Let ` = n: The �rst states that player �(n) prefers end node zn to the others and player
�(n� 1) prefers end node zn+1 to the others. A di¢ culty is that the most preferred end nodes
do not coincide; here, IM prevents cooperation: Thus, it is still a germ of cooperation. This fact

9Crosetto-Mantovani [3] studied the example given as (g1(zt); g2(zt)) = (4t; t) if t is odd and (2t; 4t) if t is even.
This formula itself is linear, but the game is an sk-convex centipede game. In this example, the case n = 100 is
less absurd.
10The �rst example violates C5 but is modi�ed, with small perturbations, keeping C5 as well as the BI result.
11e.g., the dominant action choice is enough.
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Figure 5: Games violating IM or CM

holds for any ` � n; which is the exact assertion of in h1i: IM does not stop ` to go to 1: h2i is
the dual of h1i:

2.2 The BI theory

We call a function �i : fxt 2 Xn : �(t) = ig ! fc; dg a behavioral plan of player i: Let
� = (�1; �2) be a pair of behavioral plans: For simplicity, we write �(xt) for �i(xt) with i = �(xt):
We may regard � as an n-vector in An = A � � � � � A; where A = fc; dg; we write a vector
(a1; � � � ; an) as a1 � � � an; and, the d-behavior, c-behavior are dn = d � � � d; cn = c � � � c:

We say that �xtji is the behavioral plan conditional upon xt (t � n) i¤ the domain of �i
is restricted to the set fxs : s � t and �(s) = ig. The pair (�xtj1; �xtj2) of behavioral plans
conditional upon xt is denoted as �xtj; and we write �xtj(xt0) for �xtj�(t0)(xt0): The realization
r(�xtj) = zs of a given pair �xtj = (�xtj1; �xtj2) means that under the hypothesis that decision
node xt is reached, each player i follows �i until d is chosen at xs, or the game goes to endnode
zs = zn+1: We write r(�x1j) simply as r(�).

At xt, if he chooses action d; the game goes immediately to endnode zt; but if he chooses c;
then he expects the outcome r(�xt+1j) under the hypothesis that the players follow their behav-
ioral plan �xt+1j: The choice is based on P1 (complete comparability), by making a comparison
between g�(t)(zt) and g�(t)(r(�xt+1j)): When t = n; the predicted outcome from �xn+1j is zn+1.

We say that a pair of behavioral plans � = (�1; �2) is a BI solution i¤ for any xt (t = 1; :::; n);

�(xt) =

�
c if g�(t)(r(�xt+1j)) > g�(t)(zt)
d if g�(t)(r(�xt+1j)) < g�(t)(zt):

(8)

The postulates P1 and P2 are used in (8); without P1, the two cases in (8) might not be
exhaustive and the de�nition is incomplete. In these cases, the choice is determined solely by
the future possible payo¤s, which is P2. On the other hand, (8) does not rely upon P0M in
the sense that for a given �; (8) checks if it satis�es the right-hand side. We prove, using
mathematical induction, the unique existence of a BI solution, though it is not necessarily the
d-behavior dn. This needs neither IM nor CM.

Lemma 2.2. (Unique existence): Let Gn be a derived game given by C1 to C5. Then, Gn
has a unique BI solution �:

Now, IM is necessary and su¢ cient for the BI solution � to be the d-behavior.

9



Figure 6: Classi�cation of pre-centipede games

Theorem 2.1 (Pre-centipede and the d-behavior): Let Gn be a derived game given by C1
to C5. Then, Gn is a pre-centipede game if and only if the d-behavior dn is a BI solution.

Lemma 2.2 says that the unique existence of a BI-solution is obtained for any game with C1
to C5. Theorem 2.1 states that the BI solution serving the d-behavior is equivalent solely to
IM. Thus, the class of games having the d-behavior is that of pre-centipede games including the
games in Fig.5. Fig.6 depicts the subclasses of the pre-centipede games. To have a resolution of
the centipede paradox, we need CM as well as IM. that is, the class of centipede games.

2.3 The Selten people�s refusal of the BI theory

Let us interpret the quotation (*) in our context. Three key terms are relevant:

(i) mathematically trained persons;

(ii) the logical validity of the induction argument;

(iii) a guide to practical behavior.

The third key term (iii) is indicative that the Selten people are boundedly rational ordinary
people, though they are quite rational in the sense of (i) and (ii). They understand the induction
argument but not very details of the argument.

As stated in (iii), the Selten people expect that the theory could help how they should
behave in such a game. Looking at the centipede game in Fig.1, they may �nd that it would be
better to wait to go far from the start x1: This is the implication of Lemma 2.1. Nevertheless,
it does not yet suggest to deviate from the BI theory. If they ask what causes only wishfulness,
they may understand P1 and P2 as the cause.

Section 3 discusses how the BI theory is modi�ed by weakening P1 and P2. These modi�ca-
tions look related to O1 (and O2 ), but rigorously speaking, the bases for the modi�cations are
independent of O1.

2.4 Proofs

Proof of Lemma 2.1. h2i is the dual of h1i: We prove only the left assertion of h1i; the right
assertion is proved in a simpler manner. h2i is proved in the dual manner:

10



Let xt be any decision node with t < ` and �(t) = �(`). By (3), we have g�(`)(zt+1) <
g�(`)(zt); and by (5), g�(`)(zt�1) < g�(`)(zt): Also, by (4), g�(`)(zt�2) < g�(`)(zt): These are
summarized; for all t with �(t) = �(`);

g�(`)(zt+1) < g�(`)(zt); g�(`)(zt�1) < g�(`)(zt); and g�(`)(zt�2) < g�(`)(zt): (9)

In this expression, all end nodes occur for t < ` or t = ` + 1: Since g�(`)(zt) < g�(`)(z`) by the
repeated use of (4), g�(`)(zt) < g�(`)(z`) if t < ` or t = `+ 1:�
Proof of Lemma 2.2. Let � be a BI solution. We prove by mathematical induction that
for any t � n; �xtj(xs) is uniquely determined. The induction base is the case xt = xn: By
(8), we have the unique �(xn): Let xt be any node in Xn with t > 1: Suppose the induction
hypothesis that each of �(xn); :::; �(xt+1) is uniquely determined. This hypothesis determines
r(�xt+1j) = zt0 uniquely. By C5, either g�(t)(zt) > g�(t)(zt0) = g�(t)(r(�xt+1j)) or g�(t)(zt) <
g�(t)(zt0) = g�(t)(r(�xt+1j)): By (8), we have �(xt) = d in the �rst case, and we have �(xt) = c
in the second case. This choice is unique. By the principle of mathematical induction, � is
uniquely determined and satis�es (8) for all xt 2 Xn:�
Proof of Theorem 2.1. The only-if part is straightforward. We show the if part. Consider
the contrapositive of this. Suppose that (3) does not hold. Then, g�(t)(zt) < g�(t)(zt+1) for some
t � n; since g�(t) is a 1-to-1 function by C5. Let t be the maximum in such t�s. When t = n; we
have g�(n)(zn) < g�(n)(zn+1); thus �(xn) = c: Let t < n: Then, �(xs) = d for all s > t: Hence,
choice c at xt leads to xt+1 and then to zt+1: But this gives a larger payo¤ than g�(t)(zt); by (8),
we have �(xs) = c: Thus, we have the contrapositive of the if assertion.�

3 Measurements of Payo¤s and Incomparabilities

Here, we introduce cognitive bounds to a game Gn; based on Kaneko�s [9] expected utility
theory with probability grids. In this theory, each player uses a �nite ruler to measure payo¤s;
its precision depends upon his cognitive ability. When the ruler is precise enough, he can separate
each payo¤ from the others and his preferences are complete; in this case, the results given in
Section 2 hold. In the imprecise case, he faces Incomparabilities over such payo¤s. In Section
4, we will modify the BI solution into the CIB solution.

3.1 Cognitive bounds and Incomparabilities

Let Gn = (Xn; Zn; �; fc; dg; (g1; g2)) be a game with C1 to C5. We introduce the cognitive
abilities of payo¤s for the players, adding two components � = (�1;�2) and b = (b1; b2) to Gn:

C6 �i = (�i; [i; i]) consists of a cognitive degree �i � 0 and a pair of lower and upper
bounds 

i
; i of payo¤s with i < gi(zt) < i for all zt 2 Zn and i = 1; 2;

C7 bi (1 � bi � n) is the consciousness boundary with �(bi) = i for i = 1; 2:
The pair �i = (�i; [i; i]) de�nes a bounded ruler for payo¤s: The boundary bi will be used
in the de�nition of a CIB solution to separate inertial behavior from conscious behavior. We
denote Gn associated with (�; b) by Gn(�; b):When Gn is a centipede (pre-centipede) game, we
simply call Gn(�; b) a centipede (pre-centipede) game.

The BI theory is modi�ed based on �i; i = 1; 2: The modi�cation is a restriction of expected
utility theory in that the set of available probabilities is a �nite and gets more accurate as
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the cognitive ability of player i becomes high. Kaneko [9] developed a general theory in an
axiomatic manner. The full theory is costly for consideration the centipede paradox. We adopt
the risk neutrality case of Kaneko�s theory; in doing so, we can skip the axiomatic development
directly to the payo¤ evaluations of payo¤s while keeping incomparabilities of some payo¤s. This
sacri�ces some important cases such as risk neutrality, but it is not in the central part of our
resolution of the paradox.

When a cognitive degree �i � 0 of player i is given, the set of available probability grids is
given as f �

2�i : 0 � � � 2�ig: The probability grids are used to de�ne the payo¤ ruler for i
as the set of simple lotteries that are probability distributions over i with probability

�
2�i and


i
with the remaining probability 1 � �

2�i (0 � � � 2�i): Here, we assume risk-neutrality on
evaluations of simple lotteries; hence, each simple lottery is evaluated as the expected payo¤
�
2�i � i + (1�

�
2�i ) � i: The payo¤ ruler for i is given as the set of expected values:

��i = f
�

2�i
� i + (1�

�

2�i
) � 

i
: 0 � � � 2�ig: (10)

Each value of ��i is called a payo¤ scale and is denoted by ��i(�):
12 Preferences over the payo¤

ruler ��i are completely de�ned by the expect value �i(�); that is, for all � with 0 � � � 2�i ;

�i(�) > �i(�
0) if and only if � > � 0: (11)

That is, the payo¤ scales are linearly ordered by the order on the natural numbers �:

The payo¤ ruler plays a crucial role for considerations of the centipede paradox. However,
the central part is the evaluation of the payo¤s fgi(zt) : zt 2 Zng [ fi; ig. In order to avoid
complications, we add arti�cial end nodes z0; zn+2; so that


i
= gi(z0) and i = gi(zn+2) for i = 1; 2: (12)

Then, let Z�n = Zn [ fz0; zn+2g: The game structure of Gn(�; b) is not changed; it has only
additional symbols z0; zn+2 so as to have uniform expressions. That is, the set of possible
payo¤s is denoted as

�i = fgi(zt) : zt 2 Zng [ fi; ig = fgi(zt) : zt 2 Z
�
ng: (13)

By this, we can focus only on preferences on the set Z�n; instead of mixing the endnodes Zn with
lower and upper bounds of payo¤s 

i
; i.

Payo¤ comparisons over Z�n are central for our development, but these are not directly made.
Instead, they are based on the payo¤ ruler ��i . The �rst step is to evaluate each of two payo¤
values with the payo¤ ruler. Then, the second step is to make comparisons between the payo¤s
from two end nodes in Z�n; based on the evaluations of the payo¤s given in the �rst step. This
is formally described in the following binary relations of Bi and 1i over Z�n:

Formally, we say that for endnodes zt; zt0 in Z�n; player i strictly prefers zt to zt0 ; denoted
by zt Bi zt0 ; i¤ for some �i(�) in ��i ;

gi(zt) � �i(�) � gi(zt0): (14)

Since at least one inequality is strict by C5 and C6, �i(�) separates strictly between gi(zt) and
gi(zt0): Thus, player i �nds the payo¤ scale �i(�) separating between gi(zt) and gi(zt0); and thinks

12Exactly speaking, the set ��i should be expressed as �i;�i since each element depends upon i and i:
However, this makes no confusions.
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that gi(zt) is better than gi(zt0): When he does no succeed in �nding such a payo¤ scale, gi(zt)
and gi(zt0) are incomparable for him. For any distinct zt; zt0 2 Z�n; we de�ne the incomparability
relation zt 1�i zt0 by

�i(� + 1) > gi(zt); gi(zt0) > �i(�) (15)

for some � (0 � � < 2�i � 1): That is, the two payo¤s are strictly between the adjacent payo¤
scales: When zt Bi zt0 ; by (14), zt and zt0 are distinct. In the following, when we talk about two
end nodes in Z�n; we assume that they are distinct.

We have the trichotomy result: for any endnodes zt and zt0 in Z�n;

exactly one of zt Bi zt0 ; zt0 Bi zt and zt 1i zt0 holds. (16)

This is because the negation of (14) is (15) as long as zt and zt0 are distinct. Now, we de�ne
the relation zt Di zt0 i¤ zt Bi zt0 or zt 1i zt0 : We have the following fact, which is familiar in the
standard case with strict preferences and indi¤erences. This is veri�ed by observing (14), (15),
and is summarized in Lemma 3.1.

Lemma 3.1.h1i: Relations Bi; 1i; and Di are transitive;
h2i(Completeness with incomparabilities): the relation Di is a complete transitive relation
over the pairs of distinct end nodes in Z�n:

13

It follows from Lemma 3.1 that for distinct zt; zt0 ; zt00 ;

zt 1�(t)
zt0 and zt0 D�(t)

zt00 imply zt D�(t)
zt00 ; (17)

zt00 D�(t)
zt0 and zt0 1�(t)

zt imply zt00 D�(t)
zt:

In these, we can substitute B
�(t)
for all occurrences of D

�(t): These will be often used.

The two statements of Lemma 3.2 are simple observations. For the second, we denote the
unit interval of the payo¤ ruler by ��i =

i�i
2�i : This is the unit interval of the payo¤ ruler �i(�);

i.e., �i(� + 1)� �i(�) = ��i :

Lemma 3.2.h1i: If gi(zt) > gi(zt0); then zt D�i zt0 ;
h2i: If zt 1�i zt0 ; then gi(zt)�gi(zt0) < ��i ; equivalently, if gi(zt)�gi(zt0) � ��i ; then zt B�i zt0 :

The converse of h2i does not necessarily hold: We need to be careful when we go from the
case gi(zt)� gi(zt0) � ��i to the case gi(zt)� gi(zt0) < ��i :

Fig.7 describes how the payo¤ ruler is used. Two (payo¤s of) end nodes are compared
through the payo¤ ruler but not directly. The �rst step is to compare a given end node with
the payo¤ ruler, and the second is to make comparisons between two end nodes through the
compared payo¤ scales.

Here, we give one theorem showing that for a centipede game, our theory gives a new light
on the centipede paradox. Recall Lemma 2.1 that a germ of cooperation is hidden in a centipede
game but it is suppressed by Individual Motive (3). Theorem 3.1 states that our theory removes
this suppression, but this is not enough to go further. For this, Section 4 will add one more
concept �inertia�.

13Lemma 3.1 does not hold in a more general framework allowing probability distributions other than the simple
lotteries in Kaneko [9], speci�cally, Theorem 6.2, p.751. h2i implies that some real-valued function vi over Zn
represents the relation Di : We, however, should not forget that 1i means incomparability but not indi¤erence.
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Figure 7: Payo¤ ruler measures end nodes

Theorem 3.1 (Germination of Cooperation). Let Gn(�; b) be a centipede game and let x`
be a decision node. Then,

h1i if z`+1 1��(`) z`; then z`+1 D��(t) zt for all t with t � `;

h2i if z`+1 B��(t) zt; then z`+1 B��(t) zt0 for all t0 < t with �(t0) = �(t):

Let ` = n: Let zn+1 1��(n) zn: Then, player �(t) at xt with t � n with �(t) = �(n) prefers
zn+1 mostly in the sense of D�i : The point is that both players may agree to go to zn+1; while in
Lemma 2.1, player �(n) prefers zn mostly but �(n� 1) prefers zn+1 mostly. This incoincidence
makes IM e¤ective in the BI theory. In our theory, Theorem 3.1 removes this incoincidence. For
this argument to induce the behavior to take c; however, we need one more concept, inertial
behavior, which will be discussed in Section 4. In the situation where ` < n; the backward
induction inducing the d-behavior after decision node x`:

Remark 3.1. Some authors have introduced a similarity relation in the standard EU theory (cf.,
Rubinstein [23]). The EU theory with probability grids with �n;i and ��i di¤ers ontologically
from a typical similarity theory in that our theory is a purely �nite construct. On the other
hand, a typical similarity theory is constructed as a part of the EU theory with a continuum of
probabilities and, possibly, with a continuum of monetary payo¤s. In our theory, Kaneko [9],
Section 7, showed that when �i goes to in�nity, it converges to a part of the standard EU theory.

3.2 Proofs

Proof of Lemma 3.2 h1i. Let i = gi(zt) > gi(zt0) = 0i: We have not (zt0 B�i zt) by (14). By
(16), zt B�i zt0 or zt 1�i zt0 : Hence, zt D�i zt0 :
h2i. Let zt 1�i zt0 : By (23), �i(� + 1) > gi(zt); gi(zt0) > �i(�) for some �: Since ��i = �i(� +
1)� �i(�): Hence, ��i > gi(zt)� gi(zt0):�
Proof of Theorem 3.1.h1i. Let z`+1 1��(`) z`: First, consider the case when ` is even. For the
assertion that z`+1 D��(t) zt for all t with t � `; we show the equivalent assertion that for any
even k < ` including k = 0;

z`+1 D��(`�k) z`�k and z`+1 D��(`�(k+1)) z`�(k+1): (18)
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The equivalence is veri�ed as follows: Let k = 0; (18) is written as z`+1 D�(`) z` and z`+1 D��(`�1)
z`�1; and for arbitrary even k < `; (18) is written as z`+1 D��(`�k) z`�k and z`+1 D��(`�(k+1))
z`�(k+1): Finally, when k = `�2; this is written as z`+1 D��(2) z2 and z`+1 D��(1) z1: These three
cases are written as z`+1 D��(t) zt for all t with t � `:

Now, let prove (18) by induction on even k up to ` � 2. The induction base is (18) for
k = 0; the left comparison is the assumption z`+1 1��(`) z`: Consider the right comparison.
Since g�(`�1)(z`+1) > g�(`�1)(z`�1) by (4), we have z`+1 D��(`�1) z`�1 by Lemma 3.2.h1i; we
have (18) for k = 0: The remaining is the inductive step. Suppose the induciton hypothesis
that (18) holds for a given even k < ` � 1. Consider k + 2: Since z`+1 D��(`�k) z`�k by the
induction hypothesis and z`�k D��(`�(k+2)) z`�(k+2) by (4) with �(` � k) = �(` � (k + 2)); we
have z`+1 D��(`�(k+2)) z`�(k+2) by transitivity for D��(`�(k+2)); which is the left formula for k+2:
Since z`+1 D��(`�(k+1)) z`�(k+1) by the induction hypothesis and z`�(k+1) D��(`�(k+3)) z`�(k+3) by
(4), we have z`+1 D��(`�(k+3)) z`�(k+3) by transitivity, which is the right formula of (18) for k+2:
By the induction principle, we have the assertion.

Consider the case where ` is odd. we show that for any odd k < `;

z`+1 D��(`�k) z`�k and z`+1 D��(`�(k+1)) z`�(k+1); (19)

This does not include z`+1 D��(`) z`; but it is the assumption. Hence, it su¢ ces to show (19) for
any odd k < `: This is done in the same manner as in the previous paragraph.

h2i. Let z`+1 B��(t) zt: Let t0 < t with �(t0) = �(t): Since g�(t)(zt) > g�(t)(zt0); we have zt D��(t) zt0
by Lemma 3.2.h1i: Then, we have z`+1 B��(t) zt0 by (17).�

4 The CIB Theory

We modify the BI solution into the CIB solution based on the EU theory with probability grids
and the other concept �inertia�. General results such as existence and uniqueness properties
on a CIB solution are given for pre-centipede games. Directly relevant results to the centipede
paradox are given in Section 5.

4.1 Consciousness vs. inertial; a CIB solution

The distinction between conscious choices and inertial behavior plays a crucial role in the CIB
theory. Within the boundary b�(t); player �(t) consciously thinks about his choice; when he
meets incomparability, his choice is arbitrary between c and d. After b�(t); he follows the inertia,
i.e., (#) in Section 1. The idea is described in the present context; because reaching xt requires
the repetition of the same action c up to xt�1; player �(t) follows the inertial action c unless d
is strictly preferred to c:

The latter part needs formal de�nitions. Consider a decision node xt with t > b�(t): We say
that player �(t) takes a conscious choice at xt in � i¤

zt B�(t) r(�xt+1j) and �(xt) = d; (20)

and he follows inertial behavior at xt in � i¤

r(�xt+1j) D�(t) zt and �(xt) = c: (21)
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Figure 8: Consciousness boundary and inertial behavior

These are a formulation of the interpretation of (#) in Section 1. In Fig.8, (20) is applied to all
the region from x1 to xn; and (21) is to the the later segment for inertial behavior. Based on
these ideas, we modify the de�nition (8) of a BI solution. Let Gn(�; b) be a game satisfying C1
to C7:

De�nition 4.1 (CIB solution). A pair of behavioral plan � = (�1; �2) is a CIB solution in
Gn(�; b) i¤ for any decision node xt (t � n);

�(xt) =

8<:
d if zt B�(t) r(�xt+1j)

c or d if r(�xt+1j) 1�(t) zt & t � b�(t)
c if r(�xt+1j) D�(t) zt & t > b�(t):

(22)

The �rst line was suggested by (20), the second was in the �rst paragraph, and the third is
(21). These cases are exclusive and exhaustive; thus, (22) is well de�ned. Postulate P1 of Section
1 is violated in the 2nd and 3rd lines, and P2 is violated in the 3rd line in that the behavior
depends upon the previous choices. We note that if zt B�(t) r(�xt+1j) or r(�xt+1j) B�(t) zt holds
for all t � n; (22) is equivalent to the de�nition (8) of a BI solution; thus, incomparability
r(�xt+1j) 1�(t) zt occurs for some t if and only if the CIB solution di¤ers from the BI solution.

The CIB theory allows a variety of possible solutions including the c-behavior and the d-
behavior, depending upon the payo¤ functions and the parameters (�; b). First, we analyze
the general behavior of a CIB solution. Theorem 4.1 states the existence of a CIB solution
for a game Gn(�; b) with C1 to C7; and gives two uniqueness statements on a CIB solution in
Gn(�; b).

Theorem 4.1. Let Gn(�; b) be a game with C1 to C7.

h1i(Existence) Gn(�; b) has at least one CIB solution:
h2i(Unique trajectory after b = (b1; b2)) If � and �

0 are CIB solutions, then, �(xt) = �0(xt)
for all t with t > b�(t):

h3i(Uniqueness for the entire domain) � is a unique CIB solution in Gn(�; b) if and only
if any CIB solution �0 satis�es

for any xt with t � b�(t); �(xt) =
(

c if r(�0xt+1j) B�(t) zt
d if zt B�(t) r(�0xt+1j):

(23)
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The structure of the set of CIB solutions varies with payo¤ functions, parameters � =
(�1;�2) and b = (b1; b2). The two uniqueness claims are useful for the subsequent developments
of the paper. In order to study a CIB solution for a centipede game Gn(�; b); we focus on the
adjacent preferences: zt Bt zt+1 or zt 1t zt+1 for t = 1; :::; n: We consider the following two
cases:

FC Gn(�; b) is fully comparable i¤ zt Bt zt+1 for all t = 1; :::; n;
PIC Gn(�; b) is partially incomparable i¤ zt 1t zt+1 for some t = 1; :::; n:

Case PIC is the key for a resolution of the centipede paradox. In this case, Theorem 3.1
(Germination of cooperation) is indicative that the choice the maximum of such t�s leads to
a CIB solution, which will be discussed in Section 5. Nevertheless, either of Cases PIC and
FC occurs with di¤erent values of cognitive abilities �i; i = 1; 2: A resolution of the centipede
paradox requires to consider these two cases.

First, consider the condition for the d-solution: Recall ���(t) :=
i�i
2�i = �i(� + 1) � �i(�)

(0 � � < 2�i):

Theorem 4.2 (Conditions for the d-behavior) Let Gn(�; b) be a pre-centipede game with
bounds (�; b).

h1i The d-behavior � = dn is a unique CIB solution if and only if Gn(�; b) is fully comparable.

h2i(Su¢ cient condition) Gn(�; b) is fully comparable if

g�(t)(zt)� g�(t)(zt+1) � ���(t) for all t � n: (24)

For a pre-centipede game Gn without bounds, (3) is enough to guarantee the d-solution dn;
as stated in Theorem 2.1.h1i. When it has bounds (�; b); FC is necessary and su¢ cient to have
the d-behavior. Then h2i gives a su¢ cient condition for FC. When the game is sk-concave, the
inequality (24) only for t = n implies the entire (24).

4.2 Proofs

Proof of Theorem 4.1.h1iWe construct � = (�1; �2) by induction from the last decision node
xn. As the induction base, we de�ne

�(xn) =

�
c if zn+1 D�(n) zn
d if zn B�(n) zn+1.

(25)

This is well de�ned by trichotomy (16). Suppose the induction hypothesis that we have con-
structed �(xn); :::; �(xt+1) so that each takes the value c or d: These are regarded as the con-
ditional behavioral play �xt+1j upon the hypothesis that xt+1 is reached. Now, we de�ne �(xt)
by

�(xt) =

�
c if r(�xt+1j) D�(t) zt
d if zt B�(t) r(�xt+1j):

(26)

By the mathematical induction principle, we have �(xn); :::; �(x1): Thus, we have a pair of
behavioral plans � = (�1; �2):

It remains to show that � satis�es (22) for t � n: When t = n; (25) implies that ��(n)(xn)
satis�es (22) for t = n: Now, let t be arbitrary with 1 � t < n: If zt B�(t) r(�xt+1j); then, the
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�rst case of (22) holds for t: Now, if r(�xt+1j) B�(t) zt or [r(�xt+1j) 1�(t) zt & t > b�(t)]; the �rst
or third of (22) holds for t: The last case is [r(�xt+1j) 1�(n) zt and t � b�(t)]: Then, the second
of the de�nition (22) of a CIB solution holds for t:

h2i In the proof h1i, the construction of � is uniquely determined, and also, it corresponds
uniquely to (22) when t > b�(t): Any CIB-solution �0 coincides with � when t > b�(t):

h3i h2i asserts uniqueness for the behavior after the boundaries, i.e., t > b�(t): The entire
uniqueness of a CIB solution holds if and only if its behavior for each player i is unique at xt
within t � bi = b�(t): The latter follows from (23); indeed, when (23) holds, we can use the
induction from the boundary b�(t): Then, using the 1st and 3rd cases of (22), the behavior is
uniquely determined. This is the if part of h3i:

Consider the only-if part: We prove the contrapositive. Suppose that (23) does not hold for
some t � b�(t): Then, we construct a CIB solution �0 6= �: Let to be the maximum among such
t�s. Then, r(�xto+1j) 1�(to) zto : Suppose that �xto+1j is already de�ned in h2i: Now, we de�ne
�0(xto) 6= �(xto): Let �0xto j = (�0(xto); �xto+1j): Then, �

0
xto j satis�es (22) for xto ; :::; xn: This is

the induction base. Let s be a number with 1 < s � to: Suppose the induction hypothesis that
�0xsj = (�

0(xs); �0s+1j) satis�es(22) for xs; :::; xn: Then, we choose �
0(xs�1) so that

�0(xs�1) =

(
c if r(�0xsj) D�(t) zs�1
d if zs�1 B�(t) r(�0xsj):

Then, this together with the induciton hypothesis implies that (22) for xs�1; :::; xn: Hence, by
the induction principle, we have �0 = �0x1j = (�0(x1); �02j) satis�es (22). That is, �

0 is a CIB
solution but it di¤ers from �:�
Proof of Theorem 4.2 h1i (Only-If) Let � = dn be a unique CIB solution: Then, r(�xt+1j) =
zt+1 for all t = 1; :::; n� 1: By (22), �(xt) = d implies zt B�(t) zt+1 for all t = 1; :::; n:
(If) This is is proved by the induction from xn:

h2i Consider zt; zt+1 satisfying (24). We can choose � so that ��i(� + 1) > gi(zt+1) � ��i(�):
Since gi(zt) � gi(zt+1)+��i by (24); we have, gi(zt) � gi(zt+1)+��i > ��i(�)+��i = ��i(�+1):
Thus, ��i(� + 1) separates between zt and zt+1; so, zt B�(t) zt+1: Since t is arbitrary, we have
zt B�(t) zt+1 for all t � n: It follows from Theorem 3.2.h1i that a CIB solution is unique and
�(xt) = d for all t � n:�

5 Behavior of Canonical CIB Solutions for Centipede Games

The CIB solution is not uniquely determined for a centipede game Gn(�; b). We adopt one
type of a CIB solution, called canonical, as a representative of multiple CIB solutions, which is
expressed as c`dn�` for some ` (0 � ` � n). This brings about the study of the behavior of a
CIB solution. In this section, we argue that for large cognitive abilities �i; i = 1; 2; the canonical
c`dn�` is simply dn but for small cognitive abilities, typically ` is around n including n: This
supports the �nal step to our resolution of the centipede paradox in Section 6:
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5.1 A canonical CIB solution for a centipede game

Let Gn(�; b) be a centipede game with bounds (�; b): Let ` be the maximum of such t�s, that is,

zt B�(t) zt+1 for all t � `+ 1 and z` 1�(`) z`+1. (27)

We stipulate that ` = 0 when there is no t with zt 1�(t) zt+1: Here, (27) chooses the maximum
of such `�. We call that this ` is the behavioral divide. De�nition 4.1 states that ` divides the
players�behavior into the c-behavior up to ` and the d-behavior after `.

We say that � = c`dn�` is the canonical pair of behavior plans. When ` = 0; the canonical
� = c`dn�` is dn and is the unique CIB solution by Theorem 4.2.h1i: Although there may be
multiple CIB solutions inGn(�; b);We show that the canonical pair of behavioral plan � = c`dn�`

is necessarily a CIB solution and it is regarded as a representative among the CIB solutions for
a centipede games Gn(�; b):

Theorem 3.1.h1i(germination of cooperation) can be used for this purpose. Let ` � 1 be
the behavioral divide. Since incomparability occurs at x`; the theorem states that the weak
preference z`+1 D�(t) zt holds for all t � `; and by (27), zt B�(t) zt+1 for all t � `+1: This means
that the canonical c`dn�` is a CIB solution, which is stated in Theorem 5.1.h1i. The assertion
h2i Theorem 5.1 gives a condition for the uniqueness of a CIB solution, and h3i is its implication:
Possible multiplicity occurs only within the consciousness boundary; after the boundaries, any
CIB solution has the same trajectory as that of the canonical CIB solution.

Theorem 5.1 (Canonical CIB solution) Let Gn(�; b) be a centipede game with bounds
(�; b). Let ` be any number with 0 � ` � n:

h1i c`dn�` is a CIB solution if and only if ` is the behavioral divide:

h2i Let ` be the behavior divide. Then, c`dn�` is a unique CIB solution if and only if ` > b� =
max(b1; b2) and z`+1 Bi zbi for i = 1; 2:
h3i Let � be the canonical CIB solution and let �0 be any CIB solution. Then, �(xt) = �0(xt)
for all t with t > b�(t):

We adopt the canonical CIB solution c`dn�` as the representative of the CIB solutions. When
the condition in h2i holds, the canonical CIB is the unique CIB solution; when bi is small for
i = 1; 2, we can expect h2i to hold. Even if h2i is not the case, h3i states that the di¤erence
from the canonical solution occur only within the consciousness boundaries bi; i = 1; 2:14

Remark 5.1 Theorem 5.1.h1i states that the consciousness boundaries b = (b1; b2) have no
e¤ects on the canonical CIB solution. We may use this fact in the subsequent studies.

Let us look Example 2.1. We assume that 
1
= 

2
= 0; 1 = 2 = 300; b1 = 7; b2 = 6; and

�1 = �2 � 0: Here, only the cognitive abilities are variables.

Example 5.1 (Classical centipedes) Consider the three centipede games given by (6) with
n = 100; n = 68; and n = 10: G68(�; b) is the restriction of G100(�; b) to the nodes fx1; :::; x68g
and fz1; :::; z69g only with the modi�cations that the last endnode z69 are connected directly to
x68 with choice c at x68: G10(�; b) is de�ned similarly. In either of G100(�; b) and G68(�; b); the
CIB solution is uniquely determined for each �1 = �2 � 0: In G100(�; b); a CIB solution � is the
c-solution or d-solution for �1 = �2 � 7 or �1 = �2 � 9; and in the middle case �1 = �2 = 8,

14When 1 � ` � min(b1; b2); cn�`d` is still a canonical one.
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it is c99d: In G68(�; b); we �nd the same tendency to have d in the last few decision nodes for
�1 = �2 = 7; 8.

In G100(�; b) In G68(�; b) (28)

� =

8<:
c100 if �1= �2� 7
c99d if �1= �2= 8
d100 if �1= �2� 9

and � =

8>><>>:
c68 if �1= �2� 6
c66d2 if �1= �2 = 7
c65d3 if �1= �2 = 8
d68 if �1= �2� 9:

Consider G10(�; b) with the same parameter values: The CIB solution is given as

� 2

8<:
fc10g if �1= �2� 7
fc7d3; d10g if �1= �2= 8
fd10g if �1= �2� 9:

Multiplicity of CIB solutions happens when �1 = �2 = 8; where the canonical one is c7d3:
Theorem 5.1.h3i claims that �(x8) = �(x9) = �(x10) = d: The calculation of the results in (28)
for G100(�; b) is given in Section 5.4.

From Theorem 5.1 and Example 5.1, we predict the following:

Behavioral Dichotomy:

(BD1) If the cognitive bounds �1 and �2 are low, the behavior divide ` is close to n; i.e., the
canonical CIB solution is c`dn�`:

(BD2) If they are high, the behavioral divide ` is 0; i.e., the canonical CIB solution is dn:

This includes still ambiguity. In G100(�; b) of (28), BD1 has two cases c100 and c99d1; and BD2
has the third line. In G68(�; b); BD1 has the �rst three lines, and BD2 has the fourth line. In
either examples, we have a tendency of the behavioral dichotomy.

5.2 Locations of the behavior divide `

Theorem 5.1 means that the canonical CIB solution c`dn�` can be a good representative of the
set of CIB solutions. The behavior divide ` is may be regarded as close to n if it exists, since
the divide ` is the maximum of `0�s with z`0 1`0 z`0+1: Therefore, behavioral dichotomy holds
quite likely. Indeed, the three cases of Example 5.1 show this conjecture. Yet, this is observed in
these examples. We should check the locations of ` in more cases. Here, we see relatively simple
cases, and postpone more complex cases to Section 6. That is, we look at su¢ cient conditions
for a canonical CIB solution to be cn or cn�1d:

Let Gn(�; b) be a centipede game with bounds � and b: Let ��i = minf� : �i(�) >
maxzt2Zn gi(zt)g for i = 1; 2: Then, we consider the following conditions for players �(k);
k = n; n� 1:

��(k)(�
�
�(k) � 1) < g�(k)(zk+1) < g�(k)(zk) < ��(k)(�

�
�()): (29)

If k = n; this is zn 1�(n) zn+1 and if k = n � 1; it is zn�1 1�(n�1) zn. In the former, the
behavioral divide is ` = n; and Theorem 5.1 implies the canonical CIB solution cn: When the
former does not hold but the latter does, the behavior divide is ` = n � 1; and Theorem 5.1
implies the canonical CIB solution cn�1d: These cases are summarized as the following lemma.

Lemma 5.1 (Conditions for cn or cn�1d) Let Gn(�n; b) be a centipede game.
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h1i Let (29) hold for n. Then, the canonical CIB solution is cn:

h2i Let (29) hold not for n but for n� 1. Then, the canonical CIB solution is cn�1d:

This holds for any parameter values in Gn(�; b); but (29) itself may not hold either for k = n
or k = n� 1. One extreme example is; when ��(n) = 0; (29) holds for n because 2��(n) = 2 and
��(k)(0) < g�(n)(zt) < ��(k)(1) for all zt 2 Zn. When ��(n) is large but ��(n�1) = 0; we could
have the condition of h2i: These will be discussed in Section 6.

Here, we give one type of a su¢ cient condition to have cn; cn�1d; or dn. First, we assume
that gi(�) is integral-valued for i = 1; 2; i.e., their range is the set of positive integers I+; and
that the ruler is tight in the sense that

i = max
zt2Zn

gi(zt) + 1 for i = 1; 2: (30)

Since the payo¤s are monetary and integral-valued, i is simply the smallest payo¤ satisfying
i > gi(zt) for all zt 2 Zn. We show that the canonical CIB solution is given as c`dn�` with
` = n; n� 1 or 0 depending upon the cognitive bounds.

Theorem 5.2 (Tight payo¤ rulers and behavioral dichotomy) Let Gn(�n; b) be an sk-
concave centipede game where gi(�) is integral-valued with (30) for i = 1; 2: Then, there are ��1
and ��2 such that for any cognitive bounds �1 � 0 and �2 � 0; Gn(�n; b) has the canonical CIB
solution � given as

� =

8><>:
cn if ��(n) � ���(n)
cn�1d if ��(n) > �

�
�(n) & ��(n�1) � �

�
�(n�1)

dn if ��(n) > �
�
�(n) & ��(n�1) > �

�
�(n�1):

(31)

Her, the sk-concavity assumption is used only to derive the third line: The mixture with
c and d occurs only in the second case. In this theory, the behavioral dichotomy holds in a
clear-cut manner; the �rst and second lines belong to BD1 and the third is in BD2.

Finally, we give a su¢ cient condition for the canonical CIB solution to be the unique CIB
solution. Let ` be the behavior divide in Gn(�; b): Consider the following condition: for i = 1; 2;

gi(zbi) <
i � i
2

� gi(zt) < gi(z`+1) for some t; (32)

This means that zt separates between zbi and z`+1; thus z`+1 Bi zbi for i = 1; 2: This is the
condition of Theorem 5.1.h2i:

Lemma 5.2 When (32) holds, then the canonical CIB solution is the unique CIB solution.

Since (32) is a relatively weak condition, the lemma supports that the canonical CIB solution
is the representative of the CIB solutions.

5.3 A behavioral algorithm for the Selten people

In (*) of Section 1; the Selten people were asked about their opinions on the BI theory. Before
it, they were explained about the BI theory, and then, each person makes a thought experiment.
We suppose that the explanation takes a form of an algorithm, because the full understanding
is costly for non-professional people, even trained mathematically, as discussed in Section 2.3.
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Here, we explain, to each of the Selten people, the basic language and some concepts for the
CIB theory. It di¤ers from the BI theory that the algorithm here has an oracle, in addition
to detailed choices coming from re�ections on one�s mind. The oracle is a theoretical result,
speci�cally Theorem 5.1, of the CIB theory, and suggests to skip some detailed comparisons.

First, we teach the Selten people the two concepts with their intended meanings:

K1 Strict preferences B�(t) over the adjacent pairs (zt; zt+1):
K2 Incomparabilities 1�(t) over the adjacent pairs (zt; zt+1):

These are explained with the payo¤ ruler consisting payo¤ scales. Then, each of the Selten
people re�ects upon his mind and estimates B�(t) and 1�(t) : This is done at the intuition level.

Then, we teach the general (abstract) knowledge, K3, for Gn(�; b):

K3 The behavioral divide ` and Theorem 5.1 for the canonical CIB solution.

Each person uses his strict preference B�(t) and incomparability 1�(t) to �nd the behavioral
divide `. Thus, he follows the suggestion of the voice from the outside, which is a guide from
the CIB theory, mentioned in Section 2.3, (iii), and is called an oracle.

Let us formulate the CIB algorithm with a performer, abbreviated as SP. Now, the SP faces
a centipede game Gn: He takes each player�s position described by the game Gn: At decision
node xt, he thinks about what to do as if he is player �(t): The algorithm tells him at each step
to go to the next step, to change the behavior, or to terminate the algorithm.

The CIB Algorithm with an oracle: It starts with the last decision node xn: Because the
steps are all uniform, we describe the step at an arbitrary decision node xt:

Step Nbt The SP checks whether zt B�(t) zt+1 or zt 1�(t) zt+1 holds.
Nbt1 Let zt B�(t) zt+1: He puts �(xt) = d; and the algorithm goes to Step Nbt�1 when t > 1;

but it terminates when t = 1:

Nbt2 Let zt 1�(t) zt+1: He puts �(xt0) = c for all t0 � t; and the algorithm terminates.

The algorithm has at most n steps, and in each termination case, the algorithm assigns a pair
of behavior plans �: Indeed, when the SP �nds zt 1�(t) zt+1 in Nbt2; the algorithm terminates
with the resulting outcome ctdn�t:When the SP does not �nd it at any t; the algorithm reaches
Nb11 and the resulting outcome is dn: In either case, the outcome is the canonical CIB solution:

In the case Nbt2, the oracle suggests that the algorithm assigns choice c for node xt for all
t � ` based on K3. It connects his choices suggested from the theoretical statement in his mind.

The number of steps to Nb` to the termination of the CIB algorithm is n� `: It is a crucial
problem to think about how large is the di¤erence n� ` is. In the examples in Section 5.1, ` is
quite close to n when the cognitive abilities are not large. This will be considered in Section 6.

A variant is an algorithm without the oracle, going down to the very �rst decision node x1,
but the oracle is natural in the context of explaining the CIB theory to the Selten people.

5.4 Proofs

Calculation of the CIB solution � in G100(�; b) Let us verify the CIB solution � in
G100(�; b): When �1 = �2 � 9; Theorem 4.2.h2i is a su¢ cient condition � = dn. Indeed,
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g�(t)(zt) � g�(t)(zt+1) = 1 > ���(t) = (300 � 0)=29 + 0:586 for all t; which together with The-
orem 4.2.h2i implies zt+1 B�(t) zt+1 for all t: Thus, � = dn by h1i: Let �1 = �2 = 8: Since
���(t) = (300� 0)=28 = 1:171875; we have 203 > �(100) +���(100) � 173 + 202:27 > 202; thus,
z100 B�(100) z101: But since g1(z99) = 198 and g1(z100) = 197; we have 198:05 + 1 +��1 � 169
> 198 > 197 > 

1
+��1 � 168 + 196:9: So, z99 11 z100 by (15). By Theorem 5.1.h2i; � = c99d is

the unique CIB solution : Finally, let �1 = �2 � 7: Then, ��i � (300�0)=27 = 2:34375: Let �i =
7: Then, since �(100) = 2; g2(z101) = 203; and g2(z100) = 202; we have 203:9 + 2+��2 � 87 >
203 > 202 > 

2
+��2 � 86 + 201:6: Hence, z100 1�(100) z101 by (15); � = c100 is the unique CIB

solution � = c100 by Theorem 5.1.h2i:�
Proof of Theorem 5.1 h1i (If) Let � = c`dn�` be the canonical pair of behavior plans. The
former part (> `) of (27) means that � satis�es (22) for t > `: Since the latter part (> `) of (27)
is z`+1 1�(`) z`; it follows from Lemma 5.1.h1i that z`+1 D�(t) zt for all t � `: The realization
r(�) of � is z`+1: Hence, � satis�es (22) for t � `:
(Only-If) We prove the contrapositive of the assertion. Suppose that � = c`dn�` is not
canonical. Then, ` is not the maximum of `0 with z`0+1 1�(`0) z`0 : Then, there is an `0 with
`0 > ` and z`0+1 1�(`0) z`0 : By the condition, we can assume that `0 is the maximum and
`0 > b� = max(b1; b2): However, �(x`0) = d: By (22), � is not a CIB solution.

h2i The additional claim � = c`dn�` follows from the only-if part of the main assertion.

(Only-if) Suppose that Gn(�; b) has a unique CIB solution �: Then, by (27) and Theorem
3.1.h1i the latter part of (27) implies that �(xt) = d for t > `: Then, since z` 1�(`) z+1; we have
�(x`) = c by (22). Thus, r(�x`+1j) = z`+1: Since z`+1 Dt xt for all t > max(b1; b2) by Lemma
5.1.h1i, we have �(xt) = c for all t > max(b1; b2) by (22). Now, let bi = max(b1; b2): Then,
because of the uniqueness of the CIB solution �; we have z`+1 Bi zbi by (22); so, �(xbi) = c
again by (22). Consider t � bi � 1: We assume the induction hypothesis that �(xt0) = c for
all t0 � t: Hence, r(�xt+1j) = z`+1 D zt+1: Let t � min(b1; b2) = bj : Then z`+1 D�(t) zt. If
�(t) = i; then r(�xt+1j) = z`+1 Bi zbi Di zt+1; which implies �(xt) = c by (22): If �(t) = j; then
r(�xt+1j) = z`+1 Di zt by Lemma 5.1.h1i. Then, if t > bj ; then �(xt) = c by (22), and if t = bj ;
then z`+1 Bj zt by (22). As a whole, we have shown �(xt) = c for all t � min(b1; b2): This means
that z`+1 Bi zbi for i = 1; 2: This and Lemma 3.2 imply z`+1 Bi zt for all t � min(b1; b2). By
Theorem 3.1.h3i, � is uniquely determined.
(If) By Theorem 3.1, it su¢ ces to show condition (23). Let z`+1 Bi zbi : For any zt with t < bi
and �(t) = i; we have gi(zbi) > gi(zt) by (4). Hence, by Lemma 3.2.h1i; we have zbi Di zt: Hence,
z`+1 Bi zt by (17). We have shown,

for i = 1; 2; z`+1 Bi zt for all zt with �(t) = i and t � bi:

Now, by condition (27) and Theorem 3.1, a CIB solution � is determined uniquely in the domain
fxt : t � b�(t)g. Then, it holds that �(xt) = c for xt with b�(t) � t � `: Finally, we let �(xt) = c
for xt with t � b�(t): Then, it holds that

r(�xt+1j) = z`+1 B�(t) zt for t � b�(t):

Thus, by Theorem 3.1.h3i; � is the unique CIB solution.�

Proof of Theorem 5.2 Let k = n; n�1: Recall ���(k) =
�(k)��(k)
2
��(k) : Let ���(k) be the maximum

of ��(k)�s satisfying
���(k) > g�(k)(zk)� g�(k)(zk+1) (33)
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By (33), for ��(k) > �
�
�(k); it holds that ����(k) > g�(k)(zk)� g�(k)(zk+1) � ���(k) : Thus,

���(k)

(
> g�(k)(zk)� g�(k)(zk+1) if ��(k) � ���(k)
� g�(k)(zk)� g�(k)(zk+1) if ��(k) > �

�
�(k):

(34)

Now, let k = n: Consider the �rst case ��(n) � ���(n) of (31). Then, ���(n)(2
��(n)) = �(n) >

g�(n)(zn): Now, we have


��(n)

����(n) < 
��(n)

� [g�(n)(zn)� g�(n)(zn+1)] (35)

< (
��(n)

� g�(n)(zn)) + g�(n)(zn+1) = g�(n)(zn+1):

Thus, g�(n)(zn+1) > ���(n)(2
��(i)�1). Hence, ���(n)(2

��(n)) = �(n) > g�(n)(zn) and g�(n)(zn+1) >
���(n)(2

��(n) � 1): Thus, zn 1�(n) zn+1 by Lemma 4.1.h2i. By Theorem 5.1.h1i; we have � = cn:

Consider the second case ��(n) > ���(n) and ��(n�1) � ���(n�1) of (31). It follows from (34)
that


��(n)

����(n) � ��(n) � [g�(n)(zn)� g�(n)(zn+1)] > g�(n)(zn+1):

Hence, g�(n)(zn+1) < ��(n) ����(n) : On the other hand, since g�(n)(zn)� g�(n)(zn+1) � ���(n)
by (34) and the payo¤ functions are integer-valued and bijective, we have


��(n)

����(n) = 
��(n)

� [g�(n)(zn)� g�(n)(zn+1)]

= (g�(n)(zn) + 1)� [g�(n)(zn)� g�(n)(zn+1)]
= 1 + g�(n)(zn+1) � g�(n)(zn):

This together with the previous result implies that g�(n)(zn) � ��(n)����(n) = ��(n)(2
��(n)�1 >

g�(n)(zn+1): By (14), we have zn B�(n) zn+1: Since ��(n�1) � ���(n�1); it is proved in the same

manner as (35) that zn�1 1�(n�1) zn: Hence, by Theorem 5.1.h1i; we have � = cn�1d:

Consider the third case ��(n) > ���(n) and ��(n�1) > ���(n�1)of (31). In this case, we have
���(n) � g�(n)(zn)�g�(n)(zn+1):Also, by sk-concavity, we have���(n) � g�(n)(zn)�g�(n)(zn+1) �
::: � g�(t)(zt)� g�(t)(zt+1) for all t � n with �(t) = n: In the same manner, we have ���(n�1) �
g�(n�1)(zn�1)� g�(n�1)(zn) � ::: � g�(t)(zt) � g�(t)(zt+1) for all t � n with �(t) = n � 1: By
Theorem 3.2.h1i; we have � = dn:�

6 Reversed Causality Degrees and Centipede Games with Dif-
ferent Lengths

This section has two-fold developments; the concept of the reversed causality degree RCn is
introduced to Gn(�; b): It is applied to the class, Gn(�; b); of initial segments Gk(�; b) of a
centipede game Gn(�; b). The degree expresses a discrepancy between the depth of the hy-
pothesis for decision making and that of the resulting outcome. By looking at values RCk for
Gk(�; b) 2 Gn(�; b); we observe a quite strong tendency of behavioral dichotomy. Finally, it is
argued that these are compatible with the refusals/acceptances of the solutions by the Selten
people.
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6.1 Reversed causality degrees in Gn(�; b)

Let Gn(�; b) be a centipede game and � a pair of behavior plans:We de�ne the reversed causality
degree RCn in � in Gn(�; b) by:

RCn = (n+ 1)� rT (�); (36)

where rT (�) = k+1 is the depth of the realization r(�) = zk+1: Since 1 � rT (�) � n+1; we have
the range of RCk as 0 � RCk � n: This concept expresses the degree of cause-e¤ect included in
�; the cause-e¤ect is reversed as discussed for P0E in Section 1. It is calculated along the CIB
algorithm described in Section 5.3; to get a solution, a player hypothetically starts thinking at
the �nal decision node xn with the very last end node zn+1; and when it stops at r(�) = zk+1;
the causality degree is given by (36).

We focus on the canonical CIB solution �: Theorem 5.1 stated that the canonical CIB solution
is expressed as � = c`dn�` (0 � ` � n): Since rT (c`dn�`) = ` + 1; we have RCn = (n + 1)�
rT (c

`dn�`) = n� `; which is stated as the next lemma.

Lemma 6.1 (Reversed causality and conscious choice): RCn = n � ` for any centipede
game Gn(�; b):

The degree RCn = n � ` is interpreted as the number of conscious decision making at
x`+1; :::; xn: If we count the decision nodes within consciousness boundaries b� = max(b1; b2);
RCn(�) needs the additional constant b�; but for simplicity, we ignore the constant b�:

For a centipede game Gn(�; b), we have the 1-to-1 correspondence:

the canonical CIB solution � is c`dn�` if and only if RCn = n� `: (37)

The degree RCn is regarded as a function over a class of centipede games. It su¢ ces to focus on
the behavior divide ` for each centipede game in the class. In the cases of Theorem 5.2, there
are only three types of CIB solutions, cn; cn�1d; or dn: By (37), we have RCn = 0; 1; or n: The
value RCn = n happens when the players have high cognitive abilities, and the other two cases
RCn = 0 and RCn = 1 are when they have low cognitive abilities. The separation between the
former and latter cases is the behavioral dichotomy. Now, we study this separation by looking
at the behavior of the reversed causality degree RCn.

6.2 The class of initial segments of a centipede game Gn(�; b)

Let Gn(�; b) be a centipede game. Let k � n: The initial segment Gk(�; b) of length k is the
restriction of Gn(�; b) to the decision nodes x1; :::; xk and the endnodes z1; :::; zk; zk+1 so that
the payo¤ functions are simply restricted to these end nodes but we change the connection from
xk directly to zk+1 with choice c at xk: Then, we de�ne the set

Gn(�; b) = fGk(�; b) : it is an initial segment of Gn(�; b) and 1 � k � ng:

Each Gk(�; b) 2 Gn(�; b) is a centipede game, and the canonical CIB solution of Gk(�; b) is
denoted by c`(k)dk�`(k); where `(k) is the behavioral divide of Gk(�; b): Then, RCk = k � `(k)
is a function of k (1 � k � n): Instead of focussing on the value RCk for a single game
Gk(�; b) 2 Gn(�; b); we focus on the function RCk = k � `(k) (1 � k � n):
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Figure 9: RCk of Gk(�) 2 Gn(�)

To study the function RCk = k � `(k); we consider the following sets: for i = 1; 2;

Ln(�i) = f` : 1 � ` � n; z` 1�(`) z`+1 and �(`) = i in Gn(�; b)g: (38)

It is the set of indices where the adjacent endnodes are incomparable for i. Let Ln(�) =
Ln(�1;�2) = Ln(�1) [ Ln(�2):

For k 2 Ln(�); by Lemma 5.1.h1i; zk 1�(k) zk+1 implies that the canonical CIB solution of
Gk(�; b) is ck: Consider k with ` � k < `0 for `; `0 2 Ln(�) where `0 is adjacent to ` in Ln(�):
We ignore `0 when ` is the maximum in Ln(�): It follows from Theorem 5.1.h1i that for any k
with ` � k < `0; the canonical CIB solution �k of Gk(�; b) and RCk are given:

�k = c`dk�`(k) and RCk = k � `(k): (39)

Thus, the function RCk = k � `(k) is obtained from Ln(�) = Ln(�1) [ Ln(�2):

Let Gn(�; b) be the centipede game G100(�; b) of Example 5.1. In Fig.9, the function RCk =
k � `(k) is depicted in the two cases for �1 = �2 = 9 and �1 = �2 = 8: The straight line is
RCk = k for the case �1 = �2 = 9; and the saw-shaped line is RCk(�) = k�`(k) for �1 = �2 = 8:
These lines have full information about the canonical CIB solution for Gk(�; b) 2 G100(�; b): For
example, When �1 = �2 = 9 and k = 83; RC83(�) = 83 implies �

83 = d83: When �1 = �2 = 8;
RC83(�) = 18 implies �83 = c65d18: Here, the result di¤ers from Theorem 5.2. Incidentally, in
this case, when k = 65; we have RC65 = 0 and the CIB solution c65 for G65(�; b):

The following theorem describes the behavior of the function RCk(�): h1i states that RCk(�)
is weakly increasing, and h2i states that RCk(�; �) has the lowest boundary at � = (0; 0); i.e.,
RCk(0; 0) = 0 for all k � n and the upper bound at some �� = (��1; �

�
2): h2i implies that the

canonical CIB solution is ck for all k � n at � = (0; 0); and it is dk for all k � n after ��: h1i
implies that the saw-shaped line of the function RCk(�) is monotonically moving from (0; 0) to
��: In Fig.9, the lines for �1; �2 � 8 are also saw-shaped and are located underneath the line of
�1 = �2 = 8:

Theorem 6.1 h1i(Monotonicity) RCk(�) is weakly increasing w.r.t. � = (�1; �2); i.e., if
� = (�1; �2) � �0 = (�01; �02); then RCk(�) � RCk(�0) for all k � n:
h2i(Boundaries) RCk(0; 0) = 0 for all k � n; and there is some �� such that for all � � ��;
RCk(�) = k for all k � n:
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This is indicative of the behavioral dichotomy. Nevertheless, h1i is yet qualitative and h2i is
about boundaries. To study the behavior of the function RCk(�) quantatively, we prepare the
average of the function.

Average reversed causality degrees RC(�): RCk is a function of k and is determined by
cognitive abilities � = (�1; �2); so, we denote this by RCk(�): Now, we de�ne the average of
RCk(�) = k � `(k) over Gn(�; b) by

RC(�) =
1

n

nP
k=1

RCk(�): (40)

Consider the class G100(�; b) derived from G100(�; b) of Example 5.1. In the case �1 = �2 = 9;
it holds that RCk(9; 9) = k for k � n; it is calculated using the well-known formula that
RC(9; 9) = 1

n

Pn
k=1 k =

n+1
2 = 50:5: When �1 = �2 = 8, the average is calculated by an

computer algorithm based on (40) that RC(8; 8) = 4:14:

Since RC83(�) = 18; it follows from RC(�) = 4:14 that RCk(�) is much smaller than
RC83(�) = 18 for k 6= 83:We may predict that the decrease from RC(9; 9) = 50:5 to RC(8; 8) =
4:14 continues more to smaller �1 = �2. Table 6:1 shows the behavior of RC(�):

Table 6:1 the average RC(�)

�1= �2 0 1 2 3 4 5 6 7 8 � 9
RC(�1; �2) 0 0:03 0:04 0:05 0:07 0:12 0:34 0:62 4:14 50:5

For example, when �1 = �2 = 5; RC(�) becomes 0:12; which is much smaller than RC(8; 8) =
4:14: It is interpreted as meaning that at least 88 games Gk(�; b) 2 G100(�; b) have the canonical
CIB solutions ck; equivalently at most 12 games have the canonical CIB solutions ck�1d1: By
scrutinizing the calculation data of the function RCk, we �nd only one exception that c73d2 is
the CIB solution in G75(�):

The average RC(�) is even smaller when �1 = �2 is smaller than 5: The statement that the
behavior divide `(k) is close to 0 is interpreted as meaning the behavior of RC(�) shown in Table
6:1:

Initial segments Gk(�; b) of Gn(�; b) with �1 6= �2 In the previous examples, we assumed
�1 = �2: This assumption can be eliminated without di¢ culty. This leads to an important
implication for considerations of the Selten people�s responses. In (38), the set Ln(�i) is de�ned
independent of Ln(�j) (j 6= i): Hence, the above arguments hold except the examples. Consider
the class G100(�; b) derived from G100(�; b) of Example 5.1. Now, it is assumed that �1 is
variable but �2 = 9 is variable: Then, RC(�1; 9) is given by Table 6:2:

Table 6:2 RC(�1; �2) for �1 with constant �2 = 9

�1 0 1 2 3 4 5 6 7 8 � 9
RC(�) 0:5 0:54 0:54 0:58 0:62 0:74 1:02 1:62 7:94 50:5

Table 6:2 is similar to Table 6:1 in that RC(�) decreases quickly as �1 moves downward from 8:
The di¤erence is that the lowest RC(�) is 0 in Table 6:1; but that of Table 6:2 is 0:5: In Table
6:2; player �(k) = 2 at xk in Gk(�; b) chooses always d; but when �1 = 0; player 1 chooses always
c at xk�1: Hence, each value in Table 6:2 is 0:5; while each in Table 6:1 is 0 when �1 = �2 = 0:
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Let us see how Table 6:2 changes when �2 = 5. The new table is given as Table 6:3:

Table 6:3 RC(�) for �1 with constant �2 = 5

�1 0 1 2 3 4 5 6 7 8 � 9
RC(�) 0:05 0:07 0:07 0:08 0:09 0:12 0:19 0:3 0:58 0:69

This is quite di¤erent from Table 6:2: Here, the d-behavior dn disappears entirely; the case
of �1 � 9 and �2 = 5 has the highest value RC(�) = 0:69: From the calculation data, we
have the following distribution of the canonical CIB solutions �k over Gk(�; b) 2 G100(�; b)
(1 � k � 100):

ck and RCk(�) = 0 46 times;

ck�1d and RCk(�) = 1 44 times;

ck�2d2 and RCk(�) = 2 5 times;

ck�3d3 and RCk(�) = 3 5 times.

This distribution gives RC(�) = 0:69: This case is already quite close the case where the cognitive
abilities are low. If �1 is smaller than 9; say �1 = 7; then RC(�) = 0:3: In this case, the distribtion
of RCk(�) is

ck and RCk(�) = 0 74 times;

ck�1d and RCk(�) = 1 23 times;

ck�2d2 and RCk(�) = 2 2 times;

ck�3d3 and RCk(�) = 3 1 times.

When �1 approaches to 0 but �2 = 5; RC(�) is very close to 0: Here, almost all are c
k or ck�1d:

Sk-concave payo¤ functions We have considered various classes of parameter values on
cognitive abilities � = (�1;�2) and consciousness boundaries b = (b1; b2): There are still other
cases, but here, we consider an example of sk-concave payo¤ functions. Let Gn(�; b) be a
centipede game where the payo¤ functions are given by (6) in Example 2.1. These g1(zt) and
g2(zt) are sk-linear. Then, we transform them into

g�i (zt) =
p
gi(zt) for zt 2 Z�n and i = 1; 2:

In this case, the payo¤ di¤erence g��(t)(zt)� g
�
�(t)(zt+1) is decreasing with t: It is an sk-concave

function; the graph is depicted in Fig.3. This implies that zt 1�(t) zt+1 holds more likely as t
increases. When �1 = �2 = 7; the function RCk of k is depicted as the lower saw-shap line in
Fig.10; it takes some high values in the smaller domain of k and it takes a smaller value for
larger k: Thus, the saw-shape line is less uniform than the case of sk-linear payo¤ functions.

To see the averages of this non-uniformRCk; we see the three cases: RC(�)1~k = 1
k

Pk
k=1RCt(�)

for k = 30; 60; and 100: In all cases, RC(�)1~k takes the same tendency: only when �1 = �2 � 9;
it takes a quite large value, but when �1 = �2 � 8; the average becomes suddenly small, and
decreases to very small magnitude.

Table 6:4 RC(�)

�1 = �2 0 1 2 3 4 5 6 7 8 � 9
RC(�)1~30 0 0 0:03 0:07 0:17 0:23 0:50 3:97 15:5 15:5

RC(�)1~60 0 0:02 0:03 0:07 0:13 0:20 0:42 2:27 8:95 30:5

RC(�)1~100 0 0:01 0:02 0:04 0:10 0:16 0:31 1:49 5:83 50:5
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Figure 10: RCk(�) with � = (9; 9); (9; 7); and (7; 7)

6.3 Thought experiments by the Selten people

Here, we conduct a hypothetical thought experiment, in order for the Selten people to consider
how they would respond to the behavioral dichotomy shown in Sections 5 and 6:

(a) An experimental subject (i) is mathematically trained, (ii) believes the logical validity
of the backward induction, and (iii) wants a guide to practical behavior;

(b) the CIB theory in Sections 3, 4, and the results in Sections 5
6 are shown and explained to him.

We argue that this hypothetical person does not �nd a con�ict in having (a) and (b) together,
including the behavioral recommendation from (b) including (iii) of (a).

Although the person is mathematically trained as well as understands the logical validity of
the BI theory, he is still boundedly rational because (iii) means that he needs a concise guide
to avoid complicated thinking. In the CIB theory, bounded rationality is described by a degree
�i of bounded cognitive ability. Behavioral dichotomy means that BD1: if �1 and �2 are low,
the outcome is c`dn�` and the behavioral divide ` is close to n; and BD2: if they are high, the
resulting outcome is dn: This is yet a relativistic statement having two exclusive cases, but since
the hypothetical person characterized by (a) and (b) is boundedly rational, BD1 is only the
case. Thus, he is facing BD1 of behavioral dichotomy where the outcome is c`dn�` with the
behavioral divide ` close to n:

The CIB solution c65d18 mentioned in Section 6.2 has a large value k� ` = 83� 65 = 18 for
�1 = �2 = 8: Nevertheless, when �1 = �2 � 7; Table 6.1 states that the average RC(�) becomes
much smaller, e.g., 0:62 for �1 = �2 = 7; from 4:18 for �1 = �2 = 8: The case �1 = �2 = 8 is
the boundary of the two cases of behavioral dichotomy; perhaps, the case where �1 and �2 are
low should be interpreted as �1 = �2 � 7: The other tables in Section 6.2 show quite similar
tendencies.

Table 6.2 and Table 6.3 show the behavior the CIB solution when player 2 is the subject
with �2 = 9 and �2 = 5: By the argument of the previous paragraph, we should consider only
the case �2 = 5: The case �1 � 9 or �2 = 5 may not be excluded since player 1 is imagined
by the subject and his imagination may not exclude the case where the other person is quite
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rational. In either case, we �nd a strong tendency to have c`dn�` with behavioral divide ` close
to n: The point of Table 6.4 is that the length of the centipede game Gk(�; b) is important to
have behavioral dichotomy, that is, when k is larger, BD1 holds more likely.

Finally, we return to O1 and O2 in Section 1; the subject characterized by (a) and (b) faces
a centipede game Gn and �nds that the payo¤s in the very last part of the game are much
higher than those in the beginning of the game. As stated in Lemma 2.1, a centipede game
gives a wishful thinking to the subject, but P1, P2 together with Individual motive lead to the
d-solution dn: This outcome is quite contrary to O1 and O2. Then, he learns the modi�cation
of P1 and P2. Then, it leads to c`dn�` with ` close to n: This is consistent with O1 and O2.
Thus, the subject person does not �nd a con�ict in having (a) and (b).

6.4 Proof

Proof of Theorem 6.1 h1i Let �0 � �: Since the set Ln(�i) depends upon �i together with the
other parameters, we denote it by Ln(�i)�i and Ln(�i)�0i only with the change of �i to �

0
i: Then,

we show that �0i � �i implies Ln(�0i)�0i � Ln(�i)�i : Since f
�
2�i : 0 � � � 2

�ig � f �

2�
0
i
: 0 � � �

2�
0
ig; the payo¤ ruler ��i is a subset of the ruler ��0i ; that is, the payo¤ scales in ��0i are �nner

than those in ��i : By (38), Ln(�i)�0i is a subset of Ln(�i)�i : Thus Ln(�)�0 = Ln(�1)�01[Ln(�2)�02
� Ln(�)�: Equivalently, Ln(�)C�0 = f1; :::; ng � Ln(�)�0 � Ln(�)C� :

We show by induction on k = 1; :::; n that RCk(�) � RCk(�
0): Let k = 1: If 1 2 Ln(�)C� ;

then z1 B�(1) z2 in G1(�; b)� and so is in G1(�; b)�0 . Thus, d1 is a CIB solution in G1(�; b)� and
G1(�; b)�0 : Hence, RC1(�) = RC1(�0) = 1:

Now, the induction hypothesis is RCk(�) := k � ` � RCk(�
0) := k � `0 for k < 100: If

k + 1 2 Ln(�)C� ; then zk+1 B�(k+1) zk+2 in Gk+1(�; b)� and so is in Gk+1(�; b)�0 . Thus, a CIB
solution in Gk+1(�; b)� and Gk+1(�; b)�0 : Hence, their CIB solutions are c`dk�`+1 and c`

0
dk�`

0+1;
so, RCk+1(�) = k � `+ 1 � k � `0 + 1 = RCk+1(�0): If k + 1 2 Ln(�)�; then zk+1 1�(k+1) zk+2
in Gk+1(�; b)�: Hence, the CIB solution is ck+1; so RCk+1(�) = 0: We have the induction step.

h2i Since ��i = fi; ig; it holds that Ln(�)(0;0) = f1; :::; ng: Hence, all canonical CIB solution
is ck; i.e., RCk(0; 0) = 0 for all k = 1; :::; n. Conversely, we can �nd a su¢ ciently large ��1; �

�
2 so

that Ln(�)(0;0) = ;: So, for all � � ��; RCk(�) = k for all k � n:�

7 Summary and Conclusions

We have taken four steps toward a resolution of the centipede paradox. First, we identi�ed the
centipede paradox by the quotation (*) from Selten [24] on a chain-store game and the BI theory.
The quotation (*) was suggestive in the two ways to identify what the centipede paradox is and
to motivate the concept of the reversed causality degree, which was discussed in Section 6.

A centipede game is much simpler than a chain-store game in that the choice of action d leads
immediately to the end of the game in the centipede game, while the game continues (unless it
is not at the last stage) if the chain-store takes the deterrence action. This di¤erence is crucial
for the concept of inertia in the CIB theory. We focussed on centipede games, though we have
taken a slightly larger domain of games given by C1 to C6. Lemma 2.1 states that a centipede
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game includes a germ of coordination, which is Cooperative Motive (4) but Individual Motive
(3) disables CM (4) to germinate and lead to the d-solution dn.

We identi�ed the di¢ culties hidden in the BI theory to be P1 (complete comparability)
and P2 (forget the bygones). We weakened P1, by adopting the expected utility theory with
probability grids due to Kaneko [9]. This theory de�nes a �nite payo¤ ruler to measure payo¤s,
and the payo¤ scales of the ruler correspond to the cognitive ability of a player. When the
cognitive ability of a player is low, the payo¤ ruler allows incomparability. Postulate P2 was
modi�ed so that when incomparability holds, the player follows inertial behavior when the
decision node has some distance from the start x1: With these two modi�cations, the CIB
solution is de�ned.

Then, we studied the behavior of the CIB solution for centipede games. In general, a
centipede game may have multiple CIB solutions, but the one type, called canonical, is uniquely
determined as c`dn�` and was regarded as the representative of all CIB solutions. This canonical
form was indicative for a resolution of the paradox in that the behavior divide ` is close to n
when the cognitive ability of at least one of the players is small: This was extensively discussed
in Sections 5.2 and 6.

The last step was the introduction of the reversed causality degree RCk = k � `(k) in
Gk(�; b) 2 Gn(�; b). It was argued that the degree RCk represents the Selten people�s responses
to the resulting outcomes of the CIB theory. The behavior divide `(k) in Gk(�; b) is quite close
to k when at least one of the players has a low cognitive ability. Only when both have high
cognitive abilities, the outcome is dn; it was argued that the Selten people might refuse the
condition for both players to have high cognitive abilities, but not the outcome dn itself. Thus,
our evaluation results are regarded as representing the Selten people�s reactions. Section 6.3
synthesized the developments as a resolution of the centipede paradox.

Various questions are expected. First, what is the scope of the CIB theory together with
the reversed causality degree? The structure of a centipede game is crucial for the concept of
inertia in our developments. It would be di¢ cult to de�ne �inertia�in a chain-store game, since
the �retailers�are changing in the game. Since this di¢ culty is avoided in the �nitely repeated
prisoner�s dilemma, this game has a smaller distance than the chain-store games; Marschak-
Selten [18] and Selten-Stoecker [25] could be considered from this point of view. The concept of
�inertia�is better suited to inductive game theory due to Kaneko-Matsui [11] and Kaneko-Kline
[12]. Attempts of studies in these directions may entail important future researches.
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