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Abstract

We introduce price freeze options (PFOs) into a model of sequential search.

The model’s predictions are tested in a laboratory experiment. The experiment

varies (1) whether freezing is possible or not, (2) the cost of freezing, and (3) the

time horizon. Overall, the observed treatment effects are consistent with the

predictions of our model. Assuming that individuals experience regret, fail to

ignore sunk search costs, misperceive the number of periods remaining, or are

risk-averse, does not improve upon the performance of the model. Our results

support the use of the assumption of optimal search behavior in theoretical

and empirical studies.
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1 Introduction

Purchases of many goods are characterized by a tradeoff between accepting the best

price currently available and waiting to see if a better offer appears at a later date.

For example, a seller of a home must decide whether to accept an offer from a buyer

or to turn it down and wait for a higher price from another prospective purchaser.

This decision may be made a number of times before a transaction occurs. Markets

with this feature are called search markets. These markets innovate over time as

information technology progresses. Recent years have seen the advent of additional

services that are offered as part of search processes, changing the decision problem

that searchers face. This paper focuses on a particular innovation that has become

prevalent in such markets, the Price Freeze Option, or PFO. A PFO is a service

offered by firms, which guarantees the availability of an observed offer for potential

future acceptance. Purchasing a PFO gives a searcher the possibility of accepting an

offer at a later stage, while not committing herself to that offer. That is, once an

offer is frozen, the searcher can go back and accept the frozen offer at a later date.

PFOs are making inroads into various important online markets. As an example,

consider commercial airlines, a large number of whom have introduced the option to

freeze the price of airline tickets. For example, at the time of this writing, United

Airlines offers an option, called Farelock, to freeze a price of an airline ticket for one

week, for a fee of between 5 and 10 US dollars.1 Lufthansa, Air France, and other

global and regional carriers offer similar possibilities.2 An example of how the option

is offered can be seen in the screen shot shown in Figure 1, taken from the website

of Air France. This screen is shown to consumers immediately after they receive a

price quote for a proposed itinerary. It indicates the duration of the PFO and the fee

the consumer is asked to pay for the option (e5). The fee and duration of the PFO

can vary depending on flight characteristics. The proliferation of such offers suggests

that there is some demand for the option to lock in prices, and that the airlines find

the practice profitable, or at least necessary to stay competitive. Similar features

1In the US, airlines must follow the “24-hour rule”, overseen by the Department of Transporta-
tion, stating that airlines must offer the option to cancel within 24 hours, or to hold the ticket for
that time frame, free of charge. Therefore, the PFOs offered by US airlines are always for a period
that is longer than 24 hours. Guidelines regarding this regulation can be found on the website of the
Department of Transportation in the following link: https://www.transportation.gov/sites/

dot.gov/files/docs/Notice_24hour_hold_final20130530.pdf.
2See Table 8 in Appendix A for an overview of the fee and duration of PFOs being offered by

various airlines at the time of this writing.
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exist in the market for mortgages, in which it is often possible to lock in an interest

rate for a limited period of time, and for hotel and rental car reservations that can

be canceled for some time after they are made.

To our knowledge, the institution of price freezing has not been studied by

economists.3 Thus, it is not well-understood how the existence of the option to

freeze prices affects the behavior of consumers. It has not been established under

which, if any, conditions the availability of a PFO lengthens or shortens searches,

benefits the searcher, or is profitable for the party offering the option. Furthermore,

it is unknown how the response of consumers to the opportunity to purchase such a

price guarantee depends on the length of time they have to make the purchase and

the cost of the freezing option.

We use both theoretical and experimental methods to study the effect of PFOs on

search behavior and outcomes. We study the searcher’s decision only, and take the

price setting process and freeze fees as exogenous. While this emphasis on one side

of the market does not allow us to evaluate equilibrium predictions, it does permit us

to focus on the searcher’s ability to solve a dynamic search problem without having

to consider the beliefs the searcher has about the behavior of agents on the other

side of the market and the resulting strategic uncertainty. The theoretical analysis

identifies benchmark decisions and outcomes that result from optimal behavior of a

risk neutral agent. The experiment is used to consider which aspects of the model are

likely to find empirical support, and where its predictions might exhibit inaccuracies.

Our purpose is to study price freezing as an institution, and not to simulate or

investigate the airline, mortgage, or any other specific market. Our focus is, rather,

on the PFO itself and its implications on searchers’ behavior, and our goal is to obtain

some general insights regarding the properties of this institution. While we do find

it striking that numerous firms have recently adopted price freezing with such vigor,

we do not address the forces behind the decision to adopt a policy of offering PFOs.

Rather, in our experiment, individuals are randomly assigned in different phases of

3A rich and well-developed literature investigates investors’ decisions to purchase financial op-
tions. There are many differences between our environment and those characteristic of financial
markets, two of which are fundamental. The first is that a basic assumption of the asset pricing
literature is that the value of the underlying asset follows a Brownian motion or a discrete random
walk. In our environment, the price of the underlying good itself, rather than the change in its price,
is independently and identically distributed at each stage. This means that in our environment,
the price at which the good can be purchased at stage t − 1 has no relationship to its value in t.
The second difference is that financial options can be traded so that part of their value results from
the ability to resell them. In our setting, PFOs cannot be transferred or resold. This means that
techniques used to solve for option values cannot be readily applied to our environment.
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the sessions to different markets that may or may not permit price freezing, and the

implications of the institution on search behavior are studied ceteris paribus.

Our model builds on a classical homogeneous good sequential search model with

a finite horizon and a risk neutral agent, which we extend to include the presence of

PFOs. We consider how behavior and outcomes respond to changes in (i) the price

of the freezing option, and (ii) the length of the time horizon available to the decision

maker. We do so both in the absence and the presence of the possibility of recalling

and accepting a prior offer other than the one that was frozen.

We characterize the optimal decision rule, which is a non-stationary policy that we

call a reservation / double reservation policy. This policy dictates that in the stages

just before the terminal stage, there are two price thresholds, and in sufficiently early

periods, there is one threshold. When there are two thresholds, offers more favorable

than a cutoff level are accepted, those in an intermediate range are frozen, and those

that are less favorable than a second cutoff are rejected. If there is one threshold,

only acceptances and rejections occur. We show that the solution is monotonic in

the sense that a stage with two thresholds can follow a stage with one threshold, but

not vice versa. The threshold price levels depend on the offer distribution, the cost of

search, the fee for freezing an offer, and the number of periods available to continue

the search.

We then report a laboratory experiment, in which we study whether some of the

conclusions of the model are borne out in the data. To evaluate the comparative

statics of the model, we vary, in different treatments, the fee charged for the freeze

option and the length of the time horizon. We test whether higher freeze costs

decrease the average length of searches and lower the incidence of the use of the

freeze option. We also consider whether lengthening the time horizon increases search

length, leads to less use of the freeze option, and increases profits. We evaluate these

predictions in an environment in which recall of prior offers is not possible, as well

as one in which recall is possible, but imperfect.4 Finally, we investigate individual

decisions and consider how well these conform to the optimal strategy that the model

predicts.

4The experiment is not designed to measure the effect of allowing recall on freezing, search
length, earnings, or other variables. Our model’s point predictions under no recall are very similar
to those obtained under imperfect recall, implying that tests for treatment effects of recall would be
underpowered. Rather, the experiment is designed to test the effect of changing the freeze fee and
time horizon on behavior in two distinct environments, one with no recall and one with imperfect
recall. Varying the extent to which recall is possible can be thought of as a robustness exercise.
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The data show that the model predicts the general patterns in the experiment

very well. The differences between experimental treatments with regard to search

length, the usage of freezing, and the payoff to the searcher, are consistent with the

comparative statics of the model. The treatment effects are strong despite a relatively

small number of obsevations. There is strong evidence for the use of reservation and

double reservation price rules in the predicted manner. A logistic functional form

describes the probability of accepting an offer at a given price very accurately. Our

model also outperforms four alternatives, with different underlying mechanisms, that

have been applied to sequential search. We adapt these mechanisms to our setting,

where freezing is allowed, and compute the resulting predictions. The alternative

mechanisms are: (1) risk aversion, (2) cognitive information acquisition costs, (3)

anticipated regret, and (4) inclusion of sunk costs in the payoff calculation. Models

based on these mechanisms have been applied to experimental data on search without

freezing by Cox and Oaxaca (1989), Gabaix et al. (2006)5, Weng (2009) and Kogut

(1990), respectively. We consider whether these mechanisms explain our data better

than the model we propose in Section 3.

The main departure from the model is a modest, though statistically significant,

tendency to end searches too early in most treatments. As discussed in Section 2, this

pattern has also been documented in a number of prior studies. Beyond documenting

that under-searching is common, we observe two other patterns. Firstly, we show that

lowering the freeze fee magnifies the extent to which searchers’ exploration is below

the optimal level. Secondly, we show that while under-searching is prevalent, its

adverse effects on individuals’ profits are small. Thus, in the short run, one-sided

model we consider, where firms do not respond to consumer behavior, searchers’

welfare loss is not substantial.6

As we describe in section 4, in some of our treatments, offers that have been

rejected cannot be recalled later. In other treatments, if an offer is rejected and

search continues, there is a positive probability less than one of being able to recall

the offer and accept it later. We refer to these as imperfect recall treatments. 7

5We note that in contrast to the other three mechanisms, the model in Gabaix et al. (2006) was
intended to describe search among heterogeneous goods, as in Weitzman (1979). This is an essential
difference from our homogeneous goods sequential search setting.

6It is conceivable that in the long run, accounting for firms’ responses, under-searching can lead
to less favorable price distributions, which can have economically significant welfare effects.

7The search literature has mostly focused on the polar cases of perfect recall (usually in the con-
sumer choice context) and no recall (usually in the labor market context). A potential explanation
for this pattern in the literature is that perfect recall is common in goods markets in which there
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Imperfect recall can typically arise in two ways in the field. Firstly, the good may

become sold out. For example, popular concert tickets may run out in minutes. On

retailing websites on Cyber Monday, it may be a matter of seconds. In such cases,

there is limited opportunity to recall earlier offers. Secondly, prices may exhibit high

volatility, so that even if revisiting previous vendors is possible, the price is likely to

have changed. In such cases, recall of earlier offers may be possible, but is far from

guaranteed. It is evident that the value of a PFO decreases in the recall probability.

While a PFO and the ability to recall earlier offers share some similar features, they

also have important differences. In particular, a PFO pertains to a specific offer

that was chosen by the searcher to be frozen, whereas recall applies to the best offer

seen at any prior stage. Our results regarding the effects of PFOs on behavior are

robust to both settings with no recall and imperfect recall, though, as predicted by

our model, the impact of the presence of a freeze option is more pronounced when

recall is impossible.

The paper proceeds as follows. In Section 2 we discuss related literature. Section

3 develops a theoretical model of sequential search featuring a PFO and characterizes

the optimal solution for a risk neutral agent. Section 4 describes our experimental

design, Section 5 presents the results and discusses them and Section 6 concludes.

Figure 1: PFO at Air France

is no shortage and price volatility is low, whereas no recall (each offer being in a take-it-or-leave-
it format) has been considered to be a reasonable description of job search when labor supply is
sufficiently high in relation to the number of available jobs.
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2 Background

The economic literature on search dates back to the seminal analysis of Stigler (1961).

He develops a simultaneous search model, where a consumer decides ex-ante how

many price offers to sample. Sequential search, in which a decision maker takes a

sequence of decisions about whether or not to accept new offers, was introduced by

McCall (1970), DeGroot (1970), Kohn and Shavell (1974) and others.8 The basic

sequential search model is very simple. Every period, a risk-neutral agent draws

an offer from a fixed and known distribution, and then chooses between accepting

and rejecting it. Acceptance terminates the decision problem, while rejection moves

the task on to the next period, where a new offer is received, and so on. A constant

search cost is paid for every offer drawn. Under these simple assumptions, the optimal

strategy is a reservation rule (i.e. a cutoff strategy), where the cutoff is chosen so that

the expected marginal benefit of continuation to the next stage equals the per-period

search cost. It is well-known that this reservation rule is stationary when the time

horizon is infinite. Under a finite horizon assumption, the reservation rule has the

property that the cutoff is monotonically increasing over time, as individuals become

less selective when the expected benefit from continuation decreases.

The theoretical work that is perhaps closest to ours is by Armstrong and Zhou

(2016), who analyse the implications of offering buy-it-now options and exploding

offers within a sequential search framework. They model both the buyer and seller

sides of the market and consider markets with both monopolistic and oligopolistic

sellers. They show that sellers can gain from deterring search and explore ways that

such deterrence can be achieved. They assume that the buyer has an exogenous

outside option and a fixed search cost for investigating the outside option. In their

model, free recall is modeled as the seller setting one fixed price permanently. Arm-

strong and Zhou characterize the combinations of search costs and prices that make

accepting a current offer, not accepting it, and taking the outside option, optimal.

They allow a seller to commit to a different price before and after the buyer searches,

either by offering a buy-it-now discount or an exploding offer. The optimal mecha-

nism for a seller is to employ a buy-it-now discount, coupled with an option for the

buyer to return later and buy at the monopoly price, effectively giving the buyer a

frozen price equal to the monopoly price. This structure, though related to ours,

8Weitzman (1979) extended the sequential analysis to the case of differentiated goods, where
searchers choose which offer to examine before deciding on whether to accept or continue.
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differs in a number of key aspects. 9 In addition, we evaluate the predictions of our

model with a laboratory experiment.

The experimental literature on testing predictions of search models dates back

to Kahan et al. (1967) and Rapoport and Tversky (1970). Kahan et al. (1967) vary

the distribution of offers and do not observe a strong effect of the distribution on the

quality of decisions. They observe that subjects tested in groups search longer than

those participating individually. Rapoport and Tversky (1970) observe decisions close

to optimal with some early stopping. Schotter and Braunstein (1981) evaluate various

theoretical implications. For instance, they study how search behavior is affected

by exogenously-induced risk aversion, changes in the offer distribution and in the

information the searcher holds, as well as the degree of recall. They also test whether

individuals are following an optimal threshold rule directly by eliciting the payment

that subjects require as compensation for not engaging in search. Indeed, a large

part of the subsequent experimental search literature focuses on whether individuals

apply reservation rules in optimal stopping problems. While the elegant, simple,

and intuitive optimal reservation price rule prediction is one of the most appealing

attributes of these models, the typical empirical finding is that individuals tend to

stop earlier than is predicted by this rule (see, for example, the experiments of Cox

and Oaxaca (1989), Sonnemans (1998), Kogut (1990), Einav (2005) and Schorvitz

(1998)).10

Various explanations have been proposed to rationalize early stopping. We con-

sider how well models based on these explanations predict decisions in our task

compared to our model. A commonly discussed explanation is risk aversion, un-

der which searchers value the action of stopping at a premium because it provides

a deterministic payoff, avoiding the variability involved in continuation. Thus, risk

averse buyers have higher reservation prices. While Cox and Oaxaca (1989) attribute

under-searching to risk aversion, Sonnemans (1998) argues that only a small fraction

of decisions to stop early can be rationalized by reasonably risk averse preferences.

9We consider only the buyer’s decision problem in our model, and focus only on the buyer’s side
of the market in our experiment. The seller’s behavior is exogenous in our environment. Free recall
in our setup is modeled differently, and involves being able to go back and accept the best price
offer that was made. The Armstrong and Zhou model has two periods, while our model has an
arbitrary, though finite, number of periods. In their model, freezing a price is not an decision to be
made by the consumer, but rather a frozen price is made available to be recalled or not either by a
decision of the seller or as a property of the environment.

10See also Zwick et al. (2003) for a discussion of the motives for under-searching and the possibility
of over-searching when searchers use particular heuristic decision rules.
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A second mechanism, based on cognitive information acquisition costs, is pro-

posed by Gabaix et al. (2006). Their behavioral assumption is that at any stage,

individuals treat the search problem as having fewer remaining future stages than

there actually are. This immediately implies under-searching because reservation

prices are increasing over time as the horizon approaches. Their model was intended

for application to an environment with heterogeneous goods, in which individuals

direct their search. The model successfully predicts experimental results for that

setting. Here, we have a homogeneous good setting, no directed search and an addi-

tional action, freezing, that can be taken. Thus, applying their model to our data is

not a test of their theory, but rather an exploration of whether a similar mechanism

might be at work in our environment.

The third mechanism we consider, anticipated regret preferences, is based on the

anticipated regret theory of decision making under uncertainty proposed by Loomes

and Sugden (1986). In their model, agents anticipate that after uncertainty is re-

solved, they will compare the realized payoff of the chosen alternative with the payoff

that would have been obtained by choosing a different action (and having the uncer-

tainty resolved in the same manner). Weng (2009) shows that in a model with perfect

recall, incorporating anticipated regret implies a standard reservation rule strategy,

but with higher buyer reservation prices than in the benchmark model, leading to

under-searching.

The fourth potential explanation that we consider is one proposed by Kogut

(1990). Under this account, individuals do not treat the accumulated search costs

incurred before the current period as sunk. Instead, though the actual search costs

are constant over time, individuals act as if they are increasing. This leads them to

stop their search earlier than they would otherwise. We consider a version of this

mechanism, with a failure to treat both search costs and freeze fees as sunk.11

The impact of different assumptions on the capacity to recall previous offers has

also been studied. Landsberger and Peled (1977) and Karni and Schwartz (1977) for-

11There have been other rationalizations of under-searching in previous literature which we do
not consider. For example, under a mechanism proposed by Sonnemans (2000) and formally tested
by Einav (2005), under-searching is a consequence of the asymmetric information structure in the
feedback searchers receive between search episodes. In particular, subjects cannot observe what
they would have been offered had they stopped later. Thus, they can only form downward regret
between search problems, where they wish they would have been less picky and not skipped a
lucrative offer. This causes under-searching because of the one-sidedness of the implied directional
learning: negative feedback is only obtained when searching too long and not when searching too
little.
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malize sequential search with imperfect recall, and Janssen and Parakhonyak (2014)

analyze the implications of costly recall. Landsberger and Peled (1977) augment the

homogeneous good sequential search model by allowing for any recall probability (en-

compassing perfect, imperfect and no recall). In their model, the recall probability is

independent of the time elapsed since the best prior offer, and consumers know the

price distribution. They interpret imperfect recall as an indicator of market condi-

tions - prices are less likely to be available for recall in the future when demand is

greater or supply is more constrained. In the model of Karni and Schwartz (1977),

the recall probability decreases as time elapses since the best offer has been seen, and

consumers do not know the price distribution ex-ante. They characterize a family

of learning processes for which a reservation price strategy is optimal. The way we

model imperfect recall is similar to the approach taken in Landsberger and Peled

(1977).

More recently, search models have been used by scholars in industrial organization

and quantitative marketing to estimate demand, and to quantify the consequences of

economic frictions in settings where incomplete information is important. In coarse

terms, this literature can be divided into two strands. The first strand is structural

demand estimation under incomplete information, typically attempting to recover

search costs using various types of data and the structure implied by a search model.

For example, Hong and Shum (2006) and Moraga-González and Wildenbeest (2008)

use price data, coupled with the structure implied by a model similar to Burdett and

Judd (1983), to estimate consumer search costs in equilibrium. Kim et al. (2010)

estimate demand and recover search costs using view-rank data, along with data on

prices and product characteristics, employing a structural model based on Weitzman

(1979). This literature assumes that consumers search optimally. We evaluate this

assumption for our experimental environment. A second strand in the literature con-

sists of studies providing descriptive evidence on how individuals search in different

settings. For example, Bronnenberg et al. (2016) describe behavioral patterns in con-

sumers’ online search for a differentiated good, whereas De los Santos et al. (2012)

compare the performance of a simultaneous search model to its sequential counter-

part in explaining online search for a homogeneous good. In our paper, rather than

attempting to recover search costs, we fix these and evaluate the predictions of a

theoretical model that we propose. In the next section, we present our model.
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3 Theory

This section is organized in the following manner. In Subsection 3.1, we develop a

model of sequential search with an exogenously given outside option. In Subsection

3.2, we endogenize the outside option by introducing a PFO, which is in effect an

opportunity to purchase the availability of an outside option. We assume a finite

horizon throughout the entire section. In both subsections, we assume that recall

of prior offers is not possible. We consider the case of imperfect recall in Appendix

B.12 The model is formulated, in line with the theoretical literature on consumer

search, as the decision problem of a buyer facing a sequence of offers from potential

sellers and who searches for the lowest price. The theory can be readily translated in

a symmetric manner into the environment of the experiment, in which subjects are

sellers confronting a sequence of offers to buy, and we perform this translation when

we evaluate its predictions.13

The logic of this section is as follows. We first show that, when an outside option

is exogenously given, its effect depends on whether it is greater than or equal to the

price at which an individual is indifferent between accepting the next-to-last offer

in the sequence and waiting for the final offer. If the outside option lies below this

value, then in the next-to-last stage, there is no benefit from continuing the search,

as the consumer is better off taking the outside option, or any better offer, rather

than searching. However, in that case, the decision problem never reaches the last

stage, and with at most one stage remaining, it becomes better to accept the outside

option at the second-to-last stage, rather than to continue. The problem unravels in

this manner and the consumer terminates her search immediately, accepting either

the first offer she receives or the outside option. If the outside option is at a price

higher than that which makes the individual indifferent between accepting the next-

to-last offer and waiting for the final offer, one would always rather reject than take

the outside option. An exception is in the last period if the outside option price is

lower than the final price offered. Thus, an outside option will be accepted either

immediately, in the final stage, or not at all, depending on its magnitude and the

12The manner in which we introduce imperfect recall, along with the outside option, complicates
the analysis substantially, as we discuss in the appendix. As a result, we do not solve for the optimal
policy for the case of imperfect recall analytically, but rather use numerical methods.

13While the theoretical model operates symmetrically regardless of whether a consumer or a seller
is considered, it is an open behavioral question whether consumers facing a sequence of offers to
sell approach the problem similarly to sellers or workers facing a sequence of offers to employ or to
make a purchase from them.
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initial and final offers.

In Subsection 3.2, we show that when the searcher can either accept, reject, or

freeze offers, there can be an intermediate range of offers, which are optimal to freeze.

In this range, freezing an offer has the benefit that it lowers the expected eventual

price paid when a subsequent offer is rejected. Some offers have the property that it

is more profitable to pay a small fee to gain this benefit than to either accept or reject

them. The range of offers that fall within this range increases as the final deadline

to accept an offer approaches. Generically, the optimal strategy is characterized in

the following manner. When the final deadline is sufficiently far in the future, it is

optimal to set one threshold above which offers are rejected and below which they

are accepted. As the deadline approaches, it becomes optimal to use two thresholds

and accept low offers, freeze intermediate ones, and reject high ones. In the terminal

stage, it is trivially optimal to accept the lowest among the current offer or a frozen

offer, if one is available. All proofs are in Appendix C.

3.1 Search with an outside option

We begin by analyzing a sequential search model with an outside option, which

can also be interpreted as an offer that was previously frozen. Consider a potential

buyer of a good, who can receive a price offer in each of a sequence of T stages,

indexed by t ∈ {1, ..., T}. Assume that price offers (pt)
T
t=1 are independently and

identically distributed on [0, p̄], according to a continuous distribution F and are

drawn sequentially. Each offer in a stage t > 1 is drawn at a cost c (the first offer,

at t = 1, is free). The searcher is risk neutral and knows the price distribution. The

price under the outside option available by withdrawing from the search is denoted

by k.

In each stage t, the searcher chooses between (1) accepting pt, (2) rejecting pt,

and continuing to the next stage after paying the search cost of c, or (3) taking the

outside option k. If the player accepts an offer in stage t, she purchases the item

and pays the current offer price pt. Denote by R̃T
t (k) the expected payment that

the searcher would make if she rejects at stage t and continues optimally thereafter,

when the horizon is of length T . We call R̃T
t (k) the post-freeze rejection payment.

By “payment” we mean the expected price to be paid for the item and all expected

search costs to be expended in subsequent stages, provided that the agent proceeds

optimally. We suppress the dependence of R̃t(k) on T to simplify the notation.

12



The post-freeze expected payment of the individual in stage t is denoted by

Ṽt (pt, k). This is what the individual expects to pay, in terms of both the price

for the item and in search costs, if she makes optimal decisions from stage t on-

ward. It is the minimum of the current price, the outside option, and the post-freeze

rejection payment. Thus, when t < T , we have

Ṽt (pt, k) = min{pt, k, R̃t(k)} (1)

R̃t(k) =

p̄∫
0

Ṽt+1(pt+1, k)dF (pt+1) + c. (2)

Rejection in the terminal period T yields a payoff of 0, so that ṼT (pT , k) =

min{pT , k}.
The following functions h(x) and g(x) are useful in deriving some of our results.14

h (x) =

p̄∫
0

min{p′, x}dF (p′) =

x∫
0

p′dF (p′) + (1− F (x))x (3)

g (x) = x− h (x) =

x∫
0

F (p′) dp′. (4)

A threshold strategy is one in which there exists a cutoff price for every stage. The

buyer accepts all offers below the cutoff, and rejects all prices above it. Consider the

function h(x), as formulated in equation (3). The expression denotes the expected

price paid in the last search period when an outside option is available. The first

term describes the case of an offer lower than the outside option, in which case the

offer is accepted. The second term corresponds to the case in which the offer is

greater than the outside option, in which event the outside option is taken. Notice

that h(p̄) = E(p), so that if the buyer adopts the strategy of accepting any price

offered, she accepts all offers and pays in expectation the average offer.

We make the standard assumption that the search cost c is sufficiently low for

search to be initiated in the first place.15

14h(x) is the post-freeze rejection payment in stage T − 1, net of search costs, when holding x as
an outside option. g(x) is the difference between accepting the outside option and rejecting, net of
search costs, in stage T − 1.

15Otherwise, for any T , the decision in period T − 1 is to accept any offer. Thus, period T − 1
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Assumption 1. c < g(p̄).

Let p∗ = g−1(c). It is well known that p∗ is the stationary optimal reservation

price in a sequential search model with no recall and an infinite horizon.16 This price

is the basis of our first proposition, which describes the optimal decision rule for the

buyer in the presence of an outside option. The proposition states that if the outside

option price is lower than p∗, the buyer accepts the outside option in the first stage.

If not, the buyer uses a reservation price strategy with a dynamic threshold that

increases in each stage.

Proposition 1. When k ≤ p∗ search ends immediately by accepting either p1 or k.

When k > p∗, an increasing reservation price strategy is optimal and k is either never

chosen or chosen at the terminal stage.

The relationship of this result to the effect of the introduction of the PFO is that

a searcher may freeze a price for the purpose of having it serve as an outside option

in subsequent stages. Having the frozen price available decreases future post-freeze

expected payments by decreasing all future post-freeze rejection payments. This is

the case even though the offer itself may only be accepted in the terminal stage, if

at all. A sufficiently low price will never be frozen because it is better to accept it.

Thus, there is a lower bound on the prices that may be frozen. An upper bound on

the offers that may be frozen will exist if, as we will assume, there is a positive freeze

fee.

Figure 2 plots post-freeze rejection payments in k-space. Post-freeze rejection

payments are increasing in k. That is, the less attractive the outside option, the

higher the post-freeze rejection payment. When k ≤ p∗, all post-freeze rejection

payments are the same, because rejection is always optimally followed by accepting

whichever is lower among the next offer and the outside option k. When k > p∗, the

post-freeze rejection payments shift upward over time, as in the classical sequential

search problem. Figure 3 shows the optimal strategy in p-space. The bold line

indicates the optimal decision rule, the ranges of offers for which it is optimal to

can essentially be viewed as the terminal period. Proceeding with this logic and applying backward
reasoning, it is clear that if assumption 1 is violated, search terminates in the first period.

16It is also known (e.g. Lippman and McCall (1976) and Landsberger and Peled (1977)) that this
price is the optimal reservation price in a sequential search model with perfect recall and a finite
horizon. There, p∗ can be interpreted as the price that makes the individual indifferent between (a)
recalling and accepting the current best offer, and (b) keeping the current best offer as an outside
option and searching for one more period.
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accept pt, settle for k, or reject pt. The left panel shows that the post-freeze rejection

payment is always higher than the outside option if k ≤ p∗. The right panel illustrates

how, in the case where k > p∗, post-freeze rejection payments increase over time as

the end of the horizon approaches.

Figure 2: Post-freeze rejection payment in k-space

Figure 3: Post-freeze expected payment in p-space

We end this subsection by noting a limit result, which we use in Subsection 3.2.
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Namely, provided that k > p∗, for any current stage t, as the number of future stages

T − t becomes large, the post-freeze rejection payment approaches p∗.

Proposition 2. The sequence
(
R̃T
t (k)

)∞
T=2

converges uniformly to R̃∞t (k) = p∗ for

k > p∗.

3.2 Endogenous Freezing of Offers

Now suppose that the searcher can, at any stage, purchase an option to freeze the

current offer, in effect buying an outside option of the type described in the previous

subsection. Assume that the searcher can freeze one offer by paying a fixed fee f > 0,

which we will refer to as the freeze fee. Once one offer is frozen, a second offer may

not be frozen. Offers may not be unfrozen. There is no other outside option available.

To analyze this situation, we introduce several functions that are analogous to those

used in Section 3.1. Vt(pt) is the pre-freeze expected payment, Rt is the pre-freeze

rejection payment, and Kt(pt), which we shall refer to as the freeze payment, is the

expected payment when freezing pt and continuing to the next stage with pt as an

outside option. Formally,

Vt (pt) = min{pt, Rt, Kt (pt)} (5)

Kt (pt) = R̃t(pt) + f (6)

Rt =

p̄∫
0

Vt+1(pt+1)dF (pt+1) + c. (7)

We begin with a lemma stating the straightforward fact that the pre-freeze rejec-

tion payment is weakly lower than the worst possible post-freeze rejection payment.

Lemma 1. Rt ≤ R̃t(p̄) for all t < T

Next, we make an assumption on the freeze fee, which is that it is sufficiently

low to guarantee the existence of prices that are frozen. To assure this, we assume

that the fee is low enough so that there exists some price that would be frozen in the

next-to-last stage:
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Assumption 2. The freeze fee f satisfies

f <

p̄∫
h(p̄)+c

[p− (h(p̄) + c)]dF (p) (8)

= h(p̄)− h(h(p̄) + c) (9)

To gain intuition for this condition, notice that it can be written as KT−1(RT−1) <

RT−1. This means that at T − 1, it is better to freeze an offer equal to the pre-

freeze rejection payment than rejecting. We now turn to the optimal strategy of the

consumer when a PFO is available. We use the following terminology to describe the

optimal rule.

Definition 1. Under a reservation rule (RR) in stage t,

Vt(pt) =

pt if pt < Rt

Rt otherwise.
(10)

Under a double reservation rule (DRR) in stage t,

Vt(pt) =


pt if pt < at

Kt (pt) if pt ∈ [at, bt)

Rt otherwise

(11)

where 0 < at < bt < p̄. A subset of stages in which a RR is used is denoted by

TRR ⊆ T and a subset of stages in which a DRR is used is denoted by TDRR ⊆ T .

A RR specifies a stage-specific threshold price below which offers are accepted and

above which they are rejected. A DRR specifies a stage-specific threshold below which

offers are accepted, another one above which offers are rejected, and an intermediate

range between the two thresholds, in which offers are frozen. We define a strictly

increasing RR sub-policy to be one in which Rt < Rt′ for t < t′, {t, t′} ⊆ TRR.

Similarly, we define a strictly increasing DRR sub-policy to be one in which at < at′

and bt < bt′ for t < t′, {t, t′} ⊆ TDRR. That is, a DRR is increasing if the acceptance

region strictly increases and the rejection region strictly decreases over time.

The following lemma lets us restrict ourselves to particular strategies when solving

for the optimal policy. The lemma shows that the consumer will always use either a
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RR or a DRR at every stage.

Lemma 2. Under the optimal solution, t ∈ TRR ∪ TDRR for all t < T .

The following lemma is a monotonicity result which is useful for characterizing

the optimal solution. It shows that the range of offers that is rejected decreases over

time.

Lemma 3. Any offer that is rejected in some period t is also rejected in period t− 1.

That is,

Vt(p) = Rt =⇒ Vt−1(p) = Rt−1 (12)

In proposition 3, we describe the structure of the optimal policy for the consumer

to follow.

Proposition 3. In a given stage t, as long as an offer was not frozen before, the

optimal policy consists of a strictly increasing RR for t ≤ t∗ and a strictly increasing

DRR for t > t∗, where 0 ≤ t∗ < T − 1. If an offer was frozen before stage t, then the

optimal policy follows an increasing RR thereafter. In period T it is optimal to accept

pT or the previously frozen offer in the event that such an offer exists, whichever is

lower.

Thus, the solution can take two forms. When t∗ = 0, the optimal policy is

an increasing DRR, whereas when t∗ > 0, an increasing RR is optimal in stages 1

through t∗ followed by an increasing DRR thereafter. We now present a final result,

which states that when the horizon is sufficiently long, there will be at least one stage

at the beginning of the search sequence where it is optimal not to freeze any offer.

Proposition 4. There exists a T ∗ <∞ such that for T > T ∗ =⇒ t∗ > 0.

The left panel of Figure 4 illustrates a stage in which a DRR is optimal (t ∈ TDRR).

The pre-freeze expected payment for the stage is given by the lower envelope of the

functions pt, Kt(pt), and Rt. The figure illustrates how at is a cutoff value, above

which it optimal to freeze an offer, and below which it is optimal to accept. bt defines

a similar threshold between freezing and rejection as optimal actions. The right panel

plots the solution at t = 1 when T →∞, where we must have 1 ∈ TRR.
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Figure 4: Example of a DRR, and of behavior as T →∞

4 Experimental Design

4.1 General Structure

The sessions were conducted in the Economic Science Laboratory at the Eller Col-

lege of Management of the University of Arizona in late 2016. All subjects were

undergraduate students at the university. A total of 177 subjects participated in

the experiment and the number of individuals present varied across sessions. The

experiment consisted exclusively of individual choice tasks. Each session began with

two risk elicitation protocols.17 These were followed by the main part of the exper-

iment, which consisted of 180 search problems that had the possibility of counting

toward earnings. The session concluded with a brief questionnaire.18 Subjects could

17The results from these risk elicitation protocols are given in Appendix G. The measures were
uncorrelated with each other, and thus were not amenable to constructing a convincing overall
measure of risk aversion. Therefore, we do not use them in our analysis.

18Upon arrival, a first set of instructions, which pertained to the risk elicitation protocols, was
read aloud by the experimenter. Subjects then performed the protocols. Upon completing these
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complete the sequence of tasks at their own pace. The entire sequence of tasks took

between 60 and 100 minutes to complete. The experiment was programmed using

Z-tree.19

The 180 search problems that counted toward subjects’ earnings were divided into

three equal blocks of 60 search problems, as described in Subsection 4.2. There was

a mandatory two-minute pause between each block of 60 trials to allow participants

to rest. There was also a requirement that subjects stay in the laboratory for at

least one hour, to prevent them from completing the task as rapidly as they could in

order to leave the session early.20 Subjects were paid for one randomly selected task

(either one of the two risk measurement tasks or one of the 180 search problems),

plus a $5 show up fee.21 Each of the 182 tasks was equally likely to be selected to

count toward participants’ earnings.

There are two notions of time in the experiment. We will use the term stage to

refer to each time the subject must make a decision on an offer (as this term was used

in Section 3), whereas the term round refers to an entire search problem, which con-

sists of a sequence of stages. We use the terms round and sequence interchangeably.

Our experiment, therefore, includes 180 rounds, and each round consists of multiple

stages.

The subjects in the experiment are potential sellers of a fictitious item. In each

stage of a round, subjects receive an offer, drawn from a discrete uniform distribution

on {0, . . . , 1000}, in which each of the 1001 integers in the range is equally likely. A

search cost of c = 10 is paid for every offer (except for the offer in the first stage

of each round). The offers in each stage are independent of those in preceding or

subsequent stages. A player may accept an offer at any stage. If she accepts an offer,

she receives the offer price minus the accumulated search costs within the round.

The round ends when an offer is accepted. If she rejects the offer in a given stage,

the round continues to the next stage. Rejection is not possible in the terminal stage

of a round. Offers and costs are denominated in terms of an experimental currency,

which is convertible to US dollars at a rate of 70 to 1.

two tasks, a second set of instructions, describing the 180 search problems participants were about
to face, were read aloud. Afterward, the main part of the experiment began.

19Z-tree is a commonly used software platform in experimental economics; see Fischbacher (2007)
20The use of cellphones or any other electronic devices was forbidden for the entire session, even

for subjects who had completed the task. This rule made it more salient to subjects that there was
nothing to gain by rushing their decisions.

21Appendix D includes the instructions and screen shots of the interface.
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4.2 The Three 60-Period Blocks

Every subject faced the exact same 180 offer sequences. These 180 sequences con-

sisted of 60 sequences that were drawn in advance. The sequences were repeated

three times, with a modification that we describe below. Thus, there were three

blocks of 60 rounds. The environment was identical for all individuals, except for

the exogenous variations in the freeze fee, horizon length and the recall probability

(denoted as f , T and q respectively), described in the next subsection. The number

of stages T and the recall probability q were varied between subjects, while f was

varied within subjects across blocks. Each 60-period block was preceded by four

practice periods.

Since the freeze fee is varied within subjects across blocks, its effect on behavior

is only isolated if we use the same sequences of offers in each block, or if participants

perceive these sequences as being the same. However, if the 60 sequences were re-

peated precisely, individuals might notice that they were experiencing the exact same

sequences when encountering them for the second or third time. In this case, they

would have information on future draws within a sequence, which is of course not

desirable. While it is cognitively difficult to remember 60 sequences of offers, subjects

might remember several specific sequences, or may remember which offer came after

some particular offers. We devised a solution to this problem. The first block of

sequences, those employed in rounds 1 - 60, were simply random independent draws

from U{0, . . . , 1000}.22 In the second and third block we amended these sequences

in a way that allows us to compare the three 60–period blocks, while controlling for

the sequences of offers individuals faced, and preventing subjects from remembering

useful information from previous sequences. This allows us to identify the effect of

different levels of f with a within-subject comparison.

In the second and third blocks, subjects face perturbed offers. These are created

by adding a random, relatively small, integer to the corresponding offers from the first

block. If the last two digits of the offer in the first block are not in {98, 99, 00, 01},
then the random number which is added to the corresponding offer from the first

block is in {−2,−1, 1, 2}, each value with equal probability. If the last two digits

are in {98, 99, 00, 01} then the support for the random draw is such that perturbed

offers are not changing the hundreds digit, and each value in the support is drawn

22Specifically, they are pseudo-random integers drawn from U{0, . . . , 1000} after setting the seed
in Python’s Numpy package to 0.
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with equal probability.23 By perturbing the offers in the second and third blocks, in

contrast to presenting subjects with the exact same offers, we presumably guarantee

that even if subjects remember a particular sequence or sub-sequence, they would

not see the exact same sequence again. This is intended to make them, in practice,

unable to remember offer sequences or sub-sequences.

4.3 The Treatments

In different treatments, we vary the freeze fee f , the time horizon T , and the recall

probability q. The freeze fee is varied within-subject across blocks. Under the Low

Freeze Fee (LF) condition, individuals must pay 10 to freeze an offer, and under High

Freeze Fee (HF) they must pay 40. In a third condition, No Freezing (NF) freezing

is not possible, so that the freeze fee can be thought of as infinite. In some sessions,

the freeze fee is varied in ascending order across the three blocks; LF in the first 60

rounds of the search task, HF in rounds 61 - 120, and NF in the last 60 rounds. In

other sessions, the reverse sequence is in effect, and the fees appear in descending

order across the three blocks. The cost c of generating an offer in the next stage is

always 10.

T and q are varied between subjects. The time horizon is fixed at T = 4 in some

sessions and T = 10 in others.The recall probability is set to q = 0 in some sessions

(referred to as No Recall or NR treatments) and q = .5 (referred to as Imperfect

Recall or IR) in others. When q = .5, recall during a given stage of a sequence is

possible with probability .5. When recall is possible in stage t, the highest offer from

stages 1 to t - 1 may be recalled and accepted. Whether recall is available within a

given stage of a sequence is independently drawn in each stage. For example, recall

of prior offers from the first two stages may not be possible when facing the third

offer in a sequence, but may be possible when facing the fourth.

Thus, the experiment has a 2 x 2 x 3 structure. We refer to the treatments in an

abbreviated form by the time horizon (T4 or T10), whether recall was not possible or

imperfect (NR or IR), and the level of the freeze cost (LF, HF or NF). For example,

T10IRHF denotes the treatment in which individuals could sample up to 10 offers

23For example, if an offer in the first block was 298, then the support of the perturbations consists
of -2, -1 or 1, but not 2, because that would imply changing the first digit from 2 to 3. The idea
behind this distinction is to avoid biases similar to those that arise from “.99 cent pricing”, as
in the theory proposed by Basu (2006) and documented experimentally by Ruffle and Shtudiner
(2006), in which the last two digits in the price are ignored and thus the third-to-last digit has great
prominence.
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in a round, there was a recall probability of .5, and the high freeze cost of 40 was

in effect. Our hypotheses concern comparisons between different levels of F and T ,

which are evaluated separately for each level of q.24

Table 1 provides some information about the participants in each treatment, in

terms of gender distribution, number of years of university study, the number of

previous economic experiments and the percentage of participants who studies eco-

nomics or business. Our sample is relatively experienced in participating in experi-

ments. This is reassuring as this increases our confidence that subjects are aware of

the direct positive relationship between understanding the instructions and expected

earnings.

Table 1: Subject Numbers and Characteristics in the Different Treatments

q 0.0 0.5
T 4 10 4 10

Num. Participants 42 42 51 40
Perc. Female 33.33 40.00 56.86 55.26
Education 2.62 2.74 2.90 2.94
No. Prior Experiments 9.75 8.88 6.90 8.11
Perc. Economics or Business 34.09 59.52 60.78 57.50

Averages of subject characteristics in each (T, q) treatment. The variables are the number of par-
ticipants in each treatment, percentage of females, average years of university education, average
number of economic experiments participated in previously, and percentage of subjects who are
studying economics or business.

4.4 Optimal decisions

The optimal strategy, using the parameters described in Subsection 4.3, in each of

the NR and IR treatments, are illustrated in the panels on the left and right sides of

Figure 5, respectively. In each of these panels, we plot the solution for one level of f ,

when no offer has yet been frozen, for periods 1 to T − 1.25 The black region denotes

offers that are accepted, gray stands for offers that are frozen, and offers in the white

area are rejected. For the IR treatments, we plot the solutions for the case in which

the highest offer seen so far is zero, implying that recall is not available (so that the

24As noted earlier, the experiment was not designed to compare q = 0 and q = .5.
25In the T = 4 treatments, the decisions from stages T − 3 to T − 1 constitute the model’s

prediction for stages 1 - 3, while for T = 10, stages T − 9 to T − 1 correspond to stages 1 - 9. In
the last stage T , all offers are accepted.
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value of recalling enters through the freezing and pre-freeze rejection payments only).

The figure shows that the optimal thresholds in NR are monotonic and concave.

The acceptance and freezing regions are increasing over time. More freezing occurs

when the freeze fee is low. For example, in the LF condition (f = 10), the freezing

region is already larger than 10% of the range of possible offers in stage T−9, whereas

under HF the freezing region surpasses 10% only in stage T − 5. The horizon T = 10

is long enough so that no freezing is predicted to occur in the initial stage. In the

IR case, optimal thresholds are also monotonic, and are concave once the DRR sub-

policy is in effect.
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Figure 5: Optimal policy with p ∼ U [0, 1000]

Optimal behavior, according to the model, for the different treatments. The left panels correspond
to the case of No Recall. The right panels are for Imperfect Recall, assuming that in each stage the
highest offer observed so far is zero, so that the impact of recall is through the freeze and pre-freeze
rejection payments when freezing or rejecting. Each row plots the solution for a different freeze fee
condition. Offers are accepted in the black area, frozen in the gray area, and rejected in the white
area. In treatments where T = 10 (T = 4), the data from T − 9 (T − 3) onward are applicable.

4.5 Hypotheses

The hypotheses guiding the design of our experiment are derived from the theoretical

results presented in the Section 3 for the NR treatments, and from the computation

of the optimal solution for the IR treatments, as described in Appendix B. We solve
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the models for each of our treatments using the offer and recall realizations faced by

subjects in the experiment. Table 2 presents the resulting mean search lengths, the

percentage of rounds in which it is optimal to freeze an offer, the average earnings of

the searcher (which equal 1000 minus the price paid minus total search costs minus

the freeze fee if an offer is frozen) and the other party’s surplus (the earnings of a

hypothetical individual on the other side of the market, whose surplus equals 1000

minus any offer accepted, plus any freeze fee paid). The numbers in the table reveal

some of the comparative statics of the model. On average, A higher freeze cost results

in shorter search and less freezing. It can also be seen from the table that increasing

the horizon T results in longer search and higher earnings. The effect on search

length of changes in the freeze fee and horizon length constitute our Hypothesis 1.

Hypothesis 2 concerns use of the freeze option, and asserts that it is more common

when the freeze fee is lower and when the horizon is shorter.

Hypotheses 1 and 2 are a collection of mostly intuitive relationships that might

be expected under a variety of plausible decision rules, not only the optimal decision

making that is assumed in our model. However, within Hypothesis 2, our model

makes a prediction regarding the effect of freezing that at first glance may seem

counterintuitive. One’s intuition might be that, just like a financial option, freezing

is more valuable when there is more time remaining during which one can accept

the frozen offer, and thus for a given freeze fee, one might be more likely to pay to

freeze an offer when there are more stages remaining. However, the optimal policy

has the property that freezing is more likely under T4 when the horizon is relatively

short than when it is long in T10. We interpret support for this prediction as strong

evidence in favor of our model. Our third hypothesis is that individuals employ

the optimal RR-DRR policy. That is, they make acceptance, freezing, and rejection

decisions that are consistent with the model. They employ the thresholds depicted

in Figure 5.
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Table 2: Model predictions, by treatment

Search length Freezing usage Profit Other party’s surplus
q T f

0 4 10 2.98 71.67 791.20 188.97
40 2.58 40.00 772.82 211.35
∞ 2.23 0.00 764.58 223.08

10 10 4.62 38.33 852.82 111.02
40 4.05 11.67 853.85 115.65
∞ 3.92 0.00 850.07 120.77

0.5 4 10 2.98 68.33 791.53 188.63
40 2.63 15.00 782.32 201.35
∞ 2.57 0.00 781.32 203.02

10 10 4.63 18.33 857.83 105.83
40 4.37 3.33 859.47 106.87
∞ 4.35 0.00 860.97 105.53

This table includes the models’ predictions for key variables, computed for the actual offers and
recall realization sequences drawn in the experiment, and aggregated across rounds. Search length is
the mean number of stages. Freezing usage is the percentage of rounds where it is optimal to freeze
an offer in any stage. Earnings are the payoff of the decision maker, and Other Party’s Surplus is
the earnings of a hypothetical individual on the other side of the market. This equals 1000 minus
any offer accepted plus any freeze fee paid.

Summarizing, the experiment is designed to test the following hypotheses. If

all three hypotheses are supported, we would conclude that our model is strongly

supported.

Hypothesis 1: Search length is longer when f is smaller, and T is greater.

Hypothesis 2: Freezing is less frequent when f is greater and T is greater.

Hypothesis 3: Individuals employ the optimal RR-DRR policy.

5 Results

This section is organized in the following manner. Subsection 5.1 reports sum-

mary statistics, describing overall patterns in the data, aggregated over subjects

and rounds. In Subsection 5.2 we evaluate our main hypotheses. In our analysis,

we control for the sequences subjects observed, removing variation from different re-

alizations of random draws. Subsection 5.3 considers Hypothesis 3, and studies the

extent to which individuals employ the optimal strategy specified in our model. The

last subsection, 5.4, considers individual behavior and investigates the situations in
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which decisions depart from the model’s predictions relatively frequently.

5.1 Summary Statistics

Figure 6 illustrates some general patterns in the data from each of the twelve treat-

ments. This figure shows the means and percentages of key variables in the different

treatments, aggregated over subjects and rounds, compared to the theoretical pre-

dictions (represented by circles and xs, respectively). The data displayed are the

average search length (panel 6a), the percentage of rounds in which an offer has been

frozen (panel 6b) and the earnings per round (panel 6c)). In panel 6b, the different

shades indicate the eventual fate of frozen offers, whether they are accepted in the

last possible round, taken in a round other than the last, or not accepted at all.26

The model also predicts that any offer that is frozen would only be accepted, if

at all, in the last stage. Indeed, in the short-horizon T4 data, the vast majority of

acceptances of frozen offers are in the terminal stage, T , as predicted, whereas this

is not the case for the T10 treatment. This raises some doubt about the validity of

the model’s prediction that frozen offers are only accepted in the terminal round.

26Figure 13 in Appendix E contains the same information as Figure 6, but showing only the
second half of each block (30 rounds instead of 60). In these 30 rounds, the average decision takes
place with greater prior experience with the particular freeze fee in effect, and can thus be presumed
to reflect more informed decision making. The results are qualitatively similar with regard to the
comparative statics between treatments.
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Figure 6: Within-Treatment Means and Frequencies

(a) Mean stop time (in stages)

(b) Freezing usage (as a percentage of rounds)

(c) Mean earnings

This figure contains the observed within-treatment means and frequencies for key variables (as
circles) and the theoretical predictions (as x s). Panel (b) includes also a breakdown of whether
offers that have been frozen were later accepted and if so, whether the acceptances of frozen offers
occur in the last stage.
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5.2 Treatment effects

Estimated treatment effects on search length, freezing usage and earnings are re-

ported in Tables 3, 4 and 5, respectively. We obtain these by regressing each of these

dependent variables on treatment dummies and round-level fixed effects, thereby con-

trolling for heterogeneity in offer sequences across rounds. Standard errors, clustered

by subject, are given in parentheses. For the purpose of evaluating the magnitude of

the coefficients from these subject-round-level linear regressions, we also include the

model’s predictions for the coefficients, taken from Table 2, in italics. The specifica-

tion allows us to compare the magnitudes of treatment differences to those predicted

by the model. The estimated intercepts yield estimates of the mean in the base

categories NF, T4, and NR. The other coefficients are estimates of the differences

from the baseline category. Note that the stars on the treatment coefficients are

from a t-test comparing the estimate to the model’s prediction (that is, the stars do

not carry the typical interpretation of being significantly different from zero). The

estimates, along with the patterns shown in Figure 6, provide the basis for our first

four results.

Result 1. The length of search is (1) decreasing in the freeze fee and (2) increasing

in the horizon length, as predicted by the model. These patterns appear in both NR

and IR.

Support for Result 1: All of the coefficients in Table 3, relating to different freeze

fees and horizon lengths, have the same sign as predicted by our model, supporting

Hypothesis 1. Lowering freeze fees lengthens the average search significantly, with

the effect strongest for short horizons. This can be seen in the upper part of Table 3.

For example, estimated search length is higher by 0.35 in LF relative to NF, out of a

maximum of four stages, in the T4 treatments. The bottom part of the table shows

that NR and IR lead to similar search lengths. In all cases, search length is longer in

T10 than in the corresponding T4 treatment, albeit by less than the difference that

our model predicts.

Result 2. There is less usage of the freezing option than is predicted by the model.

Usage decreases in the freeze fee and the horizon length, as predicted by the model.

Under T4, the large majority of frozen offers are accepted in the last stage, as pre-

dicted, whereas this is not the case for T10.

30



Support for Result 2: Table 4 describes how freezing usage is affected by the

treatment in effect. Similarly to search length, all coefficients in the upper two

thirds of the table have the same sign as the model predicts, but most are smaller

in magnitude than the prediction. The exception is the effect of the time horizon

under HF. The possibility of freezing offers is underutilized, compared to the model’s

predictions, in each of the treatments. Figure 6 shows that under T4, the majority

of the acceptances of frozen offers occur in the last stage.

Result 3. The magnitude of the treatment effects on earnings are very similar to

those predicted by the model. Under No Recall, earnings are affected by freeze fees

when T = 4, but not when T = 10, as predicted by the model. Earnings are greater in

the T10 than the T4 treatments, and by magnitudes not different from those predicted.

Support for Result 3: The top two panels of Table 5 show that nine out of ten

treatment effects are not different from those the model predicts. Under No Recall

and T = 4, the coefficients of LF - NF and HF - NF are significantly different from

0, with the first greater than the second. The coefficients are not significant under T

= 10. All of these patterns are highly consistent with our model.
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Table 3: Search length as a function of treatment

T = 4 T = 10 T = 4 T = 10
q = 0 q = 0 q = 0.5 q = 0.5

LF - NF 0.75 0.70 0.42 0.28
0.35*** 0.35*** 0.35* 0.07
(0.044) (0.097) (0.039) (0.129)

HF - NF 0.35 0.13 0.07 0.02
0.30 0.08 0.14** 0.03

(0.045) (0.060) (0.031) (0.069)

Constant 2.23 3.91 2.57 4.35
(NF) 2.25 3.52*** 2.49*** 3.65***

(0.031) (0.116) (0.052) (0.142)

Observations 7560 7560 9180 7200
r2 0.69 0.60 0.55 0.54

f = 10 f = 40 f =∞ f = 10 f = 40 f =∞
q = 0 q = 0 q = 0 q = 0.5 q = 0.5 q = 0.5

T10 - T4 1.63 1.47 1.68 1.65 1.73 1.78
1.27** 1.06*** 1.27*** 0.99*** 1.15*** 1.26***
(0.144) (0.139) (0.120) (0.172) (0.154) (0.150)

Constant 2.98 2.58 2.23 2.98 2.63 2.57
(T4) 2.60*** 2.54 2.25 2.74*** 2.53* 2.39***

(0.048) (0.053) (0.031) (0.066) (0.059) (0.052)

Observations 5040 5040 5040 5460 5460 5460
r2 0.52 0.54 0.55 0.45 0.49 0.50

f = 10 f = 40 f =∞ f = 10 f = 40 f =∞
T = 4 T = 4 T = 4 T = 10 T = 10 T = 10

IR - NR 0.00 0.05 0.33 0.02 0.32 0.43
0.13 -0.01 0.14*** -0.15 0.08 0.13

(0.082) (0.079) (0.060) (0.209) (0.192) (0.183)

Constant 2.98 2.58 2.23 4.62 4.05 3.92
(NR) 2.60*** 2.54 2.25 3.87*** 3.60*** 3.52***

(0.048) (0.053) (0.031) (0.136) (0.128) (0.116)

Observations 5580 5580 5580 4920 4920 4920
r2 0.57 0.60 0.69 0.55 0.58 0.58

Standard errors in parentheses

* p<0.1, ** p<0.05, *** p<0.01

Results from linear regressions where the dependent variable is search length. Each column fixes two
treatment variables from {f, T, q} (these are given in the column headers) and includes dummy vari-
ables for the third treatment variable. Each regression includes round-level fixed effects to control
for heterogeneity across offer sequences. Standard errors clustered by subjects are in parentheses.
The italic font stands for the coefficients predicted by the model.
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Table 4: Freezing usage as a function of treatment

T = 4 T = 10 T = 4 T = 10
q = 0 q = 0 q = 0.5 q = 0.5

LF - HF 0.32 0.27 0.53 0.15
0.06*** 0.17*** 0.17*** 0.11**
(0.035) (0.022) (0.023) (0.020)

Constant 0.40 0.12 0.15 0.03
(HF) 0.32** 0.09 0.14 0.05

(0.031) (0.019) (0.021) (0.017)

Observations 5040 5040 6120 4800
r2 0.25 0.14 0.16 0.08

f = 10 f = 40 f = 10 f = 40
q = 0 q = 0 q = 0.5 q = 0.5

T10 - T4 -0.33 -0.28 -0.50 -0.11
-0.13*** -0.23 -0.15*** -0.09
(0.041) (0.036) (0.039) (0.027)

Constant 0.72 0.40 0.68 0.15
(T4) 0.38*** 0.32** 0.31*** 0.14

(0.031) (0.031) (0.031) (0.021)

Observations 5040 5040 5460 5460
R2 0.18 0.19 0.13 0.07

f = 10 f = 40 f = 10 f = 40
T = 4 T = 4 T = 10 T = 10

IR - NR -0.03 -0.25 -0.20 -0.08
-0.08 -0.18* -0.10*** -0.04

(0.044) (0.038) (0.039) (0.025)

Constant 0.72 0.40 0.38 0.12
(NR) 0.38*** 0.32** 0.26*** 0.09

(0.031) (0.031) (0.026) (0.019)

Observations 5580 5580 4920 4920
R2 0.17 0.17 0.13 0.04

Standard errors in parentheses

* p<0.1, ** p<0.05, *** p<0.01

Results from the estimation of a linear probability model where the dependent variable is a binary
variable indicating freezing usage within a round. Each column fixes two treatment variables from
{f, T, q} (these are given in the columns’ headers) and includes dummy variables for the third
treatment variable. Each regression includes round-level fixed effects to control for heterogeneity
across offer sequences. Standard errors clustered by subjects are in parentheses. The italic font
stands for the coefficients predicted by the model.
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Table 5: Earnings as a function of treatment

T = 4 T = 10 T = 4 T = 10
q = 0 q = 0 q = 0.5 q = 0.5

LF - NF 26.62 2.75 10.22 -3.13
30.44 -3.25 6.10 3.43

(4.130) (6.454) (4.370) (9.428)

HF - NF 8.23 3.78 1.00 -1.50
6.99 0.09 -0.67 11.35*

(2.560) (2.953) (2.392) (6.628)

Constant 764.58 850.07 781.32 860.97
(NF) 741.56*** 819.51*** 749.87*** 806.44***

(4.053) (7.351) (6.920) (14.080)

Observations 7559 7560 9180 7200
r2 0.68 0.50 0.67 0.39

f = 10 f = 40 f =∞ f = 10 f = 40 f =∞
q = 0 q = 0 q = 0 q = 0.5 q = 0.5 q = 0.5

T10 - T4 61.61 81.03 85.48 66.30 77.15 79.65
44.28* 71.06 77.91 53.90 68.59 56.57
(9.339) (8.834) (8.363) (14.110) (12.210) (15.610)

Constant 791.20 772.82 764.58 791.53 782.32 781.32
(T4) 771.97*** 748.53*** 741.60*** 755.97*** 749.20*** 749.87***

(1.712) (3.742) (4.045) (8.969) (7.243) (6.905)

Observations 5040 5040 5039 5460 5460 5460
R2 0.57 0.53 0.51 0.49 0.50 0.46

f = 10 f = 40 f =∞ f = 10 f = 40 f =∞
T = 4 T = 4 T = 4 T = 10 T = 10 T = 10

IR - NR 0.33 9.50 16.73 5.02 5.62 10.90
-16.00* 0.67 8.32 -6.38 -1.79 -13.06
(9.128) (8.149) (7.997) (14.260) (12.680) (15.810)

Constant 791.20 772.82 764.58 852.82 853.85 850.07
(NR) 771.97*** 748.53*** 741.58*** 816.25*** 819.59*** 819.50***

(1.710) (3.738) (4.035) (9.184) (8.004) (7.323)

Observations 5580 5580 5579 4920 4920 4920
R2 0.75 0.64 0.61 0.42 0.46 0.46

Standard errors in parentheses

* p<0.1, ** p<0.05, *** p<0.01

Results from linear regressions where the dependent variable is profit. Each column fixes two treat-
ment variables from {f, T, q} (these are given in the column headers) and includes dummy variables
for the third treatment variable. Each regression includes round-level fixed effects to control for
heterogeneity across offer sequences. Standard errors clustered by subjects are in parentheses. The
italic font stands for the coefficients predicted by the model.
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Table 6: Under-searching by Treatment

T = 4 T = 10 T = 4 T = 10
q = 0 q = 0 q = 0.5 q = 0.5

LF 0.38 0.74 0.15 0.91
HF 0.03 0.44 0.01 0.69
NF -0.02 0.39 0.08 0.70

The table indicates the average number of stages by which subjects under-search, as compared to
the model’s predictions (positive numbers denote that search is terminated earlier than predicted
on average).

Result 4. There is a modest degree of under-searching, compared to the model’s

predictions, in almost all treatments. The extent to which individuals under-search

decreases in f . That is, the availability of an affordable freezing option amplifies

under-searching.

Support for Result 4: Consider the upper panel of Table 3. For readability, we

present the average number of rounds that individuals under-search (search for fewer

stages than at the optimum) in Table 6. In all treatments, except for T4NRNF, there

is under-searching, albeit by negligible amounts for a minority of treatments. In about

half of the treatments, the under-searching is by an economically substantial amount,

for example, in the T10 treatments, the under-searching ranges between 0.39 and

0.91 stages. In each (T, q) treatment, the margin whereby individuals under-search

is largest under the LF treatment. Moreover, in NR, the extent of under-searching

monotonically decreases in f . for example, in the T10NR treatments, individuals

under-search on average by 0.74 under LF, by 0.44 under HF, and by 0.39 under NF.

5.3 Do individuals use optimal reservation price strategies?

In this section, we evaluate Hypothesis 3, which concerns the use of the optimal RR-

DRR policy. Figures 7 and 8 illustrate the fraction of offers of different magnitudes

that have been accepted and frozen in the first stage of each round, under NR and

IR, respectively. Behavior in the first stage provides the most stringent test of our

model, since the backward induction task involved in optimizing in the first stage

is the most demanding among all of the stages. 27 Each panel corresponds to one

27This analysis uses data from the first stage only. In later stages, selection and small sample
issues begin to appear. Similar figures and estimates are shown for stages 2 and 3 in Appendix E
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treatment condition. The graphs show the pooled data from all individuals. Each

dot denotes the percentage of offers at the value indicated on the horizontal axis that

were accepted. The x symbol indicates the percentage of offers at different levels

that were frozen.

Our model predicts that all offers that are below a certain threshold are rejected.

In treatments with no freezing, shown in the bottom two panels, it is predicted

that all offers at or above this threshold are accepted. In some of the conditions

in which freezing is possible, given in the other four panels, there is one threshold

distinguishing offers that are rejected and those that are frozen (the reject-freeze

threshold), and another cutoff dividing those offers that are frozen and those that

are accepted (the freeze-accept threshold). In each panel, the predicted thresholds

are denoted with vertical lines.

First consider acceptance decisions. We use nonlinear least squares minimization

to fit the plotted acceptance frequencies to the logistic function

l(x;m, r) = [1 + exp(−r(x−m))]−1 (13)

where m and r are parameters representing the midpoint and the curvature, respec-

tively. Under each panel in Figures 7 and 8, we report the fitted values of m and r,

and a 95% confidence interval in parentheses. Large curvature is evidence for the use

of a threshold strategy in the acceptance decision, because it indicates that the accep-

tance probability increases very rapidly at or near a particular value. We interpret

large curvature, along with a midpoint m close to the optimal threshold, as evidence

supporting the reservation strategy indicated by the model. The logistic functional

form has the feature that it permits more deviations from the optimal strategy for

offers close to the threshold. This means that errors are less likely, the more costly

that they are. Note that as observations in this figure are aggregated across individ-

uals, the results we report pertain to a representative consumer, potentially masking

heterogeneity in underlying individual behavior.

In the treatments where there exist offers that are predicted to be frozen in the

first stage, we apply a similar strategy to evaluate the threshold between the regions

of rejection and freezing. For fitting the logistic function to the freezing fractions, we

consider all offers below the offer for which the freezing frequency is highest.

(Tables 9, 10, 11 and 12, respectively). Another complication for stages after the first is that the
threshold in the IR case is history-dependent. Figures 10 and 12 in Appendix E assume that no
prices were previously observed.
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The observed patterns can be summarized as the following result.

Result 5. Aggregated acceptance and freezing decisions in stage 1 are well approxi-

mated by a logistic function. However, the estimated acceptance thresholds are typi-

cally lower than predicted by the model. The freezing thresholds are close to predicted

levels.

Support for Result 5: The figures reveal some strong and consistent patterns. The

first is that the percentage of offers in excess of the theoretical acceptance thresholds

that are indeed accepted is very high. The second is that the acceptance probabilities

are described very well by a logistic function. The third is that the estimated ac-

ceptance thresholds are modestly, though significantly, lower than the predicted level

in all treatments. This corresponds to the early termination of search on average.

Fourth, the probability of an offer being frozen is much higher in the range in which

it is predicted than when it is not predicted, though it does not reach a level greater

than .8 for any range of offers in any treatment. Fifth, a logistic specification fits the

relationship between the probability of freezing and that of rejecting quite well in the

treatments in which freezing is predicted to occur. Sixth, the estimated thresholds

between rejection and freezing are very close to the models’ predictions, which lie

within the 95% confidence interval in T4LFNR, and just outside of it in the other

two NR treatments in which freezing is predicted.
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Figure 7: Empirical frequencies of decisions in the first stage - no recall

The plots contain empirical frequencies of accepting and freezing in the first stage of each round for
the six No Recall treatments. We fit a logistic function to the acceptance frequencies by nonlinear
least squares minimization. We also fit a logistic function to the freezing frequencies for offers that
are at or below the offer for which the freezing frequency is highest. Vertical lines represent decision
thresholds implied by the model.
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Figure 8: Empirical frequencies of decisions in the first stage - imperfect recall

The plots contain empirical frequencies of accepting and freezing in the first stage of each round
for the six Imperfect Recall treatments. We fit a logistic function to the acceptance frequencies
by nonlinear least squares minimization. We also fit a logistic function to the freezing frequencies
for offers that are at or below the offer for which the freezing frequency is highest. Vertical lines
represent decision thresholds implied by the model.

5.4 Alternative models

We now consider whether adaptations of four models of decision making that have

been proposed in the previous literature outperform our model, presented in Section
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3, which assumes optimal decision making under risk neutrality. We recognize that

the models were proposed for environments without freezing, and in some cases,

for settings that differed in other ways. Thus, any failure of one of the models to

explain patterns in our data does not suggest that they are not appropriate in other

environments. We apply the models to the No Recall treatments. The models are

expressed for the situation in which the searcher is a seller, as in our experiment.

The first model we consider is in the spirit of the Regret Model developed by

Loomes and Sugden (1986) and applied to sequential search byWeng (2009). Under

this model, the individual incurs a disutility cost when she accepts an offer that

was less favorable than the best offer that she has previously rejected. Specifically,

the individual incurs a disutility β(x − y) if she chooses an alternative that yields

pecuniary payoff x rather than another which would have resulted in a greater payoff

y. In other words,

u(x, y) = x− β1{y > x}(y − x) (14)

Applied to our setting, in which x is the offer the searcher accepts and y is the best

offer foregone, the freezing and rejection payments are:

Rt(p̌t) =

p̄∫
0

max{u(pt+1, p̌t), Kt+1(pt+1, p̌t), Rt+1(pt+1)}dF (pt+1)− c, (15)

R̃t(k, p̌t) =

p̄∫
0

max{u(pt+1,max{p̌t, k}), u(k, p̌t), R̃t+1(k, p̌t)}dF (pt+1)− c, (16)

Kt(pt, p̌t) = R̃t(pt, p̌t)− f, (17)

where p̌t = max{p1, . . . , pt}. Under this specification, the possibility of regret lowers

the value of accepting, freezing, and rejecting compared to the risk neutral model.

However, compared with the risk neutral optimum, it lowers the value of accepting

the most and rejecting the least. Thus, it can be shown that regret of this form leads

to longer searches than under our model. One intuition for this is the following. In

our risk-neutral optimal model, individuals become less picky over time, so that they

will sometimes be in a situation in which they are accepting an offer that they turned

down at an earlier stage. However, an individual who feels regret incurs an additional

cost when accepting such an offer, making her less likely to do so. The tendency to
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reject these offers serve to lengthen the searches of those who experience regret. This

behavior is at odds with our data, and we do not discuss this model further.

The second model we consider is what we shall term the Cognitive Acquisition

Cost model. This model is inspired by the work of Gabaix et al. (2006), who modeled

under-search over a finite horizon as a consequence of applying backward reasoning

for an insufficient number of stages. We consider three versions of this model. The

first version assumes that the choice made in stage t < T is the optimal decision

for stage min{t + z, T − 1}, with z = 1. That is, decisions taken at stage t < T

are those that would be optimal at stage t + 1, as long as t + 1 < T . The second

version of the Cognitive Acquisition Cost model is similar, except that the searcher

behaves optimally under the assumption that there are T - 2 stages remaining. Thus,

the choice made in stage t < T is the optimal decision for stage min{t + z, T − 1},
with z = 2. The third version assumes that the individual always behaves as if it

were stage T − 1, which is the assumption in Gabaix et al. (2006). Each of the three

versions assumes a different type of failure of backward reasoning. The first two

are consistent with applying an insufficient number of steps of backward reasoning,

by 1 and 2 periods, respectively. The third version is consistent with the capacity

to only reason backward for only one step. The three versions of the model are

evaluated here in this subsection, with some additional detail provided in Appendix

F. The conclusion from the analysis is that none of the adaptations of the Cognitive

Acquisition Cost Model predict the decisions made by our participants as effectively

as our model assuming risk-neutral and optimal decisions. The model predicts more

freezing then the risk-neutral model, since the probability of freezing increases in

later stages under the optimal policy, while we observe the opposite pattern in our

data.

The third model is that of Kogut (1990), who proposes that agents under-search

because they are susceptible to a type of sunk cost fallacy. We refer to this model as

the Sunk Cost Fallacy (SCF) model. Under the SCF model, searchers use the total

costs incurred to date rather than the marginal cost of searching for an additional

stage when they make their decisions, as if they do not realize that previous costs
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are sunk. Specifically, they behave as if their freezing and rejection payments equal:

R̃t(k) =

p̄∫
0

Ṽt+1(pt+1, k)dF (pt+1) + tc+ f, (18)

K̃t(p) = R̃t(p), (19)

Rt =

p̄∫
0

Vt+1(pt+1)dF (pt+1) + tc. (20)

Thus, the expected costs of rejecting the current offer and obtaining a new one

are always perceived as the accumulated search costs of all stages up to the present,

tc. Because the individual perceives the cost of continuing the search as greater

than under optimal decision making, searches tend to terminate earlier than under

risk-neutral optimal decision making.

The fourth model we examine assumes optimal behavior under risk aversion. This

has been previously proposed as an explanation for under-searching (see for example

Cox and Oaxaca (1989)). We model risk aversion using the CRRA utility function

u(x) = x1−α

1−α and assume that subjects integrate their earnings and costs in each

stage in the following manner. Accepting an offer of p yields u(p). The other actions,

namely rejecting, freezing and rejecting while having an offer k frozen, respectively,

yield:

Rt =

p̄∫
0

max{u(pt+1), Kt+1(pt+1), Rt+1}dF (pt+1)− u(c), (21)

Kt(pt) = R̃t(pt) + u(c)− u(c+ f), (22)

and

R̃t(k) =

p̄∫
0

max{u(pt+1), u(k), R̃t+1(k)}dF (pt+1)− u(c), (23)

We evaluate the alternative models, in comparison to the risk neutral model,

by considering only those rounds in which there are differing predictions for the

first stage. For each model and every treatment, Table 7 reports the proportion of

decisions in these instances that were correctly predicted by our risk neutral model,

the remaining proportion that was predicted by the alternative model, the p-value

from testing for a difference in proportions between the two models, the number
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of rounds for which first round predictions differ between the two models and the

corresponding number of observations (the number of participants in the treatment

times the number of rounds in which the two models make competing predictions).

We report only those model-treatment combinations for which there are at least five

rounds of competing predictions, limiting the extent to which our conclusions are

driven by the particular sequences observed by subjects (the treatment-pairs with

fewer than five rounds differing are included Table 9, provided in Appendix E).

For the model with risk aversion, we take the value of α = .3, which is close to

typical estimates reported in the literature (Holt and Laury (2002); Noussair et al.

(2014); Harrison and Rutstrom (2008)). In all treatments, the risk neutral model

outperforms the model assuming risk aversion and the three versions of the CIA

model. It also does better than the SCF model in two of three comparisons. Overall,

none of alternative models presented here outperforms the model we have proposed

in Section 3.
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Table 7: Comparative Performance of the Optimal Risk Neutral Model Against Al-
ternative Models

Perc. RN Perc. Other p-value n N
Other model T f

Risk Aversion (α = .3) 4 10 48.3 47.1 0.693 15 630
40 54.4 29.2 0.000 12 504
∞ 67.9 32.1 0.000 6 252

10 10 43.2 29.4 0.000 14 588
40 48.4 36.1 0.000 12 504
∞ 56.7 43.3 0.000 12 504

Sunk Costs Fallacy 4 40 53.9 38.1 0.000 11 462
10 40 36.5 44.8 0.057 6 252
∞ 50.3 49.7 0.877 8 336

CIA 4 10 78.9 20.9 0.000 22 924
40 72.3 26.1 0.000 25 1050
∞ 77.1 22.9 0.000 11 462

10 10 82.3 12.9 0.000 37 1554
40 77.5 14.6 0.000 37 1554
∞ 72.9 27.1 0.000 23 966

CIA1 4 10 72.8 26.5 0.000 7 294
40 59.5 39.4 0.000 11 462

CIA2 4 10 78.9 20.9 0.000 22 924
40 72.3 26.1 0.000 25 1050

10 40 34.3 31.9 0.604 5 210

The table compares each of the models discussed in this section to our risk neutral model. For each
model-treatment combination, the columns in the table contain the following. The first column
is the mean of the indicator variable for subjects’ actions adhering to the risk neutral model’s
prediction, that is, the percentage of instances in which the data are consistent with the model
among those decisions where the two models make competing predictions. The second column is
analogous, using the alternative model that we compare to our benchmark. The third value is
the p-value from a statistical test in which the null hypothesis is that the proportion of correct
predictions in the alternative model equals the analogous proportion in the benchmark model. The
remaining columns are the number of sequences for which a given model-treatment combination
has differing predictions in the first stage, and the total number of observations of decisions taken
in which the two models make competing predictions in our data set.
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6 Discussion

We have analyzed the effect of an option to freeze price offers on the behavior of

agents engaged in sequential search. Our model generates a number of predictions,

which serve as hypotheses for our experiment. The model predicts that the existence

of the freeze option and the length of the time horizon available increase search

length. Lower freeze costs also increase search length. These patterns are observed

in the data. Furthermore, as predicted, the usage of freezing decreases as it becomes

more expensive and as the time horizon increases. Our results regarding freezing are

robust to having imperfect recall, though, as predicted, the impact of the presence

of a freeze option is more pronounced when recall is impossible. Individuals have

a strong tendency to behave as if they employ threshold strategies with regard to

the range of offers that they accept, freeze and reject. The frequency of accepting

offers increases sharply at specific threshold levels. These levels tend to be at or

somewhat below those predicted by our model. Freezing is most common in the

range of offers for which it is predicted. Our overall interpretation is that the model

is quite successful in predicting behavior and outcomes. In our view, this result

provides a behavioral foundation for the assumption of optimality in search behavior

in structural modeling of demand in markets featuring consumer search.

We also observe that while affordable PFOs stimulate search, they strengthen

under-searching relative to optimal behavior, because the additional search under-

taken by participants falls short of the extra search predicted by the model. Un-

dersearching relative to the risk-neutral optimum has been a prominent finding in

the experimental search literature. Beyond documenting that it continues to appear

when freezing is possible, we document a few additional patterns of behavior. Among

these is that affordable PFOs increase the extent of under-searching. Nevertheless,

even substantial under-searching leads to negligible loss in earnings. We recognize

that such losses may be magnified under equilibrium considerations, such as in a

Burdett and Judd (1983) model, because firms’ pricing responses will result in a less

favorable price distribution. Thus, while under-searching may be relatively harmless

in the short run (i.e. earnings are unaffected), it can lead to welfare loss on the part

of the searchers in the long run.

We evaluate four mechanisms that have been proposed as explanations of under-

searching by examining their fit to the data. The first mechanism we consider is

anticipated regret. This would increase search length to a level greater than the opti-
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mal risk-neutral level and is thus inconsistent with our data. The second mechanism

is a heuristic, whereby individuals treat the search problem as having fewer remaining

future stages than there actually are. The model based on this mechanism predicts

more freezing, while the data show less freezing, than the risk neutral model. The

third is to assume that individuals fail to treat sunk costs objectively. This behavior

is consistent with a notion that searchers become more eager to terminate their search

if it has gone on relatively long. This model does fit the data better than the other

alternatives, though still not as well as our model of risk-neutral, optimal decision

making. Finally, we considered whether risk aversion can explain the patterns in our

data, and concluded that assuming a risk aversion level that is typically estimated

in experimental data does not improve predictive accuracy.

Several other avenues for future research come to mind. On the empirical side,

PFO data, which is increasingly available online, along with data on behavior and/or

prices, can be used to structurally estimate demand, assuming decision making that

is as in the model presented in the current paper. To that end, our model can be of

use even though that it allows only for one offer to be frozen, provided that one can

show evidence that freezing multiple offers is rare. This is particularly likely to be the

case when typical consumers search very little, as in, for example, Moraga-Gonzalez

et al. (2018), or in settings where search or freezing carries a high cost.

Our theoretical model could be extended to allow the freezing of multiple offers,

or the possibility of freezing offers that expire before date T . The price of the PFOs

could also be modeled as proportional to the underlying price of the good. Similar

experiments could be conducted, but augmented to include sellers. Studying both

sides of the market would allow for the evaluation of long run welfare effects. Finally,

policymakers and firms may want to experiment with introducing PFOs for wage

offers in labor markets.
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De los Santos, B., Hortaçsu, A. and Wildenbeest, M. R. (2012). Testing

models of consumer search using data on web browsing and purchasing behavior.

American Economic Review, 102 (6), 2955–80.

DeGroot, M. H. (1970). Optimal statistical decisions, vol. 82. New York: McGraw-

Hill.

Einav, L. (2005). Informational asymmetries and observational learning in search.

Journal of Risk and Uncertainty, 30 (3), 241–259.

Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experi-

ments. Experimental Economics, 10 (2), 171–178.

Gabaix, X., Laibson, D., Moloche, G. and Weinberg, S. (2006). Costly infor-

mation acquisition: Experimental analysis of a boundedly rational model. Ameri-

can Economic Review, 96 (4), 1043–1068.

Holt, C. A. and Laury, S. K. (2002). Risk aversion and incentive effects. American

Economic Review, 92 (5), 1644–1655.

Hong, H. and Shum, M. (2006). Using price distributions to estimate search costs.

The RAND Journal of Economics, 37 (2), 257–275.

Janssen, M. C. W. and Parakhonyak, A. (2014). Consumer search markets

with costly revisits. Economic Theory, 55 (2), 481 – 514.

Kahan, J. P., Rapoport, A. and Jones, L. V. (1967). Decision making in a

sequential search task. Perception & Psychophysics, 2 (8), 374–376.

Karni, E. and Schwartz, A. (1977). Search theory: The case of search with

uncertain recall. Journal of Economic Theory, 16 (1), 38–52.

47



Kim, J. B., Albuquerque, P. and Bronnenberg, B. J. (2010). Online demand

under limited consumer search. Marketing science, 29 (6), 1001–1023.

Kogut, C. A. (1990). Consumer search behavior and sunk costs. Journal of Eco-

nomic Behavior & Organization, 14 (3), 381–392.

Kohn, M. and Shavell, S. (1974). The theory of search. Journal of Economic

Theory, 9 (2), 93–123.

Landsberger, M. and Peled, D. (1977). Duration of offers, price structure, and

the gain from search. Journal of Economic Theory, 16 (1), 17–37.

Lippman, S. A. and McCall, J. J. (1976). Job search in a dynamic economy.

Journal of Economic Theory, 12 (3), 365 – 390.

Loomes, G. and Sugden, R. (1986). Disappointment and dynamic consistency in

choice under uncertainty. The Review of Economic Studies, 53 (2), 271–282.

McCall, J. J. (1970). Economics of information and job search. The Quarterly

Journal of Economics, 84 (1), pp. 113–126.

Moraga-Gonzalez, J., Sándor, Z. and Wildenbeest, M. (2018). Consumer

search and prices in the automobile market. Unpublished working paper.
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Appendix

Seven appendices are included with this paper. Appendix A consists of a table list-

ing the cost of options to freeze ticket prices offered by a number of airlines in late

2017. Appendix B describes the procedure used to compute the optimal decision rule

in our treatments with imperfect recall. Appendix C contains all of the proofs for

the lemmas and propositions in Section 3. Appendix D reproduces the instructions

available to participants in the experiment. Appendix E consists of additional tables

and figures. Appendix F considers whether models assuming a limited level of back-

ward induction can predict decisions with greater accuracy than our model. Finally,

Appendix G reports the results from the two risk aversion measurement tasks that

we implemented and documents the lack of correlation between decisions in these

tasks and search behavior.
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Appendix A: Price Freezing Options Offered in Late

2017

Table 8: Price freezing options offered by various airlines in the fall of 2017

Airline Country Cost Length (in days)

KLM The Netherlands Variable ≤14
Air France France Variable ≤3
Aer Lingus Ireland 5 EUR 1
Wizz Air Hungary Variable 2
Air Baltic Latvia 5-11 EUR 2
Emirates UAE Variable 3
Jet Airways India 350-700 INR 3
United US Variable Either 3 or 7
British Airways UK 10 USD 3
Flybe UK 2.5 GBP 1
Kulula South Africa 50 ZAR 1
Tiger Air Australia Variable 2
Vueling Spain Variable 1
Pegasus Turkey 3 EUR 2
Turkish Airlines Turkey Free 1
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Appendix B: Optimal behavior under imperfect re-

call

In this appendix, we outline and discuss the model that we use to compute the optimal

policy for the imperfect recall treatments. We formalize the model and then discuss

how our modeling of imperfect recall differs from previous literature. Importantly,

in our implementation, it is possible that an offer is not available for recall in some

stage, but becomes available for recall in a later stage.

We denote the lowest offer seen up to and including stage t as p
t

= min{p1, . . . , pt}.
The recall availability is modeled as a Bernoulli process with probability q, whose re-

alization in stage t is denoted by qt. The post-freeze expected payments and rejection

payments in stages after an offer k has been frozen are:

Ṽ 0
t (pt, pt−1

, k) = min{pt, R̃t(pt, k), k} (24)

Ṽ 1
t (p

t
, k) = min{p

t
, R̃t(pt, k), k} (25)

R̃t(pt, k) =

p̄∫
0

[
qṼ 1

t+1(p
t+1
, k) + (1− q)Ṽ 0

t+1(pt+1, pt, k)

]
dF (pt+1) + c (26)

where Ṽ 0
t (pt, pt−1

, k) is the post-freeze expected payment in a stage in which recall

is not available, and Ṽ 1
t (p

t
, k) is the post-freeze expected payment when recall is

possible.

The pre-freeze rejection payment and expected payment, along with the freeze

payment are given by:

Kt(pt, pt−1
) = R̃(p

t
, pt) + f (27)

V 0
t (pt, pt−1

) = min{pt, Rt(pt), Kt(pt, pt−1
)} (28)

V 1
t (pt, pt−1

) = min{p
t
, Rt(pt), Kt(pt, pt−1

)} (29)

Rt(pt) =

p̄∫
0

[
qV 0

t+1(pt+1, pt) + (1− q)V 1
t (pt+1, pt)

]
dF (pt+1) + c (30)
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Note that in the terminal period we have

Ṽ 1
T (p

T
, k) = min{p

T
, k} V 1

T (pT , pT−1
) = p

T
(31)

Ṽ 0
T (pT , pT−1

, k) = min{pT , k} V 0
T (pT , pT−1

) = pT (32)

and therefore the rejection payments are initialized by

R̃T−1(p
T−1

, k) = qh(min{p
T−1

, k}) + (1− q)h(k) + c (33)

RT−1(p
T−1

) = qh(p
T−1

) + (1− q)h(p̄) + c. (34)

We differ from Landsberger and Peled (1977) in how we introduce imperfect

recall. In Landsberger and Peled (1977), imperfect recall is introduced such that in

every stage, the highest offer observed so far resets once a realization of qt = 0 is

encountered. In contrast, our experiment does not feature such a resetting property.

It should also be kept in mind that in our experiment, in any given stage, the decision

maker may freeze only the current offer, regardless of the recall realization. That is,

even if there is a realization of qt = 1, the decision maker cannot freeze the highest

offer observed so far, but rather only the current offer.

Because the problem quickly becomes intractable, we use numerical methods to

solve for the optimal policy. That is, while we do not solve for the general solution

to the model analytically, we implement backward induction computationally, and

compute the optimal policy for the parameters of our experimental environment.

Appendix C: Proofs

Proposition 1. When k ≤ p∗ search ends immediately by accepting either p1 or

k. When k > p∗, an increasing reservation price strategy is optimal and k is either

never chosen or chosen at the terminal stage.

Proof. First consider the case of k ≤ p∗. This implies that h(k) + c ≥ k. Therefore,

at T − 1, we have R̃T−1(k) ≥ k. Suppose Ṽt(pt, k) = min{pt, k} for some t ∈
{2, . . . , T − 1} and use (3) to observe that R̃t−1(k) = h(k) + c ≥ k. Therefore, we

have that Ṽt−1(pt−1, k) = min{pt−1, k}. Thus, at any stage, it is optimal to accept the

lowest among the current offer and the outside option, since the post-freeze rejection

payment is greater than at least one of them. Thus, Ṽt(p1, k) = min{p1, k}.
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Now assume that k > p∗, which implies R̃T−1(k) = h(k) + c < k. The outside

option is not used at T −1. Now, R̃T−1(k) ∈ [c, h(p̄) + c] (which holds by assumption

1) and the independence of R̃T−1(k) from p, imply reservation play at T − 1 with

threshold R̃T−1(k). That is, offers above R̃T−1(k) are rejected and lower offers are

accepted. Suppose Ṽt(pt, k) = min{pt, Rt(k)} for some t ∈ {2, . . . , T−1} and consider

stage t−1, in which R̃t−1(k) = h(R̃t(k)) + c < h(k) + c < k where the first inequality

holds because h(·) is increasing. Notice that R̃t−1(k) ∈ [c, k] ⊂ [0, p̄] and therefore

there is reservation play at t− 1 with threshold R̃t−1(k). Thus, we have shown that

when k > p∗,

R̃t(k) =

h(R̃t+1(k)) + c for t < T − 1

h(k) + c for t = T − 1.
(35)

Finally, we show by induction that the post-freeze rejection payment R̃t(k), is

increasing over time. Firstly, R̃T−2(k) = h(R̃T−1(k))+ c < h(k)+ c = R̃T−1(k). Now,

it is immediate from (35) that when t < T − 1, assuming R̃t(k) < R̃t+1(k) implies

R̃t−1(k) < R̃t(k), as h(·) is an increasing function. Thus, the post-freeze rejection

payment remains lower than k until T − 1, so that k is not accepted at any stage

from 1 to T − 1. Therefore, k may only be accepted at stage T .

Proposition 2. The sequence
(
R̃T
t (k)

)∞
T=2

converges uniformly to R̃∞t (k) = p∗ for

k > p∗.

Proof. The sequence (aT )∞T=2 defined by aT = supk∈(p∗,p̄] R̃
T
1 (k) is strictly decreasing

because R̃T
t is strictly increasing in t when (p∗, p̄], as shown in Proposition 1. We

show by induction on T ≥ 2 that it is also bounded below by p∗. Start by noting that

R̃2
1(p̄) = h(p̄) + c > h(p∗) + c = p∗. Suppose R̃T

t (p̄) > p∗ and observe that R̃T+1
t (p̄) =

h(R̃T
t (p̄)) + c > h(p∗) + c = p∗, which completes the inductive argument.

Lemma 1. Rt ≤ R̃t(p̄) for all t < T

Proof. By induction, RT−1 = h(p̄) + c = R̃T−1(p̄). Suppose Rt ≤ R̃t(p̄) for some

t ∈ {2, . . . , T − 1} . Then,
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Rt−1 =

p̄∫
0

min{pt, Kt(pt), Rt}dF (pt) + c (36)

≤
p̄∫

0

min{pt, Kt(pt), R̃t(p̄)}dF (pt) + c (37)

≤
p̄∫

0

min{pt, R̃t(p̄)}dF (pt) + c (38)

= R̃t−1(p̄). (39)

Lemma 2. Under the optimal solution, t ∈ TRR ∪ TDRR for all t < T .

Proof. It is sufficient to show that:

(i) Kt(pt) has a unique fixed point on [0, p̄] located (p∗, p̄] , and that

(ii) Rt ∈ (0, Kt(p̄)).

To establish (i), we show that (a) Kt(pt) > pt for pt ∈ [0, p∗], (b) K ′t(pt) > 0 and (c)

Kt(p̄) < p̄. (a) holds by Proposition 1, as it implies that KT (pt) > R̃t(pt) ≥ pt. (b)

holds as (35) implies that for (p∗, p̄], we have

K ′t(pt) = h′(pt)
T−1∏
j=t+1

h′(K ′j(pt)− f) (40)

where we use the convention that
∏b

a(·) = 1 when a > b. Now, as h′(pt) = 1−F (pt) ∈
[0, 1], we have K ′t(pt) ∈ [0, 1]. To show (c) holds, it suffices to show that KT−1(p̄) =

h(p̄) + c + f < p̄ because R̃t(p̄) is increasing in t. This holds because Assumption 2

and the fact that h(·) is a contraction imply f < h(p̄)−h(h(p̄)+c) < p̄−h(p̄)−c. To

see that (ii) holds, note that lemma 1 implies Rt ≤ R̃t(p̄) < R̃t(p̄) + f = Kt(p̄).

Lemma 3. Any offer that is rejected in some period t is also rejected in period t−1.

That is,

Vt(p) = Rt =⇒ Vt−1(p) = Rt−1 (41)
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Proof. The result follows because h(·) is a contraction. Define Bt(p) = Rt− R̃t(p) to

be the marginal benefit from freezing over rejecting. When t ∈ TRR,

Bt−1(p) = h(Rt)− h(R̃t(p)) < Bt(p) (42)

and when t ∈ TDRR,

Bt−1(p) =

at∫
0

ptdF (pt) +

bt∫
at

Kt(pt)dF (pt) + (1− F (bt))Rt − h(R̃t(p)) (43)

< h(Rt)− h(R̃t(p)) (44)

< Bt(p) (45)

where the first inequality holds because Rt ∈ (at, bt). Therefore Bt(p) is increasing

in t, from which the result follows because f is time invariant.

Proposition 3. In a given stage t, as long as an offer was not frozen before, the

optimal policy consists of a strictly increasing RR for t ≤ t∗ and a strictly increasing

DRR for t > t∗, where 0 ≤ t∗ < T − 1. If an offer was frozen before stage t, then

the optimal policy follows an increasing RR thereafter. In period T it is optimal

to accept pT or the previously frozen offer in the event that such an offer exists,

whichever is lower.

Proof. Assumption 2 implies that T − 1 ∈ TDRR. By lemma 3, t ∈ TRR =⇒ t− 1 ∈
TRR. Combined with lemma 2, this implies that the optimal policy is characterized

by some t∗ ≥ 0. Now we show that the DRR on t > t∗ is increasing over time. Note

that at > p∗ for all t ∈ TDRR because p∗ is the fixed point of R̃t(·) = Kt(·)− f and at

is the fixed point of Kt(·). Therefore, the fact that R̃t(p) is increasing over time for

p > p∗ implies that at is increasing in t. Lemma 3 implies that bt is increasing in t.

To see that the RR is increasing on t ≤ t∗, we first show that Rt > p∗ for all

t < T . By induction, start with RT−1 = h(p̄) + c > h(p∗) + c = p∗. Suppose Rt > p∗.

If t > t∗, then Rt−1 > h(at) + c > h(p∗ + f) + c > h(p∗) + c = p∗. If t ≤ t∗, then

Rt−1 = h(Rt) + c > h(p∗) + c = p∗ by the inductive assumption. Now, if t ∈ TRR,

then Rt−1 = h(Rt)+ c < Rt because Rt > p∗. The optimal policy following a freezing

of an offer is as in Proposition 1.

Proposition 4. There exists a T ∗ <∞ such that for T > T ∗ =⇒ t∗ > 0.
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Proof. It suffices to show that there exists a T ∗ <∞ such that min{p1, R
T
1 } < KT

1 (p1)

for all p1 ∈ [0, p̄]. Firstly, RT
1 is strictly decreasing and bounded below by p∗, so we

have that
(
RT

1

)∞
T=2

converges from above to to p∗. Therefore, there exists T ∗ such

that RT
1 − p∗ < f for all T > T ∗. Secondly, Lemma 2 implies that KT

1 (p1) > p∗ + f

for all p1 ∈ (p∗, p̄]. Together, these imply that there exists a T ∗ such that RT
1 <

f + p∗ < KT
1 (p) for all T > T ∗ and p ∈ (p∗, p̄]. Offers p1 ≤ p∗ are never frozen, as

freezing yields KT
1 (p1) = h(p1) + c+ f > h(p1) + c > p1 by definition of p∗.
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Appendix D - Experimental Interface and Instruc-

tions

First Instructions
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Second Instructions No Recall (1)
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Second Instructions No Recall (2)
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Second Instructions Imperfect Recall (1)
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Second Instructions Imperfect Recall (2)

62



Screen shot - No Recall
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Screen shot - Imperfect Recall
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Simple Choice List
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Holt-Laury Choice List
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Appendix E: Additional Tables and Figures

This appendix contains figures displaying the acceptance, freezing, and rejection

decisions of participants in each treatment in stages 2 and 3, as a function of the

offer that they have received in the current stage. It also reports the average stop

time, earnings, and frequencies of freezing and recall usage for the last 30 rounds in

each treatment. In addition, it contains an analysis of the accuracy of the alternative

models proposed in section 5.4 compared to the risk-neutral optimal model derived

in section 3. for all treatments, including those with few competing predictions.
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Figure 9: Empirical frequencies of decisions in the second stage - No Recall

The plots contain empirical frequencies of accepting and freezing in the second stage of each round,
for the six No Recall treatments. We fit a logistic function to the acceptance frequencies by nonlinear
least squares minimization. We also fit a logistic function to the freezing frequencies for offers that
are at or below the offer for which the freezing frequency is highest. Vertical lines represent decision
thresholds implied by the model.
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Figure 10: Empirical frequencies of decisions in the second stage - Imperfect Recall

The plots contain empirical frequencies of accepting and freezing in the second stage of each round,
for the six Imperfect Recall treatments. We fit a logistic function to the acceptance frequencies
by nonlinear least squares minimization. We also fit a logistic function to the freezing frequencies
for offers that are at or below the offer for which the freezing frequency is highest. Vertical lines
represent decision thresholds implied by the model.
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Figure 11: Empirical frequencies of decisions in the third stage - No Recall

The plots contain empirical frequencies of accepting and freezing in the third stage of each round, for
the six No Recall treatments. We fit a logistic function to the acceptance frequencies by nonlinear
least squares minimization. We also fit a logistic function to the freezing frequencies for offers that
are at or below the offer for which the freezing frequency is highest. Vertical lines represent decision
thresholds implied by the model.

70



Figure 12: Empirical frequencies of decisions in the third stage - Imperfect Recall

The plots contain empirical frequencies of accepting and freezing in the third stage of each round,
for the six Imperfect Recall treatments. We fit a logistic function to the acceptance frequencies
by nonlinear least squares minimization. We also fit a logistic function to the freezing frequencies
for offers that are at or below the offer for which the freezing frequency is highest. Vertical lines
represent decision thresholds implied by the model.
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Figure 13: Within-treatment Means - Second Half of the Data in Each Block

(a) Mean stop time (b) Freezing usage frequency

(c) Mean earnings (d) Recall usage frequency

This figure contains the observed within-group means and frequencies for key variables for the
second half of the data, that is, for the last 30 rounds within each block. Panel (b) includes also a
breakdown of whether offers that have been frozen were later accepted and if so, it details whether
these frozen acceptances occur in the last stage.
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Table 9: Comparison Between Risk-Neutral Optimal Behavior and Alternative Mod-
els, All Treatments Included

Perc. RN Perc. Other p-value n N
Other model T f

Risk Aversion (α = .3) 4 10 48.3 47.1 0.693 15 630
40 54.4 29.2 0.000 12 504
∞ 67.9 32.1 0.000 6 252

10 10 43.2 29.4 0.000 14 588
40 48.4 36.1 0.000 12 504
∞ 56.7 43.3 0.000 12 504

Sunk Costs Fallacy 4 10 25.6 74.4 0.000 4 168
40 53.9 38.1 0.000 11 462

10 10 34.5 54.2 0.000 4 168
40 36.5 44.8 0.057 6 252
∞ 50.3 49.7 0.877 8 336

CIA 4 10 78.9 20.9 0.000 22 924
40 72.3 26.1 0.000 25 1050
∞ 77.1 22.9 0.000 11 462

10 10 82.3 12.9 0.000 37 1554
40 77.5 14.6 0.000 37 1554
∞ 72.9 27.1 0.000 23 966

CIA1 4 10 72.8 26.5 0.0 7 294
40 59.5 39.4 0.0 11 462
∞ 63.7 36.3 0.000 4 168

10 10 40.5 42.9 0.754 2 84
∞ 11.9 88.1 0.000 1 42

CIA2 4 10 78.9 20.9 0.000 22 924
40 72.3 26.1 0.000 25 1050
∞ 63.7 36.3 0.000 4 168

10 10 46.0 38.1 0.202 3 126
40 34.3 31.9 0.604 5 210
∞ 11.9 88.1 1.000 1 42

The table reports the same analysis as Table 7 in the text, except that it also includes treatments
where n < 5.
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Appendix F: Using steps of reasoning to describe

observed thresholds

As solving backward induction problems is mentally challenging, it is conceivable

that individuals do use a rule similar to the threshold strategy implied by our optimal

stopping model, but apply later stages’ decision rules. That is, individuals are able

to backward induct for a certain number of stages, but for fewer than the actual

number of stages remaining. That would imply that in a given stage, individuals

would use a lower acceptance threshold than that which is predicted by the model

because they are using an optimal threshold from a later period. This general line of

reasoning is consistent with the pattern of early acceptances relative to the optimum

for a risk-neutral agent (Gabaix et al. (2006)) such as that we observe. However,

another implication would be more freezing in earlier stages than under the optimal

policy, a pattern that we do not observe.

We define a level-z decision rule to be the decision rule under which the choice

made in stage t < T is optimal decision for stage min {t + z, T − 1}. When z = 0

decisions are optimal, and when z > 0, decisions taken at stage t are those that

would be optimal at stage t + z. Table 10 provides the fit of such decision rules for

z ∈ {0, 1, 2} to the data in terms of the percentage of pre-freeze choices that are

consistent with this decision rule, conditional on past within-round behavior and for

each treatment. The data are classified by whether the observed decision was to

accept, to freeze, or to reject.
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Table 10: Optimality of pre-freeze decisions under level-z decision rules

All0 All1 All2 R0 R1 R2 F0 F1 F2 A0 A1 A2

q T f

0 4 10 74.4 63.9 55.4 70.5 44.1 21.7 86.6 95.6 94.4 72.2 72.2 79.0
40 79.7 74.0 66.2 82.4 63.0 46.4 53.6 68.7 63.5 88.4 91.4 94.6
∞ 94.3 91.4 87.6 94.3 87.1 78.8 94.2 96.8 98.7

10 10 83.4 81.1 77.3 90.3 85.7 78.3 47.9 58.3 61.6 76.1 76.1 79.9
40 89.8 87.4 83.9 95.8 92.0 85.7 7.8 14.2 32.3 82.6 83.1 84.4
∞ 93.0 92.9 92.2 97.0 96.2 94.5 82.9 84.6 86.3

0.5 4 10 70.1 59.6 50.1 64.9 43.7 24.3 73.7 79.9 75.8 76.9 77.0 81.4
40 80.3 72.5 66.9 87.8 65.4 54.6 9.5 37.2 29.9 80.7 88.6 90.8
∞ 87.2 86.5 83.5 92.6 83.5 76.1 79.7 90.6 93.8

10 10 84.5 81.3 78.2 96.4 91.1 83.2 10.6 19.4 39.0 67.0 67.1 72.5
40 87.5 87.8 86.3 95.6 94.9 91.1 1.6 1.6 1.6 70.5 73.3 78.1
∞ 88.4 88.3 86.9 94.9 93.9 90.4 71.1 73.4 77.6

Each column contains the percentage of pre-freeze choices made that are consistent with a level-z
decision rule, where z is indicated in the subscript of each choice type. The subscript 0 denotes the
prediction of the optimal risk-neutral model in Section 3.

We see that, overall, level-z decision rules are not better than the model’s predic-

tions in rationalizing observed behavior. The overall hit rate does not improve if it

assumed that z > 0. z > 0 implies fewer rejection decisions, and rejection decisions

are far more frequent than acceptances and freezing. However, in almost all treat-

ments, the hit rate for of freezing and acceptance choices increases with z. That is,

early decisions to freeze and accept are better rationalized by a level z decision rule,

which predicts more acceptance and freezing than the risk-neutral optimal model.

Table 11: Optimality of post-freeze decisions under level-z decision rules

All0 All1 All2 R0 R1 R2 A0 A1 A2 Af0 Af1 Af2

q T f

0 4 10 93.58 94.67 94.67 96.66 93.89 93.89 88.52 95.53 95.53 95.06 95.06 95.06
40 93.48 93.61 93.61 96.09 92.85 92.85 90.44 95.41 95.41 92.31 92.31 92.31

10 10 78.21 78.69 78.69 83.59 83.43 83.26 82.01 84.58 85.05 41.78 41.78 41.78
40 82.68 83.31 83.62 91.07 91.07 91.07 79.19 81.50 82.66 35.59 35.59 35.59

0.5 4 10 86.03 82.73 82.73 89.33 89.22 89.22 78.51 88.45 88.45 89.56 59.53 59.53
40 84.20 83.23 83.23 91.02 90.77 90.77 73.62 87.01 87.01 83.93 59.52 59.52

10 10 79.92 79.75 81.01 85.98 85.98 85.73 69.93 74.83 80.77 57.14 39.56 39.56
40 78.06 78.61 80.00 84.45 84.45 84.03 73.00 76.00 82.00 31.82 27.27 27.27

Each column contains the percentage of post-freeze choices made that are consistent with a level-z
decision rule, where z is indicated in the subscript of each choice type. The subscript 0 denotes the
prediction of the optimal risk-neutral model in Section 3.
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Table 11 shows the accuracy of predictions, when it is assumed that z > 0, after an

offer has been frozen. It shows that after freezing, assuming that z ∈ {1, 2} does not

improve predictive accuracy. While it does predict more accurately when a current

offer is accepted, it is not as good at predicting when a frozen offer is accepted.

The next two tables show the percentage of decisions predicted correctly by as-

suming that the decision maker always behaves as if he finds himself in stage T − 1,

as proposed in the model of Gabaix et al. (2006). The table shows that this model

predicts a smaller percentage of decisions correctly than does the risk neutral optimal

model of Section 3, both before an offer has been frozen and afterwards.

Table 12: Optimality of pre-freeze decisions under belief that one is in stage T − 1
(Gabaix et al. (2006))

All0 All1 R0 R1 F0 F1 A0 A1

q T f

0 4 10 74.4 55.4 70.5 21.7 86.6 94.4 72.2 79.0
40 79.7 66.2 82.4 46.4 53.6 63.5 88.4 94.6
∞ 94.3 87.6 94.3 78.8 94.2 98.7

10 10 83.4 38.1 90.3 17.6 47.9 72.6 76.1 85.2
40 89.8 51.7 95.8 35.7 7.8 33.2 82.6 94.8
∞ 93.0 75.9 97.0 66.9 82.9 98.5

0.5 4 10 70.1 50.1 64.9 24.3 73.7 75.8 76.9 81.4
40 80.3 66.9 87.8 54.6 9.5 29.9 80.7 90.8
∞ 87.2 83.5 92.6 76.1 79.7 93.8

10 10 84.5 36.9 96.4 18.8 10.6 59.9 67.0 80.3
40 87.5 54.8 95.6 40.6 1.6 20.5 70.5 94.7
∞ 88.4 70.5 94.9 61.1 71.1 95.5

Each column contains the percentage of pre-freeze choices made that are consistent with two decision
rules. A subscript of 0 indicates the level of consistency with the optimal risk neutral model of
Section 3, where as a subscript of 1 corresponds to consistency with optimal behavior under the
belief that the individual is in period T − 1.
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Table 13: Optimality of post-freeze decisions under the belief that one is in stage
T − 1 (Gabaix et al. (2006))

All0 All1 R0 R1 A0 A1 Af0 Af1

q T f

0 4 10 93.58 94.67 96.66 93.89 88.52 95.53 95.06 95.06
40 93.48 93.61 96.09 92.85 90.44 95.41 92.31 92.31

10 10 78.21 79.43 83.59 82.12 82.01 91.59 41.78 41.78
40 82.68 85.67 91.07 90.82 79.19 90.75 35.59 35.59

0.5 4 10 86.03 82.73 89.33 89.22 78.51 88.45 89.56 59.53
40 84.20 83.23 91.02 90.77 73.62 87.01 83.93 59.52

10 10 79.92 82.02 85.98 85.12 69.93 86.71 57.14 39.56
40 78.06 78.89 84.45 81.09 73.00 85.00 31.82 27.27

Each column contains the percentage of post-freeze choices made that are consistent with two
decision rules. A subscript of 0 indicates the level of consistency with the optimal risk neutral
model of Section 3, where as a subscript of 1 corresponds to consistency with optimal behavior
under the belief that the individual is in period T − 1.

Appendix G: The Risk Aversion Measurement

Tasks

In this appendix we present the data from the two risk aversion elicitation protocols

and correlate the results to behavior in the experiment. Figures 14 and 15 show the

distributions of measured risk aversion under the two measures. The two panels on

the left are the data from the simple choice list and those on the right are for the

Holt-Laury protocol. Figure 14 displays a histogram of the number of safe choices

made by all participants, while Figure 15 contains only the data from those who

exhibited a single switching point. The data show that a majority of individuals are

risk averse, in that they make strictly greater than eight safe choices in the simple

protocol and strictly greater than four safe choices under the Holt-Laury protocol.

Substantial minorities are risk neutral (choosing 8 and 4 safe options in the two

protocols, respectively) and another considerable group is risk seeking (making fewer

safe choices than the risk neutral level).
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Figure 14: Empirical Distribution of Elicited Risk Aversion - All Subjects

Histograms of elicited risk aversion measures using all subjects. The measure used is the number
of safe choices made in a risk-aversion elicitation protocol. The left panel is using the simple choice
list, whereas the right panel is using the Holt-Laury protocol. See Appendix D for the instructions
to participants and the interface.

Figure 15: Empirical Distribution of Elicited Risk Aversion - Single Switchers

Histograms of elicited risk aversion measures using subjects who have made one switch from the
risky to the safe option. The measure used is the number of safe choices made in a risk-aversion
elicitation protocol. The left panel is using the simple choice list, whereas the right panel is using
the Holt-Laury protocol. See Appendix D for the instructions to participants and the interface.
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Tables 14 and 15 show the average search length in each treatment for risk averse

(RA), risk neutral (RN), and risk seeking (RS) subjects, as measured in the two

tasks. In the f = ∞ case, it can be shown theoretically that risk averse individuals

terminate their searches earlier than risk neutral searchers, and in turn risk seeking

individuals search for longer than those who are risk neutral. However, as can be

seen in the two tables, this relationship is not consistently supported in the data.

There is also no consistent relationship between risk attitude and search length when

freezing is possible.

Table 14: Risk Aversion Summary - Simple Choice List

RA RN RS
q T f

0.0 4 10.0 2.49 2.72 2.70
40.0 2.54 2.57 2.58
∞ 2.21 2.23 2.30

10 10.0 4.26 3.16 4.02
40.0 3.98 2.98 3.33
∞ 3.85 3.12 3.56

0.5 4 10.0 2.94 2.72 2.63
40.0 2.70 2.45 2.54
∞ 2.57 2.35 2.39

10 10.0 3.97 3.44 4.31
40.0 3.79 3.18 4.08
∞ 3.85 3.20 3.97
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Table 15: Risk Aversion Summary - Holt-Laury Choice List

RA RN RS
q T f

0.0 4.0 10.0 2.55 2.67 2.77
40.0 2.57 2.54 2.52
∞ 2.26 2.15 2.25

10.0 10.0 4.17 3.72 3.64
40.0 3.87 3.20 3.52
∞ 3.78 3.16 3.70

0.5 4.0 10.0 2.83 2.49 2.82
40.0 2.59 2.35 2.64
∞ 2.48 2.32 2.45

10.0 10.0 3.78 4.23 4.30
40.0 3.70 3.77 4.04
∞ 3.58 3.75 4.14
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