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Online platforms that match customers with suitable service providers utilize a wide variety of matchmaking

strategies: some create a searchable directory of one side of the market (i.e., Airbnb, Google Local Finder);

some allow both sides of the market to search and initiate contact (i.e., Care.com, Upwork); others imple-

ment centralized matching (i.e., Amazon Home Services, TaskRabbit). This paper compares these strategies

in terms of their efficiency of matchmaking, as proxied by the amount of communication needed to facilitate

a good market outcome. The paper finds that the relative performance of the above matchmaking strate-

gies is driven by whether the preferences of agents on each side of the market are easy to describe. Here,

“easy to describe” means that the preferences can be inferred with sufficient accuracy based on responses

to standardized questionnaires. For markets with suitable characteristics, each of the above matchmaking

strategies can provide near-optimal performance guarantees according to an analysis based on information

theory. The analysis provides prescriptive insights for online platforms.
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1. Introduction

How can an online platform best help customers find suitable service providers at good prices? This

is a central question faced by the designers of online platforms such as Amazon Home Services,

Care.com, Google Local Finder, HomeAdvisor, TaskRabbit, Thumbtack, Upwork and Yelp. These

platforms can be referred to as two-sided marketplaces, and their value proposition is that they

reduce the time and effort customers and service providers expend to find suitable partners. Inas-

much as these platforms are able to maximize the quality of the matches formed while minimizing

the hassle of the search process, they generate value to society and gain market share in their

respective industries.

Among existing two-sided marketplaces, the design of their search and matching features can

largely be classified into the following four strategies:

1. Customers search for providers: these platforms create a searchable directory of providers

and customers initiate contact with providers they are interested in. Each provider is asked

to create an informative profile that customers can browse, and the platform offers customers

various options for filtering and sorting providers.
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2. Providers search for customers: these platforms ask customers to complete certain ques-

tionnaires to post a job request, and providers initiate contact with customers to bid for jobs.

The platform offers providers various options for filtering and sorting job requests, and gives

them the opportunity to be notified whenever jobs satisfying certain criteria are posted.

3. Both sides search for partners: these platforms combine features of the above two designs

and allow both sides of the market to search for and initiate contact with potential partners.

4. Centralized matching: these platforms ask both customers and providers to complete cer-

tain questionnaires, and use this information to recommend a limited number of suitable

providers to each customer.

The academic literature provides little guidance on what matchmaking strategy to use for a

given market. Meanwhile, practitioners are experimenting with various strategies. As illustrated in

Table 1, all four matchmaking strategies are observed among platforms that help customers find

local professionals, and platforms sometimes migrate from one strategy to another in an effort to

facilitate better matches for their intended user base.

Table 1 Disparate matchmaking strategies utilized by platforms that are used to find local professionals. As

noted in the table, TaskRabbit and Thumbtack migrated from a design based on providers bidding on job

requests to one based on centralized matching in 2014 and 2018 respectively (Newton 2014, Shieber 2018). Yelp

modified its design in 2020 from only allowing customers to reach out to providers to also allowing providers to

reach out to customers via its “Nearby Jobs” product (Wu 2020).

Matchmaking strategy Examples of platforms

1. Customers search Google Local Finder, Houzz, Yelp (before 2020), ...
2. Providers search Bark, Porch, TaskRabbit (before 2014), Thumbtack (before 2018), ...
3. Both sides search Care.com, Upwork, Yelp (after 2020), ...
4. Centralized matching Amazon Home Services, Angi, HomeAdvisor, TaskRabbit (after 2014),

Thumbtack (after 2018), ...

1.1. Contributions

This paper develops a tractable framework for studying the optimal matchmaking strategy in

a two-sided marketplace. The analysis is based on communication complexity theory, which is

a branch of information theory that studies the minimum amount of communication needed to

solve a given problem (Kushilevitz and Nisan 2006). In the context of two-sided marketplaces, the

“given problem” is to facilitate a good market outcome, so that users are happy with whom they

are matched with and with the transaction price. This paper shows that each of the above four

matchmaking strategies is able to achieve a good market outcome, but their relative efficiencies

depend on certain characteristics of the market that will be described in the next paragraph.

For markets with suitable characteristics, each of the above strategies is able to approximately
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minimize the amount of communication needed in the worst case to achieve a good outcome. Here,

the minimization is over the space of all possible platform designs, so that even if a platform were

to invent a new matchmaking process that is entirely different from the four strategies modeled

here, it cannot achieve a much better performance, at least according to the metrics analyzed here.

The analysis yields prescriptive guidelines for platform design, as summarized in Table 2, which

gives a high level description of the characteristics of suitable markets for each of the four match-

making strategies. The central question is whether the preferences on each side of the market are

easy to describe. Here, “easy to describe” means that the preferences can be accurately approxi-

mated based on the agents’ responses to a standardized questionnaire, such as those typically used

by online platforms when users create a profile or post a request. As an example, providers of

short-term rentals, such as Airbnb hosts, generally have easy-to-describe preferences, as they can

readily communicate the availabilities of their units via a calendar and are generally okay with

housing any customer who has a record of being clean, respectful and paying on time. On the

other hand, customers may have picky idiosyncratic preferences on location and amenities that

are hard to fully describe upfront. According to the first row of Table 2, platforms for short-term

rentals should create a directory of listings and have customers search and initiate contact, which

is what Airbnb already does. The near-optimality result in this paper suggests that it would not

be worthwhile for Airbnb to overhaul its matchmaking strategy.

Table 2 Characteristics of suitable markets for each of the four commonly observed matchmaking strategies.

The characteristics are restated in terms of mathematically precise parameters in Section 3.

Matchmaking strategy Characteristics of suitable markets

1. Customers search Provider preferences are easy to describe.
2. Providers search Customer preferences are easy to describe.
3. Both sides search Neither side’s preferences are easy to describe.
4. Centralized matching Both sides’ preferences are easy to describe.

Analogously, the second row of Table 2 states that having providers search for customers is

suitable when customer preferences are easy to describe. One example is the market for data entry,

in which a customer’s job specifications can be succinctly described upfront, whereas providers may

have idiosyncratic preferences about what kind of jobs they are interested in and when they have

the capacity to take on a new job. This justifies the matchmaking strategy adopted by Amazon

Mechanical Turk, which is based on providers searching through a directory of job requests.

The third row of Table 2 suggests that allowing both sides of the market to search for partners is

important in markets such as those for childcare providers, in which both customers and providers

have picky idiosyncratic preferences that are hard to systematically describe upfront. This supports
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the high level design choice of platforms such as Care.com, which is a platform for finding nannies

that allows both sides of the market to search for partners and initiate contact. In 2020, Yelp also

migrated to a design in which a customer not only can search through provider profiles but also can

post job requests, which are sent to nearby providers, who choose which customers to contact (Wu

2020). According to the analysis in this paper, allowing both sides of the market to initiate contact

allows Yelp to more efficiently facilitate good matches in markets such as those for non-standard

home improvement projects, in which both sides may have hard-to-describe preferences.

The final row of Table 2 suggests that centralized matching is suitable in markets for standardized

services, such as carpet cleaning, furniture assembly, ground transportation, and TV mounting.

In such markets, customers’ requirements are easy to describe, and providers have similar costs

for jobs with similar descriptions. Hence, it is unnecessary to ask agents to search over the entire

directory of potential partners, as the platform can facilitate a near-optimal match simply by

recommending a few suitable providers based on the scope, location and timing of service.

1.2. Comparison with previous approaches

Before going into the mathematical details, it is instructive to compare the paper’s overall approach

with previous studies, so as to motivate the modeling choices. The broader literature that this

paper relates to is the one on reducing congestion in matching markets, which originates in a

series of seminal studies by Alvin Roth and co-authors (Roth and Xing 1994, 1997, Avery et al.

2001, Roth 2008). Market congestion refers to having too many interactions in the market, so that

the market is unable to process information quickly enough to reach a desirable outcome. Li and

Netessine (2019) use the merger of two online platforms as a natural experiment to show that due

to market congestion, increasing the market size may reduce the efficiency of matching. Therefore,

as a two-sided marketplace grows its number of users, effectively managing market congestion is

crucial for maintaining the platform’s value proposition.

Several papers use field experiments to show that relatively simple changes to platform design

can result in significant improvements in the efficiency of matchmaking. For example, Coles et al.

(2010) and Lee and Niederle (2015) demonstrate that allowing market participants to signal their

preferences to a limited number of partners gives them significantly higher chances of obtaining a

positive response. Fradkin (2017) documents that on Airbnb, the simple intervention of tracking

listing availability results in a reduction in host rejections by 59%, which is significant because con-

ditional on being rejected from their first query, customers are 43% to 70% less likely to eventually

book a listing. Horton (2017) documents that a match recommendation algorithm at oDesk led to

a 20% higher fill rate for job postings, and Horton (2018) estimates that allowing workers to signal

their capacity leads to a 6% increase in market surplus.
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However, field experiments are insufficient to study the question of optimal matchmaking, as

migrating to a different matchmaking strategy is expensive and may alienate the platform’s user

base, so it is best to perform extensive theoretical analysis before commencing such an experiment.

Moreover, experiments on the search and matching features of a platform typically need to be

conducted at a market level, and users need time to adapt to a new design. This limits the number

of experiments that can be conducted, and further increases the appeal of theoretical analysis.

A theoretical analysis of congestion in two-sided marketplaces needs to account for two objectives:

1) achieving a good market outcome; and 2) limiting the number of interactions among agents, so

as to limit congestion. There are two approaches in the literature for optimizing these objectives.

1. Equilibrium-based approach: Fix a budget on the number of possible interactions or a

cost per interaction, and maximize the quality of the market outcome that would arise in

equilibrium. Previous studies using this approach find that in certain platform designs, agent

welfare can be improved by limiting the number of partners an agent can contact (Halaburda

et al. 2018, Arnosti et al. 2019), having the side with fewer agents initiate contact (Kanoria and

Saban 2017), or giving agents a small number of signals to indicate special interest for certain

partners (Coles et al. 2013, Abdulkadiroğlu et al. 2015, Jagadeesan and Wei 2018). While

these insights are valuable, a limitation of the equilibrium-based approach is that in order

to pin down an equilibrium that is tractable for analysis, one must make strong assumptions

on the exact process by which matchmaking is conducted. This implies that any result on

optimality is narrow in scope, as the result may not hold if the space of feasible designs is

different from what is modeled. For example, none of the above papers allow providers to set

their own prices, which is a first-order feature of many markets of interest.

2. Communication complexity approach: Fix a given notion of a good market outcome,

and minimize the amount of interactions needed to reach such an outcome, as proxied by the

amount of information agents need to communicate with one another. An advantage of this

approach is that it can be used to establish robust optimality guarantees that are based on

information theory rather than on a particular equilibrium model: a system of matchmaking

is optimal if achieves a good market outcome using the minimum amount of communication

possible, where the minimum is taken over all possible systems of multi-agent communication.

However, previous studies that use this approach, such as Segal (2007), Chou and Lu (2010),

Gonczarowski et al. (2015) and Ashlagi et al. (2019), all define a “good market outcome” as

a stable matching in the model of Gale and Shapley (1962), which results in two limitations:

i) The model of Gale and Shapley (1962) does not allow for transfer payments, so it is a

poor fit for studying matching markets for paid services, as service providers typically set

prices endogenously based on supply and demand.
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ii) Requiring the market to reach an exactly stable matching can be overly restrictive, which

is why previous results based on this approach are mostly impossibility results: Segal

(2007), Chou and Lu (2010), and Gonczarowski et al. (2015) show that when preferences

are adversarially constructed, obtaining a stable matching with high probability requires

Ω(n) bits of communication per agent, where n is the number of agents on each side.

This asymptotic rate is the same as requiring agents to communicate their preferences

for the entire market, which suggests that a high level of congestion is inevitable. Ashlagi

et al. (2019) bypass the above impossibility results by assuming that the preferences of

at least one side are independently drawn. Under such an assumption, they show that

Ω(
√
n) bits of communication per agent are required, and O(

√
npolylog(n)) bits per agent

suffice. This is the strongest positive result in previous papers based on the communication

complexity approach.1

This paper overcomes the above limitations by adopting the communication complexity approach

but using an alternative definition of a “good market outcome,” which is based on a relaxed notion

of stability and allows for endogenous prices. The relaxed notion of stability corresponds to assum-

ing that agents have a certain tolerance for sub-optimality, so that they have a bounded level of

pickiness for their preferred partners. Using this definition of a “good market outcome,” this paper

obtains much stronger positive results: Section 4 shows that for large classes of markets, O(logn)

bits of communication per agent suffice to achieve a good market outcome with high probabil-

ity, and this is much better than the O(
√
npolylog(n)) guarantee in Ashlagi et al. (2019). More

importantly, this paper’s modeling framework is able to rationalize each of the four matchmaking

strategies commonly observed in practice, which brings the theory much closer to practice than in

previous studies using the communication complexity approach.

1.3. Organization of the paper

Section 2 describes the model and defines concrete versions of the four matchmaking strategies in

Table 1. Section 3 analyzes the efficiency of each strategy and derives the characteristics of suitable

markets in Table 2. Section 4 defines concepts from communication complexity theory and uses

them to establish the near-optimality results. For clarity of exposition, the bulk of the paper focuses

on a static one-to-one matching model with independently drawn preferences and endogenous

prices. Section 5 shows that the insights continue to hold under richer assumptions, including

correlated preferences, many-to-one matching, dynamic arrival of customers, and exogenous prices.

Section 6 concludes with managerial insights for two-sided marketplaces.

1 Ashlagi et al. (2019) also show that O(log2 n) bits of communication per agent suffice for finding a stable matching
with high probability if one makes the following highly stylized assumptions on preferences: both sides of the market
can be partitioned into tiers; agents always prefer partners from higher tiers to those from lower tiers, and preferences
are uniformly random within each tier.
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2. Model

This paper measures the efficiency of a matchmaking strategy in a given market based on the

amount of communication it requires to reach a good market outcome. A formal treatment requires

defining a “matchmaking strategy,” a “market,” the “amount of communication” and a “good

market outcome.” Sections 2.1 and 2.2 define a “market.” Section 2.3 defines a “good market out-

come.” Section 2.4 models the four matchmaking strategies described in the introduction. Various

metrics for measuring the “amount of communication” are given in Sections 3 and 4.

2.1. Assignment game

Before defining a “market” in Section 2.2, we first review the assignment game model of Shapley and

Shubik (1971), which we build on later. An assignment game is specified by a tuple (I, J, b, c) where

I is a finite set of customers, J is a finite set of service providers, and matrices b, c∈RI×J are the

preferences of customers and providers respectively. For each pair (i, j) ∈ I × J , bij represents the

benefit customer i derives from provider j’s service, and cij represents the provider’s cost for serving

customer i; the total surplus of a match between them is bij − cij. Note that the same customer

may have different benefit values for matching with different providers, and the same provider

may have different cost values for matching with different customers. For simplicity, assume for

now that agents are interested in matching with at most one partner. Without loss of generality,

assume that |I|= |J |, as one can always add dummy customers or providers that represent being

unmatched.2 Define n= |I|= |J | to be the number of agents on each side of the market, and label

both I and J as [n] := {1,2, · · · , n}.

An outcome to the assignment game is a tuple (x,u, v), where x is a n× n binary matrix with

xij = 1 if customer i is matched to provider j and xij = 0 otherwise; u ∈ Rn is a vector in which

ui denotes the surplus of customer i∈ I; and v ∈Rn is a vector in which vj denotes the surplus of

provider j ∈ J . An outcome is feasible if it satisfies the following constraints:

(Unit Demand)
∑
j∈J

xij ≤ 1 for each i∈ I. (1)

(Unit Capacity)
∑
i∈I

xij ≤ 1 for each j ∈ J . (2)

(No Side Payments) ui + vj = bij − cij whenever xij = 1. (3)

2 For example, to add a dummy customer i, define bij = cij = 0 for all j ∈ J . Any provider matched to this customer
might as well be unmatched.
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Any n×n binary matrix that satisfies constraints (1) and (2) is called a matching. Constraint (3)

represents the assumption that individual surpluses are based on redistributing the total surplus

among each pair of matched agents.3

An equivalent representation of a feasible outcome (x,u, v) is a transaction outcome (x,p) where

x is a matching and p ∈ Rn is a vector specifying how much each customer pays the matched

provider: if customer i is unmatched, then pi = 0. Otherwise, if customer i is matched to provider

j, then ui = bij−pi and vj = pi−cij. There is a bijection between feasible outcomes and transaction

outcomes, and we may work with one or the other depending on which is more convenient.

2.2. Market

While Shapley and Shubik (1971) assume full information, this paper assumes that initially, only

customer i knows the value of bij and only provider j knows the value of cij, so finding a good

outcome requires communication. We assume that bij is drawn from a commonly known distribution

Bij, and cij is drawn from a commonly known distribution Cij. For simplicity, assume that the

draws are independent across (i, j)∈ I×J and independent between benefits and costs. (Section 5.1

discusses various ways in which these independence assumptions can be relaxed.) The Bij’s and

Cij’s are referred to as the preference distributions of customers and providers. These distributions

are allowed to be different for each pair (i, j), so the model can capture rich heterogeneity in

preferences.

A market M is defined by the tuple (I, J,B,C). Mathematically speaking, a market represents

a distribution over assignment games on the same set of agents. In the context of online platforms,

the preference distributions Bij’s and Cij’s should be interpreted as the market’s beliefs about the

preferences of agents after conditioning on their initial descriptions of who they are and what they

want. Platforms typically collect such information in the form of questionnaires, user profiles, or

search options. For customers, such information may include where they live, what type of service

they are looking for, and when they desire the service. For providers, such information may include

their service region, the types of services they provide, and their qualifications. After conditioning

on such information, the residual uncertainty that is represented by the distributions Bij’s and Cij’s

should be interpreted as the hard-to-describe components of preferences, which are idiosyncratic in

nature and difficult to articulate upfront. The significance of this interpretation will be explained

in Section 3.

3 In the textbook treatment of the assignment game such as in Roth and Sotomayor (1990), (3) is not part of the
definition of a feasible outcome, but the following weaker contraint is imposed:

(Budget Balance)
∑
i∈I

ui +
∑
j∈J

vj =
∑

i∈I,j∈J

(bij − cij)xij . (4)

However, Roth and Sotomayor (1990) derive (3) as a consequence of stability (see Section 2.3). For ease of exposition,
we assume (3) upfront, and (3) implies (4). In the context of two-sided marketplaces, (3) is a natural assumption, as
there are typically no side payments between agents who are not matched to one another.
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2.3. An ideal matchmaking outcome

Given an assignment game (I, J, b, c) and a parameter ε > 0, a feasible outcome (x,u, v) is said to

be ε-stable if it satisfies the following two conditions:

(No ε-Blocking Pair) ui + vj + 2ε≥ bij − cij for each (i, j)∈ I ×J . (5)

(Individual Rationality) u, v≥ 0 (6)

Condition (5) says that if two agents (i, j) deviate from the matching x and match on their own,

they cannot each get more than ε of additional surplus. On the left hand side, ui + vj is their

current total surplus; after giving the two agents ε each, the sum is at least equal to the right hand

side, bij− cij, which is their total surplus from matching on their own. Condition (6) represents the

assumption that each agent always has the option of being unmatched and receiving zero surplus.

In order to give ε a scale, assume that benefits and costs are bounded between 0 and 1:

(Bounded Support) bij, cij ∈ [0,1] for each (i, j)∈ I ×J . (7)

The literature on assignment games focuses on exact stability, in which ε = 0, but this paper

allows for a positive ε in order to model the idea that agents have a certain tolerance for sub-

optimality. For example, if switching partners results in a fixed cost of ε for each agent, then agents

in an ε-stable outcome have no incentives to search for better partners. The existence of ε-stable

outcomes follows from the existence of exactly stable outcomes, which is established by Shapley

and Shubik (1971) using linear programming duality theory.

In this paper, the goal of a platform is to achieve an ε-stable outcome with minimal communi-

cation. (Other goals such as profit maximization are not modeled.) Achieving an ε-stable outcome

is a desirable goal for the platform, as it guarantees near-optimal social welfare, as stated in the

following proposition.

Proposition 1 (Near-optimality in social welfare). In any ε-stable outcome (x,u, v) of an

assignment game (I, J, b, c), the average surplus per agent is within ε of the maximum possible: if

x′ is any other matching, then

1

2n

∑
i∈[n]

ui +
∑
j∈[n]

vj

=
1

2n

 ∑
i,j∈[n]

(bij − cij)xij

≥ 1

2n

 ∑
i,j∈[n]

(bij − cij)x′ij

− ε. (8)

Proof. Consider each pair (i, j) of matched agents in x′. Sum up the “no ε-blocking pair”

condition in (5) for all these pairs and apply the condition in (6) that surpluses are non-negative:∑
i∈[n]

ui +
∑
j∈[n]

vj ≥
∑

(i,j):x′ij=1

(ui + vj)≥
∑

(i,j):x′ij=1

(bi− cj − 2ε) . (9)

Dividing by 2n yields the desired result. �
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Another benefit of achieving an ε-stable outcome is that it helps the platform maintain its market

share. As explained in Section 2.2, we interpret the distributions Bij’s and Cij’s as modeling the

platform’s incomplete information on agent preferences, and a rival platform may in theory obtain

better information and steal users by offering better matches. However, ε-stability guarantees that

if each agent has a fixed cost ε of switching platforms, then even if a rival platform were to obtain

perfect information on preferences, it cannot attract away any group of users by matching them

with one another more efficiently: due to (5), any pair (i, j) ∈ I × J that is matched by the rival

platform would get at most ε each in surplus over what they currently get.

A potential concern with ε-stability is that it might be too hard to achieve, as ε-stability is

defined based on the actual preferences bij’s and cij’s, whereas the platform initially only knows

the distributions Bij’s and Cij’s. This concern is addressed in the next section, which shows that

a platform can facilitate an ε-stable outcome using a variety of matchmaking strategies.

2.4. Matchmaking protocols

In order to analyze the performance of a given matchmaking strategy, we need to make assumptions

on how agents behave. In the main body of the paper, we make the simplifying assumption that

agents are non-strategic, which means that they truthfully reveal whatever information that is

elicited from them. Incentives to deviate from truthful behavior are discussed in Appendix A.

The entire process of match formation, which accounts for both platform design and agent

behavior, is referred to as a matchmaking protocol, where the word “protocol” is inherited from

communication complexity theory and denotes a precise sequence of steps whereby communication

takes place. Examples of matchmaking protocols are given below. Each protocol is a precise model

of the matchmaking process under one of the four matchmaking strategies described in Section 1.

As will be shown, each of the four matchmaking protocols is able to achieve an ε-stable outcome,

and subsequent analysis will measure the efficiency of each protocol by quantifying the amount of

communication it needs to achieve this goal.

Protocol 1 models how agents interact when customers are given a searchable directory of

providers along with information on the surpluses required by each provider. In this protocol, each

customer i contacts providers in decreasing order of estimated surplus bij− v̂j− ĉij, where v̂j repre-

sents the minimum surplus that provider j requires to obtain his service, and ĉij is the customer’s

estimate of the provider’s cost for serving her. (For concreteness, the paper always uses female

pronouns to refer to customers and male pronouns to refer to providers.) As customers contact

providers, they obtain more accurate cost information, and update ĉij accordingly. Providers also

update the surplus v̂j they require based on supply and demand. The protocol assumes that v̂j is

initialized to zero, and ĉij is initialized to be close to the lower support of the cost distribution
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Cij. This can be interpreted as providers being initially pessimistic of their competitiveness in the

market and customers being optimistic that they can find providers at relatively low costs.

Protocol 1 (Customers search) Given ε > 0.

1. Initialization: Initialize the matching x to be empty and the price vector p to be zero. Initialize

the set of active searching customers as A= I. For each provider j ∈ J , initialize his required

surplus as v̂j = 0. For each customer i∈ I, initialize her cost estimate as ĉij = cij + ε for each

j ∈ J , where cij is the lower support of the cost distribution Cij. Define her estimated surplus

from being served by each provider j as

Uij(v̂, ĉ) := bij − v̂j − ĉij. (10)

2. Customers search for providers:

(a) Customer selection: If |A|= 0, then terminate the protocol with the transaction outcome

(x,p). Otherwise, select an arbitrary customer i∈A and proceed to step (b).

(b) Provider interaction: For the selected customer i, if Uij(v̂, ĉ) < 0 for all j ∈ J , then

the customer communicates that she is not interested in any provider, and the protocol

removes i from A and goes back to step (a). Otherwise, customer i contacts a provider

j∗ ∈ arg max{Uij(v̂, ĉ)}, (11)

and asks whether he is willing to serve her at price v̂j∗ + ĉij∗.

• If cij∗ ≤ ĉij∗, the provider answers “yes” and becomes matched to i: update xij∗ = 1,

pi = v̂j∗+ ĉij∗, and remove i from A. If j∗ was previously matched to another customer

i′, then i′ becomes unmatched: update xi′j∗ = 0, pi′ = 0, and add i′ to A. Provider j∗

increments v̂j∗ by ε and communicates this to the market. Go back to step (a).

• If cij∗ > ĉij∗, the provider answers “no” and communicates his actual cost cij∗ to the

customer. The customer updates ĉij∗ = cij∗. Repeat step (b).

From a technical perspective, Protocol 1 is a generalization of the Auction mechanism of Bert-

sekas (1988) and Demange et al. (1986) to a setting with incomplete information: if the cost

estimates ĉij’s were initialized to the actual costs cij’s, then Protocol 2 becomes equivalent to the

mechanism analyzed in Bertsekas (1988) and Demange et al. (1986), with provider surpluses being

bid up in a multi-item ascending auction. The initialization of the v̂j’s and ĉij’s in Step 1 are

justified by the following proposition.

Proposition 2 (Effectiveness of Protocols 1). Given any ε > 0, Protocol 1 always termi-

nates with an ε-stable outcome.
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Proof of Proposition 2. To see that Protocol 1 always terminates in finitely many iterations,

observe that in Step 2(b), whenever a provider j answers “yes” to a customer, v̂j increments by ε.

However, v̂j will never increment more than d1/εe times since v̂j will not increment when it exceeds

1, as otherwise Uij(v̂, ĉ)< 0 for all i∈ I by the bounded support assumption in (7) and j would not

be contacted by any customer. Moreover, a provider j will answer “no” to a customer i at most

once, as by the second time i contacts j, ĉij would be equal to cij.

It remains to show that the final outcome is ε-stable. Observe first that the initialization of ĉij

implies that throughout the protocol,

cij ≥ ĉij − ε for all (i, j)∈ I ×J. (12)

Let (x,u, v) be the outcome corresponding to the final transaction outcome (x,p). Observe that

the definition of the transaction price in Step 2(b) is such that whenever a pair is matched, both

agents obtain a non-negative surplus, so u≥ 0 and v≥ 0. Moreover,

ui ≥ bij − v̂j − ĉij for all (i, j)∈ I ×J , (13)

vj ∈ [v̂j − ε, v̂j] for all j ∈ J . (14)

To see (13), observe that if i is unmatched, then the left hand side is zero and the right hand side is

negative; if i is matched to j∗, then (13) follows from (11). Moreover, (14) follows from the definition

of the transaction price in Step 2(b) and from (12), as well as from the fact that v̂j would have

incremented by ε after the last time that provider j was tentatively matched. Combining (12), (13)

and (14), we have ui ≥ bij − vj − cij − 2ε for all (i, j)∈ I ×J , so (x,u, v) is ε-stable. �

Protocol 2 (Providers search) This protocol is the mirror image of Protocol 1 with the roles of

customers and providers interchanged. A full statement is given in Appendix B.

By symmetry, Protocol 2 also guarantees an ε-stable outcome upon termination.

Protocol 3 is a generalization of Protocol 1 in which the cost estimate ĉij is not necessarily

initialized to be close to the lower support cij, but may be based on another quantile zij of the

commonly known cost distribution Cij. The exact choice of zij is a parameter of the protocol

that will be optimized later. When zij = cij, Protocol 3 is identical to Protocol 1; when zij takes

on higher values, Protocol 3 involves an additional step in which providers initiate contact with

customers for whom cij < zij. One can interpret this as providers browsing through a searchable

directory of customers and offering special discounts to their preferred customers, which in the

model corresponds to those whom they can serve at especially low costs. As will be shown in

Section 3.2, the advantage of this design is that if certain providers are very picky about their

preferred customers, it would be more efficient for these providers to initiate contact first.
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Protocol 3 (Both sides search) Given ε > 0, as well as an I×J matrix z that depends only on

the commonly known market information (I, J,B,C).

1. Initialization: Exactly as in Step 1 of Protocol 1, except that for each customer i ∈ I, her

cost estimate is initialized as ĉij = zij + ε for each j ∈ J .

2. Providers search for customers: Each provider j ∈ J initiates contact with each customer

i∈ I such that cij < zij, and communicates cij to customer i, who updates ĉij = cij.

3. Customers search for providers: Exactly as in Step 2 of Protocol 1.

Proposition 3 (Effectiveness of Protocol 3). Given any ε > 0 and any choice of z, Proto-

col 3 always terminates with an ε-stable outcome.

Proof of Proposition 3. Observe that the number of customer-provider pairs that interact in

Step 2 is bounded above by |I| × |J |. Moreover, at the end of Step 2, we have cij ≥ ĉij − ε for

all (i, j) ∈ I × J , as in condition (12) in the proof of Proposition 2. The same argument as in the

proof of Proposition 2 can now be applied to show that Step 3 always terminates in finitely many

iterations with an ε-stable outcome. �

Protocol 4 represents a version of centralized matching, in which the platform uses agents’

responses to questionnaires to recommend a limited number of suitable providers to each customer

along with the transaction price. To account for idiosyncratic preferences unknown to the platform,

agents have the option of rejecting non-ideal recommendations. The final matching is determined so

as to maximize the number of matches. This can either be interpreted as throughput optimization

on the part of the platform, or as an approximation to a decentralized process of match formation

among the recommended pairs.

Protocol 4 (Centralized matching) Given ε > 0 and the following parameters, each of which

can only depend on the commonly known market information (I, J,B,C): a price vector p ∈ Rn,

and a set Si ⊆ J of match recommendations for each customer i ∈ I. Define bij to be the upper

support of the benefit distribution Bij and cij to be the lower support of the cost distribution Cij.

1. Preference elicitation: For each pair (i, j) where j ∈ Si, ask customer i whether bij ≥ bij− ε

and ask provider j whether cij ≤ cij + ε. If both agents answer “yes,” then the pair is said to

be an accepted recommended pair.

2. Match determination: Compute a maximum cardinality matching x among the accepted

recommended pairs. Terminate the protocol with the transaction outcome (x,p).

Compared to the other protocols, Protocol 4 has the following qualitative advantages:

1. All communication can be done simultaneously, so agents do not have to wait for certain

potential partners to respond before knowing what to do next.
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2. Agents can limit their attention to the set of recommended partners, and do not have to know

their exact preferences over the entire directory of possible partners.

Unlike Protocols 1-3, Protocol 4 does not necessarily yield ε-stable outcomes for all markets.

Section 3.3 derives regularity conditions under which it achieves an ε-stable outcome with high

probability, and shows how the price vector and match recommendations can be selected.

3. Suitable market characteristics

This section derives the market characteristics under which each of the four matchmaking protocols

achieves an ε-stable outcome using low amounts of communication. For now, the “amount of

communication” is measured by the number of interactions, where an interaction is defined in

Protocols 1, 2 and 3 as each instance in which one agent initiates contact with another, and is

defined in Protocol 4 as each match recommendation. (Section 4 analyzes a complementary metric,

which is the number of bits of information communicated.) The main takeaway is that the driver

of matchmaking efficiency is whether preferences are easy to describe, as modeled by the following

parameters of the preference distributions.

Definition 1 (Preference density). For any market (I, J,B,C), define the preference den-

sity dI of customers as the largest value that satisfies the following condition:

P(bij ≥ bij − ε)≥ dI for all (i, j)∈ I ×J. (15)

Similarly define the preference density dJ of providers as the largest value such that

P(cij ≤ cij + ε)≥ dJ for all (i, j)∈ I ×J. (16)

Here, bij is the upper support of the distribution Bij and cij is the lower support of Cij. Note that

the bij’s and cij’s are allowed to be fully heterogeneous across (i, j) pairs.

We interpret a high value of dI as customers having easy-to-describe preferences. This is because

the upper support bij is based on agents’ initial descriptions of who they are and what they want.

(See Section 2.2 for a more detailed explanation of the relationship between the distribution Bij

and agents’ descriptions.) If agents’ descriptions already capture the most relevant information

about customer benefits, then bij is a good estimate of the true benefit bij. Here, being a “good

estimate” does not mean that bij is always close to bij, but only that bij is close to bij with some

probability dI , which represents the degree that customer benefts are well-approximated by their

upper supports. The reason that we use the upper support bij of benefit and the lower support cij

of cost is that for the purpose of identifying an ε-stable outcome, agent pairs (i, j) with high benefit

and low cost are the most relevant, as matched pairs tend to have a high value of bij − cij. From a

technical perspective, having an upper bound of benefits and a lower bound of costs allows us to
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conclude that certain (i, j) pairs are not ε-blocking, without needing to know the exact values of

bij and cij. This will be important in the analysis later.

Similarly, a high value of dJ corresponds to providers having easy-to-describe preferences. Table 3

restates Table 2 from Section 1.1 by expressing the characteristics of suitable markets in terms of

dI and dJ . The following subsections derive formal results that support this table.

Table 3 Market characteristics under which each matchmaking protocol presented in Section 2.4 achieves an

ε-stable outcome with high probability using low amounts of communication.

Matchmaking protocol Characteristics of suit-
able markets

Interpretation Analysis

1. Customers search dJ is high. Provider preferences are
easy to describe.

Sec. 3.1.

2. Providers search dI is high. Customer preferences are
easy to describe.

By symmetry.

3. Both sides search Neither dI or dJ is high. Neither side’s preferences
are easy to describe.

Sec. 3.2.

4. Centralized matching Both dI and dJ are high. Both sides’ preferences are
easy to describe.

Sec. 3.3.

3.1. Protocol 1 (customers search) is suitable when dJ is high

Recall from Proposition 2 that Protocol 1 always yields an ε-stable outcome upon termination, so

the main question is how quickly it terminates. The following result implies that the total number

of interactions in this protocol is inversely related to dJ . In other words, when dJ is high (i.e.,

provider preferences are easy to describe), then “customers search” is relatively efficient; when dJ

is very low, then “customers search” may not be suitable.

Proposition 4 (Performance of Protocol 1). In Protocol 1, with probability at least 1 −

e−n/2, the number of interactions per customer (i.e., the total number of interactions divided by n)

does not exceed

2

⌈
1

ε

⌉
1

dJ
. (17)

Proof of Proposition 4. An interaction in Protocol 1 corresponds to one iteration of Step 2(b).

Observe that if ε≥ 1, then by the initialization of ĉij in Protocol 1, no provider will answer “no”

to a customer in Step 2(b), and the number of interactions per customer is at most 1. For the

remainder of the proof, assume that ε < 1.

As discussed in the proof of Proposition 2, the number of increments of v̂j cannot exceed d1/εe,

as v̂j is initialized to 0, does not increment when it exceeds 1, and each increment increases it by

ε. Moreover, whenever a customer i contacts a provider j in Step 2(b), this interaction leads to an

increment in v̂j with probability at least dJ : if i has not contacted j before, then this holds by (16)
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and by the assumption that cij is independent from everything else; if i has contacted j before,

then i already has already updated ĉij to be equal to cij, and v̂j increments with probability 1.

Therefore, the total number of interactions is stochastically dominated by the sum of nd1/εe i.i.d.

geometric random variables, each with mean 1/dJ . The chance that this exceeds r := 2nd1/εe/dJ is

equal to the chance that a Binomial(r, dJ) random variable is less than rdJ/2, which by a standard

Chernoff bound is bounded above by

exp

(
−rd

J

8

)
= exp

(
−d1/εen

4

)
≤ exp

(
−n

2

)
. (18)

The last inequality follows from ε < 1. �

In interpreting the bound in (17), the most important term is the 1/dJ , as this is an upper bound

for the expected number of providers a customer needs to contact in order to receive a favorable

response. In the proof, the factor of 2 is used to obtain the high probability guarantee, and can be

reduced to any constant larger than 1 if one allows for a weaker probabilistic guarantee. The d1/εe

arises from the bidding process for provider surpluses, and is an artifact of the assumption that

the v̂j’s are initialized to zero. In reality, one would expect providers to have a better sense of how

much surplus they can expect when they join the market, and if the v̂j’s were initialized at their

final values, then the d1/εe term would disappear.

Since Protocol 2 (provider search) is the mirror analog of Protocol 1, the above analysis implies

that Protocol 2 is suitable when dI is high (i.e., customer preferences are easy to describe).

3.2. Protocol 3 (both sides search) is suitable when neither dI or dJ is high

The following proposition illustrates that when dI are dJ are very low, Protocols 1 and 2 may both

perform badly when the market size is large, whereas Protocol 3 may perform very well.

Proposition 5 (Illustration of the benefit of allowing both sides to search).

Consider the following market: for all (i, j),

bij =

{
1 with probability dI := 1/(2n),

0.6 otherwise;
(19)

cij =

{
0 with probability dJ := 1/(2n),

0.4 otherwise.
(20)

In this market, for any ε < 0.4, the expected number of interactions per customer is at least 0.47n

under Protocol 1 or 2, but is equal to 1.5 under Protocol 3 if the parameter zij ≡ 0.4.

Proof of Proposition 5. Consider applying Protocol 1 in the above market. We say that a cus-

tomer has no preferred provider if bij = 0.6 for all j ∈ J . Such a customer would contact every

provider in order to find one who can serve with zero cost. The expected number of interactions
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before she either finds a zero-cost provider or has obtained cost information from every provider is

E[min(X,n)], where X is a geometrically distributed random variable with mean 2n. By a straight-

forward calculation, E[min(X,n)] = 2n(1− q), where q := [1− 1/(2n)]n. The expected number of

customers with no preferred providers is qn. Hence, in Protocol 1, the expected number of inter-

actions per customer is at least 2(1− q)qn≥ 2(1− e−0.5)e−0.5n> 0.47n. The first inequality follows

from the fact that f(y) = (1− y)y is minimized if y is furthest from 0.5, and 0.5≤ q≤ e−0.5.

By symmetry of the given benefit and cost distributions, the same bound applies for Protocol 2.

In Protocol 3, an interaction corresponds to each instance in which a provider contacts a customer

in Step 2, or a customer contacts a provider in Step 3. If zij = 0.4 for all (i, j), then the expected

number of interactions in Step 2 is 0.5n, as only zero-cost providers reach out. At the end of Step

2, every customer can be certain of the cost of every provider: customer i can safely assume that

provider j’s cost of serving her is 0.4, unless she was contacted by the provider, in which case the

cost is 0. Since provider costs are no longer uncertain, every customer would contact exactly one

provider in provider 3. The expected number of interactions per customer is hence 0.5n/n+1 = 1.5,

as desired. �

For best performance, Protocol 3 requires a good choice of the parameters zij’s, which can be

interpreted as customers having access to a good initial estimate of provider costs based on the

commonly known information. The following proposition analyzes the performance of Protocol 3

under an arbitrary choice of z.

Proposition 6 (Performance of Protocol 3). Given any market and any ε > 0, the follow-

ing expression upper-bounds the expected number of interactions in Protocol 3 under a given choice

of z.

N(z) :=

( ∑
i∈I,j∈J

P(cij < zij)

)
+

⌈
1

ε

⌉(∑
j∈J

1

mini∈I{P(cij ≤ zij + ε|cij ≥ zij)}

)
. (21)

Proof of Proposition 6. The first term in (21) is the expected number of interactions in Step

2. The second term is an upper-bound of the expected number of interactions in Step 3: As in the

proof of Proposition 4, for a given provider j, if P(cij ≤ zij + ε|cij ≥ zij)≥ dj, then the provider is

contacted by at most 1/dj customers in expectation before incrementing his required surplus v̂j

once, which can increment at most d1/εe times in total. �

The above implies that a good initial cost estimate zij should have the following two properties:

1. It is “optimistic,” in the sense that P(cij < zij) is small. This ensures that a provider does

not need to reach out to too many customers in Step 2. In Proposition 5, P(cij < zij) = 1/(2n).

2. It is “attainable,” in the sense that P(cij ≤ zij + ε|cij ≥ zij) is large. This ensures that a

customer does not need to reach out to too many providers in Step 3 before finding one who

agrees to provide service at the desired price. In Proposition 5, P(cij ≤ zij + ε|cij ≥ zij) = 1.
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A good choice of z for a given market can be found by minimizing N(z). For the market in

Proposition 5, minimizing N(z) yields the optimal choice of zij ≡ 0.4. The following choice of z

approximately minimizes N(z) for worst-case preference distributions:

z∗ij := inf{y ∈ [cij,1] : P(cij ∈ [y, y+ ε])≥ 1/
√
n}. (22)

Whenever ε≥ 1/
√
n, the infimum is guaranteed to exist by the Pigeonhole Principle because P(cij ∈

[0,1]) = 1. The following proposition shows that the above choice of z induces a performance

guarantee that scales according to
√
n, which will be shown in Section 4 to be asymptotically the

best possible if both dI and dJ are allowed to be very low.

Proposition 7 (Distribution-independent guarantee of Protocol 3). Given any market

and any ε ≥ 1/
√
n, consider Protocol 3 (both sides search) with parameter z∗ as in (22). With

probability at least 1− 2e−n/2, the number of interactions per customer does not exceed

4

⌈
1

ε

⌉√
n. (23)

Proof of Proposition 7. If ε≥ 1, then z∗ij ≡ cij and the number of interactions per customer in

Protocol 3 is at most 1. In the remainder of the proof, assume ε < 1, so d1/εe ≥ 2.

By the construction of z∗,

P(cij < z
∗
ij)< z

∗
ij

1

ε
√
n
≤ 1

ε
√
n
. (24)

Define r1 := ((1/ε) + 0.5)n1.5. The chance that the total number of interactions in Step 2 exceeds

r1 is upper-bounded by the chance that a Binomial(n2, (1/ε)n−0.5) random variable exceeds r1,

which by Hoeffding’s inequality is no more than exp(−2(0.5n1.5)2/n2) = exp(−n/2).

Moreover, the construction of z∗ implies that P(cij ≤ z∗ij + ε|cij ≥ z∗ij) ≤ P(cij ∈ [z∗ij, z
∗
ij + ε]) ≥

1/
√
n. Therefore, the total number of interactions in Step 3 of Protocol 3 is stochastically dominated

by the sum of nd1/εe i.i.d. geometric random variables, each with mean
√
n. The chance that

this exceeds r2 := 2d1/εen1.5 is upper-bounded by the chance that a Binomial(r2,1/
√
n) random

variable being less than r2/(2
√
n), which by a standard Chernoff bound is upper-bounded by

exp(−r2/(8
√
n))≤ exp(−n/2).

Combining the above, the probability that the number of interactions per customer exceeds

4d1/εe
√
n> (r1 + r2)/n is upper-bounded by 2exp(−n/2), as desired. �

3.3. Protocol 4 (centralized matching) is suitable when both dI and dJ are high

Intuitively speaking, when the preferences of both sides are easy to describe, then the platform can

suggest a good matching using only agents’ initial descriptions, and it is unnecessary for either side

to search through the set of all potential partners. If there are idiosyncratic preferences that are
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not captured by the initial descriptions, then agents need to be allowed to choose among several

recommended options, but the number of options needed is small. These ideas are formalized by

the analysis in this section.

For clarity of exposition, consider first the simpler case in which both sides of the market are

ex-ante homogeneous: i.e., the distributions Bij and Cij do not depend on (i, j). Let b denote the

upper support of the common benefit distribution and c the lower support of the common cost

distribution. Given ε > 0, assume that b − c ≥ 2ε, as otherwise the empty matching is ε-stable.

The following proposition shows that in this case, whenever the product dIdJ is sufficiently large,

centralized matching with randomly chosen recommendation sets yields an ε-stable matching with

high probability, and the expected number of recommendations per agent is small.

Proposition 8. Choose any y ∈ [c+ε, b−ε]. Consider Protocol 4 with price pi ≡ y, and each rec-

ommendation set Si is randomly generated so that each provider j ∈ J is contained in Si with prob-

ability a := min(1, (3 lnn)/(ndIdJ)), independently across (i, j) pairs. If dIdJ ≥min(1, (3 lnn)/n),

then this protocol yields an ε-stable outcome with probability at least 1− 3/n2.

Note that the expected number of recommendations per customer is

E[|Si|] = an≤ 3 lnn

dIdJ
, (25)

which is small if dIdJ is relatively large.

Proof of Proposition 8. By construction of Protocol 4, a recommended pair (i, j) is accepted

if both bij ≥ b− ε and cij ≤ c+ ε, which guarantees a total surplus of bij + cij ≥ b− c− 2ε. Each

recommended pair is accepted with probability at least dIdJ . The final outcome is ε-stable whenever

there exists a perfect matching within the subgraph of accepted recommended pairs. This is because

when such a perfect matching exists, ui ≥ b − ε − y ≥ 0 for all i ∈ I and vj ≥ y − c − ε ≥ 0 for

all j ∈ J . Moreover, ui + vj + 2ε ≥ b− c ≥ bij − cij for all (i, j). Now, if a = 1 and dIdJ = 1, then

every pair (i, j) is an accepted recommended pair and there is trivially a perfect matching. On the

other hand, if a < 1 or dIdJ < 1, then adIdJ = (3 lnn)/n, and the probability that each (i, j) is an

accepted recommended pair is at least r := (3 lnn)/n. The following lemma implies that a perfect

matching exists with probability at least 1− 2.1ne−rn = 1− 2.1/n2 > 1− 3/n2. The proof of the

lemma is in Appendix D.1 and is related to the analysis of Erdös and Rényi (1964) regarding the

probability that a perfect matching exists in a random bipartite graph. �

Lemma 1. Given any n≥ 1 and r≥ (3 lnn)/n, consider a random bipartite graph with n nodes

on each side, such that there exists an edge between each pair of nodes (i, j) with probability at

least min(1, r), independently across (i, j) pairs. The final graph contains a perfect matching with

probability at least 1− 2.1ne−rn.



20 Shi: Optimal Matchmaking Strategy

Returning to the general case in which agents are not ex-ante homogeneous, so that Bij and Cij

may depend on (i, j). The following definition allows us to parameterize the degree of homogeneity

on one side of the market using a certain parameter l. The definition can be applied to either side

of the market, but for concreteness we focus on the case of homogeneity among the providers.

Definition 2 (Relatively homogeneous). Given a market (I, J,B,C), the providers are

said to be relatively homogeneous with minimum segment size l if the set J can be partitioned

into segments of size at least l: i.e., J =
⋃̇
k∈KJk, where K is the set of segments, Jk is the set of

providers in segment k, and |Jk| ≥ l for all k ∈K. The segmentation is such that the supports bij

and cij depend only on the customer i and the segment k that contains the provider j, but not on

the exact identity of the provider j ∈ Jk.

Note that every market satisfies the above definition if the minimum segment size l is 1. So the

above definition is only restrictive when l is large. We will show that whenever the product dIdJ

is weakly larger than the threshold min(1, (3 lnn)/l), then we can construct a price vector and

recommendation sets such that Protocol 4 yields an ε-stable matching with high probability, and

the expected number of recommendations per agent is at most (3 lnn)/(dIdJ), which is inversely

related to dIdJ . This implies that in any market, if both dI and dJ are sufficiently high, then

centralized matching is suitable. When l≤ 3 lnn, dIdJ ≥min(1, (3 lnn)/l) implies that dI = dJ = 1.

With a larger value of l, the requirement on the minimum value of dIdJ is correspondingly reduced.

The construction of the price vector and recommendation sets is based on computing a stable

transaction outcome (x̂, p) under the following optimistic estimates of benefits and costs:

b̂ij := bij − ε, ĉij := cij + ε for each (i, j)∈ I ×J . (26)

More concretely, let x̂ be an optimal basic solution to the following linear program (LP):

Maximize:
∑

i∈I,j∈J

(b̂ij − ĉij)x̂ij (27)

s.t.:
∑
j∈J

x̂ij ≤ 1 for each i∈ I. (28)∑
i∈I

x̂ij ≤ 1 for each j ∈ J . (29)

x̂≥ 0 (30)

Let ûi be an optimal dual variable corresponding to (28). Define the price vector p such that

pi :=

{
b̂ij − ûi if i is matched to j in x̂;

0 if i is unmatched in x̂.
(31)

Define the recommendation set Si as follows: if customer i is matched in x̂ to a provider of segment

k ∈K, then Si is a random subset of Jk where each provider j ∈ Jk is independently included with



Shi: Optimal Matchmaking Strategy 21

probability ak := min(1, (3 lnn)/(|Jk|dIdJ)); if i is unmatched in x̂, then Si := ∅. Note that the

expected number of match recommendations for each customer satisfies the upper bound:

E[|Si|]≤max
k∈K
{ak|Jk|} ≤

3 lnn

dIdJ
. (32)

Proposition 9 (Effectiveness and performance of Protocol 4). Given ε > 0 and a mar-

ket in which the providers are relatively homogeneous with minimum segment size l. Consider

Protocol 4 with the above choices of p and Si’s. If dIdJ ≥min(1, (3 lnn)/l), then this protocol yields

an ε-stable outcome with probability at least 1− 3/n2.

The proof of the above proposition is given in Appendix D.2. The proof is based on showing

that whenever dIdJ is sufficiently large, with high probability the protocol matches every customer

i who is matched in x̂ to a recommended provider j for whom the optimistic estimates b̂ij and

ĉij are accurate, meaning that bij ≥ b̂ij and cij ≤ ĉij. When this occurs, every agent is at least as

happy as under (x̂, p), which implies ε-stability by the construction of (x̂, p) and by (26).

The above analysis quantifies the number of match recommendations needed to achieve an ε-

stable outcome. A follow up paper, Shi (2022), studies a complementary question: if the platform

has a fixed budget on the number of recommendations it is allowed to provide to each customer,

how can the platform optimize its match recommendations to maximize the total market surplus.

4. Near-optimality based on communication complexity theory

The analyses in Section 3 identify the characteristics of suitable markets for each of the four

matchmaking protocols defined in Section 2.4. This section addresses a complementary question: for

markets with the given characteristics, what is the best possible way of matchmaking? Here, “best

possible” means that we are no longer restricting ourselves to the four protocols, but are interested

in establishing performance bounds that hold under any system of matchmaking. As discussed in

Section 1.2, the benefit of the communication complexity approach is its ability to establish such

bounds using information theory, without needing to make strong assumptions on the process of

matchmaking. We will show that for suitable markets, the four matchmaking protocols are in fact

near-optimal among all possible systems of matchmaking.

In order to compare the performance of disparate platform designs, we cannot use a design-

specific metric such as the number of interactions, as an interaction under “customers search” has

a different meaning from an interaction under “centralized matching.” A trivial way of minimizing

interactions is to have each agent interact once with the platform, where each interaction entails

communicating all of the agent’s preferences for all potential partners. Such a system requires

only one interaction per agent by construction, but the amount of information that needs to be

communicated in each interaction is enormous. A universal metric for quantifying the amount of
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information that needs to be communicated is the number of binary bits needed to encode that

information. This is the metric used in this section to quantify the amount of communication in

different matchmaking strategies.

More precisely, this section addresses the following question: for a given class of markets, in the

worst case, how many bits of communication per agent is needed to obtain an ε-stable outcome with

high probability? A lower bound to the minimum number of bits can be derived using information

theory by analyzing a worst-case market within the given class; an upper bound can be established

by constructing a protocol that guarantees good performance for every market in the given class. If

we identify a protocol whose performance guarantee is close to the lower bound, then that protocol

is said to provide near-optimal performance guarantees.

The findings are summarized in Table 4. The first column describes the space of matchmaking

protocols being considered, which are explained in Section 4.1. The second column describes the

class of markets being considered, and each class of market corresponds to whether dI or dJ is

required to be high, which is consistent with the classification of markets in Section 3. The next

two columns state lower and upper bounds on the minimum number of bits of communication

per agent needed in the worst case to obtain an ε-stable outcome with high probability. The last

column of Table 4 describes a protocol whose performance guarantee matches the upper bound.

Table 4 The number of bits of communication per agent needed in the worst case by any matchmaking

protocol that obtains an ε-stable outcome with high probability in every market within a given class. All bounds

assume a constant ε > 0, which is incorporated into the constants in the big-O notation.

Space of match-
making protocols
(See Sec. 4.1)

Class of markets Lower bound
(See Sec. 4.3)

Upper bound
(See Sec. 4.2)

Protocol achieving
the upper bound

Unrestricted

dJ ≥Ω(1) Ω(logn) O(logn) Protocol 1 (customers
search)dJ ≥ 1/

√
n Ω(1/dJ) O((logn)/dJ)

dI ≥Ω(1) Ω(logn) O(logn) Protocol 2 (providers
search)dI ≥ 1/

√
n Ω(1/dI) O((logn)/dI)

All markets Ω(
√
n) O(

√
n logn) Protocol 3 (both

sides search)

One-round proto-
cols

dIdJ ≥ Ω(1), and
providers are rela-
tively homogeneous.

Ω(logn) O(logn) Protocol 4 (central-
ized matching)

The main point of the table is that in each row, the upper and lower bounds differ by either a

constant or a logarithmic factor, which shows that Protocols 1-4 provide near-optimal performance

guarantees for their respective class of suitable markets. The findings corroborate Table 2 from
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the introduction. In the first two rows of Table 4, Protocol 1 provides near-optimal performance

guarantees, and the corresponding classes of markets are those in which dJ is sufficiently high,

meaning that provider proferences are easy to describe. The next two rows give the analogous

results for Protocol 2 when the roles of customers and providers are interchanged. The fifth row

shows that when we allow for arbitrary markets, in which case both dI and dJ might be very low,

there are markets in which order
√
n bits of communication per agent is necessary for obtaining

an ε-stable outcome with high probability, which means that the O(
√
n logn) guarantee provided

by Protocol 3 is near-optimal. The last row shows that when both dI and dJ are high, centralized

matching yields near-optimal performance.

The results in Table 4 are explained in the following subsections. Section 4.1 formally defines a

communication protocol, and uses it to define the space of all matchmaking protocols. Section 4.2

derives the upper bounds by counting the number of bits of communication used by the four pro-

tocols. Section 4.3 explains the derivation of the lower bounds, which establish the near-optimality

of the four protocols for their respective class of suitable markets.

4.1. Space of matchmaking protocols

The following concepts allow us to rigorously define the space of all possible matchmaking protocols

and compare the amount of communication across disparate platform designs.

Definition 3 (Communication protocol and communication cost). A communication

protocol with m agents is defined as follows. Each agent i ∈ [m] := {1,2, · · · ,m} is endowed with

her privately known input yi, where the vector of everyone’s inputs y= (y1, y2, · · · , ym) comes from

a certain set Y of possible input vectors. Without knowing y, the protocol begins by designating

a certain agent to send the first message. Whenever agent i ∈ [m] is designated to send the next

message, the message sent is a deterministic function of the agent’s private information and the

history of messages, which is defined as the sequence of all messages sent since the beginning of

the protocol by any agent. Each message is a sequence of binary bits, and the length of a message

is defined as the number of bits in the sequence. (For example, a message may be “110010,” which

involves 6 binary bits, so the length is 6.) After an agent sends a message, it is appended to the

history of messages. At that point, as a deterministic function of the history of messages, the

protocol either terminates with an output or designates another agent to send the next message.

Given the input vector y, the length of the protocol is defined to be the total number of bits in all

the messages that are sent before the protocol terminates. The per-agent communication cost of

the protocol is defined to be the maximum length of the protocol divided by the number of agents

m. (Here, the maximum is taken over all possible input vectors y ∈ Y .)
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In the communication complexity literature, the above is referred to as the blackboard model of

communication, as one can think of the agents as writing their messages to a common blackboard.

This model is very general, as almost all conceivable systems of multi-agent communication can

be simulated within this framework. For example, an alternative model of communication is one

in which each agent can only communicate to one receiver, whose identity needs to be commu-

nicated to the protocol before the message is sent. Let us refer to this as the pairwise model of

communication. This is a strictly more restrictive model because given any communication protocol

formulated in the pairwise model, one can replicate it in the blackboard model as follows: instead

of having agent i sending a message s to agent j, have agent i send the message (j, s), where the

first dlog2 ne bits are used to encode the identity of the receiver j and the following bits contain

the message s. The amount of communication does not increase from this modification, as even

in the pairwise model, agent i needs to communicate dlog2 ne bits to the platform to specify the

identity of the receiver. The only difference is that under the blackboard model, agents other than

j also receive the message, but having extra communication is not a problem as agents are non-

strategic. Hence, if we prove a lower bound that any communication protocol in the blackboard

model requires B bits of communication to achieve a certain outcome, the same lower bound would

hold in the pairwise model. However, the reverse does not hold, as the pairwise model cannot

simulate a protocol in the blackboard model without greatly increasing the number of messages.

For the purpose of proving lower bounds, it is desirable to establish the bounds under the most

general model of communication possible, as that makes the result the strongest. This is why we

define a communication protocol using the blackboard model in Definition 3.

Having defined a communication protocol, we are ready to define a matchmaking protocol.

Definition 4 (Matchmaking protocol). Given a market (I, J,B,C), a matchmaking proto-

col is a communication protocol in which the set of agents is I∪J ; the input vector is (yl : k ∈ I∪J),

where yi = (bij : j ∈ J) for every customer i ∈ I and yj = (cij : i ∈ I) for every provider j ∈ J ; the

support Y of the input vector y is induced by the support of the preference distributions B and

C; the output of the protocol is a transaction outcome (x,p) where x∈ {0,1}I×J and p∈RI .

One technical issue in defining a matchmaking protocol based on Definition 4 is that since it

builds on the definition of a communication protocol, all messages need to be encoded as binary bits,

as required in Definition 3. However, this is not a restrictive requirements, as it is straightforward

to modify the statements of the four protocols in Section 2.4 to satisfy this. The only non-trivial

change is that in Protocols 1 and 3, instead of having provider j communicate the exact value of

cij to customer i, the provider would communicate the integer ∆ij = d(cij − ĉij)/εe, which can be

encoded using dlog2(1/ε)e bits, and the customer would update her cost estimate to ĉij = ĉij +ε∆ij.

This is similar to rounding costs up to the nearest integer multiple of ε. Appendix C gives formal
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restatements of the four protocols that fit strictly within Definitions 3 and 4, as all messages are

encoded as bits. The appendix also shows that all of the propositions derived in Sections 2 and 3

continue to hold under these restated definitions.

The last row of Table 4 limits the space of matchmaking protocols to be those that allow only

one round of communication. This is formalized below:

Definition 5 (One-round matchmaking protocol). A one-round communication protocol

with m agent is a communication protocol in which each agent i∈ [m] sends a message µi based on

her private information yi alone, without seeing the messages sent by anyone else. After every agent

has sent a message, the protocol terminates with an output, which is a deterministic function of

the vector of messages µ= (µ1, µ2, · · · , µm). A one-round matchmaking protocol is defined exactly

as in Definition 4, except that the phrase “communication protocol” is replaced by the phrase

“one-round communication protocol.”

Appendix C shows that Protocol 4 is a one-round matchmaking protocol in the sense of Def-

inition 5. As discussed in Section 2.4, one qualitative advantage of centralized matching is that

it allows all communication to be simultaneous. This advantage is not captured by the notion of

communication cost in Definition 3, but is captured by Definition 5.

4.2. Derivation of the upper bounds in Table 4

The upper bounds in the first five rows of Table 4 are implied by the following proposition.

Proposition 10. Given any fixed ε > 0, there exists a constant κ> 0 such that for any market

with preference density parameters dI and dJ , there exists a matchmaking protocol that yields an

ε-stable outcome

a) with probability at least 1− e−n/2 using per-agent communication cost κ(logn)/dJ ;

b) with probability at least 1− e−n/2 using per-agent communication cost κ(logn)/dI ;

c) with probability at least 1− 2e−n/2 using per-agent communication cost 2κ
√
n logn.

The proof is given in Appendix D.4, and the three parts are based on counting the number of bits

of communication used in each interaction of Protocols 1, 2, and 3 respectively, and terminating

the protocol when the amount of communication reaches an upper-threshold. Since Section 3 shows

that the number of interactions in these protocols is small with high probability, the threshold is

not reached with high probability.

The upper bound in the last row of Table 4 is implied by the following result, which is a

straightforward corollary of Proposition 9. A formal proof is given in Appendix D.3, and shows

that although Proposition 9 is stated in terms of randomized recommendation sets, it also implies

the existence of good deterministic recommendation sets with similar guarantees.
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Proposition 11. Given ε > 0 and any market that is relatively homogeneous with minimum seg-

ment size l, with the preference density parameters satisfying dIdJ ≥min(1, (3 lnn)/l). There exists

a one-round matchmaking protocol for this market that yields an ε-stable outcome with probability

at least 1− 6/n2 using per-agent communication cost (6 lnn)/(dIdJ).

4.3. Derivation of the lower bounds in Table 4

The lower bounds in Table 4 are implied by the following proposition.

Proposition 12 (Lower bounds in communication cost). Define M(n,dI , dJ) as the

market with n agents on each side and binary preferences as given below: for each (i, j)∈ I ×J ,

bij =

{
.99 with probability dI ,

0 otherwise;
(33)

cij =

{
.01 with probability dJ ,

1 otherwise.
(34)

There exists universal constants κ1, κ2, κ3 > 0 such that for any ε < .49 and n≥ 64,

a) any matchmaking protocol that yields an ε-stable outcome with at least 99% probability in the

market M(n,1/n,1) requires a per-agent communication cost of at least κ1 logn;

b) for any dJ ∈ [1/
√
n,1/2], any matchmaking protocol that yields an ε-stable outcome with at

least 99% probability in the market M(n,1/(ndJ), dJ) requires a per-agent communication cost

of at least κ2/d
J .

c) any one-round matchmaking protocol that yields an ε-stable outcome with at least 99% proba-

bility in the market M(n, .5, .5) requires a per-agent communication cost of at least κ3 logn.

To see how Proposition 12 is related to Table 4 given at the beginning of Section 4, observe that

the lower bound of Ω(logn) in the first row of Table 4 is implied by part a) of Proposition 12,

as M(n,1/n,1) is a market with dJ = 1 = Ω(1). The lower bound of Ω(1/dJ) in the second row

follows from part b). The lower bounds in the third and forth rows follow by symmetry, after

interchanging dI and dJ . The lower bound of Ω(
√
n) in the fifth row of Table 4 follows from part

b) of Proposition 12 with dJ set to 1/
√
n. The lower bound of Ω(logn) in the last row follows from

part c), as M(n, .5, .5) is ex-ante homogeneous on both sides with dIdJ = 1/4 = Ω(1).

The proof of Proposition 12 is given in Appendices D.5 and D.6. While the proofs are written in

terms of information-theoretic constructs such as entropy, mutual information and KL-divergence,

the high level ideas are intuitive and are summarized below. The construction of the market

M(n,dI , dJ) implies that each pair (i, j) is profitable, meaning that (bij, cij) = (.99, .01), with prob-

ability dIdJ . Unprofitable pairs have negative surpluses. For any ε < .49 = (.99− .01)/2, the agents

in a profitable pair (i, j) cannot both be unmatched, as it is better for them to be matched to one

another. For each agent, the expected number of profitable partners is equal to dIdJn.
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In parts a) and b), dIdJ = 1/n, which implies that each agent has one profitable partner in

expectation. If a profitable pair (i, j) is such that the two agents do not have any other profitable

partners, then refer to it as a perfect pair. One can show that the expected number of perfect pairs

is at least e−2n, so each agent is in a perfect pair with constant probability. Any ε-stable outcome

must match every perfect pair. In part a), this requires each customer i in a perfect pair (i, j)

to identify her unique profitable partner j, which requires dlog2 ne bits of communication. This

explains the Ω(logn) bound in per-agent communication cost.

In part b), even if an agent is in a perfect pair, finding a profitable partner requires significant

interaction between agents. If customers reach out to providers, each would need to reach out to

1/dJ providers in expectation before finding one who can serve at a low cost. On the other hand, if

providers reach out to customers, each would need to reach out to 1/dI customers in expectation.

Since 1/dI ≥ 1/dJ by construction, it is more efficient for customers to initiate contact. This explains

the Ω(1/dJ) bound in part b). While the above reasoning is intuitive, a more elaborate argument

is needed to prove that no matchmaking protocol can beat this bound, and the argument in the

proof is closely related to the information-theoretic analysis of the Disjointness problem from the

communication complexity literature (Bar-Yossef et al. 2004, Braverman 2015).

In part c), dIdJ = 1/4, so each agent has many profitable partners. Suppose that each customer

indicates high preferences for a certain subset of k providers, such a message would require at least

Ω(k) bits. If k ≤ α log2 n for some α < 1, then in expectation, there are n2−k ≥ n1−α customers

for whom none of the providers they like reciprocate interest. Refer to such customers as being

unreciprocated. Having many unreciprocated customers makes it impossible for the protocol to

obtain an ε-stable outcome with high probability. To see this, note that if the protocol matches an

unreciprocated customer, it must be to a provider for whom she has not indicated interest. The

surplus of this match may be negative, which violates individual rationality. On the other hand, if

all unreciprocated customers are unmatched, then in expectation there would be n1−α unmatched

customers. However, this cannot be, as in this market, the maximum number of unmatched cus-

tomers in any ε-stable outcome is at most O(logn) with high probability.4 Hence, k ≥ Ω(logn),

which explains the lower bound in part c).

5. Extensions

The results derived in this paper continue to hold in more general settings.

4 In the market M(n, .5, .5), the chance that there are m unmatched agents in an ε-stable matching is upper-bounded

by
(
n
m

)2
(3/4)m

2

, as this is the probability that there are m customers and providers with no profitable matches
between them. This bound implies that m≤O(logn) with high probability.
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5.1. Correlated preferences

The assumption that the bij’s and cij’s are independently drawn for each (i, j) ∈ I × J is unnec-

essary for much of the analysis. The proofs of Propositions 2 and 3 do not use the independence

assumption at all, so Protocols 1, 2 and 3 are guaranteed to terminate with an ε-stable outcome

even if preferences are arbitrarily correlated. The performance guarantees for Protocols 1 and 3 in

Propositions 4, 6, 7 and 10 only require each cij to be independently drawn and independent of

the bij’s, but the matrix b of customer benefits can be arbitrarily correlated within itself.

If correlation in preferences exhibit certain structure, the platform can utilize the structure to

estimate the correlated components, so that the residual preferences are effectively independent.

For example, Appendix E shows how Protocols 1 and 3 can be modified to handle the following

type of correlation in provider costs: for each (i, j) ∈ I × J , cij = αi + βj + γij, where αi is an

unobserved fixed effect for each customer i, βj is an unobserved fixed effect for each provider j,

and γij is a residual term that is assumed to be independently drawn from known distributions.

5.2. Many-to-one matching

The analysis in this paper can easily be generalized to allow one side of the market to have multiple

match partners. For example, suppose that each provider j has the capacity to serve qj customers.

This can be transformed into a one-to-one matching model by replacing each provider j with qj

identical copies of himself, each with unit capacity. Each ε-stable outcome in this one-to-one model

maps back to an ε-stable outcome in the original many-to-one model. (See Appendix F for a formal

definition of ε-stable outcomes in the many-to-one model.) Hence, it suffices to consider the one-

to-one model in which certain providers have identical cost vectors. In this case, Protocols 1 and 3

can be modified by having customers who receive updated cost information from a provider to also

update her cost estimates for the identical copies of that provider. In Protocol 2, no modification is

needed, as the current analysis already allows for arbitrary preference correlations among agents on

the searching side, as pointed out in Section 5.1. In Protocol 4, the recommendation sets need to be

selected such that two copies of the same provider are recommended to disjoint sets of customers.

This implies that a provider with a larger capacity should be recommended to more customers, so

as to maximize the chance that his capacity can be fully utilized.

5.3. Dynamic arrival of customers

While the paper abstracts away from issues of timing by studying a static model, Appendix G

shows that the main insights continue to hold in a model where customers arrive to the market

according to a stationary stochastic process while providers remain perpetually in the market. Each

provider is associated with a certain capacity, which represents the maximum rate at which he can

serve customers in the long run.



Shi: Optimal Matchmaking Strategy 29

The appendix shows that suitably modified versions of the four matchmaking protocols provide

near-optimal performance guarantees for their respective class of suitable markets, exactly as in

Table 4. The protocols match agents whenever m new customers arrive, where m is referred to as

the batch size. A new insight is that the four protocols have different requirements on batch size: the

performance guarantees for the dynamic versions of Protocols 1 and 4 allow m= 1, which means

that customers can be matched immediately upon arrival. On the other hand, optimal performance

of Protocols 2 and 3 requires m to be sufficiently large. This corresponds to the intuitive fact that

in order for providers to efficiently search across customers, there needs to be a certain market

thickness on the customer side, as it is inefficient to require providers to make a decision on whether

to reach out to each customer as soon as she arrives.

5.4. Alternative model without transfer payments

While the results in this paper are presented a model with transfer payments, Appendix H shows

that the insights also hold under an analogous model without transfer payments. Such a model is a

better fit when monetary transfers are unimportant or when payments are exogenously determined,

such as in dating markets or in the academic job market. The appendix presents modified versions

of the four protocols under such a model and rederives all of the paper’s results. The main difference

is that instead of helping agents to estimate the transaction price, the protocols help agents to

estimate which partners they can realistically be matched with, which plays the role of “prices” in

such markets and is also determined endogenously based on supply and demand.

6. Managerial insights for two-sided marketplaces

The analysis in this paper suggests the following guidelines for the practical implementation of

two-sided marketplaces. First, it is important for platforms to understand the nature of preferences

for the intended user base: i.e., whether they are easy to describe using a short questionnaire. If

preferences on both sides are easy to describe, then centralized matching is a good strategy. If

preferences on one side are hard to describe, then the platform should not attempt to do central-

ized matching, but instead help agents with hard-to-describe preferences search among potential

partners and initiate contact. If both sides have hard-to-describe preferences, then the platform

should allow both sides to search and initiate contact. One way to estimate whether agents’ pref-

erences are hard to describe is to observe how many partners they compare before deciding to

match, or how often they reciprocate interest when contacted. (In the analysis, the primary role of

the parameters dI and dJ is to capture the likelihood of reciprocating interest.) It is possible that

among agents on the same side of the market, some have hard-to-describe preferences while others

have easy-to-describe preferences. In this case, the platform may find it beneficial to implement



30 Shi: Optimal Matchmaking Strategy

different matchmaking strategies at different sections of its website, and direct users to the most

appropriate section based on the complexity of their needs.

Secondly, the platform should do its best to make preferences easier to describe. This could

be done, for example, by employing a more specific, descriptive or quantitative questionnaire,

or by asking users to choose among a set of carefully curated keywords so as to segment them

into homogeneous sub-markets. By reducing the uncertainty in user preferences, the platform can

minimize the amount of back and forth communication needed during the matchmaking process.

Last but not least, the platform should ensure that good price estimates are available. Many two-

sided marketplaces already invest efforts in helping users to estimate prices. For example, the home

services platforms Angi, HomeAdvisor and Thumbtack all have dedicated portions on their websites

giving reasonable ranges of costs for various projects depending on the customer’s location. Labor

platforms such as Taskrabbit and Upwork ask providers to post their hourly rate, and the platforms

publish a reasonable range of hourly rate for each type of work. Amazon Home Services goes one

step further and posts standardized prices for each service item that is supported by the platform.

The paper suggests that these platforms should ensure that their price estimates are “optimistic

but attainable,” which is a common feature of the near-optimal protocols in this paper. Instead of

providing a wide range of prices or estimating the average or median price, the platforms should

focus on estimating what is a “good reasonable price,” which should be better than the average

quoted price but is nevertheless possible to obtain after comparing several quotes. Given such

price estimates, customers would naturally contact providers based on an optimistic expectation of

prices, as prescribed in Protocols 1 and 3, and providers would not need to communicate separately

with many customers about special deals, since many of these deals would already be incorporated

in the platform’s price estimates. As an alternative to providing price estimates directly, a platform

can also direct users to third-party websites that specialize in estimating what is a good reasonable

price for various services. Such websites exist in many industries and the paper’s analysis suggests

that they also can play an important role in improving the efficiency of two-sided marketplaces in

their respective industries.
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Erdös P, Rényi A (1964) On random matrices. Publ. Math. Inst. Hungar. Acad. Sci. (8).

Fradkin A (2017) Search, matching, and the role of digital marketplace design in enabling trade: Evidence

from Airbnb. Working paper, Boston University.

Gale D, Shapley LL (1962) College admissions and the stability of marriage. American Mathematical Monthly

69:9–15.

Gonczarowski YA, Nisan N, Ostrovsky R, Rosenbaum W (2015) A stable marriage requires communication.

Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 1003–1017

(SIAM).

Halaburda H, Jan Piskorski M, Yildirim P (2018) Competing by restricting choice: The case of matching

platforms. Management Science 64(8):3574–3594.

Horton JJ (2017) The effects of algorithmic labor market recommendations: Evidence from a field experiment.

Journal of Labor Economics 35(2):345–385.

Horton JJ (2018) Buyer uncertainty about seller capacity: Causes, consequences, and a partial solution.

Management Science 65(8).

Jagadeesan M, Wei A (2018) Varying the number of signals in matching markets. Christodoulou G, Harks

T, eds., Web and Internet Economics, 232–245 (Cham: Springer International Publishing).

Kanoria Y, Saban D (2017) Facilitating the search for partners on matching platforms: Restricting agent

actions. Working paper, Columbia University.



32 Shi: Optimal Matchmaking Strategy

Kushilevitz E, Nisan N (2006) Communication Complexity (Cambridge University Press).

Lee S, Niederle M (2015) Propose with a rose? Signaling in internet dating markets. Experimental Economics

18(4):731–755.

Li J, Netessine S (2019) Higher market thickness reduces matching rate in online platforms: Evidence from

a quasi-experiment. Management Science 66(1).

Newton C (2014) Taskrabbit is blowing up its business model and becoming the Uber for every-

thing. The Verge (June 17, 2014). Available at https://www.theverge.com/2014/6/17/5816254/

taskrabbit-blows-up-its-auction-house-to-offer-services-on-demand.

Roth AE (2008) What have we learned from market design? The Economic Journal 118(527):285–310.

Roth AE, Sotomayor O (1990) Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis

(Cambridge University Press).

Roth AE, Xing X (1994) Jumping the gun: Imperfections and institutions related to the timing of market

transactions. The American Economic Review 84(4):992–1044.

Roth AE, Xing X (1997) Turnaround time and bottlenecks in market clearing: Decentralized matching in

the market for clinical psychologists. Journal of political Economy 105(2):284–329.

Segal I (2007) The communication requirements of social choice rules and supporting budget sets. Journal

of Economic Theory 136(1):341–378.

Shapley LS, Shubik M (1971) The assignment game I: The core. International Journal of game theory

1(1):111–130.

Shi P (2022) Optimal match recommendations in two-sided marketplaces with endogenous prices. Available

at SSRN: https://ssrn.com/abstract=4034950.

Shieber J (2018) How did Thumbtack win the on-demand services market? by being the every-

thing store. Tech Crunch (May 5, 2018). Available at https://techcrunch.com/2018/05/05/

how-did-thumbtack-win-the-on-demand-services-market/.

Wu Y (2020) Yelp reinvents the hiring experience for home and local services. Yelp

Official Blog (August 18,2020). Available at https://blog.yelp.com/2020/08/

yelp-reinvents-the-hiring-experience-for-home-and-local-services.



Online Appendix

Table of Appendices

Appendix A: Strategic agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix B: Precise statement of Protocol 2 (providers search) . . . . . . . . . . . . . . . . . . . . . . 35

Appendix C: Restatements of the four protocols which satisfy Definition 4 . . . . . . . . . . . . . . . . 35

Appendix D: Omitted proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Appendix D.1: Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Appendix D.2: Proof of Proposition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Appendix D.3: Proof of Proposition 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Appendix D.4: Proof of Proposition 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Appendix D.5: Proof of Proposition 12 a) and b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Appendix D.6: Proof of Proposition 12 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendix E: Modifications of Protocols 1 and 3 under correlated provider costs . . . . . . . . . . . . . 46

Appendix F: Definition of ε-stable outcomes under many-to-one matching . . . . . . . . . . . . . . . . 49

Appendix G: Dynamic arrival of customers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Appendix G.1: Protocol 1 (customers search) in the dynamic model . . . . . . . . . . . . . . . . . . . 52

Appendix G.2: Protocol 2 (providers search) in the dynamic model . . . . . . . . . . . . . . . . . . . . 53

Appendix G.3: Protocol 3 (both sides search) in the dynamic model . . . . . . . . . . . . . . . . . . . 55

Appendix G.4: Protocol 4 (centralized matching) in the dynamic model . . . . . . . . . . . . . . . . . 56

Appendix G.5: Near-optimality in the dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Appendix H: Model without transfer payments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Appendix A: Strategic agents

The main body of the paper assumes that agents are non-strategic. This section argues that this is a

reasonable approximation in large markets. As shown in Section 7.2 of Roth and Sotomayor (1990), one

opportunity for strategic behavior in an assignment game is if agents on the same side collude. For example,

all customers can collude as in a bidding ring and decide on a matching. They can reduce payments so as

to pay all providers zero surplus, and re-distribute the gains among themselves via side payments. However,

such a high level of coordination is unrealistic in practice. In this section, we analyze the incentive for an

agent to unilaterally deviate from the protocols, assuming that everyone else partcipates truthfully.

Among the four protocols, centralized matching has the strongest incentive guarantee, as the match rec-

ommendations and transaction prices are computed using commonly known information alone, and deviating

from the protocol means either to reject a near-optimal match or to accept a sub-optimal one, neither of

which can result in much gain for the agent.
33
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Proposition A.1 (Incentive guarantees for centralized matching). Under the assumptions of

Proposition 9, with probability at least 1− 3/n2, Protocol 4 returns an ε-stable outcome, and no agent can

unilaterally deviate from the protocol and obtain a surplus that is more than ε higher than what the agent

gets when following the protocol.

Proof of Proposition A.1. Let Î denote the set of customers matched in x̂, as defined in the statement of

Proposition 9. Under the assumptions of Proposition 9, with probability at least 1− 3/n2, Protocol 4 when

everyone follows the protocol matches every customer in Î. Every customer not in Î receives zero surplus

and cannot do anything about it because the protocol does not elicit any inputs from her. Every customer

i ∈ Î receives a surplus of at least bij − ε− pi ≥ 0, whereas the maximum possible surplus she can get from

the protocol is bij − pi, since she cannot influence the transaction price pi nor the segment of providers she

is matched to. Hence, she cannot improve her surplus by more than ε regardless of what she does.

Consider now the providers. For providers in a segment k that is unmatched in x̂ (i.e., a segment k such

that
∑

i∈I,j∈Jk
x̂ij = 0), they receive zero surplus and cannot do anything about it. For providers in a fully-

matched segment k (i.e., a segment k such that
∑

i∈I,j∈Jk
x̂ij = |Jk|), the same argument applies as with

customers in Î. The only remaining case to consider is a partially matched segment (i.e., a segment k for

which 0<
∑

i∈I,j∈Jk
x̂ij < |Jk|). For such a segment k, the optimal dual variable v̂k to (29) would be equal

to zero, which implies that providers in such segments are paid cij + ε for being matched to any customer

i. Therefore, regardless of what they do, the maximum surplus they can possibly get is ε, whereas they are

guaranteed a non-negative surplus if they follow the protocol. �

For the search-based protocols, since Protocol 1 is a special case of Protocol 3 and Protocol 2 is the mirror

image of Protocol 1, it is sufficient to analyze the incentives to unilaterally deviate from Protocol 3. For a

customer i, deviating from Protocol 3 means to contact a provider j who does not maximize her estimated

surplus Uij(v̂, ĉ) = bij− v̂j− ĉij . Such an action is risky since it is possible that the provider j∗ who maximizes

Uij(v̂, ĉ) might be able to serve her at cost ĉij∗ , in which case she would be forgoing a near-optimal match

by not contacting j∗. For a provider, deviating from the protocol means to misrepresent his cost when

communicating with customers. However, communicating a cost that is lower than actual would reduce the

customer’s offer price and cut into his surplus, and communicating a cost that is higher than actual would

risk diverting customers to his competitors. When the market is large and there are many competitors,

an individual provider has limited market power and can gain little by raising prices beyond that which

balances his supply and demand. For a formal treatment of the idea that an individual participant in a large

assignment game has little market power, see Hassidim and Romm (2014) and Kanoria et al. (2018).
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Appendix B: Precise statement of Protocol 2 (providers search)

Given ε > 0.

1. Initialization: Initialize the matching x to be empty and the price vector p to be zero. Initialize the

set of active searching providers as A= J . For each customer i, initialize her required surplus as ûi = 0.

For each provider j ∈ J , initialize his benefit estimate as b̂ij = bij − ε for each i ∈ I, where bij is the

upper support of the benefit distribution Bij . Define his estimated surplus from serving each provider

i as

Vij(û, b̂) := b̂ij − ûi− cij . (B.1)

2. Providers search for customers:

(a) Provider selection: If |A|= 0, then terminate the protocol with the transaction outcome (x,p).

Otherwise, select an arbitrary provider j ∈A and proceed to step (b).

(b) Provider interaction: For the selected provider j, if Vij(û, b̂)< 0 for all i∈ I, then the provider

communicates that he is no longer interested in any customer, and the protocol removes j from A

and goes back to step (a). Otherwise, provider j contacts a customer

i∗ ∈ arg max
i∈I

{Vij(û, b̂)}, (B.2)

and asks whether she is willing to be served by him at price b̂ij − ûi.
• If bi∗j ≥ b̂i∗j , the customer answers “yes” and becomes matched to j: update xi∗j = 1, pi∗ =

b̂i∗j − ûi∗ , and remove j from A. If i∗ was previously matched to another provider j′, then j′

becomes unmatched: update xi∗j′ = 0, and add j′ to A. Customer i∗ increments ûi∗ by ε and

communicates this to the market. Go back to step (a).

• If bi∗j < b̂i∗j , the customer answers “no” and communicates her actual benefit bi∗j to the

provider. The provider updates b̂i∗j = bi∗j . Repeat step (b).

Appendix C: Restatements of the four protocols which satisfy Definition 4

The following restated definitions of the four protocols make it explicit how all communication is encoded

using binary bits, thus satisfying the the formal framework in Definition 4, which is based on Definition 3.

Without loss of generality, assume that agents on each side of the market are indexed from 1 to n, so that

the identity of a potential partner can be encoded using dlog2 ne bits.

Among Protocols 1, 2 and 3, note that Protocol 1 is a special case of Protocol 3 with zij ≡ cij , and Protocol

2 is the mirror image of Protocol 1. Therefore, it suffices to state Protocol 3.

Restatement of Protocol 3 Given ε > 0, as well as an I×J matrix z that depends only on the commonly

known market information (I, J,B,C).

1. Initialization: Initialize the matching x to be empty, the price vector p to be zero, and the set A= I.

For each j ∈ J , initialize v̂j = 0. For each (i, j) ∈ I × J , initialize ĉij = zij + ε. The variables x, p, A,

v̂ and ĉ can be interpreted as state variables of the protocol, which are initialized based on commonly

known information. Since the protocol is deterministic, they remain commonly known throughout the

protocol. Define Uij(v̂, ĉ) := bij − v̂j − ĉij.
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2. Providers search for customers: Each provider j ∈ J sends a message (i,∆ij := d(cij − ĉij)/εe) for

each i∈ I such that cij < zij. The protocol updates ĉij = ĉij + ε∆ij. Note that each such message can be

encoded using dlog2 ne+ dlog2(1/ε)e bits. After each provider is finished contacting customers, he uses

one bit to communicate that he is done.

3. Customers search for providers:

(a) Customer selection: If |A|= 0, then terminate the protocol with the transaction outcome (x,p).

Otherwise, select the customer i∈A with the smallest index5 and proceed to step 3(b).

(b) Provider interaction: The selected customer i sends the message “0” if Uij(v̂, ĉ)< 0 for all j ∈ J ,

in which case the protocol removes i from A and go back to step 3(a). Otherwise, customer i selects

the provider j∗ ∈ arg maxj{Uij(v̂, ĉ)} with the smallest index and sends the index of j∗. In either

case, customer i’s message can be encoded in dlog2(1 +n)e bits. The provider j∗ responds with one

bit indicating whether cij∗ ≤ ĉij∗ .
• If “yes,” then the protocol increments v̂j∗ by ε, updates xij∗ = 1, pi = v̂j∗ + ĉij∗ , and removes

i from A. If j∗ was previously matched to another customer i′, then the protocol updates

xi′j∗ = 0, pi′ = 0, and adds i′ to A. Go back to step 3(a).

• If “no,” then provider j∗ sends another message using dlog2(1/ε)e bits encoding ∆ij∗ :=

d(cij∗ − ĉij∗)/εe. The protocol updates ĉij∗ = ĉij∗ + ε∆ij∗ . Repeat step 3(b).

Besides rewording the description so it is clear how it fits within the definition of a communication protocol

in Definition 3, the only change in the above from the original definition of Protocol 3 in Section 2.4 is

that provider j communicates ∆ij = d(cij − ĉij)/εe instead of the exactly cost cij , and the cost estimate of

customer i is updated to ĉij = ĉij + ε∆ij . By construction, this ensures that ĉij ≤ cij + ε throughout Step 3

of the protocol. Moreover, a provider j who communicates his updated cost information ∆ij to customer i

would never respond with “no” the next time customer i indicates interest in Step 3(b). Finally, under this

modification, the probability that provider j responds with “yes” in Step 3(b) remains the same as before,

which is equal to P(cij ≤ zij + ε|cij ≥ zij) if j has not yet sent updated cost information to customer i, and

equal to 1 otherwise. Therefore, the statements and proofs of Propositions 2, 3, 4, 5, 6 and 7 continue to

hold under the restated description of Protocols 1, 2 and 3, without requiring any change at all.

The following definition of Protocol 4 is equivalent to the one in Section 2.4, but the format by which

communication takes place is spelled out more precisely. Note that the total number of bits of communication

is equal to 2
∑

i∈I |Si|.

Restatement of Protocol 4 Given ε > 0, price vector p∈Rn, a set Si ⊆ J for each customer i∈ I. Define

the inverse mapping Tj := {i∈ I : j ∈ Si}.
1. Preference elicitation: Each customer i∈ I sends a message with |Si| bits. Each bit k ∈ {1,2, · · · |Si|}

indicates whether bij ≥ bij− ε, where j is the provider in Si with the kth smallest index. Similarly, each

provider j ∈ J sends a message with |Tj | bits indicating whether cij ≤ cij + ε for each recommended

partner i∈ Tj. For each recommended pair (i, j), if both agents indicated “yes” regarding this pair, then

the pair is said to be accepted.

5 Any other deterministic tie-breaking rules can be used.
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2. Match determination: Compute a maximum cardinality matching x among the accepted recom-

mended pairs. Terminate the protocol with the transaction outcome (x,p).

Appendix D: Omitted proofs

D.1. Proof of Lemma 1

If n≤ 4, then (3 lnn)/n > 1, and a perfect matching always exists since we have a complete graph. This is

also the case if r≥ 1. Assume for the remainder of the proof that n≥ 5 and r < 1.

Let the node sets in the bipartite graph be denoted as I and J , with |I|= |J |= n. By Hall’s Theorem, if

a perfect matching does not exist, then there exists sets S ⊆ I and T ⊆ J with |S|+ |T |= n+ 1 such that

there are no edges between S and T . (This observation is also the starting point of the analysis in Erdös and

Rényi (1964), but their analysis is optimized for the case in which r ≈ (lnn)/n, whereas we derive tighter

bounds for the case in which r≥ (3 lnn)/n.) Let Q(n, r) be the probability that a perfect matching does not

exist, then,

Q(n, r)≤
n∑
k=1

(
n

k

)(
n

n+ 1− k

)
(1− r)k(n+1−k) (D.1)

≤ ne−rn
∑
k=1

q(n, r, k), (D.2)

where q(n, r, k) :=
1

n

(
n

k

)(
n

k− 1

)
(1− r)k(n+1−k)−n. (D.3)

Since q(n, r, k) is non-increasing in r, it suffices to prove that F (n)< 2.1 for all n≥ 5, where

F (n) :=

n∑
k=1

q

(
n,

3 lnn

n
,k

)
. (D.4)

It is straightforward to verify numerically that

max
5≤n≤49

{F (n)}= F (16) = 2.0083... < 2.1. (D.5)

It remains to show that F (n)< 2.1 for all n≥ 50. Note that q(n, (3 lnn)/n,k)≤ f(n,k), where

f(n,k) :=
1

n

(
n

k

)(
n

k− 1

)
exp

(
−3 lnn

n
[k(n+ 1− k)−n]

)
. (D.6)

Observe that f(n,k) = f(n,n+ 1− k), and f(n,1) = 1. Moreover, for n≥ 50, 3(n− 2)/n≥ 2.88, so

f(n,2) =
n(n− 1)

2
exp

(
−3 lnn

n
(n− 2)

)
≤ 1

2
n−.88. (D.7)

Now,
f(n,k+ 1)

f(n,k)
=

(n− k)(n− k+ 1)

k(k+ 1)
exp

(
−3 lnn

n
(n− 2k)

)
. (D.8)

When k ∈ [2, n/6], (n− 2k)/n≥ 2/3, so (D.8) is bounded above by 1/(k(k+ 1))≤ 1/6. When k ∈ [n/6, n/4],

(n− 2k)/n≥ 1/3, and (n− k)(n− k+ 1)/(k(k+ 1))≤ 25, so (D.8) is bounded above by 25/n≤ 1/2. Thus,
dn/3e∑
k=2

f(n,k)≤ f(n,2)

(
1 +

1

2
+

1

22
+ · · ·

)
≤ n−.88. (D.9)

Now, when k ∈ [n/3,2n/3], since
(
n

k

)
≤ 2n, and 2(n− 3)/3≥ n/2 + 1 for n≥ 18, we have

f(n,k)≤ 1

n
22n exp

(
−3 lnn

n

[
2

9
n(n− 3)

])
≤ 1

n2

(
16

n

)n/2
≤ 1

n2
. (D.10)

Combining the above, we have that for all n≥ 50,

F (n)≤
n∑
k=1

f(n,k)≤ 2 + 2n−.88 +n−1 < 2.1, (D.11)

as desired. �
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D.2. Proof of Proposition 9

Note that the LP given in (27)-(30) has a totally unimodular constraint set, so that in an optimal basic

solution, x̂ij ∈ {0,1} for all (i, j)∈ I × J . The dual LP is given by

Minimize
∑
i∈I

ûi +
∑
j∈J

v̂j (D.12)

s.t. ûi + v̂j ≥ b̂ij − ĉij for each (i, j)∈ I × J , (D.13)

û, v̂≥ 0 (D.14)

At an optimal solution, if j, j′ ∈ Jk, then v̂j = v̂j′ , as otherwise it would be possible to reduce the objective

(D.12). Therefore, by complementary slackness, if any provider j′ ∈ Jk is unmatched in x̂, then v̂j = 0 for all

j ∈ Jk. Also by complementary slackness, if a customer i∈ I is unmatched in x̂, then ûi = 0. Let Î be set of

customers who are matched in x̂.

We show that if the matching x returned by Protocol 4 matches every customer in Î, then the corresponding

outcome (x,u, v) is ε-stable. To see this, observe that if (i, j) is matched in x, then

ui = bij − pi ≥ b̂ij − pi = ûi (D.15)

vj = pi− cij ≥ pi− ĉij = v̂j (D.16)

Moreover, if i is not matched in x, then i /∈ Î by assumption, which implies that ûi = 0 = ui. If j is not

matched in x, then vj = 0, but the assumption implies that not everyone in Jk is matched in x̂, so v̂j = 0 = vj .

Summarizing, we have ui ≥ ûi for all i ∈ I, and vj ≥ v̂j for all j ∈ J . Combining this with (D.13), we have

that for all (i, j)∈ I × J ,

ui + vj ≥ b̂ij − ĉij = (bij − ε)− (cij + ε)≥ bij − cij − 2ε. (D.17)

Moreover, by (D.14), we have u≥ û≥ 0 and v≥ v̂≥ 0. So (x,u, v) is ε-stable.

If suffices to show that the matching x returned by the protocol matches every customer in Î with proba-

bility at least 1− 3/n2. We make use of the following slight generalization of Lemma 1.

Lemma D.1. Given n≥m≥ 1 and r≥ (3 lnn)/n. Consider a random bipartite graph with m nodes on one

side and n nodes on the other side. For each pair of nodes (i, j), there is an edge between them with probability

qij ≥min(1, r), independently across (i, j) pairs. The final graph contains a matching of cardinality m with

probability at least 1− 2.1ne−rn.

Proof of Lemma D.1. Let the node sets be I and J with |I|=m and |J |= n. The above graph can be

embedded in a larger random graph with node sets I ′ ⊇ I and J , with |I ′|= |J |= n, as follows: for each of

the new nodes i∈ (I ′\I), include an edge to every node j ∈ J . The original random graph has a matching of

cardinality m if and only if the larger graph has a perfect matching, which occurs with probability at least

1− 2.1ne−rn by Lemma 1. �

Returning to the proof of Proposition 9, define Îk as the set of customers matched in x̂ to a provider of

segment k. For each provider segment k ∈K, suppose that ak = 1 and dIdJ = 1, then every customer in Îk
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is matched in x, as every pair (i, j)∈ Îk×Jk is an accepted recommended pair. On the other hand, if either

ak < 1 or dIdJ < 1, then each pair (i, j)∈ Îk×Jk is an accepted recommended pair with probability at least

akd
IdJ ≥ 3 lnn

|Jk|
. (D.18)

By Lemma D.1, the probability that the protocol does not match every customer in Îk is at most 2.1|Jk|n−3.

Taking an union bound over the provider segments, we have that the probability that the protocol does not

match every customer in Î is at most ∑
k∈K

2.1|Jk|n−3 ≤ 2.1

n2
<

3

n2
, (D.19)

as desired. �

D.3. Proof of Proposition 11

Given ε > 0 and a market (I, J,B,C) that is relatively homogeneous with minimum segment size l, define

Q(p,S) as the probability that Protocol 4 with price vector p and recommendation sets S := (Si : i∈ I) yields

an ε-stable matching in this market. Proposition 9 implies that there exists a distribution F such that

ES∼F [Q(p,S)]≥ 1− 3

n2
, (D.20)

and ES∼F

[
1

n

∑
i∈I

|Si|

]
≤ 3 lnn

dIdJ
. (D.21)

Define

Γ =

{
S :

1

n

∑
i∈I

|Si| ≤
6 lnn

dIdJ

}
. (D.22)

By Markov’s inequality, PS∼F (S ∈ Γ)≥ 1/2. Moreover, since Q(p,S) can never exceed 1, we have

ES∼F [Q(p,S)|S ∈ Γ]≥ 1− 6

n2
. (D.23)

Therefore, there exists a deterministic choice of S∗ ∈ Γ such that Q(p,S∗)≥ 1− 6/n2.

Consider Protocol 4 with parameters ε, p and S∗. As shown in Appendix C, this is a one-round match-

making protocol in which the total number of bits of communication is equal to
∑

i∈I 2|S∗i |. By construction,

the protocol yields an ε-stable matching with probability at least 1−6/n2, and the per-agent communication

cost is
1

2n

∑
i∈I

2|S∗i | ≤
6 lnn

dIdJ
. (D.24)

�

D.4. Proof of Proposition 10.

Since all of the probabilistic guarantees require n≥ 2 to be meaningful, assume that n≥ 2. Define

κ= max
n≥2

{⌈
1

ε

⌉
dlog2(n+ 1)e+ dlog2(1/ε)e+ 1

logn
+

1

2 logn

}
. (D.25)

Note that κ is guaranteed to be finite since for any fixed ε > 0, the maximand is less than 2d1/εe+1 for large

n.
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For part a), consider running the slightly modified version of Protocol 1 described in Section 4.1, but

terminating it after the rth interaction, where r := 2d1/εen/dJ . By Propositions 2 and 4, the probability

that this protocol yields an ε-stable matching is at least 1− e−n/2. The number of bits communicated in

each interaction is at most y := dlog2(n+ 1)e+ dlog2(1/ε)e+ 1. This is because dlog2(n+ 1)e bits suffices

for a customer to communicate whether she wants to reach out to another provider and if so, the identity

of the provider; dlog2(1/ε)e bits suffices for the provider to communicate the updated cost information

∆ij = d(cij − ĉij)/εe; and one bit is used to encode the provider’s yes/no response. The total number of bits

communicated per agent is at most
1

2n
(ry+n)≤ κ logn

dJ
. (D.26)

The “+n” in the above corresponds to allowing each customer to have one additional bit to communicate

that she is done contacting providers. Part b) follows from part a) by symmetry.

Part c) follows from a similar argument as in a), except that we use Protocol 3 instead of Protocol 1, and

re-define r = 4d1/εen1.5. By Propositions 3 and 7, this protocol terminates with an ε-stable outcome with

probability at least 1− 2e−n/2. The number of bits communicated per agent is at most (ry + n+ n)/2n≤

2κ
√
n log(n), where y is defined as in part a), and the additional “+n” corresponds to each provider in Step

2 needing one bit to communicate that he is done. �

D.5. Proof of Proposition 12 a) and b)

The proof for a) and b) begins in the same way. Given a matchmaking protocol that yields an ε-stable

outcome with at least 99% probability in a market M(n,dI , dJ), where dIdJ = 1/n. Define the transcript Π

of the protocol as the entire sequence of bits sent in all the messages until the protocol terminates. Note that

Π is a random variable whose randomness is induced by the randomly drawn inputs. let L be the maximum

length of the protocol for any input. By Definition 3, L/n is the per-agent communication cost. Define the

following random variables:

Gij = 1 ((bij , cij) = (.99, .01)) , (D.27)

Pij =Gij

[∏
j′ 6=j

(1−Gij′)

][∏
i′ 6=i

(1−Gi′j)

]
, (D.28)

xΠ
ij = 1(i is matched to j according to Π) (D.29)

NΠ
ij = Pij(1−xΠ

ij) + (1−Gij)x
Π
ij (D.30)

Intuitively, Gij is one when (i, j) is a “Good” pair, with high benefit and low cost. Pij is one when (i, j)

is a “Perfect” pair, as each is incident to only one good pair, which is each other. Note that

E[Pij ] =
1

n

(
1− 1

n

)2(n−1)

=
1

n

/(
1 +

1

n− 1

)2(n−1)

≥ e−2

n
. (D.31)

Now, NΠ
ij should be zero whenever the protocol returns an ε-stable outcome, since NΠ

ij = 1 implies that the

protocol either did not match the perfect pair (i, j), or it matched a pair (i, j) that has negative net surplus.

In other words, whenever the protocol succeeds in obtaining an ε-stable outcome, it must be that
∑

ijN
Π
ij = 0.



Shi: Optimal Matchmaking Strategy 41

Moreover, in any realization, it must be that
∑

ij
NΠ
ij ≤ 2n, because there can be at most n perfect pairs and

n matched pairs at the same time. Since Π fails to return a stable outcome with probability at most 0.01,

E

 ∑
i,j∈[n]

NΠ
ij

≤ 0.02n. (D.32)

Define a low-error pair (i, j) to be one such that E[NΠ
ij ] ≤ 0.04/n, and denote the set of low-error pairs

by S. By (D.32), |S| ≥ n2/2. The lower bound on per-agent communication cost is based on the following

information theoretic argument:

L≥H(Π)≥I(b, c; Π)≥
∑
i,j∈[n]

I(bij , cij ; Π)≥
∑

(i,j)∈S

I(bij , cij ; Π), (D.33)

where H(·) denotes the entropy and I(·; ·) the mutual information. The first inequality follows from the

fact that if the maximum length of the protocol is L, the number of bit sequences is at most 2L, so the

entropy is at most log2(2L) =L. The second inequality comes from the identity I(b, c; Π) =H(Π)−H(Π|b, c),

and H(Π|b, c)≥ 0. The third inequality comes from the tuple (bij , cij) being independently drawn for each

(i, j) ∈ I × J , and the fact that I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z) if X and Y are independent. The last

inequality follows from the fact that mutual information is always non-negative. For a review of these facts

from information theory, see Chapter 1 of Cover and Thomas (2012).

Suppose that we obtain a lower bound Z on the mutual information I(bij , cij ; Π) for any low-error pair

(i, j) ∈ S, then combining (D.33) with the fact that |S| ≥ n2/2 yields the following lower bound on the

per-agent communication cost,
L

n
≥ n

2
Z. (D.34)

The desired lower bound Z is given by the following lemma. Part a) of Proposition 12 follows from part a)

of Lemma D.2. Part b) of Proposition 12 follows from part b) of the lemma. �

Lemma D.2 (Lower bound on mutual information). Let (i, j) ∈ S be any low-error pair. Assume

n≥ 64.

a) If dJ = 1 and dI = 1/n, then

I(bij , cij ; Π)>
.05 log2 n

n
. (D.35)

b) If dJ ∈ [1/
√
n,1/2] and dI = 1/(ndJ), then

I(bij , cij ; Π)>
.0004

ndJ
. (D.36)

Proof of Lemma D.2 a). We use the following facts about mutual information. See Chapter 2 of Cover

and Thomas (2012) for derivations.

• Symmetry: I(X;Y ) = I(Y ;X).

• Data processing inequality: I(X;Y )≥I(X;f(Y )) for any function f(·).

• Relationship to KL-divergence: I(X;Y ) = EX [D(Y |X‖Y )], where D(·‖·) is the KL-divergence in bits.

For discrete random variables X and Y with the same support and probability mass functions p(·) and

q(·) respectively, D(X‖Y ) := EX [log2(p(X)/q(X))].
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• Non-negativity of KL-divergence: D(X‖Y )≥ 0.

Applying the above, we have

I(bij , cij ; Π)≥I(bij ;x
Π
ij)≥E[xΠ

ij ]D
(
bij |xΠ

ij
=1‖bij

)
(D.37)

To avoid clutter, omit the superscript Π on x and N for the rest of this proof, as the dependence of these

random variables on the transcript Π is assumed. Now,

P(bij = .99|xij = 1) =
E[Gijxij ]

E[Gijxij ] +E[(1−Gij)xij ]
≥ E[Gijxij ]

E[Gijxij ] + .04/n
≥ e−2/n− .04/n

e−2/n
> .7. (D.38)

The first inequality follows from E[(1−Gij)xij ]≤E[Nij ]≤ 0.04/n since (i, j) is a low-error pair. The second

inequality follows from E[Gijxij ]≥E[Pij ]−E[Nij ] and (D.31). (D.38) implies that

D(bij |xij=1‖bij)≥D(Bernoulli(.7)‖Bernoulli(1/n)) (D.39)

= .7 log2(.7) + .3 log2(.3) + .7 log2(n) + .3 log2

(
n

n− 1

)
(D.40)

> .55 log2 n (D.41)

The last inequality follows from .7 log2(.7) + .3 log2(.3) + .15 log2(n)> 0 for all n≥ 64. Now, since (i, j)∈ S,

E[xij ]≥E[Pij ]−E[Nij ]≥
e−2− .04

n
. (D.42)

Plugging (D.42) and (D.41) into (D.37), we obtain the desired result for part a). �

Proof of Lemma D.2 b). Define

θ1 := P((bij , cij) = (.99,1)) (D.43)

θ2 := P((bij , cij) = (0, .01)) (D.44)

θ3 := P((bij , cij) = (0,1)) (D.45)

Note that under the assumptions of Lemma D.2, nθ3 ≥ 10.

Without using the independence of bij and cij , we will show that

I(bij , cij ; Π)>
0.006(√

1/θ1 +
√

1/θ2 + 2
√

1/θ3

)2 . (D.46)

The bound implies the desired result if we plug in θ1 = dI(1− dJ), θ2 = (1− dI)dJ , θ3 = (1− dI)(1− dJ).

To see this, note that the assumptions of the lemma implies that dI ≤ dJ ≤ 1/2 and dI ≤ 1/
√
n ≤ 1/8, so

1/(1− dJ)≤ 2 and 1/(1− dI)≤ 8/7. Thus,(√
1

θ1

+

√
1

θ2

+ 2

√
1

θ3

)2

≤

(√
2

dI
+

√
8/7

dI
+ 2

√
2(8/7)

8dI

)2

<
13

dI
= 13ndJ . (D.47)

Plugging (D.47) into (D.46), we obtain the desired bound (D.36).

To show (D.46), define π to be the distribution of Π, and define the following conditional distributions.

• π11: the distribution of Π conditional on bij = .99 and cij = .01;

• π10: Π conditional on bij = .99 and cij = 1;

• π01: Π conditional on bij = 0 and cij = .01;
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• π00: Π conditional on bij = 0 and cij = 1.

Define µ= I(bij , cij ; Π). Using the relationship between mutual information and KL-divergence,

µ=
1

n
D(π11‖π) + θ1D(π10‖π) + θ2D(π01‖π) + θ3D(π00‖π). (D.48)

Now, KL-divergence is always non-negative. Moreover, it is related to the total variation distance by Pinsker’s

inequality ‖P −Q‖1 ≤
√

2(ln 2)D(P‖Q). Hence,

‖π10−π00‖1 ≤ ‖π10−π‖1 + ‖π00−π‖1 ≤
√

2 ln 2(
√
µ/θ1 +

√
µ/θ3). (D.49)

Similarly,

‖π01−π00‖1 ≤ ‖π10−π‖1 + ‖π00−π‖1 ≤
√

2 ln 2(
√
µ/θ2 +

√
µ/θ3). (D.50)

However, since (i, j)∈ S and nθ3 ≥ 10, we have

P
(
xΠ
ij = 1|(bij , cij) = (.99, .01)

)
≥ E[Pij ]− 0.04/n

1/n
≥ e−2− 0.04> 0.0953, (D.51)

P
(
xΠ
ij = 1|(bij , cij) = (0,1)

)
≤ 0.04/n

θ3

≤ 0.004. (D.52)

Thus, the total variation distance

1

2
‖π11−π00‖1 > 0.0953− 0.004 = 0.0913. (D.53)

The desired bound (D.46) follows from combining (D.49), (D.50), (D.53) with the following lemma, which is

a result taken from the analysis of the disjointness problem from Mark Braverman’s COS597D lecture notes

on communication complexity. �

Lemma D.3 (Consequence of the Rectangle Property of Communication Protocols).

1

2
‖π11−π00‖1 ≤ ‖π10−π00‖1 + ‖π01−π00‖1. (D.54)

Proof of Lemma D.3. Let π11(z) denote the probability that given the inputs bij = .99 and cij = .01, the

protocol has transcript z, where the randomness comes from the other inputs. Similarly define πxy(z) for

x ∈ {0,1}, and y ∈ {0,1}. A well-known fact that holds for any communication protocol is that πxy(z) =

Px(z)Qy(z) for some functions Px(·) and Qy(·) which only depend on the subscripted input bit and z. This

follows from the rectangle property of deterministic protocols (Kushilevitz and Nisan 2006). A proof is found

in Lemma 6.7 of Bar-Yossef et al. (2004).

Now, suppose that π00(z)≥ π11(z). Then it must be that either P0(z)≥ P1(z) or Q0(z)≥Q1(z). If P0(z)≥
P1(z), then

Q0(z)|P0(z)−P1(z)|+P0(z)|Q0(z)−Q1(z)| ≥Q0(z)(P0(z)−P1(z)) +P1(z)(Q0(z)−Q1(z)). (D.55)

If Q0(z)≥Q1(z), then

Q0(z)|P0(z)−P1(z)|+P0(z)|Q0(z)−Q1(z)| ≥Q1(z)(P0(z)−P1(z)) +P0(z)(Q0(z)−Q1(z)). (D.56)

In either case, the right hand side of the above is equal to P0(z)Q0(z)−P1(z)Q1(z), so we have

|π00(z)−π10(z)|+ |π00(z)−π01(z)| ≥ π00(z)−π11(z) (D.57)

Summing over all transcripts z for which π00(z)≥ π11(z), we get the desired inequality (D.54). �
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If we plug (D.46) directly into (D.34), then we obtain the following result, which implies that efficient

matchmaking is not possible if we allow the tuple (bij , cij) to be adversarially correlated, so that the partners

whom an agent likes tend to be the ones who do not reciprocate interest. We do not expect such adversarial

correlation to cause problems in practice, because most correlations either exhibit a predictable structure as

given in the example in Section 5.1, or are related with observable characteristics, which makes it possible

for the platform to capture them using a well-designed questionnaire.

Proposition D.1 (Exact lower bound under correlated preferences). Consider a market with

|I| = |J | = n. For each (i, j) ∈ I × J , the tuple (bij , cij) is drawn independently from the following joint

distribution:

(bij , cij) =


(.99, .01) with probability 1/m,

(.99,1) with probability θ1,

(0, .01) with probability θ2,

(0,1) with probability θ3,

(D.58)

where θ1 +θ2 +θ3 = 1−1/n and nθ3 ≥ 10. For any ε < 0.49, any matchmaking protocol that yields an ε-stable

outcome for the above market with at least 99% probability requires a per-agent communication cost of at

least
0.003n(√

1/θ1 +
√

1/θ2 + 2
√

1/θ3

)2 . (D.59)

Observe that this lower bound is Ω(n) if θ1, θ2 and θ3 are lower bounded by a constant.

D.6. Proof of Proposition 12 c)

Given ε < .49, n ≥ 64 and a one-round protocol that yields an ε-stable outcome with at least 99% prob-

ability in the market M(n, .5, .5). Define Π to be the transcript of the protocol, which is the sequence of

all bits communicated before termination. Let L be the maximum length of the transcript. The per-agent

communication cost is equal to L/n. Since the protocol is a one-round protocol, we can write Π = (β,γ),

where βi is the message of customer i∈ I and depends only on (bij ; j ∈ J), and γj is the message of provider

j ∈ J and depends only on (cij ; i ∈ I). Without knowing the preference realizations, β can be viewed as a

random variable correlated with b but independent of γ and c; γ is a random variable correlated with c but

independent of β and b. Each transcript Π leads to a transaction outcome, which we denote as (xΠ, pΠ).

For each realization of β, define

Gi(β) := {j : P(bij = .99|β)≥ .75}, (D.60)

U(β, c) := {i : cij = 1 for all j ∈Gi(β)}, (D.61)

m(β) :=

n∑
i=1

|Gi(β)|. (D.62)

Intuitively, Gi(β) is the set of providers which we can infer with at least .75 confidence that customer i likes

given her message βi. Given provider preference realizations c, customer i is in the set U(β, c) if none of the

providers in Gi(β) likes her back. We refer to such a customer as being unreciprocated.

Define z := n(log2 n)/4. We will show that the total cardinality of the sets Gi(β) satisfying the following

probabilistic bound:

Pβ
(
m(β)≥ z

)
> .744. (D.63)
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From this, we can bound the entropy of the random variable β as follows,

H(β)≥I(b;β)≥
∑
i,j∈[n]

I(bij ;β) (D.64)

=
∑
i,j∈[n]

Eβ
[
D (bij |β‖bij)

]
. (D.65)

≥
∑
i,j∈[n]

Pβ
(
m(β)≥ z

)
Eβ
[
D (bij |β‖bij)

∣∣∣m(β)≥ z
]

(D.66)

> (.744)(.1887)z > .035n log2(n) (D.67)

Here, the first inequality is due to the fact that I(b;β)≡H(β)−H(β|b) andH(β|b)≥ 0. The second inequality

is due to the independence of bij for each (i, j) ∈ I × J , and the fact that I(X,Y ;Z)≥ I(X;Z) + I(Y ;Z)

whenever X and Y are independent. The equality in (D.65) is based on the relationship between mutual

information and the KL-divergence in bits, as in the proof of Lemma D.2. Inequality (D.66) is due to the

fact that KL-divergence is always non-negative. Inequality (D.67) is based on (D.60) and the fact that for

any probability y≥ .75, D(Bernoulli(y)‖Bernoulli(.5))≥D(Bernoulli(.75)‖Bernoulli(.5))> .1887.

By symmetry, the same argument can be used to show H(γ)> .035 log2(n), from which it follows that the

per-agent communication cost satisfies the following lower bound:

L

n
≥ H(β) +H(γ)

n
> .07 log2(n). (D.68)

To complete the proof, it suffices to show (D.63). Observe that for any β such that m(β)< z, we have by

Jensen’s inequality,

Ec
[
|U(β, c)|

]
=

n∑
i=1

2−|Gi(β)| ≥
n∑
i=1

2−m(β)/n >n2−z/n = n3/4. (D.69)

In other words, conditional on m(β)< z, the expected number of unreciprocated customers is at least n3/4.

Define k := .75n3/4. Since |U(β, c)| can be expressed as the sum of independent binary random variables,

a standard Chernoff bound implies that for any β such that m(β)< z,

Pc
(
|U(β, c)|>k

)
≥ 1− exp

(
− (.25)2n3/4

2

)
> .5 (for any n≥ 64). (D.70)

Define the following events:

• N : (xΠ, pΠ) is not ε-stable.

• E: m(β)< z and |U(β, c)|>k.

• E1: E and there exists (i, j) such that x
(β,γ)
ij = 1 but j 6∈Gi(β).

• E2: E\E1.

• E3: there exists an ε-stable matching in which more than k customers are unmatched.

The event E corresponds to m(β)< z and there being many unreciprocated customers. By (D.70),

P (E)> .5Pβ
(
m(β)< z

)
. (D.71)

The event E1 corresponds to the subset of E in which the protocol matches a customer i to a provider j

for whom P(bij = 0|β)> .25. This is a risky move because with probability at least .25, she does not like the

provider. This implies that P (N |E1)> .25.
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The event E2 corresponds to avoiding such risky moves and only matching customer i to a provider j if

j ∈Gi(β). However, this implies that none of the unreciprocated customers i∈U(β, c) can be matched. This

implies that (E2\N)⊆E3. However, a straightforward union bound implies that

P(E3)≤
(en
k

)2k
(

3

4

)k2

< .022, (D.72)

where the last inequality holds for all n≥ 64 and k= .75n3/4.

Since the protocol yields an ε-stable outcome with probability at least 99%, we have

.01≥ P(N)≥ P (N ∩E1) +P (N ∩E2)≥ .25P (E1) + (P (E2)− .022) (D.73)

So P (E)≤ 4(.01 + .022) = .128. By (D.71),

Pβ
(
m(β)< z

)
<

P(E)

.5
≤ .256, (D.74)

which implies (D.63), as desired. �

Appendix E: Modifications of Protocols 1 and 3 under correlated provider costs

As discussed in Section 5.1, the performance guarantees for Protocols 1 and 3 derived in Sections 2 and 3

already allow arbitrary correlation with the matrix b of customer benefits. This section shows how to modify

the protocols so as to obtain similar guarantees when provider costs are also correlated, according to the

following structure:

cij = αi +βj + γij for all (i, j)∈ I × J , (E.1)

where αi and βj are unobserved fixed effects for each customer i and provider j, and γij is an unobserved

idiosyncratic term that is assumed to be independently drawn from a commonly known distribution Γij .

The benefit matrix b is allowed to be arbitrarily correlated within itself and with (α,β), but the γij ’s are

assumed to be independent of (b,α,β). Proposition D.1 implies that the independence of γij ’s and b cannot

be dropped, as allowing adversarial correlations between benefits and costs would make it impossible to

achieve ε-stable outcomes with sub-linear per-agent communication cost.

The high level idea is to run the following protocol first in order to estimate the αi’s and βj ’s, and use

these estimates to calibrate the initial cost estimates ĉij ’s in Protocols 1 and 3. Without loss of generality,

assume that I = [n] = {1,2, · · · , n} and J = [n].

Protocol 5 (Cost estimate calibration) Given an integer m> 0 and the means of the distributions Γij’s.

Elicit the cost cij from every provider j ∈ J for every customer i∈ [m], as well as from every provider j ∈ [m]

for every customer i∈ I. Define for each (i, j)∈ I × J ,

êij :=
1

m

m∑
k=1

(cik + ckj − ckk−E[γik]−E[γkj ] +E[γkk]) . (E.2)

Return the matrix ê.

Proposition E.1. After running Protocol 5, with probability at least 1− 2n2e−mε
2/24,

|αi +βj − êij | ≤
ε

4
for all (i, j)∈ I × J. (E.3)
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Proof of Proposition 5. Define ykij = cik + ckj − ckk − E[γik]− E[γkj ]− E[γkk]− αi − βj . Note that ykij =

(γik − E[γik) + (γkj − E[γkj ])− (γkk − E[γkk]). Thus, ykij is the sum of three independent random variables,

each of mean 0 and the support of each has length of at most 1. Therefore, by Hoeffding’s inequality,

P
(
|êij |>

ε

4

)
= P

(∣∣∣∣∣ 1

3m

m∑
k=1

ykij

∣∣∣∣∣> ε

12

)
≤ 2 exp

(
−6m

( ε

12

)2
)

= 2e−mε
2/24. (E.4)

A union bound over the n2 pairs (i, j)∈ I × J yields the desired result. �

The modified Protocol 1 is as follows. In Phase 1, we run Protocol 5 with

m=

⌈
72 ln(n)

ε2

⌉
. (E.5)

In Phase 2, we run Protocol 1 as defined in Section 2.4 but modify the initial cost estimates to

ĉij =
(
ê− ε

4

)
+ γ

ij
+ ε, (E.6)

where γ
ij

is the lower support of γij . The following result is similar to Proposition 4.

Proposition E.2 (Performance of Protocol 1 under correlated costs). When provider costs are

correlated according to (E.1), the modified Protocol 1 described above returns an ε-stable outcome with proba-

bility at least 1−2/n. Moreover, with probability at least 1−2/n−e−n/2, the number of provider interactions

per customer in Phase 2 is no more than

2

⌈
1

ε

⌉
1

d̃J
,

where d̃J is the largest value such that

P
(
γij ≤ γij +

ε

2

)
≥ d̃J for all (i, j)∈ I × J . (E.7)

Proof of Proposition E.2. By Proposition 5, with the value of m given in (E.5), the guarantee in (E.3)

holds with probability at least 1−2/n. When (E.3) holds, ĉij ≤ cij+ε for all (i, j), so the proof of Proposition 2

implies that the above protocol terminates with an ε-stable outcome.

Moreover, when (E.3) holds, (E.6) implies that

γij ≤ γij +
ε

2
=⇒ cij ≤ ĉij . (E.8)

Therefore, the argument in the proof of Proposition 4 implies the desired bound on the number of interactions

in Phase 2. �

Similarly, the modified Protocol 3 is defined as follows. In Phase 1, we run Protocol 1 with m given by

(E.5) as above. In Phase 2, we run Protocol 3 as defined in Section 2.4 with parameter

zij =
(
êij −

ε

4

)
+ gij , (E.9)

where the gij ’s are parameters that depend only on commonly known information. The following result is

similar to Propositions 6 and 7.
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Proposition E.3 (Performance of Protocol 3 under correlated costs). The modified Protocol 3

described above always terminates with an ε-stable outcome. Given any choice of gij’s, the expected number

of interactions in Phase 2 is at most( ∑
i∈I,j∈J

P(γij < gij)

)
+

⌈
1

ε

⌉(∑
j∈J

1

mini∈I{P(γij ≤ gij + ε
2
|γij ≥ gij − ε

2
)}

)
+

2

n
. (E.10)

If the parameters gij’s are chosen as follows,

g∗ij := inf{y ∈ [γ
ij
,1] : P(γij ∈ [y, y+ ε/2])≥ 1/

√
2n}, (E.11)

then with probability at least 1− 2/n− 2e−n/2, the number of interactions per customer in Phase 2 is no

more than

4

⌈
1

ε

⌉√
2n. (E.12)

Proof of Proposition E.3. The fact that the above protocol always terminates with an ε-stable outcome

follows from Proposition 3, which does not require any assumptions on the preferences of agents. To see

the bound in (E.10), suppose first that (E.3) holds, then the first term upper bounds the expected number

of interactions in Step 2 of Phase 2, as under (E.3), cij < zij implies that γij < gij ; the second term upper

bounds the expected number of interactions in Step 3 of Phase 2, as under (E.3),

γij ≤ gij +
ε

2
=⇒ cij ≤ zij + ε, (E.13)

and cij ≥ zij =⇒ γij ≥ gij −
ε

2
. (E.14)

Therefore, for every provider j, if d̃j = mini∈I{P(γij ≤ gij+ε/2|γij ≥ gi−ε/2}, then the number of interactions

in Step 3 of Phase 2 until v̂j increments once is stochastically dominated by a geometry random variable

of mean 1/dj . Now, if (E.3) is violated for a certain pair (i, j), then the above guarantees may not apply,

but the maximum number of additional interaction is one, as the true cost cij would be known after one

interaction between customer i and provider j. Therefore, since the probability that (E.3) is violated for

each (i, j) is at most 2/n3 and there are n2 pairs, the expected total number of additional interactions due

to these violations is at most 2/n.

Finally, to show the bound in (E.12), observe under (E.3), for each (i, j),

P(cij < zij)≤
2

ε

1√
2n
. (E.15)

Moreover, in Step 3 of Phase 2, the provider j answers “yes” to customer i whenever γij ∈ [γ
ij
, γ

ij
+ ε/2],

which occurs with probability at least 1/
√

2n by (E.11), independent of everything else. The desired bound

in (E.12) follows from the same argument as in the proof of Proposition 9, except that we re-define the

intermediate quantities r1 := ((
√

2/ε) + 0.5)n1.5 and r2 := 2
√

2d1/εen1.5. �
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Appendix F: Definition of ε-stable outcomes under many-to-one matching

Suppose that each provider j has the capacity to serve qj customers, we define the corresponding notion of

an ε-stable outcome below. In this section, we do not assume that |I|= |J |.

A matching x is feasible if∑
j∈J

xij ≤ 1 for each i∈ I, (F.1)∑
i∈I

xij ≤ qj for each j ∈ J , (F.2)

xij ∈ {0,1} for each (i, j)∈ I × J . (F.3)

A tuple (x,p) is an individually rational transaction outcome if x is a feasible matching, and p∈RI satisfies

cij ≤ pi ≤ bij whenever xij = 1. (F.4)

The tuple (x,p) is ε-stable if in addition to being individually rational,

ui + vj + 2ε≥ bij − cij for each (i, j)∈ I × J , (F.5)

where ui :=

{
0 if

∑
j∈J xij = 0,

bij − pi if xij = 1;
(F.6)

vj :=

{
0 if

∑
i∈I xij < qj ,

mini:xij=1{pi− cij} otherwise.
(F.7)

Proposition F.1. Given any ε≥ 0, an ε-stable transaction outcome (x,p) always exists. Moreover, any

ε-stable transaction outcome (x,p) approximately maximizes total market surplus, in the sense that

∑
i∈I,j∈J

(bij − cij)xij ≥

( ∑
i∈I,j∈J

x′ij

)
− 2ε|I| for any feasible matching x′. (F.8)

Proof of Proposition F.1. The maximum total surplus W ∗ is the optimal objective of the LP with objec-

tive

Maximize:
∑

i∈I,j∈J

(bij − cij)xij , (F.9)

and constraints (F.1), (F.2), and x≥ 0. The dual LP is

Minimize:
∑
i∈I

ûi +
∑
j∈J

qj v̂j (F.10)

s.t. ûi + v̂j ≥ bij − cij for all (i, j)∈ I × J , (F.11)

û, v̂≥ 0. (F.12)

Given a set of optimal primal and dual solutions (x, û, v̂). Assume that xij ∈ {0,1}. This is without loss of

generality since the constraint set to the primal is totally unimodular. Define

pi :=

{
0 if

∑
j∈J xij = 0,

bij − ûi if xij = 1.
(F.13)
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By complementary slackness, xij = 1 implies that ûi + v̂j = bij − cij . Hence, the transaction outcome (x,p)

leads to u = û and v = v̂ under (F.6) and (F.7), which implies that (x,p) is exactly stable by (F.11) and

(F.12). This transaction outcome is also ε-stable for any ε≥ 0.

Now, given any ε-stable transaction outcome (x,p). Note that if u and v are defined according to (F.6)

and (F.7), then xij = 1 implies that bij − cij ≥ ui + vj . Hence,∑
i∈I,j∈J

(bij − cij)xij ≥
∑

i∈I,j∈J

(ui + vj)xij =
∑
i∈I

(ui + 2ε) +
∑
j∈J

qjvj − 2ε|I| ≥W ∗− 2ε|I|, (F.14)

where the last inequality follows from weak inequality, because setting û= u+ 2ε and v̂= v yields a feasible

solution (û, v̂) to the dual LP. �.

Appendix G: Dynamic arrival of customers

This section shows that the main insights in the paper continue to hold under a natural alternative model

with dynamic arrival of customers. Let I be a set of customer segments and J := [n] be a set of providers.

The identity i ∈ I of the customer segment represents the information collected by the platform about the

customer via questionnaires. Customers of each segment i ∈ I arrives to the market according to a Poisson

process of rate λi, and each customer seeks to be served by at most one provider, after which she departs

from the market. Providers on the other hand remain perpetually in the market, and each provider j ∈ J

is associated with a capacity qj , which represents the maximum rate at which he can serve customers in

the long run. Each individual customer is associated with a type θ= (i, b, c), where i∈ I is her segment and

b, c ∈ [0,1]J , with bj and cj representing the benefit and cost associated with her potential transaction with

provider j. When a customer of type θ= (i, b, c) enters the market, she knows her segment i and the benefit

vector b, while provider j knows her segment i and the cost cj . For each customer, the benefit bj and cost cj

are independently drawn from commonly known distributions Bij and Cij , which can depend both on the

customer segment i and the provider j. For technical convenience, assume that these preference distributions

are all continuous.

Without loss of generality, normalize the total arrival rate of customers to one, so
∑

i∈I λi = 1. Label the

providers as J = [n] = {1,2, · · · , n}. The cardinality of I can be arbitrary and does not necessarily equal n.

Define Θ to be the support of customer types θ = (i, b, c), and define F to be a probability distribution on

Θ where the segment i is distributed according to the probability vector λ, and conditional on i, we have

bj ∼Bij and cj ∈Cij , with each term being independent of everything else.

The type of matchmaking systems considered are those that periodically run a static matchmaking protocol

every time m new customers arrive, where m is a parameter called the batch size. Any customer who enters

the static protocol but is not matched by it leaves the market, so that the next time the static protocol is

run, it is with m new customers. To maximize the generality of the analysis, the following definition allows

the static protocol that is run each time to be randomly drawn from a known distribution,6 and it does not

always have to include every provider.

6 In the communication complexity literature, a distribution over deterministic communication protocols is referred
to as a “public coin randomized protocol” (Kushilevitz and Nisan 2006).
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Definition G.1 (Dynamic matchmaking protocol). A dynamic matchmaking protocol with batch

size m is a distribution over communication protocols, each of which has the following form: the set of agents

includes a set A of m newly arrived customers and a subset J ′ ⊆ J of providers. Each customer a ∈ A is

associated with her own type (ia, ba, ca) drawn from the distribution F . Here, ia ∈ I is her segment, baj is

her benefit for being served by provider j, and caj is provider j’s cost for serving her. The segment of each

customer a ∈ A is known by the protocol and all the agents. The private input of each customer a ∈ A is

(baj : j ∈ J ′), while the private input of each provider j ∈ J ′ is (caj : a∈A). The output of the protocol is an

individually rational transaction outcome (x,p) as defined in the many-to-one model in Appendix F, with

agent sets A and J ′ and provider capacities set to infinity. (In other words, since the dynamic model only

constrains provider capacities over the long run, providers can accommodate arbitrary surges in customer

demand in the short run.) The average per-customer communication cost of the dynamic matchmaking

protocol is the expected length of the communication protocol divided by n, with the expectation taken over

the random draws of customer types and the random draw of the communication protocol itself.

Each dynamic matchmaking protocol induces a generalized transaction outcome (x,p, p) as follows. x is

referred to a generalized matching, p as the minimum payment function, and p as the maximum payment

function. For each j ∈ J , xj : Θ→ [0,1] is a function that specifies the probability that each customer of type

θ ∈ Θ is matched to the provider j by the protocol; p
j

: Θ→ R is a function that specifies the minimum

payment when a type θ customer is matched to provider j, and pj : Θ→ R is a function that specifies the

maximum payment. The generalized matching x is said to be feasible if∑
j∈J

xj(θ)≤ 1 for all θ ∈Θ, (G.1)

Eθ∼F [xj(θ)]≤ qj for all j ∈ J . (G.2)

The generalized transaction outcome (x,p, p) is said to be individually rational if

cj ≤ pj(i, b, c)≤ pj(i, b, c)≤ bj for all j ∈ J and (i, b, c)∈Θ such that xj(i, b, c)> 0. (G.3)

A generalized transaction outcome (x,p, p) is said to be ε-stable if in addition to being feasible, it satisfies

u(i, b, c) + vj + 2ε≥ bj − cj for each (i, b, c)∈Θ and j ∈ J , (G.4)

where u(i, b, c) :=

{
0 if

∑
j∈J xj(i, b, c)< 1,

inf{bj − pj(i, b, c) : xj(i, b, c)> 0} otherwise;
(G.5)

vj :=

{
0 if Eθ∼F [xj(θ)]< qj ,

inf{p
j
(i, b, c)− cj : xj(i, b, c)> 0} otherwise.

(G.6)

The existence of ε-stable generalized transaction outcomes is established in the next section. The following

proposition is analogous to Proposition 1 and states that such an outcome induces near-optimal social welfare.

Proposition G.1. If (x,p, p) is an ε-stable generalized transaction outcome, then the market surplus per

customer is at most 2ε away from the maximum possible: if x′ is another feasible generalized matching, then

E(i,b,c)∼F [(b− c) ·x(i, b, c)]≥E(i,b,c)∼F [(b− c) ·x′(i, b, c)]− 2ε. (G.7)
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Proof of Proposition G.1. By the construction in (G.5) and (G.6), if (x,p, p) is ε-stable, then xj(i, b, c)> 0

implies that u(i, b, c) + vj ≤ bj − cj . Define W =E(i,b,c)∼F [u(i, b, c)] +
∑

j∈J qjvj . We have,

E(i,b,c)∼F )[(b− c) ·x(i, b, c)]≥E(i,b,c)∼F

[∑
j∈J

(u(i, b, c) + vj)xj(i, b, c)

]
≥W. (G.8)

However, by (G.4), if x′ is feasible, then

E(i,b,c)∼F [(b− c) ·x′(i, b, c)]≤E(i,b,c)∼F

[∑
j∈J

(u(i, b, c) + vj + 2ε)x′j(i, b, c)

]
− 2ε≤W − 2ε. (G.9)

Combining the above two lines yields the desired results. �

As in Section 3, define the preference density parameters dI and dJ to be the largest values such that for

every segment i ∈ I, if bj ∼Bij and cj ∼ Cij , then P(bj ≥ bij − ε)≥ dI and P(cj ≤ cij + ε)≥ dJ , where bij is

the upper support of Bij and cij is the lower support of Cij .

G.1. Protocol 1 (customers search) in the dynamic model

Given ε > 0 and a provider surplus vector v̂ ∈ [0,1]J to be determined later, consider the following dynamic

matchmaking protocol with batch size 1, so there is only one customer that needs to be considered at a time.

Let her type be (i, b, c)

1. Initialization: Initialize ĉj = cij + ε. Define Uj(v̂, ĉ) = bj − v̂j − ĉj for every j ∈ J .

2. Customer searches for provider: If Uj(v̂, ĉ)< 0 for all j ∈ J , then the customer sends the message

“0,” at which point the protocol terminates without matching her. Otherwise, the customer communi-

cates the identity of the provider j∗ ∈ arg maxj{Uj(v̂, ĉ)} with the smallest index. The provider responds

whether cj ≤ ĉj .

• If “yes,” then the protocol terminates by matching the customer to j∗ at payment v̂j∗ + ĉj∗ .

• If “no,” then provider j∗ communicates ∆j := d(cj− ĉj)/εe and the protocol updates ĉj = ĉj + ε∆j .

Repeat step 2.

Definition G.2 (Equilibrium provider surplus). Given ε, define an equilibrium provider surplus

vector v̂ ∈ [0,1]J for the above protocol as one in which the generalized transaction outcome (x,p, p) induced

by the protocol is such that x is a feasible generalized matching, and

v̂ > 0 =⇒ Eθ∼F [xj(θ)] = qj . (G.10)

The following result is analogous to Propositions 2 and 4.

Proposition G.2 (Performance guarantee of customers search). Given any ε > 0, an equilibrium

provider surplus vector v̂ of the above protocol exists. Under such a v̂, the generalized transaction out-

come induced by the above protocol is ε-stable, and the average per-agent communication cost is at most

O((logn)/dJ).

Note that the d1/εe factor from Proposition 4 disappears in the above performance guarantee, as such

a factor is associated in with the search process over the vector v̂ in the proof of Proposition 4. However,

in the dynamic model, the vector v̂ would converge in the long run to its market clearing value, and after

convergence, the only uncertainty facing new customers is their cost vector c. Since the performance metric

in the dynamic model is averaged over the long run, it suffices to analyze the performance after convergence,

which is why the above proposition assumes an equilibrium surplus vector.
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Proof of Proposition G.2. The existence of an equilibrium provider surplus vector v̂ follows from Tarski’s

fixed-point theorem as follows. Given a fixed value of ε, for any v ∈ [0,1]n, define Dj(v) to be the mass of

agents matched to provider j when the surplus vector is v. Define the operator Γ : [0,1]n→ [0,1]n,

Γj(v) := inf{y ∈ [0,1] :Dj(r(v, j, y))≤ qj}, (G.11)

where r(v, j, y) is defined to be the vector v with the jth component replaced by the value y. Note that Γj(v)

is well defined since Dj(r(v, j,1)) = 0 for all j ∈ J . Moreover, Γj(v) is a monotone operator, in the sense that

if v≤ v′ component-wise, then Γ(v)≤ Γ(v′) component-wise. This is because increasing the surplus required

by every provider j′ 6= j would only increase the demand for provider j. By Tarski’s fixed point theorem,

there exists a fixed point v̂ such that Γ(v̂) = v̂. Moreover, since the preference distributions are continuous,

Dj(r(v, j, y)) is a continuous function of y, so the fixed point satisfies (G.10). Such a fixed point v̂ is an

equilibrium surplus vector.

Now, given an equilibrium provider surplus vector v̂, we show that the generalized transaction outcome

(x,p, p) is ε-stable. Note that by construction, (x,p, p) is individually rational, and v̂j ≤ vj , where v is defined

as in (G.6). Moreover, throughout the protocol, ĉj ≤ cj + ε for all j ∈ J .

Consider a type θ= (i, b, c) such that
∑

j∈J xj(θ)< 1, it must be that in some run of the protocol, Uj(v̂, ĉ)<

0 for all j ∈ J , which implies that bj − cj − vj ≤ bj − ĉj − v̂j + ε < ε. Hence, we have (G.4) since u(θ) = 0 for

such a type θ.

Consider a type θ= (i, b, c) such that
∑

j∈J xj(θ) = 1, then xj′(θ)> 0 implies that

Uj′(v̂, ĉ)≥ bj − ĉj − v̂j for all j ∈ J . (G.12)

Taking the infimum over j′ ∈ {j′ : xj′(θ)> 0}, the left hand side becomes u(i, b, c). The right hand side is at

least bj − cj − vj − ε as before, from which we get (G.4). In fact, this argument proves that the outcome is

(ε/2)-stable, which is a stronger result than ε-stable.

Finally, for the bound on the average per-agent communication cost. Note that the expected number of

providers each customer contacts until she obtains an “yes” is at most 1/dJ . Moreover, each interaction

requires only dlog2(n+ 1)e+ dlog2(1/ε)e+ 1 =O(logn) bits of communication. �

The above proof implies the existence of an ε-stable generalized transaction outcome for any ε > 0. It also

implies existence for ε= 0 if we modify the protocol so that the provider communicates his actual cost cij

instead of the estimate ∆j := d(cj − ĉj)/εe.

G.2. Protocol 2 (providers search) in the dynamic model

Given ε > 0, a batch size parameter m≥ 1, and a provider surplus vector v̂ ∈ [0,1]J , consider the following

dynamic matchmaking protocol, where the set of customers is labeled as A= {1,2, · · · ,m} without loss of

generality and for each a∈A, her type (ia, ba, ca) is defined as in Definition G.1.

1. Initialization: Initialize b̂aj = biaj − ε, ûa = 0, J∗ = J . Initialize (x,p) to be an empty transaction

outcome. Define Vaj(û, b̂) = b̂aj − ûa− caj .
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2. Providers search for customers: If |J∗|= 0, then terminate the protocol and return (x,p). Other-

wise, let j∗ ∈ J∗ be the provider with the smallest index. Define A∗ = {a∈A : Vaj(û, b̂)≥ v̂}. If |A∗|= 0,

the provider j∗ sends the message “0,” in which case he is removed from the set J∗, and the proto-

col repeats step 2. Otherwise, provider j∗ communicates the identity of the customer a ∈A∗ with the

smallest index, and the customer responds whether baj∗ ≥ b̂aj∗ .

• If “yes,” update xaj∗ = 1 and pa = b̂aj∗ − ûa, and increment ûa by ε. If a was previously matched

to a different provider j′, then update xaj′ = 0 and add j′ to the set J∗. Repeat step 2.

• If “no,” the customer communicates ∆ = d(b̂aj − bij)/εe, and the protocol updates b̂aj = b̂aj − ε∆.

Repeat step 2.

Proposition G.3 (Performance guarantees of providers search). Given ε > 0 and m ≥ 1, define

an equilibrium surplus vector v̂ for the above protocol analogously as in Definition G.2. An equilibrium surplus

vector v̂ always exists, and given such a v̂, the generalized transaction outcome returned by the above protocol

is ε-stable. If m= Ω(dIn/(logn)), then the average per-agent communication cost is at most O((logn)/dI).

Proof of Proposition G.3. The existence of the equilibrium surplus vector v̂ follows from the same argu-

ment as in the proof of Proposition G.3. At such a v̂, if (x,p, p) is the generalized transaction outcome

induced by the protocol, then the outcome is individually rational. Moreover, if v is defined as in (G.6), then

vj ≥ v̂j for every j ∈ J .

The construction of the protocol ensures that b̂aj ≥ baj−ε throughout. Moreover, the termination condition

of the protocol ensures that

v̂≥ Vaj(û, b̂)≥ baj − ûa− caj − ε for every j ∈ J . (G.13)

Now, the surplus of customer a is at least ûa− ε upon termination. Combining with the above and taking the

infimum over the customer surplus when the customer’s type is (i, b, c), we get that for any type (i, b, c)∈Θ

and any j ∈ J ,

u(i, b, c) + vj ≥ u(i, b, c) + v̂j ≥ bj − cj − 2ε, (G.14)

so (x,p, p) is ε-stable.

Finally, to show the bound on average per-agent communication cost, observe that the protocol requires

n bits for each of the n providers to communicate that |A∗|= 0. Furthermore, for each instance in which a

provider contacts a customer, the number of bits of communication is at most dlog2(m+ 1)e+ dlog2(1/ε)e+

1. Now, as in the proof of Proposition 4, each ûa can increment at most d1/εe times, and the customer

will say “yes” with probability at least dI each time, resulting in an increment. Therefore, the per-agent

communication cost is at most ⌈
1

ε

⌉
dlog2(m+ 1)e+ dlog2(1/ε)e+ 1

dI
+
n

m
, (G.15)

which is O((logn)/dI) if m= Ω(dIn/(logn)). �
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G.3. Protocol 3 (both sides search) in the dynamic model

Given ε > 0, a batch size parameter m≥ 1, a matrix z ∈ [0,1]I×J , and a provider surplus vector v̂ ∈ [0,1]J ,

consider the following dynamic protocol: the protocol is identical to the version of Protocol 3 in Appendix C

with the set of customers being A and set of providers J , except that v̂ never increments during the protocol

and is fixed at the original given value.

The following result is analogous to Propositions 3, 6 and 7.

Proposition G.4 (Performance guarantees of both sides search). Given parameters ε > 0, m≥ 1

and z, an equilibrium surplus vector v̂ for the above protocol (defined analogously as in Definition G.2) always

exists. At such a v̂, the generalized transaction outcome induced by the above protocol is ε-stable, and the

average per-agent communication cost is bounded above by the following expression:

1 +
n

m
+κ1

( ∑
i∈I,j∈J

λiPy∼Cij
(y < zij)

)
+κ2

(∑
i∈I

λi
minj∈J{Py∼Cij

(y≤ zij + ε|y≥ zij)}

)
, (G.16)

where κ1 := dlog2me+ dlog2(1/ε)e and κ2 := dlog2(1 +n)e+ dlog2(1/ε)e+ 1.

Suppose ε= Ω(1), Ω(
√
n/(logn))≤m≤ nO(1), and z = z∗, where z∗ is as defined in (22) in Section 3.2,

then the bound in (G.16) is at most O(
√
n logn).

Proof of Proposition G.4. The existence of equilibrium surplus vector v̂ for any given ε, m and z follows

from the same argument as in the proof of Proposition G.2. The fact that the induced generalized transaction

outcome induced is ε-stable follows also from the same argument as in the proof of Proposition G.2, after

observing that at the beginning of Step 3 of the static protocol, ĉaj ≤ caj + ε for any customer a ∈ A and

provider j ∈ J .

To show the bound on the average per-agent communication cost, note that one bit per customer is needed

to terminate her search in Step 3; the second term of n/m comes from the fact that in Step 2 of Protocol

3 in Appendix C, every provider needs to send at least one bit, and the |J |= n bits is divided by m when

computing the average communication cost. Now, κ1 is the number of bits needed each time a provider

contacts a customer in Step 2, so the second term bounds the expected number of bits sent in Step 2 per

customer. Similarly, κ2 is the number of bits needed for each iteration of Step 3, and the last term bounds

the expected number of bits sent in Step 3 per customer. These bounds arise from similar arguments as those

in the proof of Proposition 6.

The bound of O(
√
n logn) when z = z∗ follows from the fact that Py∼Cij

(y < z∗ij)≤ d1/εe/
√
n=O(1/

√
n)

and Py∼Cij
(y≤ z∗ij + ε|y≥ z∗ij)≥ Py∼Cij

(y ∈ [z∗ij , z
∗
ij + ε])≥ 1/

√
n. �

In the above protocol, providers reach out to customers first, which is the same as in Protocol 3 in the

main body of the paper. In both the static and the dynamic models, it is possible to reverse the order of

communication in “both sides search” so that customers reach out first to providers they especially like, and

then providers search among customers and initiate contact. In the dynamic model, such a protocol would

be a modification of the dynamic version of Protocol 2 in Section G.2, in which the estimates of benefits

are initialized instead as b̂aj = zij − ε, where i is the segment for customer a. Moreover, before providers

initiate contact, there is an additional step in which customers whose benefit bij for a provider j exceeds
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the threshold zij proactively contact the provider and communicate their benefit. Suppose that ε = Ω(1),

Ω(n)≤m≤ nO(1), and z is defined as follows:

z∗ij := sup
{
y ∈ [0, bij ] : P(bij ∈ [y− ε, y])≥ 1/

√
n
}
. (G.17)

Then a similar analysis as the above implies that this protocol also terminates with an ε-stable generalized

transaction outcome, and the average per-agent communication cost is at most O(
√
n logn). Note that the

minimum batch size required by this performance bound is Ω(n), which is larger than the minimum batch

size of Ω(
√
n/(logn)) when providers reach out to customers first. This suggests that having providers reach

out first is more efficient when the batch size is small.

G.4. Protocol 4 (centralized matching) in the dynamic model

This section shows that a variant of Protocol 4 can approximate an ε-stable outcome in the dynamic model

using relatively low amounts of communication, as long as dI and dJ are both sufficiently large. The notion

of approximation is that the proportion of customers who receive a near-optimal match is at least 1− δ
for some parameter δ > 0, which can be made arbitrarily small. Here, the notion of a near-optimal match

is based on the solution of an assignment LP with optimistic estimates of benefits and costs, similar to in

Proposition 9.

Suppose that the providers can be partitioned into ex-ante homogeneous segments, J =
⋃̇
k∈KJk, such that

the preference distributions Bij and Cij depend only on i and the provider segment k ∈K that contains the

provider j. Suppose also that the capacities of providers are identical within each provider segment, and that

the minimum segment size is l := mink∈K{|Jk|}. The only difference from Definition 2 is that within each

segment, the entire distributions Bij and Cij are identical, not only the supports bij and cij .

Given ε > 0. For each i ∈ I and k ∈K, define b̂ik = bij − ε, where j ∈ Jk. The exact choice of j does not

matter for the definition because of the assumption that the distribution Bij is identical within each provider

segment. Similarly, define ĉik = cij + ε. Let x̂ be an optimal solution to the following LP, which corresponds

to the optimization problem of matching customers to provider segments based on maximizing welfare using

the above optimistic estimates of benefits and costs.

Maximize:
∑

i∈I,k∈K

λi(b̂ik− ĉik)x̂ik (G.18)

s.t. λ
∑
k∈K

x̂ik ≤ λi for each i∈ I, (G.19)∑
i∈I

λix̂ik ≤Qk :=
∑
j∈Jk

qj for each k ∈K, (G.20)

x̂≥ 0 (G.21)

Given x̂, define r̂i as the rate that a segment i customer is matched, and q̂k as the rate that each segment k

provider is matched:

r̂i :=
∑
k∈K

x̂ik, (G.22)

q̂k :=
1

|Jk|
∑
i∈I

λix̂ik. (G.23)
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Moreover, let (û, v̂) be an optimal solution to the dual LP:

Minimize:
∑
i∈I

λiûi +
∑
k∈K

Qkv̂k (G.24)

s.t. ûi + v̂k ≥ b̂ik− ĉik for each (i, k)∈ I ×K, (G.25)

û, v̂≥ 0 (G.26)

Given ε, δ > 0, consider the following dynamic matchmaking protocol with batch size 1. Let the customer’s

type be (i, b, c). Without loss of generality, label the provider segments as K = {1,2, · · · , |K|}.

1. Recommendation generation: Sample a segment k ∈K ∪ {0} based on the probability vector (1−

r̂i, x̂i1, x̂i2, · · · , x̂i|K|). If k = 0, then terminate the protocol without matching the customer to anyone.

Otherwise, generate a random subset S ⊆ Jk by including each provider j ∈ Jk with probability ak,

where

ak := min

(
1,

ln(1/δ)

|Jk|dIdJ

)
. (G.27)

Each provider j ∈ S is said to be a recommended provider for the customer. Note that the expected

number of recommended providers is ak|Jk| ≤ (ln(1/δ))/(dIdJ).

2. Preference elicitation: For each recommended provider j ∈ S, ask the customer whether bj ≥ b̂ik,

and ask the provider whether cj ≥ ĉik. If both answers are “yes,” then the recommended provider is

said to be accepted. If no provider j ∈ S is accepted, then terminate the protocol without matching the

customer to anyone.

3. Match determination: Match the customer to a uniformly random recommended provider who was

accepted, with payment v̂k + ĉik.

Step 3 can be interpreted as either the natural outcome of preference heterogeneity among customers when

breaking ties among accepted providers, or as the result of a conscious effort by the platform to evenly split

demand among similar providers so as to maximize the overall match rate.

Proposition G.5 (Performance gurantees of centralized matching). Given any ε > 0 and δ > 0,

the above is a matchmaking protocol with an average per-agent communication cost of 2(ln(1/δ))/(dIdJ).

Suppose that dIdJ ≥min(1, (ln(1/δ))/l), where l is the minimum segment size, then for each segment i∈ I, the

proportion of customers who are matched is at least (1− δ)r̂i; conditional on being matched, each customer’s

surplus is at least ûi. Similarly, for each provider j in segment k, the rate at which he is matched is at least

(1− δ)q̂k, where q̂k is defined in (G.23). The market surplus per customer is at least W ∗− 2ε− δ, where W ∗

is the maximum surplus per customer from any feasible generalized matching.

Proof of Proposition G.5. Note first that the randomization in steps 1 and 3 is allowed by Definition G.1.

This is because one can equivalently think of the above as randomizing over deterministic communication

protocols, each of which is associated with a deterministic choice of the set S for each customer segment

i ∈ I, as well as a permutation for each customer segment that encodes a priority ordering for choosing

among accepted providers in step 3. The only communication in each deterministic protocol is in step 2,

which requires 2|S| bits.
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The generalized transaction outcome induced by the above protocol is guaranteed to be individually

rational, because whenever a customer from segment i is matched to a provider from segment k, x̂ik > 0,

which implies by complementary slackness that the payment v̂k + ĉik = b̂ik− ûi. Due to the definition of what

it means for a recommended provider is accepted, we have that conditional on being matched, the customer’s

surplus is at least ûi ≥ 0, and the provider’s surplus from this transaction is at least v̂k ≥ 0.

Now, if dIdJ = 1, then every match recommendation is accepted. If dIdJ < 1, then l≥ (ln(1/δ))/(dIdJ), so

the chance that none of the recommended providers in S is accepted is upper-bounded by (1−akdIdJ)|Jk| ≤

e− ln(1/δ) = δ, and this holds within each segment of customers. The desired lower bound on the proportion

of customers being matched follows from the fact that the probability that Step 2 is executed is equal to r̂i,

and Step 2 moves to Step 3 with probability at least 1− δ. Similarly, for each k ∈K, the rate at which some

provider within Jk is matched to a customer is at least (1− δ)
∑

i∈I λix̂ik = (1− δ)|Jk|q̂k. By symmetry, each

individual provider within the segment is matched with rate at least (1− δ)q̂k.

The above implies that the market surplus induced by the above protocol is at least (1− δ)W ′, where W ′

is the optimal objective to the assignment LP (G.18)-(G.21), as well as to the dual LP (G.24)-(G.26). If x′

is any feasible generalized matching, then the market surplus induced by x′ is

E(i,b,c)∼F [(b− c) ·x′(i, b, c)]≤ 2ε+E(i,b,c)∼F [(b− c− 2ε) ·x′(i, b, c)]≤ 2ε+W ′. (G.28)

The first inequality follows from the total rate of matching being upper-bounded by the total arrival rate of

customers, which is normalized to 1. The second inequality follows from the definition of b̂ and ĉ. Therefore,

W ∗ ≤ 2ε+W ′, and the market surplus induced by the above protocol is at least

(1− δ)W ′ ≥ (1− δ)(W ∗− 2ε)≥W ∗− 2ε− δ, (G.29)

where the last inequality comes from W ∗ ≤ 1, as bij − cij ≤ 1 and the total rate of matching is at most 1.

G.5. Near-optimality in the dynamic model

As in the static model, one can ask the following question in the dynamic model: for a given class of markets,

in the worst case, how many bits of communication per customer is needed to achieve a good outcome? The

answers are given in the following table, which is almost identical to Table 4 for the static model.

The upper bounds in Table 5 follow from Propositions G.2, G.3, G.4 and G.5. The lower bounds follow

from the following proposition, which is analogous to Proposition 12.

Proposition G.6 (Lower bounds in the dynamic model). In the dynamic model, define

M(n,dI , dJ) as the market with one segment of customers and n providers, each with capacity at least 1/n.

For each provider j ∈ J , the benefit and cost associated with each customer are independently drawn from

the following distribution,

bj =

{
.99 with probability dI ,

0 otherwise;
(G.30)

cj =

{
.01 with probability dJ ,

1 otherwise.
(G.31)
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Table 5 The average per-customer communication cost needed in the worst case by any dynamic matchmaking

protocol that guarantees the given notion of a good outcome in every market within the given class. All bounds

assume a constant ε > 0, which is incorporated into the constants in the big-O notation.

Space of
protocols

Notion of
a good
outcome

Class of mar-
kets

Lower bound Upper bound Protocol achieving the
upper bound

Unrestricted ε-stability

dJ ≥Ω(1) Ω(logn) O(logn) Customers search with
batch size one.dJ ≥ 1/

√
n Ω(1/dJ) O((logn)/dJ)

dI ≥Ω(1) Ω(logn) O(logn) Providers search with
batch size dIn.dI ≥ 1/

√
n Ω(1/dI) O((logn)/dI)

All markets Ω(
√
n) O(

√
n logn) Both sides search with

batch size
√
n.

One-round
protocols

Individually
rational
outcome
that
matches
1 − δ pro-
portion of
customers

dIdJ ≥ Ω(1),
and the
minimum seg-
ment size l ≥
ln(1/δ)/(dIdJ).

Ω(log(1/δ)) O(log(1/δ)) Centralized matching
with batch size one.

a) A dynamic matchmaking protocol is said to guarantee ε-stability in a given market if the generalized

transaction outcome induced by the protocol is always ε-stable. Any dynamic matchmaking protocol that

guarantees ε-stability in the market M(n,dI , dJ) requires an average per-agent communication cost of

at least φ(n,dI , dJ), where

i) φ(n,1,1/n) = (1− e−1) log2 n;

ii) φ(n,dI , dJ) = .007/dJ if dIdJ = 1/n and dJ ∈ [1/
√
n,1/2];

iii) φ(n,1,1/n) = (1− e−1) log2 n;

iv) φ(n,dI , dJ) = .007/dI if dIdJ = 1/n and dI ∈ [1/
√
n,1/2];

b) Any dynamic matchmaking protocol that only uses one-round communication protocols and matches

at least 1 − δ fraction of customers in the market M(n,1/2,1/2) requires an average per-customer

communication cost of at least 2 log2(1/δ).

Proof of Proposition G.6. Consider a matchmaking protocol with batch size m. We can think of the

randomization over deterministic communication protocols as sampling a random variableR, and the protocol

is deterministic conditional on R. Let Π denote the transcript of the protocol, which is the entire sequence

of zero-one bits that are communicated before termination, and let |Π| denote the length of the protocol,

which is the total number of bits communicated. Let the set of customers be [m] and let the benefit and cost

vector of each customer a∈ [m] be ba and ca. The average per-customer communication cost is

1

m
E[|Π|] =

1

m
ER
[
E
[
|Π|
∣∣∣R]]≥ 1

m
H(Π|R)≥ 1

m

∑
a∈[m]

I(ba, ca; Π|R). (G.32)
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Here, H(X|Z) is the conditional entropy of X given Z, and I(X;Y |Z) is the conditional mutual information

between X and Y given Z. For background on these concepts from information theory, see chapters 1 and

2 of Cover and Thomas (2012). The above implies that in order to lower bound the average per-customer

communication cost, it suffices to lower bound I(ba, ca; Π) for any deterministic protocol Π. In the remainder

of the proof, we consider one customer at a time, so we drop the superscript a.

As in the proof of Proposition 12, by the independence of preferences,

I(b, c; Π)≥
n∑
j=1

I(bj , cj ; Π). (G.33)

For part a)-i), note that for any j ∈ J ,

I(bj , cj ; Π)≥I(bj ; Π)≥E[xΠ
j ]D(bj |xΠ

j
=1‖bj) = E[xΠ

j ] log2(n), (G.34)

where xΠ
j is defined as whether the customer is matched to provider j when the transcript is Π,

and the last inequality comes from the fact that P(bj = .99|xΠ
j = 1) = 1, and the KL-divergence

D(Bernoulli(1)‖Bernoulli(1/n)) = log2(n). The desired result follows by combining (G.33) and (G.34) with

the following expression for the probability that a customer in M(n,1/n,1) is matched in an ε-stable gener-

alized transaction outcome:
n∑
j=1

E[xΠ
j ] = 1−

(
1− 1

n

)n
≥ 1− e−1. (G.35)

A similar argument implies the bound in part a)-iii).

For part a)-ii), define the random binary variable Pj as whether provider j is a perfect match for the

customer, which means that (bj , cj) = (.99, .01) and (bj′ , cj′) 6= (.99, .01) for any j′ 6= j. Note that for any

j ∈ J ,

E[Pj ] =
1

n

(
1− 1

n

)n−1

=
1

n

/(
1− 1

n− 1

)n−1

≥ e−1

n
. (G.36)

Now, since the protocol guarantees an ε-stability,

P
(
xΠ
j = 1|(bj , cj) = (.99, .01)

)
≥ E[Pj ]

1/n
≥ e−1, (G.37)

P
(
xΠ
j = 1|(bj , cj) = (0,1)

)
= 0. (G.38)

Therefore, the argument in the proof of Lemma D.2 b) in Appendix D.5 implies that

I(bj , cj ; Π)≥ (e−1)2/(2 ln 2)(√
1

dI(1−dJ )
+
√

1
(1−dI)dJ

+
√

1
(1−dI)(1−dJ )

)2 . (G.39)

As in (D.47), we have that the denominator is at most 13ndJ under the assumptions of a)-ii), and it is at

most 13ndI under the assumptions of a)-iv). Combining with (G.33) yields the desired result. The symmetric

argument implies the result for part a)-iv).

For part b), we follow a similar argument as in the proof of Proposition 12 c) in Appendix D.6. Let β be

the message of the customer and βj be the message of provider j. Define

G(β) :=
{
j : P(bj = .99|β) = 1

}
. (G.40)
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Since Definition G.1 requires the outcome to be individually rational, whenever the customer is matched to

provider j, it must be that j ∈G(β). Now,

I(b;β)≥
n∑
j=1

Eβ
[
D(bj |β‖bj)

]
≥E

[
|G(β)|

]
, (G.41)

where the first inequality comes from the independence of each component of b and the identity relat-

ing mutual information and KL-divergence. The second inequality follows from Eβ
[
D(bj |β‖bj)

]
≥ P(j ∈

G(β))D(Bernoulli(1)‖Bernoulli(.5)) = P(j ∈G(β)). Now, by the constraint that the protocol needs to match

1− δ proportion of customers, we have

δ≥Eβ
[
2−|G(β)|]≥ 2−E[|G(β)|], (G.42)

where the second inequality is by Jensen’s inequality.

Combining (G.41) and (G.42), we get I(b;β) ≥ log2(1/δ). The symmetric argument yields I(c;γ) ≥
log2(1/δ). The desired result follows from I(b, c; Π)≥I(b;β) +I(c;γ), which holds because (b, β) is indepen-

dent of (c, γ). �

Appendix H: Model without transfer payments

Consider the following alternative model with non-transferable utility (NTU). Reinterpret bij as customer

i’s value of being matched to provider j, and cij as provider j’s value of being matched to customer i, with

higher values being preferred. These exogenously given values completely pin down agents’ utilities in a

match, and there is no longer an endogenously determined transfer payment. An unmatched agent receives

zero value, and the bounded support assumption is modified to bij , cij ∈ [−1,1], so that it is possible for an

agent to prefer being unmatched over matching with certain partners. Each matching x induces agent utilities

ui :=
∑

j∈J bijxij and vj :=
∑

i∈I cijxij , and the matching is ε-stable if u, v ≥ 0 and for any (i, j) ∈ I × J ,

either ui ≥ bij − ε or vj ≥ cij − ε.
The analogous research question is how to facilitate an ε-stable matching with high probability using

minimal communication. This section defines the analogs of the four protocols and re-derives all of the results

in the main body of the paper. The protocols all satisfy the formal definition of a communication protocol

in Section 4.1. The following is analogous to the description of Protocol 3 in Appendix C.

NTU Protocol 3 Given ε > 0, as well as an I × J matrix z that depends only on the commonly known

market information (I, J,B,C).

1. Initialization: Initialize the matching x to be empty, and the set A = I. For each j ∈ J , initialize

v̂j = 0. For each (i, j)∈ I × J , initialize ĉij = zij − ε. Define Ĵi(v̂, ĉ) := {j ∈ J : ĉij ≥ v̂j and bij ≥ 0}.

2. Providers search for customers: Each provider j ∈ J sends a message (i,∆ij := b(cij − ĉij)/εc)
for each i ∈ I such that cij > zij. The protocol updates ĉij = ĉij + ε∆ij. After each provider is finished

contacting customers, he uses one bit to communicate that he is done.

3. Customers search for providers:

(a) Customer selection: If |A| = 0, then terminate the protocol with the matching x. Otherwise,

select the customer i∈A with the smallest index and proceed to step 3(b).
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(b) Provider interaction: The selected customer i sends the message “0” if the set Ĵi(v̂, ĉ) is empty,

in which case the protocol removes i from A and go back to step 3(a). Otherwise, customer i selects

the provider

j∗ ∈ arg max
j

{bij : j ∈ Ĵi(v̂, ĉ)} (H.1)

with the smallest index and communicates the index of j∗. The provider j∗ responds with one bit

indicating whether cij∗ ≥ ĉij∗ .

• If “yes,” then the protocol increments v̂j∗ to ĉij∗ + ε, updates xij∗ = 1, and removes i from A.

If j∗ was previously matched to another customer i′, then the protocol updates xi′j∗ = 0, and

adds i′ to A. Go back to step 3(a).

• If “no,” then provider j∗ communicates ∆ij∗ := b(cij∗ − ĉij∗)/εc. The protocol updates ĉij∗ =

ĉij∗ + ε∆ij∗ . Repeat step 3(b).

Define NTU Protocol 1 as the special case of NTU Protocol 3 in which zij ≡ cij , and NTU Protocol 2 as

the mirror image of NTU Protocol 1.

NTU Protocol 4 Given ε > 0, and a set Si ⊆ J for each customer i ∈ I. The protocol is identical to the

Protocol 4 in Section 4.1, except that all references to the price vector p are removed. Moreover, since high

values of cij are preferred and preferences may be negative, the condition for accepting a recommended pair

(i, j) is if bij ≥max(0, bij − ε) and cij ≥max(0, cij − ε).

The following result is analogous to Proposition 1, except that instead of guaranteeing near-optimal average

surplus, ε-stability in the NTU model guarantees an approximate version of Pareto optimality.

Proposition H.1 (Approximate Pareto optimality). Given any ε-stable matching x in the NTU

model, it is impossible for another feasible matching x′ to simultaneously improve everyone’s utility by more

than ε.

Proof of Proposition H.1. Suppose on the contrary that such an x′ exists, then any matched pair (i, j)

would be an ε-blocking pair in x, which contradicts the ε-stability of x. On the other hand, if x′ doesn’t

match anyone, then everyone’s utility is zero, but everyone’s utility is at least zero in x by ε-stability. �

The following result is analogous to Propositions 2 and 3.

Proposition H.2 (Effectiveness of NTU Protocol 3). Given any ε > 0 and any choice of z, NTU

Protocol 3 always terminates with a (2ε)-stable matching.

Proof of Proposition H.2. The protocol always terminates, because in every iteration of step 3(b), either

ĉij∗ is updated to be within [cij∗ − ε, cij∗ ], after which it will not be updated again, or vj∗ increments by

at least ε. The matching x returned by the protocol is always individually rational, as no one is forced to

be matched with an undesirable partner. To see that x is (2ε)-stable, observe that at the beginning of step

3, cij ≤ ĉij + ε for all (i, j) ∈ I × J . Moreover, in step 3, each component of ĉ can only decrease and each

component of v̂ can only increase. Let ĉ and v̂ refer to their final values upon the protocol’s termination, and

(u, v) be the agent surpluses associated with x. Note that u, v≥ 0 since no one is ever forced to be matched
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to an unacceptable partner. By the customers’ optimization in (H.1) and the monotonicity of ĉ and v̂, we

have

ui ≥ bij for all j such that ĉij ≥ v̂j . (H.2)

Moreover, step 3 guarantees that vj ≥ v̂j − ε, where the “−ε” comes from the increment in v̂j after being

matched. Therefore, for all j such that ĉij < v̂j , we have

vj ≥ v̂j − ε > ĉij − ε≥ cij − 2ε. (H.3)

Combining (H.2) and (H.3), we have that x is (2ε)-stable. �

Since high values of cij are desirable in the NTU model, we define the preference density parameter dJ in

the NTU model as the largest value such that

P(cij ≥ cij − ε)≥ dJ for all (i, j)∈ I × J . (H.4)

The definition of dI is unchanged and is given in (15).

Proposition 4 as stated in Section 3.1 continues to hold in the NTU model, and the same proof applies.

This is because the chance that the provider j∗ responds in Step 3b) with a “yes” is still at least dJ in each

iteration, independent of everything else. Moreover, for each provider j, v̂j can still increment at most d1/εe
times before no customer will reach out to the provider.

The following result is analogous to Proposition 5, in that it shows that allowing both sides to initiate

contact can yield dramatic improvements if both dI and dJ are very low.

Proposition H.3 (Illustration of NTU Protocol 3). Consider a market in which n is even and there

are two segments of customers and providers: I = I1 ∪ I2 with |I1|= |I2|, and J = J1 ∪ J2 with |J1|= |J2|.
Suppose that for any (i, j)∈ I1× J1, both bij and cij are negative. For any (i, j)∈ I2× J2, bij = cij = .1. For

any (i, j)∈ I1× J2, cij = .2 and

bij =

{
1 with probability dI := 1/n,

−1 otherwise
(H.5)

Symmetrically, for any (i, j)∈ I2× J1, bij = .2 and

cij =

{
1 with probability dJ := 1/n,

−1 otherwise
(H.6)

In this market, for any ε < 1, the expected number of interactions per customer is at least .19n under NTU

Protocol 1 or NTU Protocol 2, but is equal to 1.25 under NTU Protocol 3 if parameter zij ≡ 0.2.

Proof of Proposition H.3. Under NTU Protocol 1, each customer in I2 would try to contact every provider

in J1 before settling with a partner in J2. Let X be a geometrically distributed random variable with mean n.

Each such customer would contact in expectation E[min(X,n/2)] providers in J1, where q := (1− 1/n)n/2 ≤
e−0.5. Since |I2|= n/2, the overall expected number of interactions per customers in this protocol is at least

n(1− q)/2> .19n. The same bound holds under NTU Protocol 2 by symmetry.

Under NTU Protocol 3 with zij ≡ 0.2, the expected number of interactions in Step 2 is n/4, as the n/2

providers in J1 each reaches out to 1/2 customers in I2 in expectation. In Step 3, every customer would only

contact at most one provider. So the total expected number of interactions per customer is 1.25. �
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Proposition 6 in Section 3.2 continues to hold after accounting for the change that high values of cij are

now preferred, so (21) becomes

N(z) :=

( ∑
i∈I,j∈J

P(cij > zij)

)
+

⌈
1

ε

⌉(∑
j∈J

1

mini∈I{P(cij ≥ zij − ε|cij ≤ zij)}

)
. (H.7)

Similarly, Proposition 7 continues to hold if (22) is updated to account for the change in the direction of cij :

z∗ij := sup{y ∈ [0, cij ] : P(cij ∈ [y− ε, y]≥ 1/
√
n}. (H.8)

The analogous proofs as those in Section 3.2 continue to apply, as the mechanics of NTU Protocol 3 is almost

identical to that of Protocol 3.

The definition of providers being “relatively homogeneous” (Definition 2) needs to be modified in the NTU

model so that it is the quantities bij and cij that depend only on the customer i and the segment k that

contains provider j. This is because high values of cij are preferred in the NTU model, so an optimistic

estimate of provider preference is cij . The following result is analogous to Propositions 8 and 9.

Proposition H.4 (Effectiveness and performance of NTU Protocol 4). Given ε > 0 and a mar-

ket in which the providers are relatively homogeneous with minimum segment size l (with the definition of

“relatively homogeneous” being modified as explained above). Let x̂ be a stable matching when preferences

are given by b̂ij := bij − ε and ĉij := cij − ε. Consider NTU Protocol 4 in which the recommendation set Si is

defined as follows: for each customer i matched to a provider of segment k in x̂, construct Si to be a random

subset of Jk such that each j ∈ Jk is included with probability ak := min(1, (3 lnn)/(|Jk|dIdJ), independently

across (i, j) pairs. For each customer i who is unmatched in x̂, define Si = ∅.

If dIdJ ≥min(1, (3 lnn)/l), then this protocol yields an ε-stable matching with probability at least 1−3/n2.

Proof of Proposition H.4. Let x be the matching returned by NTU Protocol 4, with utilities given by

(u, v). Let (û, v̂) be the utilities associate with the matching x̂ when preferences are given by the optimistic

estimates (b̂, ĉ) = (b− ε, c− ε). Let Î be the set of customers matched in x̂. The proof of Proposition 9 in

Appendix D.2 implies that with probability at least 1− 3/n2, the set of matched customer in x is also equal

to Î. When this occurs, we show that x is ε-stable.

Define x(i) and x̂(i) to be the matched partner of customer i under matchings x and x̂ respectively. For any

subset A⊆ I, define x(A) and x̂(A) to be the respective set of matched partners to customers i∈A. Define

σ : J→ J as a bijection that maps each provider segment Jk to itself, such that if j = x(i), then σ(j) = x̂(i).

Moreover, if j ∈ Jk\x(Î), then σ(j) ∈ Jk\x̂(Î). Such a bijection exists because within each segment Jk, the

number of matched providers is the same in x and in x̂. By construction, we have that ui ≥ ûi for all i ∈ I,

and vj ≥ v̂σ(j) for all j ∈ J . Since û, v̂ ≥ 0, we have that u, v ≥ 0. Moreover, we have by the definition of x̂

that for every (i, j)∈ I × J ,

either ui ≥ ûi ≥ b̂ij = bij − ε≥ bij − ε, (H.9)

or vj ≥ v̂σ(j) ≥ b̂iσ(j) = cij − ε≥ cij − ε. (H.10)

Thus, the matching x is ε-stable. �
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Propositions 10 and 11 in Section 4.2 continue to hold in the NTU model if one simply replaces the

phrase “ε-stable outcome” with “ε-stable matching.” This is because the performance guarantees for the four

protocols derived above are almost identical to those derived for the transferable utility model in Section 3.

Proposition 12 in Section 4.3 also holds if one updates the definition of the market M(n,dI , dJ) as having

preferences drawn from the following distributions:

bij =

{
1 with probability dI ,

−1 otherwise;
(H.11)

cij =

{
1 with probability dJ ,

−1 otherwise.
(H.12)

For any ε < 1, any ε-stable matching for the above market must only match profitable pairs (i, j), for which

(bij , cij) = (1,1), and cannot leave both agents in a profitable pair unmatched. This is the same property as

that used in the proof of Proposition 12 except that a profitable pair (i, j) in the transferable utility case is

one in which (bij , cij) = (.99, .01). After accounting for this minor difference in definitions, the same proofs

as in Appendices D.5 and D.6 will go though, and we obtain the same lower bounds as in Proposition 12

with the phrase “ε-stable outcome” everywhere replaced by “ε-stable matching.”

The following result is analogous to Proposition A.1 in Section A.

Proposition H.5 (Incentive guarantees for centralized matching in the NTU model). Under

the assumptions of Proposition H.4, with probability at least 1− 3/n2, NTU Protocol 4 returns an ε-stable

matching, and no customer can unilaterally deviate and improve her utility by more than ε. Moreover, no

provider of segment k can unilaterally deviate and obtain a utility higher than

max{cij : x̂(i)∈ Jk}, (H.13)

where x̂(i) is the provider matched to customer i under the matching x̂ as defined in Proposition H.4.

Note that the incentive guarantees for providers is weaker in Proposition H.5 than in Proposition A.1. This

is because in the NTU model, if a provider j is recommended to two customers i and i′, where cij >> ci′j ,

then he may be tempted to accept i even if cij < cij− ε and reject i′ even if ci′j ≥ ci′j− ε, thus deviating from

the protocol. In the transferable utility model, such an incentive issue does not arise, because the payments

are constructed such that pi− cij = pi′ − ci′j whenever a provider j is recommended to both customers i and

i′, so that the provider is essentially indifferent between the two if his costs for both are close to their lower

support.

Proof of Proposition H.5. Let Î be the set of customers who are matched in x̂. As in the proof of Propo-

sition H.4, with probability 1 − 3/n2, the matching returned by NTU Protocol 4 is ε-stable. When this

happens, every customer i∈ Î obtains a utility of at least bix̂(i)− ε, and the maximum possible utility she can

obtain is under the protocol is bix̂(i), since bij is the same for all providers j ∈ Si whom she might be matched

to. For a customer i 6∈ Î, she is not offered the chance to be matched to any providers, and so obtains zero

utility regardless of what she does. For each provider j of segment k, he can only be recommended to a

customer in {i∈ I : x̂(i)∈ Jk}, so his maximum possible utility is as given in (H.13). �


