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Abstract
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1 Introduction

With the exception of kindey transplantation, the design of organ allocation policies and

algorithms involve decisions about whom to save from death.1 In fact, in the U.S. the large

majority of lung, liver and heart transplant candidates have no other alternative but hope

to survive long enough to get an organ from a deceased donor through the national waiting

list.2 Since the organ supply is scarce, it is a fact that many of these patients will die while

waiting. Given the complex moral issues in question, medical ethics have played a key role

in the design of the U.S. organ allocation system.

A fundamental design challenge has been to determine justifiable principles for rationing

these lifesaving public resources, and translate them into material criteria that can be the

basis for allocation policies. In 1986, the U.S. Task Force on Organ Transplantation recom-

mended that organ allocation decisions consider equity, medical utility, and autonomy, but

also recognized that the principles of equity and medical utility might result in competing

claims to organs between transplant candidates (Organ Transplantation 1986): it is a dif-

ficult ethical issue to determine whether the patient with the better outcome or the most

urgent one should receive an organ. This conflict between two major principles of distributive

justice has resulted in heated debates among stakeholders, policymakers and ethicists.

In these debates, the informational demands of different principles and the actual behav-

ior their implementation incentivize on patients and caregivers have been mostly overlooked.

For instance, in the allocation of hearts and livers, the lack of backup treatments led to

favoring equity over medical utility since the system’s inception. Historically, this has been

translated into the requirement for allocation policies to give absolute priority to the medi-

cally worst-off or most urgent transplant candidate.

A major unintended consequence of this approach has been a recurrent pervasive problem

of asymmetric information, particularly prominent in liver and heart allocation. Most of

the transplant candidates’ covariates intended to reflect medical urgency, such as diagnosis,

medical therapies, and lab tests, have been recurrently manipulated through unnecessary

medical interventions so that patients appear to have greater urgency than they actually

do.3 Since getting a liver or heart is a matter of life an death, patients and physicians face

1I borrow the expression “whom to save from death” from the title of one the authoritative books on
the subject matter(Kamm 1993).

2To the date there is no reliable long-term treatment for end stage hepatic, cardiac or pulmonary disease,
other than transplantation. In contrast, in the case of renal disease, dialysis is a long-term reliable alternative
treatment, which differentiates kidney allocation from the other organ allocation problems. In addition,
living-donor liver and lung transplants are very complex medical procedures only viable for patients with
particular diagnoses.

3See section 2 for a summary of the type of manipulations.
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high-powered incentives to engage in such strategic manipulations.4 In addition, transplant

centers and providers also face financial and reputational incentives to increase the volume

of transplants performed. Thus, it is not surprising that despite multiple revisions to the

allocation rules, the ethics committee of the U.S. transplantation authority recognizes that

current safeguards do not sufficiently mitigate this risk. Thus, the OPTN,

OPTN/UNOS Committees, and the transplant community should consider re-

fining current and/or developing additional safeguards to mitigate the risk of

manipulation of candidates’ waitlist priority (OPTN/UNOS 2018).

This gaming of priorities has several undesirable consequences which can be exacerbated

in equilibrium. On top of organ misallocation, which jeopardizes the system’s objective itself,

the manipulation using medical interventions destroys information by pooling patients at

the high urgency statuses. Moreover, the mimicking requires overtreatment and unnecessary

healthcare expenditures. It also undermines the public perception and trust in the system,

which is critical for a program which largely depends on both, public funding and the public

willingness to donate organs.

I use mechanism design tools to study the problem of deceased-donor organ allocation

in the presence of dynamic asymmetric information. Because in the U.S. organ markets

transfers are forbidden, I build on the literature on dynamic incentives without transfers to

study whether the social planner can overcome the incentive problem by prioritizing patients

using the history of medical urgency reports. I derive the optimal prioritization rule for two

different social welfare functions that capture in a stylized way the conflicting principles of

equity and transplant utility.

I set up a model of overlapping generations in discrete time. In every period, a unit

mass of junior patients arrives to the system, and a social planner with full commitment

receives a mass of perishable organs. Patients live for at most two of periods and have

privately known binary health states that vary stochastically over time with some degree

of persistence. Patients leave the market either by undergoing transplantation, when they

reach their maximum longevity, or because they pass away while waiting. Each individual

patient is required to report a health state to the planner every period. The set of health

state messages for patients depend on their actual health state, as in the literature on

mechanism design with partially verifiable information (Green et al. 1986). I assume that

misrepresentation is not costly in the sense that it does not impose increased risk or lower

4For individual physicians, the commitment to their patients’ well-being through the Hippocratic ethics
can justify the gaming of the organ allocation system, a possibility envisioned in another context by one
of the funding fathers of medical ethics and architect of the U.S. transplantation system, Robert M Veatch
(2000).
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quality of life to the patients. This assumption is conservative: when gaming is costly, the

incentives to manipulate are partially offset by the cost of doing so.

From the two social welfare functions I consider, one, which I name ‘equitable’, captures

in a stylized way the objective of prioritizing the medically worst off and aims to minimize

the mass of untreated sick patients in the market. The other is a utilitarian one which aims

to maximize the total sum of patients’ expected lifetime utility.

I find that the trade-off between the costs and benefits of screening patients faced by the

clearinghouse resolves differently depending on social preferences for organ allocation. When

the social objective is the ‘equitable’ one, Theorem 1 shows that the optimal allocation rule

can take very different forms depending on the environment parameters. Optimal allocation

rules can differ in two dimensions: whether screening is optimal or not, and who waits.

Take as a benchmark a uniform lottery among junior patients, a simple incentive compatible

allocation rule which does not screen and creates no delay. Such a rule allocates some organs

to a fraction of junior healthy patients who would be either healthy in the future or dead,

which is very inefficient from the perspective of removing sick patients from the market. This

cost, however, is offset in some cases by the benefit from removing sick junior patients from

the market who anyways would become sick. If the probability of a patient becoming sick

in the future is large and the survival probabilities are small, the cost can offset the benefit

of allocating organs to junior patients, hence a lottery among seniors performs better than

a uniform lottery among junior patients.

In stark contrast, Theorem 2 shows that a utilitarian social planner never incentivize

junior healthy patients to wait, despite the fact that healthy junior patients benefit less

from an organ as compared to junior sick patients. The information rents that would be

required to have junior healthy patients waiting are too high, and the utilitarian social

planner internalizes their utility loss. Given this, if screening is optimal, it is achieved by

forcing sick junior patients to wait. This is doable, because sick patients cannot manipulate

their health state, but it is optimal only if demanding conditions are satisfied. One of

these conditions is that a junior sick patient benefits more (in expectation) from getting an

organ when senior than a healthy junior patient would from getting an organ upon arrival.

A utilitarian social planner pools patients more often, and in this case serves them upon

arrival with a uniform lottery.

My findings have clear policy implications. First, the current allocation rule, which is a

naive implementation of the medical urgency principle under the assumption that individual

reports of medical urgency are sincere, is not incentive compatible. To incentivize truth-

telling, patients in position to “game” their medical urgency should not be unconditionally

relegated to the lowest priority tiers. Second, in the face of recurrent manipulation of the
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triaging policies, the typical institutional response has been either to ignore “gameable”

covariates, or to institute stricter conditions for considering a treatment as a valid signal

of medical urgency.5 A revision of how the current allocation policies use the history of

reports of medical urgency to triage transplant candidates can help to alleviate the problem

of asymmetric information.

Third, I bring a new perspective to the debate on the principles for the allocation of organs

for transplantation: the trade-offs imposed by the need of eliciting the information relevant

for allocation purposes. Policymakers and medical ethicists have largely ignored the problem

of asymmetric information created by the attempt to implement different ethical principles.

The two principles considered here, that have been the protagonists of a longtime debate,

interact in a complex way with the informational constraint. In general, the prescribed

optimal policies for the two objectives are different, but there is a region of parameters

where they coincide, in which case, once the incentive problem is taken into account, the

two objectives are not in conflict.

1.1 Contributions to the literature

The problem of queue design for allocating organs has a long tradition in Operations

Research (Ata et al. 2018), but typically this literature does not consider problems of asym-

metric information. In Economics, the allocation through waiting lists has been studied

in settings without asymmetric information (Condorelli 2012; Bloch et al. 2017; Schum-

mer 2020; Che et al. 2021) and with asymmetric information (Margaria 2016; Leshno 2017;

Thakral 2016). In contrast to the latter, I compare the optimal allocation rule for two dif-

ferent social welfare functions in a setting where agents are short-lived, with dynamic and

partially verifiable information.

The deceased-donor organ allocation problem, which is one of allocating socially owned

organs among many waiting patients is starting to attract the attention of economists. Con-

current papers study the allocation of deceased-donor organs from empirical (Dickert-Conlin

et al. 2019; Agarwal, Ashlagi, et al. 2021; Agarwal, Hodgson, et al. 2020) and experimental

perspectives (Genie et al. 2020; Sullivan 2021). My work contributes to this rapidly evolving

literature by introducing state-of-the-art techniques from dynamic contracting and dynamic

mechanism design to provide key insights on the design of the organ allocation rules.

My work also relates to the literature on dynamic contracting without transfers (Atkeson

et al. 1992; Farhi et al. 2007; Olszewski et al. 2020; Guo et al. 2018; Li et al. 2017; Lipnowski

5The latter has been found to be controversial, for these stricter conditions are not necessarily meet by
actual urgent patients (Parker, Garrity Jr, et al. 2017), while the former is likely to disregard information
that would have been informative in the absence of gaming (Stewart et al. 2007).
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et al. 2018). Most of this literature assume that agents or households are infinitely lived

and demand more than one object, or that there are inter-generational linkages which lead

to dynasties which consume forever.6 In contrast, the organ allocation setting is one where

agents demand one and only one object, which is technically challenging because it generates

endogenous population dynamics. To make progress on the pressing policy issues studied

here, I fist restrict attention to steady-state analysis, which is the standard approach in

queuing theory and has been adopted in recent papers in Economics to overcome technical

difficulties (Margaria 2016; Leshno 2017; Che et al. 2021). Moreover, this approach allows

me to bypass the absence of clearly formulated long run social objectives in organ allocation.

Second, I conduct numerical analysis for plausible long run social objectives and a large class

of parameters which suggests the system converges to a steady-state over the optimal path,

regardless initial conditions.

2 Background on heart and liver allocation

In the U.S., the organization in charge of coordinating the organ placement process is the

Organ Procurement and Transplantation Network (OPTN), a public-private partnership that

by law includes all the agents in the national system of donation and transplantation.7 Part

of the responsibilities of OPTN/UNOS is to develop policies for organ recovery, allocation,

and transportation.

Since the late 80’s, individual medical urgency was adopted as the main criteria in liver

and heart allocation. Additional criteria used for allocation purposes are geography (relative

position of donor and recipient), blood compatibility and waiting time. Except for medical

urgency and geography, which are interwoven, the ordering is lexicographical with urgency

and geography as the main criteria, followed by blood compatibility, and finally waiting time.

2.1 Manipulation in liver allocation

In liver allocation medical urgency was initially given by patients’ hospitalization status,

with patients’ located in the ICU getting the largest priority for a liver. At the end of the

90’s, evidence of widespread manipulation of patients’ hospitalization status to raise their

priority for a liver lead to a revision of the system and the development of the Model of

6To my knowledge, only Kovac et al. (2013) has studied the optimal stopping case in a principal-agent
relationship, which can be interpreted as a single unit consumption. However, the settings are irreducible,
mainly because the competition for organs.

7It was created by the U.S. Congress by means of the National Organ Transplant Act (NOTA) in 1984,
and since 1986 it is managed by the private contractor United Network of Organ Sharing (UNOS). It is part
of the Department of Health and Human Services
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End-stage Liver Disease (MELD) score (Freeman et al. 2004; Merion et al. 2011).8 MELD

is based on a survival model and predicts three-month mortality in the waiting list based on

blood tests and patient’s dialysis status.9 For allocation purposes, the score was restricted

to take integer values, capped at 40, and to give a large value of creatinine to patients on

dialysis (Freeman et al. 2004).

While the adoption of MELD score reduced the risk for manipulation, the OPTN points

out that it “has not been eliminated completely,” and cites the example of starting a patient

with “mild to moderate renal impairment on dialysis without actual indication” as a way

of gaming priorities (OPTN/UNOS 2018). The medical literature indicates that lab tests

can also be manipulated towards higher MELD score through the use of medications like

diuretics, warfarin or vasopressin receptor antagonists without affecting prognosis (Moore

et al. 2012; Rowe et al. 2007; Asrani et al. 2010).

2.2 Manipulation in heart allocation

In the case of heart allocation, treatment aggressiveness determines patients’ medical

urgency, under the implicit assumption that critically ill candidates require more aggressive

life-sustaining measures. The original scale of medical urgency, in place since 1989, had only

two tiers. Evidence of gaming through unnecessary therapy escalation (Scanlon et al. 2004)

prompted action from policymakers, leading to a refinement of the prioritization rules in

1999.

However, physicians and transplant centers adapted their behavior to the new rule. It be-

came common knowledge among practitioners that high-dosages of inotropes and pulmonary

artery catheters were being overused as a way of increasing the patients likelihood of under-

going transplantation (Stevenson 2013; Stevenson et al. 2016; Rao et al. 2018). This issue

triggered a new revision of the prioritization scheme by the OPTN/UNOS Heart Transplan-

tation Committee (Committee 2016 (accessed June 30, 2020)), which culminated with the

adoption of a new allocation rule in 2018. In the new rule, inotropes only guarantee the third

and fourth urgency tiers, while only patients on very aggressive therapies like mechanical

circulatory or ventilatory support are given the highest priority status (Colvin-Adams et al.

2012; Rao et al. 2018).

Recent empirical evidence is consistent with a striking strategic response from transplant

centers to these changes. Parker, Chung, et al. (2020) found that while the use of inotropes

8Snyder (2010) leverages the adoption of MELD in 2002 to show that ICU usage dropped significantly
after its elimination as triaging criteria.

9Up to 2016, MELD was based on serum creatinine, international normalized ratio of prothrombin (INR)
and bilirubin. It was afterwards updated to include serum sodium (MELD-Na).
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Liver Heart
Patients at begining of year 16,539 3,380
Anual patients arrivals 11,199 3,638
Anual patients departures (different from transplantation) 5,239 1,131
Organs transplanted 6,890 (294 living) 2,487

Table 1: Dynamics of transplant waiting pool, annual averages 2002-2018. Source: OPTN
STAR Files as of March, 2019

decreased after the policy change, that of other, more aggressive therapies like IABP and

ECMO increased. Ran et al. (2021) found that

“The odds of high-priority listing was more than five times greater than ex-

pected in the post-policy period, without accompanying explanatory changes in

candidate characteristics. Transplant centers all over the country listed more

candidates than expected at high-priority status.”

2.3 Stylized facts

Based on the above exposition, data from Standard Transplant Analitical Files (STAR),

medical literature and talks with practitioners, I highlight the most important stylized facts

that motivate key features of the model.

Fact 1: The ability of misrepresenting medical urgency depends on the actual medical

urgency of the patient.

Truly very sick patients in the highest degree of urgency cannot misrepresent their health

state, for the medical urgency scale is bounded. In the case of hearts, the most invasive

therapies like ECMO or Non-dischargable LVAD cannot be escalated further. In the case of

livers, patients who medically require dialysis cannot use dialysis as a tool to misrepresent

their degree of medical need. More nuance in the case of taking pills to increase MELD

score, but the general idea is still true: since the MELD score is caped at 40 for allocation

purposes, patients already in the highest score cannot increase it beyond.

Fact 2: Organ arrival rate is smaller than patient arrival rate

Between 2002 and 2018, the annual amount of organs transplanted was smaller than

the arrival of new patients (Table 1). In the case of livers, there was on average 54 organs

transplanted per each 100 new patients. In the case of hearts, there were 67 transplant per

each 100 new patients registered each year.
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(a) Liver (b) Heart

Figure 1: Time from arrival to departure, all patients 2002-2018

Fact 3: Heterogeneity of tenures in patient mix

Table 1 shows a considerable number of patients spend more than one year on the list

waiting for an organ. The entire distribution of the time elapsed between arrival and depar-

ture for all patients in the waiting list between 2002 and 2018 is depicted in Figure 1. In the

case of livers (Figure 1a) the average waiting time before departure is 1.49± 2.44 years, and

71 % of the candidates depart in the first two years after arrival. From this latter group of

patients, 64% departs due to deceased donor transplantation. In the case of hearts (Figure

1b), the average waiting time before departure is considerably lower (1.05± 1.93 years), 79

% of the patients depart in the first two years, and from them 73% undergo transplantation.

Fact 4: Patients’ medical urgency status change over time

The design of the allocation rules offers evidence of the natural variation in the level of

medical urgency of a patient. In fact, the allocation policies for both, liver and heart feature

an update schedule that requires transplant centers to update their patients’ urgency status

regularly with a frequency that depends on the last report of medical urgency. 10

Moreover, using non-allocation data–hence not subject to manipulation–Alagoz et al.

(2005) document within patient variation in MELD score.

Fact 5: Transplantation improves quality of life

Studies on quality of life before and after transplantation consistently find that transplanta-

tion improves patients’ quality of life relative to the preoperative status in several dimensions

including physical functioning, as well as cognitive abilities (Trzepacz et al. 2000; Yang et al.

2014; Mabrouk et al. 2012).

10For livers, see Policy 9.2 in OPTN Allocation policies. For hearts, see Policy 6.1.
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Fact 6: Pre-transplant candidates quality of life varies with severity of organ failure

Sicker patients tend to have lower pre-transplant quality of life. In the case of end stage

liver disease, it is well known among transplant specialists that pre-transplant quality of

life varies across patients, and patients in advanced stage tend to present complications like

hepatic encephalopathy that impairs transplant candidates’ functional status and cognitive

abilities (Orr et al. 2014).11

3 Setting

Time is discrete and indexed by s = 0, 1, 2, . . . There is a social planner (SP) with full

commitment. In every period s, a mass x < 1 of identical and perishable organs and a unit

mass of patients–or transplant candidates–arrive to the system. Upon arrival, candidates live

for at most two periods. I index the patient’s tenure in the system by t ∈ {1, 2}. Departures

happen because either a patient pass away, reaches the maximum longevity or receives an

organ.

While in the waiting list, each transplant candidate has a time-evolving binary health

state which is either good (G) or bad (B) with probabiliries q(G) + q(B) = 1. This type

determines patient’s pre-transplant survival, health state evolution and flow payoffs.

Before transplant, a junior patient in health state h1 survives with probability δh1 to the

next period; conditional on not getting an organ and surviving, her health state in next

period is h2 ∈ {B,G} with probability p(h2|h1). Patients in a poor health condition are

more likely to die without an organ, and if they survive to the next period, they are more

likely to be sick than patients in good health condition, this is

δB < δG, p(B|B) > p(B|G) (1)

While waiting for an organ, every patient receives a flow payoff u(ht). This per-period

payoff is intended to capture the quality of life a patient enjoys while in need for an organ,

and depends on her health state. According to Fact 6, sick patients waiting for organs have

a lower quality of life than not very sick patients, this is

u(B) < u(G) (2)

A transplant has two effects: extend life (increased survival) and improve quality of life.

11Hepatic encephalopathy is a “disturbance in the central nervous function because of hepatic insuf-
ficiency”; symptoms range from short-term memory loss and lack of concentration to disorientation and
lethargy (Sharma et al. 2005).
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Once they receive an organ, and for their remaining lifetime, patients are assumed to be

identical. More specifically, patients who receive an organ stay alive for their remaining

lifespan, and enjoy a better per-period quality of life, ū > u(G). This assumes there is

no heterogeneity in post-transplant patient survival, nor in quality of life across recipients,

regardless of their pre-transplant medical history.12

3.1 Information

Every period patients privately learn their health state. For any patient with tenure t,

denote by mt ∈M t = {B,G}t a patient’s history of realized health states since she was born

and up to period t, inclusive. I also refer to this as the patient’s medical history. Let M be

the set of all medical histories.

Every period s a patient is in the waiting list, they are required to report their health

state to the SP. Denote the report at time s of a patient with tenure t by m̂s,t, and the

corresponding history of reports by m̂t
s.

The set of messages that can be sent by patients depends on their actual individual health

state at the corresponding period. Specifically, when health state is B, the candidate can

only report B, but when health state is G the candidate can report anything in {B,G}.
This is in line with the manipulation using medical interventions described above. I assume

misrepresentation is not costly to the healthy patient. In the case it is costly, the gain from

manipulation is partially offset by its cost. So the costless case is conservative.

3.2 Mechanism or allocation rule

Let hs = (h0, h1, . . . , hs) be the history of the system up to calendar period s. hs denotes

what happened in period s. A sufficient statistic for hs are µs(m̂
t), m̂t ∈ M, the masses of

patients who were in the market by the end of the period, after allocation happened, after

reporting a given medical history in period s. Let Hs the set of possible histories of the

system at period s, and H =
⋃
sH

s the set of all histories.

In period s, based on the reports from all candidates and the history transpired so far,

SP makes organ allocation decisions, which are given by a mechanism or allocation rule

ψs : H×M 7→ [0, 1] (3)

that specifies the probability of a transplant candidate receiving an organ for transplantation

12This assumption is clearly strong, but it helps with tractability and allows to concentrate on the infor-
mational aspect of the tension between competing ethical principles. More on this in Section 3.4.
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as a function of her own reported medical history.

Several remarks are in place.

In this setting there is population dynamics, which arises from the fact that patients only

consume one object and can die in the waiting list. Moreover, this population dynamics is

endogenous, for it is partially determined by the allocation rule itself. In fact, suppose all

information is public. Thus, in period s, the mass of senior patients in the market with

medical history m2 before allocations have taken place is

µs(m1(m
2)) = q(m1(m

2))(1− ψs−1(hs−1,m1(m
2))) (4)

which clearly depends on the mechanism. This adds a major difficulty to my analysis.

In dynamic contracting and mechanism design either population or information is constant,

but not both.

3.2.1 Incentive compatibility

Only patients in a good health state can misrepresent it. At any period s, those are the

junior patients who arrive in good health state to the market, or those senior whose medical

history is of the form m2 = (m1, G). Thus, A mechanism is incentive compatible if, for all

s, the G patients prefer to reveal their health state.

This is, a mechanism {ψs}∞s=0 is incentive compatible if, for every s, hs:

ψs(h
s−1, G,G) ≥ ψs(h

s−1, G,B), ψs(h
s−1, B,G) ≥ ψs(h

s−1, B,B) (5)

let

wGs+1(h
s, G) =

∑
m∈{G,B}

p(m|G)[ψs+1(h
s, G,m)ū+ (1− ψs+1(h

s, G,m))u(m)] (6)

and

wGs+1(h
s, B) =

∑
m∈{G,B}

p(m|G)[ψs+1(h
s, B,m)ū+ (1− ψs+1(h

s, B,m))u(m)] (7)

be the expected second period payoff of a healthy junior patient who does not get an organ

in the first period, after a truthful and non-truthful first period report. Then, incentive

compatibility for young patients is

ψs(G)2ū+ (1− ψs(G))[u(G) + δGw
G
s+1(G)]

≥ ψs(B)2ū+ (1− ψs(B))[u(G) + δGw
G
s+1(B)] (8)

Equations 5 -8 summarize the informational constraints faced by the social planner due
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to the private nature of health states.

3.2.2 Feasibility

An incentive compatible allocation rule is said to be feasible if∑
m∈{G,B}

q(m)ψs(h
s−1,m) +

∑
m′∈{G,B}

µs(m
′)δ(m′)

∑
m∈{G,B}

p(m|m′)ψs(hs−1,m′,m) ≤ x (9)

Since organs are perishable, the budget constraint holds per period. The first term corre-

sponds to the organs allocated to junior patients in period s, while the second is the organs

allocated to senior transplant candidates. The mass of senior transplant candidates in the

market is
∑′

m µs(m
′)δ(m′), with µs given in (4).

3.3 The stage game

New patients and organs arrive to the market every period. All patients are required to

report their health states to the social planner. Using these reports, the planner allocates

organs. If a patient gets an organ, or pass away, leaves the waiting list. Surving junior

patients stay in the list. The problem of the planner is to allocate organs among patients in

the market in a way that they have incentives to report truthfully their health state.

Patient

observes m

Patient

reports m̂

Organs

arrive

SP offers organs

w.p. ψ

Patients leave

the market

3.4 Social welfare functions

I now introduce two different social welfare functions that formalize the two conflicting

principles.

Principle of equity In the design of priorities for organs, the mainstream interpreta-

tion of equity is a version of the maximin principle: among all the patients in condition to

undergo non-futile transplantation, those who are medically worst off deserve first consider-

ation (Robert M Veatch 2000). The measure of medical need for a transplant is given by

the pre-transplant survival probability. This is why the Final Rule (Title 42 § 121.8 (b) 2)

mandates that organ allocation must be conducted
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Setting priority rankings [...] for patients or categories of patients who are medi-

cally suitable candidates for transplantation to receive transplants. These rank-

ings shall be ordered from most to least medically urgent [...]

Since the current allocation rules of hearts and livers give absolute priority to the sickest

transplant candidates, with homogeneous organ quality healthier patients only receive organs

when there are no sick candidates in the system. I formalize this as follows.

For any incentive compatible mechanism, the mass of untreated sick patients by the end

of period s, after allocation happened, is

q(B) (1− ψs(hs, B)) +
∑

m∈{B,G}

µs(m)p(B|m) (1− ψs(hs,m,B)) (10)

The term q(B) (1− ψs(hs, B)) corresponds to the mass of junior patients who arrived to

the market in bad health state who did not received an organ in period s after history hs;

on the other hand, the term
∑

m=B,G µs(m)p(B|m) (1− ψs(hs,m,B)) is the mass of senior

patients who survived to the second period µs(m), whose health state is bad when seniors

(which happens with probability p(B|m)) who did not received an organ in period s.

The objective of an equitable social planner is to find an allocation rule ψ that minimizes

the mass of unserved patients in poor health state (eq. 10). In addition, to prevent organ

wastage, I assume that the budget constraint must bind.

Principle of utility There are multiple interpretations of utilitarianism in the context

of organ transplantation and more broadly speaking in the ethics of allocation of scarce

medical resources (R. Veatch 2004). At least two measures of transplant utility are relevant

for the design of the organ allocation system: pure length of life and patients well-being.

We consider the second one, which is the standard in Economics and is more general (set

u(m) = ū = 1 and the model reduces to a pure survival one).

Let

Us(ψs, µs, h
s) =

∑
m∈{B,G}

q(m)[u(m) + ψs(h
s,m)(ū− u(m))]+

∑
m∈{B,G}

µs(m)
∑

m′∈{B,G}

p(m′|m)[u(m′) + ψs(m,m
′)(ū− u(m′))] +

(
q(m)− µs(m)

δm

)
ū


the total sum of the utility attained by all patients who are alive in period s, which

includes all the junior patients, as well as all the senior patients who remain in the waiting

list and those who received transplantation when junior, in period s−1. The first summation
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is the total utility gained in period s by junior patients, including the additional marginal

benefit obtained by those who received an organ. The second summation is the total utility

attained by senior patients in period s, which is the sum of two terms: the first, is utility

achieved by those senior patients who are in the waiting list in period s, µs(m), and the

second is the total payoff collected by the senior patients who received an organ when junior,(
q(m)− µs(m)

δm

)
.

Long run social preferences The ethical principles as well as the current allocation rules

are completely silent regarding the long run horizon. Thus, any formalization of the long

run objectives is to some extent arbitrary and not grounded in explicitly established policy

goals. In the next section I concentrate on steady-state analysis, so the lack of a long-run

objective is not as crucial. In a subsequent section, I investigate the transitional dynamics

and convergence to steady state under reasonable long run objectives.

4 Optimal allocation rules

In this section, I assume the planner is constrained to use stationary mechanisms that

only condition on the patients’ individual reports (but not, for instance, the mass of senior

transplant candidates). Moreover, I restrict attention to the steady-states associated with

this type of allocation rules. This allows me to overcome technical difficulties associated

with the solution of an infinite dimensional optimization problem, and conceptual difficulties

related to the lack of explicit long run objectives. Both will be revisited latter.

These assumptions simplify notoriously the incentive constraints. Senior patients’ incen-

tive compatibility constraints become

ψ(G,G) ≥ ψ(G,B), ψ(B,G) ≥ ψ(B,B) (11)

and for the junior patients,

ψ(G)2ū+ (1− ψ(G))[u(G) + δGw
G(G)] ≥ ψ(B)2ū+ (1− ψ(B))[u(G) + δGw

G(B)] (12)

with the corresponding obvious expressions for wG(B) and wG(G) which follow from eqns (7)-

(6). Moreover, for any incentive compatible mechanism ψ, the per-period budget constraint

reduces to

∑
m∈{G,B}

q(m)ψ(m) +
∑

m′∈{G,B}

µ(m′)δ(m′)
∑

m∈{G,B}

p(m|m′)ψ(m′,m) ≤ x (13)
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with µ(m) = q(m)(1− ψ(m)).

4.1 Principle of equity

In a steady-state, the equitable objective (10) becomes to minimize

q(B) (1− ψ(B)) +
∑

m∈{B,G}

µ(m)p(B|m) (1− ψ(m,B)) (14)

Because organs are scarce, it follows from eq. (8) that ψ(B) < 1. In fact, it is not feasible

for the social planner to offer organs with certainty to sick young patients, for this would

give a strong incentive to healthy young patients to misreport which would only be offset by

the certainty of getting an organ when reporting the true health state, which requires more

organs than what is available.

On the other hand, while guaranteeing organs to young healthy patients (i.e. setting

ψ(G) = 1) solves the informational problem, it passes too many organs to healthy patients,

leaving too many untreated sick patients as well. In fact, if a healthy patient gets an organ

for sure, a young healthy patient receives interim utility 2ū, the largest any patient can

attain, and in particular strictly larger than the utility he would get by lying, this is (8) is

slack. Hence, the social planner strictly prefers to decrease ψ(G) by an small amount, and

allocate those organs to junior sick patients by increasing ψ(B) while respecting incentive

compatibility.

Similarly, if ψ is optimal incentive compatibility for senior patients (11) should be binding:

Since the social planner gets no benefit from passing organs to senior healthy patients, it

would be optimal to set this inequality to hold with equality. This is actually doable,

but some care needs to be put to not modify the continuation value of junior patients,

wG(m), so that they do not have incentives to lie. Analogously, in the optimum the incentive

compatibility constraint (12) binds.

These necessary properties of the optimal allocation rule when the planner’s objective is

to prioritize the medically worst-off patients are summarized in the following lemma.

Lemma 1 (Necessary properties-equity optimal) Let ψ∗ be an optimal allocation rule.

Therefore,

1. ψ∗(B) < 1.

2. ψ∗(G) < 1.

3. Incentive compatibility constraints for senior (5) and junior patients (8) are binding.
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This lemma reduces the design problem to the choice of the probability of patients getting

an organ as a function of their report when junior, this is ψ(G), ψ(B), ψ(B, ·), ψ(G, ·).
Without further restrictions in the primitives, it is not possible to pin down the exact

optimal allocation rule, nor general properties of it. In fact, the next theorem establishes

that the optimal allocation rule can take very different forms depending on the environment

parameters.

In what follows, a key parameter is how a healthy junior patient trade offs receiving

an organ in the present against receiving an organ in the future. Formally, let wG =∑
h∈{B,G} p(h|G)u(h), the lowest continuation utility a junior healthy patient can expect.

Let LG , 2ū − u(G) − δGw
G be the lifetime marginal benefit of a healthy young patient

from getting an organ when young relative to never. Also, let KG , ū− wG expected gain

of getting an organ in second period when healthy in first, relative to never. The marginal

rate of intertemporal organ substitution is therefore

ρ =
LG

δGKG
(15)

Theorem 1 The following statements are true:

1. For any of the allocation rules defined in Table 2, there exist parameters such that the

chosen allocation rule minimizes (10) subject to incentive compatibility and feasibility

constraints.

2. For any parameters satisfying the assumptions made so far, the optimal allocation rule

is one of those defined in Table 2

The proof is in the Appendix. The six allocation rules defined in Table 2 are those

that satisfy the necessary Karush-Khun-Tucker conditions for optimality, and conditions in

Lemma 1. For all these allocation rules, there exists admissible parameters such that are

optimal.

The six allocation rules identified in Theorem 1 constitute the full set of possible solutions

to the social planner problem. It highlights that the optimal allocation rule for a social

welfare function that aims to minimize the mass of worst-off patients left untreated is highly

dependent on the organ supply as well as parameters governing health evolution, patients

preferences and survival. Broadly speaking, there are three types of optimal allocation rules:

Definition 1 (Taxonomy of optimal allocation rules)

(I) Sick junior patients served immediately, healthy juniors wait
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Table 2: Possible optimal allocation rules for just criterion under asymmetric information.
See Theorem 1.

Solution no. ψ(B) ψ(B, ·) ψ(G) ψ(G, ·)

1 x 0 x 0

2 A 0 0 ρA

3 B 0 ρB−1
ρ−1 1

4 C 1 C 1

5 0 D 0 D

6 E 1−ρE
1−E 0 1

A = x
(1−q)+qδGρ

, B =
x(ρ−1)+q(1−ρδG)
(ρ−1)+q(1−ρδG)

, C =
x−(1−q)δB−qδG
1−(1−q)δB−qδG

,

D = x
(1−q)δB+qδG

, E = −x−(1−q)δB−qδG
(1−q)[δBρ−1]

(II) Uniform lottery, immediate service

(III) Uniform lottery, delayed service

Screening (I) may or may not be optimal. When screening is optimal, the planner lever-

ages the history of reports made by patients when junior. When it is not optimal, a social

planner who cares about minimizing the mass of untreated sick patients can find optimal

to make patients to wait regardless of their report, despite the fact that screening takes no

place (III).

To gain intuition, assume that organs are very scarce. Specifically, assume x < min{(1−
q)δB, qδG}. Even under this assumption of extreme organ shortage, all the types of optimal

allocation the taxons are represented: Screening (solution 2), pooling with delay (solution

5) and without it (solution 1) are optimal allocation rules for some specification of health

evolution, survival and preferences.13

Since, given the very small organ supply x, these three allocation rules are feasible and

incentive compatible, which one is the optimal depends on the trade-off between efficiency

and information rents in a specific economy.

13Solution 3 is not feasible, ψ(G) < 0, 4 because ψ(B) < 0, and 6 because it requires more than qδG
organs.
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Using binding BC, for any ψ incentive compatible the objective can be rewritten as:

(1− q)[1 + δBP (B|B)] + qδGP (B|G)

− {x− [qψ(G) + q(1− ψ(G))δGP (G|G)ψ(G,G) + (1− q)(1− ψ(B))δBP (G|B)ψ(B,G)]}

− (1− q)ψ(B)δBP (B|B)− qψ(G)δGP (B|G)

(16)

The first two terms, (1 − q)[1 + δBP (B|B)] + qδGP (B|G), correspond to the total mass

of total mass of sick patients in the market if no organs were allocated. The expression in

curly brackets is the total amount of organs allocated to sick patients, which is the organs

left after assigning to healthy patients the organs required to incentivize them to reveal their

information, i.e. the information rents that must be paid, which in optimality are bounded

away from zero by the incentive constraints. The last two terms are the additional dynamic

effects of allocating organs to junior patients, which removes from the market patients who

can be sick in the future.

Consider first the two pooling scenarios. On the one hand, pooling seniors improves

efficiency by removing an additional mass qδGP (B|G)(D − 1)x of senior sick patients who

where healthy when junior, compared to pooling juniors. On the other hand, pooling seniors

instead of juniors losses all the multiplicative dynamic effect of allocating organs to junior

patients; for each organ allocated to senior there is an efficiency loss of

1

(1− q)δB + qδG
δBP (B|B)− (1 + δBP (B|B)) < 0 (17)

relative to allocating the same organ to a junior. How the trade-off between these two effects

resolves depends on the parameters.

To be more concrete, suppose p(B|B) = p(B|G) = 1, this is, every senior patient is sick.

Moreover, assume δB = δG = 1. Hence, the mass of sick patients before organs are allocated

is 1 − q units of juniors plus 1 unit of senior patients. In such a case, the planner strictly

prefers to allocate organs to juniors, for every allocated organ has an impact on the mass

of sick patients in the market (those allocated to juniors healthy remove a patients who will

be sick in the future), while pooling seniors misses this multiplicative effect. However, as

the survival probabilities δG, δB decrease, pooling juniors “wastes” a fraction q(1 − δG)x of

organs, in the sense that their allocation does not remove sick patients from the market

in the present nor in the future, but there is still a benefit of allocating organs to junior

patients, which is that it removes an additional δB(1 − q)x senior sick patients from the

market. When the cost is larger than the benfit, i.e., when q(1− δG) > δB(1− q) it is more
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efficient to allocate organs among seniors.

4.2 Principle of utility/utilitarian criterion

The incentive and feasibility constraints faced by the utilitarian planner are identical to

those faced by the just social planner studied in the previous section. As before, I study

the steady-states generated by stationary mechanisms that only condition on the history

of reports of patients in the market, this is ψs(m) = ψs−1(m) = ψ(m). Thus, the design

problem for an utilitarian social planner becomes to maximize

∑
m

q(m)

{
ψ(m)2ū+ (1− ψ(m))

[
δm
∑
m′

p(m′|m)[u(m′) + ψ(m,m′)(ū− u(m′))]

]}
(18)

subject to the respective incentive constraints (11), feasibility constraint (13) and law of

motion.

This is, the ex-ante total lifetime expected utility of patients arriving to the system in

any period. Equivalently, this is the expect utility of a patient arriving to the system before

their type is realized.

Because the per-period marginal utility a sick patient gets from an organ is larger than

the one a healthy patient gets, and patients are assumed to be identical after undergoing

transplantation, a version of Lemma 1 can be obtained for the utilitarian social planner.

Lemma 2 (Necessary properties of an utilitarian optimal allocation rule)

1. ψ∗(B) < 1.

2. ψ∗(G) < 1.

3. Incentive compatibility constraints for senior (5) and junior patients (8) are binding.

In comparison to the case of a social planner who maximizes the mass of organs passed to

the sick patients, more can be said about the optimal allocation rule for a utilitarian social

welfare function. The next lemma establishes that an utilitarian social planner never finds

optimal to incentivize healthy junior patients to wait.

Lemma 3 ψ∗(G,G) = 0.

The intuition behind this lemma is that if the planner is going to allocate certain mass of

organs to senior patients who declared to be healthy when junior, regardless of their report

in the second period, both the planner and the patients are better off if the same mass of
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organs is allocated to them when they are junior. Alternatively, it is cheaper for the social

planner to deliver interim utilities to junior healthy patients by allocating organs sooner than

latter. The organs saved this way can be used to increase the utility a healthy junior patient

gets from telling the truth.

The utilitarian social planner does not make healthy patients wait to be served. The

utilitarian planner internalizes the disutility from not allocating organs to healthy patients

when they are young, which comes from three different sources: lower quality of life, possible

death and potentially becoming sick.

It remains to determine whether it is optimal for the utilitarian social planner to screen

junior patients by making wait junior patients who claim to be sick. The next theorem

establishes under which conditions it may be advantageous from a social perspective to do

so.

Theorem 2 Let S = −
[
ρδB(LB −KB) + (1− ρδB)q(LB − LG)

]
with KG, LG and ρ as

defined in Theorem 1, and KB, LB the analogous for a truly sick junior patient. Then, the

optimal allocation rule for an utilitarian social planner is:

� If the weighted average S < 0,

ψ∗(G) = ψ∗(B) = x, ψ∗(G, ·) = ψ∗(B, ·) = 0

� If the weighted average S > 0, and

– organ supply is small, i.e., x < 1
ρ
q + δB(1− q)

ψ∗(G) =
x

q + δB(1− q)ρ
, ψ∗(G, ·) = 0,

ψ∗(B) = 0, ψ∗(B, ·) =
xρ

q + δB(1− q)ρ

– organ supply is large, i.e., x > 1
ρ
q + δB(1− q)

ψ∗(G) =
[x− δB(1− q)]ρ− q + 1− x

[1− δB(1− q)]ρ− q
, ψ∗(G, ·) = 0

ψ∗(B) =
[x− δB(1− q)]ρ− q
[1− δB(1− q)]ρ− q

, ψ∗(B, ·) = 1

The following lemma provides a necessary condition for screening to be optimal.

Proposition 1 If S > 0 then LG −KB < 0.
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For an utilitarian planner to find it optimal to screen and force sick patients to wait,

it is necessary that a sick junior patient who survives and gets an organ when senior with

certainty, experiments an expected marginal increase in his quality of life larger than the

lifetime marginal benefit a healthy junior patient would get from undergoing transplantation

when junior. This is, a sick patient who only enjoys a transplant for one period, should get

more out of the transplant, in expectation, than a healthy patient who enjoys a transplant

for two periods. Notice that this condition is necessary, but not sufficient.

4.3 Discussion

The current algorithm used by the OPTN to allocate organs is a naive attempt to ma-

terialize the principle of medical urgency. The desiderata, as in the allocation policies, is

to prioritize currently sick patients, and among patients in the same health states, give

priority to those who have been waiting the longest in the worst health state. With the

algorithm, and if patients in good health state were sincere, they would receive organs only

if sick patients in the same geographic location have declined them. In my setting, with

undifferentiated organs, this translates to the following allocation rule:14

ψ(B,B) > ψ(B) = ψ(G,B) > ψ(B,G) > ψ(G,G) > ψ(G) (19)

This allocation rule is not incentive compatible. To see why, note that ψ(G,G) < ψ(G,B)

and ψ(B,G) < ψ(B,B), which violates the incentive constraint for senior patients. Hence, a

senior patient has incentives to not revealing his information. More importantly, the utility

a junior patient in state G gets from misreporting in the first period and tells the truth in

the second is

ψ(B)2v+(1−ψ(B))
[
u(G)+δG[p(G|G)ψ(B,G)(v−u(G))+p(B|G)ψ(B,B)(v−u(G))+wG]

]
(20)

while the utility of telling the truth in both periods is

ψ(G)2v+(1−ψ(G))
[
u(G)+δG[p(G|G)ψ(G,G)(v−u(G))+p(B|G)ψ(G,B)(v−u(G))+wG]

]
(21)

Since ψ(G,G) < ψ(B,G) and ψ(G,B) < ψ(B,B), the term in squared brackets in expression

(21) is smaller than the corresponding in expression (20) Therefore the utility of misreporting

when junior and healthy is larger than the utility of telling the truth in both periods, and a

14The actual allocation is the equilibrium of these “intended” priorities with the strategic response of
patients to them.
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healthy young patient has incentives to lie.15

The key to prevent gaming of health states is to guarantee to patients who report to be

healthy that they have a chance of getting an organ large enough so that they reveal their

information, this is, left some information rents to healthy patients in order to incentivize

them to reveal their information. This is the content of claims 1 and 2, and should be done to

obtain incentive compatibility of the allocation rule regardless of the social welfare function.

However, the optimal way of providing these incentives depends on the social welfare

function in a remarkable way.

For some parameters of the environment, the medical urgency objective may lead the

planner to find optimal to force healthy patients to wait (no screening with delay and screen-

ing with healthy waiting in definition 1) so that they get sick, hence easing the trade-off

between optimality and information rents. If the required information rents are too large,

the planner can find that even forcing sick patients to wait is in his interest (no screening

with delay).

In contrast, an utilitarian social planner never forces healthy patients to wait, for she

internalizes the loss in well-being of a healthy patient that is forced to wait, which arises

from three different sources: likelihood of death, lower quality of life, and the possibility of

becoming sick.

5 Long-run objective and transitional dynamics

In this section, I study the dynamics generated by the optimal allocation rule out of

steady-state, i.e. the transitional dynamics of the system when it starts from an arbitrary

feasible state. For this purpose, a long run objective must be adopted. Given the lack of

clarity regarding this aspect in the policy documentation, I adopt a standard social discount

factor β ∈ (0, 1) and assume that the long run equitable objective is to minimize the total

discounted sum of untreated sick patients in the market, starting from an initial state with

some masses µ0(B), µ0(G) of senior patients, this is,

15Note that if the patient lies in both periods gets

ψ(B)2v + (1− ψ(B))
[
u(G) + δG[p(G|G)ψ(B,B)(v − u(G)) + p(B|G)ψ(B,B)(v − u(G)) + wG]

]
while if he tells the truth in the first period and lies in the second,

ψ(G)2v + (1− ψ(G))
[
u(G) + δG[p(G|G)ψ(G,B)(v − u(G)) + p(B|G)ψ(G,B)(v − u(G)) + wG]

]
Since ψ(G,B) < ψ(B,B), the same conclusion on the incentives to manipulate for junior patients follows if
one factor in that the they have incentives to lie in the second period under the current allocation rule as
given by (19).
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∑
s

βs

q(B) (1− ψs(hs, B)) +
∑

m∈{B,G}

µs(m)p(B|m) (1− ψs(hs,m,B))

 (22)

5.1 Principle of Equity

The planner’s problem is to choose allocation probabilities ψ, to minimize the total

discounted mass of untreated sick patients (22), subject to incentive compatibility (5)-(8)

and feasibility (9). In general, since any mechanism ψ depends on the whole history of

allocation decisions from time s = 0 on (see subsection 3.2) , the problem of solving for the

optimal mechanism ψ is an infinite dimensional optimization problem. To deal with it, I use

the techniques from recursive contracts (Spear et al. 1987; Abreu et al. 1990; Golosov et al.

2016). Specifically, one can show that the solution to this sequential problem is related to

the solutions to following recursive problem:

V J (µ(B), µ(G), w(B), w(G)) = min
ψ,w′

q(B)(1− ψ(B)) +
∑
m

µ(m)δmp(B|m)(1− ψ(m,B))

+ βV J (µ′(B), µ′(G), w′(B), w′(G)) (23)

subject to incentive constraints

ψ(G,G) ≥ ψ(G,B), ψ(B,G) ≥ ψ(B,B) (24)

ψ(G)2ū+ (1− ψ(G))[u(G) + δGw
′(G)] ≥ ψ(B)2ū+ (1− ψ(B))[u(G) + δGw

′(B)] (25)

promise keeping constraints

w(G) =
∑

m∈{G,B}

p(m|G)[ψ(G,m)ū+ (1− ψ(G,m))u(m)] (26)

w(B) =
∑

m∈{G,B}

p(m|G)[ψ(B,m)ū+ (1− ψ(B,m))u(m)] (27)

feasibility constraints,∑
m∈{G,B}

q(m)ψ(m) +
∑

m′∈{G,B}

µ(m′)δ(m′)
∑

m∈{G,B}

p(m|m′)ψ(m′,m) ≤ x (28)

and w′ ∈ Γ(x, µ′), γ ∈ [0, 1]6, with Γ(x, µ′) = {w′(B), w′(G) : ∃ψ s.t. (24), (26)−(28) hold with w′ in the place of w}.
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Finally, the law of motion

µ′(m) = q(m)(1− ψ(m)). (29)

The recursive formulation of the problem summarizes the complicated history dependence

of the allocation rule in the state space. At the beginning of every period, there is a mass

of senior patients δ(m)µ(m), m ∈ {B,G}; these senior patients who reported to be in state

G when juniors should receive continuation utilities w(m) when lying and telling the truth

about their health state.These utilities should be delivered in an incentive compatible way,

as required by (24), and requires a mass
∑

m′∈{G,B} µ(m′)δ(m′)
∑

m∈{G,B} p(m|m′)ψ(m′,m)

of organs. The organs left, x−
∑

m′∈{G,B} µ(m′)δ(m′)
∑

m∈{G,B} p(m|m′)ψ(m′,m), should be

allocated among junior patients in an incentive compatible way, which in turn determines the

mass µ′(m) of senior patients present in the market next period (29). To guarantee incentive

compatibility for junior patients, the social planner can leverage both, the allocation of organs

to them today and tomorrow, the latter reflected in the choice of future promised utilities

w′(m). Of course, these promised utilities should be itself credible, so they are restricted to

the set Γ(x, µ′) of continuation payoffs that can be delivered in an incentive compatible way,

which naturally depends on how many patients are entitled to this consumption.16

The key novelty of the program (23)-(29) relative to the recursive contracts literature is

that on top of continuation utilities, the state space also includes the mass of patients who

stay in the market. This is because in the organ allocation problem patients only demand

one object and leave the market after they have been served, as opposed to dynasties or

long-lived agents which keep the population constant in the standard problem. Moreover,

equation 29 underlines that population dynamics is endogenous.

Since the social period payoff is continuous and the feasibility correspondence is compact,

it follows that there exists a solution to the problem (23)-(29).

As in the steady-state analysis, it is intuitive that (24) must be binding in the optimum:

what senior patients get does not affect the future, except by limiting what juniors get.

Thus, making it binding frees organs, which can be used to decrease the mass of sick juniors

patients left untreated, and so on. Therefore, (26)-(27) have a unique solution for a pair

w′(B), w′(G). Using this observation, the program can be fully rewritten in terms of states,

16This set can be calculated directly, and does not require recursive methods as in the APS approach, for
patients are finitely lived. However, this set is not fixed, but depends on a control, namely µ′, which makes
the analysis not trivial.
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which eases the theoretical and numerical analysis, as follows:

V J(µ(B), µ(G), w(B), w(G)) =

min
µ′,w′

µ′(B) +
∑
m

µ(m)δmp(B|m)
ū− w(m)

ū− wG
+ βV J(µ′(B), µ′(G), w′) (30)

subject to the junior incentive compatibility constraint

µ′(B)

q(B)
[2ū− u(G)− δGw′(B)] ≥ µ′(G)

q(G)
[2ū− u(G)− δGw′(G)] (31)

feasibility constraint,

1−
∑
m

µ′(m) ≤ x−
∑

m∈{G,B}

µ(m)δm
w(m)− wG
ū− wG

(32)

and the conditions on controls to be credible, which are,

w′(m) ∈ [wG, ū], µ′(m) ∈ [0, q(m)],
∑

m∈{G,B}

µ′(m)δm
w′(m)− wG
ū− wG

≤ x (33)

This form of the program underlines several crucial differences with the standard case,

which difficult an analytic approach. First, in the incentive compatibility constraint (31),

present and future are not additive separable as usual. Similarly, eq. (33) is non-linear

in the controls. Together, these two constraints also imply that the feasibility set is not

convex. Moreover, the per-period payoff function is not convex nor concave. Hence, standard

arguments cannot be used to show uniqueness of the optimal policy function, nor to study

the transitional dynamics.

From a numerical perspective, these features impose some difficulties as well. They rule

out using heuristics such as binary search that exploit the value function concavity to speed

up the numerical solution. In addition, the non-linear constraints prevent one from using

fast linear programming algorithms as those used in Doepke et al. (2006) and Phelan et al.

(1991) to accelerate the solution of dynamic incentive problems.

I am interested on whether the optimal path converges to a steady state or not in the

long run, and on whether that steady-state is the one found to be optimal in subsection 4.1.

Figures 2 and 3 display some features of the optimal paths for parameters chosen so that

the assumption x < min{(1− q)δB, qδG} holds and the three types of optimal steady-states

in Definition 1 are possible, and different initial states.

The distance between the optimal steady-state given in Table 2 and the initial and
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Figure 2: Distance from optimal steady-state from subsection 4.1.

subsequent states in the optimal path according to the policy function which solves the

problem (30)-(33) is depicted in Figure 2, for different initial states. As can be seen, the

distance from the optimal steady-state decreases quickly regardless the initial state, getting

close to zero as time goes on. This is strong evidence for convergence to some steady-state,

even if it does not converge to the optimal one found in Table 2 .

Figure 3 displays the dynamics of the state on the optimal path in the space of promised

utilities and mass of unserved junior patients. Again, this suggests there is convergence to

a steady-state and, intuitively, convergence in the space of utilities, w(m), appears to be

faster than convergence in the space of unserved junior patients, µ(m). The reason is that

the organs left once a given initial vector of utilities w(m) are delivered limit how fast the

mass µ(m) converges to anything. In contrast, future promise utilities are not limited.

6 Concluding remarks and further research avenues

I set up a model that formalizes the problem of waitlist priority manipulation through

unnecessary medical therapies faced by the U.S. transplantation authority in the allocation

of hearts and livers. The simple framework allows the derivation of optimal queue designs to

implement different social welfare objectives in the presence of information asymmetries.17

17I use the term implementation in a layperson sense here. It has nothing to do with the sophisticated
Implementation Theory, as should be evident at this point.
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(a) µ space (b) w space

Figure 3: Convergence to steady-state y the space of utilities and masses

The current allocation rule, which gives absolute priority to the most urgent patients

and only considers patients’ medical reports histories for breaking ties among equally sick

patients, is not incentive compatible. It gives patients and physicians strong incentives to

manipulate health conditions to raise priorities for transplants.

When the design problem reckons with the medical status manipulability, it becomes

clear that any prioritization scheme which uses such information should incentivize individual

patients and physicians to reveal it. Since transfers are repugnant in this setting (Roth 2007),

one of the few tools available to policymakers to incentivize truthful reporting is conditioning

allocation priorities on report histories.

Enlarging the set of allocation rules to include history-dependent ones enables the planner

to incentivize truth-telling. When the social welfare objective is to maximize the number

of organs allocated to medically urgent patients, providing these incentives is costly: organs

must be given to non-urgent patients with some probability.

The trade-off between the cost and benefit of providing these incentives depends on the

economy’s parameters, so it is not evident that screening patients according to their medical

urgency is always optimal. For a parameter region the costs offset the benefits; the planner

gives up on incentivizing truthful reporting, and the optimal allocation policy is a uniform

lottery among patients as a function of tenure. This lottery can be front-loaded or back-

loaded. If the probability of patients becoming sick while waiting is large, back-loading the

lottery and forcing patients to wait helps with the allocation problem, and minimizes the cost

of screening. This is a counter-intuitive result which suggest a missing additional constraint.

In sharp contrast, when the social welfare criterion is to maximize the total sum of

patients’ expected lifetime utility, the optimal allocation policy is a front-loaded uniform

lottery among new arrivals to the system. The only exception is if a sick patient benefits
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more from waiting for an organ and getting it than what a healthy patient with the same

tenure benefits from getting an organ. The cost of screening patients is not high, for truly

urgent patients cannot manipulate their medical urgency, and healthy patients have no

incentives to wait, so separation is achieved by serving junior healthy patients right away

and forcing junior sick patients to linger.

From a policymaking perspective, two significant findings hold regardless of the social

welfare objective. First, the optimality of screening patients and how to perform it depends

on the economy’s parameters. Second, when accounting for information asymmetries, a

simple uniform lottery can be the optimal prioritization scheme. These two findings warrant

the revision of the current allocation policies to the light of further empirical research.

For the sake of tractability, I made several simplifying assumptions. First, I made as-

sumptions about patients’ health evolution, age, lifetime horizon, choice and organ quality,

and post-transplant survival. Second, I abstracted that transplant centers are long-run play-

ers who make treatment decisions for a set of patients instead of individual ones. Third, I

assumed medical need information can be reported every period at no cost for the patients.

While the specific form of the optimal allocation rule is granted to depend on these

assumptions, the general policy-making insights I found are robust to most of them. An

exception that needs to be carefully assessed is the heterogeneity in the willingness to ma-

nipulate medical urgency across patients and physicians. If the fraction of transplant centers

and patients willing to game the medical urgency is small, it may be the case that a uniform

lottery renders not optimal compared with static screening.
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Appendices

Proof of Lemma 1.

1. In text.

2. In text.
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3. ψ∗(B,G) = ψ∗(B,B). Otherwise, one can increase ψ∗(B) and decrease ψ∗(B,G), in

a way that the first period interim utility delivered to a healthy patient who lies in

the first period is the same, as well as the mass of organs allocated to patients who

claim to be sick in the first period. This obviously decreases the mass of unserved sick

patients. Notice that we are increasing ψ∗(B) and not ψ∗(B,B).

ψ∗(G,G) = ψ∗(G,B). If not, SP can improve by passing more organs after history G,B

and decreasing organs offered to patients with history G,G. This is always doable, for

v − u(B) > v − u(G), so that the period 2 ex-ante utility delivered to a patient after

history G can still be delivered.

IC-young is binding. If not, decrease ψ∗(G) (if larger than zero) or ψ∗(G,G) (if ψ∗(G) =

0) by an small amount, and increase ψ∗(B), in a way that incentive compatibility and

feasibility are still respected. This is always possible and increase the mass of organs

allocated to junior sick patients, which is always preferred by the social planner.

Proof of Theorem 1. The lagrangian for the optimization problem is

(1−q)[1−ψ(B)+(1−ψ(B))δBP (B|B)(1−ψ(B,B))]+q(1−ψ(G))δGP (B|G)(1−ψ(G,G)

− ξ1(U1(B,ψ,G)− U1(G,ψ,G))

− ξ2[(1− q)[ψ(B) + (1− ψ(B))δBψ(B,B)] + q[ψ(G) + (1− ψ(G))δGψ(G,G)]− x]

+
∑

h=G,GG,B,BB

λ0(h)ψ(h)− λ1(h)(ψ(h)− 1)

where ξ1 is the lagrange multiplier for the junior’s incentive constraint, ξ2 is the one associ-

ated with the feasibility constraint, λ0(h) are the lagrange multipliers of the non-negativity

constraints, and λ1(h) correspond to the constraints that ψ(·) are smaller than 1.

To the necessary first order conditions, add the following conditions implied by lemma 1:

λ1(G) = λ1(B) = 0

In addition, binding feasibility requires λ0(G)λ0(G, ·) = 0. Thus, the first order conditions
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reduce to

λ1 − (1− q)(−1− P (B|B)δB(1− ψ(B,B)))− (1− q)ξ2(1− δBψ(B,B)) + ξ1(−LG +KGδGψ(B,B)) = 0

(34)

λ5 + P (B|B)(1− q)δB(1− ψ(B))− (1− q)δBξ2(1− ψ(B)) + ξ1(−KGδG +KGδGψ(B)) = 0 (35)

λ3 + P (B|G)qδG(1− ψ(G,G))− qξ2(1− δGψ(G,G)) + ξ1(L
G −KGδGψ(G,G)) = 0 (36)

λ7 + P (B|G)qδG(1− ψ(G))− qδGξ2(1− ψ(G)) + ξ1(K
GδG −KGδGψ(G)) = 0 (37)

−KGδGψ(B,B)− ψ(B)(LG −KGδGψ(B,B)) +KGδGψ(G,G) + ψ(G)(LG −KGδGψ(G,G)) = 0

(38)

x− (1− q)(ψ(B) + δB(1− ψ(B))ψ(B,B))− q(ψ(G) + δG(1− ψ(G))ψ(G,G)) = 0 (39)

In addition, binding incentive compatibility requires λ0(B)λ0(B, ·) = 0. I input this enlarged

set of first order conditions to Mathematica, which finds 13 candidates to optimal solution.

The conditions on λ’s and ψ’s, and comparison of payoffs, reduce this set to the six solutions

as given by table 2.

1. Numerical inspection shows that there exists feasible parameters for which each of

these eight solutions is in fact optimal.

2. Follows from the necessity of the first order conditions.

Proof of Lemma 2.

1. There are no enough organs to set ψ∗(B) = 1 and satisfy incetive compatibility for

juniors.

2. Note that since u(B) < u(G) and δB < δG, the increase in lifetime utility for a junior

sick patient who gets an organ is the largest. This and previous numeral implies

ψ∗(G) < 1.

3. ψ∗(B,G) = ψ∗(B,B). Otherwise, one can increase ψ∗(B,B) and decrease ψ∗(B,G),

in a way that the first period interim utility delivered to a healthy patient who lies in

the first period is the same. Since u(B) < u(G) any ex ante period 2 utility can be

delivered with less organs by increasing ψ∗(B,B). The organs saved can be allocated

to junior patients wo report to be healthy, which is incentive compatible and strictly

increases planner’s payoff.
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ψ∗(G,G) = ψ∗(G,B). If not, SP can improve by passing more organs after history

G,B and decreasing organs offered to patients with history G,G. As before, this is

doable. In contrast to the medical urgency case, this is not strictly preferred by society,

which is infact indifferent. However, the excess of organs can be allocated to young

healthy patients, therefore increasing the social welfare.

IC-young is binding. If not, decrease ψ∗(G) (if larger than zero) or ψ∗(G,G) (if ψ∗(G) =

0) by an small amount, and increase ψ∗(B), in a way that incentive compatibility and

feasibility are still respected. This is always possible and increase the mass of organs

allocated to sick junior patients, which increases the total social welfare.

Proof of Lemma 3. Let

wG = ψ(G)2v + (1− ψ(G))[u(G) + δGW
G(G)]

with WG(G) = ψ(G,G)[v−WG]+WG. Define ψ̃ to coincide with ψ over the paths containing

B as initial report, ψ̃(G,G) = 0, and G̃ s.t.

wG = ψ̃(G)2v + (1− ψ̃(G))[u(G) + δGW
G]

Such ψ̃ always exists, for wG ∈ [u(G) + δGW
G, 2v]. Since it delivers the same interim utility

to young healthy patients, it respects incentive compatibility.

ψ̃(G) =
wG − u(G)− δGWG

2v − u(G)− δGWG

or

ψ̃(G) =
ψ(G)[2v − u(G)− δGWG] + (1− ψ(G))δGψ(G,G)[v −WG]

2v − u(G)− δGWG

this is

ψ̃(G) = ψ(G) + (1− ψ(G))δGψ(G,G)
v −WG

2v − u(G)− δGWG

so one concludes ψ̃(G) < ψ(G) + (1− ψ(G))δGψ(G,G) and therefore the quantity of organs

used by ψ̃ is less that used by ψ.

The remaining organs can be distributed randomly among young patients. This strictly

increases the payoff.

Proof of Theorem 2. Proceeding in a similar fashion than in the proof of Theorem 1,

but enriching now the first order conditions with the results in claims 2 and 3, Mathematica

finds three allocation rules are obtained that satisfy the conditions on λ’s being positive and
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ψ’s in [0, 1]. S, as defined in the Theorem as well as x determine the signs of the multipliers

and therefore which allocation is the optimal one, in a unique way.

Proof of Proposition 1. Recall

S = −LGδB[LB −KB] + q(LB − LG)(LGδB −KGδG)

Since LB > LG, it follows that

S < −LGδB[LB −KB] + q(LB − LG)LGδB

< −LGδB[LB −KB] + (LB − LG)LGδB

< −LGδB[KB − LG]

Therefore, if S > 0 then KB − LG > 0, as desired.
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