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Abstract

This paper studies competition between strategic high-frequency traders (HFTs) and multiple

for-profit exchanges. In the model, HFTs play a dual role as liquidity snipers and market makers

and strategically decide on their trading venue, the intensity of market monitoring, a bid-ask

spread, and speed technologies. With the strategic liquidity provision and HFTs’ dual role in

the market, I show that the expected bid-ask spread can shrink when adverse selection becomes

more severe. I also derive the HFTs’ demand for speed services and demonstrate that it can be an

increasing function of the length of intentional delays imposed on trade execution by exchange

platforms (e.g., speed bumps). In the second part, for-profit exchanges try to maximize their

revenues from supplying speed services to HFTs by controlling the speed of order execution. Since

the demand for speed services can positively react to the intentional delays in order execution,

exchanges are willing to introduce them to boost their profits. Thus the imposition of delays,

which mitigates adverse selection and improves liquidity, is supported as an equilibrium outcome

even without government intervention.
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1 Introduction

The ever-increasing speed of high-frequency trading has attracted the attention of finance researchers

and practitioners.1 For traders, trading speed matters both when taking liquidity and when making

markets. Upon the arrival of new information, liquidity takers can glean (almost) risk-free profit

opportunities by placing liquidity-taking orders and sniping a standing limit order before a market

maker updates her old quote. To avoid being picked off by snipers, in turn, market makers try to

cancel and reprice their stale limit orders as quickly as possible by leveraging their speed technolo-

gies. Exchanges also deploy ultra-fast information processors2 and provide speed services, such as

colocation services and direct data feeds, to high-frequency traders (HFTs) for fees.

Overall, high-frequency trading attains massive presence in the market. They account for more

than 50% of trading volume in the U.S. and about 40% in Europe. At the same time, however, a

race to an arbitrage opportunity is highly concentrated. Aquilina, Budish and O’Neill (2020) find

that 6 large high-frequency financial institutions are serving both as liquidity takers and providers

in about 43% of races for FTSE 100 on London Stock Exchange, suggesting that each race is played

by a limited number of players. The entire trading volume is also concentrated: Smith (2015) reports

that the top 5 high-frequency financial institutions account for about 70% of the trading volume on

BrokerTeck (which handles more than half of the U.S. Treasury). The literature has developed models

where HFTs are competitive and serving both as takers and makers, reflecting their dual role in the

real financial market (e.g., Menkveld and Zoican, 2017). This paper extends the existing environment

to obtain further insights into the behavior of HFTs and exchange platforms with a new market

structure.

First, I consider the strategic behavior of HFTs rather than focusing on a competitive environment.

This is motivated by the above-mentioned concentration of players in the high-frequency races. Sev-

eral papers (see below) have analyzed strategic liquidity takers or market makers separately, but my

model is the first to analyze HFTs’ strategic behavior when they play both as takers and makers.

Also, the existing studies introduce speed as a binary choice variable (i.e., a trader’s choice is

being an HFT with an exogenous speed level or staying as a regular slow trader), and the equilib-

rium is characterized by a unique bid-ask spread that makes all HFTs indifferent between taking and

1Quincy Data, one of the third-party institutions supplying the fastest data access, claims that they can send a piece of

information form Aurora, Chicago, to Secaucus, New Jersey, in less than 4 microseconds (4× 10−6 seconds).
2For example, throughput at NYSE has declined dramatically from 350 milliseconds in 2007 to 5 milliseconds in 2009.
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providing liquidity. In my model, it is no longer an equilibrium. HFTs endogenously choose their

speed technologies as a continuous variable,3 meaning that they are potentially equipped with het-

erogeneous speed technologies and have heterogeneous indifference conditions. My model provides

a tractable framework to analyze such a situation and derives an explicit formula for the HFTs’ opti-

mal demand for speed services in the continuous domain. It leads to the optimization of exchanges

that try to maximize fee revenues from supplying speed services.

Strategic high-frequency traders play a one-shot trading game à la Glosten and Milgrom (1985)

with N competing exchanges. Before the trading game starts, HFTs purchase speed services from ex-

changes. At the beginning of the game, each HFT serves as an HFM: she places a limit order on one of

the exchanges.4 Then, by allocating the limited information capacity, she starts processing data about

the limit order book on each exchange (e.g., direct data feeds) to locate her rivals’ limit orders and

profitable trading opportunities. Responding to public news, she serves as a high-frequency sniper

(an HFS) by placing a market order to the exchange with an arbitrage opportunity. She simultane-

ously sends a cancellation/repricing request to revoke her previous limit order and to avoid being

picked off by her rivals.

My result shows that the equilibrium bid-ask spread can shrink when the adverse selection cost

for market makers becomes more severe. As in Dennert (1993), an HFM adopts a mixed strategy

and randomizes her quote when placing a limit order. In expectation, she sets her quote in order to

make her rival HFM indifferent between all feasible strategies, i.e., the rival breaks even. When HFT

i increases her speed, she faces a lower risk of being picked off and earns a higher expected profit as

an HFM. To make HFT i break-even as a market maker, HFT j must reduce HFT i’s expected market-

making profit by quoting a narrower bid-ask spread and taking profitable noise trading away from

HFT i. At the same time, however, HFT i also serves as a sniper, and her speed-up exacerbates the

adverse selection cost for HFT j as a market maker. Therefore, even though HFT j faces more severe

adverse selection, she proposes a narrower spread.

The above result goes counter to the conventional theory, in which the equilibrium bid-ask spread

3In reality, there are many factors that affect the speed and traders have ample choice sets. See, for example, IEX (2019)

for a variety of speed services provided by the U.S. exchange families. Also, there are third party speed providers, such as

Quincy Data and Quod Financial.
4Throughout the paper, I use the terms “market orders” and “limit orders” to represent liquidity-taking and liquidity-

providing orders. Alternatively, we can think of other types of orders, such as Immediate-or-Cancel (IOC) to take liquidity

and Post Only (PO) to provide liquidity.
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positively reflects the adverse selection cost for market makers. The difference arises because the

conventional argument considers a common source of adverse selection, while my model allows het-

erogeneous sources, and HFTs play their dual role. For example, if noise traders become more active,

it works as a common factor that mitigates adverse selection for all market makers, and the bid-ask

spread declines. In contrast, if a reduction in the adverse selection cost occurs due to idiosyncratic

reasons, such as a speed-up by one HFT, the reaction of the bid-ask spread is not trivial—it depends

on whose quote we are looking at and what is the source of a change in adverse selection.

Thirdly, my model incorporates the latest market structure. While providing speed services to

HFTs and adopting ultra-fast information processors, exchanges start introducing a somewhat con-

tradicting market structure, called speed bumps. They impose intentional delays on the execution of

(a part of) trading orders. As tabulated in Table 1 in Appendix A, most delays are asymmetric and

applied only to liquidity-taking orders. The exchanges (and SEC) argue that the delays aim at slow-

ing down high-frequency snipers and protecting market makers against latency arbitrage so that

exchanges attain more liquidity.

My model shows that intentional delays in execution of liquidity-taking orders can increase the

HFTs’ demand for speed services. Delays directly hamper sniping and mitigate adverse selection

for market makers, leading to a narrower bid-ask spread. A narrower spread, in turn, implies a

larger profit margin for snipers, and adding one unit of speed becomes more valuable. Moreover, the

impact of a speed-up on the bid-ask spread and the sniping probability tends to diminish more slowly

if intentional delays kick in. Thus HFTs can increase their speed more aggressively compared to the

case with no delays. Of course, the imposition of delays makes it harder to snipe stale limit orders

and reduce the expected prize for snipers, making them more reluctant to pay the fees to acquire

speed services. Due to these competing effects, the impact of delays on HFTs’ speed acquisition

tends to be ambiguous.

Finally, I analyze competition between for-profit exchanges and endogenize the intensity (or the

length) of delays in order execution. Since the demand for speed services exhibits a hump-shaped

reaction to the intensity of delays, the model explicitly derives the optimal delays for a for-profit

exchange. Therefore, I provide an answer to the question; “Do for-profit exchanges have an incentive

to introduce intentional delays?” Budish, Lee and Shim (2020) show that, if the cost of adopting a

market structure that prevents sniping is small, exchanges will not introduce it.5 They argue that

5Budish, Lee and Shim (2020) focus on frequent batch auctions (FBAs) proposed by Budish, Cramton and Shim (2015)
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the recent exchanges earn a huge portion of profits from supplying speed services, and introducing

a new structure that invalidates HFTs’ speed advantage will harm exchanges’ profits. In my model,

however, the optimal speed for HFTs can increase due to the imposition delays, allowing exchanges

to boost their profit by intentionally delaying order execution.

My results have an important policy implication. Firstly, it suggests that intentional delays can

mitigate the adverse selection problem for high-frequency market makers and improve market liq-

uidity. Although delays can increase the trading speed of HFTs, they leverage it both as takers and

makers, leaving the adverse selection cost in the symmetric equilibrium unaffected by HFTs’ speed-

up (Budish, Cramton and Shim, 2015; Brolley and Zoican, 2020). Secondly, the adoption of intentional

delays is consistent with the profit maximization of competing exchanges. Thus, as in the real finan-

cial market, exchanges will self-impose them without government intervention. By appropriately

adjusting the intensity of delays, we can simultaneously achieve improved market liquidity—the

purported rationale of the imposition of delays—and higher fee revenue—the primary objective of

exchange platforms.

This paper contributes to the literature on high-frequency trading and market microstructure.

Endogenous speed acquisition of traders has been analyzed in the existing studies, such as Foucault,

Roell and Sandas (2003), Liu (2009), Foucault, Kadan and Kandel (2013), Foucault, Kozhan and Tham

(2016) but they abstract away from a strategic motive of HFTs, a slow market structure (i.e., order ex-

ecution delays), or the dual role played by HFTs.6 Several studies work on slow market structures,

such as frequent batch auctions (Budish, Cramton and Shim, 2015; Haas and Zoican, 2016) and speed

bumps (Aldrich and Friedman, 2018; Baldauf and Mollner, 2020; Brolley and Cimon, 2020),7 by fo-

cusing on the HFTs’ binary choice on speed and a competitive environment.8 Starting from Kyle

(1985), a large body of literature has analyzed strategic behavior of liquidity takers (e.g., Kyle and

Wang, 1997; Back and Baruch, 2004) and market makers (e.g., Dennert, 1993; Baruch and Glosten,

but the similar discussion can be applied to analyze intentional delays.
6Jones (2013), O’Hara (2015), and Menkveld (2016) provide wholistic reviews on high-frequency trading.
7Du and Zhu (2017), Kyle and Lee (2017), Menkveld and Zoican (2017), and Pagnotta and Philippon (2018) analyze the

exchange speed, i.e., the common speed for all traders.
8There are several empirical studies on the impact of intentional delays, such as those by Hu (2018), Chakrabarty, Huang

and Jain (2019), Shkilko and Sokolov (2016), Chen, Foley, Goldstein and Ruf (2017), Anderson, Andrews, Devani, Mueller

and Walton (2018), and Khapko and Zoican (2019), but they report somewhat mixed results. An experimental study by

Khapko and Zoican (2019) finds that a marginally longer speed bump stimulates the traders’ investment in speed when

the execution price is endogenous.

5



2013; Ait-Sahalia and Saglam, 2017; Baruch and Glosten, 2019) separately. Roşu (2009) is an excep-

tion and considers strategic traders choosing between placing limit orders and market orders in an

environment with symmetric information and speed. My paper incorporates all the above factors:

strategic HFTs, speed acquisition as a continuous choice variable, intentional delays, and the dual

role played by HFTs.

The positive reaction of bid-ask spreads (and the inverse market depth) to the adverse selection

risk for market makers is formalized by Glosten and Milgrom (1985) and Kyle (1985). However, em-

pirical studies have reported somewhat nuanced results, especially in the context of high-frequency

trading. They take developments of speed technologies as a source of changes in adverse selection,

and the result depends on whether the faster speed technologies are exploited more by snipers or

market makers. For example, Hendershott, Jones and Menkveld (2011) and Boehmer, Fong and Wu

(2015) find that the bid-ask spread shrinks due to increases in algorithmic trading, while Foucault,

Kozhan and Tham (2016) and Brogaard, Hendershott and Riordan (2017) report the opposite result.

My model shows that even if an HFT adopts the same speed to play both as a taker and a maker, a

speed-up causes an ambiguous reaction of a bid-ask spread due to their strategic behavior.

The scope of this paper extends to the behavior of exchange platforms. Foucault and Parlour

(2004) analyze competition between two exchanges seeking to earn listing fees. Pagnotta and Philip-

pon (2018) consider competition on trading speed to attract competitive latency-sensitive traders.

The closest to my paper is the theoretical study by Budish, Lee and Shim (2020), in which they deal

with competitive HFTs serving both as takers and makers. They consider competing for-profit ex-

changes deciding on the adoption of frequent batch auctions (FBAs) as a tool to hamper latency

arbitrage. They argue that exchanges have no incentive to adopt FBA in the equilibrium, as it disin-

centivizes HFTs to purchase speed services and reduces exchanges’ profit.9 My model complements

their results, as it takes into account strategic HFTs and shows that exchanges are willing to introduce

intentional delays.

2 The model

9Their result is conditional on a small cost of adopting FBAs for copycats. The first exchange can introduce FBAs

and earn more trading fees by attracting liquidity, perhaps making positive profits net of adoption costs. However, other

exchanges may follow the first mover, as the cost of adoption is small for them, diluting the profit of the first mover. By

taking steps backward, the first mover has no incentive to introduce FBAs.
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2.1 Trading environment

Consider a one-shot exchange of an asset between two high-frequency traders (HFTs) and a liquidity

trader.

Asset. A single risky asset is traded. When the market opens at time t = 1, the asset has value v = 0,

which is common knowledge. After t = 1, a trade takes place either by a shock on the common value

of the asset (v) or a shock on the liquidity trader’s private value of holding the asset. A common-

value shock hits with a Poisson rate zc, and the value of the asset becomes ṽ = ±σ with the same

probability.10 In contrast, a private-value shock happens with a Poisson rate zp. It makes a liquidity

trader need to buy or sell one unit of the asset with the same probability, causing noise trading.

I focus on a very short time interval so that a trigger shock occurs at most once, and two types

of shocks are mutually exclusive, as in Menkveld and Zoican (2017) and Brolley and Zoican (2020).

Since they arrive as a Poisson event, a common-value shock triggers a trade with probability η =

zc
zc+zp

, while a private-value shock triggers it with the complementary probability, 1− η.

Exchanges. There are N ≥ 2 exchange platforms operating in parallel with each other. They are

indexed by k ∈ E = {1, 2, · · · , N}where E denotes the set of exchanges. I first take N as an exogenous

parameter, but Section 4 endogenizes it as an equilibrium variable.

Following the trading rules in the U.S. (see SEC, 2005 or Budish et al., 2020 for more details), a

trader can trade the asset on all exchanges at the best quoted price among them. Therefore N ex-

changes are perfect substitutes in terms of trade execution services. However, they differentiate them-

selves by monopolistically providing speed services, such as colocation of information servers. As

described in Budish et al. (2020), a trader needs to obtain speed services on exchange k in order to

conduct ultra-fast trading on that exchange—e.g., colocating an information server to exchange 1’s

information center does not provide fast access to exchange 2. To make the model as simple as pos-

sible, I assume that routing an order from one exchange to another takes a deterministic delay ∆ > 0

where ∆ is relatively large compared to latency of HFTs so that I focus on the equilibrium where

10Innovations in v can be thought of as a new arbitrage opportunity triggered by a jump in the asset’s price that is not

yet reflected by prices of other highly correlated assets (Budish et al., 2015). They could also stem from some public news,

such as Fed announcements and the release of government statistics, or execution of Intermarket Sweep Orders (Baldauf

and Mollner, 2020).
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HFTs place orders on exchange k if they want to execute orders on that exchange rather than routing

from other exchanges.11

As Subsection 2.3 describes in detail, each exchange can randomly impose intentional delays on

execution of liquidity-taking orders (e.g., asymmetric speed bumps). Exchanges are for-profit enti-

ties, and they endogenously choose the speed fees and the intensity of random delays to maximize

their profits.

2.2 Traders and trading speed

A liquidity trader. There is a risk neutral liquidity trader who represents (slow) passive investors

with no material information in the real world. Her behavior stems from some exogenous reasons,

such as hedging motives and margin constraints.

Upon hit by a private-value shock, a liquidity trader exogenously submits a single-unit buy or sell

market order with equal probability.12 Since the private-value shock does not trigger a race between

sniping and cancellation of limit orders by HFTs (see below), the liquidity trader can take liquidity

for sure. Thus the liquidity trader is agnostic about her trading speed.

Moreover, following the U.S. trading rules, a market order posted on any exchange is matched

with the limit order that proposes the best price across N exchanges. Therefore, the liquidity trader

is indifferent between posting a market order on any exchanges upon hit by the shock.

High-frequency traders. There are two risk-neutral high-frequency traders (HFTs) indexed by i and j.

Each HFT serves both as a market maker (a high-frequency market maker; an HFM) and a liquidity

taker (a high-frequency sniper; an HFS). I assume that the trading game occurs in a very short interval

and, as in Baldauf and Mollner (2020), HFTs are prohibited from sending multiple market orders in

any two periods that are infinitely close.13 Their behavior involves the following steps.

Step 1. At time t = 0 (prior to the trading game), each HFT decides on her trading speed, such as

11See Budish, Lee and Shim (2020) for a similar setting. In their model, an HFT cannot participate in a race on exchange

k if she does not subscribe to exchange k’s speed services, i.e., routing an order from other exchanges to exchange k is not

fast enough to compete in a race on exchange k.
12I assume that the liquidity trader takes only one unit of the asset. The unit-trading assumption is widely used in the

literature (see, for example, Glosten and Milgrom, 1985) and can be thought of as a capacity constraint of a liquidity trader

or the size/magnitude of a private-value shock.
13Without this assumption, HFTs may send redundant orders simultaneously in the expectation that one of them hits a

limit order faster than other orders. This behavior complicates the discussion without adding new implications.
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high-bandwidth connectivity to exchanges and colocation services.14 In reality, speed services are

obtained via monthly or annual subscriptions and cannot be adjusted during a given trading game

(see IEX, 2019).

In the model, HFT i purchases those speed services from exchanges at t = 0 and they are denoted

as φi = (φi,k)k∈E . Exchange k charges speed fee pk ≥ 0 per unit of speed services. φi determines

HFT i’s speed of access to the market. In particular, it takes stochastic time τi,k ∼ exp(φi,k) for HFT

i to execute her market order/cancellation request on exchange k. Put differently, the expected time

between order placement and execution is inversely proportional to φi,k.15

Step 2. At time t = 1, each HFT posts a single-unit limit order as an HFM.16 At that time, HFM i

chooses (i) on which exchange she posts a limit order and (ii) at what prices she quotes for one unit of

the asset. The bid and the ask prices are denoted as (−si, si), and si is referred to as the (half) bid-ask

spread.

Step 3. The current state of limit order books is not observable per se, and each HFT needs to monitor

N exchanges to promptly react to the arrival of news. In reality, direct data feeds from an exchange

provide raw information about the exchange’s limit order book, and a trader needs to process them

to observe the current state of the book and to locate profitable trading opportunities.

In the model, HFT i possesses one unit of perfectly divisible monitoring capacity (or information

processors) and allocates q̃i,k ∈ [0, 1] fraction to exchange k.17 By allocating q̃i,k, HFT i can observe

the limit order book of exchange k at the timing of a common-value shock with probability q̃i,k. It

allows her to immediately react to news by sending a market order to the exchange. With the com-

plementary probability, 1− q̃i,k, the HFT cannot promptly react to the arrival of news, and her sniping

probability on exchange k (defined below) is discounted by α ∈ (0, 1].18

q̃i,k can be seen as the speed of information processing in a reduced form. For example, it could

be the probability that an HFT can complete analyzing direct data feeds from exchange k to recon-

14The ex-ante choice of speed is in line with the literature, e.g., Foucault et al. (2013) and Brolley and Zoican (2020).
15See, for example, Foucault, Kozhan and Tham (2016) for a similar setting.
16An HFM does not provide quote for more than on unit of the asset, as the liquidity trader takes only one unit of the

asset.
17In Appendix B, I consider a more general setting where HFT i chooses her monitoring capacity hi before the trading

game and allocates q̃i,k fraction of it to monitor exchange k. As long as the cost of acquiring hi is relatively small, which is

the case in the real financial market with multiple trading rounds, the implications of the main model stay the same.
18I take α as a given parameter, but Appendix B derives α from some additional delays in reaction time that follow a

Poisson distribution.
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struct its limit order book before the arrival of a shock. If she does not monitor the exchange based

on its direct data feeds, she must trade based on consolidated data (or the SIP data), which is slow

compared to trading with direct data feeds and a market maker’s cancellation request.19

Step 4. Finally, if a common-value shock hits, both HFTs immediately observe the realized value of

v = ±σ, and a sniping race takes place. This setting allows us to focus on latency arbitrage, i.e., arbi-

trage opportunities that stem from speed asymmetry, rather than that from information asymmetry.

Upon observing v, HFT i places a cancellation request of her limit order to revoke her stale quote

and to avoid being picked off. At the same time, she tries to send a single-unit market order to snipe

her rival’s limit order, which is immediate depending on her allocation of monitoring capacity, q̃i,k,

as defined in Step 3.

Remark. When sniping a limit order, HFTs take a pure strategy, i.e., they try to place a market

order immediately upon the arrival of a common-value shock. This strategy differs from that of a

strategic liquidity taker in Back and Baruch (2004) where an informed taker adopts a mixed strategy

and randomizes the timing of her order placement. This is because the informed trader in Back and

Baruch (2004) needs to hide her private information. In contrast, HFTs in my model face no asym-

metric information at the timing of a race, as they know the realized value of v. Thus randomizing (or

intentionally delaying) the timing of order placement is suboptimal. Instead, the following analyses

show that HFTs may take a mixed strategy in their decisions prior to a race.

2.3 Intentional delays in order execution

A typical exchange imposes delays on execution of market orders.20 They reflect the implementation

of speed bumps in the real markets (see Table 1) where most delays are asymmetrically imposed only

on liquidity-taking orders.

To capture the random delays, I allow exchange k to impose intentional delays with frequency

δk ∈ [0, 1]. If the delays are imposed, a market order fails to snipe liquidity with probability β ∈ (0, 1).

This implies that, on exchange k, the expected probability of successful sniping for an HFT (defined

below) is discounted by

λ(δk) = 1− δk + δk(1− β) ∈ [1− β, 1]. (1)

19By construction, a market maker knows on which exchange she posts her limit order and does not need to process data

to send cancellation request.
20Liquidity-providing orders, as well as cancellation requests, are not delayed.
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To further interpret the above setting, some background might be useful. In the real financial

market, the U.S. trading rule requires all exchanges to be “immediately accessible (Regulation NMS;

Rule 611)” and to function as one consolidated exchange.21 The imposition of long intentional delays

goes counter to this notion, and it must be sufficiently short and regarded as de minimis by SEC to be

approved.

In light of this, we can think of λ as a result of the random imposition of relatively short delays,

where δk is the probability that delays are imposed. Alternatively, δk can also be seen as the stochas-

tic length of delays. In both cases, 1 − β is the probability of successful sniping when a market

order is delayed, where β < 1 captures the fact that everything can be stochastic on the microsec-

ond/nanosecond timescale due to randomness in information processing by traders and order han-

dling at exchanges’ matching engine or gateways.22 In what follows, δk is referred to as the intensity

of intentional delays.

Moreover, I assume that the imposition of delays takes an ex-ante fixed cost, denoted by C > 0.

It captures operational and administrative costs, e.g., an exchange must obtain the SEC approval,

which is time consuming and requires human resources.23

Prior to the trading game, exchange k determines the intensity of delays, δk, and the fee for speed

technologies, pk, to maximize her fee revenues from supplying speed services.

2.4 Equilibrium

The model is conceptualized as a sequential game with three stages, and the equilibrium concept

is the subgame perfect equilibrium. Figure 1 visualizes the timeline of the game. In the first stage

(t = 0), all exchanges simultaneously determine the price of speed services, pk, and the intensity

of intentional delays, δk, to maximize their fee revenues, and HFTs decide on their trading speed,

φ, by purchasing speed services. In the second stage (t = 1), HFTs post limit orders by choosing

their trading venue from N exchanges, and allocate monitoring capacity, q̃. Finally, traders move as

specified in Subsection 2.2 following a trigger event: either a common-value or a private-value shock.

21Rule 611: https://www.sec.gov/spotlight/emsac/memo-rule-611-regulation-nms.pdf
22It is possible that a message sent by the winner of a race actually arrives to an exchange slightly later than the first

loser’s message but nevertheless can get processed first. Aquilina, Budish and O’Neill (2020) report that the probability of

the above event is about 4%.
23I assume that operational costs after technology installations are ignorable. This is in line with the real financial market,

as suggested by IEX (2019).
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Figure 1: Timeline of the game

HFTs choose speed, φ
Exchanges choose fees and delays, (p, δ)

t = 0

t = 1

HFMs post limit orders (s) and
allocate monitoring intensity (q̃)

1−
η

A private-value shock
A liq.trader takes liquidity

η

A common-value shock

HFTs send cancellation
requests and market orders

In what follows, I assume that all random variables are independent. Also, without loss of gener-

ality, I analyze how the ask prices (si, sj) are determined when the asset’s value experiences a positive

innovation, v = +σ.24

2.5 Profit of a high-frequency sniper

Consider a profit of HFT i as a sniper (HFS i). If HFT j posts her limit order on exchange k, and there

is no discount in the sniping probability, HFS i with speed φi,k can snipe her rival’s limit order with

the following probability:

ψi,k = Pr(τi,k < τj,k) =
φi,k

φi,k + φj,k
.

ψi,k represents the intrinsic sniping probability of HFT i as a sniper to exchange k. It also captures the

degree of adverse selection that HFT j faces as a market maker.

When HFS i allocates q̃i,k of her attention on exchange k, and the exchange imposes intentional

delays with intensity δk, the overall sniping probability of HFS i is discounted and given by

qi,kλ(δk)ψi,k (2)

where

qi,k = q̃i,k + α(1− q̃i,k)

denotes the expected discounted probability that HFS i can immediately react to the news, and λ(δk)

is the impact of delays, given by (1). Thus, given that HFM j quotes sj on exchange k and HFT i

24The model is symmetric around zero, and the symmetric argument gives the results for the bid side of the market.
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allocates q̃i,k to monitor it, HFT i’s expected profit as an HFS is given by

VHFS
i,k (q̃i,k, φi,k) = qi,kλ(δk)ψi,k(σ− sj). (3)

2.6 Profit of a high-frequency market maker

Consider HFT i’s profit as a market maker (HFM i) when her rival places a limit order on exchange l

with ask and bid prices (sj,−sj).

As in the canonical model by Glosten and Milgrom (1985), HFM i obtains positive profits in

expectation when her limit order is taken by the liquidity trader. This is because liquidity trading

implies no innovations in ṽ, E[si − ṽ] = si > 0 . Since the liquidity trader takes only one unit,

however, only one of HFMs who proposes a better price can glean this profit opportunity, causing

pricing competition. In this game, I impose the following tie-breaking rule.

Assumption 1. If both HFMs post the same price, si = sj, the liquidity trader’s market order is matched with

HFM i’s limit order with probability ai ∈ (0, 1).

Assumption 1 is consistent with the fact that the liquidity trader is indifferent between trading

on all N exchanges, as her order is executed at the best price. Also, the following analyses show that

Assumption 1 (i.e., the value of ai) is irrelevant to the equilibrium result.

Suppose that HFM i posts her limit order on exchange k with prices (si,−si), and HFT j allocates

q̃j,k of her monitoring capacity to analyze exchange k. Then HFM i’s expected profit from making

market is given by

VHFM
i,k (si, φi,k) = (1− η)θi(si, sj)si + ηqj,kλ(δk)ψj,k(σ− si), (4)

where θi represents the indicator function of trading with the liquidity trader conditional on the

shock:

θi(si, sj) = I{si<sj} + aiI{si=sj}.

The first term of (4) shows the case of liquidity trading. If HFM i proposes a better price than her

rival (si < sj), the liquidity trader’s order is matched with HFM i’s limit order. By the symmetric

logic, HFM i cannot trade with the liquidity trader if si > sj. The second term of θi captures the case

with si = sj that Assumption 1 stipulates.
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The second term of (4) captures the case that a trade is triggered by a common-value shock. With

probability qj,kλ(δk)ψj,k, HFS j snipes HFM i’s limit order, causing the adverse selection cost to HFM

i, as si − σ < 0. Otherwise, HFM i cancels (or revises) her stale quote and avoids the cost.

Note that intentional delays lower the sniping probability of an HFS, i.e., λ declines with δk. In

other words, the intentional delays protect a market maker against latency arbitrage and mitigate the

adverse selection cost.

3 Equilibrium

In this section, I solve for the optimal behavior of HFTs given the market structure imposed by ex-

changes (i.e., prices of speed technologies and the intensity of delays). I take steps backward to solve

for the equilibrium.

3.1 Liquidity provision and market monitoring

When HFT i decides on her behavior as a market maker and her allocation of monitoring capacity

as a sniper, she has not yet observed her rival’s strategy. Thus decision regarding these variables

constitutes one subgame.

As analyzed by Dennert (1993) and Baruch and Glosten (2013, 2019), strategic behavior of HFTs

leads to the following result.

Lemma 1. In the liquidity-provision and monitoring stage, there exists no equilibrium in pure strategies.

Appendix C provides formal proofs for all analytical results, but some brief explanation is pro-

vided here. Regarding the choice on the trading venue and market monitoring, intuition is quite

clear. For example, if HFM i takes a pure strategy and posts her limit order on exchange 1 for sure,

her rival allocates full monitoring intensity to exchange 1 as well. However, given that HFT j allo-

cates full capacity to exchange 1, posting a limit order on exchange 1 is no longer optimal—HFM i

finds it optimal to post on one of other exchanges. This argument implies that HFMs do not take

pure strategies in their venue choice and market monitoring.

On the pricing decision, if both HFMs take pure strategies, the profit function as a market maker,

VHFM
i,k (si, φi,k) in equation (4), involves a discontinuity at si = sj. Namely, if HFM i slightly undercuts

her rival, she can obtain strictly positive profits by attracting the liquidity trader with probability

1− η, whereas she loses this opportunity if her price is slightly higher than her rival’s quote. Since
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both HFMs are strategic and comprehend the above structure, they try to exploit the discontinuity to

earn more, which in turn eliminates pure strategy equilibrium.

In light of Lemma 1, I search for an equilibrium where

(i) HFT i posts her limit order on exchange k with probability mi,k ∈ (0, 1),

(ii) she randomizes her quote si on exchange k with cdf Fi,k(s) ≡ Pr(si < s) over s ∈ [si,k, σ], and

(iii) allocates q̃i,k ∈ (0, 1) fraction of her monitoring capacity to exchange k,

where si,k denotes an endogenous lower bound of the feasible quote. As shown by Proposition 1, the

above equilibrium is indeed unique.

When HFM j adopts the above strategies, HFM i’s quote si becomes the best price and can attract

liquidity trading with the following expected probability.

E[θi(si, sj)] = ∑
k∈E

mj,k Pr(si < sj|HFT j posts on exchange k)

= 1− ∑
k∈E

mj,kFj,k(si).

Accordingly, the expected profit of HFM i from posting her limit order on exchange k is rewritten as

VHFM
i,k (si, φi,k) = (1− η)

(
1− ∑

k∈E
mj,kFj,k(si)

)
si + ηqj,kλ(δk)ψj,k(σ− si). (5)

Moreover, the expected sniping profit of HFT i is

VHFS
i (q̃i,φi) = η ∑

k∈E
qi,kmj,kλ(δk)ψi,k

(
σ−Ej,k[sj]

)
(6)

where Ej,k[sj] =
∫ σ

sj,k
sjdFj,k(sj) denotes the expected spread posted on exchange k by HFM j.

Equilibrium monitoring. Firstly, the mixed strategy regarding venue choice requires that HFM i is

indifferent between posting her limit order on all exchanges. Since HFT i’s profit from sniping, VHFS
i

in (6), is independent of on which exchange she posts her limit order, the indifference condition is

given by VHFM
i,k (si, φi,k) = VHFM

i,l (si, φi,l) for all k, l ∈ E . This is equivalent to qj,kλ(δk)ψj,k = qj,lλ(δl)ψj,l

15



for all k, l ∈ E , and ∑u∈E qj,u = 1 leads to

γj ≡ qj,1λ(δ1)ψj,1 =
1

∑k∈E
1

λ(δk)ψj,k

.

Adopting the above strategy, HFM i’s profit in (5) is rewritten as

VHFM
i (si,φi) = (1− η)

(
1− ∑

k∈E
mj,kFj,k(si)

)
si + ηγj(σ− si). (7)

γj can be seen as the sniping probability of HFS j, as well as the adverse selection risk for HFM i, after

incorporating HFS j’s monitoring strategy, q̃j,k. In what follows, γj is referred to as the compound

sniping probability (resp. adverse selection cost) of HFT j (resp. for HFM i).

Moreover, equation (7) implies that HFMs are indifferent between all exchanges when they post

a limit order, i.e., VHFM
i is independent of index k. Therefore, for HFM i, randomizing her limit

order by using a homogeneous distribution function is an equilibrium, leading to Fi,k = Fi,l = Fi and

si,k = si,l = si for all k, l ∈ E and both i and j.

Equilibrium bid-ask spread. The next step is to derive the equilibrium pricing strategy. As in Dennert

(1993), sustaining the mixed strategy regarding the ask price requires HFM i to be indifferent between

all feasible prices, si ∈ [si, σ]. Since posting si = σ is always feasible and provides zero profits, it must

hold that 0 = VHFM
i (σ) = VHFM

i (si). By using (7), it implies that

Fj(s) = 1− η

1− η
γj

σ− s
s

.

Also, the lower bound of the feasible strategy for HFT j (si) must make the RHS of the above equation

zero, meaning that

sj =
ηγj

1− η + ηγj
σ.

Moreover, the indifference condition for HFM i implies that her profits from market making shrink

to zero in expectation.

Equilibrium venue choice. Finally, consider the allocation of monitoring capacity by HFT i, which in

turn pins down the venue choice of her rival.

Since the expected profit from market making converge to zero in expectation, HFT i obtains the
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following expected profit by allocating full monitoring capacity to exchange k conditional on the

arrival of a common-value shock.

VHFS
i (qi,k = 1,φi) = mj,kλ(δk)ψi,k

(
σ−Ej[sj]

)
.

For HFT i to take a mixed strategy regarding the monitoring intensity, she must be indifferent be-

tween analyzing all N exchanges, leading to

mj,kλ(δk)ψi,k = mj,lλ(δl)ψi,l , ∀k, l ∈ E .

Solving the above equations for k = 1 by using ∑k∈E mj,k = 1 yields the equation below.

mj,1λ(δ1)ψi,1 =
1

∑k∈E
1

λ(δk)ψi,k

= γi. (8)

The following Proposition summarizes the strategy of HFTs in the trading game, and intuition is

discussed in Subsection 3.2.

Proposition 1. There is a unique mixed strategy equilibrium in the trading subgame where

(i) HFT i posts a limit order on exchange k with probability

mi,k = Pr(HFM i posts on ex. k) =
1

∑l∈E
ψj,kλ(δk)

ψj,lλ(δl)

. (9)

(ii) When posting a limit order, HFM i randomizes her quote si by using cdf Fi over si ∈ [si, σ] with

Fi(s) = 1− η

1− η
γi

σ− s
s

. (10)

and

si =
ηγi

1− η + ηγi
σ

where

γi =
1

∑k∈E (λ(δk)ψi,k)
−1 .

(iii) HFTs’ expected profits from market making shrink to zero in expectation, E[VHFM
i (si,φi)] = 0.
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(iv) HFT i allocates q̃i,k fraction of monitoring capacity to analyze exchange k where

q̃i,k =
1

1− α

(
γi

λ(δk)ψi,k
− α

)
.

By using all the strategies derived above, the ex-ante expected profit for HFT i is given by the

following.

Proposition 2. The ex-ante expected profit of HFT i, net of the speed fees, is given by

Vi(φ) = ησγi

(
1 +

η

1− η
γj log

ηγj

1− η + ηγj

)
− ∑

k∈E
pkφi,k.

Proof. By using the indifference conditions and (8), the ex-ante expected profit of HFT i is rewritten

as

Vi(φi) = ηγi(σ−Ej[sj])− ∑
k∈E

pkφi,k. (11)

On the other hand, equilibrium condition (10) implies that the following equation holds regarding

the expected bid-ask spread.

Ej[s] = −σ
η

1− η
γj log

ηγj

1− η + ηγj
. (12)

�

3.2 Comparative statics: the expected bid-ask spread

From the ex-ante perspective, HFT i anticipates to pay the following expected spread when sniping

her rival’s limit order.

s̄j ≡ ∑
k∈E

mj,kEj,k[sj] = −σ
η

1− η
γj log

ηγj

1− η + ηγj
.

It has the following properties.

Proposition 3. (i) The expected trading cost for HFT i is decreasing in the HFT i’s speed level and increasing
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in her rival’s speed level, i.e., for all k ∈ E ,

∂s̄j

∂φi,k
< 0 and

∂s̄j

∂φj,k
> 0.

(ii) The expected trading cost declines as exchanges impose delays more intensively, i.e., for all k ∈ E ,

∂s̄j

∂δk
< 0.

The above proposition concludes that the expected bid-ask spread that HFT j posts shrinks and

market liquidity improves when HFT i becomes faster by purchasing more speed technologies, φi,k.

Since HFT i’s speed is the source of the adverse selection cost for HFM j, it differs from the con-

ventional results that positively relate adverse selection to the bid-ask spread either in a competitive

environment (e.g., Glosten and Milgrom, 1985) or a strategic environment (Dennert, 1993 and Baruch

and Glosten, 2013).

The difference from the existing models emanates from strategic liquidity provision and the dual

role played by the HFTs. Firstly, strategic liquidity provision induces a market maker to quote the

bid-ask spread that makes her rival break even. Importantly, this means that HFM i’s quote positively

reflects the adverse selection cost that HFM j faces, rather than the cost that she herself incurs. For

example, if HFM i increases φi,k, she faces less severe adverse selection, and her expected profit

increases. To make HFM i break even, in turn, HFM j must quote a narrower spread to take the

profitable liquidity trading away from HFM i. However, a speed-up by HFM i is the source of the

cost for HFM j, as HFT i is also serving as a sniper. Thus HFM j quotes a narrower bid-ask spread in

expectation, while adverse selection deteriorates.

Most of the existing models of market making deal with homogeneous market makers facing

a common source of adverse selection i.e., informed trading relative to noise trading. In that case

more intensive informed trading exacerbates adverse selection for all market makers, inducing all

of them to quote wider bid-ask spreads. In contrast, market makers in my model have (potentially)

heterogeneous speed levels and allow us to analyze how each trader’s quote depends on different

sources of adverse selection.

Comparison of points (i) and (ii) of Proposition 3 attests the above discussion: if a decline in the

adverse selection cost happens due to a common source (intentional delays; a higher δk), it tightens

the expected bid-ask spreads, as it mitigates the cost for all market makers. In contrast, if an idiosyn-
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cratic factor, such as an HFT’s speed, drives a change in adverse selection, the reaction of the bid-ask

spread can be different across HFMs.

As discussed in Introduction, whether increases in the throughput of high-frequency trading

widen the spread is inconclusive because the result depends on which one of takers and makers

adopt speed technologies more intensively. My model proposes a new explanation for the ambiguity

based on the heterogeneous sources of adverse selection and the HFTs’ dual role in the market.

3.3 Equilibrium speed acquisition and the impact of intentional delays

As shown by Proposition 1, HFT’s profit as a market maker shrinks to zero in expectation, and the

ex-ante expected profit all comes from sniping her rival’s quote. Thus at the speed-acquisition stage,

HFT i solves the following problem.

φ∗i = arg max
φi

Vi(φi)

= arg max
φi

ησγi

(
1 +

η

1− η
γj log

ηγj

1− η + ηγj

)
− ∑

k∈E
pkφi,k

with

γi =

(
∑
k∈E

φi,k + φj,k

λ(δk)φi,k

)−1

.

The FOC with respect to φi,k is given by the following equation, and the SOC is satisfied.

(φi,k) :
pk

ησ
=

the profit margin︷                                         ︸︸                                         ︷(
1 +

η

1− η
γj log

ηγj

1− η + ηγj

)change in the sniping prob.︷ ︸︸ ︷
dγi

dφi,k

+ γi

(
1 +

1− η + ηγj

1− η
log

ηγj

1− η + ηγj

)
η

1− η + ηγj

dγj

dφi,k︸                                                                         ︷︷                                                                         ︸
change in the trading cost

. (13)

The LHS shows the normalized speed fee that exchange k charges, i.e., the exogenous cost of speed

technologies for HFT i, normalized by the size of an arbitrage opportunity (σ) and its arrival fre-

quency (η). In the RHS, the first term captures an increase in the sniping probability that is achieved

by adopting faster speed technologies, i.e., dγi
dφi,k

> 0. It increases the overall expected profit, as a faster

technology makes sniping easier given the profit margin. The second term in the RHS represents the

impact of a speed-up on the trading cost, i.e., the expected bid-ask spread that her rival posts. As

Proposition 3 attests, an increase in φi,k mitigates adverse selection for HFM i, induces HFM j to post
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a narrower spread, and lowers the HFT i’s trading cost. Note that this term arises because HFTs are

strategic and incorporate the price impact of their decision on speed.

To understand the impact of delays on the optimal speed acquisition, I investigate comparative

statics of the HFT i’s sniping probability, as well as those of the adverse selection cost, i.e., γi and γj.

Lemma 2. (i) For all k ∈ E , the HFT i’s sniping probability, γi, is an increasing function of φi,k. Also, the

marginal impact of a speed-up, defined by | dγi
dφi,k
|, is decreasing in δk if and only if

(
1 + φj,k

φi,k

)
∑l,k λ(δl)

−1ψ−1
i,l >

λ(δk).

(ii) For all k ∈ E , the adverse selection cost that HFT i incurs, γj, is a decreasing function of φi,k. Also, the

marginal impact of a speed-up, defined by | dγj
dφi,k
|, is decreasing in δk if and only if

(
1 + φi,k

φj,k

)
∑l,k λ(δl)

−1ψ−1
j,l >

λ(δk).

The above lemma shows that a more intensive imposition of delays has an ambiguous impact on

the marginal effect of a speed-up. Mathematically, the chain rule leads to the following derivative of

HFT i’s sniping probability.

dγi

dφi,k
= λ(δk)

φj,k

(φi,k + φj,k)2︸             ︷︷             ︸
=

dψi,k
dφi,k

(
1

1 + λ(δk)ψi,k ∑l,k λ(δl)−1ψ−1
i,l

)2

︸                                             ︷︷                                             ︸ > 0

=
dγi

dψi,k

. (14)

Thus more intensive delays (i.e., a higher δk) have two competing effects on the above derivative, as

visualized by Figures 2 and 3.

Firstly, a higher δk weakens the positive impact of φi,k on γi: even if HFT i acquires faster speed,

intentional delays slow down her market order, weakening the impact of her speed-up on the overall

sniping probability. It is represented by the fact that the first two terms in (14), λ(δk)
dψi,k
dφi,k

, is decreasing

in δk.

Secondly, however, an increase in δk makes it more valuable for HFT i to be faster. Intuitively, the

positive impact of a speed-up on the sniping probability tends to saturate and diminish as the level

of φi,k becomes high (Figure 2). However, with intentional delays, the impact of φi,k on the sniping

probability decays slowly (Figure 3). They exogenously lower λ(δk)ψi,k and provide HFT i with an

additional value to increase her speed. This is captured by the second term of (14), dγi
dψi,k

, which is

decreasing in λ(δk).

As a result, the reaction of the marginal impact of a speed-up (φi,k) on the sniping probability (γi)
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φi,k

γi

δL

δH

Figure 2: Reaction of γi to φi,k and δk

φi,k

dγi
dφi,k

δH

δL

Figure 3: Reaction of ∂γi
∂φi,k

to φi,k and δk

Note: The left panel plots γi against φi,k. The right panel plots the slope of γ against φi,k. In both panels, the shaded area
represents the region in which more intensive delays magnify the marginal impact of a speed-up on the sniping probability.

becomes hump-shaped against the intensity of delays (δk). The symmetric discussion can be applied

to analyze the marginal impact of speed on the adverse selection cost, γj.

Since the adverse selection cost that HFT i faces determines her trading cost, the effect of inten-

tional delays on the price impact of speed exhibits the similar ambiguity.

Lemma 3. More intensive delays strengthen the (negative) price impact of φi,k if and only if

(
1− η

1− η + ηγj

)2

< −
(

1− λ(δk)ψj,k ∑
l,k

λ(δl)
−1ψ−1

j,l

)(
log

ηγj

1− η + ηγj
+

1− η

1− η + ηγj

)
. (15)

Lemma 3 means that, if the above inequality holds, HFT i can reduce her expected trading cost

more by increasing her speed level when intentional delays are imposed more intensively. Together

with Lemma 2, the above result leads to the possibility that the imposition of intentional delays

promote HFTs’ incentive to acquire faster speed technologies, as they increase the marginal benefit

of adding one unit of speed.

3.4 Demand for speed in the symmetric equilibrium

Now, I focus on the symmetric equilibrium where both HFTs choose the same level of trading speed

on each exchange, i.e., φi,k = φj,k = φk for all k ∈ E . The equilibrium speed is given by solving the

FOC:
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Proposition 4. In the symmetric equilibrium with intentional delays δ = (δk)k∈E , HFTs obtain the following

speed technologies from exchange k:

φk =
1

4pk

ησ

λ(δk)

(1− η)g2(δ)

1− η + η
2 g(δ)

(16)

with

g(δ) =
1

∑l∈E λ(δl)−1 . (17)

The above equation represents the HFTs’ demand for speed on exchange k. It is negatively pro-

portional to the level of the speed fee that exchange k charges, linearly increasing in the volatility of

the asset (σ), and exhibits an ambiguous reaction to other parameters.

Corollary 1. The demand for speed technologies φk takes a U-shaped curve against the frequency of a common-

value shock η with a unique tipping point given by

η̂ =
1

1 +
√

1
2 g(δ)

.

On the one hand, a higher probability of a common-value shock implies that HFTs are more likely

to face a profitable sniping opportunity. It dwarfs the speed fees charged by exchanges and promotes

HFTs’ speed acquisition. On the other hand, a trade is more likely to involve adverse selection for

market makers. Since η is a common source of adverse selection, it leads to a wider bid-ask spread

and a smaller profit margin of sniping. The latter channel makes HFTs more reluctant to pay the fees

to increase their speed. As a result of the above two competing effects, the impact of η on φk becomes

non-monotonic.

The next section analyzes the impact of changing the delay intensity on the demand for speed

and asks whether and how many exchanges optimally introduce them in the equilibrium.

4 Do for-profit exchanges introduce delays?

As discussed in Introduction, exchanges in the real market start adopting intentional delays (see

Table 1 and Appendix A). On the one hand, the rationale for the imposition of delays is to protect

market makers against latency arbitrage and improve market liquidity. It is based on the notion that

delays can reduce the speed of HFTs by directly hampering sniping and by indirectly curtailing their
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profit and an incentive to be faster. On the other hand, the theoretical study by Budish et al. (2020)

suggests that, when the cost of adopting delays are sufficiently small, for-profit exchanges have no

incentive to adopt delays. The following discussion reconciles the above discussion by Budish et al.

(2020) to the speed bumps in the real financial market by showing that exchanges introduce delays

(i.e., δ > 0) in the equilibrium.

4.1 The optimal intensity of intentional delays

Remember that each exchange tries to maximize her fee revenues by controlling the level of the speed

fee, pk, and the intensity of intentional delays, δk. Proposition 4 implies that the speed fee is irrelevant

to the exchange’s profit, as the demand for speed is inversely proportional to pk. Thus, any pk can

be an equilibrium and it is indeterminate. In reality, the price for speed services is skyrocketing (see,

for example, IEX, 2019 and Glosten, 2020). Since the main focus of my model is on the intentional

delays, I will leave the equilibrium determination of pk and its analyses as a topic of future research.

By contrast, a for-profit exchange can affect her profit by controlling the intensity of delays, as it

has a disproportional impact on the demand for speed. Exchange k solves the following problem.

δ∗k = arg max
δk∈[0,1]

2φk pk − CI{φi,k>0}

= arg max
δk∈[0,1]

2
ησ

λ(δk)

(1− η)g2(δ)

1− η + η
2 g(δ)

− CI{φi,k>0}

where g is given by (17), and C is the fixed cost of adopting delays with IX being the indicator

function for X. I consider the exchange k’s optimal strategy given that her rival exchanges take the

symmetric strategy, i.e., δl = δh = δ−k for all l, h , k.

Proposition 5. (i) The demand for speed services on exchange k takes a single-peaked reaction to the intensity

of intentional delays on that exchange with a unique maximizer being

δ∗k ≡
1
β

(
1− λ(δ−k)

N − 1

√
1− η

1− η + η
2

λ(δ−k)
N−1

)
∈ (0, 1].

Therefore, the optimal intensity of delays for exchange k is given by δk = δ∗k .

(ii) The demand for speed services on exchange k is monotonically decreasing in the intensity of delays on other

exchanges, i.e., dφk
dδ−k

< 0.

(iii) The exchange k’s optimal intensity of delays is increasing in the intensity of delays on other exchanges,
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i.e., dδ∗k
dδ−k

> 0.

The imposition of intentional delays on exchange k has an ambiguous impact on the demand for

speed services on her own platform. This is the reflection of Lemmas 2 and 3, i.e., the hump-shaped

reaction of the marginal impact of a speed-up on the sniping probability and on the adverse selection

to more intensive delays. When delays become longer, they can generate additional room for HFTs

to increase the speed level to boost the sniping probability. It may also make it marginally more

valuable to add speed to reduce the bid-ask spread.

Moreover, we can think of the result in point (iii) as the strategic complementarity between for-

profit exchanges. When rival exchanges impose longer intentional delays, it reduces the level of

demand for speed on exchange k. However, the demand function tilts toward right and exchange k

can increase the demand by imposing marginally more intensive delays.

Due to the strategic complementarity, exchanges try to impose delays with their full capacity in

the symmetric equilibrium.

Proposition 6. In the symmetric equilibrium, the intensity of delays converges to a corner solution, i.e., the

equilibrium intensity is given by δk = δ∗ = 1 for all k ∈ E .

The above result shows that, conditional on paying the fixed cost for delays C, each for-profit

exchange fully leverages her capacity to delay order execution. Note that it leads the sniping proba-

bility to be λ(1) = 1− β.

Remark. The possibility of more intensive delays increasing the demand for speed is absent in

the models with competitive HFTs and those with a binary choice on speed. In the case of competitive

HFTs, delays may narrow the bid-ask spread and makes it more valuable to increase the sniping

probability. This effect, however, is not enough to overturn the negative impact of delays on speed

acquisition via a reduced sniping probability and a more salient cost of speed (i.e., fees). The HFTs’

strategic behavior generates the positive impact of delays on the demand for speed via the slope of

the bid-ask spread in Lemma 3, which helps overturn the existing result.

4.2 Entry decision of for-profit exchanges

This subsection endogenizes the number of exchanges, N, and characterizes how many exchanges

may enter the financial market with intentional delays.
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At the symmetric equilibrium, each exchange expects to earn the following profits from supplying

speed services, net of the fixed cost of delays.

Πk = Π =
ησ

2
β

N2
1− η

1− η + η
2

β
N

− C

Obviously, the above profit function is decreasing in the number of entrants, N, and converges to−C

as N → ∞. Whenever N satisfies Π > 0, some exchanges may introduce intentional delays and enter

the market, increasing N. This process continues until it holds that Π ≤ 0. In contrast, if Π < 0,

some exchanges stop operating. It reduces N and increases Π until Π ≥ 0 holds. Therefore, the

equilibrium N = N∗ is determined by the break-even condition and is stable. As long as condition ()

below is satisfied, a unique interior solution for Π = 0 exists:

σβ

8
η(1− η)

1− η + η
β
4

> C. (18)

If the cost is large and violates the above condition, no exchanges are willing to enter the market.

Thus the following discussion assumes that (18) holds.

Proposition 7. (i) The equilibrium number of for-profit exchanges in operation with intentional delays is

given by

N∗ = bNBEc ,

where bxc denotes the greatest integer less than or equal to x, and NBE is given by

NBE =
ηβ

4

√
1 + 8σ

Cηβ (1− η)2 − 1

1− η
.

(ii) N∗ is (weakly) increasing in β and σ and (weakly) decreasing in C.

In the equilibrium, a larger number of exchanges adopt intentional delays when the cost of adopt-

ing delays is small, the market is more volatile, and the delays are more likely to prohibit sniping.

The reaction of N∗ to β and σ is predictable, as both of they make HFTs’ demand for speed more

responsive to the intensity of delays by magnifying the profitability of a speed-up.

The impact of the cost (C) to the adoption of delays is opposite to that suggested by Budish et

al. (2020). In my model, even if the cost is small and all exchanges adopt delays, delaying order

execution can generate additional profits by boosting the demand for speed technologies. Thus the
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smaller the cost, the more exchanges attempt to introduce the delays.25

4.3 Market quality

How does the behavior of strategic HFTs and for-profit exchanges affect the measure of market qual-

ity, such as liquidity and price discovery? Do intentional delays can achieve its primary purpose?

This subsection provides an answer to the above questions.

Liquidity. As in the literature, the expected bid-ask spread can be used as the metric to gauge market

liquidity. After incorporating the speed and delays in the symmetric equilibrium, the expected bid-

ask spread is given by

s̄ = −σ
η

1− η

1− β

N∗
log

η
1−β
N∗

1− η + η
1−β
N∗

,

where the equilibrium number of exchanges, N∗, is given by Proposition 7.

Firstly, in the symmetric equilibrium, the impact of delays on HFTs’ speed acquisition does not

matter because all HFTs end up having the same level of speed and the intrinsic sniping probability

becomes constant, φi,k
φi,k+φj,k

= 1
2 , as in Menkveld and Zoican (2017) and Budish, Cramton and Shim

(2015). Therefore, only the direct impact of intentional delays remains effective, and the adverse

selection problem is mitigated for market makers.

Moreover, the number of exchanges, N∗, negatively affects the bid-ask spread. When a large

number of exchanges are operating in parallel with each other, it becomes harder for HFTs to con-

centrate their monitoring capacity to analyze a certain exchange. It means that each market receives

dispersed monitoring attention and dissipates the market makers’ risk of being picked off by snipers.

Price discovery. The price discovery process is another important metric to evaluate market effi-

ciency. It represents how quickly the equilibrium price impounds material information about the

value of an asset. Conditional on a jump in ṽ, the standing limit order with stale bid and ask prices

reflects material information if (i) an HFT snipes her rival’s limit order or (ii) reprices her stale limit

order.26

Firstly, denote the latency of price discovery on exchange k when HFT i is serving as a sniper by

25The result is robust even if the market has M other exchanges who stick to the market structure with no delays.
26In the model, sending a cancellation request is equivalent to sending a repricing request, as there is no asymmetric

information, and the model focuses on a one-shot trading game.
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Ti,k. It has the following distribution.

Ti,k ∼


min{τi,k, τj,k} with prob. qi,kλ(δk),

τj,k with prob. 1− qi,kλ(δk),

with the expected time being

E[Ti,k] =


1

φi,k+φj,k
with prob. qi,kλk,

1
φj,k

with prob. 1− qi,kλk.

With probability qi,kλk, HFT i can immediately react to the arrival of news and intentional delays do

not prohibit her sniping, leading to competition with no discounts. In this case, price discovery is

triggered by HFS i with latency τi,k or HFM j with latency τi,j. With the complementary probability,

HFM j can reprice prior to being picked off, which happens with latency τj,k.

By aggregating across traders and exchanges, the latency T for price discovery has the following

expected value.

T̄ = E[T] = ∑
k∈E

∑
l=i,j

ml,kE[Tl,k].

The value of T̄ is easy to compute in the symmetric equilibrium.

Corollary 2. In the symmetric equilibrium, information on ṽ is reflected by the price with the following

expected latency.

T̄ = 2
(

1− λ(1)
N∗

)
1

N∗ ∑
k∈E∗

1
φ∗k

(19)

Due to the indeterminacy of the speed fees, the price discovery process is not fully characterized.

However, equation (19) provides several observations. Firstly, intentional delays may have two com-

peting effects on the price discovery process. On the one hand, they directly slow down the process

by hampering HFTs’ sniping behavior. This channel is captured by the fact that more intensive delays

(δ → 1) increase T̄, i.e., it takes longer for the price to incorporate information. On the other hand,

it can facilitate the trading speed of HFTs, as suggested by Proposition 5. It shortens T̄ by allowing

HFTs to inject information into price both as snipers and market makers.

Moreover, the number of exchange, N∗, matters. Firstly, it increases T̄ via the first term. This is

because a larger number of exchanges dissipates monitoring attention of snipers, making a race less
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likely to happen. In contrast, a larger N∗ has ambiguous impact on the second component, i.e., the

average latency of HFTs, given by 1
N∗ ∑k∈E

1
φ∗k

. If an increase in the number of exchanges is triggered

by an exchange with low pk and high φk, the addition of an exchange facilitates price discovery, and

vice versa.

5 Discussion

5.1 Policy implication

In reality, exchanges have introduced intentional delays in the expectation that “[delays] will facil-

itate for passive liquidity providers an increased likelihood for of interacting with active orders of

natural investors, while protecting against opportunistic, latency sensitive active strategies” (TSX,

2014). That is, delays are expected to mitigate adverse selection for market makers and improve

liquidity.

In contrast, theoretical study by Budish, Lee and Shim (2020) argues that exchanges will not

introduce new innovations, such as FBAs and speed bumps, as they earn large portion of profits

from supplying speed services to HFTs and innovations may hinder speed acquisition.

My model reconciles the above view by Budish, Lee and Shim (2020) and the adoption of delays

in the real markets. As Proposition 5 attests, in the certain parameter region, intentional delays

facilitate speed acquisition by HFTs and boost their demand for speed services. This is due to the

strategic nature of HFTs and their speed acquisition in the continuous domain. It leads for-profit

exchanges to introduce delays to earn more from providing speed services.

Furthermore, intentional delays always mitigate adverse selection in the symmetric equilibrium

and improve liquidity,27 achieving their purported target. At the same time, they are consistent with

the profit maximization of exchange platforms. This could be a theoretical background for the fact

that exchanges in the real market volunteer to introduce speed bumps even without SEC or other

government entities imposing them as a government policy.

27Aoyagi (2018) shows that whether the adoption of delays mitigates adverse selection for market makers depends on

parameters, such as the length of delays, costs of speed acquisition, and the volatility of the asset’s value.
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5.2 Robustness and limitations of the model

Although my paper provides a stylized model of limit order markets, my main result does not hinge

on modeling choices. The key economic forces that drive the paper is the strategic nature of HFTs

who choose speed technologies as a continuous choice variable.

5.2.1 A model with slow competitive market makers

What if liquidity is provided by competitive slow market makers? They quote the competitive bid-

ask spread, as in the canonical Glosten and Milgrom (1985) model, which positively reflects the speed

of an HFS and negatively reacts to the intensity of delays. It is easy to show that longer delays in-

crease the sniper’s marginal benefit of being faster by (i) increasing the profit margin and (ii) making

the spread less responsive to a speed-up. Channel (i) is trivial, as the spread declines as the result of

mitigated adverse selection. Channel (ii) is a version of Lemma 2: knowing that the sniping proba-

bility is discounted by the delays, market makers downplay the impact of sniper’s speed-up on the

adverse selection cost. The latter effect makes it easier for a sniper to increase her speed without ad-

versely affecting the price of the asset. Thus, the reaction of the demand for speed to more intensive

delays stays the same even if market makers are competitive and equipped with exogenous speed

technologies.

5.2.2 Long-lived information

One of the limitations of my model is that it focuses on a one-shot trading game and abstracts away

from long-lived private information a la Kyle (1985) and Back and Baruch (2004). However, the

key implication of my model stays the same even if a strategic trader possesses long-lived private

information. With long-lived information, a strategic liquidity taker incorporates the impact of her

trading activity on the information revelation by the equilibrium price, and she holds back from

trading by fully leveraging her private information. When delays are imposed, the price impact

of informed trading weakens due to the same logic as Lemma 2. This implies that an informed

trader can exploit her private information more aggressively, making faster information acquisition

more valuable. To my knowledge, strategic market making with (potentially) heterogeneous speed

is hard to incorporate into the Kyle-type environment.28 Thus considering HFTs playing a dual role

28For the case of strategic market makers with no speed/information acquisition, see Bondarenko (2001) and Nishide

(2006).
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with endogenous speed acquisition in the Kyle-type environment is one of the topics for the future

research.

5.2.3 Trader welfare

My model is not suitable for analyzing welfare implication due to the existence of the liquidity

trader with exogenous trading motives. Of course, the model can incorporate discretionary liquidity

traders, as in Admati and Pfleiderer (1988), and endogenize their participation into the market. In

this situation, their trading surplus depends on the expected bid-ask spread, meaning that the adop-

tion of intentional delays leads to higher welfare. They also generate a positive feedback effect that

shows “liquidity begets liquidity.” Namely, a larger set of active liquidity traders mitigate adverse

selection for market makers, and the bid-ask spread shrinks. In turn, a narrower spread facilitates

liquidity traders’ participation even more. Thus the imposition of delays may improve liquidity via

the endogenous reaction of liquidity traders as well.

In the long run, the liquidity traders may face a tradeoff between trading as quickly as possible at

the positive bid-ask spread and waiting to trade at a narrower spread after HFTs learn information.

In other words, their welfare depends on the adverse selection, which is a transfer of market makers’

cost, and the price discovery. As discussed in Subsection 4.3, intentional delays not only reduce

spread, but they can also promote price discovery by making HFTs faster to trade. Thus even in a

long-run model, intentional delays are expected to improve liquidity trader welfare.

5.2.4 Intensive margin and extensive margin

My model focuses on the speed choice in the continuous domain, meaning that HFTs are choosing

their intensive margin of speed. In reality, being an HFT may take a fixed investment cost, such

as those to set up specific computers and to colocate information servers (see IEX, 2019). Since the

intentional delays reduce the indirect profit of HFTs, they can confound exchanges’ introduction of

delays. However, I believe that the effect via fixed costs is limited. Although my model considers

a one-shot trading game, HFTs in the real financial market can exploit their speed advantage for

multiple trading rounds. As Aquilina, Budish and O’Neill (2020) estimate, the aggregate prize of

latency arbitrage amounts to about GBP 60 million per year in the UK (and $5 billion across global

equity markets). Since the fixed cost should be amortized over the entire trading opportunities, the

impact of the effective fixed costs should be minimal.
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6 Conclusion

This paper studies the model of strategic high-frequency traders with for-profit exchanges. The

model characterizes the equilibrium behavior of HFTs who serve both as liquidity takers (snipers)

and liquidity providers. In the equilibrium, HFTs take a mixed strategy by randomizing the venue

to post a limit order, the degree of market monitoring, and the bid-ask spread. In contrast, they de-

terministically snipe liquidity, as the arbitrage opportunity arises due to asymmetric trading speed

rather than asymmetric information. In this equilibrium, the expected bid-ask spread negatively re-

acts to a decline in adverse selection that stems from some common sources, such as more active

noise trading and the imposition delays in order execution. However, if idiosyncratic factors, such

as a speed-up by one HFT, worsen the adverse selection cost for a market maker, bid-ask spreads

exhibit an ambiguous reaction, which depends on whose quote we are looking at and what is the

source of adverse selection. This is because of the strategic liquidity provision, combined with the

dual role played by HFTs.

The second part of the model considers intentional delays imposed by for-profit exchanges. Ex-

changes earn fee revenues from supplying speed services to HFTs. My model shows that the demand

for speed can be an increasing function of the length of intentional delays, as HFTs try to compen-

sate for the imposition of delays. In this situation, exchanges have an incentive to introduce delays

to boost the demand for speed services. Therefore, my paper suggests that intentional delays not

only improve liquidity by mitigating adverse selection but also increase exchanges’ profits. Thus it

provides one explanation for the real market where exchanges self-impose intentional delays even

without government intervention.
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Table 1: Design of Speed Bumps

Exchange Date Targets of delay Length of delay

In
op

er
at

io
n

IEX Octber 2013 All but pegged orders 350 microseconds
Thomson Reuters* June 2016 Non-cancellation 0-3 milliseconds
Aequitas NEO* March 2015 Liquidity takers 3-9 milliseconds
TSX Alpha* September 2015 Liquidity takers 1-3 milliseconds
Eurex Exchange* June 2019 Liquidity takers 1 or 3 milliseconds
EBS Market* July 2013 Liquidity takers 3-5 milliseconds
ParFx* March 2013 Liquidity takers 10-30 milliseconds
Moscow Exchange* April 2019 Liquidity takers 2-5 milliseconds

Pr
op

os
ed

CHX Proposed Liquidity takers 350 microseconds
EDGA (Cboe) Proposed Liquidity takers n/a
NASDAQ OMX PHLX Proposed Liquidity takers 5 microseconds
ICE Futures Proposed Liquidity takers 3 microseconds
Interactive Brokers* Proposed Liquidity takers 10-200 milliseconds
NYSE American** July 2017 All but pegged orders 350 microseconds

Note: * indicates random speed bumps. **In December 2019, ICE announced removal of speed bumps from
NYSE American based on their finding that speed bumps worsen liquidity and the trading share of the ex-
change. As of May 2020, exchanges with random speed bumps do not announce the distribution funcsion of
random delays.
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(11), 4601–4641.
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Smith, Robert Mackenzie, “Client list reveals HFT dominance on BrokerTec,” Risk, 2015, 28 (10).

TSX, “Notice of Proposed Rule Amendments and Requests for Comments,” 12 2014.

A The actual implementation of intentional delays

This section briefly describes the institutional details of speed bumps. Although the model in the

main text is built to analyze asymmetric speed bumps rather than symmetric delays on IEX, starting

with IEX would be helpful, as it is a precursor of all other speed bumps.

Symmetric speed bumps with deterministic delays

Who is protected? A symmetric and deterministic speed bump is first adopted by IEX in 2013 and

followed by NYSE American (while NYSE American has decided to remove it based on NYSE, 2019).
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It delays all incoming and outgoing orders by 350 microseconds. The type of orders protected by the

speed bump is “Pegged Order.” Pegged order is the type of non-displayed limit orders whose price is

dynamically adjusted by reference to the national best bid and offer (NBBO).29 Although IEX imposes

a delay on incoming orders and outgoing information, the messaging of SIP-related information is

not delayed. Thus, the price of pegged orders is dynamically adjusted by IEX with no delays. If the

NBBO changes, a speed bump allows IEX to adjust the pegged orders, and HFTs cannot snipe them

at the stale price.

Speed bump infrastructure All traders sending messages to IEX must enter the IEX’s system from the

Point of Presence (POP) in Secaucus, NJ. After entering via the POP, a message sent to IEX travels

through a “coiled” fiber optic cable, which has a distance of 38 miles. After exiting the coil, the

message travels an additional physical distance to the IEX trading system, located in Weehawken,

NJ. Due to this travel distance, a message sent to IEX must incur 350 microseconds of additional

travel time.

Asymmetric speed bumps

An asymmetric speed bump has been adopted by a growing number of exchanges. It delays all orders

except liquidity-providing orders. Details in the implementation varies depending on exchanges. For

example, a speed bump by Chicago Stock Exchange delays all orders except for visible limit orders

from approved liquidity providers, while an exception in TSX Alpha is provided to visible Post-Only

orders. Post-Only is the type of limit orders that is automatically rejected if it has a potential to cross

a market and remove liquidity from the limit order book.

Empirically identifying the impact of speed bumps is not straightforward, as a speed bump typ-

ically comes with changes in other market structures and trading rules. For example, along with a

speed bump, TSX Alpha sets a minimum size requirement for liquidity providing orders and adopts

an inverted maker-taker fee structure. Due to these structural changes, market makers must pay

29There are three types of pegged-order: Primary Peg (P-Peg), Discretionary Peg (D-Peg), and Midpoint Peg (M-Peg). P-

Peg and D-Peg orders are resting at one tick below or above the NBBO. P-Peg orders have discretion to trade at the NBBO,

while D-Peg orders have discretion to trade up to the midpoint. M-peg orders stay and are traded at the midpoint of the

NBBO and has a higher priority than D-Peg orders at the mid-point. Whether the discretion of each order is exercised is

determined by the “IEX signal” that determines if the NBBO is volatile (i.e., “scrambling”) by using a specific measure.

The discretion is not exercised if the signal is “on,” meaning that the bid-ask in the market is volatile.
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some additional cost (in terms of monetary or risk exposure) in return for protection by a speed

bump.

Randomness Randomizing the length of delay is expected to generate an additional benefit: it miti-

gates asymmetric information more effectively compared to a deterministic speed bump. The advan-

tage of random speed bumps stems from a situation where an informed trader splits a large order

and sends them to multiple exchanges, i.e., “sweep” or “sprayed” orders.

If a speed bump is deterministic, a trader can send split orders to multiple exchanges by adding

or subtracting some time lags to synchronize the execution timing of her orders on all exchanges.

The simultaneous execution of sweep orders is made possible by the smart order router (SOR) that

calculates and predicts the execution timing of each order by incorporating the deterministic delay

imposed by a speed bump.

For example, consider an informed trader who wants to fill a large order (say 1, 000 shares). Ex-

changes A has 300 shares available, and Exchange B has 500 shares. Thus, the informed trader may

spray orders to both exchange to fill 1,000 shares. Suppose that it takes tA and tB to send and execute

orders on Exchanges A and B, respectively. Now, a speed bump is applied in Exchange B. If the

length of delay δ is deterministic, the informed trader can stagger the timing or order entry to make

tA = tB + δ.30 By the synchronized execution, there is no information leakage, and the trader can

fulfill all orders.

Randomness in a speed bump makes it harder for the SOR to predict the execution timing, so that

synchronizing executions of split orders does not really work. Due to the failure in the synchronized

execution, market makers in Exchange B observe the execution of informed order on Exchange A

before a part of split orders arrive at Exchange B. The time lag generated by a random speed bump

allows the market makers to cancel or reprice their limit orders to avoid being picked off. Hence,

liquidity providers bear less severe adverse selection than in the case with a deterministic speed

bump.

B Extension

30In reality, there must involve some unexpected delays due to random factors, such as precipitation and temperature,

and even a SOR cannot perfectly synchronize the order arrival timing.
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B.1 Endogenous monitoring capacity

Suppose that HFT i can choose her monitoring capacity hi by paying cost K(hi) = chi before the

trading game starts. hi with a linear cost can be seen as the number of computer nodes purchased

for information processing or compensation for labor force. In the monitoring stage, she allocates q̃i,k

fraction of hi to monitor exchange k. By leveraging the monitoring capacity, HFT i can analyze the

limit order book on exchange k with latency τi,monitor ∼ exp(hi) with probability q̃i,k, while it causes

some additional delays δmonitor ∼ exp(b) with probability 1− q̃i,k. This implies that HFT i can observe

the limit order book before the arrival of a common-value shock with the following probability.


Pr(τi,monitor < τc) =

hi
zc+hi

with probability q̃i,k,

Pr(τi,monitor + δmonitor < τc) =
hi

zc+hi

b
b+zc

with probabiliry 1− q̃i,k.

Note that adding some other delays with the exponential distribution does not change the result. By

denoting α = b
b+zc

and setting hi → ∞, which is the case if c = 0, the above environment becomes

the same as that in the main model.

Now, consider the general case with hi < ∞ due to c > 0, and denote xi =
hi

zc+hi
. For simplicity,

I assume that b = 0 and thus α = 0. In this case, the equilibrium condition for q is still given by

qi,kλkψi,k = qi,lλlψi,l for all k, l ∈ E with

qi,k = q̃i,kxi.

By using ∑k∈E q̃i,k = 1, γi in the main text is replaced by

γi =
xi

∑N
k=1 (λ(δk)ψi,k)

−1 . (20)

Note that the rest of the model remains the same as the main text. The FOC regarding φi,k is the same

as the main model with γi given by (20), and that for hi is given by

(hi) :
c

ησ
=

(
1 +

η

1− η
γj log

ηγj

1− η + ηγj

)
dγi

dhi
.

Note that the SOC is satisfied for the above FOC.

As in the main model, consider the symmetric equilibrium where both HFTs choose the same

level of monitoring capacity, h = hi = hj, and speed level on each exchange φk = φi,k = φj,k that lead
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to γ = γi = γj. Also, denote Λ = ∑N
k=1 λ(δk)

−1. The FOCs are reduced to

(φk) :
pk

ησ
=

1
φk

h + zc

λkh
γ2 1− η

1− η + ηγ
,

(h) : (zc + h)2 =
zcησ

2c
1
Λ

(
1 +

ηγ

1− η
log

ηγ

1− η + ηγ

)
,

with

γ =
1

2Λ
h

h + zc
.

Thus I obtain two equations that determine h∗ as a function of γ.

h = H f oc(γ, Λ) =

√
zcησ

2c
1
Λ

(
1 +

ηγ

1− η
log

ηγ

1− η + ηγ

)
− zc,

h = Hde f (γ, Λ) = zc
2Λγ

1− 2Λγ
.

H f oc and Hde f are derived from the FOC for hi and the definition of γ, respectively. As long as c is

sufficiently small and satisfies

c <
ησ

2zc

1− β

N
, (21)

there is a unique set of interior solutions (h∗, γ∗) that solve the above two equations. Note that γ∗ is

monotonically decreasing in Λ. The demand for speed is given by

φk =
(1− η)σ

2pkλk

ηγ∗

1− η + ηγ∗
1
Λ

.

Suppose that all exchanges other than k adopt the same delays, meaning that λl = λu = λ for

l, u , k. Although the analytical solution is hard to obtain, numerical result in Figure 4 shows that the

demand for speed takes a single-peaked curve against δk, and the optimal δ∗k is an increasing function

of the intensity of delays of rival exchanges. The result in Figure 4 is robust to a change in parameter

values, as long as condition (21) is satisfied.

C Proof of Lemma 1 and Proposition 1

Since the derivation of the mixed strategies is provided in the text, the following proof focuses on the

non-existence of equilibrium in pure strategy and the uniqueness of the mixed strategy equilibrium.
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Figure 4: Demand for speed services and intentional delays

Note: This figure is illustrated by using the following parameter values: c = 0.01, zc = 1.0, η = 0.5, N = 3, β = 0.05.

Incorporating the strategy regarding the venue choice, the expected profit for HFM i is given by

VHFM
i (si,φi) = (1− η)

(
1− Fj(si)

)︸           ︷︷           ︸
=θi

si + ηγj(σ− si).

Mixed strategy equilibrium

It is trivial that there is no pure strategy equilibrium in terms of the venue choice (m) and the decision

on the monitoring intensity (q̃). Regarding the pricing decision, suppose that HFMs take a pure

strategy. Also, define the break-even spread in the competitive environment with Fj = 0 as follows.

sBE
i ≡

ηγj

1− η + ηγj
σ. (22)

Note that si = sBE
j . Figure 5 draws HFM i’s profit from market-making, VHFM

i , as a function of her

strategy, si. Figure 6 shows the best-response function of HFM l (l = i, j), denoted as s∗l , to her rival’s

quote.

Figure 5 shows that it is optimal for HFM i to slightly undercut sj as long as sj > sBE
i because

a better price attracts a profitable order flow from the liquidity trader. Thus, in Figure 6, the best-

response price of HFM i for sj > sBE
i is s∗i = sj − ε with ε → +0. Once sj hits sBE

i , however, quoting
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si

VHFM
i

θi = 0
sBE

i

θi = 1θi = 1

θi = ai

σ

sj

Figure 5: HFM i’s profit

s∗jσ

s∗i
σ

sBE
j

sBE
i

s∗i = σ

s∗j = σ

s∗i = sj,l − ε

s∗j = si − ε

Figure 6: The best response

si ∈ [0, σ) generates negative profits. Since placing si = σ always grantees zero profit, HFM i’s best

response price jumps to s∗i = σ. Symmetric arguments provide the best response of HFM j, denoted

as s∗j in Figure 6.

Figure 6 shows that price competition between strategic HFMs does not result in equilibrium in

pure strategies. This is because HFMs comprehend how prices (si, sj) affect their profit and try to

exploit discontinuity at si = sj.

Uniqueness

Firstly, suppose that HFM i puts a positive weight on si = σ. For si = σ to obtain a positive weight,

HFM j must charge prices above σ, which is not an equilibrium. Therefore, si = σ cannot be an atom.

Secondly, suppose that HFM i puts positive wight w on p ∈ (sBE
j , σ). For this to be an equilibrium,

there must exist positive ε such that HFM j does not charge prices in [sBE
j , p + ε]. If not, HFM j can

exploit the profit discontinuity at p, and she undercuts HFM i to obtain positive profits. Also, if HFM

j charges prices below p, it is not optimal for HFM i to put a positive weight on p. Thus, HFM j must

charge prices above p + ε. In this case, however, it is optimal for HFM i to raise p.
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Finally, suppose that p = sBE
j has a positive weight. For sj ≥ p = sBE

j , the profits for HFM j satisfy

VHFM
j (sj) = Pr(sj < si)

[
(1− η)sj + ηγi(sj − σ)

]
+ Pr(sj = si)

[
(1− ai)(1− η)sj + ηγi(sj − σ)

]
+ Pr(sj > si)ηγi(sj − σ)

= (1− η + ηγi)(sj − sBE
j )− [Pr(sj > si) + Pr(sj = si)ai](1− η)sj

< (1− η + ηγi)(sj − sBE
j )− Pr(sj > si)(1− η)sj

where the second line comes from subtracting VBE
j (sBE

j ) = 0. Then, define

εj ≡
Pr(sj > si)sBE

i,k

(1− η)Pr(sj ≤ si) + ηγi
> 0

so that posting sj ∈ [sBE
j , sBE

j + εj] makes VHFM
j (sj) < 0. Thus, HFM j does not post prices in

[sBE
j , sBE

j + εj]. However, this implies that HFM i has an incentive to raise p from p = sBE
j to p =

sBE
j + ε, leading to the same discussion as the case with p ∈ (sBE

j , 1). From the above argument, if

HFM i randomizes quote over [sBE
j , σ] with an atom p, then p converges to σ. However, this contradict

to the first case that shows p = σ cannot be an atom.
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