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Abstract

We consider the effi ciency of market entry in single- and two-sector closed-
economy versions of the Melitz-Ottavanio (MO) model, where differently from the
MO model our two-sector model does not involve an outside good. For each model
version, we assess whether the market level of entry is effi cient relative to the second-
best setting in which the planner can control only the level of entry. Focusing on
entry levels that induce selection, we show that the market level of entry is effi cient
in the single-sector model. For a two-sector MO model without an outside good, we
show that the welfare results are exactly similar to those in the one-sector model
when the two sectors are symmetric. When the two sectors are asymmetric and the
level of asymmetry is suffi ciently small, we identify a perturbation indicating a sense
in which the market level of entry into the “high-demand”sector is excessive. This
intersectoral misallocation occurs at the market equilibrium even though endoge-
nous average markups are equal across sectors. We also show how the outcomes
induced by the planner’s direct choice of entry levels alternatively can be induced
through the appropriate choice of entry tax/subsidy policies.
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1 Introduction

We consider the effi ciency of market entry in single- and two-sector closed-economy
versions of the Melitz and Ottavanio (2008) model, where differently from the Melitz-
Ottaviano (MO) model our two-sector model does not involve an outside good. For
each model version, we assess whether the market level of entry is effi cient relative to
the second-best setting in which the planner can control only the level of entry. When
an ineffi ciency is identified, we also characterize welfare-improving adjustments in entry
levels.
The MO model posits quasi-linear preferences and has two sectors, where one sector

is a differentiated sector and the other sector is an outside-good sector that produces
a homogeneous good under perfect competition.1 Bagwell and Lee (2020) examine the
effi ciency of market entry in the closed-economy MO model, finding that entry into the
differentiated sector is excessive (inadequate) (effi cient) if and only if α > 2·cmD (α < 2·cmD)
(α = 2 · cmD), where α is a demand parameter with higher values indicating a greater
preference for differentiated goods relative to the outside good and where cmD is the cutoff
cost level for surviving varieties as determined in the market equilibrium. The cutoff
level cmD is independent of α in this outside-good model. As Bagwell and Lee discuss, an
understanding of the effi ciency properties of market entry is essential for understanding
trade policy and agreements in the two-country MO model of trade.
We focus here on the effi ciency of market entry in a closed-economy setting for for-

mulations of the MO model in which the outside good is absent. We thus evaluate the
effi ciency of entry under monopolistic competition and heterogeneous firms while allowing
for variable markups and general-equilibrium income effects.
We begin by examining a single-sector version of the MO model. Our first main

result is that the market level of entry is effi cient among entry levels that induce at least
some selection. This result obtains even though entry has external effects on firms and
consumers. The result also carries the following specific implication: the entry ineffi ciency
characterized by Bagwell and Lee (2020) is attributable to the fact that the MO model
has multiple sectors.
We next examine whether the ineffi ciency of market entry in the MO model is sensitive

to the way in which the “second”sector is modeled. To this end, we replace the assumption
that the second sector is an outside-good sector with the alternative assumption that
the second sector is another differentiated sector, where the upper-tier consumer utility
function is additively separable across the two sectors. We conduct two exercises. In
the first exercise, we consider a symmetric setting in which the demand paramater α

1Specifically, in the MO model, the outside good enters utility in a linear and additive fashion, ensuring
that income effects can be ignored.
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takes the same value in both sectors: α1 = α2. For this symmetric setting, we analyze
the implications of a small perturbation in which the planner symmetrically changes the
levels of entry in the two sectors. Our second main result is that, for this symmetric
setting and relative to this perturbation class, the market level of entry satisfies the first
order conditions for welfare maximization, just as in the one-sector model. Our second
exercise allows that the sectors may be asymmetric, in that the demand parameter α is
allowed to take different values across the sectors: α1 6= α2 is allowed. For this setting,
we consider a small perturbation in which the planner increases the level of entry into
sector 1 while simultaneously decreasing the level of entry into sector 2 in such a manner
as to ensure that the marginal utility of income λ for the consumer is unaltered.2 For
suffi ciently small asymmetries, we show that this perturbation raises (lowers) (does not
change) welfare if and only if α1 < α2 (α1 > α2) (α1 = α2). Thus, in this sense, the
market provides excessive entry into the sector s ∈ {1, 2} with the highest value for αs.
To interpret our findings, we begin with the single-sector model. Additional entry in

this model is consistent with a resource constraint, since additional entry also impacts
variety-level consumption through its impact on the marginal utility of income λ and the
critical cost cutoff level cD. Focusing on entry levels that induce some selection, we find
that the market trades off these considerations in an effi cient manner. We show that this
finding can be understood by considering the impact of additional entry on aggregate
output.3 Starting at the market equilibrium, additional entry introduces offsetting effects
on λ and cD such that the number of surviving varieties (the extensive margin) and
the expected variety-level output conditional on survival (the intensive margin) are each
unaffected to the first order, ensuring that aggregate output and thus welfare are also
unaffected to the first order.
For the two-sector model, we show that our first exercise may be interpreted in a

manner that is analogous to the interpretation just given for the one-sector model. Just
as in our analysis of the one-sector model, the symmetric change in entry levels induces
a change in λ and impacts variety-level consumption through this channel. Indeed, when
the two-sector model has a symmetric setting and is subjected to a symmetric change in
sectoral entry levels, the results are exactly similar to those in the one-sector model.
Our second exercise for the two-sector model, however, introduces an additional con-

sideration, since in the asymmetric two-sector model the market may misallocate resources
across sectors. To isolate this consideration, we start at the market equilibrium and in-
crease the level of entry into the first sector while adjusting the level of entry into the
second sector so as to ensure that the marginal utility of income λ is unchanged. We show

2Formally, λ is the Lagrange multiplier for the budget constraint in the consumer’s optimization
problem.

3As Demidova (2017) shows, welfare can be expressed as a function of aggregate output in the one-
sector MO model.
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that a small perturbation of this kind necessarily involves a reduction in the level of entry
into the second sector. With this experiment, we thus eliminate intensive margin effects
that are induced via a change in λ. Assuming that the level of asymmetry is suffi ciently
small, we show that this perturbation lowers welfare when α1 > α2, a finding that in
this sense is consistent with a business-stealing intuition under which the market provides
excessive entry into “high-demand”sectors.
Our second exercise shares qualitative features with the closed-economy analysis by

Bagwell and Lee (2020); in both cases, the marginal utility of income λ remains fixed,
and so variety-level consumption is not impacted by changes in λ. In addition, we find
that the market provides excessive entry into the sector s with the highest value for αs, a
finding which is broadly analogous to the findings by Bagwell and Lee regarding excessive
entry into the differentiated sector in the model with an outside good when α is high
(namely, when α > 2 · cmD in that model).4
We do not intend to argue against the value of partial-equilibrium models with an

outside-good sector and quasi-linear preferences. Such models are highly tractable and
provide valuable insights for a range of policy analyses. At the same time, a general-
equilibrium model is appropriate for analyses seeking to include the income effects of
policies. Two-sector models with an imperfectly competitive sector and an outside-good
sector are also typically structured in such a way as to impose intersectoral markup
heterogeneity: markups are positive in the imperfectly competitive sector and absent in
the (competitive) outside-good sector. This built-in asymmetry can have implications for
resource misallocation.5

By comparison, in the two-sector model considered in the current paper, the average
markup is symmetric across sectors, even when preferences are asymmetric (α1 6= α2).6

In this way, we shut down the possibility that resources are misallocated due to markup
asymmetry across sectors. Since both sectors are imperfectly competitive, our approach
also differs in that a reallocation of entry across sectors creates subtle externalities for con-
sumer and producer interests in both sectors. These externalities account for the welfare
gain from entry reallocation that we establish for the two-sector model with asymmetric

4At a broad level, our second exercise thus suggests directions in which the qualitative findings of
Bagwell and Lee may extend to a multi-sector MO model without an outside good. A complete analysis
of this relationship, however, would require placing the multi-sector model considered here into a two-
country model of trade policies and agreements. This is beyond the scope of the current effort but is a
valuable direction for future research.

5See Lerner (1934) for an early discussion.
6We define the average markup in a sector as the ratio of the average price to the average marginal

cost in that sector, where averages are taken over surviving firms. The average markup is equal across
sectors in our two-sector model, even after entry is reallocated away from the market equilibrium level.
We note as well that given free entry, the difference between the average price and average marginal cost
in a sector is also independent of the sector at the market equilibrium. This difference, however, may
become asymmetric across sectors following a reallocation of entry.
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preferences.
In related research, Demidova (2017) studies optimal unilateral tariffs in a two-country

model that utilizes the single-sector version of the MO model. By contrast, we focus here
on the effi ciency properties of the market level of entry. Demidova notes that the level of
entry in the single-sector model is in fact indepenent of tariffs and trade costs. We allow
the planner directly to choose the level of entry, where the resulting market outcomes
can be replicated with the appropriate selection of entry tax/subsidy policies. We thus
consider different policy instruments than does Demidova.
Our work is also related to an Industrial Organization literature that takes a partial-

equilibrium perspective and considers the effi ciency of entry in an imperfectly competitive
sector when firms are symmetric, an outside-good sector exists and preferences are quasi-
linear. Prominent contibutions to this literature include Mankiw and Whinston (1986)
and Spence (1976). For the second-best problem of a planner who can control only the
number of firms, this literature finds that the level of entry is typically ineffi cient, due to
the associated business-stealing and consumer-surplus externalities. Differently from this
research, we eliminate the outside-good sector, include heterogeneous firms, and establish
a second-best effi ciency result for the market level of entry in the benchmark one-sector
model.
In other related work, Campolmi et al (2014) consider a two-sector monopolistic com-

petition model, where CES preferences and symmetric firms are specified for the differen-
tiated sector, the other sector is an outside-good sector and the upper-tier utility function
takes a Cobb-Douglas form. They find that the market level of entry is ineffi cient and
too low, and they show that a wage subsidy that targets the monopolistic distortion can
implement the first-best outcome. Bagwell and Lee (2018) examine the effi ciency of entry
in a two-sector model of monopolistic competition, where CES preferences and heteroge-
neous firms are specified for the differentiated sector, the other sector is an outside-good
sector and the upper-tier utility function takes a quasi-linear form. They also find that
the market level of entry is ineffi cient and too low. Like Bagwell and Lee (2020), Nocco
et al (2014) consider the effi ciency properties of the original MO model with an outside
good. A distinguishing feature of Nocco et al is that they characterize first best outcomes
and associated implementation policies.7

Our work is related as well to research on first-best outcomes in single-sector models.
Dhingra and Morrow (2019) consider a family of single-sector monopolistic competition
models with heterogeneous firms and additively separable preferences. For this family,
they show that the market outcome is first best if and only if preferences take the CES

7See also Spearot (2016) for a multi-sector, multi-country amended version of the MO model in which
the outside-good sector is also removed. He provides counterfactual analyses of several trade-policy
shocks.
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form. By contrast, the preferences that we explore do not fit in the family that Dhingra
and Morrow consider, and we also restrict attention to second-best intervention that
targets only the number of entrants. Bagwell and Lee (2021) characterize the first-best
allocation for the single-sector MO model considered here. In comparison to the first-
best optimum, the market provides the same level of entry but too little selection; thus,
the market provides too many varieties and allocates too little (much) production to low
(high) cost realizations. Interestingly, for the single-sector MO model, the same level of
entry arises in the market, first-best and second-best outcomes.
Finally, our analysis of the two-sector model relates interestingly to work by Epifani

and Gancia (2011). They examine a multi-sector model that features between- but not
within-sector heterogeneity. For a class of models, they show that, under free entry and
when the preference for variety differs across sectors, there exists no markup distribution
such that the market equilibrium replicates the first-best allocation. Markup symmetry is
thus not suffi cient for first-best effi ciency in this setting. Similarly, in our analysis of the
two-sector model with asymmetric preferences (α1 6= α2) across sectors, we establish a
welfare gain from a reallocation of entry across sectors even through the average markup
does not differ across sectors. But our analysis also differs in several respects. We include
within-sector firm heterogeneity, establish a second-best effi ciency result for the market
level of entry in the single-sector and symmetric two-sector models, and construct a spe-
cific welfare-improving entry reallocation in our asymmetric two-sector model that entails
reducing entry into the “high-demand”sector.
The paper is organized as follows. In Section 2, we develop the one-sector MO model

and present our welfare finding for this model. In Section 3, we present the two-sector
MO model that we study while allowing for entry policies (i.e., subsidies or taxes for the
cost of entry). We then analyze our two welfare exercises for the two-sector MO model
in Section 4. In Section 5, we show the outcomes induced by the planner’s direct choice
of entry levels alternatively can be induced by an appropriate choice of entry tax/subsidy
policies, and vice versa. Section 6 concludes. Remaining proofs are contained in the
Appendix.

2 One-sector MO model

In this section, we analyze the one-sector MO model. Our analysis employs the following
timeline:

1. A planner decides the number (mass) of entrants.

2. Entrants pay a fixed cost to observe their respective marginal costs and decide how
much to produce, including whether to produce or not. Their respective decisions
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determine the prices and number of varieties that consumers face.

3. For the given prices and varieties, consumers maximize utility.

As is standard, we solve the model by beginning with the final stage and working back-
wards.

2.1 Consumer’s problem

The economy contains a unit mass of identical consumers, each supplying a unit of labor in
inelastic fashion to a competitive labor market. We normalize the wage as 1. Consumers
also hold symmetric shares of any aggregate net profit, the value of which an individual
consumer takes as fixed when choosing consumption.
The consumer’s welfare maximization problem can be written as follows

max
qi

U = α

∫
i∈Ω

qidi−
1

2
γ

∫
i∈Ω

(qi)
2 di− 1

2
η

(∫
i∈Ω

qidi

)2

s.t. ∫
i∈Ω

piqidi = 1 + Π (1)

where qi and pi represent the consumption and price of variety i in the set Ω of available
varieties, wage income is normalized as 1 and Π refers to the aggregate net profit. We
assume that the preference parameters α, γ and η are all positive.
To solve the consumer’s problem, we construct the Lagrangian

L = U + λ

(
1 + Π−

(∫
i∈Ω

piqidi

))
,

where λ ≥ 0 is the multiplier for the consumer’s optimization problem above. Letting
Q ≡

∫
i∈Ω
qidi, we represent the first order condition with respect to qi as

α− γ · qi − η ·Q = λpi. (2)

Integrating (2) over the set of varieties for which qi > 0 and letting N be the measure of
consumed varieties in Ω, we obtain

α− γ · Q
N
− η ·Q = λp̄

and thus
α− λp̄
η + γ

N

= Q,
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where p̄ is the average price of consumed varieties.
Assuming λ > 0, we may further characterize consumer demand. Using (2), we see

that pi = (α−η·Q−γ·qi)
λ

for consumed varieties. Let us now define pmax as the “choke price.”
From the foregoing, we may confirm that

pmax ≡ α− η ·Q
λ

=
1

λ

(
γ · α + λ · η ·N · p̄

η ·N + γ

)
. (3)

Using (2) and (3), the inverse demand can be written as

pd (q) = pmax − γ

λ
· q. (4)

2.2 Firm’s problem

Profit maximization for a firm with marginal production cost c delivers the profit function

π (c) = max
q

(
pd (q)− c

)
q.

For this model of monopolistic competition, the firm takes Q, λ and thus the demand
intercept pmax as given when choosing its profit-maximizing output. Using (4), we char-
acterize the solution to the firm’s problem as

q (c) =
λ (pmax − c)

2γ
. (5)

This solution induces the profit-maximizing price and maximized profit of the firm:

p (c) =
pmax + c

2
(6)

π (c) =
λ

4γ
(pmax − c)2 .

The firm produces a positive quantity of its variety provided that its cost realization
is not higher than the demand intercept. In other words, a Zero Cutoff Profit (ZCP)
condition determines the cost cutoff cD as

π (cD) = 0

or equivalently
pmax = p (cD) = cD,

where we assume that cD > 0.
Following Melitz and Ottaviano (2008), we assume that costs are distributed according
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to a Pareto distribution

G(c) =

(
c

cM

)k
for c ∈ [0, cM ] where k > 1 and cM > 0. We also impose an implicit restriction on our
parameters and assume that cD < cM , so that some selection occurs. We regard this as
the most interesting case for the heterogeneous-firms model. We return to this assumption
as well as our positive value assumptions (λ > 0, cD > 0) below.
Given this distribution, we have that

c ≡ E(c|c ≤ cD) =

(
k

k + 1

)
cD.

Using (6) and pmax = cD, we find

p ≡ E(p(c)|c ≤ cD) =

(
cD + c

2

)
.

It now follows that the average price can be represented as

p =

(
2k + 1

2(k + 1)

)
cD.

Observe that that the average markup, µ ≡ p/c, is a simple function of the parameter k:

µ =
2k + 1

2k
.

Referring again to (3) and using pmax = cD, we can represent the number of varieties
as

N =
γ (α− λ · pmax)

λ · η · (pmax − p̄) =
γ (α− λ · cD)

λ · η (cD − p̄)
.

Plugging in the expression just derived for p, we obtain

N =
2 (k + 1) γ

η

(α− λ · cD)

λ · cD
. (7)

Using (7), we see that, once values for cD and λ are obtained, the value for the number
of available varieties is determined. We note that N is strictly decreasing with respect to
cD for a given value of λ.
The number of available varieties can also be expressed as a function of the number

of entrants, NE, and the cost cutoff level as

N = NE ·G(cD). (8)
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Hence, using (8), the value for the number of available varieties can also be determined
given the number of entrants and the cost cutoff level.
Finally, using (7), (8) and the Pareto distribution, we can express the relation between

N and NE as:

NE =
N

G (cD)
=

2 (k + 1) γ (cM)k

η

(α− λ · cD)

λ · (cD)k+1
. (9)

The expression in (9) will be an important ingredient in our analysis below when we
explore the implications of different values for NE for λ, cD and consumer welfare.

2.3 Planner’s problem

We are now ready to consider the planner’s choice of NE. The planner seeks to choose NE

so as to maximize consumer welfare under (i) a resource constraint derived from (1), (ii)
a constraint on the relationship between NE, cD and λ as given in (9), and (iii) a profit-
maximizing constraint under which the quantity of variety i consumed is determined by
the corresponding firm’s cost realization and profit-maximizing output (including zero),
as implied by (5) and pmax = cD. To state the planner’s problem, we proceed by showing
that the objective and constraints can be written in terms of α,NE, cD and λ.8

We start with the objective function:

U = α

∫
i∈Ω

qidi−
1

2
γ

∫
i∈Ω

(qi)
2 di− 1

2
η

(∫
i∈Ω

qidi

)2

. (10)

To simplify U , we use (5), pmax = cD, (9) and the Pareto distribution to show that we
may rewrite each term in (10) in terms of cD and λ.
This rewriting is accomplished through the establishment of two claims. The first

claim is that ∫
i∈Ω

qidi = NE

∫ cD

0

q (c) dG (c) =
1

η
(α− λ · cD) (11)

The first equality in (11) follows from profit-maximizing behavior. As we show in the
Appendix, the second equality can be confirmed using (5), pmax = cD, (9) and the Pareto
distribution. With (11) established, we can rewrite the first and third terms in (10) in
terms of cD and λ. The second claim is that∫

i∈Ω

(qi)
2 di = NE

∫ cD

0

q (c)2 dG (c) =
1

η

(α− λ · cD) (cD)λ

γ (2 + k)
. (12)

The first equality in (12) also follows from profit-maximizing behavior. In the Appendix,

8For later use in a multi-sector setup, we include α as an independent variable for our objective and
constraint functions as defined below.
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we show that the second equality can be confirmed using (5), pmax = cD, (9) and the
Pareto distribution. With (12) established, we can rewrite the second term in (10) in
terms of cD and λ.
With the two claims established, we now plug (11) and (12) into (10). After simplifi-

cation, we obtain that

U =
(α− λ · cD)

2η

(
α +

(
1 + k

2 + k

)
λ · cD

)
.

We may thus rewrite U as a function of (α, cD, λ). Formally, we write

U = u (α, cD, λ)

where

u (α, cD, λ) ≡ (α− λ · cD)

2η

(
α +

(
1 + k

2 + k

)
λ · cD

)
. (13)

We turn next to the resource constraint as given by (1). In order to simplify the
planner’s problem, we rewrite (1) under utility- and profit-maximizing behavior as

NE

∫ cD

0

p (c) q (c) dG (c) = 1 +NE

[∫ cD

0

(p (c)− c) q (c) dG (c)− fE
]
,

where the bracketed term on the RHS of this equation is the expected profit for a firm
that incurs the fixed cost fE > 0 to observe its cost realization. After simplification, the
resource constraint takes the following form:

NE

(∫ cD

0

c · q (c) dG (c) + fE

)
= 1. (14)

Using (5), pmax = cD, (9) and the Pareto distribution, and after simplification, we can
write the resource constraint (14) as

R (α, cD, λ) =
η (2 + k)

γ · φ (15)

where

R (α, cD, λ) ≡ (α− λ · cD)

λ · (cD)k+1

(
(cD)k+2 k · λ

γ · φ + 1

)
(16)

and φ = 2 (k + 1) (k + 2) (cM)k fE.

10



Next, using (9), we also define the number of entrants NE as a function of (α, cD, λ):

NE = Ne (α, cD, λ) ≡ 2 (k + 1) γ (cM)k

η

(α− λ · cD)

λ · (cD)k+1
. (17)

Finally, we have already embedded the profit-maximizing constraints into our representa-
tions of the utility function, the resource constraint and the constraint on the relationship
between NE, cD and λ as given as given by (13), (15), (16) and (17), respectively.
In this second best setting, we model the planner as choosing a value NE for the

number of entrants, with cD and λ then determined by the market in accordance with the
following system:

R (α, cD, λ) =
η (2 + k)

γ · φ (18)

and
NE = Ne (α, cD, λ) > 0 (19)

where R (α, cD, λ) and Ne (α, cD, λ) are defined in (16) and (17), respectively.
Before stating the planner’s problem and characterizing its solution, we require con-

ditions under which our positive-value assumptions (λ > 0, cD > 0) and our restriction
that cD < cM are satisfied. Drawing on arguments developed in a different context by
Bagwell and Lee (2021), we may easily confirm for NE ∈ (0, 1/fE) that there exists a
unique solution to (18) and (19) that satisfies λ > 0 and cD > 0; furthermore, for a given
cM > 0, there exists ÑE ∈ (0, 1/fE) such that the solution satisfies cD < cM if and only if
NE > ÑE.9 We can also show that ÑE goes to zero as cM or α approaches infinity.10 Thus,
our focus on the case where some selection occurs can be understood as corresponding
to a lower bound on entry, where this lower bound can be made arbitrarily small with
further parameter restrictions.
Focusing on a planner who chooses over entry values that induce selection with cD <

cM , we now represent the planner’s problem as

max
NE∈(ÑE ,1/fE)

u (α, cD, λ) s.t. (18) and (19),

where u (α, cD, λ)is defined in (13).
To understand the planner’s problem, suppose that the planner entertains a specific

value for NE ∈ (ÑE, 1/fE). Given this value, we may regard the constraints (18) and

9NE ≤ 1/fE is necessary for feasibility. This can be easily seen from the resource constraint (14).
10Bagwell and Lee (2021) analyze a first-best setting in which the planner rather than the market

chooses the quantity function. To this end, they examine a sub-problem in which the number of entrants
is fixed. In their Appendix C, they characterize the solution to this sub-problem when selection occurs.
Following steps employed there, we may establish the claims made in this paragraph. These claims hold
in both settings even though the respective values taken by cD, λ and ÑE differ across the two settings.
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(19) as defining a 2× 2 system of equations, in which cD and λ are endogenous while NE

is exogenous. Accordingly, we can conduct a traditional comparative statics exercise to
determine how cD and λ vary with respect to NE. We can then feed this information into
the planner’s optimization problem with respect to NE. Finally, while our representation
of the planner’s problem does not explicitly include the number of available varieties, N ,
we recall from (7) that this value can be easily recovered once cD and λ are determined.
For the planner’s problem, our main goal is to determine whether, starting at market

equilibrium, additional entry raises welfare or not. To this end, we first define the market
equilibrium solution (cmktD , λmkt, Nmkt

E ) as the solution to the 3× 3 system of equations in
which cD, λ and NE are endogenous variables and the three equations are (18), (19) and
a third equation, the Free Entry condition, which is defined as follows:∫ cmktD

0

(p (c)− c) q (c) dG (c) = fE. (20)

For our purposes here, the key property of the market solution is that a relationship
between cmktD and λmkt is implied:

λmkt =
γ · φ(
cmktD

)2+k
. (21)

This relationship follows from (20), after using (5), (6), setting pmax = cD and using the
Pareto distribution.
To pin down Nmkt

E , we solve (21) for
(
cmktD

)k+2
λmkt and plug the solution into the

(18). We then solve the resulting expression in (18) for
(
α− λmktcmktD

)
/λmkt

(
cmktD

)k+1

and plug the solution into (19). With these steps, we obtain

Nmkt
E =

1

fE (k + 1)
(22)

where (22) is identical to the one presented by Demidova (2017). In turn, we can pin
down cmktD and λmkt by using (18), (19) and (22).
Two issues remain for our characterization of the market equilibrium solution. First,

we must verify that (18), (19), and (22) admit a unique solution satisfying our positive-
value assumptions (λmkt > 0, cmktD > 0, Nmkt

E > 0). Second, we must make restrictions to
ensure cmktD < cM . Bagwell and Lee (2021) address both issues in their Appendix E. They
show that there exists a unique solution to the system equivalent to the one composed
of (18), (19) and (22) satisfying our positive-value assumptions. They also show that
if η(k+2)

α(k+1)
< cM and fE > 0 is suffi ciently small, then cmktD < cM . We maintain these

restrictions in our analysis. As Bagwell and Lee discuss, these restrictions also ensure
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that Nmkt
E > ÑE.

Let us now represent the solutions to the 2× 2 system of constraints (18) and (19) as
cD(NE) and λ(NE). For NE ∈ (ÑE, 1/fE), we may represent the first order condition for
the planner’s problem as

du

dNE

=
∂u

∂cD

dcD
dNE

+
∂u

∂λ

dλ

dNE

= 0. (23)

In the Appendix, we show that the first order condition (23) is uniquely satisfied at the
market solution:

du

dNE

|NE=Nmkt
E

=
∂u

∂cD

dcD
dNE

+
∂u

∂λ

dλ

dNE

|NE=Nmkt
E

= 0. (24)

At the market solution, we find that ∂u
∂cD

< 0, ∂u
∂λ
< 0, dcD

dNE
< 0 and dλ

dNE
> 0, where the

various terms balance out so as to satisfy (24). We also establish that the second order
condition holds at the market solution:

d2u

d(NE)2
|NE=Nmkt

E
< 0. (25)

Based on these findings, we conclude that the market solution uniquely maximizes the
planner’s welfare over all NE ∈ (ÑE, 1/fE) and thus solves the planner’s problem. The
following proposition summarizes our first main result:

Proposition 1 The entry level at the market equilibrium in the one-sector MO model
uniquely solves the planner’s problem.

Proof. The proof of Proposition 1 is completed in the Appendix.

Proposition 1 is of particular interest relative to previous work on the effi ciency of entry
in two-sector models with an outside good. This research establishes that the market level
of entry is typically ineffi cient when an outside-good sector is included.11 By contrast,
as Proposition 1 confirms, the market level of entry maximizes welfare among all entry
levels that induce selection. In subsequent sections, we consider the effi ciency of entry in
a two-sector MO model when the second sector does not take the form of an outside-good
sector.
Before concluding this section, we provide an interpretation of (24) in terms of the

underlying changes induced by an increase in NE, starting at the market solution. We

11As discussed in the Introduction, this research includes Bagwell and Lee (2020), Mankiw and Whin-
ston (1986) and Spence (1976).
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may interpret (24) by considering the impact of entry on the aggregate output enjoyed by
consumers. As Demidova (2017) shows, consumer welfare can be expressed as a function
of aggregate output, Q.12 We can rewrite Q as

Q = N · q,

where
q ≡ E[q(c)|c ≤ cD].

Consider first the impact of entry on the number of available varieties, N . Using our
comparative statics derivatives as calculated in the Appendix, we can show that

dλ · cD
dNE

|NE=Nmkt
E

= λ · dcD
dNE

+ cD ·
dλ

dNE

|NE=Nmkt
E

= 0, (26)

which in turn implies from (7) that

dN

dNE

|NE=Nmkt
E

= 0. (27)

Thus, from (26) and (27), we see that starting at the market equilibrium, a higher level
of entry has offsetting effects on cD and λ, which serve to leave the number of varieties,
N , unchanged.
Consider second the effect of entry on the conditional average variety output, q. Using

(5), setting pmax = cD, and using the Pareto distribution, we find that

q =
λ · cD

2γ(k + 1)
.

Thus, by (26), we have that
dq

dNE

|NE=Nmkt
E

= 0.

Intuitively, the conditional average variety output is unchanged due to two offsetting
forces: starting at the market equilibrium, greater entry lowers the output of any surviving
variety but also lowers cD and thus eliminates the (low) output of the least effi cient
varieties.
In sum, starting at the market solution, a slight increase in entry affects neither the

extensive margin N nor the (conditional) intensive margin q. Aggregate output and thus
consumer welfare are therefore also unaffected.13

12We may confirm this result here as follows. Using (11), we have that Q = 1
η (α− λ · cD). Referring

to (13), we can now easily verify that consumer welfare can be expressed as a function of Q.
13A higher level of entry also affects the average price and consumer income via the level of aggregate
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3 Two-sector MO model without an outside good:
Market outcomes for given entry policies

In this section, we consider the market outcomes in a two-sector MO model without an
outside good, when the government may influence the market level of entry by using an
entry subsidy or tax. Specifically, we consider the following timeline:

1. For each sector s ∈ {1, 2}, the government chooses an entry policy tEs, where tEs > 0

(tEs < 0) indicates an entry subsidy (tax) in sector s. The total entry subsidy (tax)
is levied on (transferred to) consumers in a lump sum manner.

2. Entry is determined by a Free Entry condition.

3. Entrants pay a fixed cost to observe their respective marginal costs and decide how
much to produce, including whether to produce or not. Their respective decisions
determine the prices and number of varieties that consumers face.

4. For the given prices and varieties, consumers maximize utility.

In this section, we take the entry policies, tEs for s ∈ {1, 2} as given and determine the
resulting market outcomes. We begin our analysis by considering the consumer’s problem.
We then characterize profit maximizing behavior by firms and the Free Entry condition.

3.1 Consumer’s problem

Just as in the one-sector model, the economy contains a unit mass of identical consumers,
each supplying a unit of labor in inelastic fashion to a competitive labor market, where
we now assume as well that there is costless labor mobility across sectors. We normalize
the wage as 1. Consumers also hold symmetric shares of any aggregate net profit or
any government transfer, the values of which an individual consumer takes as fixed when
choosing consumption.

profits. Recalling that p =
(
2k+1
2(k+1)

)
cD and ∂u

∂cD
< 0 at the market equilibrium, we see that consumers

gain from a strictly lower average price; however, they also suffer an income loss associated with the
reduction in aggregate profit. (To verify that aggregate profit falls to a strictly negative value starting at
the market solution when NE is slightly increased, we may differentiate the LHS of (20) with respect to
cD while using (6), setting pmax = cD, and using the Pareto distribution. This exercise establishes that
aggregate profit strictly rises with cD. To complete the argument, we use that dcD

dNE
< 0 at the market

equilibrium.) The value of the income loss in turn interacts with the implied change in λ. The price and
profit effects apparently balance out as well when evaluated at the market solution, ensuring that the
first order condition for social welfare maximization as given by (24) is satisfied.
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For the two-sector model, we assume that the consumer’s upper-tier utility function
is additively separable, so that the consumer maximizes U1 + U2 where for s ∈ {1, 2}

Us = αs

∫
i∈Ωs

qisdi−
1

2
γ

∫
i∈Ωs

(qis)
2 di− 1

2
η

(∫
i∈Ωs

qisdi

)2

(28)

with α1 possibly different from α2. We thus represent the consumer’s welfare optimization
problem as

max
{qi1}∈Ω1,{qi2}∈Ω2

U1 + U2

s.t. ∑
s∈{1,2}

∫
i∈Ωs

pisqisdi = 1 + TR +
∑

s∈{1,2}

Πs (29)

where pis and qis are the respective price and quantity of variety i in sector s in the set of
available varieties Ωs in sector s, wage income is normalized as 1, Πs represents aggregate
net profit in sector s and TR refers to the aggregate government transfer. As above, we
assume that the preference parameters α, γ and η are all positive.
We consider the Lagrangian

L = U1 + U2 + λ

1 + TR +
∑

s∈{1,2}

Πs −
∑

s∈{1,2}

(∫
i∈Ωs

pisqisdi

) ,
where λ ≥ 0 is the multiplier for the consumer’s optimization problem. Letting Qs ≡∫
i∈Ωs

qisdi denote aggregate output in sector s, we represent the first order condition with
respect to qis as

αs − γ · qis − η ·Qs = λpis. (30)

As before, integrating (30) over the set of varieties for which qis > 0 and letting Ns be
the measure of consumed varieties in Ωs, we obtain

αs − γ ·
Qs

Ns

− η ·Qs = λp̄s

and hence
αs − λp̄s
η + γ

Ns

= Qs,

where p̄s is the average price of consumed varieties in sector s.
Assuming λ > 0 and using (30), we see that pis = (αs−η·Qs−γ·qis)

λ
for consumed varieties.
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We now define pmax
s as the “choke price”for varieties in sector s. We find that

pmax
s ≡ αs − η ·Qs

λ
=

1

λ

(
γ · αs + λ · η ·Ns · p̄s

η ·Ns + γ

)
. (31)

Using (30) and (31), the inverse demand can be written as

pds (qs) = pmax
s − γ

λ
· qs. (32)

3.2 Firm’s problem

In sector s ∈ {1, 2}, profit maximization for a firm with marginal production cost c gives
rise to the profit function

πs (c) = max
q

(
pds (q)− c

)
q

For this (two-sector) model of monopolistic competition, the firm takes Qs, λ and thus
the demand intercept pmax

s as given when choosing its profit-maximizing output for sector
s. Using (32), we may thus derive the solution to firm’s problem as

qs (c) =
λ (pmax

s − c)
2γ

. (33)

This solution generates a corresponding profit-maximizing price and profit for the firm:

ps (c) =
pmax
s + c

2
(34)

πs (c) =
λ

4γ
(pmax
s − c)2 .

A firm in a given sector s produces a positive quantity of its variety provided that its
cost realization is no higher than the demand intercept in sector s. A Zero Cutoff Profit
(ZCP) condition for sector s thus determines the cost cutoff cDs as

πs (cDs) = 0

or equivalently
pmax
s = ps (cDs) = cDs,

where we assume that cDs > 0.
As in the one-sector model examined above, we assume that costs are distributed
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according to a Pareto distribution that is symmetric across the two sectors:

G(c) =

(
c

cM

)k
for c ∈ [0, cM ] where k > 1 and cM > 0. We assume throughout our analysis of the
two-sector MO model that cDs < cM .
Given this distribution, we recall

cs ≡ E(c|c ≤ cDs) =

(
k

k + 1

)
cDs.

Using (34) and pmax
s = cDs, we find that the average price in sector s can be represented

as

ps ≡ E(ps(c)|c ≤ cDs) =

(
cDs + cs

2

)
.

It now follows that

ps =

(
2k + 1

2(k + 1)

)
cDs.

Notice that the average markup in sector s, µs ≡ ps/cs, is in fact independent of s and
indeed takes the same value as in the one-sector model: for s ∈ {1, 2},

µs = µ =
2k + 1

2k
.

Thus, the two-sector model considered here does not admit markup heterogeneity.14

Using (31) and pmax
s = cDs, we can represent the number of varieties in sector s as

Ns =
γ (αs − λ · pmax

s )

λ · η · (pmax
s − p̄s)

=
γ (αs − λ · cDs)
λ · η (cDs − ps)

.

Plugging in the expression just derived for ps, we obtain

Ns =
2 (k + 1) γ

η

(αs − λ · cDs)
λ · cDs

. (35)

Similar to the one-sector model, we see from (35) that, once values for cDs and λ are
obtained, the value for the number of available varieties in sector s is determined. For
cDs > 0, we note that Ns is strictly decreasing with respect to cDs for a given value of
λ > 0.
For a given sector s, the number of available varieties can also be represented as a

14By contrast, the difference between ps and cs equals 2cDs/(k + 1) and thus varies across sectors to
the extent that cost cutoff cDs does.
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function of the level of entry and the cost cutoff level as

NEs =
Ns

G (cDs)
. (36)

Thus, using (36), the value for the number of available in sector s can also be determined
given the number of entrants and the cost cutoff level for this sector. Finally, using (35),
(36) and the Pareto distribution, we can further characterize the relation between Ns and
NEs as

NEs =
Ns

G (cDs)
=

2 (k + 1) γ(cM)k

η

(αs − λ · cDs)
λ · (cDs)k+1

. (37)

Hence, we see from (37) that the number of entrants in sector s is determined once values
for cDs and λ are obtained.

3.3 Free Entry Condition

We focus in this section on the policy-induced market outcome; thus, the level of entry
is not a direct choice variable but rather is determined for given entry policies by a free
entry requirement. Formally, we now impose the Free Entry (FE) condition∫ cDs

0

πs (c) dG (c) = fE − tEs (38)

where tEs > 0 (tEs < 0) refers to an entry subsidy (tax) in sector s. The Free Entry
condition pins down cDs for given λ. Specifically, using πs (c) = λ

4γ
(pmax
s − c)2, pmax

s = cDs
and the Pareto distribution, we find from (38) that the following relationship between cDs
and λ obtains at the policy-induced market equilibrium:

cDs =

(
2(k + 1)(k + 2)γ (cM)k (fE − tEs)

λ

) 1
2+k

= λ−
1

2+k (fE − tEs)
1

2+k γ
1

2+k φ̃
1

2+k . (39)

where φ̃ = 2 (k + 1) (k + 2) (cM)k.
Thus, for a given value of λ, the critical cost cutoff level in sector s, cDs, is determined

by (39). From here, we may determine for sector s the level of entry, the number of
varieties available, and the profit maximizing output and prices. The final step is to use
the budget constraint (29) to determine λ. We formally summarize these steps next.

3.4 Equilibrium characterization under fixed entry policies

We now summarize our characterization of the policy-induced market equilibrium out-
comes in the two-sector MO model for any sector s, taking as given the entry policies,
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(tE1, tE2).

1. Using (39), we may determine cDs for given λ:

cDs = λ−
1

2+k (fE − tEs)
1

2+k γ
1

2+k φ̃
1

2+k . (40)

2. Using (35) and (37), we then may determine Ns and NEs for given λ :

Ns =
2 (k + 1) γ

η

(αs − λ · cDs)
λ · cDs

(41)

NEs =
2 (k + 1) γ (cM)k

η

(αs − λ · cDs)
λ · (cDs)k+1

. (42)

3. Using (33) and (34), we may then determine qs (c) and ps (c) for given λ :

qs (c) =
λ (cDs − c)

2γ
(43)

ps (c) =
cDs + c

2
(44)

where pmax
s is replaced with cDs by the ZCP condition.

4. Using (43) and (44), we can then update the budget constraint (29) to determine
λ : ∑

s∈{1,2}

NEs

∫ cDs

0

λ
(
(cDs)

2 − c2
)

4γ
dG (c) = 1−

∑
s∈{1,2}

NEstEs (45)

whereΠs = 0 for s ∈ {1, 2} by the Free Entry condition and TR = −
∑

s∈{1,2}NEstEs.15

Hence, for s ∈ {1, 2}, the policy-induced market equilibrium outcome (cDs, NEs, Ns, λ,
qs (c), ps (c)) is determined by (40)-(45) for given entry policies, (tE1, tE2).

15To confirm that the updated budget constraint (45) follows from the original budget constraint (29),
we rewrite (29) as ∑

s∈{1,2}

NEs

∫ cDs

0

ps(c)qs(c)dG(c) = 1−
∑

s∈{1,2}

NEstEs,

where we use that Πs = 0 for s ∈ {1, 2} by the Free Entry condition and TR = −
∑
s∈{1,2}NEstEs.

Using (43) and (44), it is now straightforward to confirm (45).
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4 Two-sector MO model without an outside good:
Planner’s problem

In this section, we consider a planner who chooses NE1 and NE2 in direct fashion. Thus,
we put entry policies to the side in this section; however, in the subsequent section, we
show how entry policies can be used to replicate the planner’s entry level choices.
For simplicity, we conduct our normative analysis of the two-sector MO model by

considering the benefits to the planner of small changes in entry patterns relative to those
that obtain at the (undistored) market equilibrium. We thus use the market equilibrium
as a starting point for comparative statics analyses. We can find the market equilibrium
by using our results in Section 3 when tEs = 0 for s ∈ {1, 2}, and we denote the market
equilibrium outcome so determined by (cmktDs , N

mkt
Es , N

mkt
s , λmkt, qmkts (c), pmkts (c)).16 We

then allow the planner to move the entry levels slightly away from their market equilibrium
levels, leading in turn to changes in endogenous market variables.
Formally, the planner uses consumer welfare to evaluate different values of NE1 and

NE2. But the planner also faces constraints, namely, (i) a resource constraint derived from
the budget constraint (29) with TR = 0, (ii) a constraint on the relationship between
NEs, cDs and λ as given in (37), and (iii) a profit-maximizing constraint under which the
quantity of variety i consumed is determined by the corresponding firm’s cost realization
and profit-maximizing output (including zero), as implied by (33) and pmax

s = cDs.
The planner assesses NE1 and NE2 relative to the objective of maximizing consumer

welfare U ≡ U1 + U2, where for s ∈ {1, 2}

Us = αs ·NEs

∫ cDs

0

qs (c) dG (c)− γ
2
NEs

∫ cDs

0

qs (c)2 dG (c)− η
2

(
NEs

∫ cDs

0

qs (c) dG (c)

)2

.

(46)
The planner faces a resource constraint

∑
s∈{1,2}

NEs

(∫ cDs

0

c · qs (c) dG (c) + fE

)
= 1, (47)

where

NEs =
2 (k + 1) γ (cM)k

η

(αs − λ · cDs)
λ · (cDs)k+1

for s ∈ {1, 2} (48)

16Thus, the market equilibrium outcome obtains from (40)-(45) for the specific case where tEs = 0 for
s ∈ {1, 2}. To reinforce that the market equilibrium is defined for a setting where entry policies are not
used, we sometimes refer to the market equilibrium as being “undistorted.”Finally, with some abuse of
notation, we use λmkt to represent the market equilibrium value of λ in the two-sector model just as we
do above in the one-sector model.
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qs (c) =
λ (cDs − c)

2γ
for s ∈ {1, 2} (49)

and where λ ≥ 0 is the multiplier for the consumer’s Lagrangian

L = U1 + U2 + λ

1−
∑

s∈{1,2}

(
NEs

∫
i∈Ωs

ps (c) qs (c) dG (c)− Πs

)
with ps (c) = cDs+c

2
.17

To interpret this formulation, we note that the consumer utility function represented
in (46) follows directly from (28) once profit-maximizing behavior is embedded. We note
further that (48) and (49) follow directly from (37) and (33) with pmax

s = cDs, respectively.
Finally, to confirm that the resource constraint (47) follows from the budget constraint
(29) with TR = 0, we rewrite the latter as

∑
s∈{1,2}

NEs

∫ cDs

0

ps(c)qs(c)dG(c) = 1 +
∑

s∈{1,2}

NEs

(∫ cDs

0

(ps(c)− c) qs(c)dG(c)− fE
)

and simplify.
Following the approach taken in Section 2, we now proceed to rewrite the planner’s

objective and constraints in terms of αs, NEs, cDs and λ. Proceeding as in Section 2 and
using (48), we find that Us from (46) may be rewritten as u(αs, cDs, λ) where the function u
is defined in (13). Likewise, it is direct that (48) may be rewritten as NEs = Ne(αs, cDs, λ)

where the function Ne is defined in (17). Finally, for the resource constraint (47), we may
proceed as in Section 2 while using (48), (49) and the Pareto distribution to rewrite this
constraint as

∑
s∈{1,2}R (αs, cDs, λ) = η(2+k)

γφ
, where the function R is defined in (16).

The planner thus evaluates any proposed entry levels NE1 and NE2 relative to the
objective of maximizing ∑

s∈{1,2}

u (αs, cDs, λ) (50)

and with the understanding that cD1, cD2 and λ are determined by∑
s∈{1,2}

R (αs, cDs, λ) =
η (2 + k)

γφ
(51)

NEs = Ne (αs, cDs, λ) > 0 for s ∈ {1, 2} (52)

where u (α, λ, cD), R (α, λ, cD), and Ne (α, λ, cD) are defined in (13), (16), and (17), re-

17Note also that the value for λ used for our analysis of the two-sector model may differ from that used
in the one-sector model.
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spectively.
The constraints (51) and (52) represent a 3 × 3 system with endogenous variables

cD1, cD2 and λ. We can thus do comparative statics exercises with respect to changes
in the exogenous variables, NE1 and NE2. With the comparative statics results in place,
we can then determine the effects of certain exogenous perturbations on consumer wel-
fare. As mentioned, for the two-sector MO model, we conduct our normative analysis by
considering small perturbations around the market equilibrium.
The (undistorted) market equilibrium represented by the vector (Nmkt

E1 , N
mkt
E2 , c

mkt
D1 ,

cmktD2 , λ
mkt) for s ∈ {1, 2} satisfies (51), (52) and the Free Entry condition (39) with

tE1 = tE2 = 0 imposed. We assume that the market equilibrium exists and satisfies
Nmkt
Es > 0, cmktDs > 0 and λmkt > 0 for s ∈ {1, 2}, and we verify the satisfaction of

this assumption below.18 We then appeal to the implicit function theorem to ensure the
existence of a solution in cD1, cD2 and λ to (51) and (52) for (NE1, NE2) suffi ciently close to
(Nmkt

E1 , Nmkt
E2 ). To use this theorem, we require that, at the market solution, the Jacobian

determinant associated with (51) and (52) is non-zero.
We consider two kinds of comparative statics exercises. In the first exercise, we

consider a symmetric setting in which α1 = α2 ≡ α and analyze the implications of
a small perturbation in which the planner symmetrically changes NE1 and NE2 (i.e.,
dNE1 = dNE2). This exercise is similar to that analyzed above for the one-sector model.
We recall that the change in the entry level for that model induced a change in λ and im-
pacted variety-level consumption through this channel. When the two-sector model has a
symmetric setting and is subjected to a symmetric change in sectoral entry levels, we find
that the results are exactly similar to those in the one-sector model already considered.
A second exercise considers a potentially asymmetric setting where α1 may differ from
α2. For this setting, we allow the planner to consider a small change in NE1 and NE2

where the change is calibrated so that λ is unaltered (i.e., dNE1 and dNE2 are such that
dλ = 0). This exercise shares qualitative features with our analysis in Bagwell and Lee
(2020) of the welfare effects of an increase in entry into the differentiated sector, where
the other sector is an outside-good sector. A unifying feature is that, in both cases, the
marginal utility of income remains fixed, and so variety-level consumption is not impacted
by changes in the marginal utility of income.

First exercise: For the first exercise, we assume that the setting is symmetric with
α1 = α2 ≡ α, and we analyze the implications of a small perturbation from the market

18As noted previously, with some abuse of notation, we use λmkt to represent the market equilibrium
value for λ in the two-sector model just as we do above in the one-sector model. Below, we distinguish
between symmetric settings (α1 = α2) and potentially asymmetric settings for the two-sector model, and
we introduce additional notation as necessary to distinguish (undistorted) market equilibrium variables
for these settings from those in the one-sector model.
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solution in which the planner symmetrically changes NE1 and NE2 (i.e., dNE1 = dNE2).
Given the symmetry of the setting, the market solution is also symmetric: Nmkt

E1 = Nmkt
E2

and cmktD1 = cmktD2 . We can thus simplify the constraint set above and represent it with the
following 2× 2 system:

2 ·R (α, cD, λ) =
η (2 + k)

γφ
(53)

NE = Ne (α, cD, λ) > 0 (54)

with the symmetric solutions for cD and λ thus determined given a symmetric entry level
NE. For the symmetric setting, the market solution obtains and satisfies these constraints
when NE = Nmkt

E1 = Nmkt
E2 ≡ Ñmkt

E and thus cD = cmktD1 = cmktD2 ≡ c̃mktD with λ = λ̃
mkt
.19 ,20

We note further that for this symmetric setting the market equilibrium relationship (39)
with tEs = 0 imposed for s ∈ {1, 2} simplifies and takes the form

λ̃
mkt

=
γφ

(c̃mktD )2+k
, (55)

which is exactly the same relationship reported in (21) for the one-sector model.
Following the same steps in the one-sector model, we obtain

Ñmkt
E =

1

2 (k + 1) fE
(56)

from (53), (54), and (55). As Bagwell and Lee (2021) show in their Appendix E, there ex-
ists a unique solution to the system of (53)-(56) satisfying our positive-value assumptions
(λ̃

mkt
> 0, c̃mktD > 0, Ñmkt

E > 0). Following their logic, we can also show that c̃mktD < cM , so
that selection occurs in the market equilibrium, if η(k+2)

2(k+1)α
< cM and fE > 0 is suffi ciently

small. These conditions are satisfied under our maintained restrictions.
In the Appendix, we confirm that the Jacobian determinant for this 2 × 2 system is

negative when evaluated at the market equilibrium (NE = Ñmkt
E ). Thus, we may apply

the implicit function theorem and calculate the response of cD and λ to a small and
symmetric change in entry levels. We find that that the derivatives that emerge from
this comparative statics exercise take exactly the same form as they did in the one-sector
model. Hence, for the symmetric two-sector model, we may conclude that a small and
symmetric change in entry levels from their market equilibrium values induces a fall in cD
and a rise in λ. Given that the derivatives take the same form as in the one-sector model,

19We use a tilde (~) as necessary to distinguish definitions relating to (undistorted) market equilibrium
variable values in the symmetric setting (first exercise) from those in the one-sector model. Similarly, for
the potentially asymmetric setting (second exercise) considered below, we use a hat (^).
20For the symmetric two-sector model, we can show that in the market equilibrium the level of entry

into any one sector is half the level of entry in the market equilibrium of the one-sector model: Ñmkt
E =

(1/2)Nmkt
E .
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we can also conclude that the market solution satisfies the planner’s first order condition.
We may now summarize our second main finding as follows:

Proposition 2 Suppose α1 = α2 and that the planner is restricted to consider only sym-
metric changes in entry levels in both sectors: dNE1 = dNE2 ≡ dNE. In this restricted
policy space, the symmetric market equilibrium level of entry satisfies the planner’s first
order condition, just as in the one-sector model.

Proof. The proof of Proposition 2 is completed in the Appendix.

Second exercise: Turning to the second exercise, we now allow that α1 may differ
from α2. For this potentially asymmetric setting, we allow the planner to consider a small
change in NE1 and NE2 where the change is calibrated so that λ is unaltered (i.e., dNE1

and dNE2 are such that dλ = 0).
We assume that the (undistorted) market equilibrium represented by the vector (Nmkt

E1 ,

Nmkt
E2 , c

mkt
D1 , c

mkt
D2 , λ̂

mkt
) exists satisfying (51), (52) and the Free Entry condition (39) with

tE1 = tE2 = 0 imposed, and at which for s ∈ {1, 2} we have Nmkt
Es > 0, cmktDs > 0, λ̂

mkt
> 0

and cM > cmktDs . Based on our analysis above for the first exercise, we note that these
inequalities are all sure to hold if |α2−α1| is suffi ciently small.21 Starting at this solution,
the planner imposes a small perturbation to this system, where we now allow the planner
to change both NE1 and NE2 (i.e., dNE1 6= 0 and dNE2 6= 0) slightly and in a manner that
leaves λ unchanged (i.e., dλ = 0). For a given increase in NE1, we thus must determine
the corresponding change in NE2 that preserves the value of λ.
We consider the following 3× 3 system:

∑
s∈{1,2}

R (αs, cDs, λ) =
η (2 + k)

γφ
(57)

Ne (α1, cD1, λ)−NE1 = 0 (58)

Ne (α2, cD2, λ)− F (NE1) = 0, (59)

where the function F is specified so that, at the market equilibrium, F (NE1) = NE2 and

F ′(NE1) = −
∂R(α1,cD1,λ)

∂cD

∂Ne(α2,cD2,λ)
∂cD

∂R(α2,cD2,λ)
∂cD

∂Ne(α1,cD1,λ)
∂cD

. (60)

Starting at the market equilibrium, the function F describes the path of the exogenous
change in NE2 that accompanies a small change in NE1. We note that the market solution

21Recall that our assumption that cM > cmktDs utilizes as well our maintained parameter restrictions.
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satisfies the constraints given by (57)-(59) when NE1 = Nmkt
E1 and thus cDs = cmktDs with

λ = λ̂
mkt
.

We note further that the market equilibrium relationship (39) with tEs = 0 imposed
for s ∈ {1, 2} simplifies and takes the form

λ̂
mkt

=
γφ

(cmktDs )2+k
≡ γφ

(ĉmktD )2+k
. (61)

Thus, even though α1 6= α2 is allowed, in the (undistorted) market equilibrium, the cost
cutoff level is in fact independent of the sector: cmktD1 = cmktD2 ≡ ĉmktD . Using (35) and (37),
it follows in turn that, at the market equilibrium, the number of available varieties and
the number of entrants are each symmetric across sectors, even though α1 6= α2 is allowed.
Thus, at the market equilibrium, differences in demand as captured by α1 6= α2 do not
translate into different market entry patterns across sectors.22

In the Appendix, we consider the Jacobian for the 3× 3 system described in (57)-(59)
when evaluated at the market equilibrium. We are not able to sign this determinant in
general, but we can verify that it is non-zero for a tractable special case. In particular, at
the market solution when α1 = α2 ≡ α, we confirm that the determinant is negative. It
thus follows that the determinant of the Jacobian is sure to hold at the market solution
when the level of asymmetry (i.e., |α2 − α1|) is suffi ciently small. In order to apply
the implicit function theorem, we thus assume henceforth that the level of asymmetry is
suffi ciently small. We emphasize, however, that what we require as a general matter is
simply that the determinant of the Jacobian is non-zero when evaluated at the market
solution.
Totally differentiating the system described in (57)-(59) with respect to NE1, using

F (Nmkt
E1 ) = Nmkt

E2 and (60), and evaluating at the market solution, we report in the
Appendix expressions for dλ

dNE1
, dcD1
dNE1

, dcD2
dNE1

and ∂u(αs,cDs,λ)
∂cD

when evaluated at the market
equilibrium (i.e., atNE1 = Nmkt

E1 ). We show there that
dλ

dNE1
= 0 at the market equilibrium;

hence, the perturbation captured by our specification in (60) indeed ensures that λ is
unchanged. We also find that dcD1

dNE1
< 0 < dcD2

dNE1
at the market equilibrium. It follows that

the reallocation of entry from sector 2 to sector 1 results in a lower cost cutoff level in
sector 1 and a higher cost cutoff level in sector 2. Finally, we show that ∂u(αs,cDs,λ)

∂cD
< 0,

which parallels our finding for the one-sector model. As expected, an increase in the cost

22Recall that the average markup, µ, is symmetric across sectors, even away from the (undistorted)
market equilibrium (i.e., even when the Free Entry condition is not imposed). Observe also that, at

the market equilibrium, ps =
(
2k+1
2(k+1)

)
ĉmktD and cs =

(
k
k+1

)
ĉmktD ; hence, while α1 6= α2 is allowed, the

average price, cost and price-cost difference in the market equilibrium are nevertheless independent of
the sector. These three values, however, vary across sectors with the cutoff cost level cDs, when entry
levels are moved away from market equilibrium levels as determined by the Free Entry condition. See
also footnote 14.
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cutoff for a given sector lowers the consumer utility enjoyed in that sector.
With these calculations in hand, we then examine the impact of the proposed shift in

entry levels for consumer welfare. We show in the Appendix that

d

dNE1

∑
s∈{1,2}

u(αs, cDs, λ)|NE1=Nmkt
E1

=
∑

s∈{1,2}

∂u(αs, cDs, λ)

∂cD
· dcDs
dNE1

|NE1=Nmkt
E1

(62)

=
η(γφ)3(ĉmktD )1+k(2 + k)(α2 − α1)

D
,

where

D ≡ [4η(2 + k)(k + 1)γ(cM)k(ĉmktD )3+2k][α1 + k(α1 −
γφ

(ĉmktD )k+1
][α2(ĉmktD )1+k + kγφ] > 0,

with the inequality following since α1 − γφ
(ĉmktD )2+k

= α1 − λ̂
mkt
· ĉmktD > 0 by Nmkt

E1 > 0.
Notice that the described shift in entry levels has no effect on welfare in the special

case of a symmetric setting, where α1 = α2. As we can see from (60), in that case, the
exercise involves an increase in NE1 that induces an equal-sized decrease in NE2. When
the setting is symmetric with α1 = α2, it is intuitive that, starting at the market solution,
a small zero-sum reallocation of entry from one sector to the other would have no first
order welfare effect. As (62) confirms, however, when α1 6= α2, the planner can gain
from modifying the market solution and expanding the level of entry into one market
at the cost of less entry in the other, where the adjustment is made so as to keep λ

constant. Interestingly, the market provides too much entry into the sector s for which
αs is highest,which is suggestive of a business-stealing externality interpretation.23

We may now summarize our third main finding in the following proposition:

Proposition 3 Allow α1 6= α2 with |α2 − α1| suffi ciently small so that the Jacobian
deteriminant is non-zero and our assumptions of positive values (λ̂

mkt
> 0, ĉmktDs > 0,

N̂mkt
Es > 0) and cM > ĉmktDs for s ∈ {1, 2} are sure to hold. Suppose that the planner is

restricted to consider only a small increase in entry into sector 1 that is accompanied by a
decrease in entry into sector 2 so as to keep the value for λ fixed: dNE1 > 0 > dNE2 such
that dλ = 0. In this restricted policy space, starting at the market equilibrium, additional
entry in sector 1 raises (lowers) (does not change) welfare U if and only if α1 < α2

(α1 > α2) (α1 = α2).

23If we instead assume α1 = α2 and allow different fixed entry costs for the two sectors, with fE1 6= fE2,
then we can similarly establish that the market provides excessive entry into the sector with the lowest
fixed cost of entry and thus also the sector with the lowest markup. In support of the latter point, we
note that if one sector had a lower fixed cost (as captured in (39) by a larger entry subsidy), then that
sector would have a lower critical cost cutoff in the market equilibrium; hence, by (34) and cDs = pmaxs ,
that sector also would have a lower markup at the market equilibrium.
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To understand the forces involved, suppose that α1 > α2 with the difference small.
Starting at the market equilibrium, consider a small increase in entry into sector 1 with
a corresponding reduction in entry into sector 2 that keeps the value for λ fixed. Due to
α1 > α2, we can show that this perturbation induces (i) a marginal utility gain from a
lower value of cD1 that is large in magnitude relative to the induced marginal utility loss
from a higher value of cD2, but also (ii) a reduction in cD1 that is small in magnitude
relative to the induced increase in cD2. When α1 > α2, we then show that the latter
effect dominates, so that the overall level of utility falls. In this way, even though average
markups do not vary across sectors, when there are demand differences across sectors
(α1 6= α2), the interactions in the utility function between the corresponding demand
parameters and the cutoff cost levels can support welfare improving interventions.
The finding in Proposition 3 shares qualitative features with that in Bagwell and Lee

(2020) of the welfare effects of an increase in entry into the differentiated sector, where the
other sector is an outside-good sector and preferences take a quasi-linear form. Bagwell
and Lee show that entry into the differentiated sector is too great if the value for α in that
sector exceeds a threshold value.24 In that model, the level of entry does not impact the
marginal utility of consumption; similarly, in the second experiment considered here, an
increase of the level of entry into one sector is offset by a decrease in the level of the entry
into the other sector, so as to ensure that the marginal utility of income λ is unaltered.
Thus, in both cases, the marginal utility of income remains fixed, and so variety-level
consumption is not impacted by changes in the marginal utility of income. In addition,
and as Proposition 3 confirms, the market provides excessive entry into the sector s with
the highest value for αs, a finding which is broadly analogous to Bagwell and Lee’s finding
regarding excessive entry into the differentiated sector when the value for α in that sector
exceeds a threshold value
To summarize, we consider two kinds of comparative statics exercises in this section.

In the first exercise, we consider a symmetric setting in which α1 = α2 and analyze the
implications of a small perturbation in which the planner symmetrically changes NE1 and
NE2 (i.e., dNE1 = dNE2). Just as in our analysis of the one-sector model, the symmetric
change in entry levels induces a change in λ and impacts variety-level consumption through
this channel. Indeed, and as Proposition 2 confirms, when the two-sector model has a
symmetric setting and is subjected to a symmetric change in sectoral entry levels, the
results are exactly similar to those in the one-sector model. In our second exercise, we
allow that α1 may differ from α2. For this setting, we consider a small perturbation in
which the planner increases the level of entry into sector 1 while simultaneously decreasing

24Specifically, in Bagwell and Lee (2020), the market generates excessive entry into the differentiated
sector when α > 2 · cmD , where cmD is the cutoff cost level for surviving varieties as determined in the
market equilibrium.
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the level of entry in sector 2 in such a manner as to ensure that λ is unaltered (i.e.,
dNE1 and dNE2 are such that dλ = 0). We show that such an intervention can improve
welfare when demand differences are present across sectors (α1 6= α2) even though average
markups are symmetric across sectors.

5 Two-sector MO model without an outside good:
Replication of planner’s problem using entry poli-
cies

We show in this section that the market equilibrium outcome generated from the planner’s
direct choice of entry levels (NE1, NE2) alternatively can be induced by an appropriate
choice of entry policies (tE1, tE2) by a government.
To make our argument, we compare two problems. The first problem is the plan-

ner’s problem, which we define above in (50)-(52). In this problem, the planner directly
chooses (NE1, NE2) to maximize aggregate utility

∑
s∈{1,2} u (αs, cDs, λ) subject to con-

straints, where the constraints determine (cD1, cD2, λ) and thus aggregate utility for a
given (NE1, NE2). Below, it will be convenient to represent a candidate choice (NE1, NE2)

for the planner and the corresponding values for (cD1, cD2, λ) as (N∗E1, N
∗
E2) and (c∗D1,

c∗D2, λ
∗), respectively. Thus, given (NE1, NE2) = (N∗E1, N

∗
E2), the corresponding values

(c∗D1, c
∗
D2, λ

∗) satisfy (51) and (52).
The second problem is the government’s problem. The government also seeks to max-

imize aggregate utility
∑

s∈{1,2} u (αs, cDs, λ), but the government selects entry policies
(tE1, tE2), with the constraints then given by (40)-(45) and corresponding to the market
allocations as described in Section 3.4. It will be convenient below to represent a candi-
date choice (tE1, tE2) for the government and the corresponding values for (cD1, cD2, λ)
as (t∗∗E1, t

∗∗
E2) and (c∗∗D1, c

∗∗
D2, λ

∗∗), respectively.
Formally, we can represent the constraints for the government’s problem as

∑
s∈{1,2}

2 (k + 1) γ (cM)k

η

(αs − λ · cDs)
λ · (cDs)k+1

(
λ (cDs)

k+2 (cM)−k

2γ (2 + k)
+ tEs

)
= 1 (63)

cDs = (λ)−
1

2+k (fE − tEs)
1

2+k γ
1

2+k φ̃
1

2+k for s ∈ {1, 2} (64)

where φ̃ = 2 (k + 1) (k + 2) (cM)k. Using (42) and the Pareto distribution, we can rewrite
(45) as (63). Note that (64) is a restatement of (40). Thus, given (tE1, tE2) = (t∗∗E1, t

∗∗
E2),

the corresponding values (c∗∗D1, c
∗∗
D2, λ

∗∗) satisfy (63) and (64). Finally, the corresponding
values for (N∗∗E1, N

∗∗
E2) then may be determined using (42).

We now show that any allocation of (cD1, cD2, λ) generated by a planner’s choice
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over (NE1, NE2) can be replicated by the government choice of (tE1, tE2), and vice versa.
A maintained assumption is that the policies selected by the planner and government
are such that the level of entry in each sector is strictly positive: (N∗E1, N

∗
E2) > 0 and

(N∗∗E1, N
∗∗
E2) > 0. To state our finding in the simplest possible way, we also assume that for

each problem, given the relevant policies, the market equilibrium values for (cD1, cD2, λ)

are uniquely determined by the corresponding constraints.

Proposition 4 The proposition has two parts:
(i). Fix a choice (N∗E1, N

∗
E2) for the planner and let (c∗D1, c

∗
D2, λ

∗) be correspondingly
determined by (51) and (52). Then there exists a choice (t∗∗E1, t

∗∗
E2) for the government

that correspondingly determines (c∗∗D1, c
∗∗
D2, λ

∗∗) by (63) and (64) and then (N∗∗E1, N
∗∗
E2) by

(42) where (c∗∗D1, c
∗∗
D2, λ

∗∗) = (c∗D1, c
∗
D2, λ

∗) and (N∗∗E1, N
∗∗
E2) = (N∗E1, N

∗
E2).

(ii). Fix a choice (t∗∗E1, t
∗∗
E2) for the government that correspondingly determines (c∗∗D1, c

∗∗
D2, λ

∗∗)

by (63) and (64) and then (N∗∗E1, N
∗∗
E2) by (42). Then there exists a choice (N∗E1, N

∗
E2)

for the planner that correspondingly determines (c∗D1, c
∗
D2, λ

∗) by (51) and (52) where
(c∗D1, c

∗
D2, λ

∗) = (c∗∗D1, c
∗∗
D2, λ

∗∗) and (N∗E1, N
∗
E2) = (N∗∗E1, N

∗∗
E2) .

Proof. The proof of Proposition 4 is found in the Appendix.

6 Conclusion

We consider the effi ciency of market entry in single- and two-sector closed-economy ver-
sions of the Melitz-Ottavanio (MO) model, where differently from the MO model our
two-sector model does not involve an outside good. We thereby assess the effi ciency of
entry under monopolistic competition and heterogeneous firms while allowing for variable
markups and general-equilibrium income effects. For each model version, we evaluate
whether the market level of entry is effi cient relative to the second-best setting in which
the planner can control only the level of entry. We show that the market level of entry in
the one-sector MO model maximizes welfare among all entry levels that induce selection.
For a two-sector MO model without an outside good, we show that the welfare results
are exactly similar to those in the one-sector model when the two sectors are symmetric.
When the two sectors are asymmetric and the level of asymmetry is suffi ciently small,
we identify a perturbation indicating a sense in which the market level of entry into the
“high-demand”sector is excessive. This intersectoral misallocation occurs at the market
equilibrium even though endogenous average markups are equal across sectors. We also
show how the outcomes induced by the planner’s direct choice of entry levels alternatively
can be induced through the appropriate choice of entry tax/subsidy policies.
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7 Appendix

Proof of the two claims in Section 2.3: The first claim is that (11) holds. As noted
in the text, the first equality in (11) is true, given profit-maximizing behavior. For the
second equality in (11), we use (5), set pmax = cD and use the Pareto distribution. We
find that ∫ cD

0

q (c) dG (c) =
(cD)k+1 (cM)−k λ

2 (1 + k) γ
.

Using this expression and (9), we thus have

NE

∫ cD

0

q (c) dG (c) =
2 (k + 1) γ (cM)k

η

(α− λ · cD)

λ · (cD)k+1

(cD)k+1 (cM)−k λ

2 (1 + k) γ

=
α− λ · cD

η
,

confirming (11).
The second claim is that (12) holds. As we discuss in the text, the first equality in

(12) holds, given profit-maximizing behavior. To establish the second equality in (12), we
again use (5), set pmax = cD and use the Pareto distribution. We find that∫ cD

0

q (c)2 dG (c) =
(cD)k+2 (cM)−k λ2

2 (1 + k) (2 + k) γ2
.

Using this expression and (9), we thus have

NE

∫ cD

0

q (c)2 dG (c) =
2 (k + 1) γ (cM)k

η

(α− λ · cD)

λ · (cD)k+1

(cD)k+2 (cM)−k λ2

2 (1 + k) (2 + k) γ2

=
1

η

(α− λ · cD)λcD
γ (2 + k)

,

confirming (12).�

Proof of Proposition 1: As described in the text, we may define the functions cD(NE)

and λ(NE) as the solutions to (18) and (19), where we know that there exists a unique
solution satisfying cD(NE) > 0 and λ(NE) > 0 for NE ∈ (0, 1/fE). We also know that
there exists ÑE ∈ (0, 1/fE) such that the solution satisfies cD(NE) < cM if and only if
NE > ÑE. As indicated in Proposition 1, we considerNE > ÑE. For notational simplicity,
we represent cD(NE) and λ(NE) below as cD and λ, respectively, whenever the meaning
is clear.
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We begin by characterizing the component derivatives in the first order condition (23).
Using (13), we find that

∂u

∂cD
= −λ (α + 2(1 + k)λ · cD)

2(2 + k)η
< 0 (65)

∂u

∂λ
= −cD (α + 2(1 + k)λ · cD)

2(2 + k)η
< 0, (66)

where the inequalities follow given cD > 0 and λ > 0.
Using the equation system given by (18) and (19), we may conduct comparative statics

to determine dcD
dNE

and dλ
dNE

. The first step is to obtain the following characterizations:

∂R

∂cD
=

(
(α− 2λ · cD)

k

γφ
− α(k + 1)

λ · (cD)k+2
+

k

(cD)k+1

)
(67)

∂R

∂λ
= −(

k(cD)2

γφ
+

α

λ2 · (cD)k+1
) (68)

∂Ne

∂cD
= −

(
2(k + 1)γ(cM)k

λη

)(
α + k(α− λ · cD)

(cD)k+2

)
(69)

∂Ne

∂λ
= −

(
2(k + 1)γ(cM)k

λη

)(
α

λ · (cD)k+1

)
. (70)

We next totally differentiate (18) and (19) with respect to NE. Using (67)-(70), we
find that

dcD
dNE

= − η

2(k + 1)γ(cM)kk

(kλ2 · (cD)k+3 + αγφ)

(α− λ · cD)(α + kλ · cD)
< 0 (71)

dλ

dNE

=
ηλ

2(k + 1)γ(cM)kkcD

2kλ2 · (cD)k+3 + (1 + k)αγφ− kγφλ · cD − kαλ · (cD)k+2

(α− λ · cD)(α + kλ · cD)
,

(72)
where the inequality follows from NE > 0 and thus α− λ · cD > 0.
Using (65) and (66), we may now represent du

dNE
as follows:

du

dNE

=
∂u

∂cD

(
dcD
dNE

+
∂u
∂λ
∂u
∂cD

dλ

dNE

)
(73)

=
∂u

∂cD

(
dcD
dNE

+
cD
λ

dλ

dNE

)
Given (73), we now use (65), (71) and (72) to calculate that

du

dNE

=
λ (α + 2(k + 1)λ · cD)

2(2 + k)

(
λ · (cD)k+2 − γφ

)
2(k + 1)γ(cM)k(α + kλ · cD)

. (74)
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It follows from (74) that the first order condition (23) holds if and only if

λ · (cD)k+2 − γφ = 0. (75)

Recall that λ > 0 and cD > 0. To characterize this root, we solve for α−λ·cD
λ·(cD)k+1

from (18)
with (75) imposed, plug the solution into (19) and obtain that

NE =
1

(k + 1)fE
= Nmkt

E ,

where the final equality uses (22). We conclude that the planner’s first order condition
(23) is uniquely satisfied at the market solution.
We turn next to the second order condition. We do not report a general character-

ization for the sign of the second derivative of u(α, cD(NE), λ(NE)) with respect to NE,
but we are able to sign the second derivative when it is evaluated at the market solution,
which as shown above satisfies (75). To express the second order condition, we differ-
entiate the first order condition (74) with respect with NE while using (71) and (72) to
capture dcD

dNE
and dλ

dNE
, which are evaluated at the market solution with (75) thus holding.

After gathering and simplifying the various terms, we find that

d2u

d(NE)2
|NE=Nmkt

E
=
λ2 · (cD)k+1 (α + 2(k + 1)λ · cD)

4(2 + k)γ(cM)k(α + kλ · cD)

dcD
dNE

|NE=Nmkt
E

< 0,

where the inequality follows from (71). Thus, the second order condition (25) holds
when evaluated at the solution to the first order condition, or equivalently at the market
solution. This completes the proof of Proposition 1.
We now address two other claims made in the text regarding expressions derived above.

First, at the market solution, we may use (75) to show that the numerator of the RHS of
(72) reduces to ηλ[kλ · (cD) +α]γφ > 0, ensuring that dλ

dNE
> 0 at the market solution, as

claimed. Second, having simplified (72) in this manner, it is now straightforward to use
(71), (72) and (75) to confirm (26). �

Proof of Proposition 2: We find that, at the market solution, the Jacobian determinant
for the 2× 2 system given by (53) and (54) takes the following form:

|J̃ | ≡ 2

(
∂R

∂cD

∂NE

∂λ
− ∂R

∂λ

∂NE

∂cD

)
|NE=Ñmkt

E

= −4(k + 1)(cM)kk

ηφλ2 · (cD)k_+1
(α− λ · cD)(α + λkcD)|NE=Ñmkt

E
< 0,

where the inequality follows from (17) and our characterizations of Ñmkt
E > 0, c̃mktD > 0
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and λ̃
mkt

> 0. We note that, if |J | represents the corresponding determinant of equations
(18) and (19) in the one-sector model, then |J̃ | = 2|J |. Given |J̃ | < 0 at the market
solution, we may apply the implicit function theorem.
It is straightforward to confirm that the comparative statics derivatives that emerge

from (53) and (54) in the symmetric two-sector model take exactly the same form as
those that emerge from (18) and (19) in the one-sector model. Formally, if for notational
clarity we represent the solution to (53) and (54) as c̃D(NE) and λ̃(NE), then we may
easily confirm that

dc̃D
dNE

= −
2∂R
∂λ

|J̃ |
= −

∂R
∂λ

|J | =
dcD
dNE

(76)

dλ̃

dNE

=
2 ∂R
∂cD

|J̃ |
=

∂R
∂cD

|J | =
dλ

dNE

(77)

have already verified for the one-sector model that dcD
dNE

< 0 < dλ
dNE

when evaluated at the
market equilibrium.
We can now consider the impact on the planner’s objective of a small symmetric

change in the level of entry, starting at the market equilibrium. For our first exercise, the
planner’s welfare change as

d
∑

s∈{1,2} u (αs, cDs, λ)

dNE

|NE=Ñmkt
E

= 2

(
∂u

∂cD

dc̃D
dNE

+
∂u

∂λ

dλ̃

dNE

)
|NE=Ñmkt

E
. (78)

Using (76) and (77), we can thus rewrite (78) as

d
∑

s∈{1,2} u (αs, cDs, λ)

dNE

|NE=Ñmkt
E

= 2

(
∂u

∂cD

dcD
dNE

+
∂u

∂λ

dλ

dNE

)
|NE=Ñmkt

E
= 0,

where the equality follows easily upon using (55), (56) and steps similar to those used in
the proof of Proposition 1. We conclude that planner’s first order condition (23) holds at
the market solution. This completes the proof of Proposition 2. �

Proof of Proposition 3: Consider the Jacobian Ĵ for the 3×3 system described in (57)-
(59) when evaluated at the market equilibrium. We are not able to sign this determinant
in general, but we can verify that it is non-zero for a tractable special case. In particular,
at the market solution when α1 = α2 ≡ α, we find that the determinant is strictly
negative:

|Ĵ |α1=α2≡α = −2k

(
2(k + 1)(cM)k

ηγφ2

)2

(ĉmktD )2(α−λ̂
mkt
·ĉmktD )(α+k(α−λ̂

mkt
·ĉmktD ))(α(ĉmktD )k+1+kγφ) < 0,

(79)
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where the inequality follows from (37) and that (N̂mkt
Es , λ̂

mkt
, ĉmktD ) converges to (Ñmkt

E >

0, c̃mktD > 0, λ̃
mkt

> 0) as α1 and α2 approach to the same value of α. Given |Ĵ | < 0 at
the market solution when α1 = α2, we know that |Ĵ | < 0 is sure to hold at the market
solution when the level of asymmetry (i.e., |α2−α1|) is suffi ciently small. In order to apply
the implicit function theorem, we thus assume henceforth that the level of asymmetry is
suffi ciently small.
Totally differentiating the system described in (57)-(59) with respect to NE1, using

F (Nmkt
E1 ) = Nmkt

E2 and (60), and evaluating at the market solution, we find that

dλ

dNE1

|NE1=Nmkt
E1

= 0

dcD1

dNE1

|NE1=Nmkt
E1

=
1

∂Ne(α1,cD1,λ)
∂cD

|NE1=Nmkt
E1

dcD2

dNE1

|NE1=Nmkt
E1

= −
∂R(α1,cD1,λ)

∂cD
∂R(α2,cD2,λ)

∂cD

∂Ne(α1,cD1,λ)
∂cD

|NE1=Nmkt
E1
.

Thus, the perturbation captured by our specification in (60) indeed ensures that λ is
unchanged.
Using (16), (17) and imposing the market equilibrium condition (61), we find that, for

s ∈ {1, 2},

∂Ne(αs, cDs, λ)

∂cD
|NE1=Nmkt

E1
= −2(k + 1)(cM)k

ηφ
[αs + k(αs −

γφ

(ĉmktD )k+1
)] < 0

∂R(αs, cDs, λ)

∂cD
= − 1

γφ
[αs +

kγφ

(ĉmktD )k+1
] < 0,

where αs− γφ
(ĉmktD )k+1

= αs−λ̂
mkt
·ĉmktD > 0 byNmkt

Es > 0. Referring to (60), we can now verify
that our second experiment entails an increase in entry into sector 1 that is accompanied
by a decrease in entry into sector 2, where the entry adjustments are balanced to keep λ
unaltered.
Gathering our findings, we may further report that

dcD1

dNE1

|NE1=Nmkt
E1

= − ηφ

2(k + 1)(cM)k
1

[α1 + k(α1 − γφ
(ĉmktD )k+1

)]
< 0 (80)

where α1 − γφ
(ĉmktD )k+1

= α1 − λ̂
mkt
· ĉmktD > 0 by Nmkt

E1 > 0 and

dcD2

dNE1

|NE1=Nmkt
E1

=
ηφ

2(k + 1)(cM)k

[α1 + kγφ
(ĉmktD )k+1

]

[α2 + kγφ
(ĉmktD )k+1

][α1 + k(α1 − γφ
(ĉmktD )k+1

)]
> 0. (81)
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Hence, the reallocation of entry from sector 2 to sector 1 results in a lower cost cutoff
level in sector 1 and a higher cost cutoff level in sector 2.
To examine the impact of the described shift in entry levels on consumer welfare,

we must first determine the impact of a change in the cutoff cost level for a sector on
consumer welfare. Using (13) and imposing the market solution condition (61), we find
that

∂u(αs, cDs, λ)

∂cD
|NE1=Nmkt

E1
=

−γφ
2η(2 + k)(ĉmktD )3+2k

(
αs(ĉ

mkt
D )1+k + 2(1 + k)γφ

)
< 0, (82)

which parallels the finding (65) for the one-sector model. As expected, an increase in the
cost cutoff for a given sector lowers the consumer utility enjoyed in that sector.
We are now prepared to analyze the impact of the proposed shift in entry levels for

consumer welfare. Specifically, we seek to evaluate

d

dNE1

∑
s∈{1,2}

u(αs, cDs, λ)|NE1=Nmkt
E1

=
∑

s∈{1,2}

∂u(αs, cDs, λ)

∂cD
· dcDs
dNE1

|NE1=Nmkt
E1

.

Using (80), (81) and (82), we calculate

∑
s∈{1,2}

∂u(αs, cDs, λ)

∂cD
· dcDs
dNE1

|NE1=Nmkt
E1

=
η(γφ)3(ĉmktD )1+k(2 + k)(α2 − α1)

D
, (83)

where

D ≡ [4η(2 + k)(k + 1)γ(cM)k(ĉmktD )3+2k][α1 + k(α1 −
γφ

(ĉmktD )k+1
][α2(ĉmktD )1+k + kγφ] > 0,

with the inequality again following since α1− γφ
(ĉmktD )2+k

= α1− λ̂
mkt
· ĉmktD > 0 by Nmkt

E1 > 0.
This completes the proof of Proposition 3. �

Proof of Proposition 4: To prove part (i), let us first use (16) and (17) and rewrite
planner’s constraints (51) and (52) as

∑
s∈{1,2}

2 (k + 1) γ (cM)k

η

(αs − λ∗ · c∗Ds)
λ∗ · (c∗Ds)

k+1

(
λ∗ (c∗Ds)

k+2 (cM)−k k

2 (1 + k) (2 + k) γ
+ fE

)
= 1 (84)

N∗Es =
2 (k + 1) γ (cM)k

η

(αs − λ∗ · c∗Ds)
λ∗ · (c∗Ds)

k+1
(85)

where (c∗D1, c
∗
D2, λ

∗) is determined by (84) and (85) under given (N∗E1, N
∗
E2). Turning now
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to the government’s problem, we let the government pick t∗∗Es for s ∈ {1, 2} such that

fE = t∗∗Es +
(λ∗) (c∗Ds)

k+2

γφ̃
. (86)

If we plug (86) into (84) and simplify, then we obtain

∑
s∈{1,2}

2 (k + 1) γ (cM)k

η

(αs − λ∗ · c∗Ds)
λ∗ · (c∗Ds)

k+1

[
λ∗ (c∗Ds)

k+2 (cM)−k

2γ (k + 2)
+ t∗∗Es

]
= 1. (87)

For given (t∗∗E1, t
∗∗
E2), (c∗∗D1, c

∗∗
D2, λ

∗∗) is determined by (63) and (64) while (N∗∗E1, N
∗∗
E2) is

determined by (42). Comparing (86) with (64) and likewise (87) with (63), we conclude
that (c∗∗D1, c

∗∗
D2, λ

∗∗) = (c∗D1, c
∗
D2, λ

∗). Finally, given this equivalence and comparing (85)
with (42), we conclude that (N∗∗E1, N

∗∗
E2) = (N∗E1, N

∗
E2) .

The proof of part (ii) is similar and therefore omitted. �
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