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Abstract

A privately informed buyer and a seller negotiate over the terms of a joint
project. The buyer has private information that affects both his standalone value
and the net returns from the project. The seller makes offers in a one-dimensional
family of securities (debt’s face value, share of equity, etc), so that the value of an
accepted offer depends on the buyer’s private information. We characterize Marko-
vian bargaining dynamics in continuous time. We show that equilibria either have
instant trade, or delay of a particular form: trade begins smoothly in a gradual
concessions phase; reaches an impasse of random length during which no offers are
accepted; and then ends suddenly with an atom of types trading in an instant.
Whenever there is delay, steeper security families (those that are more informa-
tionally sensitive) lead buyer types above a cutoff to pay strictly less, and types
below to pay weakly more. We provide conditions under which the buyer prefers
bargaining in a flatter family of securities, and we show that he may prefer flatter
securities even though these may cause higher expected delay in equilibrium.
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1 Introduction

Many real world negotiations involve contract terms that are complex, with payments
that are contingent on future outcomes: the value of offers depends on outcomes that
are unknown at the time of bargaining, and the parties often have different information
about the likelihood of favorable outcomes.

For example, in merger and acquisitions (M&A), acquirers often pay the target using
shares of their own companies (Malmendier et al., 2016). Unlike the case of a pure cash
payment, when the payment includes equity, the final transfer to the seller ultimately
depends on the realized value of the joint entity. Contingent payments are also the norm
in oil and gas leases agreements as well as in procurement contracts. Lease agreements,
which are typically negotiated between an individual land owner and a local oil and
gas producer, tend to specify an upfront cash payment and a pre-specified royalty over
future revenues.1 Likewise, procurement contracts specify some cost sharing rule, and
many such contracts are arrived at via negotiation with suppliers. The previous examples
feature bargaining over an equity-like payment, but the phenomenon is more general and
can involve other kinds of contingent payments. In Chapter 11 bankruptcy procedures,
for instance, claim holders bargain over the terms of the restructuring plan such as the
face value, maturity and seniority of new debt (White, 1989).

In short, negotiating parties frequently make offers in securities. Despite the
widespread use of contingent payments in negotiation, its impact on bargaining remains
largely unexplored. Although there is an extensive literature in finance looking at the
use of non-cash means of payment and its attendant effects on signaling and screening,
all these models are either static or, if dynamic, assume full commitment by the party
making the offers. We therefore lack an understanding of how the use of securities as
payment can affect the outcomes of actual bargaining—that is, how do they affect the
back and forth of offers in which neither party has the power to commit?

In the foregoing, we abstract somewhat from the institutional detail in order to isolate
the impact of security payments on bargaining without commitment. In the model, a
privately informed buyer and a seller negotiate over the terms of a joint project. The
buyer has private information that affects both his standalone value and the net return of
the project. The offers are being made in a fixed family of contingent payments (i.e., an
indexed security class such as debt, indexed by the face value, or equity, indexed by the
share being traded), so that the value of an accepted offer depends on the buyer’s private
information. Time is continuous, so the seller can revise her offers infinitely frequently.
We focus on a tractable class of Markovian “skimming” equilibria, in which buyer types
accept gradually in a given order.

We derive two sets of results. First, we completely characterize the bargaining dynam-
ics in continuous time (Theorem 1). Depending on both the primitives and the security
being used, the environment can be downward-skimming (high types dislike delay relative
more, and accept first) or upward-skimming (high types dislike delay relatively less, and

1Government oil lease agreements are usually auctioned but individual lease agreements are commonly
settled by negotiation.
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accept later). If the environment is downward-skimming, or if it is upward-skimming but
adverse selection is not too severe (efficiency is attainable in a one shot model), trade
happens instantly. If upward skimming, and adverse selection is sufficiently severe, then
there is delay of a very particular form: (i) trade begins smoothly in a phase of gradual
concessions; (ii) reaches an impasse of random length during which no offers are accepted;
and (iii) suddenly ends in an atom of trade with all remaining types.

Second, we analyze how the negotiation changes as one increases the informational
sensitivity of the security being used. For example, equity is very informationally sensi-
tive, since its value depends tightly on the private information on the company that is
offering that equity. Cash, on the other hand, is informationally insensitive, since the
value of a cash payment does not depend on the private information of the party offering
the cash.

We measure the informational sensitivity of securities by their steepness, as defined
by DeMarzo et al. (2005). We show that whenever there is delay, steeper securities (more
informationally sensitive ones) lead high types to pay strictly less, and low types to pay
weakly more (Proposition 2). Steeper securities also change the negotiation dynamics:
they slow down the concessions phase, but lead to less pooling at the final atom (Propo-
sition 1). Types under a cutoff always prefer flatter securities (Proposition 3), and there
always exists a positive-measure range of types who prefer the flatter security even though
it increases their expected payments.

We provide tighter results for security families whose steepness can be ranked in terms
of a one-dimensional parameter. For example, the equity of a levered company is more
informationally sensitive than the equity of an all-equity company; in other words, lev-
ered equity is steeper than unlevered equity, and the steepness of equity payments can
be parameterized by the amount of underlying leverage. For such parametrized steepness
comparisons, steeper securities increase discounting costs for types outside an interme-
diate region. In particular, small increases in steepness raise discounting costs for all
but a vanishing portion of types (Proposition 4). Moreover, we provide conditions under
which all buyer types prefer flatter securities (Proposition 5). Since delay is random, one
must distinguish between higher discounting costs—which depend on certainty-equivalent
delay—and higher expected delay. We show through examples that, even though a flatter
security lowers discounting costs for sufficiently low and sufficiently high types, and even
though all types prefer this security, using it may impose strictly higher expected delay
on all but a vanishing fraction of types.

Finally, we apply our general results to study the impact of financial constrains in
M&A negotiations. The effect of financial constraints is subtle; we show that loosening
them significantly may in fact increase bargaining frictions and lead to longer expected
delay for some types. Because the impact of financial constraints varies across the distri-
bution of deals, aggregate measures may be misleading. For example, additional financial
slack lowers the probability of deal failure for high types, but it may raise it for lower
types. More broadly, our results point out two potential problems with how to interpret
empirical evidence on M&A negotiations. First, particular care is needed when using evi-
dence on realized delay to make inferences about inefficiency. As financial constraints are
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loosened, expected delay may increase while certainty-equivalent delay decreases. The
former is observable, while the latter, which is the actual quantity of interest for efficiency
comparisons, is unobservable. Second, evidence on ex post payoffs like abnormal returns
may be misleading regarding the optimality of acquirer decisions. We show that even if
a higher cash component increases an acquirer’s ex-ante payoffs, the impact in ex-post
(observed) payoffs is ambiguous, as high types always end up paying more while low types
end up paying weakly less. Thus, even if we observe empirically that the use of (more)
cash reduces realized returns, firms may still have strict incentives to increase the cash
component of their offers.

Related Literature This work relates to a literature on bargaining with asymmetric
information and frequent offers, e.g., (Fudenberg et al., 1985; Gul et al., 1986; Fuchs and
Skrzypacz, 2010). Deneckere and Liang (2006)’s key contribution characterized frequent
offers dynamics in a bargaining model with interdependent values and a lemons problem.
The bargaining in that model is in cash, time is discrete, and the type space is discrete.
A main result in that paper is that, in the gap case, if efficiency is unattainable in a
static model, there must be delay in the frequent offers limit; surprisingly, in equilibrium
bursts of trade are followed by long quiet periods in which no serious offers are made. In
contrast, in our paper the level of interdependence in values is endogenous to the security
and the offers made. Our type space is continuous, and we formulate the bargaining prob-
lem directly in continuous time, which dramatically streamlines the analysis. Moreover,
the explicit expressions for the speed of trade allow for clean comparative statics on the
space of securities and a study of how the model primitives affect delay. Notably, the dy-
namics (even the direction of screening) in our model depend not only on the information
primitives, but also on the security being used.

The continuous-time formulation that we use originated in Ortner (2017) and Daley
and Green (2020), which are models with discrete types and driving Brownian process
(changing costs in the former, news about the informed party’s type in the latter). These
were adapted to standard continuous-type Coasean bargaining (without a driving Brown-
ian process) in Chaves (2019). The bargaining dynamics we find in the upward skimming
case (smooth trade, followed by an atom of trade) are reminiscent of those in Daley and
Green (2020), though the forces leading to delay, and to gradual trade in particular, are
different: without news, their model reduces to the frequent-offers limit of Deneckere and
Liang (2006), and the equilibrium features two bursts of trade with a quiet period in
between.

We also contribute to a nascent bargaining literature that considers bargaining over
richer objects than cash. Strulovici (2017) considers a two-type Coasean bargaining model
where parties negotiate over the terms of contracts, including, for instance, the quantity
or quality of goods traded. He shows that agreement is efficient in the continuous-time
limit for a broad class of contracting spaces. Hanazono and Watanabe (2018) consider
the splitting of a stochastic pie in a common value setting: both players receive private
noisy signals about the size of the pie, so their offers about how to divide the pie are
a form of equity claims on a variable surplus. They characterize the conditions under
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which parties can efficiently aggregate their dispersed information in equilibrium.
Finally, there is a large literature in finance studying security design in static settings

or settings with full commitment power. We briefly describe some points of connection.
Since Myers and Majluf (1984), a key concern in corporate finance, and in particular in
the security design literature, is to understand the impact of asymmetric information on
financing. One of the key insights of this literature is that using informationally sensitive
securities (steep securities) is costly due to adverse selection. For example, the pecking
order theory developed by Myers and Majluf (1984) states that companies choose infor-
mationally insensitive securities, such as debt, as their main source of financing, and only
rely on informationally sensitive securities, such as equity, when other sources of financing
are unavailable. While Myers and Majluf (1984) only consider the choice between debt
an equity, their insight has been extended to consider more general securities. DeMarzo
and Duffie (1999) consider the implications that adverse selection has on security design:
more informationally sensitive securities generate a more severe lemons problem and a
less liquid market, while less informationally sensitive securities reduce the amount of
capital that can be raised.

The literature on mergers and acquisitions has also studied the effects of different
security choices. Fishman (1989) considers securities bidding in take-over competitions;
he shows that flatter securities are more effective in equilibrium at preempting competing
bids. Hansen (1987) shows how an uninformed acquirer can use stock offers to screen out
low quality targets. Rhodes-Kropf and Viswanathan (2004) consider equity auctions to
explain the existence of merger waves driven by aggregate changes in valuation.

Our work also speaks to a growing literature on auctions with contingent payments
that emphasizes the effects of informational sensitivity on equilibrium outcomes (Hansen,
1985; DeMarzo et al., 2005; Che and Kim, 2010). Our definition of informational sensitiv-
ity (“steepness”) is taken from DeMarzo et al. (2005). Using Linkage-Principle techniques
(Milgrom and Weber, 1982), they show, under a condition related to our “downward-
skimming” case in Lemma 1, that steeper securities increase revenue. We follow Che and
Kim (2010) in allowing bidders’ private information to affect their standalone value. As in
our upward-skimming case, Che and Kim (2010) show that this can cause severe adverse
selection and equilibria in decreasing strategies. The condition determining upward- vs
downward-skimming with pure-equity bids was introduced by them. We provide a com-
parison between Che and Kim (2010)’s results and ours in Section 6. Outside of the
security auction literature, Lam (2020) studies the impact of steepness in a directed
search model. Workers with privately known productivity match with owners of hetero-
geneous assets of known quality. Lam (2020) characterizes the inefficiencies that arise as
the market moves (exogenously) from cash transfers to output share (equity) payments;
when asset owners are free to choose among securities, competition drives them to offer
only cash payments.

We contribute to this prior literature by characterizing the interaction between the
means of payment and the lack of commitment. In particular, we relate the informational
sensitivity of securities to the amount of bargaining delay, and we show how changes in
inefficient delay can overwhelm the Linkage Principle forces that are at play in the security
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auctions literature.

2 Setup

Players and Information A buyer (he) and a seller (she) negotiate over the terms of
a joint project, the rights to which initially rest with the seller. (To fix ideas, one can
think of the buyer as an acquirer and the seller as a target). The buyer has a standalone
value X̃, and the project generates a net return b̃. The value of the project is therefore
Z̃ := b̃+ X̃.

The buyer observes a private signal v ∼ U [0, 1] that is informative about both his
standalone value and the net return of the project. In particular, we assume that Z̃|v,
b̃|v, and X̃|v each have conditional densities gZ(z|v), gb(b|v), and gX(x|v) that have full
support on [0, z̄] for each v, are smooth in both arguments, and satisfy the monotone
likelihood ratio property (MLRP), with gZ(z|v) satisfying strict MLRP.

Let b(v) denote E[b̃|v] and similarly for X(v) and Z(v). Throughout we assume that
b′(·) and X ′(·) are non-negative and bounded above (which follows by MLRP), and that
Z ′(·) is strictly positive.

Securities and Bargaining Protocol The seller makes offers to the buyer, who at
each point in time chooses whether to accept or reject. This is as in standard models of
Coasean bargaining. Unlike those models, the seller offers contingent payments belonging
to a particular security class. With minor modifications to the defintions in DeMarzo et al.
(2005), a class of securities is a function S : [α

¯
, ᾱ] × R+ → R+ such that (i) S(α, Z̃) is

weakly increasing in both arguments, strictly so in α, and for every α > α
¯

, strictly so in
Z̃ on some open interval;2 (ii) Z − S(α,Z) is weakly increasing in Z for all α.

The class S is fixed throughout the bargaining interaction; different offers by the seller
therefore correspond to different indeces α and α′. Below, when we write “the seller makes
an offer of α,” and the security class is S, we mean that the seller asks for a contingent
payment S(α, Z̃) in order to agree to the merger.

We repeatedly use S̄(α, v) to denote E[S(α, Z̃)|v], the expected payment to the seller
from an offer α when the buyer’s information is v and the security class is S.

Below we use the following non-degeneracy assumptions.

Assumption 1 (Non-degeneracy).

1. S̄(ᾱ, v) ≥ b(v) > S̄(α
¯
, v)∀v.

2. S̄(ᾱ, v) ≥ c > S̄(α
¯
, v)∀v.

3. High v’s strictly good news the seller:

For all α > α
¯

, E[S(α, Z̃)|v ∈ [k, k′]] is strictly increasing in k, k′.

2 Hence, we focus on securities other than pure cash, which is a (trivially) contingent payment.

5



Condition 1 ensures that, for every type of the buyer, there exists a feasible final offer
that the buyer would be willing to accept. Likewise, Condition 2 ensures that, if the
seller knew the buyer’s type, there also exists a final offer that the seller would be willing
to accept. Condition 3says that, for all non-trivial offers, the seller’s revenue strictly
increases as the selection of types who accept the offer improves. In words, (i) the seller
prefers not trading to trading at the lowest offer, (ii) the highest buyer type prefers not
trading to trading at the highest feasible offer, and (iii), for all non-trivial offers, the
seller’s revenue strictly increases as the selection of types who accept the offer improves.

Payoffs The seller enjoys a flow payoff of rc before agreement is reached. For example,
in the mergers and acquisitions example, c can represent either the target’s cashflows or
management’s flow benefits of control. Hence, if the buyer with gross realized returns Z̃
and type v accepts a security with index α at time t, the seller receives ex post profits of

(1− e−rt)c+ e−rtS(α, Z̃).

while the buyer earns (in expectation over Z̃, conditional on knowing v),

(1− e−rt)X(v) + e−rt
(
Z(v)− S̄(α, v)

)
Direction of Skimming With quasilinear payoffs (i.e., bargaining in cash), a now
standard argument by Fudenberg et al. (1985) shows that equilibria satisfy a “skimming”
property: if a type v is indifferent between accepting and rejecting an offer p after history
Ht, then all types v′ > v strictly prefer to accept p at Ht; beliefs after every history are
therefore right-truncations of the prior. Intuitively, high types like cash just as much as
low types, but they dislike delay relatively more. Analysis usually focuses on Markovian
equilibria with the truncation point as a state variable.

When bargaining in non-cash securities, the buyer’s true type affects his expected
payment, so the standard argument will not apply. When bargaining in equity, for ex-
ample, high buyer types dislike delay more, but they also dislike giving up their equity
more. High types may therefore be more willing than low types to wait for better equity
offers.

For tractability, we will also focus on Markovian equilibria with a skimming
structure—buyer types accept in a predetermined “order”—but what that order is, and
whether it matches the natural order of types, depends on additional conditions. We
describe these in Lemma 1 and Definition 1.

Lemma 1 (Direction of skimming). Fix a security class S. Let ιS and V be given by

ιS(v, α) := −b(v)− S̄(α, v)

S̄α(α, v)

V (t, α, v) := (1− e−rt)X(v) + e−rt(Z(v)− S̄(α, v)),

and let αf (·) denote the solution to

Z(v)− S̄(αf (v), v) = X(v). (1)
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Fix an arbitrary (deterministic) sequence of offers {α̃t}t≥0, and let T (v) :=
arg maxt∈R+∪{+∞} V (t, α̃t, v).

1. If ιS(·, α) is strictly increasing for all α, every selection from T (v) is non-
decreasing,3 and αf (·) is strictly decreasing.

2. If ιS(·, α) is strictly decreasing for all α, every selection from T (v) is non-increasing,
and αf (·) is strictly increasing.

The superscript on αf stands for “final”: it is the highest take-it-or-leave-it offer that
v would consider accepting. Hence, when ιSv > 0 for every α, then (i) if two types v′ < v′′

accept offers from {α̃t}t≥0 at different times, then v′′ accepts strictly later, and (ii), if v′

is indifferent between accepting and rejecting a final offer, then v′′ > v′ strictly prefers to
reject it.

Lemma 1 thus motivates the following definition:

Definition 1 (Upward vs Downward Skimming). Say the environment satisfies upward
skimming if ιS(·, α) is strictly increasing for every α. The environment satisfies down-
ward skimming if ιS(·, α) is strictly decreasing for every α. The environment satisfies
the skimming property if it is either upward skimming or downward skimming.

Example 1 (Bargaining in Equity; Relation to Che and Kim (2010)). Suppose the buyer
is an acquirer, the seller is a target, and both parties are negotiating over a merger. The
seller makes offers in terms of equity in the merged entity, i.e., S(α, Z̃) = αZ̃. Then
ιS(v, α) = − (b(v)Z(v)−1 − α)). The environment is upward skimming iff

b′(v)

b(v)
<
X ′(v)

X(v)
for all v (2)

and downward skimming if the inequality is everywhere reversed. For a quick intuition,
note that, if b/X is decreasing, then, as the buyer’s type grows, his disagreement motive
(i.e., the standalone value) grows proportionally faster than his agreement motive (i.e.,
the net surplus); the reverse is true when b/X is increasing.

In their (static) analysis of security auctions, Che and Kim (2010) identify Condition
(2) as determining whether second-price sealed bid equity auctions have equilibria in
decreasing strategies. We postpone a fuller discussion of Che and Kim (2010) to section
6.

Remark 1 (Relation to Usual Skimming Notions). Lemma 1 is weaker than the usual
skimming result invoked in the literature on cash bargaining, so our focus on Markovian
skimming equilibria is a stronger restriction than the analogous restriction in models with
cash bargaining. To highlight the differences, focus on the downward-skimming case. In
the literature on Coasean bargaining with cash, if a type v is indifferent between accepting
and rejecting an offer p after a history Ht, then all types v′ > v strictly prefer to accept p

3 In the usual order on the extended real line.
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at Ht regardless of continuation play after the rejection. In contrast, the present lemma
covers only deterministic offer paths, and it allows for offer histories where both v and
v′ are indifferent between accepting and rejecting. Hence, the Lemma does not entirely
rule out histories in which v′ accepts strictly earlier—for example, if v and v′ are both
indifferent and randomize over their acceptance decisions.

Rather, we use Lemma 1 in two ways. First, the result motivates the search for equi-
libria in particular tractable classes, depending on the shape of ιS. From the Lemma, if
the environment is upward skimming, it will be fruitless to search for skimming equilibria
where higher types accept first. Instead, in such a case we will look for upward skimming
Markov equilibria, where (i) the seller’s beliefs about the buyer are left-truncations of the
prior (lower types accept first), and (ii) the truncation point is the relevant state variable
for continuation play. (Vice versa for downward skimming environments).

Second, the offer paths in the equilibria we construct, while stochastic, are such that
Lemma 1 will suffice to verify incentive compatibility for the buyer. We provide further
details on the equilibrium in the subsection after next.

Static Benchmarks From Deneckere and Liang (2006), one expects that bargaining
dynamics will depend crucially on whether (i) there are strict gains from trade for every
type of buyer in a one-shot, static game, and (ii) whether efficiency is achievable in that
static game, i.e., whether there exists on offer that all buyer types accept on which the
seller can break even. If such an offer does not exist, a “Static Lemons Condition” holds.

Regarding (i), we assume throughout that b(0) ≥ c, i.e. there are gains from trade
with every type of buyer. As usual in the literature (Fudenberg et al., 1985; Gul et al.,
1986), we distinguish between the gap (b(0) > c) and no gap (b(0) = c) cases. Regarding
(ii), motivated by Lemma 1, we define a Static Lemons Condition separately for upward
and downward skimming environments, since the relevant “lowest” type differes in the
two cases.

Definition 2 (Static Lemons Condition).

1. In an upward skimming environment, say the Static Lemons Condition (SLC)
holds iff

E[S(αf (1), Z̃)] < c.

For such an environment, let kSLC be defined by

kSLC = inf{k ≤ 1 : E
[
S(αf (1), Z̃)|v ∈ [k, 1]

]
≥ c}.

2. In a downward skimming environment, say the Static Lemons Condition holds iff

E[S(αf (0), Z̃)] < c.
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Below we refer to kSLC as the “critical type.”
Note that in downward skimming environments, the SLC will necessarily fail. Indeed,

E[S(αf (0), Z̃)] > E[S(αf (0), Z̃)|v = 0] = b(0) ≥ c,

where the strict inequality uses the non-degeneracy conditions 1 and 3 in Assumption 1.
In words, under downward skimming, pooling “favors the seller:” higher types accept

any final offer that a lower type accepts, so if the seller can makes money by trading with
the lower type at a given offer, she makes money at that offer with any type that pools
with that lowest one.

Equilibrium Notion We focus on a class of Markov equilibria that allow for rich
dynamics. For environments that satisfy the skimming property, by Lemma 1 the game
has a natural state variable: the truncation of the seller’s prior beliefs that yields her
current posterior. For upward skimming environments, this is a left truncation: if the
state at time t is Kt = k, then, given the history of offers and rejections, the seller believes
v > k. For downward skimming environments, k is a right truncation, i.e., if Kt = k, the
seller believes v < k.

The equilibrium objects have minor differences depending on whether the environ-
ment has upward or downward skimming. To simplify the exposition, we describe the
equilibrium notion for upward skimming environments, and later explain how the notion
must be adapted for downward skimming.

The equilibria that we study are Markovian in the relevant truncation Kt (henceforth,
“the cutoff”). Following recent formulations of Coasean bargaining in continuous time
(see Ortner (2017), Daley and Green (2020), and, most relevant for the current setup,
Chaves (2019)), we model the seller as solving a (Markovian) optimal stopping-control
problem, and the buyer as solving a (Markovian) optimal stopping problem. Roughly,
that machinery writes the seller’s problem in quantity space. The buyer’s chooses a
reservation offer strategy α(·). On path, the seller chooses how fast to screen through
buyer types, taking as given that to screen through types v < k, she must offer α(k).
Formally, the seller chooses paths of belief cutoffs t 7→ Kt, which result in paths of offers
t 7→ α(Kt), i.e., the seller is quoting prices from the reservation offer schedule. We also
give the seller an option to “give up on screening”: she can make a pooling offer α(1)
that would be accepted by all remaining types, thereby ending the game. Given a law of
motion for cutoffs, and that future offers are given by α(Kt), the buyer solves an optimal
stopping problem with state Kt.

The description just given is insufficient in two regards. First, the seller is potentially
choosing over all non-decreasing paths, which is an unmanageably large space. Second, if
the reservation offer curve α(·) is discontinuous in equilibrium, the vignette given above
does not specify what happens after an off-path offer α′ /∈ α([0, 1]).

We describe our solution to these two issues in the next definition. First, using the
approach in Chaves (2019), we impose some restrictions on seller strategies; these make
the analysis tractable while still allowing a rich set of dynamics.
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Definition 3 (Seller Strategy Space).

1. A plan of on-path offers by the seller consists of a non-decreasing cutoff path t 7→ Kt

and a stopping time T at which to make a pooling offer α(1). We denote an entire
cutoff path (Kt)t≥0 by K. K is admissible if it has no singular-continuous parts.
We allow for mixed strategies in the stopping time T , which are represented by
a CDF F = (Ft)t≥0. Thus a plan for the seller is given by a pair (K,F ), and we
denote by AUk the set of admissible plans (K,F ) satisfying K0− = k, i.e., with initial
value k, and generic element Kk. We say that the stopping time T is Markov if its
hazard measure dF (t)/(1− F (t−)) is a function of Kt−. At any point where Ft is
absolutely continuous, we denote its hazard rate by the arrival rate λt. In this case,
the Markov assumption amounts to λt = λ(Kt), for some non-negative function
λ(·).

2. Time intervals [t
¯
, t̄) where dFt = 0,∆Kt− = 0 are smooth trade regions, and K̇t is

the trading speed. A special case of a smooth trade region is a quiet period, i.e., an
interval [t

¯
, t̄) with K̇t = dFt = ∆Kt− = 0.

3. A plan for on-path offers is supplemented by a plan following off-path offers. For
any off-equilibrium offer α′ /∈ α([0, 1]) made at time t, we let σt(α

′) ∈ ∆([0, 1]) be
the randomized offer that “immediately” follows the rejection of α′.

We briefly explain the rationale for the third item. As we show below, sometimes α(·)
must be discontinuous in equilibrium, so to complete the specification of the strategies,
we need to specify the seller’s strategy following an off-equilibrium offer α′ /∈ α([0, 1]).
As in Fudenberg et al. (1985) and Gul et al. (1986), to sustain Markovian behavior on
path, we need to allow for randomization following the rejection of an off-path offer
α′. The usual complexities in continuous time games arise when we try to capture the
randomization that follows an off-equilibrium offer in a discrete time model. To overcome
this difficulty, we stop the clock whenever an off-equilibrium offer is made, allowing the
seller to immediately make a new offer if such an offer is rejected.4 We allow the new
offer to depend on the off-path offer α′; in the lingo of the discrete time literature, our
equilibrium will be “weak Markov.”

Definition 4 (Buyer and Seller Problems). At state k, a buyer type v takes α(·) and K
as given, and solves

sup
τ∈T

E
[
(1− e−r(τ∧T ))X(v) + e−r(τ∧T )

(
Z(v)− S̄(α(Kτ∧T ), v)

)]
(3)

where by definition KT = 1, and T is the set of stopping times adapted to the filtration
generated by T . Meanwhile, the seller S takes α(·) as given. Given any path Qt and

4The idea of stopping the clock to allow for multiple sequential moves in a continuous time game
has been used in bargaining models by Smith and Stacchetti (2002) and Fanning (2016). An alternative
approach is to follow the formalization in Fudenberg and Tirole (1985) and to consider “intervals of
consecutive atoms.”
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realization of the stopping time T , the seller payoff is

Π(Q, T ) ≡
∫ T

0

e−rtE
[
S̄ (α(Qt), v)

∣∣∣v ∈ [Qt−, Qt]
]
dQt+e

−rTE
[
S̄
(
αf (1), v

) ∣∣∣v ∈ [QT−, 1]
]

+

(
1− (1−QT )e−rT −

∫ T

0

e−rtdQt

)
c,

and, at each k, the seller strategy (Q,F ) solves

sup
(Q,F )∈AUk

∫ ∞
0

Π(Q, T )dF (T ). (4)

We can now fully define a weak Markov equilibrium.

Definition 5 (Equilibrium). A weak Markov Equilibrium of an upward-skimming game
consists of a tuple

({Kk}k∈[0,1], F, α(·), σ(·|·, ·))

together with a value J(·) for the the seller and a value B(·, ·) for the buyer such that

1. For all v ∈ [0, 1], k ∈ [0, 1], accepting at τ ∗ = inf{t : α(Kk
t ) ≤ α(v)} solves the

buyer’s problem (3) and delivers value B(v, k).

2. α(1) = αf (1), where αf is defined in (1).

3. For all k ∈ [0, 1] and T in the support of F , Kk is an admissible path and T is a
Markov stopping time that together solve (4) and deliver value J(k).

4. For any point of discontinuity of α(·), k′, and any off-equilibrium offer α′ ∈
(α(k′+), α(k′−)), σ(·|k′, α′) maximizes5

∫ 1

0

{
(α−1(α̃)− k′)+E

[
S̄ (α̃, v)

∣∣∣v ∈ [k′, α−1(α̃) ∧ k′]
]

+(1− α−1(α̃))J
(
α−1(α̃)

)}
dσ(α̃|k′, α′)

5. For any point of discontinuity of α(·), k′, and any off-equilibrium offer α′ ∈
(α(k′+), α(k′−)), σ(·|k′, α′) satisfies

Z(k′)− S̄(α′, k′) ≤ B(k′, k′)

∫ α(k′)

0

dσ(α̃|k′, α′)

+

∫ 1

α(k′)

(
Z(k′)− S̄(α̃, k′)

)
dσ(α̃|k′, α′)

5Here, α−1(·) represents the generalized inverse defined as α−1(y) ≡ sup{x > 0 : α(x) ≥ y}.
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Condition 2 is a refinement inspired by the corresponding discrete time game. In a
stationary equilibrium of the discrete time game, for any positive period length, the seller
would never offer more than αf (1) when her beliefs are concentrated at v = 1. (And α(1)
can never be above αf (1), since v = 1 would strictly prefer to reject, i.e. α(1) cannot
be a reservation offer for v = 1.) Given how we have written the seller’s problem, the
same kind of analysis is not quite well defined in our continuous time game, so we impose
Condition 2 directly.6

Conditions 4 and 5, inspired by the discrete-time analyses in Fudenberg et al. (1985)
and Gul et al. (1986), will be necessary to tackle off-path behavior. We will see that, in
the class of equilibria we consider, α(·) must be discontinuous. The usual continuous-
time technique of reducing the seller to controlling a path of cutoffs will not be faithful
to the idea that the seller is choosing offers. Her strategy space must be augmented
in some way, which these conditions provide. Condition 4 says that, when the seller
makes an off-path offer, the buyer still accepts according the reservation offer curve α(·).
Condition 5 specifies that, after making a “mistake” and charging an off-path offer, the
seller randomizes in way that justifies the buyer’s choice to accept according to α(·).

Finally, to streamline the derivation of necessary conditions, we restrict our search to
equilibria in an amenable subclass:

Definition 6 (Regularity). A weak Markov Equilibrium is regular if

1. J is continuous and C1 in the interior of smooth regions;

2. K̇t is continuous in the interior of smooth trade regions.

3. Jump discontinuities in cutoff paths are isolated.

Below, we refer to regular weak Markov Equilibria as simply “equilibria.”

Remark 2 (Modifications for Downward Skimming). In downward skimming environ-
ments, regular weak Markov Equilibria are defined almost identically, with the following
changes:

1. Admissible paths t 7→ Kk
t are non-increasing and satisfy K1

0 = 0. The admissible
set at state k is denoted ADk .

2. Condition 2 in Definition 5 becomes α(0) = αf (0).

3. The seller’s objective is now written as

Π(Q) =

∫ ∞
0

e−rtE
[
S̄ (α(Qt), v)

∣∣∣v ∈ [Qt, Qt−]
]
d(1−Qt)

+

(
1−

∫ ∞
0

e−rtd(1−Qt)

)
c (5)

6 See, for example, the discussions in Ortner (2017) and Daley and Green (2020), who impose con-
ditions similar to our Condition 1; Ortner (2017) shows that, absent this kind of refinement, continuous
time equilibria can violate this natural discrete-time property.
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3 Dynamics for General Securities

Within our class of equilibria, we can fully characterize equilibrium dynamics. We provide
an informal derivation of the equilibrium in an upward skimming case where the SLC
holds, relegating the full proof of necessary conditions and equilibrium verification to the
appendix.

We construct an equilibrium where the game starts with smooth trade. By the usual
Coasean logic, whenever the seller is trading smoothly, her payoff is pinned down at c:
otherwise, she would have strict incentives to speed up trade. To wit, the HJB equation
in the smooth trading region is given by

rJ(k) = sup
k̇≥0

(
S̄(α(k), k)− J(k)

) k̇

1− k
+ J ′(k)k̇ + rc. (6)

The optimization problem in the HJB equation (6) is well-defined only if

J(k) ≥ S̄(α(k), k) + (1− k)J ′(k).

If trade is happening at a positive speed (k̇ > 0 is optimal), this condition must hold with
equality. Substituting S̄(α(k), k) into the right hand side of (6), it follows that J(k) = c,
with α(k) implicitly defined by S̄(α(k), k) = c.

The speed of trade at state k depends on the marginal buyer v = k and his incentives
to delay. The value function for buyer v at state a k with smooth trade must satisfy the
HJB equation

rB(v, k) = rX(v) + k̇Bk(v, k).

Evaluating at v = k = Kt, so that B(Kt, Kt) = Z(Kt)− S̄(α(Kt), Kt), we get

r
(
Z(Kt)− S̄(α(Kt), Kt)

)
= rX(Kt)− K̇tα

′(Kt)S̄α(α(Kt), Kt).

Finally, substituting, b(k) = Z(k)−X(k), c = S̄(α(k), k), and

0 = α′(k)S̄α(α(k), k) + S̄v(α(k), k),

we obtain a differential equation for Kt: starting at a state k with smooth trade, Kt

evolves according to

K̇t = r
b(Kt)− c

S̄v(α(Kt), Kt)
, K0 = k. (7)

A natural guess is that, using (7), one can construct an equilibrium in smooth trade.
However, smooth trading cannot persist indefinitely. If the seller were to continue screen-
ing more and more types starting from the bottom, eventually the state would reach and
cross kSLC . At that point, trading instantly with all remaining types at an offer of αf (1)
would become strictly more profitable than trading smoothly with the marginal type:
E[S̄(αf (1), v)|v ∈ [k, 1]] > c for k > kSLC .

Our equilibrium construction therefore specifies smooth trade at k < kSLC , and an
atom of trade at k > kSLC . It remains only to specify what happens at state kSLC . The
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key fact is that, to make types in (kSLC , 1] all willing to wait and trade at the offer αf (1),
when they could have traded at the offer α(kSLC), there must be an impasse when state
kSLC is reached, i.e., trade must cease for while.

To see this, note that, for kSLC < 1, the offer curve α(·) must be drop discontinuously
at kSLC : on the one hand, α(kSLC) must satisfy S̄(α(kSLC), kSLC) = c, since the seller
trades smoothly for k < kSLC . On the other, given that all types in (kSLC , 1] trade at
the final offer αf (1), E[S̄(α(kSLC+), v)|v ∈ (kSLC , 1]] = c. It follows that α(kSLC+) <
α(kSLC).

The seller, then, must delay offering αf (1) just long enough to make v = kSLC indif-
ferent between accepting α(kSLC) “now” and rejecting it in in hopes of receiving αf (1)
“later.” The expected discount until αf (1) is offered, denoted by D, must solve

Z
(
kSLC

)
− S̄

(
α(kSLC), kSLC

)
= (1−D)X

(
kSLC

)
+D

(
Z
(
kSLC

)
− S̄

(
αf (1), kSLC

))
,

(8)
which simplifies7 to

c = (1−D)b(kSLC) +DS̄(αf (1), kSLC). (9)

Since the seller must use a Markov stopping time at kSLC , she can implement this delay
by postponing the final offer until the first tick of a Poisson clock with a rate λ given by
λ/(r + λ) = D.

For these equilibrium dynamics, Lemma 1 and standard mechanism design arguments
imply that it is globally incentive-compatible for buyers to accept from lowest to highest
according to α(·), and a verification approach shows that these screening dynamics are
optimal for the seller, given α(·).

We have outlined the construction of an equilibrium, but in fact, in Theorem 1 we
prove that these are the only possible equilibrium dynamics. Formally, we prove the
following theorem, which also covers the remaining cases:

Theorem 1. In skimming environments, there exists a (regular weak Markov) equilib-
rium.

1. In a downward-skimming environment, all equilibria have instant trade at an offer
αf (0).

2. In an upward-skimming environment, if SLC fails, all equilibria have instant trade
at an offer of αf (1).

3. In an upward-skimming environment, if SLC holds, and there is no gap, there is no
trade in any equilibrium.

7 The simplification uses S̄(α(kSLC), kSLC) = c and b(kSLC)− S̄(αf (kSLC), kSLC) = X(kSLC). Such
a D ∈ (0, 1) always exists: since there are gains of trade and b(·) is strictly increasing, we always have
that

S̄(αf (kSLC), kSLC) = b(kSLC) > c = S̄(α(kSLC), kSLC).
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4. In an upward-skimming environment, if SLC holds and there is a gap, there is a
unique on-path equilibrium triple

(
{Kk}k∈[0,1], F, α(·)

)
:

• The buyer’s acceptance strategy is

α(k) =

{
αf (1) if k ∈ (kSLC , 1]

S̄−1(c, k) if k ∈ [0, kSLC ],

• There is smooth trade for k ∈ [0, kSCL). In the smooth trade region, the cutoff
Kt is the unique solution to equation (7).

• At state kSCL, there is a temporary (random) breakdown in trade. The seller
makes the final offer αf (1) with a Poisson arrival intensity λ = rD/(1 −D),
where D is defined by equation (9).

• For k > kSLC, the seller immediately offers αf (1).

Figure 1 illustrates typical realized paths of outcomes for the case with non-trivial
delay dynamics (Theorem 1.4).8 The cutoff rises gradually from 0 until it reaches kSLC ,
with the seller gradually dropping her offers from α(0) to α(kSLC). When the state arrives
at kSLC , the game reaches an impasse, with the cutoff frozen at kSLC for a random amount
of time T − τ(kSLC). During the impasse, the seller “stubbornly” refuses to move her
offer from α(kSLC), until finally, at a random time, she concedes, dropping her offer to
αf (1). At that point, all remaining types v ∈ (kSLC , 1] accept suddenly, and the cutoff
jumps to k = 1.

It is instructive to compare the path of offers α(Kt) to the expected equilibrium
payments by the different types S̄(α(v), v). While the offer α(Kt) is dropping gradually,
the payments made by types in [0, kSLC ] are constant in type and equal to c. In contrast,
while all types in (kSLC , 1] accept the same offer αf (1), they all pay different amounts
according to S̄(αf (1), v), which is strictly increasing in v.

4 Means of Payment and Bargaining Dynamics

Using Theorem 1, we can characterize how the means of payment used in the negotiation
affect the bargaining dynamics. A key feature of a security is its steepness.

DeMarzo et al. (2005) define steepness as folows:

Definition 7 (Steepness). Take two securities S1 : [α
¯1, ᾱ1] × R+ → R+,S2 : [α

¯2, ᾱ2] ×
R+ → R+. S1 is steeper than S2 if, for any feasible indices α1 ∈ [α

¯1, ᾱ1] and α2 ∈ [α
¯2, ᾱ2],

S̄1(α1, v) = S̄1(α2, v)⇒ S̄1
v(α1, v) > S̄2

v(α2, v)

8 The graphs are actual model output, using the setup in Section 5.1 below.
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Figure 1: Illustration of a realized equilibrium path in an upward skimming environment satisfying
the SLC. τ(v) denotes the realized time at which state v is reached on-path.

For this comparative exercise below, we focus on pairs of securities that both generate
non-trivial delay dynamics.

Definition 8 (Delayed trade). Given c and a joint distribution for b̃ and X̃, say S
generates delayed trade, denoted S ∈ Db̃,X̃,c, if

1. There is upward-skimming under S: ιS(·, α) is strictly increasing for every α.

2. The Static Lemons Condition holds: E[S(αf (1), Z̃)] < c.

3. There are strict gains from trade: b(0) > c.

By Theorem 1, whenever S ∈ Db̃,X̃,c, trade does not break down completely and
does not happen instantaneously. Focusing on that non-trivial case, our next result
characterizes the effect on trading dynamics of increasing steepness.

Proposition 1. Take S1 and S2 in Db̃,X̃,c, with S1 steeper. Let kSLC(Si) denote the

critical type under security Si, i = 1, 2. Under S1 there is less pooling, and a slower
gradual concessions phase:

1. kSLC(S1) > kSLC(S2).

2. Buyer types [0, kSLC(S2)] trade strictly later under S2.

Proof. First, we show that types that trade smoothly in both securities trade later under
S1. Let α1 and α2 be the reservation offer curves for the bargaining games with securities
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S1 and S2. Suppose S1 is steeper than S2, Recall that, when trade is smooth, the seller’s
indifference condition across speeds,

S̄1(α1(k), k) = S̄2(α2(k), k) = c.

Since S1 is steeper, this implies S̄1
v(α

1(k), k) > S̄2
v(α

2(k), k). Let K1 and K2 be any
equilibrium cutoff paths under the S1 and S2 environments, respectively. By the inverse
function theorem, for any k ∈ (0, kSLC(Si)), we have that

τ i
′
(k) =

1

K̇i
τ i(k)

=
S̄iv(α

i(k), k)

r(b(k)− c)

Hence, we have that

τ i(k) =

∫ k

0

S̄iv(α
i(s), s)

r(b(s)− c)
ds.

It immediately follows that τ 1(k) > τ 2(k) for any k ∈ [0,min{kSLC(S1), kSLC(S2)}].
Next, we show that kSLC(S1) > kSLC(S2). Let αf,i denote the final offer locus (1)

under security Si, and consider the functions hi(k) = E[Si(αf,i(1), Z̃)|v ∈ [k, 1]]. We
claim h1(k) < h2(k), which implies, since both are strictly increasing, that kSLC(S1) >
kSLC(S2). Security S1 is steeper and S̄1(αf,1(1), 1) = S̄2(αf,2(1), 1) = b(1), so

S̄1(αf,1(1), v) < S̄2(αf,2(1), v) for all v < 1. (10)

Therefore,

h1(k) =
1

1− k

∫ 1

k

S̄1(αf,1(1), v)dv <
1

1− k

∫ 1

k

S̄2(αf,2(1), v)dv < h2(k),

as required.

The intuition is as follows. First, consider the gradual concessions phase. The buyer’s
incentive to reject an offer is that, by rejecting, he can affect the seller’s beliefs about his
type and can obtain a better price in the future. When using Si, if a type k rejects an
offer and pretends to be k + dk, he expects price to drop by (αi)′(k)S̄iα(α(k), k)dk < 0.
However, because of the Coasean force the seller’s expected payment is constant in the
state–pinned down to S̄i(αi(k), k) = c. Taking total derivatives we have

S̄i(α(k), k) = c⇒
<0︷ ︸︸ ︷

(αi)′(k)S̄iα(α(k), k)︸ ︷︷ ︸
Price improvement from changing seller’s belief

= −

>0︷ ︸︸ ︷
∂

∂v
S̄i(α(k), v)

∣∣∣
v=k︸ ︷︷ ︸

steepness of Si at k

Hence, the more sensitive price is to the buyer’s private information, the greater the price
improvement that he expects from rejecting an offer, and the greater his incentives to
reject.
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Second, consider the size of the pooling region. The pooling region makes the seller
on average break even with the final offer αf,i(1). Since type-by-type expected payments
S̄i(αf,i(1), v) are higher under S2—the payments of the flatter security cannot cross those
of the steeper one from below—the seller must average over a strictly worse pool (include
even lower types) to break even under S2.

Increasing steepness has subtle effects on payoffs. Our next few results decompose
these effects. First, increased steepness has opposite effects on the equilibrium payments
of high types and low types:

Proposition 2 (Expected payments are “single-crossing”). Take S1 and S2 in Db̃,X̃,c,
with S1 steeper. Let πi(v) := S̄i(αi(v), v), v’s equilibrium expected payment under Si.

1. Under S1, high types pay strictly less, low types pay more: there exists a unique
kcross ∈ (kSLC(S2), 1) such that

π1(v) = π2(v), v ∈ [0, kSLC(S2)].

π1(v) > π2(v), v ∈ (kSLC(S2), kcross).

π1(v) < π2(v), v ∈ (kcross, 1).

2. Let k∗ solve S̄2(αf,2(1), k∗) = c. Then kcross = min{k∗, kSLC(S1)}.

Proof. The first line of (11) follows from smooth trading: S̄i(αi(v), v)πi(v) = c on
[0, kSLC(S2)). To show the latter two lines, use (10) to conclude

π1(v) = S̄1(αf,1(1), v) < S̄2(αf,2(1), v) = π2(v), v ∈ (kSLC(S1, 1).

Meanwhile, by definition, E[S̄2(αf,2(1), v)|v ∈ (kSLC(S2), 1]] = c, so there exists a k∗ ∈
(kSLC(S2), 1) such that

S̄(αf,2(1), v) = π2(v)


< c, v ∈ (kSLC(S2), k∗),

= c, v = k∗

> c, v ∈ (k∗, 1]

(11)

Since π1(v) = c for v ≤ kSLC(S1), if k∗ < kSLC(S1), then (10) and (11) yield kcross = k∗.
On the other hand, if k∗ ≥ kSLC(S1), (10) and (11) yield kcross = kSLC(S1).

Since the expected payment of the highest type is the same under both securities
(S̄i(αf,i(1), 1) = b(1)), and high enough types accept αf,i(1) in either case, they must
pay less under the steeper security. At the same time, since flatter security has a larger
pooling region, there are types at the bottom of the interval that would be separated
under a steep security (and pay c), but get cross-subsidized by very high types when they
face the steep security (and therefore pay less than c). Finally, types at the very bottom
of the distribution are separated and pay c in either case.
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In general, it is not possible to rank the payoffs of two securities directly, for two
reasons. First, due to pooling at the final atom, it is not necessarily the case that all
types suffer more delay under a steeper security. Proposition 1 provides a delay ranking
only for types who trade smoothly with both securities—and since kSLC(S2) can equal
0, the ranking can become vacuous. Second, Proposition 2 shows that high types (other
than v = 1) pay strictly more with a flatter security. Even if a flatter security were to
lead to lower delay, it seems possible that high types would not prefer it.

To rank payoffs more generally, we introduce a convenient integral representation of
the equilibrium payoffs. Equilibrium payoffs are

Ui(v) = X(v) + e−rτ
CE
i (v)

(
b(v)− S̄i(αi(v), v)

)
, (12)

and, by the envelope theorem, its derivative is

U ′i(v) = X ′(v) + e−rτ
CE
i (v)

(
b′(v)− S̄iv(αi(v), v)

)
(13)

almost everywhere. Using equation (12) to substitute e−rτ
CE
i (v) into the envelope condition

(13) we get9

U ′i(v)−X ′(v)

Ui(v)−X(v)
=

∂

∂v
log (Ui(v)−X(v)) =

b′(v)− S̄iv(αi(v), v)

b(v)− S̄i(αi(v), v)

almost everywhere. Integrating with respect to v, we obtain

Lemma 2. Let Ui(v) be the equilibrium indirect utility under an upward-skimming secu-
rity Si, and let αi be the associated equilibrium offer. Define

ηi(v, α) :=
b′(v)− S̄iv(α, v)

b(v)− S̄i(α, v)

Then for v < 1,

Ui(v) = X(v) + (b(0)− c) exp

{∫ v

0

ηi(y, αi(y))dy

}
. (14)

This representation allows us to rank preferences over securities by comparing
ηi(v, αi(v)). We repeatedly rely on two key facts:

• for two securities S1 and S2, if η1(v, α1(v)) < η2(v, α2(v)) for all v ≤ v̄, then types
below v̄ must prefer S2.10

• If for some v, U1(v) = U2(v), but η1(v, α1(v)) < η2(v, α2(v)), U2 must cross U1 from
below.

9 We know from Theorem 1 that b(v) > S̄i(αi(v), v) for all v < 1.
10 Note that the ranking is not immediate from the shape of the ηi’s, since it depends on αi(v), which

is an endogenous object.
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Using this overall approach, we can rank preferences over steepness for types who pay
less than c under the flatter security:

Proposition 3. Take two securities S1 and S2 in Dc,b̃,X̃ , with S1 steeper. Let k∗ be given
by equation (11). Then there exists k′ > k∗ such all types v ∈ [0, k′) prefer the flatter
security S2, and strictly so for v > 0.

Proof. We rank the utilities by considering the two cases v ∈ [0, kSLC(S2)] and v ∈
(kSLC(S2), k∗) separately, The ranking on [0, kSLC(S2)] follows directly from (14), smooth
trading, and the definition of steepness. Let U1 and U2 denote the equilibrium indirect
utilities under securities S1 and S2. Since S̄1(α1(v), v) = S̄2(α2(v), v) = c for v ≤
kSLC(S2), η1(v, α1(v)) < η2(v, α1(v)).

The ranking then extends to (kSLC(S2), k∗] by using the upward-skimming property.
Let α̃2 : [0, 1]→ [α

¯2, ᾱ2] be defined by S̄2(α̃2(v), v) = c. This is the offer that would have
been taken by each type under security S2 if the S2 equilibrium had featured smooth
trade until the end. Now consider an artificial utility function

Ũ2(v) = X(v) + (b(0)− c) exp

{∫ v

0

η2(y, α̃2(y))dy

}
.

Clearly U2(v) = Ũ2(v) for v ≤ kSLC(S2), and by the same steepness argument used to
rank utilities on [0, kSLC(S2)], Ũ2(v) > U1(v) for all v ∈ (kSLC(S2), k∗].

We claim that, if U2(v) = Ũ2(v) for some v ∈ (kSLC(S2), k∗], U ′2(v) > Ũ ′2(v). Given
U2(kSLC(S2)) = Ũ2(kSLC(S2)) and Ũ2(v) > U1(v) for v ∈ (kSLC(S2), k∗], this will imply
U2(v) > U1(v) in that range. Taking partial derivatives on η2,

η2
α(v, α) ∝ ∂

∂α

(
b′(v)− S̄2

v(α, v)
) [
b(v)− S̄2(α, v)

]
+ S̄2

α(α, v)
[
b′(v)− S̄2

v(α, v)
]

= − ∂

∂v
ιS

2

(v, α) < 0

where the inequality uses the definition of upward skimming. Since α2(v) = αf,2(1) <
α̃2(v) for v ∈ (kSLC(S2), k∗], the claim follows from our integral representation in (14).

Proposition 3 provides a partial payoff ranking for an arbitrary pair of securities S1 and
S2 in Dc,b̃,X̃ . Partly because of the atom of trade at the end, steepness-based arguments
alone do not suffice for a payoff ranking that covers all types. To move forward, we
introduce additional structure on the paired comparison between S1 and S2.

Definition 9. An ordered security class with parametrized steepness is a function S :
[α, α]× R+ × [γ, γ]→ R+ such that

1. for any γ, S(·, ·; γ) is an ordered security class satisfying Assumption 1.

2. for any (α, v) ∈ [α, α]× [0, 1], S̄(α, v; γ) := E[S(α, Z̃; γ)|v] is a continuous function
of γ; and
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3. for any pair γ′, γ′′ ∈ [γ, γ] with γ′ < γ′′, S(·, ·; γ′′) is steeper than S(·, ·; γ′).

Some examples of ordered security classes with parametrized steepness include11

• Equity plus a fixed cash component γ: S(α,Z; γ) =
(
L̄− γ

)
+ αZ.

• Levered equity, with face value of debt γ: S(α,Z; γ) = αmax{Z − γ, 0}.

• Cash plus royalty rate γ: S(α,Z; γ) = α + γZ.

For steepness comparisons along such parametrized paths, we show that, with flatter
securities, bargaining inefficiencies (in the sense of expected discounting costs until the
time of trade) drop for types outside an intermediate region.

Proposition 4 (Steepness raises discounting costs outside intermediate region). Let
S be an ordered security class of parametrized steepness. Take γ′ < γ′′ such that
S(·, ·; γ) ∈ Dc,b̃,X̃ for all γ ∈ [γ′, γ′′]. For security S(·, ·; γ), let τCE(v; γ) denote the

certainty-equivalent delay for v and kSLC(γ) denote the critical type. Then

1. Increases in steepness raise discounting costs for types who (i) reach the impasse
under both securities, or (ii) do not reach it under either security:

τCE(v; γ′′) > τCE(v; γ′), for all v ∈ (0, 1] \ (kSLC(γ′), kSLC(γ′′)]. (15)

2. Small steepness increases raise discounting costs for most types: for any δ > 0,
γ ∈ [γ′, γ′′), there exists ε > 0, [γ, γ + ε] ⊂ [γ′, γ′′], such that a measure 1 − δ
of types endures strictly higher discounting costs under S(·, ·; γ + ε) than under
S(·, ·; γ).

Proof. We prove that, for all γ ∈ [γ′, γ′′], τCE(1; γ) is strictly increasing in γ. Point 1
then follows from τCE(v; γ) = τCE(1; γ) for all v > kSLC(γ) and Proposition 1.

Let k∗(γ) be given by equation (11), evaluated at security S(·, ·; γ). By Proposition
2, for any γ ∈ [γ′, γ′′] we have k∗(γ) > kSLC(γ).

Assume for the moment that kSLC(·) is continuous—we prove this at the end. Then
for all γ̂ > γ sufficiently close to γ, k∗(γ) > kSLC(γ̂). By Proposition 3, for small
enough ξ > 0, buyer kSLC(γ̂) + ξ must then strictly prefer S(·, ·; γ) to S(·, ·; γ̂). And
yet, by Proposition 2, in expectation kSLC(γ̂) + ξ pays strictly less under S(·, ·; γ) than
under S(·, ·; γ̂). It follows that kSLC(γ̂) + ξ must suffer strictly higher discounting costs
under S(·, ·; γ̂). Since kSLC(γ̂) + ξ is in the final trading atom under both securities,
τCE(1; γ̂) > τCE(1; γ), as required.

Finally, we verify the continuity of kSLC(·). By the continuity of S̄(α, v; ·), αf (1; ·) is
continuous, using the inverse function theorem. Now write kSLC(γ) as the solution to∫ 1

k

S̄(αf (1; γ), v, γ)dv − (1− k)c = 0.

11 It follows from Lemma 5 in DeMarzo et al. (2005) that higher γ’s correspond to steeper securities
in these examples.
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By the continuity of S̄ and αf (1; ·), kSLC(·) is continuous, too. Given Point 1, this proves
Point 2.

Even though types in the pooling region trade faster under a flatter security in a
parametrized steepness class, a payoff ranking is not immediate. For one thing, high
types pay strictly more in expectation under the flatter security; for another, there is an
intermediate region of types who pool under a flat security but are separated under a
steep security, and for those types no ranking of discounting costs is possible.

Nonetheless, our next result introduces a sufficient condition, easy to check in ap-
plications, that guarantees that all types prefer steeper securities within a family of
parametrized steepness. With a slight abuse of notation, let αf (1; γ) be the pooling offer

under S(·, ·; γ) and let η(v, α; γ) := b′(v)−S̄v(α,v;γ)

b(v)−S̄(α,v;γ)
.

Proposition 5. Let S be an ordered security class of parametrized steepness, and let
U(v; γ) denote v’s equilibrium indirect utility under S(·, ·; γ). Take γ′ < γ′′ such that
S(·, ·; γ) ∈ Dc,b̃,X̃ for all γ ∈ [γ′, γ′′]. If for any v ∈ [0, 1], γ ∈ [γ′, γ′′], η(v, αf (1; γ); γ) is
decreasing in γ, then U(v; γ) is also decreasing in γ, and strictly decreasing for v ∈ (0, 1).

Proof. Following the argument in Proposition 4, for all γ̂ > γ sufficiently close to γ,
k∗(γ) > kSLC(γ̂). By Proposition 3, buyer types in [0, k∗(γ)] must then prefer S(·, ·; γ)
to S(·, ·; γ̂), strictly so for v > 0.

Using the payoff representation in Lemma 2, we can write the indirect utility for type
v ∈ (k∗(γ), 1) under security S(·, ·; γ†), γ† ∈ {γ, γ̂} as

U(v; γ†) = X(v) + U(k∗(γ); γ†) exp

{∫ v

k∗(γ)

η(y, αf (1; γ†); γ†)dy

}
. (16)

It follows that from the assumption that η(v, αf (1; γ); γ) is decreasing in γ, and from
U(k∗(γ); γ) > U(k∗(γ); γ̂), that

U(k∗(γ); γ) exp

{∫ v

k∗(γ)

η(y, α†(1; γ); γ)dy

}
≥

U(k∗(γ); γ̂) exp

{∫ v

k∗(γ)

η(y, α†(1; γ̂); γ̂)dy

}
Plugging this into the representation (16) above, U(v, γ) ≥ U(v, γ̂) for all v ∈ [0, 1], and
strictly so for interior v’s. Since γ ∈ [γ′, γ′′] was arbitrary, we conclude that for any
U(v, γ) is a weakly decreasing function of γ, and strictly decreasing for interior v’s.

Our sufficient condition on η(v, αf (1; γ); γ) is not stated in terms of the primitive
securities, and it does not follows directly from steepness. However, the condition is
easily verified when we study particular classes of securities, as we do in section 5.
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5 Applications

In this section, we apply the previous results to study applications in which securities are
a crucial part of the negotiation.

5.1 Mergers and Acquisitions with Financial Constrains

In this section, we apply our framework to a common situation in mergers and acquisi-
tions: an acquirer and a target bargain over the terms of the merger using a combination
of cash and equity in the merged entity. Even though using cash reduces bargaining
frictions, companies in practice rely on other securities.

Financial constraints are a leading reason for using shares as a means of payment. The
acquirer might not have enough cash in hand to complete the transaction, and external
financing might be prohibitively expensive. Even if the company has sufficient cash, the
opportunity cost of depleting its cash reserves may outweigh the efficiency benefits from
negotiating in a less informationally sensitive security. For example, Alshwer et al. (2011)
finds that financially constrained acquirers rely more on stock as a method of payment
than financially unconstrained one ones. Other empirical studies have found that, even
when acquirers have enough cash to complete a transaction, they tend to use stock as a
means of payment if they are financially constrained.

We capture this situation by considering the case when a liquidity-constrained ac-
quirer, who takes on the role of the privately informed buyer in the model, has cash
holdings of L > 0.12 The offers made by the seller consist of a fixed cash component L,
“sweetened” by some negotiable amount of equity α in the merged firm. The security
used for the negotiation is therefore S(α,Z;L) = L + αZ, where L = 0 corresponds to
bargaining only in equity. The parties to the negotiation take the amount of cash used in
the transaction as given, and we consider comparative statics with respect to the amount
of cash.

As a shorthand, let SL denote the function S(·, ·;L). We assume below that S0 ∈
Db̃,X̃,c—there are non-trivial dynamics in the absence of cash—and SL ∈ Db̃,X̃,c—there
are non-trivial dynamics at the original liquidity level. We study the effect of increasing
liquidity from L to L′ > L in this environment, assuming that SL

′
is also in Db̃,X̃,c. This

exercise is well defined for L and L′ sufficiently small:

Lemma 3. If S0 ∈ Db̃,X̃,c, then there exists L∗ < c such that SL ∈ Db̃,X̃,c for all L ≤ L∗.

It is easy to verify that, for any L1 < L2, S1 := SL1 is steeper than S2 := SL2 . Hence,
we can apply Propositions 1 through 5 to look at the effect that higher liquidity has on
the outcome of the acquisition. These propositions imply:

Corollary 1. Assume S0 ∈ Db̃,X̃,c, and take two liquidity levels L1 < L2 < L∗ as in

Lemma 3. Let k∗(L2) := Z−1
(
Z(1) c−L2

b(1)−L2

)
. Then

12 For the present discussion, L is not part of the standalone value, but needs to be raised for the
purpose of bidding.
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1. More buyer types reach the impasse when liquidity constraints are looser:
kSLC(L1) > kSLC(L2).

2. Types outside
(
kSLC(L2), kSLC(L1)

]
—those who do not reach the impasse under

either security, and those who do reach the impasse under both securities—endure
higher discounting costs when liquidity constraints are tighter.

3. When liquidity constraints are tighter, types above min{k∗(L2), kSLC(L1)} pay more,
and those below pay less.

4. Types below k∗(L2) prefer the looser liquidity constraint, strictly so for v > 0.

5. If ϕ(v) := b(1)−b(v)
X(1)−X(v)

is decreasing, then all types prefer the looser liquidity constraint,
strictly so for interior types.

To unpack the assumptions in the corollary, note that S0 ∈ Db̃,X̃,c requires that
the standalone value is more sensitive to the private information than the joint return
(Remark 1). Assumption 1 applied to SL implies that L < c: the buyer’s liquidity
constraints are tight enough that the two parties cannot agree on a pure cash offer.

Next, we study the interaction between cash constraints and equilibrium delay. Since
in a Markov equilibrium delay is random and discounting is a convex function of delay,
it is essential to distinguish between the certainty-equivalent delay, which determines
discounting costs and payoffs, from the expected delay that an outside observer is able
to measure. Let τ sm(v;L) (“sm” for “smooth”) be the time at which v ≤ kSLC(L) trades
smoothly in equilibrium, and let D(L) be the expected discount in the impasse phase for
SL, given by (8). Then we can distinguish between the expected delay

τExp(v;L) =

{
τ sm(v;L), v ≤ kSLC(L),

τ sm(v;L) + 1−D(L)
rD(L)

, v > kSLC(L)

and the certainty-equivalent delay

τCE(v;L) =

{
τ sm(v;L), v ≤ kSLC(L),

τ sm(v;L)− logD(L)
r

, v > kSLC(L)

Specializing linear-uniform primitives, we show through numerical examples that

• Tightening up-front liquidity constraints can uniformly raise expected delay all
types v > 0, or it can uniformly lower expected delay for all but a vanishing
fraction [0, ε)

• Even in cases where expected delay is (almost) uniformly lower under tighter liq-
uidity constraints, all types can uniformly prefer loosening that constraint.

We illustrate these points in the following parametric class:
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Example 2 (Linear-Uniform Example). Take b̃|v ∼ U [c+ ∆, c+ ∆ + 2v] for some fixed
∆ > 0, and X̃|v ∼ U [0, 2av] for some fixed a > 0.

For these primitives, X(v) = av and b(v) = c + ∆ + v are linear functions of v, and
we can solve for the equilibrium in closed form:

Corollary 2. For the primitives in Example 2, the environment under SL is upward-
skimming and satisfies SLC13 so long as

L <
2ac− (c+ ∆ + 1)(2∆ + (1 + a))

(1 + a)
:= Lmax.

1. For L < Lmax, trade dynamics are given by

τ sm(k;L) =
(c− L)(1 + a)

r(c− a∆)
log

(
1

∆

(c+ ∆)(∆ + k)

c+ ∆ + (1 + a)k

)
kSLC(L) =

(1 + a)(1 + L) + c(2∆ + 1− a) + (3 + a)∆ + 2∆2

(1 + a)(c+ ∆ + 1− L)

D(L) =
∆ + kSLC

c+ ∆ + kSLC − L− αf (1)(c+ ∆ + (1 + a)kSLC)

2. Take L1 < L2 < Lmax. Types in (kSLC(L1), 1] suffer less discounting (trade sooner
in certainty equivalent terms) under L2, and all buyer types prefer L2, strictly so
for v ∈ (0, 1).

In spite of Corollary 2.2, increasing liquidity below Lmax can increase or decrease
the expected delay suffered by any given buyer type. We present two extreme examples
in Figure 2. The two rows correspond to two different parameter configurations; the
left panel on a row depicts expected delay for two different liquidity levels, while the
right panel on a row depicts certainty-equivalent delay. In the top row, corresponding
to c = 5,∆ = 1/5, a = 15, r = 4, L1 = 0, L2 = 1.18, all types suffer higher expected
delay when liquidity is lower. For all types, expected delay and certainty-equivalent
delay move in the same direction as L increases. By contrast, in the bottom row (c =
5,∆ = 1/5, a = 5, r = 1, L1 = 1.79, L2 ≈ Lmax − 10−3), all but an arbitrarily small
fraction of types (v < 10−3 in the simulation) suffer lower expected delay when liquidity
is lower. This holds even though types in the pooling region of both securities suffer higher
certainty equivalent delay when liquidity is lower, and even though all types prefer having
higher liquidity. Altogether, the model suggests that a measure of caution is needed when
interpreting empirical data on delay.

13 Under S0, the environment is always upward-skimming, and it satisfies SLC when

2ac > (c+ ∆ + 1)(2∆ + (1 + a)).
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Real delay may be hard to measure in applications, since the researcher may not
have a consistent way of identifying the point in time that corresponds to t = 0 in any
given negotiation. However, by reinterpreting the discount rate r as the arrival rate of
an exogenous breakdown in negotiations, we can connect discounting costs in our model
to observed probabilities of deal failure. If negotiations break down at a Poisson rate
r, then e−rτ

CE(v;L) is the probability of a negotiation failure for an acquirer of type v.
With this interpretation, Corollary 1 indicates that negotiations with sufficiently low and
sufficiently high types are more likely to fail if they have a larger equity component.
This is broadly consistent with the evidence provided by Malmendier et al. (2016), if
one focuses on small differences in the equity component of deals.14 However, as Panel
(d) in Figure 2 suggests, aggregate measures on the probability of deal failure may mask
heterogeneous effects of large changes in equity components.

Another implication of our results is that the acquirer’s ex-ante payoffs increase in
the cash component in the acquisition. However, our analysis also shows that we need
to be careful when we evaluate the return that acquirers obtain from acquisitions. Even
when a larger cash component increases ex-antes payoffs (by reducing delay or increasing
the probability of a deal), Proposition 2 shows that it may decrease ex post (observed)
payoffs, as high types end paying more. Thus, even if empirically we observe that more
cash-heavy offers reduce realized returns, those offers may still be in the (ex ante) best
interests of the acquiring firm’s shareholders.

One drawback of our analysis is that we fix the cash level and only allow the parties
to negotiate on the equity component (we study the dual problem of fixing the equity
component and negotiating over cash in the next subsection). In reality, companies
negotiate over the cash and equity components simultaneously. Analyzing this formally
would require solving a multidimensional screening problem, which is beyond the scope
of our model.15

5.2 Cash and Fixed Royalty Rate

Payment schemes with royalties are another common example of contingent payments.
Negotiations over natural resources often involve security offers, in the form of royalties.
While many mineral leases are assigned through auctions, others, especially those for
smaller, privately owned properties, are assigned through private negotiations. The terms
of the lease usually consider cash payments as well as royalties over the proceeds. When

14 In their sample, successful acquisitions have a smaller equity component than unsuccessful acquisi-
tions (46% and 55%, respectively). Interestingly, on average, both tend to have similar cash component
(45 % and 44%, respectively). However, the difference between successful and unsuccessful acquisition
is significant if we ignore outliers, and we consider the median transaction. The median equity com-
ponent among successful acquisitions is 43%, while the median equity component among unsuccessful
acquisitions is 75%. Similarly, while the median cash component among successful acquisitions is 37%,
the median cash component among failed acquisitions is 19%.

15See, for instance, the analysis in Strulovici (2017), who studies two parties negotiating over a multi-
dimensional contract space. However, extending his results from a purely private value, finite-type
environment to a common value, continuous-type environment would be a highly non-trivial task.
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Figure 2: Discounting and observable delay are distinct. Panels (a) and (b): parameters are c =
5,∆ = 1/5, a = 15, r = 4, L1 = 0, L2 = 1.18. All types suffer higher expected delay when liquidity is
lower. Panels (c) and (d): parameters are c = 5,∆ = 1/5, a = 5, r = 1, L1 = 1.79, L2 = 2.98. Types
in the pooling region suffer higher certainty equivalent delay when liquidity is lower, and all types
prefer having higher liquidity. However, all but a vanishing fraction of types suffer lower expected
delay when liquidity is lower.
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the land is owned by the government, these royalties are often determined by law and
not part of the negotiation. We model these interactions by considering a security family
β ∈ (0, 1): S(α, Z̃; β) = α + βZ̃. That is, parties bargain over a cash transfer, given a
fixed royalty rate.

We focus again on the primitives in Example 2, and we illustrate two facts:

• Minor changes in the royalty contract (that is, in the security) can dramatically
change the outcome of the negotiation and the payoffs to both parties.

• For parts of the parameter space in which trade happens instantly, both parties’ pay-
offs are non-monotone in steepness. When the environment is downward-skimming,
steeper securities benefit the seller at the expense of every type of buyers; when the
environment is upward-skimming, steeper securities benefit every type of buyer at
the expense of the seller.16

First, we show how equilibrium delay changes discontinuously in the security. Minor
algebra yields αf (1; β) = b(1)− βZ(1). The environment is upward skimming if

β > sup
v∈[0,1]

b′(v)

b′(v) +X ′(v)
,

while the SLC holds so long as

1 > β >
b(1)− c

Z(1)− E[Z̃]
.

In Example 2, these conditions amount to, respectively,

β >
1

1 + a
and 1 > β >

2(∆ + 1)

(1 + a)

Let β̄ := 2(∆ + 1)/(1 + a). Then it follows that, when β̄ < 1, β̄ is the maximum royalty
that leads to instant trade in equilibrium, and for all β ∈ ((1 + a)−1, β̄), there is instant
trade at an offer of αf (1; β). On the other hand, as β tends to β̄ from above, kSLC(β) ↓ 0,
and for an arbitrarily small ε > 0, all types in [ε, 1] have an expected discount until trading
close to

lim
β↓β̄

b(kSLC(β))− c
b(kSLC(β))− S̄(αf (1; β), kSLC(β); β)

=
∆

β̄(1 + a)− 1
=

∆

2∆ + 1
(17)

An arbitrarily small change in the royalty rate around β̄ therefore has dramatic effects
on the equilibrium delay. Our result here echoes Deneckere and Liang (2006).17 The

16 This echoes Che and Kim (2010)’s findings in a static security auction setting. See Section 6 for
more details.

17 One can show from their Theorem 3 that the limiting delay changes discontinuously as the static
inefficiency condition ceases to hold.
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contribution is to illustrate (i) the additional tractability offered by a continuous time
formulation, and (ii) how the discontinuity can be triggered by minor changes in the
security.

Using the primitives in Example 2, we can also look at the impact of the royalty
rate on the interim payoffs of the buyer. The environment is downward-skimming if
β ≤ 1/(1 + a), which leads to instant trade at an offer of αf (0; β) = b(0) − βZ(0). If
instead β ∈

(
(1 + a)−1, β̄

)
, as seen above, the environment is upward-skimming, with

instant trade at an offer of αf (1; β) = b(1) − βZ(1). Altogether, for β < β̄, equilibrium
payoffs for type v are

U(v; β) =

{
Z(v)− (b(0)− βZ(0))− βZ(v) = av + (1− β(1 + a))v, β ∈

(
0, 1

1+a

)
,

Z(v)− (b(1)− βZ(1))− βZ(v) = av + (β(1 + a)− 1)(1− v), β ∈
(

1
1+a

, β̄
)
.

(18)
For all interior types, payoffs are strictly decreasing in β for β < 1/(1 + a), and strictly
increasing for β ∈ (1/(1 + a), β̄).

In addition, payoffs are discontinuous at β = β̄. The function η(v, αf (1; β); β) is non-

decreasing in β for all v if ϕ(v) = b(v)−b(1)
X(v)−X(1)

is non-increasing in v. For linear-uniform

primitives, ϕ(v) is constant, so Proposition 5 implies that U(v; β) is decreasing in β for
β > β̄. Using the limiting expected discount in (17),

lim
β↓β̄

U(v; β) =

(
∆ + 1

2∆ + 1

)
av +

(
∆

2∆ + 1

)
(β̄(1 + a)− 1)(1− v) < lim

β↑β̄
U(v; β).

6 Discussion

Connection to Security Auction Literature In the security auctions literature, Che
and Kim (2010) first pointed out that having the standalone value X(v) be increasing in
v could lead to decreasing bidding strategies, i.e., higher types bid less and are less likely
to win the auction. They study the effect on revenue of moving from a flat security S2

to a steeper one S1, when both have equilibria in decreasing strategies.18

With the usual mapping between higher probability of winning and lower expected
discounting costs, their comparative statics correspond to our comparison between S1,
S2 ∈ Dc,b̃,X̃ . We now contrast our results to theirs.

First, Che and Kim (2010) prove, both for first and second price auctions, that ex-
pected payments are higher type-by-type under S2, the flatter security.19 The difference
between our results and theirs stems from the seller’s extreme commitment problem in

18 Their results are more general, but we emphasize this aspect of them to streamline the comparison
to ours. In fact, they show that, whenever S2 has decreasing bidding strategies (“upward-skimming,” in
our terminology), S1 also will. Moreover, they show that upward-skimming steeper securities yield lower
revenue than flatter securities, regardless of whether the flatter ones are upward- or downward-skimming.
In our setup, it is easy to show that if SLC holds for S2, then it must hold for S1, but it does not follow
that if S2 is upward-skimming, S1 will also be.

19 We refer to the working paper version, which contains results on both auction formats (available on
the authors’ website here: https://emu-perch-bjgm.squarespace.com/s/security-comment-1.pdf).
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our model. Because of her extreme lack of commitment, the seller makes exactly c on
every trade. Therefore,

• Low types (v ∈ [0, kSLC(S2)]) face an expected payment that is constant across
securities, since they are separated under either security.

• Intermediate types (v ∈ (kSLC(S2), kcross)) pay strictly less under S1, since types
in that range are separated in the S1 equilibrium, but they get cross-subsidized (by
types above k∗) in the S2 equilibrium.

A consequence of the revenue rankings in Che and Kim (2010) is that in their model,
among two securities that induce decreasing strategies bidders weakly prefer the steeper
one (strictly so for types below the highest). In our model, that preference can be reversed
uniformly for all types—even for types who pay more under the flatter security—and in
fact is always reversed for types under k∗. The reason is as follows: the allocation in Che
and Kim (2010)’s comparison is the same across both securities, so payment rankings
translate into utility rankings. Meanwhile, in our bargaining game, changing the security
changes the amount of delay and the expected allocation; the impact of this allocation
change on payoffs can overwhelm the impact of the higher expected payments under S2.20

The role of increasing net surplus We assumed throughout that b′ ≥ 0. Here we
describe the role of this assumption and how the equilibrium changes when it is relaxed.
Note that there is nothing pathological about a strictly decreasing b.21 For example, in
the M&A setting, b(v) is a measure of the synergies in a merger, which can be higher
or lower for high types. Suppose that the buyer is acquiring the seller for access to a
proprietary technology. v measures how close the buyer is to the technological frontier.
A higher v would then increase the expected standalone value X and may even increase
the total value Z, but the marginal value of the seller’s technology Z − X = b can be
lower the closer the buyer is to the technological frontier.

So long as the non-degeneracy conditions in Assumption 1 hold, and the environment
is upward-skimming, a b with decreasing portions does not change the equilibrium anal-
ysis, with one key exception. Even if b(0) > c—i.e., there is a gap at the bottom—one
could have b(1) = c—i.e., there is no gap at the top. In such a case, per Theorem 1, we
avoid a complete breakdown of trade, but there will be no final atom. Consider the SLC.

Proposition 3 in that version shows that payments are strictly higher ex-post in the second price auction.
The proof of their Proposition 5 shows that interim utilities are strictly higher (except for v = 1) under
S1; since the allocations are the same in both cases (both security auctions have decreasing strategies),
interim expected payments must be higher under S2.

20 To emphasize this point—that our departure from the results in Che and Kim (2010) and DeMarzo
et al. (2005) is “allocation-driven,” consider two upward-skimming securities that both fail SLC. Since all
types trade instantly in either case, the allocation, meaning the expected discount until trade, is constant
across securities. Then, given that all types pay S̄i(αf,i(1), v) under Si, it follows from (10) that flatter
securities lead to higher revenue and make buyers worse off, as in Che and Kim (2010). Taking two
downward-skimming securities, we get the opposite result, as in DeMarzo et al. (2005).

21 We are grateful to Brett Green for suggesting this possibility.
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Since c = b(1) := S̄(αf (1), 1), E[S̄(αf (1), v)|v ∈ [k, 1]] < c for all k. In other words, no
matter how many types the seller has screened, adverse selection is always severe enough
that she prefers trading with the marginal type to trading with the remaining types.
The ranking results in Section 4 also simplify considerably: if b(0) > b(1) = c, for any
two upward-skimming securities ranked by steepness, it follows that all types trade faster
with the flatter security, and they are better off for it.

We can contrast this b(1) = c case to the examples in Section 5.1. There we showed
that flatter securities could increase bargaining frictions, raising discounting costs for some
types and even raising expected delay for practically all types. The comparison suggests
that whether or not b(1) > c is a crucial condition for determining the equilibrium effects
of changing securities.
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Omitted Proofs

Proof of Lemma 1. We prove the case of strictly increasing ιS(·, α) (the argument for an
decreasing ιS(·, α) is symmetric). The statements on αf follow by implicit differentiation:
since αf solves b(v) = S̄(αf (v), v),

∂

∂v
αf (v) =

b′(v)− S̄v(αf (v), v)

S̄α(αf (v), v)
−

=0︷ ︸︸ ︷[
b(v)− S̄(αf (v), v)

] S̄αv(αf (v), v)

S̄α(αf (v), v)2

= − ∂

∂v
ιS(v, αf (v)) < 0 (19)

We separate the statement on T (v) into two claims:

1. First, we show that selections from arg maxt∈R+ V (t, α̃t, v) are non-decreasing.

2. Then we show that if t = +∞ ∈ T (v
¯
), then for any v̄ > v

¯
, T (v̄) = {+∞}. Formally,

if supt∈R+
V (t, α̃, v

¯
) = X(v

¯
), then supt∈R+

V (t, α̃, v̄) = X(v̄) and V (t, α̃t, v̄) < X(v̄)
for all t ∈ R+.

Claim 1: The key step is an argument by Milgrom and Shannon (1994) and Edlin and
Shannon (1998). Edlin and Shannon (1998)’s Theorem 2 has additional conditions that
are violated in our setting, but which are only necessary to derive their conclusions on
strict comparative statics. For completeness, we reproduce here the part of the argument
that suffices for our purposes:

Definition 10. For V : R+ × [α
¯
, ᾱ] × [0, 1] → R, V satisfies the strict Spence-Mirrlees

condition in ((t, α), v) if if V is C1, Vt/|Vα| is strictly increasing in t, and Vα 6= 0 and has
a constant sign.

Lemma 4 (Adapted from Theorem 2 in Edlin and Shannon (1998)). Assume V :
R+ × [α

¯
, ᾱ] × [0, 1] satisfies the strict Spence-Mirrlees condition and has path-connected

indifference sets. Then every selection from arg maxt∈R+ V (t, α̃t, v) is non-decreasing.

Proof. By Theorem 3 in Milgrom and Shannon (1994), V is strictly single crossing in
((t, α); v), where R+× [0, 1] is endowed with the lexicographic order. With that order on
R+ × [α

¯
, ᾱ], V is quasisupermodular in (t, α) and the set {(t, α) : α = α̂t} is a sublattice

of R+× [0, 1]. The result then follows by Theorem 4’ in Milgrom and Shannon (1994).

The Spence-Mirrlees condition follows from simple calculus: using Vα = −e−rtS̄α < 0,

Vt
|Vα|

= −r(b(v)− S̄(α, v))

S̄α(α, v)
= rιS(α, v). (20)

so V satisfies the strict Spence-Mirrlees condition whenever ιS(·, v) is strictly increasing.
To show complete regularity of V , fix v and t

¯
< t̄ and α

¯
, ᾱ such that V (t̄, ᾱ, v) =

V (t
¯
, α
¯
, v) = ū. We construct a continuous function α̃ : [t

¯
, t̄] → [0, 1] satisfying α̃(t

¯
) = α

¯
,

α̃(t̄) = ᾱ, and V (t, α̃(t), v) = ū.
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If ū = X(v), then ᾱ = α
¯

= αf (v) and V (t, αf (v), v) is constant in t; setting a
constant α̃(t) = αf (v) trivially suffices. Focus then on ū > X(v); the proof for ū < X(v)
is symmetric. For all (t′, α′) such that V (t′, α′, v) = ū, b(v) − S̄(α′, v) > 0 and therefore
Vt(t

′, α′, v) = re−rt
′
(b(v)−S̄(α′, v)) > 0. By the Implicit Function Theorem, since Vα < 0,

for any t0 ∈ [t
¯
, t̄], there exists some open neighborhood O ⊂ [t

¯
, t̄] with t0 ∈ O and a C1(O)

function α̃ : O → [0, 1] satisfying

α̃′(t) = − Vt(t, α̃(t), v)

Vα(t, α̃(t), v)
, t ∈ O, V (t0, α̃(t0), v) = ū,

i.e., α̃ is in fact a local solution to an initial value problem.22

We extend the solution to the IVP above to yield the desired function α̃. Take the
open domain D = (t

¯
, t̄)×(α

¯
, ᾱ). We only show how to extend α̃ continuously rightward up

to t̄, since extending it leftward to t
¯

is done symmetrically. Since V is C1, Vt is bounded
above and below on D, and Vα < 0, g(t, α) := −Vt(t, α, v)/Vα(t, α, v) is continuous and
bounded on D. By standard extension theorems (Lemma 2.14 in Teschl (2012) and
Theorem 4.1 in Coddington and Levinson (1955)), either α̃ can be extended rightwards
inside D to all of [t0, t̄) , or there exists some t′ ∈ (t0, t̄] such that α̃ extends rightwards
up to [t, t′) with α̃(t′) = ᾱ.23 If α̃ can be extended rightwards to all of [t0, t̄), then by the
continuity of V , α̃(t̄−) = ᾱ, and we are done.

Suppose, then, that α̃ cannot be extended rightwards to all of [t0, t̄), so there exists
some t′ ≤ t̄ with ã(t′) = ᾱ as above. If t′ = t̄, we are done, so focus on the remaining case
t′ < t̄. Since V (t′, ᾱ, v) = ū = V (t̄, ᾱ, v), by Rolle’s theorem there exists some t′′ ∈ (t′, t̄)
such that Vt(t

′′, ᾱ, v) = 0. That would require ᾱ = αf (v), a contradiction to ū > X(v).

Claim 2: If supt∈R+
V (t, α̃, v

¯
) = X(v

¯
), so that t = +∞ achieves that supremum, it must

be that, for all t ∈ R+, b(v
¯
) ≤ S̄(α̃t, v

¯
). But then, using S̄α < 0, it follows that, for all

t ∈ R+,
α̃t ≥ αf (v

¯
) > αf (v̄).

where the strict inequality was shown in (19). Therefore, using S̄α < 0 and b(v̄) =
S̄(αf (v̄), v), we have that, for all t ∈ R+,

b(v̄) < S̄(α̃t, v̄)⇒ V (t, α̃t, v̄) < X(v̄) and sup
t∈R+

V (t, α̃, v̄) = X(v̄)

We conclude that arg maxt∈R+∪{+∞} V (t, α̃t, v̄) = {+∞}, as required.

Proof of 3. A minor calculation yields ιS
L
(v, α) = −[b(v) − L]Z(v)−1 + α. ιS

0
(v, α) is

increasing in v for every α if and only iff b/X is strictly decreasing. Hence, by conti-
nuity, there exists some La small enough that, for all L ≤ La, ι

SL(v, α) remains strictly
increasing in v for all α.

22 Since Vα < 0, one can solve for α̃(t0) in V (t0, α̃(t0), v) = ū.
23 To be precise, α̃ extends up to [t, t′) and α̃(t′−) = ᾱ.
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Let αf (1;L) = b(1)−L
Z(1)

denote the final offer that makes v = 1 just indifferent under

SL. Using αf (1; 0) = b(1)
Z(1)

, SLC holds under S0 (equity bargaining) iff E[Z̃] b(1)
Z(1)

< c, while

SLC holds under SL iff

L ≤
c
[
1− b(1)

c
E[Z̃]
Z(1)

]
1− E[Z̃]

Z(1)

Therefore, whenever SLC holds under S0, there exists Lb ∈ (0, c) such that SLC holds
under SL for all L ≤ Lb. Taking L∗ = min{La, Lb} concludes the proof.

A Necessary Conditions

Proof of Theorem 1, Necessary Conditions.

Downward Skimming The proof for the downward skimming case proceeds by con-
tradiction. We assume the existence of an equilibrium with smooth screening and show
that the seller has incentive to accelerate trade as much as possible, which contradicts
the optimality of smooth screening.

Since higher types trade first, the seller’s beliefs are right-truncations of the prior,
and the truncation cutoff k is the Markov state controlled by the seller. Let k′ be a state
in the interior of a smooth trade region. Then, for some ε > 0, the seller’s HJB at all
k ∈ (k′ − ε, k′ + ε) is

rJ(k) = sup
k̇≥0

(
S̄(α(k), k)︸ ︷︷ ︸
E[S(α(k),Z)|k]

−J(k)
) |k̇|
k
− J ′(k)|k̇|+ rc.

For |k̇| <∞ to be indeed optimal for the seller, it must be that for all k ∈ (k′− ε, k+ ε),

E[S(α(k), Z)|k] ≤ J(k) + J ′(k)k ⇒ J(k) = c. (21)

Consider first the case in which |k̇| ∈ (0,∞) is optimal. Then the inequality above is
an equality, and E[S(α(k′), Z)|k′] = J(k′) = c. In particular, α(·) is C1 in the region
(k′ − ε, k′ + ε). Differentiating both sides with respect to k′,

α′(k)S̄α(α(k), k) = −S̄v(α(k), k) (22)

Meanwhile, for buyer Kt in the interior of a smooth trade region to buy at t and not
mimic any type in that region, the following local incentive constraint is necessary:

r(Z(Kt)− S̄(α(Kt), Kt)) = rX(Kt)− K̇tα
′(Kt)S̄α(α(Kt), Kt).

Plugging in (22) and the seller’s indifference condition (21), we obtain

K̇t =
r(b(Kt)− c)
S̄v(α(Kt), Kt)

. (23)

A3



In particular, K̇t ≥ 0, contradicting either forward skimming or the optimality of |K̇t| ∈
(0,∞) at time t for the seller.

If k̇ = 0 is (strictly) optimal for the seller on an interval of time with positive measure,
by a simple dynamic programming argument, indefinitely ceasing trade is also optimal
and J(k) = c. For no trade to be optimal, the reservation offer α̂(k) of buyer k must
satisfy Z(k)− S̄(α̂(k), k) = X(k). In other words, α̂ = αf , where the latter is defined in
Definition 2. By the arguments in Lemma 1, α̂(·) must be weakly increasing. The seller
can therefore offer αf (0) to trade with all remaining types [0, k] at prices of α̂(0) (create
an atom of trade of size k to obtain

E[S̄(αf (0), v)|v ≤ k] > S̄(αf (0), 0) = b(0) ≥ c,

where the strict inequality follows from the nondegeneracy conditions in Assumption 1
and αf (0) 6= α

¯
.24

Altogether, in a downward skimming environment, there can be no smooth trade and
no quiet periods. Given that jumps are well-separated in an regular equilibrium, this
implies that the equilibrium must consist of a single atom of measure 1, i.e., instant
trade.

Upward Skimming Higher types trade later, so the seller now controls the left trun-
cation of her posterior beliefs as a Markov state.

As before, we first identify implications of smooth trading, which then guide the
analysis of all possible dynamics. The HJB for k in the interior of a smooth trade region
(in cutoff space) is now

rJ(k) = sup
k̇≥0

(
S̄(α(k), k)− J(k)

) k̇

1− k
+ J ′(k)k̇ + rc. (24)

Therefore J(k) = c. If in addition, k̇ 6= 0 at such a state, S̄(α(k), k) = c.
Second, we show that if there is smooth trade, it happens only on a set of states

[0, ksmooth), i.e., the games starts with smooth trading and ends with a jump. Suppose
that, on some continuation game, there were a jump from k to k′ > k. Since there are
countably many jumps, and jumps are isolated,25 smooth trade must recommence at k′.
In particular, J(k′) = c and E[S(α(k′), Z̃)|v = k′] ≤ c. The seller’s payoff from jumping
to k′ is therefore (

k′ − k
1− k

)
E[S̄(α(k′), v)|v ∈ [k, k′)] +

(
1− k′

1− k

)
c.

24 αf (0) satisfies S̄(αf (0), 0) = b(0) ≥ c, so it must be greater than α
¯

.
25 If jumps discontinuities were not isolated, then a jump from k to k1 would be followed almost

immediately by a jump from k1 to k2. However, this gives the types in (k1, k2] no incentive to reject
the offer that led to state k1. Buyer optimality would therefore require all of [k, k2] to accept instantly.
Hence, the distance between two jumps must be bounded away from zero.
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The seller can always freeze trade and ensure a payoff of c, so for such a jump to be
optimal,

c ≤ E[S̄(α(k′), v)|v ∈ [k, k′)] ≤ E[S̄(α(k′), v)|v = k′] ≤ c.

If the second inequality were an equality, then α(k′) = α
¯

, by the nondegeneracy condition
in Assumption 1. But that would contradict the last inequality, since S̄(α

¯
, k′) < c. The

second inequality must therefore be strict, which is a contradiction. Therefore, the set of
smooth trade states must be an interval [0, ksmooth).

Third, we show that ksmooth = kSLC . By Condition 2 in the equilibrium definition,
buyer v = 1’s equilibrium reservation price α(1) must be equal to αf (1), the highest
take-it-or-leave-it offer that he would acccept. Hence, if ksmooth < kSLC , so that contin-
uation play prescribes a jump before the state reaches kSLC , then it is weakly optimal
for the seller to jump directly to k = 1 at ksmooth. Her payoffs at ksmooth are therefore
E[S(α(1), Z̃)|v ∈ [ksmooth, 1]] < c, by definition of kSLC . This violates the seller’s indi-
vidual rationality, so we must have ksmooth ≥ kSLC . However, if ksmooth > kSLC , then
for any state k ∈ (kSLC , ksmooth), the seller can jump the state to v = 1 with an offer of
αf (1); this gives her a payoff of E[S(αf (1), Z̃)|v ∈ [k, 1]] > c, a profitable deviation. In
particular, ksmooth = kSLC implies that, if the SLC fails, all equilibria have instant trade.

Fourth, we show that, for k ∈ (0, kSLC), the optimal k̇ in (24) must be strictly positive,
i.e., there are no quiet periods. Suppose otherwise. By a typical dynamic programming
argument, if starting at state k ∈ (0, kSLC) we have k̇ = 0, then the continuation value
of the marginal buyer equals X(k), and α(k) = αf (k) as defined in Lemma 1. But then
S̄(α(k), k) = b(k) > c, so (24) fails, a contradiction.

Finally, we show that if the SLC holds, but there is no gap, trade breaks down. Since
the SLC holds, kSLC > 0. By the previous point, The states [kSLC , 1] must be reached
via smooth trade. By identical arguments to those in the downward skimming case, if
trade is smooth at a positive speed, the speed of trade must satisfy (23). In particular,
for a small enough but positive ε > 0, the unique smooth trade cutoff path that is locally
incentive compatible for the buyer and the seller on t ∈ [0, ε) solves the initial value
problem

K̇t =
r(b(Kt)− c)
S̄v(α(Kt), Kt)

, Kt = 0,

i.e, Kt = 0 on [0, ε).26

At t = ε, the situation replicates itself, so kSLC > 0 is never reached. Again by pre-
vious arguments, the only remaining non-trivial trading dynamic involves instant trade.
However, since the SLC holds, this is strictly suboptimal for the seller.

B Equilibrium Verification

Proof of Theorem 1: Equilibrium Verification. We present details for the case with non-
trivial delayed trade, S ∈ Dc,b̃,X̃ ; the remaining cases are similar, but much simpler.

26The right hand side is C1, given the assumptions on primitives and the expression for α(·).
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Verification: Seller’s On-Path Strategies Now, we verify that the seller’s choice of
{Kk}k∈[0,1] and F are optimal, given the buyer’s strategy

α(k) =

{
αf (1) if k ∈ (kSLC , 1]

S̄−1(c, k) if k ∈ [0, kSLC),
(25)

where the inverse S̄−1(c, k) is defined by S̄
(
S̄−1(c, k), k

)
= c. From the previous, given

α(k) in equation (25), seller’s the continuation value is

J(k) =

{
c if k ∈ [0, kSLC ]

E[S(αf (1), Z̃)|v ∈ [k, 1]] if k ∈ (kSLC , 1]
(26)

Notice that J(·) has a kink at kSLC as

J ′(kSLC−) = 0 < J ′(kSLC+) =
∂

∂k
E[S(αf (1), Z̃)|v ∈ [k, 1]]

∣∣
k=kSLC

The value function fails to be differentiable at at kSLC due to the discontinuity in α(·),
Moreover, this implies that the HJB equation is discontinuous at this point. To avoid the
technical complications associated to working with discontinuous HJB equations, and
the theory of viscosity solutions, we take advantage that admissible cutoff polices are
non-decreasing, and we split the verification of the optimal policies in two steps: First
starting at k0 ∈ (kSLC , 1], and then starting k0 ∈ [0, kSLC ].

Verification for k0 ∈ [kSLC , 1]. Let’s ignore the fact that for α(Kt) = αf (1), all
types accept the offer, and consider a relaxed formulation in which the seller is allowed
to smoothly screen on k0 ∈ [kSLC , 1]. To simplify notation, we consider F which are
absolutely continuous and let Λt =

∫ t
0
λ(s)ds. The seller’s value function is

J(k0) = sup
Q,λ

∫ ∞
0

e−rt−Λt
(
E
[
S̄ (α(Qt), v)

∣∣∣v ∈ [Qt−, Qt]
] dQt

1− k0

+ λtE
[
S̄
(
αf (1), v

) ∣∣∣v ∈ [Qt−, 1]
] )

+

(
1−

∫ ∞
0

e−rt−Λt

(
1−Qt

1− k0

λtdt+
dQt

1− k0

))
c.

Rather than working with the value function J(·), it is convenient to work with the
equivalent value function J̄(k) ≡ (1− k)J(k), so

J̄(k0) = sup
Q,λ

∫ ∞
0

e−rt−Λt
(
E
[
S̄ (α(Qt), v)

∣∣∣v ∈ [Qt−, Qt]
]
dQt

+λt(1−k0)E
[
S̄
(
αf (1), v

) ∣∣∣v ∈ [Qt−, 1]
] )

+

(
1− k0 −

∫ ∞
0

e−rt−Λt
(
λt(1−Qt)dt+ dQt

))
c.
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We conjecture, and then verify, that the value function J̄(·) satisfies the quasi-variational
inequality

0 = max
{

sup
k̇≥0,λ≥0

(
S̄(α(k), k) + J̄ ′(k)

)
k̇ + λ

(∫ 1

k

S̄
(
αf (1), v

)
dv − J̄(k)

)
+ r(1− k)c− rJ̄(k) ,MJ̄(k)− J̄(k)

}
, (27)

where the operator M is defined by

MJ̄(k) = max
k′∈[k,1]

{
(k′ − k)E[S̄(α(k′), v)|v ∈ [k, k′]] + J̄(k′)

}
First we verify that J̄(k) = (1− k)J(k), where J(k) is as in (26) satisfies this quasi-

variational inequality. First, it is immediate to verify that J̄(k) =MJ̄(k), so the second
term of (27) is satisfied. For the first term, notice that

(
S̄(α(k), k) + J̄ ′(k)

)
k̇ + λ

(∫ 1

k

S̄
(
αf (1), v

)
dv − J̄(k)

)
+ r(1− k)c− rJ̄(k) ≤(
S̄(α(k), k) + J̄ ′(k)

)
k̇ = 0,

where we have used that J̄ ′(k) = −S̄(αf (1), k). From here on, the verification is standard.
Consider an arbitrary admissible policy Qt. Using the change of value formula, we get
that

e−rt−Λt J̄(Qt) = J(k0) +

∫ t

0

e−rs−Λs

(
q̇sJ̄

′(Qs−) + λs

(∫ 1

k

S̄
(
αf (1), v

)
dv − J̄(Qs−)

)
−rJ̄(Qs−)

)
ds+

∑
s<t

e−rs−Λs
(
J̄(Qs− + ∆Qd

s−)− J̄(Qs−)
)

From the quasi-variational inequality (27) we get that

J̄(Qs)− J̄(Qs−) ≤ (Qs −Qs−)E[S̄(α(Qs), v)|v ∈ [Qs−, Qs]]

and the term in the integral is less than

−r(1−Qs)c− q̇sS̄(α(Qs−), Qs−)− λs
∫ 1

k

S̄
(
αf (1), v

)
dv.
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It follows that

J̄(k0) ≥
∫ t

0

e−rs−Λs
(
r(1−Qs−)c+ q̇sS̄(α(Qs−), Qs−)

+λs

∫ 1

k

S̄
(
αf (1), v

)
dv

)
ds∑

s<t

e−rs−Λs
(
Qd
s −Qd

s−
)
E[S̄(α(Qs), v)|v ∈ [Qs−, Qs]] + e−rt−Λt J̄(Qt)

=

∫ t

0

e−rt−ΛtE
[
S
(
α(Qs), Z̃

) ∣∣∣v ∈ [Qs−, Qs]
]
dQs

+

(
1− k0 − e−rt−Λt(1−Qt)−

∫ t

0

e−rs−Λs
(
(1−Qs)λs + dQs

))
c

+ e−rt−Λt
(
J̄(Qt)− (1−Qt)c

)
,

where the equality

1− k0 − e−rt−Λt(1−Qt)−
∫ t

0

e−rs−Λs
(
(1−Qs)λs + dQs

)
=

∫ t

0

e−rs−Λsr(1−Qs−)ds,

follows by integration by parts. Taking the limit when t → ∞, we get that J̄(k0) is an
upper bound on the payoff that the seller can attain starting at any k0 ≥ kSLC . Finally,
because all the inequalities hold with equality in the case of equation for our conjecture
policy K, it follows that K is optimal starting at k0 ∈ [kSLC , 1].

Verification for k0 ∈ [0, kSLC). Using the previous characterization of the value func-
tion J̄(·) on [kSLC , 1], by the principle of dynamic programming, we can state the opti-
mization problem on [0, kSLC), as

J̄(k0) = sup
Q

∫ τ(Q)

0

e−rt−ΛtE
[
S̄ (α(Qt), v)

∣∣∣v ∈ [Qt−, Qt]
]
dQt

+

(
1− k0 −

∫ τ(Q)

0

e−rt−Λt
(
λt(1−Qt) + dQt

))
c+ e−rτ(Q)

(
J̄(Qτ(Q))− (1−Qτ(Q))c

)
.

where τ(Q) = inf{t > 0 : Qt ≥ kSLC}. Notice that the factor (1 − Qτ(Q))c is added to
account for the constant (1− k)c in the expected payoff. Once again, we conjecture that
the value function J̄(·) satisfies the quasi-variational inequality (27).

First, we can verify that J̄(·) defined by (26) (multiplied by 1− k) satisfies equation
(27) on [0, kSLC). By construction, S̄(α(k), k) = J̄ ′(k) = −c. Also,

MJ̄(k)− J̄(k) = max
k′∈[k,1]

{
(k′ − k)E[S(α(k′), Z̃)|v ∈ [k, k′]] + J̄(k′)

}
− (1− k)c < 0,
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so maxλ≥0{λ(
∫ 1

k
S̄
(
αf (1), v

)
dv − J̄(k))} = 0. Thus, the first term of the variational

inequality is equal to zero, and because MJ̄(k) − J̄(k)) ≤ 0, the second term also
satisfies the required inequality. It follows then that J̄(k) = (1− k)c is a solution of (27)
on [0, kSLC). Consider an arbitrary policy Q, so, once again, using the change of value
formula we get that

EQ
[
e−rt∧τ(Q)J̄(Qt∧τ(Q))

]
= J(k0) +

∫ t∧τ(Q)

0

e−rs
(
q̇sJ̄

′(Qs−) + λs
(
J̄(Qs− + ∆Qs

s−)

−J̄(Qs−)
)
− rJ̄(Qs−)

)
ds+

∑
s<t∧τ(Q)

e−rs
(
J̄(Qs− + ∆Qd

s−)− J̄(Qs−)
)

Following the same steps that we did before, we get

J̄(k0) ≥
∫ t∧τ(Q)

0

e−rs−Λs
(
r(1−Qs−)c+ q̇sS̄(α(Qs−), Qs−)

+λs
(
Qs
s −Qs

s−
)
E[S̄(α(Qs), v)|v ∈ [Qs−, Qs]]

)
ds∑

s<t∧τ(Q)

e−rs−Λs
(
Qd
s −Qd

s−
)
E[S̄(α(Qs), v)|v ∈ [Qs−, Qs]] + e−rt∧τ(Q)−Λt∧τ(Q) J̄(Qt∧τ(Q))

=

∫ t∧τ(Q)

0

e−rs−ΛsE
[
S̄ (α(Qs), v)

∣∣∣v ∈ [Qs−, Qs]
]
dQs + (1− k0)c

−
∫ t∧τ(Q)

0

e−rs−Λs
(
(1−Qs)λs + dQs

)
c+ e−rt∧τ(Q)−Λt∧τ(Q)

(
J̄(Qt∧τ(Q))− (1−Qt∧τ(Q))c

)
.

Taking the limit as t → ∞ we get that t ∧ τ(Q) → τ(Q). It follows that J̄(k0) is and
upper bound on the seller’s expected payoff. Finally, because in the case of the policy K
all the inequalities hold with equality, we get that the value of the policy K is given by
J̄(k0), so K is optimal on [0, kSLC).

Verification: Seller’s Off-Path Strategy Finally, we characterize the off-equilibrium
seller’s offer σ(·|k′, α′), where σ(·|k′, α′) has to maximize∫ 1

0

{
(α−1(α̃)− k′)+E

[
S
(
α̃, Z̃

) ∣∣∣v ∈ [k′, α−1(α̃) ∧ k′]
]

+(1− α−1(α̃))J
(
α−1(α̃)

)}
dσ(α̃|k′, α′).

We consider an off-equilibrium offer with two mass points, given by

σ(α|k′, α′) =

{
α(k′) w.p. p(k′, α′)

αf (1) w.p. 1− p(k′, α′),

If k′ < kSLC , then, conditional on rejection of α′, the cut-off is α−1(α′) = kSLC . In this

case, S̄(α(kSLC), kSLC) = E
[
S(αf (1), Z̃)|v ∈ [kSLC , 1]

]
= c = J(kSLC), and this payoff
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is higher than any other serious offer. Thus, any probability p(k′, α′) ∈ [0, 1] is optimal,
and in particular p(k′, α′) solving

S̄(α′, kSLC) = p(kSLC , α′)S̄(αf (1), kSLC) + (1− p(kSLC , α′))S̄(α(kSLC), kSLC).

If k > kSLC , then the optimal offer is p(k′, α′) = 1, as any other offer that is accepted

with positive probability yields E
[
S(αf (1), Z̃)|v ∈ [k′, k]

]
< E

[
S(αf (1), Z̃)|v ∈ [k′, 1]

]
=

J(k′).

Verification: Buyer’s On-Path Strategy The proof use a direct mechanism repre-
sentation of the continuation play together with the characterization in Lemma 1. We
cannot apply Lemma 1 directly because the characterization only applies to a determin-
istic path of cut-offs, and the path cut-off is stochastic in our equilibrium construction
(it jumps to KT = 1 at time T ). The first step then is to establish that, given the
seller strategy, the buyer acceptance strategy is incentive compatible only if it incentive
compatible for a deterministic path with the same delay for the pooling offer αf (1). Let
τ(k) = inf{t > 0 : Kt ≥ k}, let α(k) ≡ α(Kτ(k)), and y(k) = 1− E[e−rτ(k)]. Notice that,
given the seller strategy K we have that α(k) is a deterministic function of k, so the only
random variable is τ(k). Thus, we can write the buyer’s problem as

B(v, k) = max
k′∈[k,1]

EKk

[(1− e−rτ(k′))X(v) + e−rτ(k′)
(
Z(v)− S̄(α(Kτ(k′)), v)

)
]

= max
k′∈[k,1]

y(k′)X(v) + (1− y(k′))
(
Z(v)− S̄(α(k′), v)

)
= max

k′∈[k,1]
U(y(k′), α(k′), v).

It follows that it is without loss of generality to consider the incentive compatibility
condition for a deterministic mechanism inducing the same y(k) as Kk. By the arguments
in Lemma 1, we know, for increasing ιS(α, v), U(y, α, v) satisfies strict single crossing
differences in ((y, α), v), where (y, α) is ordered lexicographically. Hence, for any y 7→
α̃(y), U(y, α̃(y), v) has strict single-crossing differences in (y, v).

We have shown that y(v) is non-decreasing. If we prove that U(y, α̃(y), v) satisfies
smooth single crossing differences, taking α̃(y) to be the candidate equilibrium mapping
between choice of (1 minus) expected delay and equilibrium offer, and if the following
envelope condition is satisfied

U(y(v), α(v), v) = U(y(0), α(0), 0) +

∫ v

0

Uv(y(s), α(s), s)ds, (28)

then by Theorem 4.2 in Milgrom (2004), the buyer acceptance strategy α(v) will in-
centive compatible To check smooth single-crossing differences, take (y, v) such that
d
dy
U(y, α̃(y), v) = 0. Taking the derivative, we have

S̄α(α̃(y), v)
[
ιS(α̃(y), v)− α̃′(y)

]
= 0. (29)
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By assumption, S̃α > 0, so if the above display is 0, ιS(α̃(y), v) = α̃′(y). Then whenever
the derivative exists,

∂

∂v

d

dy
U(y, α̃(y), v) = S̄α(α̃(y), v)

[
∂

∂v
ιS(α̃(y), v)

]
> 0,

since the environment is upward skimming.
Now we show the relevant envelope condition. By definition, we have that for any v

and any (y, α)
Uv(y, α, v) = yX ′(v) + (1− y)

(
Z ′(v)− S̄v(α, v)

)
For any v ∈ [0, kSLC ] we have

U(y(v), α(v), v) = U(y(0), α(0), 0) +

∫ v

0

(Uv(y(s), α(s), s)

+Uy(y(s), α(s), s)y′(s) + Uα(y(s), α(s), s)α′(s)) ds,

where

Uy(·)y′(s) + Uα(·)α′(s) =
(
X(s)− Z(s) + S̄(α(s), s)

)
y′(s)− (1− y(s))S̄α(α(s), s)α′(s)

= −
(
b(s)− S̄(α(s), s)

)
y′(s)− (1− y(s))S̄α(α(s), s)α′(s).

From the local IC constraint way have that

r
(
b(Kt)− S̄(α(Kt), Kt)

)
= −K̇tα

′(Kt)S̄α(α(Kt), Kt).

By definition, on [0, kSLC), y′(k) = re−rτ(k)τ ′(k) and α′(k) = α′(Kτ(k))K̇τ(k)τ
′(k). Hence,

multiplying both sides of the local incentive compatibility constraint by e−rτ(k)τ ′(k), and
using the definition Kτ(k) = k, we get(

b(k)− S̄(α(k), k)
)
y′(k) = −(1− y(k))α′(k)S̄α(α(k), k),

so Uy(·)y′(s) + Uα(·)α′(s), and we obtain equation (28). Next, we verify he envelope
representation (28) for k ∈ (kSLC , 1]. Because α(k) and y(k) are constant on (kSLC , 1]
and Uy(·)y′(s) + Uα(·)α′(s) = 0 on v ∈ [0, kSLC ] we have that

U(y(v), α(v), v) = U(y(0), α(0), 0) +

∫ v

0

Uv(y(s), α(s), s)ds

+ U(y(kSLC+), α(kSLC+), kSLC)− U(y(kSLC), α(kSLC), kSLC).

By construction, the delay D in equation (9) is such

U(y(kSLC+), α(kSLC+), kSLC) = U(y(kSLC), α(kSLC), kSLC),

so the expected payoff U(y(v), α(v), v) satisfies the envelope condition (28).
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Verification: Buyer’s Off-Path Strategy The only step left is to verify the optimal-
ity of the reservation price strategy α(k) following an off-equilibrium offer α′ /∈ α([0, 1]).
By construction, the σ(α|k′, α′) is such the type kSLC buyer is indifferent between ac-
cepting α′ and reject it. Thus, we only need to verify that types above kSLC are better
off rejecting it. By construction

S̄(α′, kSLC) = p(kSLC , α′)S̄(αf (1), kSLC) + (1− p(kSLC , α′))S̄(α(kSLC), kSLC).

Let p′ ≡ p(kSLC , α′), because S̄(α′, v) is increasing in v, we have that

Z(v)− S̄(α′, v) < Z(v)− S̄(α′, kSLC)

= p′
(
Z(v)− S̄(αf (1), kSLC)

)
+ (1− p′)

(
Z(v)− S̄(α(kSLC), kSLC)

)
< p′

(
Z(v)− S̄(αf (1), kSLC)

)
+ (1− p′)B(v, kSLC),

which means that types v > kSLC are strictly better off rejecting α′. A similar calculation
shows that types v < kSLC are strictly better off accepting α′.
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