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Abstract

We study a continuous-time R&D race between an established firm and a
startup under asymmetric information. R&D investment brings success sto-
chastically but only if the innovation is feasible. The only asymmetry between
the firms is that the established firm has better information about the fea-
sibility of the innovation. We show that there is an equilibrium in which the
poorly-informed startup wins more often, and has higher expected profits, than
the better-informed incumbent. When the informational asymmetry is large,
this is the unique equilibrium outcome. Even though better information is a
competitive disadvantage, the value of information is positive.
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1 Introduction

Why Tesla and not GM or Toyota? Why Amazon and not Sears or Wal-Mart? Why
are startups the source of so many innovations instead of, and at the expense of,
established firms? In his landmark history of the hard-disk industry over two decades,
Christiansen (1997) found that the market for each new generation of disk drives–
typically, smaller in size– was dominated by a different set of firms. Of the 17 firms
in the industry in 1976, only IBM’s disk-drive division survived until 1995. In the
same period, there were 129 entrants but 109 of these failed to make the transition to
later generations (Christiansen, 1997, p. 22). Many technological innovations came
from startups.
What advantage does a startup have over an established firm? In one of his many

classics, Arrow (1962) argued that because of the "monopolist’s disincentive created
by his preinvention profits" (p. 622) an entrant would have more to gain from an
innovation. This is sometimes called the "replacement effect" because by successfully
innovating, the monopolist would only be replacing himself while the entrant would
be replacing the monopolist.1 Running counter to Arrow’s reasoning are the strong
incentives that an incumbent has to protect its monopoly position. This stems from
the Econ 101m > 2d inequality– monopoly profits exceed total profits in a duopoly–
which can be cleverly rearranged as m−d > d. In this form, it says that the incentive
of the incumbent to preserve its monopoly is greater than the incentive of the startup
to enter as a duopolist (Gilbert and Newberry, 1982). This "preemption effect" is at
odds with the replacement effect. There are other forces that may favor incumbents
as well– lower R&D costs or an existing stock of R&D capital.2 Whether the balance
of all these forces favors incumbents or startups is then an empirical question. In a
recent paper, Igami (2017) went back to the disk-drive industry and constructed a
structural model to try to answer this question. A large fraction of firms failed to
make the transition from 5.25- to 3.5-inch drives. Igami found evidence that Arrow’s
replacement effect played a substantial role, explaining about 60% of the turnover.
In this paper, we study a continuous-time, winner-take-all R&D race between an

established firm and a startup in which we identify an entirely new effect that works
to the detriment of the established firm– a "curse of information." Incumbent firms
have more experience and so have better information about the likelihood of success
of the new innovation. The firms are alike in all other respects and so the replacement
and preemption effects are absent. Formally, there are two states of nature. In one,
the innovation is feasible and R&D brings success stochastically– in the manner of
exponential bandits. In the other state, the innovation is not feasible. Firms do not
know the state but receive informative private signals about it and the established

1Arrow (1962) considered cost-reducing innovations and also the possibility of post-innovation
competition.

2Schumpeter (1942) argued that monopolies were more conducive to innovation than perfect
competition.
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firm’s signal is more accurate than that of the startup. A good signal makes a firm
optimistic and a bad one pessimistic. As the race proceeds, lack of success causes
both firms to become increasingly pessimistic about the feasibility of the innovation.
R&D is costly and each firm must then decide when to quit, a decision is observed
by its rival and is irrevocable.
Our main result is

Theorem 1 There is an equilibrium of the R&D game in which the less-informed
startup wins more often, and has a higher payoff, than the better-informed incumbent.
Moreover, if the quality of the incumbent’s information is much better than that of
the startup, then this is the only equilibrium.

Our result shows that in an otherwise symmetric situation, the incumbent’s infor-
mational advantage becomes a competitive disadvantage– it wins the R&D race less
often than the startup and, as we will see, has a lower payoff as well. The startup is
favored to win precisely because it is less informed!
We call such an equilibrium an "upstart equilibrium." In such an equilibrium,

the less-informed startup is, quite naturally, willing to learn from the incumbent.
But because of its superior information, the incumbent is unwilling to learn from the
startup/upstart. This unbalanced learning is why the startup wins more often and
the better information available to the established firm becomes a curse.
Precisely, both the incumbent and the startup play strategies that reveal over

time whether or not they are optimistic. But since the incumbent’s information is
of higher quality than that of the startup, when pessimistic it exits early in the race
based solely on its own information. The reason is that while the startup also reveals
its signal during the play of the game, this comes too late to make it worthwhile for a
pessimistic incumbent to stay and learn. On the other hand, the information does not
come too late for the optimistic incumbent for whom it is worthwhile to stay and learn
the startup’s signal. Thus a pessimistic incumbent exits early while an optimistic one
stays. This means that the startup can learn the incumbent’s information at low cost.
During the play of the game, both the optimistic and the pessimistic startup learn
the incumbent’s information but only the optimistic incumbent learns the startup’s
information.
It is then not too hard to argue that if both firms are optimistic or both are

pessimistic, they exit at the same time. The same is true when the incumbent is
optimistic and the startup pessimistic– this is because they both learn each other’s
signal. The remaining case is one with a pessimistic incumbent and an optimistic
startup. The incumbent exits early and so the startup learns that it is pessimistic.
But its own optimism causes the startup to continue with R&D nevertheless. Now
the startup has a greater chance of winning than does the incumbent.
The upstart equilibrium outcome has some salient features. While it can be

supported as a perfect Bayesian equilibrium, it does not rely on any particular choice
of off-equilibrium beliefs. More important, when the informational advantage of the
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incumbent is large, it is the unique Nash equilibrium outcome. The formal argument
relies on the iterated elimination of dominated strategies– in our game, this procedure
leaves a single outcome. Some idea of the reasoning can be gauged by noting that
in these circumstances there cannot be a "mirror equilibrium" in which the roles of
the two firms are reversed and the incumbent learns more from the startup than the
other way around. Because the startup’s information is of very poor quality, it is
not worthwhile for the incumbent to invest in learning this. So when the startup’s
information is very poor, a mirror equilibrium does not exist. In our formal analysis,
we rule out not only the mirror equilibrium but all others as well.
In our equilibrium, a firm may suffer from ex post regret– had it known the

other’s signal, it may have wanted to stay longer in the race or may have wanted to
exit earlier.3 In equilibrium, the established firm never regrets staying too long but
may regret exiting too early. The startup, on the other hand, never regrets exiting
too early but may regret staying too long.
Intuition suggests that information should confer a strategic advantage. In our

model, it is a disadvantage. One might rightly wonder whether this is because in
the game we study, the value of information is negative.4 This is not the case.
We show below that in the upstart equilibrium, the value of information is positive
for both firms. In other words, neither firm can increase its equilibrium payoff by
decreasing the quality of its own information. Theorem 1 above is a comparison of
payoffs across firms and does not contradict the fact that each firm has the individual
incentive to become better informed. Finally, we also ask whether it might be in
the incumbent firm’s interest to decrease the quality of its information so drastically
that it is completely uninformed. We show that such "willful ignorance" cannot be
profitable.

Overconfidence The popular press is full of stories of brash Silicon Valley entre-
preneurs who embark on risky projects that established firms deem unworthy. Most
of these startups fail but some do succeed and perhaps lead to the kinds of disrup-
tion that is observed. Some studies have argued that this over-investment in risky
projects stems not from risk-loving preferences but rather from overconfidence.5 As
one observer of the startup phenomenon has written:

"In the delusions of entrepreneurs are the seeds of technological progress."
(Surowiecki, 2014)

3Moscarini and Squintani (2010) call these the "quitter’s curse" and "survivor’s curse," respec-
tively.

4As is the case, for instance, in the classic "lemons problem." There is no trade when the seller
is informed but there would be if she were not.

5See, for example, Wu and Knott (2006). Another study found that entrepreneurs are prone to
overestimate their own life spans relative to the rest of the population (Reitveld et al. 2013)!
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In this view, the Elon Musks of the world drive innovation because of unwarranted
self-confidence. They remain optimistic in environments that the GMs of the world
are pessimistic about, and perhaps realistically so.
While our model and analysis has no behavioral or psychological elements, it can

be seen as providing a rational reinterpretation of such behavior. When the incum-
bent firm’s information is not favorable to the project while the startup’s is, the
former is pessimistic and the latter optimistic. The startup invests in R&D while the
better-informed incumbent does not. In these circumstances, the rational optimism
of the startup would be observationally equivalent to overconfidence. In single-person
problems, Benoît and Dubra (2011) argued that in many situations a fully rational
Bayesian agent may end up with beliefs that, to an outside observer, would seem
overconfident. They showed that this "apparent overconfidence" could be generated
solely by the structure of information available to the agent. Our model and equilib-
rium can be interpreted as doing the same, but now in a strategic situation with more
than one agent. The postulated information structure and the upstart equilibrium
results in behavior that an outside observer may well attribute to overconfidence.

Related literature The basic model of this paper is rather standard. R&D races
where the arrival times of success are exponentially distributed and there is uncer-
tainty about the arrival rates were first studied by Choi (1991). Malueg and Tsutsui
(1997) extend Choi’s model to allow for flexibility in the intensity of R&D. In a variant
of Choi’s model, Wong (2018) examines the consequences of imperfect patent protec-
tion thereby relaxing the winner-take-all structure common to most of the literature.6

Chatterjee and Evans (2004) introduce another kind of uncertainty– there are two
alternative paths to success and it is not known which is the correct one. Firms may
switch from one path to another based on their beliefs. Das and Klein (2018) study
a similar model and show that there is a unique Markov perfect equilibrium which is
effi cient when firms are symmetric in R&D ability and not otherwise.
In all of these models, however, there is no asymmetry of information– firms’

equilibrium beliefs are identical. In our model, firms receive private signals prior to
the race and the resulting asymmetry of beliefs is the key to our results.
The model of Moscarini and Squintani (2010) is, in its basic structure, most closely

related to ours. These authors study a very general set-up with arbitrary distributions
of arrival times (not necessarily exponential), continuous signals and differing costs
and benefits of R&D. They show the possibility that the exit of one firm leads the
other to regret staying as long– the firm suffers from a "survivor’s curse"– and so it
also exits as soon as possible.7 Our model differs from that of Moscarini and Squintani

6In Wong’s model the feasibility of the projects is independent across firms and so one firm cannot
learn from the other firm’s lack of success. In our model, and the others mentioned, the feasibility
is perfectly correlated.

7Moscarini and Squintani (2010) mention the so-called fifth-generation computers initiative as
an example. When the Japanese consortium abandoned this once promising technology, firms in the
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in that we have discrete states and signals. At the same time, it specializes their model
by assuming exponentially distributed arrival times, identical costs and benefits of
R&D and comparable information. Moscarini and Squintani also point to a "quitter’s
curse"– regret at exiting too early. When the firms’information is comparable, as
we assume, even the curses are asymmetrically distributed. The better-informed firm
never suffers from the survivor’s curse but may suffer from the quitter’s curse. The
opposite is true for the less-informed firm. Finally, we derive circumstances in which
there is a unique equilibrium outcome and these too depend on the relative quality
of the firms’information.
R&D race models are cousins of strategic experimentation problems, especially

those with exponential bandits as in Keller, Rady and Cripps (2005). Unlike the
R&D models, the latter are not winner-take-all as one person’s success does not
preclude the other’s. Also, in these models it is possible to switch back and forth
between the risky and safe arms, unlike the irrevocable exit assumption in R&D
race models. While most of these models were studied under symmetric information,
in recent work, Dong (2018) has studied a variant with asymmetric and comparable
information– one person has a private signal but the other is completely uninformed.8

She finds that this asymmetry induces more experimentation than if the situation
were symmetric.
R&D race models also share important features with wars of attrition– in partic-

ular, the winner-take-all and irrevocable exit assumptions. There is, of course, a vast
literature on wars of attrition with and without incomplete information. A related
paper in this vein is by Chen and Ishida (2017), who study a model which combines
elements from strategic experimentation with wars of attrition. As in strategic ex-
perimentation models, one firm’s successful innovation does not preclude successful
innovation by the other firm. As in the war of attrition, exit by one firm ends the
game. Firms are asymmetric in how effi cient they are at R&D. There is a mixed
strategy equilibrium and Chen and Ishida (2017) exhibit the possibility that the less
effi cient firm may win more often.

The remainder of the paper is organized as follows. The model of an R&D race is
outlined in the next section. Section 3 studies, as a benchmark, the case of a single
firm without competition. There is no surprise here– if alone, the better informed
firm is more likely to succeed than the less informed firm. In Section 4, we study the
case of two competing firms and exhibit the upstart equilibrium mentioned above.
Section 5 then shows that this equilibrium is unique when the asymmetry in the
quality of information is large. Equilibrium behavior is compared to the joint-profit
maximizing solution in the next section. In Section 7, we show that despite the fact
that in equilibrium the less informed firm wins more often, the value of information is

US and UK followed.
8Klein and Wagner (2018) study a bandit problem where the quality of information of the players

is the same.
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positive for both firms. Finally, in Section 8 we show that the main result generalizes
when the firms may get more than two signals and so have finer information. An
appendix considers the special case when there is no asymmetric information and the
firms hold common beliefs throughout.

2 Preliminaries

Two firms compete in an R&D race to produce an innovation. Time runs continuously,
the horizon is infinite and the interest rate is r > 0. The firm that succeeds first will
obtain a patent that yields flow monopoly profits ofm forever after. Each firm decides
on how long it wants to actively participate in the race, if at all, and must incur a
flow cost of c while it is active. A firm only chooses whether or not to be active, and
not its intensity of R&D. Once a firm quits, it cannot rejoin the race. Also, if a firm
quits at time t, say, then this is immediately observed by the other firm.9 The game
ends either if one of the firms succeeds or once both firms quit.
Whether or not the innovation is worth pursuing is uncertain, however, and de-

pends on an unknown state of nature that may be G ("good") or B ("bad") with
prior probabilities π and 1−π, respectively. In state B, the innovation is not techno-
logically feasible and all R&D activity is futile. In state G, it is feasible and success
arrives at a Poisson rate λ > 0 per instant, independently for each firm provided, of
course, that the firm is still active. This means that the distribution of arrival times
of success is exponential, that is, the probability that in state G a firm will succeed
before time t is 1− e−λt.
The two firms are alike in all respects but one– firm 1 (the "incumbent" or estab-

lished firm) is better informed about the state of nature, G or B, than is firm 2 (the
"startup" or entrant firm). Specifically, before the race starts, each firm i receives a
noisy private signal si ∈ {gi, bi} about the state. Conditional on the state, the signals
of the two firms are independent and

Pr [gi | G] = Pr [bi | B] = qi >
1
2

We will refer to qi as the quality of i’s signal or information.10 Throughout, we will
assume that firm 1’s signal is of higher quality than that of firm 2 in the sense that
q1 > q2 and so firm 1 is better informed.
Denote by p (si) the posterior probability that the state is G conditional on the

signal si, that is,
p (si) = Pr [G | si]

9This could happen with a delay ∆ > 0 so that if a firm quits at time t, the other firm learns of
this only at time t+ ∆. We have chosen to set ∆ = 0 to simplify the exposition but our analysis is
robust to the case when ∆ is small (details are available from the authors).
10The assumption that Pr [gi | G] = Pr [bi | B] is made only for simplicity. It would be enough to

assume that firm 1’s signals were more informative than firm 2’s signals in the sense of Blackwell.
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and similarly, denote by p (s1, s2) the posterior probability that the state is G condi-
tional on the signals (s1, s2), that is,

p (s1, s2) = Pr [G | s1, s2]

It is easy to see that since firm 1’s signal is more accurate than firm 2’s signal, that
is, q1 > q2,

p (b1, b2) < p (b1, g2) < p (g1, b2) < p (g1, g2) (1)

It is useful to define p∗ to be such that if a firm believes that the probability that
the state is G is p∗, then the flow expected gain is the same as the flow cost. Thus,
p∗ is defined by

p∗λ︸︷︷︸
success rate

× m

r︸︷︷︸
gain

= c︸︷︷︸
cost

and so

p∗ =
rc

λm
(2)

and we will suppose that 0 < p∗ < 1.
We will assume that firm 1’s information is accurate enough so that if it is the

only firm, with signal b1 it would not want to engage in R&D while with signal g1 it
would.

Assumption 1 The quality of firm 1’s is such that

p (b1) < p∗ < p (g1)

Assumption 1 is made solely to allow a sharper statements of our results and
to make the consideration of many trivial cases unnecessary. Without it, many of
our results would involve only weak inequalities which would become strict if the
condition above were to hold.
The following definition will prove useful in the subsequent analysis. Suppose

both firms have a common belief at time 0 that the probability of state G is p0 and
with this belief both engage in R&D at time 0. As time elapses and both firms are
active but neither firm has been successful, the firms become increasingly pessimistic
that the state is G and the posterior probability that the state is G decreases. At
time t, the common belief pt is such that11

pt
1− pt

= e−2λt
p0

1− p0
11This is just Bayes’rule in terms of odds ratios: given any event E , we have

Pr [G | E ]

Pr [B | E ]
=

Pr [E | G]

Pr [E | B]
× Pr [G]

Pr [B]
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since, conditional on the state being G, the probability that neither firm has been
successful until time t is e−2λt.

Definition 1 If the initial belief p0 > p∗, T (p0) is the time when, absent any success
by either firm, this belief will decay to p∗, that is,

e−2λT (p0)
p0

1− p0
=

p∗

1− p∗ (3)

If the initial belief p0 ≤ p∗, then T (p0) = 0.

Equivalently, for p0 > p∗,

T (p0) =
1

2λ
ln

(
p0

1− p0

)
− 1

2λ
ln

(
p∗

1− p∗

)
To save on notation, we will write

T (si) ≡ T (p (si)) (4)

and
T (s1, s2) ≡ T (p (s1, s2)) (5)

3 Single-firm benchmark

Before studying the situation in which the two firms are competing against one an-
other, it is useful to consider the case where each firm acts in isolation. Comparing
the situation in which firm 1 is alone to the situation in which firm 2 is alone, we
obtain

Proposition 0 The probability that firm 1 is successful when alone is greater than
the probability that firm 2 is successful when alone.

To establish the proposition, first note that if firm i gets a signal si ∈ {gi, bi} ,
then its belief that the state is G is p (si) at time 0. If p (si) ≤ p∗ then the firm should
not engage in R&D at all since its expected profits from R&D are non-positive. But
if p (si) > p∗ then it is worthwhile to engage in R&D at time 0 and continue to do so
as long as its belief pt (si) at time t remains above p∗. In terms of odds ratios, this
means that a solitary firm should remain active as long as

pt (si)

1− pt (si)
= e−λt

p (si)

1− p (si)
>

p∗

1− p∗

reflecting the fact that the probability that a single firm does not succeed until time
t is just e−λt. The following result is immediate.
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Figure 1: Belief Decay

When two firms are active, beliefs decay twice as fast (lower curve) as with one firm (upper curve).

Lemma 3.1 A single firm with signal si should quit at the earliest time t such that
pt (si) ≤ p∗.

Proof. If firm i with signal si quits at time ti, its flow profit is

r

∫ ti

0

e−rt Pr [S0 (t)]

(
pt (si)

λm

r
− c
)
dt = λm

∫ ti

0

e−rt Pr [S0 (t)] (pt (si)− p∗) dt

where Pr [S0 (t)] = e−λtp (si) + 1 − p (si) is the probability that there has been no
success until time t. Recall that p∗ = rc/λm. The result obviously follows.

The optimal quitting time for a firm with signal si is just 2T (si) since from the
definition of T in (3) and (4),

e−2λT (si)
p (si)

1− p (si)
=

p∗

1− p∗ (6)

Since the beliefs of a single firm decay at one-half the rate of decay with two firms–
two failures constitute worse news than one failure– it takes twice as long to reach
p∗, as depicted in Figure 1. Since 2T (si) is the single-firm optimal quitting time,
using (6), the probability of success given the initial belief p (si) is

p (si)
(
1− e−2λT (si)

)
=
p (si)− p∗

1− p∗
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Consider firm i when alone. If p∗ < p (bi) < p (gi), the firm would enter regardless of
its signal and its ex ante probability of success is

Pr [Si] = Pr [gi]
p (gi)− p∗

1− p∗ + Pr [bi]
p (bi)− p∗

1− p∗

=
π − p∗
1− p∗

If p (bi) ≤ p∗ < p (gi) , the firm would enter only if its signal were gi and now the ex
ante probability of success is

Pr [Si] = Pr [gi]
p (gi)− p∗

1− p∗ + Pr [bi]× 0

=
πqi − (πqi + (1− π) (1− qi)) p∗

1− p∗

=
πqi (1− p∗)− (1− π) (1− qi) p∗

1− p∗

The proof of Proposition 0 is divided into two cases.

Case 1: p (b1) < p∗ < p (b2) Now firm 1 would enter only with a good signal
whereas firm 2 would enter regardless of its signal. Thus,

Pr [S1]− Pr [S2] =
πq1 (1− p∗)− (1− π) (1− q1) p∗

1− p∗ − π − p∗
1− p∗

=
(1− π) q1p

∗ − π (1− q1) (1− p∗)
1− p∗

= (1− π) q1

(
p∗

1− p∗ −
π (1− q1)
(1− π) q1

)
= (1− π) q1

(
p∗

1− p∗ −
p (b1)

1− p (b1)

)
> 0

where the last inequality follows from Assumption 1.

Case 2: p (b2) ≤ p∗ < p (g2) In this case, both firms would enter only if they
had good signals and some routine calculations show that the difference in success
probabilities

Pr [S1]− Pr [S2] =
π (1− p∗) + (1− π) p∗

1− p∗ (q1 − q2)

> 0

This completes the proof of Proposition 0. �
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4 Upstart equilibrium

In this section, we exhibit an equilibrium of the R&D game in which the established
firm enters the race if and only if it receives a favorable signal whereas the startup
enters the race regardless of its signal. In this equilibrium, the probability that the
startup wins the race is greater than or equal to the probability that the established
firm wins and is strictly greater whenever p (b1, g2) > p∗.
In the next section, we will show that when the established firm 1 is much better

informed than the startup firm 2, this is the unique Nash equilibrium outcome.
Recall from (3) and (5) that if p (s1, s2) = Pr [G | s1, s2] > p∗, the two-firm thresh-

old time T (s1, s2) is defined by

e−2λT (s1,s2)
p (s1, s2)

1− p (s1, s2)
=

p∗

1− p∗ (7)

and if p (s1, s2) ≤ p∗, then T (s1, s2) = 0.
The ranking of the posterior probabilities (see (1)) implies

0 = T (b1, b2) ≤ T (b1, g2) ≤ T (g1, b2) < T (g1, g2) (8)

and the inequalities are strict unless both sides are 0.
Consider following "upstart outcome" depicted in Figure 2. When the signals are

(b1, b2) , firm 1 does not enter and firm 2 exits immediately upon entering and learning
that 1 did not enter. When the signals are (g1, g2) , both firms exit simultaneously at
time T (g1, g2) .When the signals are (g1, b2) , firm 2 exits at time T (g1, b2) and upon
learning this, firm 1 follows immediately. Finally, when the signals are (b1, g2) , firm
1 does not enter and firm 2 stays until 2T (b1, g2) .
In the first three cases the chance that firm 1 will win is the same as the chance that

firm 2 will win. But in the last case, firm 1 does not enter and when T (b1, g2) > 0,
firm 2 has a positive probability of winning. Thus, ex ante firm 2 has a greater
chance of obtaining the patent than does firm 1– the startup is an upstart. We will
first establish

Proposition 1 There exists a perfect Bayesian equilibrium in which the less-informed
firm 2 wins more often than the better-informed firm 1.

Strategies A strategy for firm i is a pair of functions (τ i, σi) where τ i : {gi, bi} →
R+ ∪ {∞} and σi : {gi, bi} × R+ → R+ ∪ {∞} .
First, τ i (si) is the time at which firm i with signal si decides to quit unilaterally–

that is, if he or she has not received any information that the other firm has quit. If
τ i (si) =∞, this means that the firm decides to never quit unilaterally.
Second, σi (si, tj) is the time at which firm i with signal si quits after learning

that the other firm quit at time tj. Of course, σi (si, tj) ≥ tj.
We have only defined pure strategies here as the equilibrium we construct below

does not involve any randomization. When we show that the equilibrium outcome is
unique, we will introduce and consider randomized strategies as well.
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Figure 2: Upstart Equilibrium

Firm 1 (top) enters only with signal g1 and then if firm 2 exits at T (g1, b2), follows immediately,
depicted as a U-turn. Otherwise, it stays until T (g1, g2). Firm 2 (bottom) enters with either b2 or
g2. If firm 1 exits at 0, firm 2 with signal b2 follows immeditiately and with g2, exits at 2T (b1, g2).
Otherwise, firm 2 with b2 exits at T (g1, b2) and with g2, exits at T (g1, g2).

4.1 Equilibrium strategies

Consider the following strategies:

Firm 1 :
τ ∗1 (g1) = T (g1, g2) and τ ∗1 (b1) = 0

σ∗1 (g1, t2) =


T (g1, b2) if t2 = T (g1, b2)
2T (g1, b2)− t2 if t2 < T (g1, b2)
2T (g1, g2)− t2 if T (g1, b2) < t2 < T (g1, g2)

with the following beliefs about its rival. If t2 ≤ T (g1, b2) , then firm 1 believes that
s2 = b2 and otherwise believes s2 = g2.

Firm 2:
τ ∗2 (g2) = T (g1, g2) and τ ∗2 (b2) = T (g1, b2)

σ∗2 (g2, t1) =

{
2T (b1, g2) if t1 = 0
2T (g1, g2)− t1 if 0 < t1 < T (g1, g2)

σ∗2 (b2, t1) =

{
0 if t1 = 0
2T (g1, b2)− t1 if 0 < t1 < T (g1, b2)

with the following beliefs about its rival. If t1 = 0, then firm 2 believes that s1 = b1
and otherwise believes s1 = g1.

13



4.2 Verification of equilibrium

We now verify that the strategies (τ ∗i , σ
∗
i ) specified above constitute a perfect Bayesian

equilibrium. To do this we will ascertain the optimal quitting time for the two firms
in various situations. This quitting time will, as in Lemma 3.1, be determined by the
condition that a firm’s belief that the state is G is equal to p∗. But when another firm
j is present, firm i not only knows its own signal si but may learn firm j’s signal sj
in the course of play. Thus, it may be the case that even if based on its own signal
alone, the belief is below p∗, the possibility of learning sj in the future is a worthwhile
investment. The following analog of Lemma 3.1 is derived under the condition that
all such learning has already taken place. Thus we have

Lemma 4.1 Let pit denote i’s belief at time t that the state is G.
(i) If pit > p∗, then i should not quit at t.
(ii) Suppose that at time t firm i believes with probability one that j’s signal is sj. If
pit ≤ p∗, then firm i should quit at t.

Proof. The flow profit of firm i if it quits at time ti is

r

∫ ti

0

e−rt Pr [S0 (t)]

(
pit
λm

r
− c
)
dt = λm

∫ ti

0

e−rt Pr [S0 (t)] (pit − p∗) dt

where pit is firm i’s belief at time t given all the information it has and Pr [S0 (t)] is
the probability that there has been no success until time t. This is the payoff because
the chance that both firms will succeed at the same instant is zero. Note that firm
j’s quitting time tj affects the instantaneous payoff only through its effect on i’s
belief pit– before tj the belief pit declines rapidly since there are two unsuccessful
firms whereas after j quits at time tj the belief declines slowly since there is only one
unsuccessful firm.

Firm 1 Suppose firm 2 follows the strategy (σ∗2, τ
∗
2) specified above.

Firm 1 with signal g1 : We first argue that τ 1 (g1) < T (g1, b2) cannot be a
best response. This is because τ ∗2 (b2) = T (g1, b2) < T (g1, g2) = τ ∗2 (g2) and if g1 exits
before T (g1, b2) , it cannot learn 2’s signal and the only information it has until then
is g1. But the posterior probability of G conditional on g1 alone is p (g1) > p (g1, b2) .
And if there has been no success until t < T (g1, b2) , 1’s belief p1t = pt (g1) > pt (g1, b2)
for t < T (g1, b2). By Lemma 4.1, it is suboptimal to quit before T (g1, b2) .
On the other hand, if τ 1 (g1) ≥ T (g1, b2) , there are two possibilities. Given τ ∗2,

either g1 learns at time T (g1, b2) that firm 2 quit and then infers that s2 = b2 or
g1 learns that firm 2 did not quit and then infers that s2 = g2. If g1 learns that 2
quit, then it should also quit as soon as possible, that is, at T (g1, b2) (Lemma 4.1
again). Thus, σ∗1 (g1, T (g1, b2)) is optimal. If g1 learns that 2 did not quit, then since
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τ ∗2 (g2) = T (g1, g2) , firm 1 should exit at T (g1, g2) as well, that is, τ ∗1 (g1) is optimal.
It is obvious that firm 1’s beliefs about s2 are consistent with firm 2’s equilibrium
behavior.
By the same reasoning, σ∗1 (g1, t2) is optimal for all t2 6= T (g1, b2) given 1’s (off-

equilibrium) beliefs.

Firm 1 with signal b1 : We will argue that given (τ ∗2, σ
∗
2) it is optimal for b1

to not enter. Suppose τ 1 (b1) > 0. Depending on its signal, firm 2 will quit at either
τ ∗2 (b2) = T (g1, b2) or at τ ∗2 (g2) = T (g1, g2) . First, τ 1 (b1) < T (g1, b2) is not optimal
because 1 will not learn anything about 2’s signal and p (b1) < p∗ (Assumption 1). If
firm 1 chooses τ 1 (b1) ≥ T (g1, b2) and finds that 2 is still active, then it believes that
firm 2’s signal is g2 and that the time when firm 2 will quit is T (g1, g2) . But now by
Lemma 4.1 it is best to quit at T (b1, g2) < T (g1, b2) , the time when 1 can learn 2’s
signal. This means that the value of staying and learning 2’s signal at T (g1, b2) is
negative. Thus, τ ∗1 (b1) = 0 is optimal.

Firm 2 Now suppose firm 1 follows the strategy (σ∗1, τ
∗
1) specified above and consider

Firm 2 with signal g2 : Since τ ∗1 (g1) = T (g1, g2) and τ ∗1 (b1) = 0, if firm 2
enters, it will learn whether 1’s signal is b1 or g1. If it learns that s1 = b1, then
its optimal response is σ∗2 (g2, 0) = 2T (b1, g2). On the other hand, if it learns that
s1 = g1, then by Lemma 4.1 firm 2 should quit at τ ∗2 (g2) = T (g1, g2) .
By the same reasoning, σ∗2 (g2, t1) is optimal for all t1 < T (g1, g2) given 2’s (off-

equilibrium) beliefs.

Firm 2 with signal b2 : The same reasoning as in the case where firm 2’s signal
was g2 shows that again 2’s strategy is a best response.

This completes the proof of Proposition 1. �

The particular choice of off-equilibrium beliefs does not affect the equilibrium
outcome– any beliefs will do. Off-equilibrium beliefs could affect a firm’s profit only
if a deviation to stay longer than expected would cause its rival to drop out earlier.
For instance, the equilibrium specifies that firm 1 with signal b1 should not enter. If
it did, then firm 2 would have to assign probability 1 to s1 = g1, since this is the
only belief consistent with the equilibrium path. Thus, by entering b1 cannot get
firm 2 to exit early. In the upstart equilibrium outcome, all such events occur on the
equilibrium path.

4.3 Equilibrium payoffs

The expected flow profits of firm 1 in the upstart equilibrium are
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Figure 3: Upstart Equilibrium Payoffs

An upstart equilibrium exists in the quadrilateral region enclosed by dark lines. Above the curve,
firm 2’s equilibrium payoff (and winning probability) is strictly greater than that of firm 1. Below
the curve, they are equal.

Π∗1 = Pr [g1, g2]× v (p (g1, g2)) + Pr [g1, b2]× v (p (g1, b2)) (9)

where v (p0) is the flow payoff to a firm when both firms have a common belief p0
at time 0 that the state is G (see Appendix A). The expression for the equilibrium
payoff results from the fact that when the signals are (g1, g2) or (g1, b2) , these become
commonly known in the course of play of the upstart equilibrium. When the signals
are (b1, g2) or (b1, b2) , firm 1 does not enter the race and so its payoff is zero.
The expected profits of firm 2 in the upstart equilibrium are

Π∗2 = Pr [g1, g2]× v (p (g1, g2)) + Pr [g1, b2]× v (p (g1, b2))

+ Pr [b1, g2]× u (p (b1, g2)) (10)

where u (p0) is the flow payoff to a firm when it is alone with belief p0 at time 0
(see Appendix A again). The additional term appears because when the signals are
(b1, g2) , firm 1 does not enter, firm 2 thus learns at time 0 that 1’s signal is b1 and
stays until 2T (b1, g2) , the optimal quitting time for a single firm with initial belief
p (b1, g2) (see (6)). When the signals are (b1, b2) , firm 1 does not enter and as soon
as firm 2 learns this, it exits as well. Note that if p (b1, g2) ≤ p∗, u (p (b1, g2)) = 0.
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As long as p (b1, g2) > p∗,
Π∗2 > Π∗1

These facts are depicted in Figure 3 and we summarize these findings as,

Corollary 1 In the upstart equilibrium, the less-informed firm 2’s payoff is greater
than the better-informed firm 1’s payoff.

5 Uniqueness

We now show that when the informational advantage of firm 1 is large, that is, fixing
all other parameters, q2 is small relative to q1, then the upstart equilibrium outcome
is the unique Nash equilibrium outcome.

Proposition 2 When the established firm’s informational advantage is large, there
is a unique Nash equilibrium outcome. Precisely, for every q1 there exists a q2 such
that for all q2 < q2, there is a unique Nash equilibrium outcome.

The proof of the Proposition is in two steps. First, we show that iterated elim-
ination of dominated strategies (IEDS) results in a single outcome. Here we will
use one round of elimination of weakly dominated strategies, followed by multiple
(actually six more!) rounds of (iteratively) weakly/strictly dominated strategies.12

The resulting outcome will be the same as in (τ ∗, σ∗) . As a final step, we will show
that there cannot be any other Nash equilibrium outcome– the weakly dominated
strategies that were eliminated cannot be part of any Nash equilibrium.

5.1 Step 1

Denote by Γ the original game and by Γ (n) the game after n rounds of elimination.
In what follows, Lemma 4.1 will invoked repeatedly in the following manner: if the
two signals are known to be (s1, s2) , then a firm that exits at t < T (s1, s2) would
leave some money on the table since that firm’s belief time t, pit > p∗.

IEDS Round 1

Claim 1 (a) Any strategy of firm 1 such that τ 1 (g1) < T (g1, b2) is weakly domi-
nated in Γ.

12The weakly dominated strategies that we eliminate are so only because of histories that never
occur. Below we will show that the upstart outcome is also the result of iterated elimination of
conditionally dominated strategies.
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Figure 4: Uniqueness

There is a unique equilibrium outcome below the upper curve. Between the two curves, the startup
has strictly higher payoffs in the unique equilibrium outcome.

Proof. Quitting at τ 1 (g1) < T (g1, b2) is weakly dominated by quitting at τ 1 (g1) =
T (g1, b2) . First, ifmax (τ 2 (b2) , τ 2 (g2)) ≥ T (g1, b2) then quitting at τ 1 (g1) < T (g1, b2)
is strictly worse for g1 than quitting at T (g1, b2) . If max (τ 2 (b2) , τ 2 (g2)) < T (g1, b2) ,
then quitting at τ 1 (g1) < T (g1, b2) is strictly worse than quitting at T (g1, b2) if
τ 1 (g1) < max (τ 2 (b2) , τ 2 (g2)) and is equivalent if max (τ 2 (b2) , τ 2 (g2)) < τ 1 (g1) .

Claim 1 (b) Any strategy of firm 2 such that τ 2 (g2) < T (b1, g2) is weakly domi-
nated in Γ.

Proof. The proof is the same as in the previous claim with the identities the firms
interchanged.

It is important to note that in this round the strategies eliminated are not strictly
dominated. The reason is that a strategy (τ 1, σ1) that calls on firm 1 with signal g1
to quit at a time such that 0 < τ 1 (g1) < T (g1, b2) is not strictly worse than quitting
at T (g1, b2) against a strategy (τ 2, σ2) such that τ 2 (b2) = 0 = τ 2 (g2) . Since both
types of firm 2 quit at time 0, the choice of τ 1 (g1) is irrelevant. More generally, such
a τ 1 (g1) is not strictly worse than T (g1, b2) against any strategy (τ 2, σ2) such that
max (τ 2 (b2) , τ 2 (g2)) < τ 1 (g1) .
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IEDS Round 2

Claim 2 Any strategy of firm 1 such that τ 1 (b1) > T (b1, g2) is strictly dominated in
Γ (1) .

Proof. If firm 2’s signal is g2, then from Claim 1 (b) τ 2 (g2) ≥ T (b1, g2) . In this case,
for firm 1 to choose τ 1 (b1) > T (b1, g2) is strictly worse than τ 1 (b1) = T (b1, g2). On
the other hand, if firm 2’s signal is b2, then for firm 1 to choose τ 1 (b1) > T (b1, g2) is
no better than τ 1 (b1) = T (b1, g2). Thus, the expected payoff from τ 1 (b1) > T (b1, g2)
is strictly lower than the expected payoff from quitting at T (b1, g2).

IEDS Round 3

Claim 3 Given all other parameters, there exists a q2 such that for all q2 < q2, any
strategy of firm 2 such that (i) if T (g1, b2) > 0, then τ 2 (b2) < T (b1, g2) is strictly
dominated in Γ (2) ; and (ii) if T (g1, b2) = 0, then τ 2 (b2) > 0 is strictly dominated in
Γ (2) .

Proof. (i) Claim 1 (a) and Claim 2 imply that τ 1 (b1) ≤ T (b1, g2) < T (g1, b2) ≤
τ 1 (g1). This means that firm 2 can learn firm 1’s signal by staying until τ 1 (b1) .
We will now argue that (τ 2, σ2) is strictly dominated by (τ 2, σ2) such that τ 2 (b2) =

T (g1, b2) and σ2 (b2, t2) = t2 for all t2 ≤ T (b1, g2) . Since b1 will exit no later than
T (b1, g2) , firm 2’s flow profit from the strategy (τ 2, σ2) when evaluated at any time
T ≤ T (b1, g2) is at least

λm

∫ T (b1,g2)

T

e−r(t−T ) Pr [S0 (t)] (p2t − p∗) dt

+ Pr [g1 | b2,S0 (T )]× λm
∫ T (g1,b2)

T (b1,g2)

e−r(t−T ) Pr [S0 (t)] (p2t − p∗) dt

where S0 (t) is the event that neither firm has succeed until t and firm 2’s belief at
time t that the state is G is

p2t
1− p2t

=


e−2λt p(b2)

1−p(b2) if t ≤ T (b1, g2)

e−2λt p(g1,b2)
1−p(g1,b2) if t > T (b1, g2)

Before time T (b1, g2), firm 2 cannot learn 1’s signal and so its belief p2t results only
from its own signal b2. At time T (b1, g2) it learns 1’s signal and exits immediately if
s1 = b1. But if firm 1 does not exit at T (b1, g2) , then firm 2 knows that s1 = g1 and
its belief now results from both its own signal b2 and firm 1’s signal g1.
Notice that while the first term in the expression for firm 2’s payoff above may be

negative, the second is surely positive. For q2 small enough so that p (b1, g2) ≤ p∗, or
equivalently, T (b1, g2) = 0, the first term is zero while the second is strictly positive
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when p (g1, b2) > p∗ and so T (g1, b2) > 0 as well. Thus, there exists a q2 such that
for all q2 < q2, the payoff from (τ 2, σ2) is greater than the payoff from any strategy
such that τ 2 (b2) < T (b1, g2) .
If s1 = b1, then 2 is indifferent at all τ 2 (b2) > T (b1, g2) . But if s1 = g1, τ 2 (b2) =

T (g1, b2) is strictly better than τ 2 (b2) < T (b1, g2) . Since the latter occurs with
positive probability, (τ 2, σ2) is strictly better.

(ii) Obvious since in this case p (g1, b2) ≤ p∗.

In the rest of the proof, we will assume that q2 < q2. Note that q2 depends on the
other parameters, in particular on q1.

IEDS Round 4

Claim 4 Any strategy of firm 1 such that τ 1 (b1) > 0, is strictly dominated in Γ (3).

Proof. From Claim 1 (b) and Claim 3 we know that firm 2, regardless of its signal,
will not be the first to quit before T (b1, g2) . This means that firm 1 will learn nothing
from firm 2 prior to T (b1, g2) . This implies that if firm 1 with signal b1 enters and
exits before T (b1, g2), its payoff is negative (recall that it is not worthwhile for firm 1
to enter just with his own signal b1). If firm 1 enters, stays until T (b1, g2) or longer,
the best event is that it learns that firm 2’s signal is g2 at exactly time T (b1, g2),
the earliest time that he could learn anything about firm 2’s signal. But even in this
case, it is best to exit immediately after learning firm 2’s signal. Thus, even if firm 1
were to learn that firm 2’s signal was g2, it cannot make any use of this information.
Then, as before, his payoff from entering is negative.

IEDS Round 5

Claim 5 (a) Any strategy of firm 2 such that σ2 (g2, 0) 6= 2T (b1, g2) is strictly dom-
inated in Γ (4) .

Proof. Given all previous rounds, we know that firm 1 will enter with g1 and not
with b1. Thus, if firm 2 sees at time 0 that firm 1 did not enter, it knows that 1’s
signal was b1. If firm 2’s signal is g2, it is strictly dominated to quit at a time other
than 2T (b1, g2) .

Claim 5 (b) Any strategy of firm 2 such that σ2 (b2, 0) 6= 0 is strictly dominated in
Γ (4) .

Proof. Given all previous rounds, we know that firm 1 will enter with g1 and not
with b1. Thus, if firm 2 sees at time 0 that firm 1 did not enter, it knows that 1’s
signal was b1. Clearly, given that 2’s own signal is b2, staying is strictly dominated.
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Claim 5 (c) Any strategy of firm 2 such that τ 2 (b2) 6= T (g1, b2) is strictly dominated
in Γ (4) .

Proof. Given all previous rounds, we know that firm 1 will enter with g1 and not
with b1. Thus, if firm 2 sees that firm 1 entered, it knows that 1’s signal is g1. From
Claim 1(a), firm 1 will stay at least until T (g1, b2) . For firm 2 to quit at a time other
than T (g1, b2) is strictly dominated.

Claim 5 (d) Any strategy of firm 2 such that τ 2 (g2) < T (g1, g2) is weakly domi-
nated in Γ (4) .

Proof. Given all previous rounds, we know that firm 1 will enter with g1 and not with
b1. Thus, if firm 2 sees that firm 1 entered, it knows that 1’s signal is g1. If τ 1 (g1) ≥
T (g1, g2) , then τ 2 (g2) < T (g1, g2) is strictly worse than quitting at T (g1, g2) . If
τ 1 (g1) < T (g1, g2) , then all quitting times τ 2 (g2) such that τ 1 (g1) < τ 2 (g2) result
in the same payoff as quitting at T (g1, g2) . If τ 1 (g1) < T (g1, g2) , then all quitting
times τ 2 (g2) such that τ 2 (g2) < τ 1 (g1) results in a payoff strictly worse than from
quitting at T (g1, g2) .

Note that for the same reasons as in Round 1, the strategies eliminated in Claim
5 (d) are also only weakly dominated.

IEDS Round 6

Claim 6 (a) Any strategy of firm 1 such that σ1 (g1, T (g1, b2)) 6= T (g1, b2) is strictly
dominated in Γ (5)

Proof. Given all previous rounds, τ 2 (b2) = T (g1, b2) < T (g1, g2) ≤ τ 2 (g2) (Claim 5
(c) and Claim 5 (d)). So if firm 2 quits at T (g1, b2) , firm 1 knows that 2’s signal is
b2. Then it is dominated for firm 1 to continue after T (g1, b2).

Claim 6 (b) Any strategy of firm 1 such that τ 1 (g1) 6= T (g1, g2) is strictly domi-
nated in Γ (5) .

Proof. As in the proof of the previous claim, if firm 2 does not quit at T (g1, b2) ,
firm 1 knows that 2’s signal is g2. From Claim 5(d), τ 2 (g2) ≥ T (g1, g2) . Thus, it is
dominated for firm 1 to quit at any other time.

IEDS Round 7

Claim 7 Any strategy of firm 2 such that τ 2 (g2) > T (g1, g2) is strictly dominated in
Γ (6) .

Proof. If firm 2 with signal g2 sees that firm 1 entered, it knows that 1’s signal is g1.
From Claim 6 (b), thus firm 1 will quit at T (g1, g2) and so firm 2 should also quit at
that time.
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5.2 Step 2

The iterated elimination of dominated strategies, weak and strict, carried out above
leaves a single outcome– the same as that in the upstart equilibrium (τ ∗i , σ

∗
i ) . We

now argue that this outcome is the unique Nash equilibrium outcome in Γ.
Suppose that (τ̃ , σ̃) is a (possibly mixed) Nash equilibrium where τ̃ i (si) is a ran-

dom variable on [0,∞) and so is σ̃i (si, tj) . It is clear that there is no point in ran-
domizing once the other player has exited. Thus, we can write (τ̃ , σ) where σ is
pure.

Claim 8 If (τ̃ , σ) is a Nash equilibrium, then Pr [τ̃ 2 (g2) < T (b1, g2)] = 0.

Proof. Suppose to the contrary that Pr [τ̃ 2 (g2) < T (b1, g2)] > 0. We will sub-divide
this event into three cases.

Case 1: Pr [τ̃ 1 (g1) ≤ τ̃ 2 (g2) < T (b1, g2)] > 0.
In this case, with positive probability g1 is the first to quit. But for g1, quitting

at any time t1 < T (b1, g2) is strictly worse than quitting at T (b1, g2) in expectation.
Note that if s2 = g2, then quitting at t1 is strictly worse than quitting at T (b1, g2) .
This is because at any time t < T (b1, g2) < T (g1, b2) , the belief of g1 is such that
p1t > p∗ (using Lemma 4.1). On the other hand, if s2 = b2, it is no better.

Case 2: Pr [τ̃ 2 (g2) < τ̃ 1 (g1) < T (b1, g2)] > 0.
In this case, for g2, quitting at any time t2 < T (b1, g2) is strictly worse than

quitting at T (b1, g2) in expectation.

Case 3: Pr [τ̃ 2 (g2) < T (b1, g2) ≤ τ̃ 1 (g1)] > 0.
Again, for g2, quitting at any time t2 < T (b1, g2) is strictly worse than quitting

at T (b1, g2) in expectation.

Thus, we have argued that (τ̃ , σ) is not a Nash equilibrium.

Claim 9 If (τ̃ , σ) is a Nash equilibrium, then Pr [τ̃ 1 (g1) < T (g1, b2)] = 0.

Proof. Suppose to the contrary that Pr [τ̃ 1 (g1) < T (g1, b2)] > 0. Again we will
sub-divide this event into three cases.

Case 1: Pr [τ̃ 1 (g1) ≤ T (b1, g2)] > 0.
In this case, with positive probability g1 is the first to quit since by Claim 8, g2

never quits before T (b1, g2) . But for g1 to quit at a time t1 < T (g1, b2) is strictly
worse than quitting at T (g1, b2) in expectation. This is because if s2 = g2, this is
strictly worse because Pr [τ̃ 2 (g2) ≥ T (b1, g2)] = 1 (Claim 8) and if s2 = b2, it is no
better. Thus, Pr [τ̃ 1 (g1) ≤ T (b1, g2)] = 0.

Case 2: Pr [τ̃ 2 (g2) < τ̃ 1 (g1) and T (b1, g2) < τ̃ 1 (g1) < T (g1, b2)] > 0.
First, note that Pr [τ̃ 1 (b1) > T (b1, g2)] = 0 as well. This is because from Claim

8, Pr [τ̃ 2 (g2) ≥ T (b1, g2)] = 1 and so when the signals are (b1, g2) , for b1 to stay
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beyond T (b1, g2) is strictly worse than dropping out at T (b1, g2) . When the signals
are (b1, b2) , either dropping out at some t1 > T (b1, g2) is suboptimal because t2 ≥ t1
or it does not matter because t2 < t1. Thus to drop out at any t1 > T (b1, g2) is
suboptimal for b1.
Now since Pr [τ̃ 1 (b1) > T (b1, g2)] = 0 and Pr [τ̃ 1 (g1) ≤ T (b1, g2)] = 0 (Case 1),

this means that if firm 1 does not quit by time T (b1, g2) , then firm 2 knows that
s1 = g1. Then it is suboptimal for firm 2 with signal g2 to drop out at t2 < T (g1, b2) <
T (g1, g2) . When the signals are (b1, g2) , t2 ≥ T (b1, g2) with probability 1 and t1 ≤
T (b1, g2) with probability 0. Thus, firm 1 is the first to drop out and thus for g2 to
quit at any t2 ≥ T (b1, g2) is irrelevant. Thus, overall firm 2’s strategy is not a best
response.

Case 3: Pr [τ̃ 2 (g2) ≥ τ̃ 1 (g1) and T (b1, g2) < τ̃ 1 (g1) < T (g1, b2)] > 0.
In this case, for g1 to quit before T (g1, b2) is strictly worse than quitting at

T (g1, b2) in expectation. This is because if s2 = g2, it is strictly worse and if s2 = b2
it is no better.

So far we have argued that if (τ̃ , σ) is a (possibly mixed) Nash equilibrium then
almost every pure action τ in its support was not weakly dominated in Round 1 of
the IEDS procedure. We complete the proof by showing that the same is true in
Round 5.

Claim 10 If (τ̃ , σ) is a Nash equilibrium, then Pr [τ̃ 2 (g2) < T (g1, g2)] = 0.

Proof. Suppose to the contrary that Pr [τ̃ 2 (g2) < T (g1, g2)] > 0. Again, we will
sub-divide this event into two cases.

Case 1: Pr [T (g1, b2) ≤ τ̃ 2 (g2) ≤ τ̃ 1 (g1) < T (g1, g2)] > 0.
From Claim 9, Pr [τ̃ 1 (g1) ≥ T (g1, b2)] = 1 and from Claim 4 Pr [τ̃ 1 (b1) = 0] = 1.

This means that if firm 1 is active at any time t > 0, then with probability 1, firm 2
believes that s1 = g1. Thus, it is not optimal for g2 to quit before T (g1, g2) .

Case 2: Pr [T (g1, b2) ≤ τ̃ 1 (g1) < τ̃ 2 (g2) < T (g1, g2)] > 0.
In this case, since Claim 8 implies Pr [τ̃ 2 (g2) ≥ T (b1, g2)] = 1 and Claim 5 (c)

implies Pr [τ̃ 2 (b2) = T (g1, b2)] = 1, at any time t > T (g1, b2) firm 1 will believe with
probability 1 that s2 = g2. Thus if Pr [τ̃ 1 (g1) > T (g1, b2)] > 0, then it is suboptimal
for g1 to quit before T (g1, g2) . If Pr [τ̃ 1 (g1) = T (g1, b2)] = 0, then it is better to stay
a little longer and learn whether or not s2 = g2.

The last claim shows that if (τ̃ , σ) is a Nash equilibrium, the probability that a
pure strategy in the support of τ̃ 2 (g2) is eliminated in Round 5 of the IEDS procedure
is zero.
We have thus argued that no Nash equilibrium can have an outcome different

from the one in (τ ∗, σ∗) .

This completes the proof of Proposition 2. �
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Multiplicity with near symmetry We have shown that when firm 1’s in-
formational advantage is large, there is a unique equilibrium outcome. When this
advantage is small, however, there may be other equilibria as well. To see this, sup-
pose that q1 − q2 is small. Now the argument for uniqueness no longer holds– in
particular, the reasoning in Round 3 of the IEDS procedure fails. Indeed, when
q1 − q2 is small enough, there exists an equilibrium which is "mirror image" of the
upstart equilibrium with the roles of firms 1 and 2 interchanged.
In the mirror equilibrium, denoted by (τ ∗∗, σ∗∗) , firm 2 enters the race only if

its signal is g2. Specifically, τ ∗∗2 (b2) = 0 while τ ∗∗2 (g2) = T (g1, g2) . Moreover,
σ∗∗2 (g2, T (b1, g2)) = T (b1, g2).
Firm 1 enters the race regardless of its signal and τ ∗∗1 (b1) = T (b1, g2) while

τ ∗∗1 (g1) = T (g1, g2) . Finally, σ∗∗1 (b1, 0) = 0 and σ∗∗1 (g1, 0) = 2T (g1, b2) .
Here we have not specified off-equilibrium behavior and beliefs but this can be

done by mimicking the upstart equilibrium.
When q1 − q2 is small, T (b1, g2) is close to T (g1, b2) . Moreover, the assumption

that p (b1) < p∗ (Assumption 1) implies that p (b2) < p∗ as well. Now the argu-
ments confirming that (τ ∗, σ∗) is an equilibrium also confirm that (τ ∗∗, σ∗∗) is also an
equilibrium.

5.3 Conditional dominance

When q2 is relatively small, the upstart outcome is not only the unique Nash equilib-
rium outcome but it is also the unique outcome remaining after iterated elimination
of conditionally dominated strategies (Shimoji and Watson, 1998).
A strategy for a player is conditionally dominated, if there is an information set

for that player that (i) can be reached by the player’s own strategy; (ii) is strictly
dominated by another strategy when measured against only those strategies of other
players which can reach the given player’s information set. In the iterative procedure
carried out above, the strategies that were eliminated in Round 1 and Round 5
were weakly dominated but not strictly dominated. These strategies were, however,
conditionally dominated. Thus, the equilibrium outcome we identify is also the only
outcome that survives iterated elimination of conditionally dominated strategies.13

6 Planner’s problem

How does the upstart equilibrium compare to the solution of a "planner" who seeks
to maximize the joint expected profits of the two firms? To analyze such a planner’s
problem, suppose that the belief that the state is G is p0 > p∗ at time 0.

13In general games, the iterated elimination of conditionally dominated strategies may leave out-
comes that are not Nash equilibria. This is not true in the game considered here, of course.
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Since exit is irrevocable and it is never optimal to continue once the belief falls
below p∗, the planner’s problem reduces to choosing a time S such that both firms
are active until S ≤ T ≡ T (p0) and then one of the firms exits. Since both firms
engage in R&D until time S, the belief decays at the rate 2λ until S and then at the
rate λ after that. Thus per-firm expected flow profit from switching from two firms
to one firm at time S is

w (S) = λm

∫ S

0

e−rt
(
e−2λtp0 + 1− p0

)
(pt − p∗) dt

+
1

2
λm

∫ 2T−S

S

e−rt
(
e−λ(S+t)p0 + 1− p0

)
(pt − p∗) dt

where the belief pt at time t that the state is G is defined by

pt
1− pt

=


e−2λt p0

1−p0 if t ≤ S

e−λ(S+t) p0
1−p0 if t ≥ S

(11)

reflecting the fact that both firms are active until time S and after that only one
of the two firms is active. Note that e−2λtp0 + 1 − p0 is the probability that neither
firm is successful until time t. Note also that p2T−S = p∗ and that the coeffi cient 1

2

in the second term appears because w represents per-firm flow profits and the profit
of the firm that exits is 0. After substituting for pt from (11), w (S) can be explicitly
calculated to be

w (S) =
λmp0 (1− p∗)

2λ+ r

(
(2λ+ r) e−2Tλ

(
e−rS − 1

)
− r

(
e−(2λ+r)S − 1

))
+
λmp0 (1− p∗)

2 (λ+ r)

(
λe−2λT

(
e−r(2T−S) − e−rS

)
− re−rS

(
e−2λT − e−2λS

))
Differentiating with respect to S then yields

w′ (S) = λmp0 (1− p∗)×
rerS

(
re−2(λ+r)S + λe−2(λ+r)T − (λ+ r) e−2(λT+rS)

)
2 (λ+ r)

and note that w′ (T ) = 0. Differentiating again we obtain

w′′ (S)

= λmp0 (1− p∗)×
r2erS

(
λe−2(λ+r)T + (λ+ r) e−2(λT+rS) − (2λ+ r) e−2(λ+r)S

)
2 (λ+ r)

< λmp0 (1− p∗)×
r2erS

(
λe−2(λ+r)S + (λ+ r) e−2(λS+rS) − (2λ+ r) e−2(λ+r)S

)
2 (λ+ r)

= 0

whenever S < T. Thus, w is a concave function and w′ (T ) = 0. As a result, the joint
profits of the firms are maximized when S = T, that is, when both firms are active
until time T. Thus, we obtain
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Proposition 3 The joint profit-maximizing plan with any initial belief p0 is for both
firms to invest in R&D as long as it is profitable, that is, as long as the updated belief
pt > p∗.

Relative to the planner’s optimum, the upstart equilibrium results in strictly lower
total profits when p (b1, g2) > p∗; otherwise, they are the same. It is worth noting,
however, that the ex ante probability of R&D success in the upstart equilibrium
versus the planner’s optimum is always the same. To see this, recall that the only
difference between the two possibly occurs when the signals are (b1, g2) . In this case,
firm 1 stays out while firm 2 invests until time 2T (b1, g2) . Conditional on (b1, g2) ,
the probability of success in equilibrium is then

p (b1, g2)
(
1− e−2λT (b1,g2)

)
and this is the same as that in the planner’s solution. Notice that while the overall
probability of success in equilibrium is the same as that for the planner, success
arrives later in the former case. This is because in equilibrium, when the signals are
(b1, g2) only one firm is investing in R&D. This causes "learning-from-failure" to slow
down relative to the case when two firms invest, which is the planner’s solution. If
we interpret the planner’s problem as arising from a merger of the two firms to form
a monopoly and the equilibrium as arising from competition, then this says that a
monopoly would reach R&D success faster than competition, perhaps echoing the
sentiments expressed by Schumpeter (1942).

7 Value of information

In the upstart equilibrium, the startup firm 2 not only wins more often than firm
1, it also obtains a higher equilibrium payoff (Corollary 1). This suggests perhaps
that firm 1, say, could be better off with less precise information. This is not the
case, however. We show next that despite the fact that the equilibrium payoff of
the less-informed firm is higher than that of the better-informed firm, the value of
information for both firms is positive.14

Proposition 4 Suppose q1 > q2. Then in the upstart equilibrium, firm 1’s payoff is
increasing in q1 and firm 2’s payoff is increasing in q2.

First, consider firm 1. Recall from (9), that

Π∗1 = Pr [g1, g2]× v (p (g1, g2)) + Pr [g1, b2]× v (p (g1, b2))

We will show that each of the terms in the expression above is increasing in q1. Of
course, if p (g1, b2) ≤ p∗, then the second term is zero.

14Bassan et. al (2003) exhibit a simple example where in an otherwise symmetric game, the payoff
of the uninformed player 2 is higher than that of the informed player 1. In that game, however, the
value of information to player 1 is negative.
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Lemma 7.1 Pr [g1, b2]× v (p (g1, b2)) is increasing in q1.

Proof.

∂ (Pr [g1, b2]× v (p (g1, b2)))

∂q1

=
∂ Pr [g1, b2]

∂q1
v (p (g1, b2)) + Pr [g1, b2]

∂p (g1, b2)

∂q1
v′ (p (g1, b2))

>
∂ Pr [g1, b2]

∂q1
v (p (g1, b2)) + Pr [g1, b2]

∂p (g1, b2)

∂q1

v (p (g1, b2))

p (g1, b2)

since v (p) is an increasing and convex function that is non-negative and strictly posi-
tive for p > p∗ and so v′ (p) > 1

p
v (p) (see Appendix A). Moreover, ∂p (g1, b2) /∂q1 > 0.

The sign of the right-hand side of the inequality is the same as the sign of

∂ Pr [g1, b2]

∂q1
p (g1, b2) + Pr [g1, b2]

∂p (g1, b2)

∂q1

=
∂

∂q1
(Pr [g1, b2] p (g1, b2))

=
∂

∂q1
Pr [G, g1, b2]

=
∂

∂q1
(πq1 (1− q2))

> 0

Lemma 7.2 Pr [g1, g2] v (p (g1, g2)) is increasing in q1.

Proof. The proof is the same as that of the previous lemma with b2 replaced by g2.

Lemmas 7.1 and 7.2 together imply that firm 1’s equilibrium payoffΠ∗1 is increasing
in q1.

Next, consider firm 2. From (10),

Π∗2 = Pr [g1, g2]× v (p (g1, g2)) + Pr [g1, b2]× v (p (g1, b2))

+ Pr [b1, g2]× u (p (b1, g2))

We will show that the sum of the first two terms is increasing in q2 and the last
term is increasing in q2 as well.

Lemma 7.3 Pr [g1, g2]× v (p (g1, g2)) + Pr [g1, b2]× v (p (g1, b2)) is increasing in q2.
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Proof. Since Pr [g1] is independent of q2, it is suffi cient to show that

Pr [g1, g2]

Pr [g1]
v (p (g1, g2)) +

Pr [g1, b2]

Pr [ǵ1]
v (p (g1, b2))

is increasing in q2.
Now if q′2 > q2, then

p′ (g1, b2) < p (g1, b2) < p (g1, g2) < p′ (g1, g2)

where p′ (g1, ·) denotes the posterior derived from q′2. Moreover, the mean p
′ (g1, ·)

is p (g1) and this is the same as the mean of p (g1, ·) (since the expectation of the
posteriors is the prior). Thus, the distribution of p′ (g1, ·) is a mean preserving spread
of the distribution of p (g1, ·).
Since v is a convex function, the result now follows.

Corollary 2 Suppose q1 > q2. Then in the upstart equilibrium, firm 1’s payoff is
increasing in q2.

Lemma 7.4 If p (b1, g2) > p∗, then Pr [b1, g2]× u (p (b1, g2)) is increasing in q2.

Proof. In Appendix A it is also established that the single-firm profit function u (p)
is also increasing, convex and strictly positive if p > p∗ and equal to zero if p ≤ p∗.
Using similar arguments as in the case of firm 1, establishes the result.

This completes the proof of Proposition 4. �

The fact that the value of information is positive for firm 1 does not conflict with
the fact that its payoff is lower than that of firm 2. The first is a statement about the
derivative of Π∗1 with respect to q1. The second is a statement comparing the profit
levels of the two firms.

7.1 Willful ignorance

Proposition 4 shows that firm 1 cannot increase its equilibrium payoff by decreasing
the quality of its information while still remaining better informed than firm 2 (and
assuming that the upstart equilibrium is played). Precisely, for all q2 < q′1 < q1,

Π∗1 (q′1, q2) < Π∗1 (q1, q2)

where we have now explicitly indicated the dependence of the equilibrium profits on
the qualities of the two firms’signals.
But could firm 1 benefit from a drastic decrease in the quality of its information–

say, by replacing all its experienced researchers, who have a good idea of the feasibility
of the innovation, with new PhDs, who have none– thus becoming the less-informed
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Π∗1 < Π∗2

Π∗1 = Π∗2

Π∗∗1 > Π∗∗2

Π∗∗1 = Π∗∗2

Figure 5: Willful Ignorance

Starting from (q1, q2) = (q′, q′′) firm 1 is worse off by reducing its quality of information to q1 = 1
2 .

firm? In terms of the model, suppose we start from a situation in which (q1, q2) =
(q′, q′′) where 1

2
< q′′ < q′ and compare it to a situation in which (q1, q2) =

(
1
2
, q′′
)

so that firm 1 is now less informed than firm 2. In this situation, there is again a
unique equilibrium, but this time it is firm 1 which is the upstart.15 This equilibrium
is what we have called a "mirror equilibrium" (see the end of Section 5.2) since the
roles of the firms have been reversed. If we denote payoffs in the mirror equilibrium
by Π∗∗i , by symmetry we have (see Figure 5).

Π∗∗1
(
1
2
, q′′
)

= Π∗2
(
q′′, 1

2

)
But when the quality of firm 2’s information is 1

2
, the upstart equilibrium outcome is

unique and the expected profits of the two firms are the same, that is,

Π∗2
(
q′′, 1

2

)
= Π∗1

(
q′′, 1

2

)
But in the region where the quality of firm 1’s information is higher than that of firm
2, Π∗1 in increasing in both qualities (Proposition 4 and Corollary 2). Thus,

Π∗∗1
(
1
2
, q′′
)

= Π∗1
(
q′′, 1

2

)
< Π∗1 (q′, q′′)

15Any attempt to carry out this exercise when there are multiple equilibria is, of course, fraught
with peril.
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since q′ > q′′ > 1
2
. This means that it is not a good idea for the informationally ad-

vantaged but competitively disadvantaged firm 1 to become completely uninformed.
Of course, this argument applies not only to the case of complete ignorance, that

is, q1 = 1
2
. As long as, q1 > 1

2
, is such that p′′ (g1, b2) ≤ p∗ the same argument applies

(here p′′ (g1, b2) = Pr [G | g1, b2] computed using qualities q1 and q2 = q′′). This is
because the argument above only relies on the equality, Π∗2 (q1, q

′′) = Π∗1 (q1, q
′′) .

The message of this subsection is: Don’t fire the experienced researchers. Willful
ignorance does not pay!

8 Many signals

So far we have assumed that each firm’s information is binary– there are only two
signals. In this section, we show that the main results are robust to the possibility
that the firms’information is finer. Suppose that each of the two firms receives one
of a finite number of signals, say, S1 =

{
x1, x2, ..., xK

}
and S2 =

{
y1, y2, ..., yL

}
. As

before, given the state, the signals are conditionally independent. We will assume
that the signals can be ordered as xk < xk+1 and yl < yl+1 and that the monotone
likelihood property is satisfied, that is,

Pr
[
xk | G

]
Pr [xk | B]

and
Pr
[
yl | G

]
Pr [yl | B]

are strictly increasing in k and l, respectively. As in previous sections, we denote the
posterior probabilities as

p
(
xk
)

= Pr
[
G | xk

]
and p

(
yl
)

= Pr
[
G | yl

]
and so we have that the posterior probabilities p

(
xk
)
and p

(
yl
)
are strictly increasing

in k and l, respectively, as well.
We will use the following terminology to describe firm 2’s signals.

Definition 2 A signal yl is said to be optimistic if

Pr
[
yl | G

]
Pr [yl | B]

> 1

and pessimistic if Pr
[
yl | G

]
/Pr

[
yl | B

]
< 1.

The monotone likelihood ratio property implies that low signals are pessimistic
and high signals optimistic.
In what follows, the following definition will be useful.

Definition 3 The quality bound on the information content of firm 2’s signals is

Q2 = min

{
Pr [y1 | B]

Pr [y1 | G]
,
Pr
[
yL | G

]
Pr [yL | B]

}
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Note that since
Pr [y1 | G]

Pr [y1 | B]
< 1 <

Pr
[
yL | G

]
Pr [yL | B]

it is the case Q2 > 1. To see why this is a measure of information quality, observe
that if the quality bound Q2 is close to 1, then for all l, p

(
yl
)

= Pr
[
G | yl

]
is close

to π, the prior probability– all the posteriors are close to the prior– and so firm 2’s
signals are rather uninformative. Also, note that if there were only two signals and
Pr [g2 | G] = Pr [b2 | B] = q2, then Q2 = q2/ (1− q2) .
Now observe that since

p
(
xk, yl

)
1− p (xk, yl)

=
p(xk)

1− p (xk)
×

Pr
[
yl | G

]
Pr [yl | B]

and we have assumed
p
(
xk
)

1− p (xk)
<

p
(
xk+1

)
1− p (xk+1)

when the quality bound on firm 2’s information, Q2, is close enough to 1, we have

p
(
xk, y1

)
< ... < p

(
xk, yL

)
< p

(
xk+1, y1

)
< ... < p

(
xk+1, yL

)
(12)

In other words, firm 2’s signals are so poor that they cannot reverse the ranking of
posteriors based on firm 1’s information alone.
Finally, analogous to Assumption 1 in Section 2, we will assume that

p
(
x1
)
< p∗ < p

(
xK
)

that is, firm 1’s signals are accurate enough so that, when alone, sometimes it wants
to enter and sometimes not.

8.1 Upstart equilibrium

We now demonstrate that, as in Section 4, that there is a perfect Bayesian equilibrium
of the R&D race in which firm 2 wins more often than firm 1.
Consider the following strategies. For firm 1,

τ ∗1
(
xk
)

=

{
T
(
xk
)

if k < K
T
(
xK , yL

)
if k = K

σ∗1
(
xK , T

(
xK , yl

))
= T

(
xK , yl

)
and

σ∗1
(
xk, t2

)
= 2T

(
xk, yL

)
− t2 if t2 6= T

(
xK , yl

)
with the off-equilibrium beliefs that if firm 2 exits at a t2 6= T

(
xK , yl

)
, then its signal

is yL.
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Figure 6: Upstart Equilibrium with Many Signals

Here L = 3. There are K stages. In stage k < K, firm 1 with signal xk exits at T (xk) based only on
its own information. Firm 2 follows immediately if it is pessimistic (signal y1 or y2) and optimally
stays if it is optimistic (signal y3). The pattern repeats until k = K − 1. Firm 2’s signal is revealed
only in stage K.

For firm 2,
τ ∗2
(
yl
)

= T
(
xK , yl

)
σ∗2
(
yl, T

(
xk
))

= max
(
T
(
xk
)
, 2T

(
xk, yl

)
− T

(
xk
))

and
σ∗2
(
yl, t1

)
= 2T

(
xK , yl

)
− t1

with the off-equilibrium beliefs that if firm 1 exits at a t1 6= T
(
xk, yL

)
, then its signal

is xK .

Figure 6 depicts such an equilibrium when L = 3. Notice that there are K stages
and in stage k < K, firm 2 with any signal can learn whether firm 1’s signal is xk

or higher. Firm 2’s information is revealed only in stage K and so only firm 1 with
highest signal, xK , can learn firm 2’s signal. The learning is severely unbalanced. In
equilibrium, firm 1 never suffers from the "survivor’s curse"– it never regrets staying
too long– but may suffer from the "quitter’s curse"– it may regret exiting early. Firm
2, on the other hand, never suffers from the quitter’s curse but may suffer from the
survivor’s curse when its signal is pessimistic.
We then have

Proposition 1 (M) There exists a Q∗2 > 1 such that if 1 < Q2 < Q∗2, then the
strategies (σ∗, τ ∗) constitute a perfect Bayesian equilibrium.

Proof. First, suppose that Q2 > 1 is small enough so that (12) holds. This implies
that the same ranking holds for T

(
xk, yl

)
as well. Precisely,

T
(
xk, y1

)
≤ ... ≤ T

(
xk, yL

)
≤ T

(
xk+1, y1

)
≤ ... ≤ T

(
xk+1, yL

)
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and the inequalities are strict unless both sides are 0.
Suppose firm 2 follows (τ ∗2, σ

∗
2) . Consider firm 1 with signal xk. Then the argument

that it is optimal to unilaterally exit at τ ∗1
(
xk
)
is exactly the same as in proof of

Proposition 1. Clearly, σ∗1
(
xk, ·

)
is a best response given firm 1’s beliefs about yl.

Now suppose firm 1 follows (τ ∗1, σ
∗
1) . Consider firm 2 with signal yl. The proposed

strategy τ ∗2 asks it to unilaterally drop out at T
(
xK , yl

)
, that is, it believes that firm

1’s signal is xK , the best possible scenario. Certainly, it cannot be a best response
for yl to choose τ 2

(
yl
)
> T

(
xK , yl

)
. Now consider a τ 2

(
yl
)
such that T

(
xK−1

)
<

τ 2
(
yl
)
< T

(
xK , yl

)
. In this case, at time τ 2

(
yl
)
firm 2 will learn if firm 1’s signal is

xK or not. If it is xK , then firm 1 will not quit before firm 2 quits and it cannot be
a best response for 2 to then quit at τ 2

(
yl
)
. Thus, unilaterally quitting at τ ∗2

(
yl
)

=
T
(
xK , yl

)
is a best response to firm 1’s strategy.

If yl is an optimistic signal (as defined above), then T
(
xk, yl

)
> T

(
xk
)
and so

σ∗2
(
yl, T

(
xk
))

= 2T
(
xk, yl

)
− T

(
xk
)
, which is the optimal quitting time once firm

1 with signal xk quits at T
(
xk
)
and firm 2 learns that 1’s signal is xk. But if yl is

a pessimistic signal, then T
(
xk, yl

)
< T

(
xk
)
and so σ∗2

(
yl, T

(
xk
))
> T

(
xk, yl

)
. In

this case, once firm 1 with signal xk quits at T
(
xk
)
and firm 2 learns that 1’s signal

is xk, it quits immediately but suffers from some ex post regret for having stayed too
long– in the period between T

(
xk, yl

)
and T

(
xk
)
it loses money. But if Q2 is close

enough to 1, then the gap T
(
xk
)
−T

(
xk, yl

)
is small and the loss is small relative to

the gain from learning. Thus, (τ ∗2, σ
∗
2) is a best response to (τ ∗1, σ

∗
1) .

Proposition 2 generalizes to the case of many signals as well.

Proposition 2 (M) There exists a Q2 ∈ (1, Q∗2) such that if 1 < Q2 < Q2, then the
outcome in (σ∗, τ ∗) is the unique Nash equilibrium outcome.

Proof. The proof is very similar to the proof in the case of two signals. The iterated
elimination of dominated strategies used to establish Proposition 2 can be mimicked.
Here we indicate only the basic steps.
First, as in Round 1, any τ 1

(
xk
)
> T

(
xk, yL

)
and τ 2

(
yl
)
> T

(
xK , yl

)
are weakly

dominated. In Round 2, any τ 1
(
xk
)
< T

(
xk, y1

)
is strictly dominated. This means

that by staying until T
(
xk, yL

)
firm 2 can learn whether firm 1’s signal is xk or

whether it is higher. In Round 3, if Q2 is small enough, τ 2
(
yl
)
< T

(
xK , yl

)
is strictly

dominated. This is because the information of whether 1’s signal is xk or higher
comes at the latest by T

(
xk, yL

)
and when Q2 is small, waiting for this information

is relatively inexpensive. The remainder of the proof follows that of Proposition 2.

A Appendix: Common beliefs

Although our main concern in this paper is with asymmetric information, in this
Appendix we study a situation in which the firms share a common belief about G

33



at time 0. This could, for instance, occur if the signals were publicly known. More
important, the firms can learn each other’s signal in the course of play in the upstart
equilibrium (for instance, if the signals are g1 and g2, this occurs at time T (g1, b2)).
At that point, they have common beliefs about the state.
Suppose that the common belief at time 0 is p0 > p∗ and that firm 2 remains

active indefinitely. We have seen that the optimal strategy for firm 1 is to remain
active until time T (p0) as defined in (3):

e−2λT (p0)
p0

1− p0
=

p∗

1− p∗

The expected flow profits of firm 1 are then

v (p0) = r

∫ T (p0)

0

e−rt
(
e−2λtp0 + 1− p0

) (
ptλ

m

r
− c
)
dt

= λm

∫ T (p0)

0

e−rt
(
e−2λtp0 + 1− p0

)
(pt − p∗) dt

= λm

∫ T (p0)

0

e−rt
(
e−2λtp0 (1− p∗)− (1− p0) p∗

)
dt

which results in

v (p0) =
p0 (1− p∗)

2λ+ r

(
(2λ+ r) e−2T (p0)λ

(
e−rT (p0) − 1

)
− r

(
e−(2λ+r)T (p0) − 1

))
Using the definition of T (p0) from above, after some calculation we obtain that

v (p0) = −c+
m+ 2c

µ+ 2
p0 +

2c

µ+ 2
(1− p0)

(
1− p0
p0

)µ
2
(

p∗

1− p∗

)µ
2

(13)

where µ = r/λ. It is easy to see that v is an increasing, convex function and v (p∗) = 0.
For p0 ≤ p∗, v (p0) = 0 since it is optimal for a firm to stay out.
Similarly, if firm 1 were alone and had an initial belief p0 > p∗, the optimal

strategy would be to quit at 2T (p0) . The single-firm maximized value function in
terms of flows is then

u (p0) = −c+
m+ c

µ+ 1
p0 +

c

µ+ 1
(1− p0)

(
1− p0
p0

)µ(
p∗

1− p∗

)µ
(14)

Again, u is an increasing, convex function satisfying u (p∗) = 0. For p0 ≤ p∗, u (p0) =
0. It can be verified that for all p0 > p∗, u (p0) > v (p0) , that is, competition decreases
profits.
When there is no asymmetric information and the beliefs are common, we have

Proposition 5 With common beliefs, there is a unique Nash equilibrium outcome.
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Proof. With common beliefs, a strategy for firm i is a pair of functions (τ i, σi) as
in the main text (now there are no private signals, however). Suppose the common
initial belief is p0. It is easy to see that if firm j chooses τ j = T (p0) , then it is a best
response for firm i 6= j to choose τ i = T (p0) as well.
To show uniqueness, first note that any (τ i, σi) such that τ i 6= T (p0) is weakly

dominated by (T (p0) , σi) . Thus, the Nash equilibrium outcome above is the only
outcome that survives one round of elimination of weakly dominated strategies. The
argument that there is no Nash equilibrium in weakly dominated strategies is the
same as Step 2 in the proof of Proposition 2.
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