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Abstract

We study coordination games with pre-play communication in which agents have private pref-
erences over the feasible coordinated outcomes. We present a novel intuitive equilibrium strategy
with the following properties: each agent reports his preferred outcome (and nothing else); agents
never miscoordinate; if the agents have the same preferred outcome, then they coordinate on this
outcome; and otherwise, there is a “fallback norm” that determines the coordinated outcome. We
show that this behavior is essentially the unique renegotiation-proof strategy, and that it satisfies
appealing properties: independence of the distribution of private preferences, Pareto optimality,
high ex-ante expected payoff, and evolutionary stability.
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1 Introduction

Various strategic interactions have the following three key properties: agents gain from coordinating
their behavior, agents have private preferences about the feasible coordinated outcomes, and agents
can communicate before taking their actions.

One common example for these interactions is two pedestrians coming from opposite sides to a narrow
pass. In order to avoid bumping into each other, both pedestrians should slightly turn to the same
direction (e.g., both slightly turning to the left). In many cases, each agent has private preference
regarding the preferred direction (e.g., an agent turning to the left immediately after the narrow
pass, would prefer to walk on the left-hand side of the narrow pass). Finally, agents can use non-
verbal communication to signal their preferred direction (e.g., tilting their head toward the preferred
direction). Casual observation suggests the following stylised facts: agents succeed in not bumping
into each other; unlike car traffic, there is no uniform norm such as “always pass on the right”; the
coordinated outcome respects the ordinal preferences of the pedestrians (if both prefer left over right,
they coordinate on left); and the resulting behavior is simple and relies on very brief communication.1

In what follows we describe two important economic applications that have the above three key prop-
erties. The first application is market sharing agreements in oligopolistic markets by which a firm sells
in a certain region (or serves customers of a certain type), whereas the rivals sell in other regions (see,
e.g., Belleflamme and Bloch, 2004 and Motta, 2004, Section 4.1, p. 141). It seems plausible to assume
in such situations that the firms prefer coordinating over a sharing scheme over a situation in which
they compete in the same regions, each firm has private preferences over the various regions, and firms
can communicate (though, each additional communication may incur some risk of anti-trust investi-
gation). A specific example is the 1997 FCC ascending auctions allocating licenses for particular slices
of the electromagnetic spectrum, in which the the firms used the trailing digits of their bids to reveal
information on their preferred geographic areas and frequencies, and the firms used this information
to collude (Cramton and Schwartz, 2000).

The second application is a research joint venture in which some firms agree to share the costs and
benefits associated with a given research project (see, e.g., Katz, 1986; Vonortas, 2012). In many cases
the firms have private preferences regarding the goals, methods and the extent of knowledge transfer
in the joint venture. For a concrete related example, consider co-authors from different academic
disciplines working on a joint paper, where each researcher has private preferences regarding issues
such as which methodology to apply in the research, and to which journal to submit the paper to.

1The example is motivated by Goffman (1971, Chapter 1, p. 6), in which Goffman writes:
“Take, for example, techniques that pedestrians employ in order to avoid bumping into one another. ...
There are an appreciable number of such devices; they are constantly in use and they cast a pattern on
street behavior. Street traffic would be a shambles without them.”
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Our key results are as follows. We present a novel intuitive family of equilibrium strategies with
the following properties: each agent reports his preferred outcome (and nothing else); agents never
miscoordinate; if the agents have the same preferred outcome, then they coordinate on this outcome;
and otherwise, there is a “fallback norm” that determines the coordinated outcome. We show that
this behavior is essentially the unique equilibrium strategy that satisfies a mild renegotiation-proof
refinement, which requires that there does not exists a Pareto-better equilibrium, where we allow the
players to rely on additional communication to coordinate on the alternative equilibrium. Finally,
we show that these equilibrium strategy satisfies various appealing properties: independence of the
distribution of private preferences, Pareto optimality (with respect to any strategy profile, not only
equilibrium strategies), high ex-ante expected payoff, and robustness against various perturbations (in
the spirit of evolutionary stability à la Maynard Smith, 1974).

Overview of the Baseline Model We consider a setup in which two agents with private idiosyn-
cratic preferences are randomly matched to play a coordination game, and this game is proceeded by
pre-play cheap-talk. Each player can choose one of two actions, L and R. Each player has a privately
known value (or type) that is independently drawn from a common atomless distribution F on the
unit interval. An agent with value u ∈ (0, 1) obtains a payoff u when both players coordinate on R,
a payoff of 1 − u when both players coordinate on L, and a payoff of zero when the players choose
different actions (henceforth, miscoordinate) (see Table 1 in Section 2). After learning her type, but
before playing this coordination game, each player simultaneously sends a message to her partner from
a finite set of messages. A strategy of a player describes which (possibly mixed) message the agent
sends as a function of her own type in the first stage, and which action the player chooses in the second
stage as a function of her own type and the messages sent by both players.

Equilibrium Strategies Strategy σ is a symmetric Bayes-Nash equilibrium strategy, abbreviated
to equilibrium strategy, if each type best replies to the aggregate behavior in the population given by
σ itself.

The game admits many equilibria. In particular, it includes babbling equilibria, in which the agents’
behavior is independent of the pre-play communication; for example, the equilibrium in which agents
always choose L. In addition, it can include equilibria in which agents communicate some information
about their cardinal preferences, and these reports influence the agents’ behavior, see Example 1.

Renegotiation-proofness We define a relatively mild form of renegotiation-proofness. Our motiva-
tion for this refinement is that if agents can communicate prior to playing the game, it seems plausible
to assume that they can further communicate after observing the realized pair of messages, and that if
there exists an alternative Pareto-better equilibrium, the agents will use the additional communication
to agree on replacing the original equilibrium with the Pareto-better equilibrium, and as result, the
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original equilibrium would not be played in the first place. Refinements of renegotiation-proofness
have been applied to various setups of contracts with incomplete information (see, e.g., Holmström
and Myerson, 1983) and repeated games (Farrell and Maskin, 1989; Benoit and Krishna, 1993). A
detailed discussion of the related literature on renegotiation-proofness is presented in Section 9.

Our definition of renegotiation-proofness is as follows. Fix an equilibrium strategy σ. Observe that
each message sent by an agent on the equilibrium path induces a posterior belief of the partner about
the agent’s type. Thus, each pair of realized messages m,m′ induce a new coordination game, which
differs from the original one by each agent now holding her posterior distribution of types (rather than
the prior distribution F ). Consider a variant of this induced game, in which the agents have another
round of communication in which they can simultaneously send messages from a new set of messages
M̂ before choosing an action. We say that the equilibrium σ is renegotiation-proof if for each new set
of messages M̂ , and each pair of messages m,m′ ∈M that are sent on the equilibrium path according
to σ, there does not exist an alternative equilibrium σ̂ of the induced game that Pareto-dominates the
original equilibrium induced by σ: that is, we require that it will not be the case that all possible types
of both players (in the support of their respective posterior distributions) weakly gain from replacing
the original equilibrium induced by σ with the alternative equilibrium, and some types of one of the
players gain from this replacement. As mentioned above, the motivation for our definition is that if the
Pareto-better equilibrium σ̂ exists, then the agents will renegotiate to play σ̂ after observing (m,m′),
and foreseeing this, the original equilibrium σ would not be played in the first place.

Summary of Main Results Theorem 1 provides a full characterization of renegotiation proof
equilibria in coordination games with independent private values and pre-play communication.

A strategy is a renegotiation proof equilibrium strategy if and only if it is coordinated (the two
players always use identical actions), it is ordinal preference revealing (each player reveals her ordinal
preference), it is mutual preference consistent (when both players have the same ordinal preference
they coordinate on their mutually preferred outcome), and it is balanced (each message that players
send leads, conditional on the opponent sending a message indicating an opposite cardinal preference,
to the same probability of coordination on action L.

Prime examples of such renegotiation proof equilibria (showing also existence) are strategies that we
denote as σL and σR. In each of these strategies really only two messages are used: players either
indicate that they prefer to go “left” or “right”. That is all the communication achieves. When both
indicate the same preference, they both coordinate on that. If they send “mixed signals” (one indicates
a preference for left, the other for right), they coordinate on a fallback norm, which is L for strategy
σL and R for σR. The only way other renegotiation proof equilibria can differ from these two, is that
they induce more complicated coordination after “mixed signals”. This necessitates sending more than
two messages.
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As a simple intuition for the main result we sketch why a babbling equilibrium, such as always play
L, is not renegotiation-proof because agents can renegotiate to the Pareto-better equilibrium σL: each
agent communicates his preferred outcome, and the agents change their behavior to playing R if and
only if both agents prefer R over L.

Appealing Properties Observe that the strategies σL and σR have two appealing properties. First,
they require very little communication: each agent sends a single bit - L or R, and second, they
are completely independent of the distributions of types (both strategies remain equilibria for any
distribution of types F , and, moreover, an agent who follows σL or σR does not have to know anything
about F .

In Section 6 we show that σL and σR satisfy four additional appealing properties: Pareto optimality:
there does not exist any strategy profile (even when allowing non-equilibrium profiles) that weakly
improves the payoff of all types, and strictly improves the payoff of some types relative to the payoff of
either σL or σR; the ex-ante payoff of either σL or σR maximizes the agents’ ex-ante payoff among all
equilibria without mis-coordination;2 either σL or σR strictly improves the ex-ante payoff with respect
to all babbling equilibria; and σL are σR are robust against various perturbations (i.e., a population
slightly perturbing away from the behavior induced by σL or σR would converge back to the equilibrium
behavior): they are neutrally stable (à la Maynard Smith, 1974), the first-stage behavior induced by
σL and σR is weakly dominant, and the second-stage behavior is a neighborhood invader (Apaloo,
1997; Cressman, 2010).

Variants and Extensions Next, we show that our results are robust to various variants and ex-
tensions. Specifically, we show that all our results remain essentially the same if one allows: multiple
rounds of communication (instead of a single round of communication as in the baseline model); more
than two players (where agents get a payoff of zero, unless all agents coordinate on the same outcome;
and allowing a larger set of feasible types, namely all matrix payoffs that satisfy the constraint of
always preferring coordination over miscoordination.

Finally, we show that some of our key results can be extended to two additional setups. First, we allow
extreme types, for which one of the actions (L or R) is dominant, and we show that as long as these
extreme types are not too frequent, then a particular “convex combination” of σL and σR remains a
renegotiation-proof equilibrium strategy. Second, we consider coordination games with more than two
actions, and we show that strategy again a particular “convex combination” of σL and σR remains a
renegotiation-proof equilibrium strategy in this setup, and that most aspects of the main result hold
also in this setup.

2Example 1 in Section 6 shows that given some distributions of types, there exists an equilibrium with miscoordination
that induces a higher ex-ante payoff. Note, however, that such an equilibrium does not satisfy renegotiation-proofness,
and, thus, we do not consider it as a plausible stable prediction of the players’ behavior.
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Main Insights Our model induces a few key insights on real life interactions that can be modeled
as coordination games with private values (such as the motivated examples presented above: collusion
in oligopolistic markets and joint research ventures).

The first insight is that a single bit of communication is sufficient to rule out both mis-coordination,3

as well as uniform norms; in any renegotiation-proof equilibrium agents always coordinate, and the
equilibrium behavior respects the ordinal preferences of the agents (i.e, agents coordinate on a jointly
preferred outcome, whenever such an outcome exist). By contrast, adding more options to communicate
(i.e., having a larger set of messages or/and longer pre-play communication) does not have any influence
on the predicted behavior.

Another insight is the contrast between revealing ordinal and cardinal preferences. Our results imply
that agents credibly reveal their ordinal preferences among the feasible outcomes in any renegotiation-
proof equilibrium; by contrast it is impossible for the agents to credibly reveal information about the
cardinal preferences (namely, how much the agent prefers L over R).

Structure The baseline model is presented in section 2. Section 3 presents various equilibrium
strategies, and defines the four key properties that we show renegotiation proof equilibria have. In
Section 4 present our refinement of renegotiation-proofness. Section 5 presents our main result. In
Section 6 we present various appealing properties of renegotiation proof equilibria. Section 7 shows the
evolutionary stability of renegotiation-proof equilibria. Section 8 shows the robustness of our results
in various variants and extensions of our baseline model. In Section 9 we discuss the related literature.
We conclude in Section 10.

2 Model

We consider a setup in which two agents with private idiosyncratic preferences are randomly matched
to play a coordination game, and this game is preceded by pre-play cheap-talk.

Players and Types There are two players in ex-ante symmetric positions. Players can choose one
of two actions, L and R. Each player has a privately known “value” or “type”. The two players’
values are independently drawn from a common atomless distribution with cumulative distribution
function F on the unit interval U = [0, 1] and with density f . To make it interesting we make the
assumption, throughout the paper, that F (1/2) ∈ (0, 1). This means that not all player types agree
on their preferred outcome in the coordination game below.

3Remark 2 in Section 3 shows that without communication it might be that the unique robust equilibrium induces a
substantial probability of miscoordination.
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Payoff Matrix For any realized pair of types, u and v, the players play a coordination game given
by the following payoff matrix, where the first entry is the payoff of the player of type u (choosing row)
and the second entry the payoff of the player of type v (choosing column).

Table 1: Payoff Matrix of the Coordination Game
L R

L 1-u, 1-v 0, 0
R 0, 0 u, v

We call this game the coordination game without communication and denote it by Γ.

Pre-Play Communication After learning their type, but before playing this coordination game,
the two players each simultaneously send a publicly observable message from a finite set of messages
M (satisfying 2 ≤ |M | < ∞), with ∆(M) the set of all probability distributions over messages in M .
We assume that messages are costless, i.e., cheap talk. We call the game, so amended, the coordination
game with communication and denote it by 〈Γ,M〉.

Strategies A player’s (ex-ante) strategy in the coordination game with communication is then a pair
σ = (µ, ξ), where µ : U → ∆(M) is a (Lebesgue measurable) message function that describes which
(possibly random) message is sent for each possible realization of the agent’s type, and ξ : M×M → U

is an action function that describes the maximal type that chooses L as a function of the observed
message profile; that is, when an agent who follows strategy (µ, ξ) observes a message profile (m,m′)
(message m sent by the agent, and message m′ sent by the opponent), then the agent plays L if her
type u is at most ξ (m,m′) (i.e., if u ≤ ξ(m,m′)), and she plays R if u > ξ(m,m′). Let Σ be the set of
all strategies in the game 〈Γ,M〉.

Remark 1. In principle we should allow more general action functions ξ : U ×M ×M → 4{L,R},
which specify the probability an agent chooses L as a function of the observed message profile and
the agent’s type. It is simple to see, however, and proven in Lemma 1 in Appendix B.1, that any
“generalized” strategy is (weakly) dominated by a strategy that uses a cut-off action function in the
second stage (i.e., choosing L for any type u ≤ um,m′ and choosing R for any type u > um,m′). The
intuition, is that following the observation of any pair of messages, lower types always gain weakly
more (less) than higher types from choosing L (R). We, thus, simplify our notation by considering only
cut-off action functions of the form ξ : M ×M → U .4

Let µu (m) denote the probability, given message function µ, that a player sends message m if she is
of type u. Let µ (m) = IEu [µu (m)] be the mean probability that a player of a random type sends
message m. Let supp (µ) = {m ∈M |µ (m) > 0} denote the support (carrier) of µ.

4The arbitrary choice that the threshold type plays L does not play any role in our analysis, given the assumption
that the distribution of types F is without atoms. All results remain the same under any assumption on the behavior of
the threshold types.
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With a slight abuse of notation we write ξ (m,m′) = L when all types play L (i.e., when ξ (m,m′) = 1),
and we write ξ (m,m′) = R when all types play R (i.e., when ξ (m,m′) = 0).

3 Equilibrium Strategies

In this section we define the standard notion of (Bayes Nash) equilibrium strategies, present prop-
erties that renegotiation proof equilibria turn out to have, and present examples of equilibria in the
coordination game with communication with and without these properties.

Definition Given a strategy profile (σ, σ′) and a type profile u, v ∈ U , let πu,v (σ, σ′) denote the
interim (pre-communication) expected payoff of a player of type u who follows strategy σ and faces an
opponent of type v who follows strategy σ′. Formally, for σ = (µ, ξ) and σ′ = (µ′, ξ′),

πu,v
(
σ, σ′

)
=
∑
m∈M

∑
m′∈M

µu (m)·µv
(
m′
)
·
(
(1− u)1{u≤ξ(m,m′)}1{v≤ξ′(m′,m)} + u1{u>ξ(m,m′)}1{v>ξ′(m′,m)}

)
,

where generally 1{x} is the indicator function equal to 1 if statement x is true and equal to zero
otherwise. Let

πu
(
σ, σ′

)
= IEv

[
πu,v

(
σ, σ′

)]
≡
∫ 1

v=0
πu,v

(
σ, σ′

)
· f (v) dv

denote the expected interim payoff of a player of type u who follows strategy σ and faces an opponent
with a random type who follows strategy σ′. Finally, let,

π
(
σ, σ′

)
= IEu

[
πu
(
σ, σ′

)]
=
∫ 1

u=0
πu
(
σ, σ′

)
· f (u) du

denote the ex-ante expected payoff of an agent who follows strategy σ and faces an opponent who
follows strategy σ′.

A strategy σ is a (symmetric Bayes-Nash) equilibrium strategy if πu (σ, σ) ≥ πu (σ′, σ) for each u ∈ [0, 1]
and each strategy σ′ ∈ Σ. Let E ⊆ Σ denote the set of all equilibrium strategies of 〈Γ,M〉.

Properties We call a strategy σ = (µ, ξ) ∈ Σ ordinal preference revealing if there exist two non-
empty, disjoint, and exhaustive subsets of supp(µ) denoted by ML and MR (i.e., supp(µ) = ˙ML

⋃
MR)

such that if u < 1/2, then µu(m) = 0 for each m ∈ MR, and if u > 1/2, then µu(m) = 0 for each
m ∈ML. With an ordinal preference revealing strategy a player indicates her ordinal preferences.

We call it mutual preference consistent if whenever u, v < 1/2 then ξ (m,m′) = ξ (m′,m) = L for all
m ∈ supp(µu) and all m′ ∈ supp(µv) and whenever u, v > 1/2 then ξ (m,m′) = ξ (m′,m) = R for all
m ∈ supp(µu) and all m′ ∈ supp(µv). In a mutual preference consistent strategy players with the same
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ordinal preference coordinate on their mutually preferred choice.

We call it coordinated if ξ (m,m′) = ξ (m′,m) ∈ {L,R} for any pair of messages m,m′ ∈ supp(µ). A
coordinated strategy never leads to mis-coordination after any (used) message pair.

Given strategy σ = (µ, ξ) ∈ Σ denote by

αm(σ) =
∫
v> 1

2

∑
m′∈supp(µv)

µv(m′)1{v≤ξ(m,m′)}f(v)dv

the expected probability of a u-type’s opponent playing L conditional on the opponent having a type
in [1/2, 1] and conditional on the u-type sending message m ∈M . Let analogously denote by

βm(σ) =
∫
v< 1

2

∑
m′∈supp(µv)

µv(m′)1{v≤ξ(m,m′)}f(v)dv

the expected probability of a u-type’s opponent playing L conditional on the opponent having a type
in [0, 1/2] and conditional on the u-type sending message m ∈M .

We call a strategy σ = (µ, ξ) ∈ Σ balanced if there exists α ∈ [0, 1] such that αm(σ) ≤ α for all m ∈M
with equality for all m ∈ supp(µu) with u ≤ 1/2, and βm(σ) ≥ α for all m ∈ M with equality for all
m ∈ supp(µu) with u > 1/2. We call the above α the left-tendency of a balanced strategy σ.

A strategy is balanced if any type who prefers (to coordinate on) one action, say L, and who knows
only that she faces an opponent who prefers (to coordinate on) the other action R expects the same
probability of her opponent playing action L for all messages that she uses and expects a lower or
equal probability of her opponent playing her favorite action for all messages that she could use.

Note that a strategy that is balanced, coordinated, and ordinal preference revealing induces behavior
that is independent of the player’s cardinal preferences beyond the ordinal content of her preferences,
u ≤ 1/2 or u > 1/2.

Examples The following strategies, denoted by σL, σR, and σC , are prime examples (that play a
special role in later sections) of strategies that are all ordinal preference revealing, mutual preference
consistent, coordinated, and balanced.

The strategies σL and σR are given by the pairs (µ∗, ξL) and (µ∗, ξR), respectively. The message
strategy function µ∗ has the property that there are messages mL,mR ∈ M such that message mL

indicates a preference for L and mR a preference for R, that is

µ∗ (u) =

mL u ≤ 1
2

mR u > 1
2 .
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The action strategy parts ξL and ξR are defined as follows:

ξL (m,m′) =

R m = m′ = mR

L otherwise,
ξR (m,m′) =

L m = m′ = mL

R otherwise.

This means that the “fallback norm” of σL (which is applied when the agents have different preferred
outcomes) is to coordinate on L, while the fallback norm of σR is to coordinate on R. In other words
the left-tendency of σL is one and the left-tendency of σR is zero.

Next, we present the strategy σC = (µC , ξC), in which the “fallback norm” is to use a joint lottery
to randomly choose the coordinated outcome. The agents implement this joint lottery through each
agent simultaneously sending a random bit, and let the coordinated outcome depend on whether the
random bits are equal or not.

Assume that |M | ≥ 4. We denote four distinct messages as mL,0,mL,1,mR,0,mR,1 ∈ M , where we
interpret the first subscript (R or L) as the agent’s preferred direction, and the second subscript (0 or
1) as a random binary number chosen with probability 1/2 each by the agent. Formally, the message
function µC is defined as follows:

µC (u) =


1
2mL,0 ⊕ 1

2mL,1 u ≤ 1
2

1
2mR,0 ⊕ 1

2mR,1 u > 1
2 ,

where αm⊕ (1−α)m′ denotes the lottery that attaches a probability of α on message m and 1−α on
message m′.

In the second stage, if both agents share the same preferred outcome they play it. Otherwise, they
coordinate on L if their random numbers differ, and coordinate on R if they have chosen the same
random number. Formally:

ξC (m,m′) =


R (m,m′) ∈ {(mR,0,mR,0) , (mR,0,mR,1) , (mR,0,mL,0) , (mR,1,mL,1)

(mR,1,mR,1) , (mR,1,mR,0) , (mL,0,mR,0) , (mL,1,mR,1)}

L otherwise.

Note that among all strategies that satisfy the four properties, strategies σL and σR are the simplest
in terms of the number of “bits” needed to implement the message strategy. Note that strategy σC is
in a certain sense fairest: conditional on a coordination conflict, i.e., conditional on one agent having
type between 0 and 1/2 and the other between 1/2 and 1 both agents expect the same payoff. Strategy
σL in contrast favors types between 0 and 1/2 and σR favors types between 1/2 and 1.

The coordination game with communication 〈Γ,M〉 admits many more equilibria that satisfy only
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some or even none of the four properties defined above.

The game 〈Γ,M〉, for instance, has two simple babbling equilibria, in which agents ignore the com-
munication and apply a uniform norm of always playing L or of always playing R. These equilibria
are coordinated and (trivially) balanced, but not ordinal preference revealing nor mutually preference
consistent.

Depending on the distribution of types, the game can also have more inefficient babbling equilibria
in which agents sometimes mis-coordinate. Specifically, if there exists a type x ∈ (0, 1) satisfying
x = F (x), then it is an equilibrium for the agents to babble, and then for each player to ignore
whatever is said and to choose L if and only if her type is below x. Such a babbling equilibrium is
(trivially) balanced but satisfies none of the other three properties defined above. Note that, as by
assumption F (0) = 0 and F (1) = 1, all babbling equilibria can be identified with an x ∈ [0, 1] that has
the property that F (x) = x.

Remark 2 (Robustness of equilibria without communication). When there is no pre-play communi-
cation (i.e., |M | = 1), then these babbling equilibria of course constitute all equilibria. Arguably, a
plausible equilibrium refinement in setups without communication is robustness to small perturbations
in the behavior of the population (e.g., requiring Lyapunov stability of the best-reply dynamics, or
continuous stability à la Eshel, 1983). Adapting the analysis of Sandholm (2007) to the current setup
implies that an equilibrium is robust in this sense if and only if the density of the distribution of types
at the relevant threshold x (with x = F (x)) is less than one. In particular, if the distribution of types
satisfies f (0) , f (1) > 1, then there exists x ∈ (0, 1) satisfying x = F (x) and f (x) < 1. The corre-
sponding equilibrium, which entails inefficient miscoordination is then robust to small perturbations.
Thus, coordination games without communication are likely to induce substantial miscoordination if
the density of extreme types is high (i.e., if f (0) , f (1) > 1).

The game also admits equilibria in which agents reveal some information about the cardinality of their
preferences (i.e., some information beyond only stating if u ≤ 1/2 or u > 1/2). For example, it is
straightforward to show that for any symmetric distribution of types (i.e., F (1/2) = 1/2), there exists
a type x ∈ (0, 1/2), such that there is an equilibrium strategy in which each agent communicates to
which one of four possible intervals her type belongs to: below x (interpreted as strong preference for
L), between x and 1/2 (mild preference for L), between 1/2 and 1−x (mild preference for R), or above
1− x (strong preference for R). Agents with the same preferred outcome, coordinate on this outcome.
Agents with different preferred outcomes play as follows: if both agents report a mild preference, they
choose a random coordinated outcome based on a joint lottery; if one of the agents reports a strong
preference, then they coordinate on this agent’s preferred outcome; and if both agents report strong
preferences, then they play an inefficient equilibrium with positive probability of mis-coordination.
Note, that playing an inefficient outcome in this latter case is necessary for this strategy to be an
equilibrium, as otherwise, all agents would prefer reporting a strong preference over a mild preference,
contradicting this strategy being an equilibrium. Such an equilibrium is ordinal preference revealing,
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but not mutually preference consistent, nor coordinated, nor balanced. See also Example 1 in Section
6.

4 Definition of Renegotiation-Proofness

In order to define our notion of renegotiation-proofness it is useful to introduce a bit more notation. For
any given strategy in Σ, employed by both players, in the game 〈Γ,M〉, communication and knowledge
of this strategy leads to updated and possibly different and asymmetric information about the two
agents’ types. Suppose the updated distributions of types are given by some distribution functions G
and H. The two agents then face a (possibly asymmetric) game of coordination without communica-
tion, which we shall denote by Γ(G,H). Note that the original game (without communication) Γ is
then given by Γ(F, F ).

Let fm be the type density conditional on the agent following a given strategy in the game Γ and
sending a message m that is sent with positive probability given this strategy.5

That is,
fm(u) = f(u) · µu(m)

µ(m) ,

and let Fm be the cumulative distribution function associated with density fm.

We allow players to renegotiate (only) after communication. Players in their renegotiation can use any
new finite message set, M̃ . Given a strategy of the game Γ, employed by both players, we denote the
induced “renegotiation” game after a positive probability message pair m,m′ ∈M by 〈Γ(Fm, Fm′), M̃〉.
For a pair of strategies σ, σ′ of such a renegotiation game 〈Γ(G,H), M̃〉 define the post communication
expected payoffs for a type u agent by

πHu
(
σ, σ′

)
= IEv∼H

[
πu,v

(
σ, σ′

)]
≡
∫ 1

v=0
πu,v

(
σ, σ′

)
· h (v) dv.

Define E(G,H) as the set of all (possibly asymmetric) equilibrium profiles of the coordination game
with communication 〈Γ(G,H), M̃〉 for some finite message set M̃ . Furthermore let S(G) denote the
set of all symmetric equilibrium strategies of the coordination game with communication 〈Γ(G,G), M̃〉
for some finite message set M̃ . With a slight abuse of notation for any strategy σ of the game 〈Γ,M〉
we denote its prescription after message pair m,m′ ∈ M , i.e., in the game 〈Γ(Fm, Fm′), M̃〉 by σ as
well.

Definition 1. We say that an equilibrium strategy σ = (µ, ξ) ∈ E is post communication equilibrium
Pareto dominated if either there is a message m ∈ supp(µ) and an equilibrium σ̃ ∈ S(Fm) such

5The density fm depends on the given strategy in the game Γ. For aesthetic reasons we refrain from giving this
strategy a name and omit to indicate this obvious dependence in our notation.
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that πFm
u (σ, σ) ≤ πFm

u (σ̃, σ̃) for all u ∈ supp(Fm) with strict inequality for some u ∈ supp(Fm), or
there is a pair of messages m,m′ ∈ supp(µ) and an equilibrium profile σ̃ ∈ E(Fm, Fm′) such that
π
Fm′
u (σ, σ) ≤ π

Fm′
u (σ̃) and πFm

v (σ, σ) ≤ πFm
v (σ̃) for all u ∈ supp(Fm) and all v ∈ supp(Fm′) with strict

inequality for some u ∈ supp(Fm) or some v ∈ supp(Fm′).

Definition 2. An equilibrium strategy σ = (µ, ξ) ∈ E is renegotiation-proof if it is not post commu-
nication equilibrium Pareto-dominated.

The motivation for renegotiation-proofness is that if the agents can communicate prior to playing
the game, then it seems plausible that they can further communicate after observing the realized
messages. If there is an observed pair of messages after which the original equilibrium induces the
agents to play a strategy profile with a low payoff, then, arguably, the agents can use an additional
round of communication to renegotiate the existing “bad” equilibrium of the current induced game,
and to coordinate their play on a Pareto-improving equilibrium (which weakly improves the payoff of
all possible types of both players). Our refinement of renegotiation-proofness requires that no such
Pareto-improving equilibria exists in any induced game with additional communication.

Refinements of renegotiation-proofness were presented in various setups in the existing literature;
though, to the best of our knowledge we are the first to apply this refinement to one-shot games with
private values and pre-play cheap-talk. In section 9, we thoroughly discuss the related literature on
renegotiation-proofness, including somewhat related notions in the evolutionary game theory, such as
secret hand-shakes (see, e.g., Robson, 1990) and robustness to equilibrium entrants (Swinkels, 1992).

We have chosen to define a mild notion of renegotiation-proofness because it already suffices for the
sharp characterization given in Theorem 1. Our refinement is mild in the following ways: we allow
players to renegotiate only after observing their realized messages (but not before), and when players
play a symmetric induced game, we allow them only to implement an alternative symmetric equilibrium
(rather, then also allowing them to play asymmetric equilibria, in which an agent’s behavior may
explicitly depend on its role in the game).

In Section 6 we show that renegotiation proof equilibria satisfy a much stronger refinement of Pareto op-
timality, which requires there is no Pareto better feasible strategy profile (also allowing non-equilibrium
strategy profiles). As argued also in Section 6, this fact implies that our renegotiation proof equilib-
ria satisfy stronger refinements of renegotiation-proofness, including: a refinement that allows agents
to play an asymmetric equilibrium in a symmetric induced game, and a refinement a la Benoit and
Krishna, 1993 that allows players to renegotiate also in earlier stages: in the interim stage before
observing the realized messages, and, possibly, also in the ex-ante stage, before observing one’s own
type.
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5 Main Result

With all this in place we can state our main result.

Theorem 1. A strategy σ of the game with communication 〈Γ,M〉 is a renegotiation-proof equilibrium
strategy if and only if it is ordinal preference revealing, mutual preference consistent, coordinated, and
balanced.

The complete proof of this theorem involves a series of lemmas and is given in all its details, including
lemmas and their proofs, in Appendix B.2. The “if” part, i.e., that any strategy satisfying the four
properties must be renegotiation proof, is fairly straightforward. We here provide a sketch of the proof
of the “only if” part.

Lemma 3 provides a preliminary property: agents never mis-coordinate after sending the same message.
That is, we show that whenever two players send the same message m they must coordinate (either
on L or on R) with probability one. Otherwise, due to the agents having a symmetric behavior after
sending the same messages, each agent plays L with the same average probability p ∈ (0, 1) in the
induced game Γ(Fm, Fm). This implies that the expected payoff for each type u of each player is equal
to max ((1− u) · q, u · (1− q)). This, in turn, implies that the players can renegotiate to a Pareto-
dominating equilibrium in which the agents use an additional round of communication to do a joint
lottery, in which with probability q they both play L and with probability 1 − q they both play R.6

This new equilibrium induces each type of each player with a higher payoff of (1− u) · q + u · (1− q).

Using Lemma 3 we then show that renegotiation-proof equilibrium strategy must be ordinal preference
revealing in Lemma 4: Assume to the contrary that some message m is sent by two types with
different preferred outcomes. Lemma 3 implies that agents always coordinate on the same outcome
after observing (m,m). Assume without loss of generality that this outcome is L. Then, players
can renegotiate to a Pareto-dominating equilibrium in which each agent communicates her preferred
outcome, and the agents play the opposite outcome, R, if and only if both agents prefer it. This
contradicts that the original strategy is renegotiation-proof.

Lemma 4 implies that we can indeed partition supp(µ) into two disjoint sets ML and MR, and that
all types u < 1/2 send messages in ML, while all types u > 1/2 send messages in MR.

Lemma 4 is then a key ingredient in the proof that a renegotiation proof equilibrium strategy satisfies
the remaining three properties.

To show that a renegotiation proof equilibrium strategy is mutual preference consistent, which we do
6Specifically, assume that q = k

n
is a rational number. The joint lottery can be done as follows (Aumman, Maschler,

and Stearns, 1968): M̃ = {1, .., n}; each player i sends a random message mi uniformly. Both players play L if
(mi +mj) modn ≤ k, and they both play R otherwise. A more elaborate argument, which does not assume q to
be a rational number, is presented in Lemmas 2 and 3).
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in Lemma 5, assume to the contrary that agents sometimes play a different outcome than (L,L) after
observing message pair m,m′ ∈ ML. Note that by force of Lemma 4 both agents must have a type
below 1/2. The two players can, therefore, renegotiate to a Pareto dominating outcome which is to
always play L after observing the pair of messages (m,m′). An analogous argument shows that if
m,m′ ∈MR, then agents must always coordinate on R in a renegotiation proof equilibrium strategy.

In Lemma 6 we show that there is no miscoordination after observing (m,m′) where m ∈ ML and
m′ ∈MR (the previous steps imply that there is no miscoordination in the remaining cases). Assume to
the contrary that there is mis-coordination in the game induced after observing (m,m′). This implies
that there are types of both players playing both actions. In particular, there is a type u < 1/2 of the
player who sent message m that plays action R and gets a payoff of at most u < 1/2 (and would get
a payoff of at most 1/2 also if she were playing L). This implies that all types of the this player get
a payoff of at most u < 1/2, and the same is true for all types of the other player who sent message
m′ by an analogous argument. We conclude the step by showing that the players can renegotiate to
a Pareto-dominating equilibrium in which they do a 1/2-1/2 joint lottery and use this to both play
L with probability 1/2 and to both play R with probability 1/2 (this equilibrium induces all types of
both players an expected payoff of 1/2).

Lemmas 3, 5, and 6 together imply that a renegotiation proof equilibrium strategy is coordinated.

Finally we show, in Lemma 7, that a renegotiation proof equilibrium strategy must be balanced. Using
Lemma 4 we can, for each m ∈ ML, redefine αm ∈ [0, 1] as the average probability the partner plays
L, conditional on the player sending message m and the partner sending a message in MR. To show
balancedness, assume to the contrary, and w.l.o.g., that m,m′ ∈ML, and αm > αm′ . This implies that
all types u < 1/2 strictly prefer to send message m over sending message m′ (as the former induces a
higher probability to coordinate on their favored outcome L), and we get a contradiction to m′ ∈ML

(i.e., to having types u < 1/2 sending message m′). This concludes the proof of Theorem 1.

6 On Efficiency

In this section we investigate the efficiency properties of renegotiation proof equilibria. We first argue
that ex-ante efficiency (i.e., the first best) cannot be achieved by any equilibrium of any coordination
game with communication. We then provide an example of an equilibrium with high ex-ante payoffs
that is, however, not renegotiation proof. We then show that all renegotiation proof equilibria, while
not necessarily ex-ante payoff optimal among all equilibria, are at least interim (pre communication)
Pareto efficient, i.e., not interim (pre communication) Pareto dominated by any other feasible (not
necessarily equilibrium) outcome of a coordination game with communication. Finally we show that
at least one of the two “extreme” renegotiation proof equilibria, σL and σR, provides the highest
ex-ante payoff among all coordinated equilibria and ex-ante payoff dominates any equilibrium of the
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coordination game without communication.

First Best The first-best ex-ante payoff can only be induced by a strategy that is coordinated and
such that the coordinated outcome depends heavily on the cardinal preferences of the two agents,
namely on how strong is the preference of an agent for her favorite outcome. The first best strategy
is one that induces coordination on L whenever u+ v ≤ 1 and coordination on R otherwise. In other
words, the first-best ex-ante payoff can only be induced by a strategy in which each agent reveals her
type, and the two agents then choose the favorite outcome, L or R, of the more extreme type (i.e., the
type that is farther away from 1/2). Note that this strategy is not an equilibrium: Each player has
an incentive to present a more extreme type than her real type (e.g., all types u > 1/2 would claim to
have type 1).7

High payoff non-coordinated equilibria Equilibria with mis-coordination (which are not renegotiation-
proof due to Theorem 1) may induce agents to credibly reveal some cardinal information about their
type. This can happen if there is a message that induces higher probabilities of coordinating on the
agent’s favored outcome but also higher probabilities of mis-coordination compared with some other
available message. Such a message can then be chosen by extreme types with a u far from 1/2, while
moderate types with u closer to 1/2 choose the other message. Potentially, such equilibria with mis-
coordination may induce a higher ex-ante payoff, if the benefit of signaling the extremeness of the type
outweighs the loss due to mis-coordination. To see this consider the following concrete example.

Example 1. For simplicity we let the distribution of types F be discrete with four atoms 1/10 + ε,
1/2 − ε, 1/2 + ε, 9/10 − ε, with a probability of 1/4 on each atom and ε > 0 sufficiently small.8

The game admits three babbling equilibria: always coordinating on L with an ex-ante payoff of 1/2,
always coordinating on R with an ex-ante payoff of 1/2, and playing L if and only if the type is less
than 1/2 with an ex-ante payoff of 7/20 < 1/2, for all ε sufficiently small. Theorem 1 (together with
the symmetry of the distribution F ) implies that when adding a single bit of communication (i.e.,
|M | ≥ 2), any renegotiation-proof equilibrium strategy (and, in particular, σL and σR) induces the
same expected ex-ante payoff of 3/5 > 1/2 for any ε sufficiently small.

This game also has a (non-renegotiation-proof) equilibrium strategy with mis-coordination that yields
a higher ex-ante payoff than the renegotiation proof payoff of 3/5 provided the message set M has
sufficiently many elements. To simplify the presentation we here allow the players to use public
correlation devices to determine their joint play after sending messages, which can be approximately
implemented by a sufficiently large message set. See the proof of Lemma 3 and Footnote 12 in the

7Note that the ex-ante efficient strategy could only really be implemented in a coordination game with communication
with a continuum message set. For finite message sets it could only be approximated. For the same reasons no such
approximation could be an equilibrium.

8One can easily adapt the example to an atomless distribution of types, in which each atom is replaced with a
continuum of nearby types.
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appendix. Let mL,ml,mr,mR ∈ M and consider strategy σ = (µ, ξ) as follows. Let µ(1/10 + ε) =
mL, µ(1/2 − ε) = ml, µ(1/2 + ε) = mr, and µ(9/10 − ε) = mR, and let ξ(ma,mb) = L if a, b ∈
{L, l}, ξ(ma,mb) = R if a, b ∈ {r,R}, ξ(mL,mr) = L, ξ(ml,mR) = R, ξ(ml,mr) be a joint lottery
to coordinate on L or R with probability 1/2 each, and finally let ξ(mL,mR) be a joint lottery to
coordinate on L or R with probability 3/10 each, and to play the inefficient mixed equilibrium in
which each type plays her favored outcome with probability 9/10 − ε with probability 4/10. It is
straightforward to verify that, for e.g., ε = 1/100, this strategy is indeed an equilibrium strategy with
an ex-ante payoff of around 0.627 which is higher than the ex-ante payoff of 3/5 of all the renegotiation
proof equilibria. This equilibrium strategy is not coordinated (also not balanced and not mutually
preference consistent) and, hence, by Theorem 1 is not renegotiation proof.

Interim (pre-communication) Pareto Optimality An (ex-ante) symmetric (type-dependent)
outcome function is a function φ : [0, 1]2 → ∆

(
{L,R}2

)
assigning to each pair of types a possi-

bly correlated action profile with the condition that φu,v(a, b) = φv,u(b, a) for any a, b ∈ {L,R}, where
φu,v ≡ φ (u, v).9 We thus interpret φu,v as the correlated action profile played by the two players when
a player of type u meets a player of type v. Let Φ be the set of all symmetric type-dependent outcome
functions.

Note that this set Φ is defined without reference to the set of available messages of the coordination
game with communication. Indeed any strategy of any coordination game with communication (with
any finite message set) induces an outcome function in Φ, but not all outcome functions in Φ can be
generated by a strategy of a given coordination game with communication. Note also that an outcome
function in Φ does not need to constitute equilibrium behavior. One can interpret the set of outcome
functions Φ as the outcome functions that can be implemented by a social planner who perfectly
observes the types of both players, and as a function of that can force them to play arbitrarily.

For each type u ∈ [0, 1], let πu (φ) denote the expected payoff of a player of type u under outcome
function φ, i.e.,

πu (φ) = Ev [(1− u) · φu,v (L,L) + u · φu,v (R,R)] .

Definition 3. A strategy σ ∈ Σ is interim (pre communication) Pareto dominated by a type-dependent
outcome function φ ∈ Φ if πu (σ, σ) ≤ πu (φ) for each type u ∈ [0, 1] with this holding as a strict inequal-
ity for all u in a positive probability subset of [0, 1]. A strategy σ ∈ Σ is interim (pre communication)
Pareto optimal if it is not interim (pre communication) Pareto dominated by any φ ∈ Φ.

Proposition 1. Every renegotiation proof strategy of a coordination game with communication (with
a message set with at least two elements) is interim (pre communication) Pareto optimal.

9We restrict attention to symmetric outcome functions here for two mostly aesthetic reasons. First, it makes the
paper conceptually consistent, given that the subject of the paper, coordination games with communication, is a class
of (ex-ante) symmetric games. Second, this prevents us from having to here introduce player subscripts which we do
not need anywhere else in the paper. Proposition 1 below, however, also holds even if we allow asymmetric outcome
functions.
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The proof of Proposition 1, as well as all other proofs from this section, are given in Appendix B.3.

Above we have given an example of an equilibrium strategy that provides a higher ex-ante payoff than
any renegotiation proof equilibrium. This strategy involved a certain degree of mis-coordination. In
the following proposition we show that any equilibrium without mis-coordination, i.e., any coordinated
equilibrium must have an ex-ante expected payoff that is less than or equal to the maximal ex-ante
payoff of the two “extreme” renegotiation proof strategies σL and σR.

Proposition 2. Let σ ∈ E be a coordinated equilibrium strategy. Then

π (σ, σ) ≤ max {π (σL, σL) , π (σR, σR)} .

Remark 3 (All-stage renegotiation-proofness à la Benoit and Krishna (1993)). One could refine the
notion of renegotiation-proofness to allow agents to renegotiate for a Pareto-improving equilibrium
additionally also in earlier stages: in the interim stage before observing the realized messages induced
by the original equilibrium, and in the ex-ante stage before each agent observes his own type. This more
restrictive definition of renegotiation-proofness à la Benoit and Krishna (1993) would: call the strategies
satisfying our definition of renegotiation proofness ex-post renegotiation-proof strategies; say that an
ex-post renegotiation-proof strategy is interim renegotiation-proof if it is not Pareto dominated (in the
original game after each agent observes his own type, yet before observing the realized message profile)
by any ex-post renegotiation-proof strategy; and say that an interim renegotiation-proof strategy is
all-stage renegotiation-proof if there is no other interim renegotiate-proof strategy that induces a higher
ex-ante expected payoff to both players (before each player knows his own type).

It is immediate that any ex-post renegotiation-proof strategy that satisfies interim Pareto optimality is
interim renegotiation-proof strategy. Proposition 2 implies that either σL or σR maximizes the ex-ante
payoff among all interim renegotiation-proof strategies, which immediately implies that either σL or
σR is an all-stage renegotiation-proof strategy. Moreover, if π (σR, σR) 6= π (σL, σL), then one can
show that either σL or σR is the unique coordinated strategy that maximizes the ex-ante payoff, which
implies that it is the unique all-stage renegotiation-proof strategy.

Next, we show that σL or σR provides a strictly higher ex-ante expected payoff than any equilibrium
of the game without communication (and thus any babbling equilibrium of the game with communi-
cation).

Recall from Remark 2 and the text preceding it that in the coordination game without communication
any equilibrium is characterized by a cut-off value x ∈ [0, 1] such that x = F (x) with the interpretation
that types u ≤ x play L and types u > x play R.

Let πu (x, x′) denote the payoff of an agent with type u who follows a strategy with cut-off x and faces
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a partner of unknown type who follows a strategy with cut-off x′, which is given by

πu
(
x, x′

)
= 1u≤x · F

(
x′
)
· (1− u) + 1u>x · F

(
x′
)
· u,

and let π (x, x′) = Eu (πu (x, x′)) be the ex-ante expected payoff of an agent who follows strategy x
and faces a partner who follows x′.

The following result shows that either σL or σR strictly improves the ex-ante payoff.

Proposition 3. Let x be an equilibrium strategy cutoff in the coordination game without communica-
tion. Then

π (x, x) < max {π (σL, σL) , π (σR, σR)) .

7 Evolutionary Stability

A common interpretation of a Nash equilibrium is a convention that that is reached as a result of a
process of social learning when similar games are repeatedly played within a large population. Specifi-
cally, consider a population in which a pair of agents from a large population are occasionally randomly
matched and play the coordination game with communication 〈Γ,M〉. The agents can observe past
behavior of other agents playing similar games in the past. It seems plausible that the aggregate behav-
ior of the population would gradually converge into a self-enforcing convention, which is a symmetric
Nash equilibrium of 〈Γ,M〉 (see, e.g., Weibull, 1995; Sandholm, 2010 for textbook introduction).

Arguably, for such a convention to be a reasonable long run prediction of the underlying game, one
should require that the convention is robust to small perturbations in the behavior of the population.
In this section we show that both σL and σR satisfy three properties that imply robust to various
perturbations (and the results can be extended to renegotiation proof equilibria such as σC):

1. Neutral stability (à la Maynard Smith and Price, 1973, and evolutionary stability if |M | = 2).
This implies that σL and σR are robust to the presence of a few experimenting agents who behave
differently than the rest of the population.

2. The action function µ∗ is weakly dominant (taking as given the second-stage behavior induced
by σL and σR), and it is strictly dominant if |M | = 2). This implies that σL and σR are robust
to any perturbation (including, large perturbations) that changes the first-stage behavior in the
population.

3. The message function is a neighborhood invader (Apaloo, 1997; Cressman, 2010, which refines
the notion of continuous stability à la Eshel and Motro, 1981) in any second-stage induced game.
This implies that σL and σR are robust to any sufficiently small perturbation that changes the

19



second-stage behavior of agents.10

As the formal analysis of these robustness properties is somewhat lengthy, we relegate it to Appendix
A.

8 Extensions

In this section we show that our results can be extended to various setups that allow having, multiple
rounds of communication, more than two players, a multi-dimensional set of types, extreme types with
dominant actions, or more than two actions. The first three of these five extensions are straightforward
and leave the main results and their proofs essentially unchanged. We indicate where this is not the
case. These extensions are described verbally only. For the latter two extensions results and their
proofs change more substantially and are therefore provided.

8.1 Multiple Rounds of Communication

Consider a variant of the coordination game with communication in which agents have fixed and
finite number of rounds of communication. In each such round of this communication phase they
simultaneously send messages from the set of messages M . Players observe messages after each round
and can, thus, condition their message choice and then their final action choice on the history of
observed message pairs up to the point in time where they take their message or action decision.
Renegotiation then possibly takes place once at the end of this communication phase but before the
final action choices are made. Straightforward adaptations of Theorem 1, as well as Proposition 1, 3,
and 2 then hold in this setting.

Thus, regardless of the length of the pre-play communication, agents only reveal their preferred outcome
(but nothing about the strength of this preference), and additional rounds of communication cannot
improve the ex-ante expected payoff relative to the payoff induced by a single round of communication
with a binary message.

8.2 More Than Two Players

Consider a variant of the coordination game in which there are (a finite number of) three or more
players who play a symmetric coordination game (with private values) with pre-play communication.
Before players choose actions, they simultaneously send a message each from a finite set of messages.

10We further conjecture that σL and σR satisfy a slightly weaker form of evolutionary robustness à la Oechssler and
Riedel (2002).
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In such a setting the appropriate version of Theorem 1 still holds: renegotiation proof equilibrium
strategies are those that are ordinal preference revealing, mutual preference consistent, coordinated,
and balanced. Also appropriate versions of Propositions 1 and 3 hold: renegotiation proof equilibrium
strategies are interim (pre communication) Pareto undominated and are ex-ante payoff improving over
all babbling equilibria (equilibria of the game without communication).

Proposition 2 does not extend to this setting: with three players, for instance, for some distributions
of values F , the strategy that determines the fallback option by majority vote (in case of messages
that indicate different preferred actions) is an ex-ante payoff improvement over a simple (and in the
multi-player setting more radical) fallback norm of choosing say action L in every case of disagreement.

8.3 Multi-Dimensional Set of Types

In our model we made the simplifying assumption that mis-coordination provides the same (normalized
to zero) payoff to both players. Now consider the following multi-dimensional set of types. Let
U ⊆ [0, 1]4 be the set of payoff matrices, with uab the payoff if a player chooses action a while her
opponent chooses action b, for a two-dimensional two-action coordination game:

U = {(uLL, uLR, uRL, uRR) |min {uLL, uRR} > max {uRL, uLR}} .

That is, each payoff is between zero and one, and all types strictly prefer coordination on the same
action as the partner (and obtaining at least min {uLL, uRR}) over mis-coordination (which yields at
most max {uRL, uLR}). Given a type u = (uLL, uLR, uRL, uRR), let φu ∈ [0, 1] denote type u’s left-
tendency, which is the probability of the opponent playing L that induces an agent of type u to be
indifferent between the two actions:

φu = uRR − uRL
uLL + uRR − uRL − uLR

.

Observe that an agent with left-tendency φu prefers to play L (R) if her partner plays L with probability
larger (smaller) than φu. Thus, the left-tendency φu replaces what we denoted by u in the main model.

Straightforward adaptations of the proofs of the baseline model show that our main results, Theorem
1 as well as Propositions 1, 2, and 3 extend to this setup.

8.4 Extreme Types with Dominant Actions

In this subsection we show how to extend our analysis to a setup in which some types have an extreme
preference in favor of one of the actions, such that it becomes a dominant action for them.
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Let a < 0 and b > 1. We extend the set of types to be the interval [a, b]. Observe that action L (R) is
a dominant action for any type u < 0 (u > 1) as coordinating on R (L) yields such a type a negative
payoff of u < 0 (1 − u < 0). We call types with a dominant action (i.e., u < 0 or u > 1) extreme,
and types that do not have a strictly dominant action (i.e., u ∈ [0, 1]) moderate. We assume that the
cumulative distribution of types F is continuous (atom-less) and has a support [a, b].

To simplify the presentation of the results we assume that

α ≡ F (0)
F (0) + (1− F (1)) = k

n
.

is a rational number (i.e., k and n are natural numbers).11 Observe that α = 1/2 in the case of a
symmetric distribution F (i.e., F (0) = 1 − F (1)). We further assume that the extreme types are a
minority both among the agents who prefer action R and among the agents who prefer action L, i.e.,

F (0) < 1
2 · F

(1
2

)
, and 1− F (1) < 1

2 ·
(

1− F
(1

2

))
. (1)

A simple way to adapt σL = (µ∗, ξL) to the setup with extreme types is to adapt ξL by having extreme
types following their dominant action in the second stage (and moderate types play in the same way
as in the baseline model). In what follows we show that σL is no longer an equilibrium strategy with
extreme types (the argument why σR is no longer an equilibrium strategy is analogous). Observe
that sending message mR by a moderate type leads to coordination (on R or L depending on the
opponent message) with probability one, while sending message mL leads to coordination (on L) only
with probability (F (1)) < 1.

This implies that types u < 1/2 sufficiently close to 1/2 strictly prefer to send message mR over
mL (as the former induces a higher probability to coordinate the same action as the partner), which
contradicts σL being an equilibrium strategy.

In what follows we show that strategy σα, according to which moderate players with different preferred
outcomes coordinate on L with probability α, is a renegotiation-proof equilibrium strategy. Formally,
assume that |M | ≥ 2·n. Denote 2n distinct messages as {mL,1, ...,mL,n,mR,1, ...,mR,n} ∈M , where we
interpret mL,i (mR,i ) as expressing a preference for L (R) and choosing at random the number i from
the set of numbers {1, ..., n} in the joint lottery described below. We arbitrarily interpret any message
m ∈ M\ {mL,1, ...,mL,n,mR,1, ...,mR,n} as equivalent to mL,1 (i.e., any such message is interpreted
as having a preference for L and randomly choosing 1). Given message m ∈ M, let i (m) denote its
associated random number, e.g., i (mL,j) = j. Let MR = {mR,1, ...,mR,n} and ML = M\MR.

11In order to deal with irrational α-s one needs either to slightly weaken the results below to show that there exists
a renegotiation-proof ε-equilibrium strategy (in which each type of each player gains at most ε from deviating) for any
ε > 0, or to allow an infinitive set of messages or a continuous “sunspot”.
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Let σα = (µα, ξα) be defined as follows:

µα (u) =


1
n ·mL,1 + ...+ 1

n ·mL,n u ≤ 1
2

1
n ·mR,1 + ...+ 1

n ·mR,n u > 1
2 .

Thus, the first-stage strategy µα induces each agent to reveal whether his preferred outcome is L or
R, and to uniformly choose a number between 1 and n. In the second stage, if both agents share the
same preferred outcome they play it. Otherwise, moderate types coordinate on L if the sum of their
random numbers modulo n is at most k, and coordinate on R otherwise. Extreme types play their
strictly dominant action. Formally:

ξα (m,m′) =

0 (m,m′) ∈MR ×MR or ((m,m′) 6∈ML ×ML and ((i (m) + i (m′)) modn) > k)

1 otherwise.
(2)

Next we show that σα is a renegotiation-proof equilibrium strategy. Formally,

Proposition 4. σα is a renegotiation-proof equilibrium strategy.

Proof. In what follows, we present new arguments in the proof: (1) the argument why µα is a best
reply against σα in the first stage, and (2) the argument why ξα is a best reply against σα in the second
stage. All other arguments in the proof are very similar to the arguments in the proof of Theorem 1,
are omitted for brevity.

We begin by showing that µα is a best reply against σα in the first stage. The probability of mis-
coordination conditional on the agent sending message m ∈ MR is equal to the probability of F (0)
that the partner has an extreme “left” type times the probability of (1− α) that the joint lottery
induces moderate players to play R. Similarly, the probability of mis-coordination conditional on the
agent sending message m ∈ML is equal to the probability of 1−F (1) that the partner has an extreme
“right” type times the probability of α that the joint lottery induces moderate players to play L. These
two probabilities of mis-coordination coincide due to the definition of α in (2) above:

F (0) · (1− α) = (1− F (1)) · α (3)

⇔ α = F (0)
F (0) + (1− F (1))

This implies that (1) type 1/2 is indifferent between sending message in MR and sending a message
in ML as both messages induce the same probability of mis-coordination, and (2) any type u < 1/2
(u > 1/2) strictly prefers to send a message in ML (MR) as sending such a message induces a higher
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probability of coordination on his preferred outcome L (R). This implies that µα is a best reply against
σα in the first stage.

Next we show ξα is a best reply against σα in the second stage. Let m,m′ ∈ supp (µα) . Consider the
induced game Γ(Fm, Fm′). If (m,m′) ∈MR×MR ((m,m′) ∈ML×ML), then a partner who follows σα is
going to play R (L) for sure, which implies that following ξα (m,m′) and playing R (L) is the best reply
against σα in the induced game Γ(Fm, Fm′). If (m,m′) ∈ MR ×ML and ((i (m) + i (m′)) modn) > k

( (m,m′) ∈ ML ×MR and ((i (m) + i (m′)) modn) ≤ k), then a moderate partner (who sent message
m′) who follows σα is going to play R (L). Eq. (1) implies that the probability that the partner is
moderate is strictly more than 1/2 , which, in turn, implies that following ξα (m,m′) and playing R
(L) is the best reply against σα in the induced game Γ(Fm, Fm′) (as playing R (L) yields the player an
expected payoff of at least u

2 ≥
0.5
2 (1−u

2 ≥ 0.5
2 ), while playing L (R) yields the player a strictly smaller

expected payoff that is strictly less than 1−u
2 ≤ 0.5

2 (u2 ≤
0.5
2 ).

Minor adaptations to the proof of Theorem 1 show that the result applies also to the current setup
with extreme type. Note that in the current setup with extreme types, one should interpret the
property of a strategy being coordinated (namely, that Fm (ξ(m,m′)) = Fm′ (ξ(m′,m)) ∈ {0, 1} for
any m,m′ ∈ supp (µ∗)) as showing that there is no mis-coordination among non-extreme types; there
might be mis-coordination only in matches in which one of the players is an extreme type, and the
partner has the opposite preferred outcome.

8.5 Coordination Games with More Than 2 Actions

In this subsection we extend our main result to coordination games with more than two actions.

Adaptation of the Model Let Γn be a coordination game in which agents simultaneously send
messages from a finite set M (2 · n ≤ |M | < ∞), and then simultaneously choose an action from the
ordered set A = (a1, ..., an) with 2 < n < ∞. The type of an agent u = (u1, ..., un) is an element of
[0, 1]n , where we interpret the k-th component uk as the payoff of the agent if both players choose
action ak. If the players choose different actions (mis-coordinate), then they both get a payoff of zero.
We assume that the distribution of types is a continuous (atomless) distribution with a support of
[0, 1]n. Let f denote its density. For each action ai,let p (ai) be the probability that the preferred
action of a random agent is ai (i.e., the probability that ui = max ({u1, .., un})).

A player’s (ex-ante) strategy in Γn is a pair σ = (µ, ξ), where µ : U → ∆(M) is a message function
that describes which (possibly random) message is sent for each possible realization of the agent’s type,
and ξ : M ×M ×U → ∆ (A) is an action function that describes the distribution of actions chosen as
a function of the agent’s type and the observed message profile; that is, when an agent of type u who
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follows strategy (µ, ξ) observes a message profile (m,m′) (message m sent by the agent, and message
m′ sent by the opponent), then the agent plays action ak with probability ξu (m,m′) (ak). Let Σn

denote the set of all strategies of the game Γn.

The notions of equilibrium strategy, the induced game Γm,m′n , the induced game with additional com-
munication Γm,m′,M ′n , and renegotiation-proof equilibrium strategy are adapted to the current setup in
a straightforward way.

Strategies σL / σR are not Equilibrium Strategies We begin by demonstrating that there is
no simple way to adapt σL and σR to the setup with more than 2 actions. Example 2 shows that a
simple adaptation of σL does not constitute an equilibrium strategy with more than two actions.

Example 2 (Simple adaptation of σL / σR is not an equilibrium strategy). Consider the following
strategy σ̃ =

(
µ̃, ξ̃

)
, which is a simple adaptation of σL / σR to the setup with more than two actions.

Fix n distinct messages m1,m2, ...,mn ∈ M . We begin by defining the action function µ̃: each agent
sends his preferred outcome (with an arbitrary tie-breaking rule of choosing the action with the smaller
index in case of multiple preferred outcomes). Formally,

µ̃ (u1, ..., un) =



m1 u1 = max ({u1, .., uk})

... ...

mk uk = max ({u1, .., uk}) > max ({u1, .., uk−1})

... ...

mn un = max ({u1, .., un}) > max ({u1, .., un−1})

Thus, the first-stage strategy µ∗ induces each agent to reveal his preferred outcome. In the second
stage both agents play the preferred action with the smaller index, i.e.,

ξ̃ (mk,ml) = amin(k,l).

That is, the |Fallback” norm, in cased the agents have different preferred outcomes, is to play the
outcome with the smaller index. We conclude the example by showing that σ̃ is not an equilibrium
strategy. Consider an agent with type u that satisfies: (1) coordinating on an is the agent’s preferred
outcome, i.e., un > max ({u1, .., un−1}), (2) coordinating on a1 is only slightly less preferred than
coordinating on an, i.e., un − u1 << 1, and (3) coordinating on any other action yields a very low
payoff, i.e., max (u2, ..., un−1) << 1. Such an agent obtains a payoff of

∑
i≤n

p (ai) · ui ≈ p (a1) · u1 + p (an) · un ≈ (p (a1) + p (an)) · u1
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when following strategy σ̃ (because strategy σ̃ induces both players to coordinate on the partner’s
preferred outcome). The agent can obtain a strictly higher payoff of u1 by deviating to sending
message m1,

σC is a Renegotiation-Proof Equilibrium Strategy Next we show that a simple adaptation of
σC remains a renegotiation-proofness equilibrium strategy also with with more than two actions.

Fix 2 · n distinct messages m0
1,m

0
2, ...,m

0
n,m

1
1,m

1
2, ...,m

1
n ∈ M , where we interpret mj

i as indicating
that the agent’s preferred outcome is the i-th outcome, and that the random binary number chosen
by the agent is j ∈ {0, 1} . Let σC = (µC , ξC) be extended to the current setup as follows:

µC (u1, ..., un) =



1
2 ·m

0
1 + 1

2 ·m
1
1 u1 = max ({u1, .., uk})

... ...

1
2 ·m

0
k + 1

2 ·m
1
k uk = max ({u1, .., uk}) > max ({u1, .., uk−1})

... ...

1
2 ·m

0
n + 1

2 ·m
1
n un = max ({u1, .., un}) > max ({u1, .., un−1})

Thus, the first-stage strategy µC induces each agent to reveal his preferred outcome, and to uniformly
choose a binary number (either, zero or one). In the second stage, if both agents share the same
preferred outcome they play it. Otherwise, they coordinate on the preferred action with the smaller
index if both agent have chosen the same random number, and they coordinate on the preferred
outcome with the larger index it the agents have chosen different random numbers. Formally:

ξC

(
mi
k,m

j
l

)
=

ak (k ≤ l and i = j) OR (k ≥ l and i 6= j)

al otherwise.

Our first result shows that σC is a renegotiation-proof equilibrium strategy.

Proposition 5. σC is a renegotiation-proof equilibrium strategy.

Sketch of proof. In what follows we show why the first-stage behavior is a best reply against σC . The
remaining arguments why the second-stage behavior is a best reply, and why σC is renegotiation-proof
are analogous to the proof of Theorem 1 and are omitted for brevity.

Observe that an agent who sends messagemi
k obtains an expected payoff of 1/2·uk+1/2·

∑
l≤n p (al)·ul

when facing a partner who follows strategy σC . This implies that the first-stage best reply of an agent
for which the preferred outcome is the k-th outcome, is to send either message m0

k or m1
k, which, in

turn, implies that following the message function µC is indeed a first-stage best reply of the agents.

26



Necessary Conditions for Renegotiation-Proofness Our final result adapts Theorem 1 to the
current setup with more than two actions. Specifically, we show that any renegotiation-proof equilib-
rium strategy, satisfies the first the following three properties:

1. Each agent reveals his preferred outcome.

2. Agents always coordinate on a jointly preferred outcome (if such an outcome exist)

3. The agents never mis-coordinate.

The condition of balancedness is replaced with the following condition:

4. For each subset of actions A′ ⊆ A and each action ai ∈ A′, there is a message mi ∈ Mi that
maximizes the probability that the coordinated outcome would be in A′. (Observe that this
property is satisfied by σC , while it is not satisfied by σL and σR.)

The intuition behind part (4) is as follows. Part (1) implies that all types must reveal their preferred
outcome in a renegotiation-proof strategy. A type that is almost indifferent between coordinating on
any action in A′, while disliking coordinating on any action in A\A′, will reveal his most preferred
outcome, only if this will not decrease the probability of coordinating on one of the actions in A′.
Formally:

Theorem 2. Let σ = (µ, ξ) be a renegotiation-proof equilibrium strategy. Then the following state-
ments are true.

1. Each agent reveals his preferred outcome: There exist n non-empty, disjoint, and exhaustive
subsets of supp(µ) denoted by M1, ...,Mn (i.e., supp(µ) =

⋃̇
Mi) such that for each i ≤ n: ui >

max ({u1, .., un} \ {ui})) implies that µu(m) = 0 for each m /∈Mi.

2. Agents always coordinate on a jointly preferred outcome (if such an outcome exist): Ifm,m′ ∈Mi

for some i ≤ n, then ξ(m,m′, u) = ai for each type u ∈ U satisfying µu (m) > 0. In this case we
omit the parameter u and write ξ(m,m′) = ai.

3. Agents never miscoordinate: ξ(m,m′, u) = ξ(m,m′, u′) ∈ A for any m,m′ ∈ supp (µ) and any
pair of types u, u′ ∈ U satisfying µu (m) > 0 and µu′ (m′) > 0.

4. For each subset of actions A′ ⊆ A and each action ai ∈ A′, there is a message mi ∈ Mi , such
that ∑

m′∈M
µ
(
m′
)
· 1ξ(m′,mi)∈A′ ≥

∑
m′∈M

µ
(
m′
)
· 1ξ(m′,m)∈A′

for each message m ∈M .

Proof. Let σ be a renegotiation-proof equilibrium strategy. The proofs of parts (1–3) are very similar
to the proofs of the analogous parts of Theorem 1 and are omitted for brevity. In what follows we
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prove part (4). Assume to the contrary that there exists an action ai ∈ A′ ⊆ A and a message m∗ /∈Mi

such that ∑
m′∈M

µ
(
m′
)
· 1ξ(m′,mi)∈A′ <

∑
m′∈M

µ
(
m′
)
· 1ξ(m′,m∗)∈A′ ≡ p∗

for each mi ∈Mi. Let pi be the maximal probability of coordination on an action in A′ conditional on
the agent sending a message from Mi:

pi = max
mi∈Mi

 ∑
m′∈M

µ
(
m′
)
· 1ξ(m′,mi)∈A′

 .

Note that pi < p∗. Let 0 < ε << 1 be sufficiently small such that pi ·ui+ε < p∗ ·ui−ε. Consider a type
û = (u1, ..., un) satisfying: (1) ui > max ({u1, .., un} \ {ui}), (2) ui−uj < ε for each action aj ∈ A′, (3)
uk < ε for each ak 6∈ A′. Due to the property proved in part (2) an agent with type û who follows σ
has to send a message from Mi. This implies that his payoff would be at most pi · ui + ε. By contrast,
deviating to sending the message m∗ yield the agent a strictly higher payoff of p∗ ·ui− ε, contradicting
σ being a renegotiation-proof equilibrium strategy.

9 Related Literature

While our notion of renegotiation proofness may not be exactly the same as any notion in the literature
as far as we can see, it is however very much inspired by previous notions and, we feel, simply appropri-
ately adapted to the problem at hand. At the heart of renegotiation proofness is the idea that people
will find it hard to ignore obvious Pareto-improving alternatives to any suggestions as to how they
should behave or what choices they should (collectively) make. When people are forward looking, their
anticipation of revisions of plans that are not Pareto-efficient can constrain possible equilibrium be-
havior. Renegotiation proofness concepts have been developed in the context of infinitely and finitely
repeated games with complete information in e.g., Farrell and Maskin (1989), Van Damme (1989),
Bernheim and Ray (1989), Evans and Maskin (1989), and in e.g., Benoit and Krishna (1993) and Wen
(1996), respectively. There is a sizable literature on the renegotiation proofness of contracts in the
presence of asymmetric information possibly starting with Hart and Tirole (1988) and Dewatripont
(1989). See also Maestri (2017) and Strulovici (2017) for more recent contributions in this area.

When there is incomplete information analysts have to be careful as to what information people have
when they renegotiate. In a seminal article Holmström and Myerson (1983) distinguish between three
possible cases: the ex-ante stage before people even have their own private information, the interim
stage at which people know their private information but nothing else, and the ex-post stage at which
people know everything. They then call a decision rule (a mechanism - one could also think of it as a
strategy profile) “durable” if it is immune to renegotiation at any of these stages.
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The closest concept to ours may be that of posterior efficiency of Forges (1994). Forges (1994) argues
that the final outcome of a mechanism (or here strategy profile) will not necessarily fully reveal all
initially privately held information. Posterior efficiency then only demands that the outcome be efficient
given the information that the people can infer from the outcome of the mechanism alone. Similarly
we here demand that the strategy profile prescribes an action profile after messages are sent that is
efficient given the information revealed by the messages sent. Thus, our players have more information
than just the prescribed action profile as they in fact observe also the messages sent which in our
case typically provide additional information. See also Kawakami (2016, page 897) on this point.
Our definition of renegotiation proofness necessarily also differs from Forges (1994) posterior efficiency
in that in our strategic setting we impose the additional (sequential rationality) requirement that
agents play an equilibrium action profile given the information they have. The domain of problems in
Forges (1994) is the domain of Bayesian collective choice problems, in which agents only choose which
message to send but do not make any other strategic choices. The contribution of our paper is not
the possibly slightly novel solution concept, but the characterization of this, we believe in our context
most appropriate solution concept, for our particular problem of communication in coordination game
with private values.

Another “path” to our paper is the literature on costless pre-play communication, especially when
paired with an evolutionary analysis. There are various strands of literature on this topic, but perhaps
the most germane is the literature that started with studying costless pre-play communication before
players engage in a complete information coordination game by Robson (1990) (see also earlier the
related notion of “green beard effect” in Hamilton, 1964; Dawkins, 1976). This has spurred a sizable
literature including Sobel (1993), Blume, Kim, and Sobel (1993), Wärneryd (1993), Kim and Sobel
(1995), Bhaskar (1998), and Hurkens and Schlag (2003). Simplifying, the general insights are as follows.
Suppose that the game has two Pareto-rankable equilibria. Then the Pareto-inferior equilibrium is not
evolutionary stable as it can be invaded by mutants who use a previously unused message as a secret
handshake: if their opponent does not use the same handshake they simply play the inferior Pareto
equilibrium (as do all incumbents), but if their opponent also uses the secret handshake they both play
the Pareto-superior equilibrium. Suppose the game has an equilibrium that is not Pareto-dominated by
another equilibrium but is Pareto-dominated by some non-equilibrium strategy profile. Then the same
argument would suggest that the so Pareto-dominated equilibrium is unstable, yet the mutant strategy
profile - by virtue of not being an equilibrium - is itself also unstable. To avoid this one can appeal
to the notion of “robustness to equilibrium entrants” introduced by Swinkels (1992) that only those
mutants are considered that when they play against each other mutants play an equilibrium. Then, for
instance, everyone defecting is the unique strategy in the prisoner’s dilemma that is stable with respect
to equilibrium entrants (mutants). Our notion of renegotiation proofness has a similar flavor as we
request that a renegotiation proof equilibrium is both an equilibrium and efficient among equilibria.
Given the incomplete information in our model we believe that the most appropriate place for applying
this idea is at the stage after messages are sent, essentially at the posterior stage in the language of
Forges (1994) as explained above. Recently, Newton (2017) shows an evolutionary foundation for

29



the agents developing the ability to renegotiate into a Pareto-better outcome ("collaboration" in the
terminology of Newton (2017)).

Another related literature deals with stable equilibria in coordination games with private values, but
without pre-play communication. Sandholm (2007) (extending earlier results of (Fudenberg and Kreps,
1993; Ellison and Fudenberg, 2000)) shows that mixed Nash equilibria of the game with complete
information can be purified in the sense of Harsanyi (1973) in an evolutionary stable way (see also
2). Finally, two related papers analyse stag-hunt games with private values. Baliga and Sjöström
(2004) show that introducing pre-play communication induces a new equilibrium in which the Pareto-
dominant action profile is played with a high probability. In a recent paper Jelnov, Tauman, and Zhao
(2018) show that in some cases a small probability to have another interaction can have a substantial
influence of the set of equilibrium outcomes in the Stag Hunt games with private values.

10 Conclusion

TBD
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A Evolutionary Stability (for online publication?)

In this appendix we analyze the stability properties of strategies σL and σR (the results can be extended
to other renegotiation proof equilibria, but we do not present the details here for brevity). Specifically,
we show that σL and σR satisfy three properties that imply robustness to various perturbations:
evolutionary stability (à la Maynard Smith and Price, 1973); behavior in the first stage is weakly
dominant (given the second-stage behavior); and behavior in the second stage is a neighborhood
invader (Apaloo, 1997; Cressman, 2010).

A.1 Preliminary Definition: Equivalent Strategies

We say that two strategies and are almost-surely realization equivalent (abbr., equivalent) if they
induce the same behavior for almost all types (regardless of the opponent’s behavior). Formally,

Definition 4. A condition holds for almost all types if the set of types that satisfy the condition
Ũ ⊆ U has mass one (as measured by the distribution f); i.e.,∫

1u∈Ũ · f (u) du = 1.

Definition 5. Strategies σ = (µ, ξ) and σ̃ =
(
µ̃, ξ̃

)
are almost-surely realization equivalent (abbr.,

equivalent) if for almost all types u ∈ [0, 1]: µu (m) = µ̃u (m) for every message m ∈ M , and u ≤
ξ (m,m′) if and only if u ≤ ξ̃ (m,m′) for every m ∈M satisfying µu (m) > 0 and every m′ ∈M .

If σ and σ̃ are equivalent strategies we denote it by σ ≈ σ̃. It is immediate that equivalent strategies
always obtain the same ex-ante expected payoff. Formally,

Fact 1. Let σ ≈ σ̃ ∈ Σ be two equivalent strategies and let σ′ ∈ Σ an arbitrary strategy. Then
π (σ, σ′) = π (σ̃, σ′).

A.2 Evolutionary/Neutral stability

An equilibrium strategy σ is neutral (evolutionary) stable if it achieves a weakly (strictly) higher ex-
ante expected payoff against any (non-equivalent) best-reply strategy, relative to the payoff that the
best-reply strategy achieves against itself. Formally

Definition 6 ((adaptation of Maynard Smith and Price, 1973)). Equilibrium strategy σ ∈ E is neu-
trally (evolutionary) stable if for any non-equivalent strategy σ̃ 6≈ σ,

π (σ̃, σ) ≥ π (σ, σ) ⇒ π (σ, σ̃) ≥ π (σ̃, σ̃) (π (σ, σ̃) > π (σ̃, σ̃) ) .
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The refinement of neutral stability is, arguably, a necessary requirement for an equilibrium to cor-
respond to a stable convention in a population (see, e.g., Banerjee and Weibull, 2000). If σ is an
equilibrium strategy that is not neutrally stable, then a few experimenting agents who play a best
reply strategy σ′ can invade the population. These experimenting agents would fare the same against
the incumbents, while they outperform the incumbents when being matched with other experimenting
agents. This implies that, on average, these experimenting agents would be more successful than the
incumbents, and their frequency in the population would increase in any payoff-monotone learning
dynamics. this, in turn, implies that the population will move away from σ.

Our first result shows that both σL and σR are neutrally stable, and, moreover, they are evolutionary
stable if there are two feasible messages. Formally,

Proposition 6. σL and σR are neutrally stable strategies of the coordination game with communication
〈Γ,M〉. Moreover, if |M | = 2, then σL and σR are evolutionary stable strategies.

Sketch of proof. Let σ′ be a best reply strategy against σL (the argument for σR is analogous). In
what follows we show that, for almost all types σ′ induces the same behavior as σL, except possibly,
that types less than 1/2 may send different messages m 6= mR. Assume to the contrary that σ′ differs
from σL by either:

1. having a positive mass of types below 1/2 sending message mR (resp., having a positive mass
of types above 1/2 sending messages m 6= mR); observe that any such type u obtains a payoff
strictly less than 1− u, while she could obtain a payoff of 1− u by following σL (resp., a payoff
of at most 1 − u < 1/2, while she could obtain a payoff strictly larger than 1 − u by following
σL); this implies that π (σ′, σL) < π (σL, σL) and we get a contradiction; or

2. having a positive mass of types behaving differently on the equilibrium path after observing
message profile (m,m′) ; observe that the opponent plays a pure profile after (m,m′), and inducing
a different behavior than σL in the second stage implies that these types miscoordinate the
opponent’s action with a positive probability, and, thus, obtain a strictly lower payoff; this
implies that π (σ′, σL) < π (σL, σL) and we get a contradiction.

The fact that any best reply strategy σ′ of σL is, essentially, equivalent to σL (i.e., it only differs by some
types replacing the message mL with another message m 6= mR) implies that π (σL, σ′) = π (σ′, σ′),
which implies that σL is neutrally stable. Moreover, if |M | = 2, then the above argument implies that
only equivalent strategies σ′ ≈ σ∗ are best replies against σ̃, which implies that σL is evolutionary
stable.
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A.3 Message Function is Dominant

In this subsection we show that the behavior in the first stage induced by strategies σL (resp., σR),
namely the action function µ∗, is a weakly dominant message function (and strictly dominant when
|M | = 2), when taking as given that the behavior in the second stage is according to the action function
ξL (resp., ξR). This suggests that the behavior in the first stage that is induced by σL (resp., by σR)
is robust to any perturbation that keeps the behavior in the second stage unchanged. Specifically,
it implies that even if the message function used by the population is perturbed in an arbitrary way
(possibly, even a large perturbation), then the original function µ∗ yields a weakly higher payoff than
any other message function, which suggests that the behavior in the first stage would converge back
to play µ∗ under any payoff-monotone learning dynamics.

Proposition 7 shows that following message-function µ∗ yields a weakly higher payoff relative to follow-
ing any other message-function when facing a partner who follows in the second stage either ξL or ξR .
Moreover, the inequality is strict whenever the alternative message-function is essentially different than
µ∗ in the sense of inducing low types to play mR or inducing high types to play m 6= mR. Formally

Proposition 7. Let µ′ be an arbitrary message function. Then for any type u 6= 1/2:

1. πu ((µ∗, ξL) , (µ′, ξL)) ≥ πu ((µ′, ξ) , (µ′, ξL)) with a strict inequality if, either, (I) µ′u (mR) > 0
and u < 1/2, or (II) µ′u (mR) < 1 and u > 1/2; and

2. πu ((µ∗, ξR) , (µ′, ξR)) ≥ πu ((µ′, ξR) , (µ′, ξR)) with a strict inequality if, either, (I) µ′u (mL) > 0
and u > 1/2, or (II) µ′u (mL) < 1 and u < 1/2.

Proof. In what follows we prove Part (1) of Proposition 7, which deals with ξL. The proof for Part
(2), which deals with ξR, is analogous and is omitted for brevity. The fact that the opponent plays ξL
in the second stage, implies that an agent of type u < 1/2 (u > 1/2) can gain an expected payoff of
1− u ((1− F (1/2)) · u+ F (1/2) · (1− u)) by following (µ∗, ξL), and that no other strategy can yield
a higher payoff. Moreover, if µ′u (mR) > 0 and u < 1/2 (µ′u (mR) < 1 and u > 1/2), then following
message-function µ′ yields type u a payoff strictly less than 1− u ((1− F (1/2)) · u+F (1/2) · (1− u))
due to having a positive probability (probability lager than F (1/2)) of inducing the partner to play
the action, which is less preferred by the agent. This implies part (1) of Proposition 7.

An immediate corollary of Proposition 7 is that the inequalities are strict for any µ′ 6= µ∗ when |M | = 2.
Formally:

Corollary 1. Assume that |M | = 2, and that µ′u 6= µu for some type u 6= 1/2. Then:

1. πu ((µ∗, ξL) , (µ′, ξL)) > πu ((µ′, ξ) , (µ′, ξL)); and

2. πu ((µ∗, ξR) , (µ′, ξR)) > πu ((µ′, ξR) , (µ′, ξR)).
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A.4 Action Function is a Neighborhood Invader Strategy

The set of actions of each player in the induced second-stage game Γ(Fm, Fm′) (the game played after
observing a pair of messages (m,m′)) is, essentially, an interval (i.e., each player has to choose her
maximal threshold for playing L). This induced game is asymmetric whenever the message profile is
asymmetric, i.e., m 6= m′. As argued by Eshel and Motro (1981) and Eshel (1983) when the set of
strategies is a continuum, a stable convention should be robust to perturbations that slightly change
the strategy played by all agents in the population. Cressman (2010) formalizes this requirement by
the notion of neighborhood invader strategy (adapting the related notion of Apaloo, 1997). In what
follows we show that the action function induced by σL and σR is a neighborhood invader strategy in
any induced game Γ(Fm, Fm′).

Fix a message strategy µ and a pair of messages m1,m2 ∈ supp (µ). We identify a strategy in the
induced game ΓFm1 ,Fm2

with thresholds xi, which is interpreted as the maximal type for which player
i ∈ {1, 2} plays L. We say that strategy xi of player i is equivalent to x′i (denoted by xi ≈ x′i) in
the induced game ΓFm1 ,Fm2

, if Fmi (xi) = Fmi (x′i), which implies that both thresholds induce the
same behavior with probability one. Let πm1,m2 (x1, x2) denote the expected payoff of an agent with a
random type sampled from fm1 who uses threshold x1 when facing a partner with a random unknown
type sampled from fm2 who uses threshold x2.

Strategy profile (x1, x2) is a strict equilibrium in the induced game ΓFm1 ,Fm2
, if any best reply to xj is

equivalent to xi, i.e., πm1,m2 (x′1, x2) ≥ πm1,m2 (x1, x2)⇒ x′1 ≈ x1, and πm2,m1 (x′2, x1) ≥ πm2,m1 (x2, x1)
⇒ x′2 ≈ x2.

We say that the strict equilibrium (x1, x2) is a neighborhood invader strategy in the induced game
ΓFm1 ,Fm2

if the population converges to (x1, x2) from any non-equivalent nearby strategy profile (x′1, x′2)
in two steps: (1) xi yields a strictly higher payoff against xj relative to the payoff of x′i against xj
(which implies convergence from

(
x′i, x

′
j

)
to
(
xi, x

′
j

)
, and (2) due to (x1, x2) being a strict equilibrium,

xj yields a strictly higher payoff against xi relative to the payoff of x′j against xi (which implies the
convergence from

(
xi, x

′
j

)
, to (xi, xj)). Formally:

Definition 7 (Adaptation of Cressman (2010, Def. 5)). Fix a message strategy µ and a pair of
messages m1,m2 ∈ supp (µ). A strict Nash equilibrium (x1, x2) is a neighborhood invader strategy
profile in the induced game ΓFm1 ,Fm2

if there exists ε > 0, such that for each (x′1, x′2) satisfying
x′1 6≈ x1, x′2 6≈ x2, |x′1 − x1| < ε and |x′2 − x2| < ε, then either πm1,m2 (x1, x

′
2) > πm1,m2 (x′1, x′2) or

πm2,m1 (x2, x
′
1) > πm2,m1 (x′2, x′1).

Proposition 8 shows that the profile of action functions induced by σL (or, similarly, by σR) is a
neighborhood invader strategy in any induced game.

Proposition 8. Letm1,m2 ∈ supp (µ∗). Then (ξL (m1,m2) , ξL (m1,m2)) and (ξR (m1,m2) , ξR (m1,m2))
are strict equilibria and neighborhood invader strategy profiles in the induced game ΓFm1 ,Fm2

.
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Proof. We present the proof for (ξL (m1,m2) , ξL (m1,m2)) (the proof for (ξR (m1,m2) , ξR (m1,m2))
is analogous). Observe that m1,m2 ∈ supp (µ∗) imply one of three cases: (1) m1 = m2 = mL, (2)
m1 = m2 = mR, and (3) m1 = mR, m2 = mL. We analyse each case as follows:

1. m1 = m2 = mL. This implies that ξL (m1,m2) = ξL (m2,m1) = 1 and Fm1 (1/2) = Fm2 (1/2) =
1. Let x̄ < 1/2 be sufficiently close to 1/2 such that Fm1 (x̄) , Fm2 (x̄) > 1/2. Observe that
πm1,m2 (1, x) > πm1,m2 (y, x) for any x > x̄ and any y 6≈ 1. This proves that (ξL (m1,m2) , ξL (m1,m2))
is a strict equilibrium and a neighborhood invader strategy profile.

2. m1 = m2 = mR. This implies that ξL (m1,m2) = ξL (m2,m1) = 0 and Fm1 (1/2) = Fm2 (1/2) =
0. Let x̄ > 1/2 be sufficiently close to 1/2 such that Fm1 (x̄) , Fm2 (x̄) < 1/2. Observe that
πm1,m2 (0, x) > πm1,m2 (y, x) for any x < x̄ and any y 6≈ 0. This proves that (ξL (m1,m2) , ξL (m1,m2))
is a strict equilibrium and a neighborhood invader strategy profile.

3. m1 = mR, m2 = mL. This implies that ξL (m1,m2) = ξL (m2,m1) = 1, Fm1 (1/2) = 0, and
Fm2 (1/2) = 1.

(a) Observe that (1) πm1,m2 (1, 1) > πm1,m2 (x, 1) for any x 6≈ 1 and (2) πm2,m1 (1, 1) >

πm2,m1 (x, 1) for any x 6≈ 1, which implies that (ξL (m1,m2) , ξL (m1,m2)) is a strict equi-
librium.

(b) Let x̄ > 1/2 be sufficiently close to 1/2 such that Fm1 (x̄) < 1/2. Observe that πm2,m1 (1, x) >
πm1,m2 (y, x) for any x < x̄ and any y 6≈ 1. This proves that (ξL (m1,m2) , ξL (m1,m2)) is a
neighborhood invader strategy profile.

A.5 Remark on Evolutionary Robustness

Oechssler and Riedel (2002) present a strong notion of stability, called evolutionary robustness, which
refines both evolutionary stability and being a neighborhood invader. An evolutionary robust strategy
σ∗ is required to be robust against small perturbation in the strategy played by the population, which
may combine both (1) a few experimenting agents who follow arbitrary strategies, and (2) many
agents who follow strategies that are only slightly different than σ∗. Specifically, if ϕ is a distribution
of strategies that is sufficiently close to σ∗ (in the L1 norm induced by the weak topology), evolutionary
robustness à la Oechssler and Riedel requires that π (σ∗, ϕ) > (ϕ,ϕ).

One can show that σL and σR do not satisfy this condition (and, we conjecture, that no strategy
can satisfy such a strong condition). However, we conjecture that adaptations to the arguments
presented in the results of this appendix can show that σL and σR satisfy a somewhat weaker notion
of evolutionary robustness: for each strategy distribution ϕ sufficiently close to σL (σR), there exists
a finite sequence of strategy distributions ϕ1, ϕ2, ..., ϕk, such that π (ϕ1, ϕ) ≥ (ϕ,ϕ), π (ϕ2, ϕ1) ≥
(ϕ1, ϕ1), ..., π (ϕk, ϕk−1) ≥ (ϕk−1, ϕk−1), and π (σL, ϕ1) ≥ (ϕ1, ϕ1) (π (σR, ϕ1) ≥ (ϕ1, ϕ1)), with strict
inequalities if |M | = 2 and ϕ is not realization equivalent to σL (σR).
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B Proofs (for online publication)

B.1 Undominated action strategies

Let Γ(F,G) be a coordination game without communication (possibly played after some communication
in the original game Γ).

A generalized action strategy in this game is a measurable function ξ : U → ∆ ({L,R}) that describes
a mixed action as a function of the player’s type. A generalized action strategy is a cut-off strategy if
there exists a type x ∈ [0, 1] such that ξ(u) = L for each u < x and ξ(u) = R for each u > x.

A generalized action strategy ξ is (weakly) dominated by generalized action strategy ξ̃ if π (ξ, ξ′) ≤
π
(
ξ̃, ξ′

)
for any generalized action strategy ξ′ of the opponent.

Lemma 1. Let ξ be a generalized action strategy. Then there exists a cut-off strategy ξ̃, such that ξ is
dominated by ξ̃.

Proof. Let x ∈ [0, 1] be such that F (x) = Eu∼F [ξu(L)] =
∫
u ξu(L)f(u)du. Let ξ̃ then be the cutoff

strategy with cutoff x, i.e.,

ξ̃u(L) =

1 u ≤ x

0 u > x.

Let ξ′ be an arbitrary generalized strategy of the opponent. By construction strategies ξ and ξ̃ induce
the same average probability of choosing L. Strategies ξ̃ and ξ differ in that ξ̃ induces lower types to
choose L with a higher probability, and higher types to choose L with a lower probability, i.e., ξ̃u(L) ≥
ξu(L) for any type u ≤ x and ξ̃u(L) ≤ ξu(L) for any type u > x. The fact that lower types always gain
weakly more (less) from choosing L (R) relative to higher types implies that π (ξ, ξ′) ≤ π

(
ξ̃, ξ′

)
.

Note also that any best response to some arbitrary generalized action strategy must be a cut-off
strategy.

B.2 Proof of Theorem 1

We first prove the “if” part of the theorem. Suppose σ = (µ, ξ) ∈ Σ is ordinal preference revealing,
mutual preference consistent, coordinated, and balanced.

As σ is ordinal preference revealing supp(Fm) ⊆ [0, 1/2] or supp(Fm) ⊆ [1/2, 1] for any message
m ∈ supp(µ). Consider any message pair m,m′ ∈ supp(µ). There are three cases to consider. Suppose
first that both supp(Fm), supp(Fm′) ⊆ [0, 1/2]. Then as σ is mutual preference consistent we have that
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ξ(m,m′) = ξ(m′,m) = L. Thus ξ describes best response behaviour after this message pair. Moreover
this behavior is the best possible outcome for any type in [0, 1/2] and thus for any type in supp(Fm) and
supp(Fm′). The second case of both supp(Fm), supp(Fm′) ⊆ [1/2, 1] is completely analogous. Suppose
then third and finally that, w.l.o.g., supp(Fm) ⊆ [0, 1/2] and supp(Fm′) ⊆ [1/2, 1]. As σ is coordinated
we have that ξ(m,m′) = ξ(m′,m) = L or ξ(m,m′) = ξ(m′,m) = R. Action strategy ξ, therefore, again
describes best response behavior. Moreover, one player (for all her types) obtains her most preferred
outcome. The only way to improve the outcome for the other player would be by making the former
player deviate from her most preferred outcome. Thus, there is no equilibrium strategy σ′ in the game
Γ(Fm, Fm′) with any new finite message set that Pareto dominates σ after this message pair.

All this shows that action strategy ξ is a best response to µ and to itself given µ and that moreover
it cannot be interim equilibrium Pareto-improved upon. It remains to be shown that the message
strategy µ is optimal given the opponent chooses σ = (µ, ξ).

Consider type u ∈ [0, 1/2] and consider this type’s choice of message. As σ is balanced and coordinated
different messages m ∈ M can only trigger different probabilities of coordinating on L with a highest
likelihood of such coordination for any messagem ∈ supp(µu). Type u is, therefore, indifferent between
any message m ∈ supp(µu) and weakly prefers any m ∈ supp(µu) over any message m′ 6∈ supp(µu).
An analogous statement holds for types u ∈ [1/2, 1]. This concludes the proof of the “if” part of the
theorem.

To prove the “only if” part we use a series of lemmas. The first lemma is a technical one.

Lemma 2. Let p, q ∈ (0, 1). Then there exists a rational number α ∈ (0, 1) satisfying q−p
1−p < α < q

p .

Proof. Note that, as q < 1,

0 ≤ (q − p)2 = q2 − 2 · q · p+ p2 < q − 2 · q · p+ p2,

which implies that

p · q − p2 < q − q · p⇔ p · (q − p) < q · (1− p)⇔ q − p
1− p <

q

p
.

The result then follows from the fact that q−p
1−p < 1.

The following lemma (which relies on Lemma 2) proves that in a renegotiation proof equilibrium
strategy agents never miscoordinate after observing identical messages.

Lemma 3. Let σ = (µ, ξ) be a renegotiation-proof equilibrium strategy. Then either ξ(m,m) ≥
sup {u|µu(m) > 0} or ξ(m,m) ≤ inf {u|µu(m) > 0} for each m ∈ supp (µ).

Proof. Letm ∈ supp (µ). Assume to the contrary that inf {u|µu(m) > 0} < ξ(m,m) < sup {u|µu(m) > 0}.
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This implies that there exist types uL, uR ∈ [0, 1] satisfying µuL(m), µuR(m) > 0 and uL < ξ(m,m) <
uR. Let q = Fm (ξ(m,m)) be the average probability that the partner plays L, conditional on observing
the pair of identical messages (m,m). If q = 0, then type uR obtains a payoff of zero in Γ(Fm, Fm),
which contradicts σ being an equilibrium strategy (as type uR could play L and obtain a positive
payoff). Similarly, if q = 1, then type uL obtains a payoff of zero in Γ(Fm, Fm), which contradicts σ
being an equilibrium strategy. Thus, we are left with the case in which q ∈ (0, 1).

Note that the expected payoff of a player of type u conditional on observing message profile (m,m) is
equal to

max {(1− u) · q, u · (1− q)} . (4)

Let p = Fm (1/2). If p = 0 (p = 1) then the strategy in which all agents play R (L) is a symmetric
equilibrium of the game Γ(Fm, Fm), which Pareto dominates ξ(m,m). We are left with the case in which
p ∈ (0, 1). Due to Lemma 2, there exists a rational number α ≡ k

n ∈ (0, 1) satisfying q−p
1−p < α < q

p .

Let M̃ = {l, r}×{1, ..., n} and consider the following symmetric equilibrium σ̃ of the game 〈Γ(Fm, Fm), M̃〉.
We interpret the message of each player as a preferred direction (l or r) and a random number between
1 and n. In σ̃ players send message l if and only if their type is smaller than 1/2; send a random
number between 1 and n according to the uniform distribution; play L after observing ((l, a) , (l, b))
for any numbers a and b; play R after observing ((r, a) , (r, b)) for any numbers a and b; play L after
observing ((l, a) , (r, b)) if a+b < k mod n; and play L after observing ((l, a) , (r, b)) if a+b ≥ k mod n.

Observe that σ̃ is indeed an equilibrium of the game 〈Γ(Fm, Fm), M̃〉 because following any pair of
messages the players coordinate for sure; each agent with u < 1/2 (u > 1/2) strictly prefers to report
that her preferred direction is l (r), as this induces her to coordinate on L (R) with a high probability
of p+ α · (1− p) (1− p+ (1− α) · p) instead of with a low probability of α · p ((1− p) · (1− α)); and
each agent is indifferent between sending any random number, as this has no effect on the probability
of coordinating on L (which is equal to α = k

n), given that the partner chooses his random number
uniformly.12

The payoff of each type u ≤ 1/2 in equilibrium σ̃ is given by

(p+ α · (1− p)) · (1− u) + (1− (p+ α · (1− p))) · u > (5)

q · (1− u) + (1− q) · u ≥ max {(1− u) · q, u · (1− q)} , (6)

where the first inequality is implied by q−p
1−p < α⇔ q < p+ α · (1− p) and u ≤ 1/2.

12 The method to use simultaneous communication to implement a jointly controlled lottery was introduced in Aumman,
Maschler, and Stearns (1968). See Heller (2010) for a recent implementation, which is robust to joint deviations of some
of the players.
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The payoff of each type u > 1/2 in equilibrium σ̃ is given by

((1− p) + (1− α) · p) · u+ (1− ((1− p) + (1− α) · p)) · (1− u) > (7)

(1− q) · u+ q · (1− u) ≥ max {(1− u) · q, u · (1− q)} , (8)

where the first inequality is implied by p
q > α ⇔ 1 − α > p−q

p ⇔ (1− p) + (1− α) · p > 1 − q and
u > 1/2. This implies that all types obtain a strictly larger payoff in σ̃ (relative to the expected payoff
of σ in the game 〈Γ(Fm, Fm)〉), contradicting σ being renegotiation-proof.

The following lemma shows that, in a renegotiation proof equilibrium strategy, for each message m
that is sent with positive probability any two player types who send the same such message have the
same preferred outcome.

Lemma 4. Let σ = (µ, ξ) be a renegotiation-proof equilibrium strategy. Then for any m ∈ supp (µ),
Fm (1/2) ∈ {0, 1}.

Proof. Assume to the contrary that Fm (1/2) ∈ (0, 1). Let σ̃ be the following symmetric equilibrium
of the symmetric induced game with additional communication 〈Γ(Fm, Fm), {l, r}〉. Each player sends
message l if her type is at most 1/2 and sends message r otherwise. If both players send the same
message then they both play the respective action. That is they both play L after message pair (l, l)
and R after (r, r). If the players send different messages then they play the original equilibrium action
prescribed in ξ. The fact that, by Lemma 3, the probability of coordination under ξ is one, implies that
strategy σ̃ is indeed a symmetric equilibrium of 〈Γ(Fm, Fm), {l, r}〉. Note that all types are strictly
better off in σ̃ than in σ, which contradicts σ being a renegotiation-proof equilibrium strategy.

Given σ = (µ, ξ) ∈ Σ define ML = ML(σ) = {m ∈ supp (µ) |Fm (1/2) = 1} and MR = MR(σ) =
{m ∈ supp (µ) |Fm (1/2) = 0}. Lemma 4 implies that ML ∩MR = ∅ and ML ∪MR = supp(µ) for any
renegotiation proof equilibrium strategy σ and, thus, implies that any renegotiation proof equilibrium
strategy must be ordinal preference revealing.

The following lemma shows that, in a renegotiation proof equilibrium strategy, agents always coordi-
nate on a jointly preferred outcome if such an outcome exists, i.e., it shows that renegotiation proof
equilibrium strategies must be mutual preference consistent.

Lemma 5. Let σ = (µ, ξ) be a renegotiation-proof equilibrium strategy. Ifm,m′ ∈ML, then Fm (ξ(m,m′)) =
1. If m,m′ ∈MR, then Fm (ξ(m,m′)) = 0.

Proof. Assume to the contrary that m,m′ ∈ML and Fm (ξ(m,m′)) < 1. By Lemma 4 the two player
types, sending messagem andm′, must both have types u, v ≤ 1/2. Consider the induced game without
communication Γ(Fm, F ′m). Let σ̃ be such that both agents always play L. This is an equilibrium of
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Γ(Fm, F ′m) in which all types who send either message m or m′ are weakly better and some types
are strictly better off than in σ. This contradicts σ being renegotiation proof. The remaining case is
proven analogously.

The following lemma shows that, in a renegotiation proof equilibrium strategy, agents never miscoor-
dinate when one players sends a message in ML and the other in MR.

Lemma 6. Let σ = (µ, ξ) be a renegotiation-proof equilibrium strategy. If m ∈ ML and m′ ∈ MR,
then Fm (ξ(m,m′)) = Fm′ (ξ(m′,m)) ∈ {0, 1}.

Proof. Assume to the contrary that m ∈ ML, m′ ∈ MR, and Fm (ξ(m,m′)) 6= Fm′ (ξ(m′,m)) or
Fm (ξ(m,m′)) ∈ (0, 1). This assumption implies that the strategy σ induces players to mis-coordinate
with a positive probability after observing message pair (m,m′). By Lemma 4 we have that Fm (1/2) =
1 and Fm′ (1/2) = 0. This means that there are types u < 1

2 who, in σ, send message m and who play
R after observing (m,m′). As σ is an equilibrium this implies that it must be the case that average
probability that this type’s opponent (a m′ message sender) plays L is strictly less than 1

2 . Otherwise
this type with u < 1/2 would prefer to play L. An analogous argument implies that the average
probability that a m′ message sender plays R after observing (m,m′) is strictly less than 1/2.

Now consider the induced game with additional communication 〈Γ(Fm, Fm′), {0, 1}〉. Consider the
equilibrium σ̃ of this game, in which both players send their messages uniformly, and they play L if
they have sent the same message and play R otherwise. Observe that each player is indifferent between
the two feasible messages, because the probability of coordinating on L is 1/2 regardless of the agent’s
message (as long as the opponent sends her message uniformly). Further observe that all types obtain
an expected payoff of 1/2 in σ̃. This implies that all types are then strictly better off in σ̃ than in σ,
a contradiction to σ being a renegotiation proof equilibrium strategy.

Finally, Lemma 7 (together with Lemma 5) establishes that renegotiation proof equilibrium strategies
are balanced.

Lemma 7. Let σ = (µ, ξ) be a renegotiation-proof equilibrium strategy. Then σ is balanced.

Proof. Recall that
αm(σ) =

∫
v> 1

2

∑
m′∈supp(µv)

µv(m′)1{v≤ξ(m,m′)}f(v)dv.

Given Lemma 4 and the fact that σ is coordinated by Lemmas 3, 5, and 6, we can rewrite this as
αm(σ) =

∑
m′∈MR

µ(m′)Fm(ξ(m,m′)). This is now the probability of a u-type (with u ≤ 1/2) ending
up coordinating on L conditional on her sending message m ∈ML and her opponent having a type in
[1, 2, 1] (i.e., sending a message in MR). Given that σ is coordinated, 1−αm(σ) is then the probability
of such a u-type ending up coordinating on R conditional on her on her sending message m ∈ML and
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her opponent having a type in [1, 2, 1]. Now if there were any other message m′′ ∈ M that were to
yield a higher αm′′(σ) then this would be preferred by any such u type which contradicts m ∈ML. If
there were any other message m′′ ∈ ML that gives a lower αm′′(σ) then m would be preferred by any
such u type which contradicts m′′ ∈ML.

This proves that there exists α ∈ [0, 1], such that for each m ∈ ML, αm(σ) = α. By an analogous
argument we obtain that there exists β ∈ [0, 1], such that for each m ∈ MR, βm(σ) = β. That
α = β is immediately implied by the fact that both terms are just two different ways of computing the
same quantity. Both compute the overall average probability of players coordinating on action L after
observing a “mixed” pair of messages: one message from ML and the other message from MR.

Proof of Theorem 1:

Proof. Lemma 4 (which uses Lemma 3, which in turn uses the technical Lemma 2) proves that a
renegotiation proof equilibrium strategy must be ordinal preference revealing. Lemma 5 (which uses
Lemma 4) proves that it must be mutual preference consistent. Lemmas 3, 5, and 6 (the latter two
lemmas using Lemma 4) together imply that it must be coordinated. Lemma 7 (which also uses Lemma
4 and that just established property that a renegotiation proof equilibrium strategy is coordinated),
finally, proves that it must be balanced.

B.3 Proofs of Section 6

Proof of Proposition 1. By Theorem 1 the equilibrium payoff of a renegotiation proof strategy σ is
determined by its left-tendency α ∈ [0, 1] and, for each type u ∈ [0, 1/2] given by

πu(σ, σ) = (1− u) [F (1/2) + α (1− F (1/2))] + u(1− α) [1− F (1/2)] ,

and for each type u ∈ (1/2, 1] given by

πu(σ, σ) = (1− u)αF (1/2) + u [(1− F (1/2)) + F (1/2)(1− α)] .

The payoff to a u-type for a given outcome function φ is given by

πu (φ) = (1− u) Evφu,v (L,L) + uEvφu,v (R,R) .

Now suppose that φ interim (pre communication) Pareto dominates σ. Then πu(φ) ≥ πu(σ, σ) for all
u ∈ [0, 1] with a strict inequality for a positive measure of u. As πu(σ, σ) is a convex combination of
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two payoffs, this implies that for any u ≤ 1/2

Evφu,v (L,L) ≥ F (1/2) + α (1− F (1/2))

and for any u > 1/2
Evφu,v (R,R) ≥ (1− F (1/2)) + F (1/2)(1− α)

with at least one of the inequalities holding strictly for a positive probability set of types. We can
write

Evφu,v (L,L) = F (1/2)E{v≤1/2}φu,v (L,L) + (1− F (1/2)) E{v>1/2}φu,v (L,L) ,

where, for instance, E{v>1/2} denotes the expectation conditional on v > 1/2. To have

F (1/2)E{v≤1/2}φu,v (L,L) + (1− F (1/2)) E{v>1/2}φu,v (L,L) ≥ F (1/2) + α (1− F (1/2))

for any u ≤ 1/2, by the fact that E{v≤1/2}φu,v (L,L) ≤ 1, we must then have that

E{v>1/2}φu,v (L,L) ≥ α

for any u ≤ 1/2 and, by an analogous argument that

E{v<1/2}φu,v (R,R) ≥ 1− α,

for any u > 1/2, again with at least one of the inequalities holding strictly for a positive probability
set of types.

This implies that
E{u<1/2}E{v>1/2}φu,v (L,L) ≥ α

as well as
E{u>1/2}E{v<1/2}φu,v (R,R) ≥ 1− α,

with a at least one of the two inequalities holding strictly. By the symmetry of φ we have φu,v(R,R) =
φv,u(R,R) and thus,

E{u<1/2}E{v>1/2}φu,v (L,L) + E{u<1/2}E{v>1/2}φu,v (R,R) > 1,

a contradiction to φ being a probability distribution, and thus, to our supposition.

The proof of Proposition 2 uses the following lemma (of some independent interest).

Lemma 8. Let σ ∈ E be a coordinated equilibrium strategy. Then there is a renegotiation proof
strategy σ′ such that either σ and σ′ are interim (pre-communication) payoff equivalent or σ′ interim
(pre-communication) Pareto dominates σ.
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Proof. Let σ = (µ, ξ) ∈ E be a coordinated equilibrium strategy. For each message m ∈ M , let
pm ∈ [0, 1] be the probability that the players coordinate on L, conditional on the agent sending
message m:

pm =
∑
m′∈M

µ
(
m′
)

1ξ(m,m′)=L.

As σ is coordinated 1 − pm is then the probability that the players coordinate on R, conditional on
the agent sending message m.

Let p̄ = maxm∈M pm be the maximal probability, and let p = minm∈M pm be the minimal probability.
By definition p ≤ p̄. As σ is an equilibrium strategy, p < p̄ would imply that all types u < 1/2 send
a message inducing probability p̄ and all type u > 1/2 send a message inducing probability p. We,
therefore, must have that the expected payoff of a type u ≤ 1/2 is given by

πu (σ, σ) = p̄ (1− u) + (1− p̄)u,

and the expected payoff of any type u > 1/2 is equal to

πu (σ, σ) = p (1− u) +
(
1− p

)
u.

Note that this is also true if p = p̄. Note furthermore that for every type u < 1/2 this type’s expected
payoff strictly increases in p̄ and for every type u > 1/2 this type’s expected payoff strictly decreases
in p.

We consider three cases. Suppose first that p ≤ p̄ ≤ F (1/2). Then let σ′ = σR. This strategy is also
coordinated and its induced payoffs can be written in the same form as those for strategy σ with p′ = 0
and p̄′ = F (1/2). Thus, we get that πu (σ′, σ′) ≥ πu (σ, σ) for every u ∈ [0, 1]. This implies that σ is
either interim (pre communication) payoff equivalent to or Pareto dominated by σ′ = σR.

The second case where F (1/2) ≤ p ≤ p̄ is analogous to the first one, with now σ′ = σL the equivalent
or dominating strategy.

This leaves the final case where p < F (1/2) < p̄. Let α ∈ [0, 1] be such that F (1/2)+(1−F (1/2))α = p̄

and let σ′ be a renegotiation proof strategy with left tendency α. We then must have that p ≥ αF (1/2)
and by construction σ′ is either interim (pre communication) payoff equivalent to or Pareto dominates
σ.

Proof of Proposition 2. By Lemma 8 we have that every coordinated equilibrium strategy σ is interim
(pre communication) Pareto dominated by some renegotiation proof strategy with some left tendency
α ∈ [0, 1] denoted by σα. We thus have that

π (σ, σ) ≤ π (σα, σα) .
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The ex-ante expected payoff of to a u type under strategy σα is given by

πu (σα, σα) = (1− u) [F (1/2) + α (1− F (1/2))] + u(1− α) (1− F (1/2)) ,

for u ≤ 1/2 and

πu (σα, σα) = (1− u)αF (1/2) + u [1− F (1/2) + (1− α)F (1/2)] ,

for u > 1/2. It is straightforward to verify that for every u,

πu (σα, σα) = απu (σ1, σ1) + (1− α)πu (σ0, σ0) .

As σ1 = σL and σ0 = σR and as for all u ∈ [0, 1] πu (σα, σα) is the same convex combination of
πu (σL, σL) and πu (σR, σR) we get that

π (σα, σα) = απ (σ1, σ1) + (1− α)π (σ0, σ0) ,

which implies that
π (σ, σ) ≤ π (σα, σα) ≤ max {π (σL, σL) , π (σR, σR)} .

Proof of Proposition 3. The payoff of each type u induced by equilibrium strategy x can be bounded
as follows:

πu (x, x) = 1u≤x · F (x) · (1− u) + 1u>x · (1− F (x)) · u ≤ F (x) · (1− u) + (1− F (x)) · u

< F (x) · πu (σL, σL) + (1− F (x)) · πu (σR, σR) ≤ max {π (σR, σR) , π (σR, σR)} .

B.4 Proof of Proposition 6

In what follows we prove that σL is neutrally stable, and that it is evolutionarily stable if |M | = 2
(the analogous proof for σR is omitted for brevity). Let σ′ = (µ′, ξ′) be a best reply strategy against
σL = (µL, ξL). i.e., assume that π (σ′, σL) = π (σL, σL). The proof includes the following steps.

1. We begin by showing that the second-stage behavior of almost all types is the same according to
σL and according to σ′; that is we show that for almost all types u ∈ [0, 1] (I) u ≤ ξ′ (m,mL) for
any message m ∈ M satisfying µu (m) > 0, (II) u ≤ ξ′ (m,mR) for any message m 6= mR ∈ M
satisfying µu (m) > 0, and (III) if µu (mR) > 0, then u ≥ ξ′ (mR,mR). Assume to the contrary
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that there is a positive mass of types of agents following strategy σ′ who have a second-stage
behavior different than σL by either (I) playing R after observing the partner sending mL, (II)
playing R after the agent sending message m 6= mR,or (III) playing L after both the agent and
the partner sending message mR. Note, that these types obtain a payoff of zero whenever their
second-stage behavior differs from σL (which is strictly less than the positive payoff obtained by
agents with these types who follow strategy σL), as they always mis-coordinate the partner who
follows strategy σL. This implies that there is a positive mass of agents satisfying πu (σ′, σL) <
πu (σL, σL), which implies, in turn, that π (σ′, σL) < π (σL, σL) and we get a contradiction.

2. Next we show that the first-stage behavior of almost all types is essentially the same according to
σL and according to σ′; that is we show that (µL)u (mR) = µ′u (mR) for almost all types. Assume
to the contrary that there is a positive mass of types satisfying (µL)u (mR) 6= µ′u (mR). This
implies that there is either a positive mass of types below 1/2 sending mR or there is a positive
mass of types above 1/2 sending messages different thanmR. Each such type u obtains a payoff of
at most min (u, 1− u) < 1/2 when facing a partner who follows strategy σL (because the partner
always plays their less preferred action), which is strictly less than the payoff that is obtained by
agents following strategy σ (who obtain of max (u, 1− u) for any u < 1/2 and obtain an expected
payoff of 1/2 for any u > 1/2). This implies that g πu (σ′, σL) < πu (σL, σL) for a positive mass
of types, which implies, in turn, that π (σ′, σL) < π (σL, σL) and we get a contradiction. This
implies that there exists a positive mass f or

∫ 1
u=1/2 1 − µ′u (mR) < 1. In what follows we show

that, essentially, σ′ differs from σL only by having agents with type ≤ 1/2 different distribution
of choosing messages in ML (and, in particular, |M | = 2, and M = {mR,mL} only equivalent
strategies σ′ ≈ σ∗ are best replies against ≈ σ̃.

3. The previous two steps imply that almost all types behave in essentially the same way when
following strategy σL and when following σ′. This implies that π (σL, σ′) = π (σ′, σ′), which, in
turn, implies that σL is neutrally stable.

4. Assume now that |M | = 2. In this case Step (2) implies that for almost all type µ′u (m) =
(µL)u (m), which implies (together with Step (1)) that σL ≈ σ′. Thus any strategy that is a best
reply against σL must be equivalent to σL, which implies that σL is evolutionary stable.
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