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ABSTRACT 

Previous experimental work demonstrates the power of classical theories of economic 
dynamics to accurately predict major features of price dynamics in multiple market 
systems.  Building on this literature, this study implements experimental markets 
designed after extreme environments identified by Scarf (1960) and Hirota (1981).  These 
environments provide insight into two important economic questions: (a) do markets 
necessarily converge to a unique interior equilibrium? and (b) which model, among a set 
of classical specifications, most accurately characterizes observed price dynamics?  Our 
first result demonstrates that the dynamic property of "expanding price orbits" exists, 
with prices spiraling outwardly around the equilibrium prices in the directions predicted 
by the theory of disequilibrium price dynamics.  Our second result establishes properties 
of partial equilibrium theory in an unstable general equilibrium environment.  Price 
changes in a market reflect the magnitude of excess demand of that market, with excess 
demand in other markets making second-order contributions to predicted price changes.  
These results support the fundamental principle, advanced by Walras and others, that the 
direction of price change in a given market depends only on the sign of its own excess 
demand.  This excess demand may depend on many prices, but unless disequilibrium is 
severe the sign of the price change does not depend on the magnitude of excess demand 
in other markets.

                                                           
1 The financial support of the John Templeton Foundation and the Caltech Laboratory for Experimental 
Economics and Political Science are gratefully acknowledged. Comments of Peter Bossaerts, Anjan 
Mukherji and Bill Zame contributed significantly. 
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1. Introduction 
 
The paper studies and experimentally confirms the existence of cyclical and exploding 
price dynamics predicted by the theoretical works of Scarf (1960) and Hirota (1981).  In 
doing so, the study lends support to the classical principles underlying models 
characterizing multi-market dynamics.  Previous experimental work demonstrates robust 
convergence of prices to the competitive equilibrium, possibly punctuated by aspects of 
local instability and bubble-like price patterns.  Many of these studies explored 
theoretically well-behaved environments in which the predictions of equilibrium analysis 
and multi-market price dynamics stand broadly in accord.  Predictions of unbounded 
divergence and the possibility of perpetual price movement suggested by Scarf and 
Hirota’s model of price dynamics, which stand in sharp contrast to the predictions of 
equilibrium, had not yet been explored in the laboratory setting.  In so doing, we identify 
the underlying principles driving price dynamics as devices that underscore the positive 
value of general equilibrium theory for understanding market behavior.   
 
The Scarf (1960) and Hirota (1981) models consider price formation from the abstract 
perspective of a Walrasian auctioneer capable of measuring excess demand at 
disequilibrium prices without implementing a market system in which trades take place at 
such prices.  While this abstraction is well-suited to forming logical conceptualizations of 
market adjustment processes, it also presents a major departure from the procedural 
details of how actual markets function and the strategic behavior of individuals 
participating in markets. Experimental markets, by contrast, implement actual trading 
institutions and features of price discovery in which there is no fictional Walrasian 
auctioneer.  Instead, bids and asks are tendered by potential traders themselves in real 
time and, as trades take place at different prices, demand and supply curves shift as 
trading proceeds.  Vernon Smith (1965)’s discovery of price convergence in market 
experiments demonstrates the close connection between a theory derived from 
abstractions and the data drawn from a completely different environment.  The abstractly 
formulated theory of price processes generates predictive power even when applied to a 
very different environment subjected to a host of frictions assumed away by the 
theoretical abstraction.  Many studies of experimental markets show that markets tend to 
“equilibrate” at a pattern of prices and allocations that are near the equilibrium of the 
fictional Walrasian auctioneer.2  

                                                           
2 The role abstract, axiomatic principles of (multiple) market behavior which address the details of neither 
market institutions nor individual decisions, have been a topic of much discussion in the economics 
literature.  The experimental markets converge to the equilibrium predictions of a model that clearly lacks 
descriptive accuracy.  While the markets follow elements of “as if” the Walrasian auction was in control 
the precise reasons for the accuracy of the model is, as Smith asserts, a mystery. 
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Experiments lend support for both the principles of equilibrium and excess demand that 
support the underlying dynamic model of price formation in the classical competitive 
model.  Convergence of the continuous double auction toward the competitive 
equilibrium prices and allocation is a reliable property of markets under a wide range of 
environments.  Unstable equilibria, price bubbles and cyclic price movements have all 
been observed and studied as features of price movements.3   The Scarf (1960) and Hirota 
(1981) models present a theoretical abstraction not yet explored in experimental markets 
and predict a broader set of price dynamics, including the possibility that the Walrasian 
auctioneer’s algorithm for price discovery need not converge.  Indeed, the model suggests 
that a price discovery mechanism may settle into a limit cycle following a very slowly 
expanding orbit.   
 
This paper explores these possibilities and thus provides an opportunity to better 
understand subtle features of market adjustment by building on a host of developments in 
the design and implementation of experimental markets.  Section 2 of the paper provides 
some background on the experimental foundations of the design and the theoretical basis 
of the study.  Section 3 details the experimental setting, including agent incentives, model 
predictions, and many of the practical elements of the implemented market design.   
 
Section 4 discusses the observed price dynamics, presenting suggestive evidence in 
support of the key model prediction that prices fail to converge to the theoretical 
equilibrium.  Observed prices spiral around the equilibrium as predicted by models of 
excess demand before eventually hitting a price boundary, well away from equilibrium.  
We study this feature statistically in Section 5, demonstrating that (a) prices trend away 
from the theoretical equilibrium, (b) the random price changes are only weakly attracted 
to theoretical equilibrium, (c) excess demands do not converge to zero, and (d) gains 
from trade persist despite the cessation of trading activity.  Though these results are 
inconsistent with static equilibrium analysis, they match the predicted dynamics implied 
by classical models of excess demand dynamics. 
 
Having established equilibrium non-convergence, we estimate several structural models 
of price dynamics proposed in the literature in section 6.  Our analysis not only evaluates 
                                                           
3 The phenomenon of market instability is first observed in Plott and George (1992) for the case of a 
Marshallian externality. It is replicated by Plott and Smith (1999).  Instability in the case of income effects, 
is first observed in Plott (2000). Cyclical price patterns in Scarf-type environments with slow convergence 
are suggested in Anderson, et.al.  (2004). Good reviews of the literature are found in Plott and Smith (2008).  
Clearly, the details of the market organization can have a profound effect on both behavior and competing 
theories. For example, Gintis (2007) presents simulations demonstrating equilibration in a Scarf-type 
environment when prices are only privately known and thus uncoordinated.  Indeed, Gintis (2007) 
conjectures that a public price is a coordinating device that creates the instability.  Plott and Pogorelskiy 
(2017) find evidence of dynamic convergence in an exchange call markets similar to a Newton Method of 
price determination. 
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the relative significance of excess demand and prices as drivers of observed prices, but 
also allows insight into the relative importance of partial equilibrium and general 
equilibrium forces in determining prices and allocations.  We find that, while general 
equilibrium forces are non-negligible, their influence on prices is second-order relative to 
the partial equilibrium adjustments of excess demand and disequilibrium in its own 
market.  These results suggest a fundamental principle from Walras and others that the 
direction of price change in a given market depends only on the sign of its own excess 
demand is only violated under conditions of extreme disequilibrium, possibly through 
expectations of future prices in interdependent markets. 
 
2.  Background 
 
Experimental methods in economics evolved as tools to create simple and special case 
markets in which the broad, abstract and general principles of economics can be studied 
under controlled conditions.  The key elements are the commodity space, the preferences 
and the trading institutions, all of which support the creation of a simple market system to 
which general economic principles apply.  While the experimental markets are simple 
special cases of markets, they are nevertheless, real markets.  Though simplicity should 
not be confused with reality, general principles are expected to apply even in the simple 
and special cases.  
 
The methods rest on the creation of a commodity space and the use of money to induce 
preferences over the commodities that can be traded.  Time exists as a “period” in which 
trading of money and commodities take place in real time with the benefits of trading in 
terms of money earned are realized at the end of a period.  The experiment proceeds as 
multiple periods or trading days that could be interpreted as a week.  In a stationary 
environment, the periods are identical except for the information and benefits gained 
from previous periods. Trading takes place in a market organized by an architecture of 
institutions known to support efficient trading.  Models are applied with an “as if” 
methodology with trading within a period and over periods both studied with 
equilibration predicted by models expected after multiple periods.   
 
A. Market Architecture 
 
The markets were conducted as a continuous, multiple unit double auction, MUDA, 
introduced by Plott and Grey (1990) through an electronic market place developed by the 
Caltech Laboratory for Experimental Economics and Political Science (EEPS) called 
Marketscape.  This market platform supports multiple, simultaneous, continuous markets.  
The markets are open for a fixed time called a period similar to a trading day.   
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When a period opens traders are free to tender bids to buy as a price per unit and 
maximum quantity or ask to sell units (a price per unit and maximum quantity). The 
markets has open (public) books that record bids and asks whenever they do not 
automatically trigger a trade by matching an already existing bid or ask in the order book.  
The bids are exposed to the market with price priority from highest price to lowest, while 
asks are exposed with price priority from lowest to highest, with ties prioritized by the 
time at which the bid or ask was entered. When a trade executes, the transaction is 
immediately recorded and units of inventory and money are instantaneously transferred 
between trading parties.  Orders may be partially filled, with any unfilled portion 
remaining on the order book.  Bids and asks remain in the book throughout a period 
unless expired, cancelled, or executed in a trade.  In addition to the order book, all 
participants are able to view all data from all trades in continuous time through either a 
periodically updated graph or a listing of executed trades.  
 
When a period closes subjects acquire the money they made, based on their end-of-period 
holdings according to induced preferences (described in section 3A), from the contracts 
they developed during the period.  Upon the close of a period, the system validates 
accounting to record profits earned by participants based on the end-of-period holdings.  
Subjects’ inventories are then reset to their initial endowments, the order book is cleared, 
and a new period of trading opens.  Since stocks cannot be traded across periods, each 
trading period can be analyzed as a single market realization.  However, the periods 
within a given session are not independent due to substantial price persistence from the 
end of one period to the beginning of the next. 
 
We note that the continuous double auction institution involves trading executed at 
disequilibrium prices and, over the course of each period, at a variety of such prices.  The 
markets produce two different time series of contract prices.  First, “instantaneous prices” 
consist of the contracts that take place within a period.  In experiments with one 
commodity instantaneous prices within a period typically exhibit erratic movement 
towards the “competitive equilibrium price”4.   Second, “period prices” record the 
evolution of prices across periods as summarized by the quantity-weighted average price 
within a period. Findings from other experiments suggest two typical patterns.  First, 
instantaneous prices tend to converge to near the competitive price.  Second, period 
prices also converge across periods with the Plott and Smith (1978) efficiency measure 

                                                           
4 From an assumption that a constant market price exists in the market, as if called out by a “Walrasian 
auctioneer”, the redemption values and costs can be used to compute a market demand function and a 
market supply function from which a single, market clearing price can be computed.  Convention has 
named this price the “competitive equilibrium price”. 
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approaching 100% after several periods.5  The efficiency measures suggest that gains 
from trade become exhausted, which is sometimes viewed as a form of equilibrium. 
 
B. The Classical Model  
 
Consider a setting with two commodities X1 and X2 and prices P1 and P2 and denote the 

excess demands for goods X1 and X2 by ( )1 1 2,Z P P  and ( )2 1 2,Z P P , respectively.  The 

classical competitive equilibrium model defines the theoretical equilibrium to be the 

prices at which both ( ) ( )1 1 2 2 1 2, 0 and , 0.Z P P Z P P= =   In that context, this equilibrium is 

completely static with final prices and allocations based on a fixed demand and supply.  
However, the equations are used as tools to explore the forces guiding price discovery 
with a dynamic interpretation.    
 
We define the “Classical Model” of dynamics evolving from Walras’ fundamental 
principle that prices respond to excess demand in a good’s own market.  Under this 

model, the change in prices for goods X1 and X2 ( 1P& and 2,P&  respectively) scale linearly 

with the excess demand for each respective good, so that 

( )1 11 1 1 2,P a Z P P=& , and, ( )2 22 2 1 2,P a Z P P=& .     (1)  

The parameters 11a  and 22a   reflect the relative speed with which a market price 

accommodates, or adjusts to, its excess demand.  These parameters can play a central role 
in characterizing models of dynamics and stability.  Hicks, for example, develops a 
model in which markets adjust at different rates as central feature of his model of partial 
and general equilibration.6 
 
One could imagine alternative adjustment processes characterizing price dynamics and a 
substantial literature explores the properties of such alternatives.  We will discuss such 
alternatives later, along with useful empirical generalizations, in Section 7.  At this point, 
the Classical Model provides sufficient structure to motivate the theory underlying the 
current study’s design.   
 

                                                           
5 The concept of efficiency was developed by Plott and Smith (1978). “Social benefits” are typically 
defined as sum of the redemption values of buyers from the contracts of which they are a part and the 
“social cost” are the cost to sellers of supplying those units.  Efficiency is the actual difference between 
social benefits and cost in a period divided by the maximum possible given the redemption values of buyers 
and cost of the sellers.  
 
6 Hicks posed a question about the relationship between partial equilibrium and stability. McFadden (1969) 
formalizes a concept of partial equilibrium demonstrates a close connection between Hick’s condition for 
partial equilibrium and Samuelsonian models of stability.    
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3.  Experimental Environment 
 
Specifying the mechanism for implementing markets in this study required many 
operational decisions to ensure a feasible experimental protocol while preserving 
essential elements of the general equilibrium setting we seek to study.  To this end, we 
implement two markets for the commodities X1 and X2 featuring continuous double 
auctions with a limit-order book where prices of a single unit of X1 and X2 are quoted in 
terms of the number of units X3.  This implementation places commodity X3 as the 
numeraire, allowing us to plot prices of commodities X1 and X2 in terms of units of X3.

7   
 
A. Preferences and Endowments 
 
Our experiments induced subjects’ preferences to be similar to those studied theoretically 
by Scarf (1960) and Hirota (1981) and experimentally by Anderson, et.al. (2004), and 
Plott (2001), with substantial modifications.  Agents have perfectly complementary 
Leontief preferences for two of the commodities while deriving no utility from the third.  
By design, these preferences and initial endowments ensure the existence of a unique, 
interior competitive equilibrium for all experiments.  However, the existence of this 
equilibrium need not imply observed transactions occur at equilibrium prices.    
 

Table 1:  Preferences, Endowments, and Equilibrium Allocations (X1i, X2i, X3i) 

Clockwise Type 1 Type 2 Type 3 

Utility  { }2 3
3

70 min ,
4 80

i i
X X

 { }1 3
3

70 min ,
2 80

i i
X X

 { }1 2
3

70 min ,
2 4

i i
X X

 

Endowment (0, 0, 800) (20, 0, 0) (0, 40, 0) 
Equilibrium (0, 10, 600) (15, 0, 200) (5, 30, 0) 

Counterclockwise   

Utility  { }2 3210 min ,
12 80

i i
X X

 { }1 3210 min ,
2 240

i i
X X

 { }1 2210 min ,
6 4

i i
X X

 

Endowment  (0, 40, 0) (0, 0, 800) (20, 0, 0) 
Equilibrium (0, 30, 200) (5, 0, 600) (15, 10, 0) 

 

 
We selected preferences and initial endowments so the classical model captured by 
equation (1) predicts prices diverge from the competitive equilibrium given any non-

                                                           
7 In all of our specifications, endowments of commodity X3 are much greater than the endowments of the 
other two commodities.  Since prices are in terms of units of X3, finely divisible units of X3 must exist to 
prevent the integer constraint from substantially reducing the number of feasible prices. 
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equilibrium initial price vector and do so in a predictable fashion.8  As such, the unique, 
interior, competitive equilibrium is unstable according to this classical model.  The nature 
of this instability depends on the preference parameters and endowments that we explore 
in two opposing specifications, the “Clockwise” and “Counterclockwise” treatments.9 
Table 1 presents the specific magnitudes of the utility parameters and initial endowments, 
with Figure 1 illustrating indifference curves for each type in the Clockwise treatment. 
 

 
 

 
 

Figure 1: Indifference Curves for Each Clockwise Treatment Type  
 
  

                                                           
8 As will be discussed later, the prediction of the classical model depends importantly upon the preference 
parameters and the initial endowments.  See Appendix A for a discussion of the general class of models 
from which the experimental parameters were chosen.   
 
9 Previewing results from the next section, the classical model predicts prices under the clockwise 
(counterclockwise) treatment will diverge in a clockwise (counterclockwise) direction when plotted in the 
two-dimensional price space for Commodities X1 and X2, treating X3 as the numeraire.   

0 5 10 15 20

X
1

0

200

400

600

800
Clockwise Type 2 Preserences

Utility Level 1

Utility Level 2

Utility Level 3

Expansion Path
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B. Competitive Equilibrium and Excess-Demand Driven Classical Dynamics 
 

Given agents’ preferences and endowments, we can solve for the excess demand 
equations for the exchange economy.10 Letting P = (P1, P2)' denote the prices for X1 and 
X2, Table 2 presents the market excess demand function at initial endowments when each 
type of agent is present in equal proportion.  Solving for equilibrium prices by setting the 
equations in Table 2 to zero with X3 as a numeraire, yields the theoretical equilibrium 
prices for X1 and X2 equal to 40 and 20 in both the clockwise and counterclockwise 
treatments.  The implied allocations under this equilibrium appear alongside the 
endowments in Table 1.  
 

Table 2:  Market Excess Demand for Commodities X1 and X2 at Initial Endowments 

 ( )1 1 2
,Z P P  ( )2 1 2

,Z P P  

Clockwise 
1 2

1 1 2

60 40
20

40 3 6

P P

P P P
+ −

+ +
 2

2 1 2

240800
40

60 6

P

P P P
+ −

+ +
 

Counterclockwise 
1

1 1 2

60800
20

120 3 2

P

P P P
+ −

+ +
 1 2

1 2 2

40 120
40

3 2 20 3

P P

P P P
+ −

+ +
 

   
The experimental design is inspired by the theoretical literature on classical principles of 
dynamic adjustment.11  The market specifications from Scarf (1960) and Hirota (1981) 
provide interesting settings in which classical forces do not guide prices to converge 
toward the competitive equilibrium.  As presented in Figure 2, a simple phase diagram 

characterizes the dynamic behavior of the “Classical Model” in which ( )1 1 1 2,P Z P P∝&  

and ( )2 2 1 2,P Z P P∝& .  The partial equilibrium curve 1 1 2( , ) 0Z P P =  represents the pairs of 

prices for which the excess demand of X1 is zero regardless of excess demand for X2, with 

the curve 2 1 2( , ) 0Z P P =  defined analogously.  These curves intersect at the theoretical 

equilibrium prices [ ]* 40,20 ,P =  with zero excess demand for both goods.   

 
The partial equilibrium curve for commodity X1 divides the price space into regions for 
which the excess demand for X1 is positive (negative), placing upward (downward) price 

                                                           
10 Assuming perfectly liquid markets in which agents’ behave as price-takers allow us to specify their 
demand (or supply) of each commodity considering only their budget constraint and initial endowments.  
Summing these individual demand functions and subtracting the total endowments of each commodity 
characterizes the market excess demand function. Equilibrium then attains when excess demand functions 
equal zero and market demand equals market supply for each commodity.   
 
11 For expositional purposes, we defer a deeper discussion of this literature to section 6, when we evaluate 
how well different models describe the observed data.  Though our market implementation deviates from 
the frictionless assumptions imposed by the price adjustment processes derived in much of this literature, 
the design is driven by predictions from these classical models of dynamics.   
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pressure on X1.  The partial equilibrium curve for commodity X2 similarly divides the 
space into areas in which the excess demand for X2 is positive (negative) so the price 
pressure on X2 is up (down) according to the theory.  The price space is thus partitioned 
into four regions in which simple excess-demand driven models of dynamics make 
definite predictions for the direction of price movements.  The implied direction of these 
movements are shown by the small arrows in Figure 2, with the directed lines presenting 
a simulated price path based on equation (1) and a given initial position. 

     

 
Figure 2:  Excess Demand Phase Diagrams for Simple Dynamic Model 

 
From the initial position, the classical model’s simple adjustment process predicts 
dynamics and possibly non-convergent, price dynamics in both treatments.  Contrasting 
Figure 2 for the Clockwise and Counterclockwise specifications identifies the difference 
in predicted price dynamics for the two treatments.  In the Clockwise treatment, classical 
dynamics suggest prices move in a clockwise manner around the competitive equilibrium, 
so the angle of prices relative to equilibrium (P1, P2) plane declines as prices adjust (until 
it jumps upon passing zero).  In contrast, the same model predicts prices in the 
Counterclockwise treatment move in the opposite direction, counterclockwise around 
equilibrium prices.12   
 
Note that the example price paths depicted in Figure 2 only represent expected changes in 
prices.  The actual price paths will be affected by substantial unmodeled variability, 
including behavioral artifacts, microstructure noise, and misspecification, leading to 
transactions executing at a wide variety of prices.  The substantial unpredictable 
component of price dynamics is to be expected in light of market forces limiting potential 
arbitrage opportunities.  Separating this signal from the noise requires econometric 

                                                           
12 In these figures, as in experimental sessions, we impose a floor on both P1 and P2 equal to 5 units of X3 to 
avoid technical issues from trades at zero-prices.  Also, while certain regions of these diagrams suggest 
explosive price dynamics, we note that the limited supply of X3 imposes an effective ceiling on P1 and P2.   
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evaluation to resolve the empirical question of whether predictions from excess demand 
models effectively characterize expected price dynamics. 
 
4. Procedures and Experimental Design  
 
Six separate experiments were conducted, all at the California Institute of Technology in 
the Laboratory for Experimental Economics and Political Science (EEPS) between 
November 2002 and July 2003.  Each experiment consisted of a number of subjects 
modulo 3, as we require that there be an equal number of subjects of each type.  The 
actual number of subjects in the experiments ranged from 9 to 18, with Table 3 
summarizing the sessions conducted using each treatment specification.  Participants 
included Caltech undergraduate and graduate students, as well students from Pasadena 
City College, many of whom were familiar with the software from previous (unrelated) 
experiments, but who did not necessarily have any training in economics. 
 
Types were assigned sequentially to subjects as they logged into the software, and the 
order in which this occurred was essentially random.  Subject payments averaged about 
$40.00 per subject per experiment.  Experiments lasted no more than three hours.  Upon 
arrival in the laboratory, subjects were given written instructions; including both a 
numeric table and a graphical display of indifference curves that represented their 
induced preferences.  In addition, we included an unrelated payoff table that illustrated 
how to read their true payoff table (which differed across subjects). 
 
Each experiment began with a practice trading period serving several purposes.  It 
acquainted subjects with the computers and software, so that they were comfortable with 
how to execute bid and ask offers before the paid portion of the experiment began.  It also 
allowed time for the subjects to study their payoff information.  Finally, it worked as a 
device for influencing initial conditions as we requested all trades in the practice period 
take place at a price of 25 units of X3,

13  essentially providing a focal point for prices 
ahead of the first actual period.  Thus, the initial starting point would be (25,25). 
 
Following the practice period, each experiment consisted of a number of trading periods, 
ranging from 9 to 19 periods per session.  Each period, in turn, lasted between 8 and 18 
minutes.  To avoid any “last period” effects, the final period was not announced as such 
until after it had concluded.  After the close of the final period, earnings in francs were 

                                                           
13 We did not establish this focal point for prices in the first session, experiment 021127.  We note that 
these starting prices differ from the initial points in Figure 2, which were chosen specifically to illustrate 
the cyclical features of the model.  We discuss the manifestation of these cyclical dynamics from the 
training prices, including the role of integer constraints and unmodeled variability in prices, in detail in 
Appendix A.2.    
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tallied and converted to dollars via a conversion factor.  Subjects were then either paid in 
cash before they left the laboratory, or else checks were mailed to them shortly thereafter. 
 

Table 3:  Experimental Sessions 

Treatment Date Periods N 
Experienced 

Included 

I. Clockwise 11/27/2002 10 18 No 
 12/11/2002 14 12 No 
 7/17/2003 11 18 Yes 
II. Counterclockwise 1/30/2003 12 15 Yes 
 4/28/2003 9 15 Yes 
 6/20/2003 19 9 Yes 

 
5.   Experimental Price Dynamics 
 
We begin our analysis of market outcomes by presenting the price processes observed in 
the different experimental markets.  Figure 3 presents the time-series of the commodities 
X1 and X2 market prices for each executed transaction along with the period-average 
prices from the 021211 Clockwise and 030428 Counterclockwise treatment sessions.14 
The figure demonstrates clear variability of prices both for each individual transaction, as 
well as for period average prices, and suggests a cyclical tendency in the relative prices of 
the two commodities.   
 

   
Figure 3:  Transaction Price Time Series  

 
A.  Period Price Dynamics Relative to Excess Demand Phase Diagrams 

 

                                                           
 
14 These two sessions illustrate well our main experimental findings.  For the sake of parsimony, the text 
will present several figures using these only two examples to illustrate the observed dynamics of trading 
and allocations.  For completeness, figures from all sessions are presented in Appendices B & C.   
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We now evaluate price dynamics in the context of the implied phase diagram constructed 
from excess demand in Figure 2.   Figure 4 plots average period prices in the (P1, P2) 
plane, in relation to the phase diagram and predicted dynamics of the classical model.  In 
addition to period-average prices for the 021127 Clockwise and 030130 
Counterclockwise sessions, which discretely smooth out much of the variability from 
individual transaction prices, Figure 4 plots an exponentially weighted moving average of 
prices, a smoothed presentation characterizing the instantaneous variability in prices for 
individual trades.  While the movement does not appear to be toward the equilibrium in 
either treatment, the general pattern appears consistent with classical predictions.   

 

 
Figure 4:  Period Average Prices and Phase Diagram 

  
Figure 5 plots the period average prices for all sessions with the Clockwise and 
Counterclockwise treatments in the partitioned phase diagram.  These paths present the 
clear impression that prices move in the general direction predicted by theory and provide 
a convenient illustration of our major results.  First, prices in continuous double auctions 
need not converge to an interior equilibrium.  Second, disequilibrium price movements 
are reasonably well-predicted by measures of excess demand.   
 

 
Figure 5. Average Period Prices All Experiments 
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A detailed evaluation of predicted price movements by excess demand reveals some 
empirical limitations, as suggested by visual inspection of the Counterclockwise 030428 
session period-average prices.  At the beginning, price movement proceeds downward 
and to the right as predicted, but in period three the price of X2 moves upward slightly, 
pulling prices across the partial equilibrium line for X1 and causing a jump in phase.  
Continuing to follow the progression of this series, notice that the price of X2 declines 
between periods 6 and 7 when the model suggests that it should continue increasing.   
 
Many subtle patterns exist in these data, some of which require a generalized classical 
model for consistent interpretation.  The empirical challenge, then, is to identify those 
patterns that represent predictable price movements from the noise inherent to market 
mechanisms involving real-time trading. The next sections demonstrate these results 
formally, statistically evaluating the degree to which equilibrium prices and excess 
demand predict price movements.   
 
B.  Dynamic Inventories, Excess Demand, and Equilibrium 
 
Disequilibrium trades are an important feature of the experimental markets, causing 
agents’ inventories to shift away from their endowments after each transaction.  In 
addition to prices, these dynamic inventories also affect excess demand, introducing a 
dynamic equilibrium to the experimental setting.  To characterize how shifting 
endowments and changing prices interact to determine excess demand, we introduce the 
Instantaneous Excess Demand measure.  Agent i’s Instantaneous Demand at time t is the 
integer-constrained bundle of commodities that maximizes the agent’s utility assuming 
perfect liquidity at prices P1,t and P2,t when endowed with the agents’ contemporary 
holdings X1,i,t, X2,i,t, and X3,i,t.  The Instantaneous Excess Demand for a commodity is then 
the aggregated demand for that commodity minus its economy-wide endowment. 
 
To illustrate the dynamics of excess demand, Figure 6 plots the time series of 
instantaneous excess demands for the experiments after accounting for both the evolving 
inventories and prevailing prices, normalized so as to be expressed as a percentage of the 
economy-wide endowment of commodities X1 and X2.   
 
The excess demand dynamics highlight two important features of the observed 
transactions.  First, we note that the clockwise and counterclockwise treatments 
demonstrate opposing tendencies in the relative excess demand for commodities X1 and 
X2.  Second, observe that the excess demand at the end of each period do not 
systematically converge to zero indicating trading within a period failed to realize an 
equilibrium allocation at terminal prices.  In addition to the empirical phase diagram from 
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Figure 6, this result suggests that observed trading behavior did not realize an equilibrium 
allocation.   
 

   
Figure 6: Excess Demand Dynamics 

 
6.   Divergence, Allocation Efficiency, and Trading Volume 
 
In this section, we evaluate the extent to which trading in the continuous double-auction 
mechanism leads to a divergence in prices from the interior equilibrium, as well as the 
relationship between allocation efficiency, disequilibrium pricing, and trading volume.  
While these issues are broad ranging with a long history initiated by debates between 
Edgeworth and Walras, as highlighted by discussion in Walker (1987) and Donzelli 
(2009), our focus is narrow. We demonstrate first that prices can systematically move 
away from an interior theoretical equilibrium, a feature reflecting the views of Edgeworth. 
Specifically, the Euclidian distance between transaction prices and equilibrium prices 
demonstrates a positive time trend both across periods and for trades occurring within 
each period.  Second, we find that the market allocations’ efficiency is high for complex 
markets, but that some gains from trade persist at the end of each trading period 
throughout the experiment.  It’s important to note that this result is not driven by design 
decisions restricting the length of each trading period, but rather obtains after the 
effective cessation of trading in any given period.   
 
A. Price Divergence from Equilibrium 
 
Our analysis begins by considering the Euclidean distance between a pair of transaction 

prices and the interior theoretical equilibrium price of ( )* 40,  20 .P = 15  Figure 7 presents 

                                                           
15 Because transactions occur asynchronously, we interpolate prices between trades simply using the last 
price at which the commodity sold.   
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the time series of these distances for each of the six sessions, demonstrating that prices 
can move very far away from equilibrium in the course of trading.   
 
 

 
Figure 7: Distance from equilibrium for each session and Treatment 

 
To investigate this property statistically, we estimate the time trend for theoretical  
equilibrium distance and test the null hypothesis that this trend is weakly negative in 
Table 4.  Panel A presents the results from pooling all sessions of the experiment, with a 
significant positive trend demonstrating the tendency of transaction prices to move away 
from the equilibrium.  Regression results from individual sessions presented in Panel B 
largely agree with this tendency, though the smaller sample sizes in each session prevent 
tests from achieving the statistical significance of the pooled sample.  The weakest 
demonstrated trend appears in Session 021127, which was the sole session where training 
period prices were not fixed at (25, 25) and prices failed to move away from the origin.16     
 

Table 4:  The Time Trend of Equilibrium Price Distance 

Panel A:  Pooled Regression Results 
Intercept Trend 

Coefficient 24.81 1.10 
Std Error 8.03 0.25 
p-value <0.01 <0.01 

 
Panel B:  Individual Session Regression Results 

                                                           
16 To confirm that this result is not driven primarily by across-period variation in prices, we conducted a 
paired t-test on the beginning and end prices of the market across all sessions.  The test asks if prices are 
closer to the equilibrium prices, (40, 20), in the first transactions executed at the beginning of the period 
than they are in the last transactions executed at the end of the period.  For these prices, the mean distance 
was 18.01 (in units of X3) at the beginning of the experiment, and 36.89 at the end (t = 5.59).  The test is 
significant at p<0.01 for a one-tailed test.  The result verifies that equilibrium divergence occurs within 
each trading period as well as over time across periods. 
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Clockwise Treatments CounterClockwise Treatments 
021127 Intercept Trend 030130 Intercept Trend 
Coefficient 34.39 0.03 Coefficient 45.08 0.21 
Std Error 1.79 0.02 Std Error 29.20 0.34 
p-value <0.01 0.13 p-value 0.12 0.54 

021211 Intercept Trend 030428 Intercept Trend 
Coefficient 13.79 1.32 Coefficient 121.99 0.25 
Std Error 43.66 0.55 Std Error 73.50 0.98 
p-value 0.75 0.02 p-value 0.10 0.80 

030717 Intercept Trend 030620 Intercept Trend 
Coefficient 72.61 0.27 Coefficient 15.18 0.56 
Std Error 25.06 0.30 Std Error 8.17 0.17 
p-value <0.01 0.37 p-value 0.06 <0.01 

 
We summarize our conclusions from this subsection in the following result: 
 

Result 1:  Price Divergence from Equilibrium 
Transaction prices do not converge to theoretical interior equilibrium but instead 
demonstrate a trend that moves away from equilibrium prices as time progresses 
and is evident over time across periods and within each period.   
 

B. End-of-Period Allocations and Efficiency 
 
As the previous subsection presented evidence that traded prices need not converge to the 
competitive equilibrium as defined by parameters.  That being the case, the question turns 
to why the trading stopped at the end of the periods.  (1) Did a different equilibrium 
emerge as a result of disequilibrium trades or (2) did trading not stop but the period ended 
because of arbitrarily imposed time limits?   
 
The literature points to the possible exhaustion of gains from trade as an important 
variable.  If the market operates as efficiency seeking mechanism it would stop when 
gains no longer exist.  The possibility is posed by Mukherji and Guha (2011)  and by 
Mukherji (2012) who establishes the possibility that equilibration can emerge through 
holdings modifying, disequilibrium  exchanges such that a competitive equilibrium exists 
given the holdings of the moment. Of course trading could have ended because the time 
allowed for trading ended. Recall, this is a real time market process. 
 
Gains from exchange in the experiment are measured in terms of additions to “take home” 
money acquired by trading initial endowments for other commodities. In the Scarf 
environment the initial endowments are worth nothing in terms of the money received in 
terms of the financial incentives used to induce preferences. Traders are endowed with 
units of commodity with no value unless complement commodities are also held. 
Exchange of commodities can increase the amount of money that the subject makes from 
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the experiment. The exchanges produce income or wealth that can be summed and 
interpreted as net social benefits in a cost-benefit sense. 
 
We evaluate end-of-period allocations using two devices, one that measures net social 
benefits and another that characterizes Pareto efficiency.  Our net social benefits measure 
simply totals the dollar earnings for all agents and compares that to the total dollar 
earnings realized at the competitive equilibrium allocation.  To consider Pareto efficiency, 
we first define an agent’s “residual holdings” as the units of a commodity held by the 
agent that provide zero marginal utility to that agent.  Of course, the units can be valuable 
to someone else so, in a sense, these units are a pure waste.  We then total these residual 
holdings across agents and compare them to the total endowment for the market, so that 
all measures can be expressed in percentage terms.   
 
Figure 8 presents the end-of-period efficiency and residual holdings across all sessions.  
Averaging across all sessions, the end of period allocations realized approximately 75% 
of the net social benefits delivered by the equilibrium allocation.  While this level is 
lower than usually found in single market experiments, the level is comparable to the 
efficiencies of multiple markets. The average residual holdings were approximately the 
same for each security, at around 25%, though Figure 8 reveals variation in that average 
across periods and sessions.  The efficiency measure illustrates a pattern atypical of 
multimarket experiments starting at high levels of efficiency that  are reduced in 
subsequent periods.  We conjecture this pattern reflects early trading near competitive 
equilibrium prices and the subsequent divergence as is illustrated in Figure 7. 
 

    
Figure 8: Period-End Allocation Efficiency 

 
While trading exhausts much of the gains from trade, the result suggests that gains from 
trade exist at the end of each session that are not realized by subjects in the experiment. 
Trading did not stop because of equilibration due to a complete lack of gains from 
exchange or that gains from exchange were completely exhausted. This feature of the 
data is also supported by the data in Figure 6 in Section 4B that demonstrates the 
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existence of instantaneous excess demand and supplies at the end of periods.  Strictly 
speaking, the markets were not at a competitive equilibrium given their holding at the end 
of the period.  

 
Figure 9: Early-vs-Late Transaction Volume by Period 

 
Trading did not stop due to the arrival of the end of the period and insufficient time to 
trade. Figure 9 decomposes trading volume for each period into transactions that occur in 
the first minute, last minute, and the intervening duration of the period.   Transactions 
occur in the last minute of a period in only 35% of the periods from the experiment and 
those transactions that do occur tend to be small in total value.  Importantly, the failure of 
the markets to realize these gains from trade is not due to a design decision limiting the 
duration of each trading period, but rather to agents’ decisions to cease transacting.  
 

Result 2:  Unrealized Gains from Trades Persist  
Trading did not stop because gains from exchange were completely exhausted or 
because no time for trading remained.    

 
A different understanding of why trading stopped is suggested by the complex 
transactions required to realize those gains. The required transactions are non-trivial, 
requiring multiple counter-parties.  Each agent type realizes utility from only two of the 
three commodities and, at the end of each period, very few agents hold inventories of the 
commodities from which they receive zero utility.  Across all sessions, only 14.6% 
(17.3%) of periods ended with an agent of type 1 (type 2) maintaining a dispreferred 
position in X1 (X2) from which they receive no utility regardless of their other holdings.  
Of those sessions that end with agents holding dispreferred positions, these holdings are 
predominantly held as shares of the numeraire commodity X3 by the type 3 agent who 
receives no utility from it but is unable to purchase shares of (perhaps both) other goods 
at prevailing prices.     
 



-20- 

These positions limit the availability of bilateral trades that could enhance net social 
benefits, implying trilateral transactions would be required to realize allocative efficiency.  
Given this complexity and need for coordination, trading volume dissipates near the end 
of the period.  This interpretation supports the Mukerji (2012) model of equilibria 
emerging from the dynamic adjustments.  It also suggests the possible importance of 
general equilibrium adjustments as excess demand order flow in complementary markets 
create expectations that units will become available and thus create value in units held in 
a given market.  
 
7.  Models of Non-Equilibrium Dynamic Adjustment 
 
Though the previous section presents the result that observed transaction prices deviate 
substantially from the theoretical equilibrium. We begin this section by introducing two 
disequilibrium models to organize our empirical analysis.   
 
Our analysis reveals two striking results.  First, we find that predicting relative price 
changes using the generalized classical model best describes the observed price paths.  
Second, we find that excess demands in one market have very little influence on price 
dynamics in the other market.  This latter finding provides a novel empirical evaluation 
of the power of partial equilibrium models in a setting were general equilibrium 
adjustments exist.   
 
A. A Brief Outline of Models of Disequilibrium Price Dynamics 
 
The introductory discussion earlier presented the “Classical Model” of disequilibrium 
price dynamics in which the rate at which prices change are proportional to their excess 
demand.  In this formulation, recall that the price dynamics from equation (1) can be 
represented by the difference equation: 

( )
( )

1 1111,

2 1222,

0

0
tt

tt

Z PaP

Z PaP
−

−

    
=     
    

&

& . 

 
A simple generalization embeds the Classical Model as a special case of the “Generalized 
Classical Model,”  

( ) ( )1 11 1 1 2 12 2 1 2, ,P a Z P P a Z P P= +&       (2) 

( ) ( )2 21 2 1 2 22 2 1 2, ,P a Z P P a Z P P= +& , 

The Generalized Classical Model allows for price adjustments of markets linked by a 
“linked adjustments principle.”  That is, the adjustment in a single market depends on the 
state of disequilibrium (as measured by excess demand) in other markets.  The classical 

model is the special case that satisfies the restrictions 11 22 12 210, 0, and, 0a a a a> > = =  .    



-21- 

 
We originally used the generalization as a technical tool to evaluate the magnitude of 
deviations from the Classical Model in which the off diagonal elements are zero.  
However, after thought and data analysis we discovered the generalization play a deeper 
role in the theory of dynamic equilibration.  Introducing possible sensitivity for price 
adjustments to the degree of disequilibrium in other markets, measured by the size of the 
excess demands, provides insight into the possible role of uncertainty in disequilibrium 
dynamics.  While supply might be greater than demand for commodity X1, the 
disequilibrium in the market for X2 might attenuate the rate at which P1 decreases or even 
cause P1 to increase rather than decrease.  Walras and others tended to reject this as a 
possibility and postulated the “fundamental principle” that the direction of price change 
of a given commodity depends only on the sign of its own excess demand.17     
 
Excellent reviews of classical price dynamics are presented by McKenzie (2002) and by 
Mukherji (2002, 2003).  The models presented by equations (1) and (2) present special 
cases of theories that have the following form: 

( ) ( )P A P Z P=&  

Here, P& represents the change in prices over time, P is the price vector.  We refer to A(P) 
as an adjustment matrix of coefficients that may depend on prices P, and Z(P) is a vector 
of excess demands as a function of prices.  Though the theory generalizes to any number 
of commodities, we focus on the two-dimensional price setting implemented here for 
ease of exposition. 
 
The primary feature of this model is that price changes depend upon P through the 
adjustment matrix A(P) in addition to the functional relationship by which prices enter 
the excess demand functions.  Though the dependence of the adjustment matrix on prices 
could take any form, we look the literature to identify plausible restrictions that impose 
some structure on this relationship.18  In particular, we explore specifications of the 
Classical and Generalized Classical models where the elements of A(P) vary with P so as 
to characterize relative price dynamics.  Specifically, consider a “Generalized Relative 
Model” in which price dynamics take the following form: 

                                                           
17 Walras (1954, p.85) states three suppositions that collectively state that the sign of the excess demand 
and the sign of price changes will be the same.  As mentioned above, Hicks appears willing to postulate the 
existence of a linkage. As will be mentioned below, Edgeworth presents a different opinion based on a 
different model of price adjustments.   
 
18 As we are unaware of any attempt to study this model in its most general form, we focus on classes of 
special cases, although the literature is rich with discussion about the conditions under which less 
information is required for convergence.  See Mukherji (1995) for a summary of recent literature, and for a 
treatment of stability in three commodity (two prices) models see Mukherji (2004).   
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In the Generalized Relative Model, the function A(P) decomposes into a matrix that 
contains the prices and a matrix of constants which pre-multiplies the excess demand 
functions.  This model of price dynamics can be equivalently expressed so that the 
percentage change in price depends on excess demands through a constant adjustment 
matrix.  To illustrate in the two commodity case for any single commodity, i, the 
adjustment process in equation (3) can be written as: 

( ) ( )1 1 2 2
i

i i
i

P
a Z P a Z P

P
= +
&

, i = 1, 2.  

 
Of course, this model can be further refined by hypotheses focused on the numbers aij .   In 
particular, the Classical Relative Model presents a restricted case of equation (3) in which 
the off diagonal elements are restricted to be zero and the diagonal elements positive.  
Table 6 summarizes this section, consolidating the dynamic models we consider for ease 
of reference.  The previous section illustrates challenges presented by trying to fit the 
data to the Equilibrium model.  The next subsection begins evaluating the absolute 
models by verifying the relevance of excess-demand driven dynamics in predicting the 
direction of price changes.  Our analysis then turns to estimating the data generating 
process under the Generalized Absolute and Relative Model to test the Classical and 
Identity restrictions on the adjustment matrix.  Finally, we consider which of the models 
we study here best describe the data generating process.  

 
Table 6:  Predictive Expectations for Price Dynamics 

Specification Absolute Model Relative Model 

Classical 
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B.  Excess Demand Dynamics Predict Price Movement Direction 
 
Our analysis in the previous section suggests that prices from the double auction 
mechanism diverge from theoretical equilibrium prices.  We now present evidence that 
models based on excess demand accurately predict the direction of price movements, as 
suggested by the phase diagrams in Figures 4 and 5.  We consider here two 
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nonparametric tests to verify the link: a “clockhand” test that applies to individual 
transaction data and a “sign” test analyzing period-level price dynamics.   
 
The “clockhand” test simply recenters prices so that equilibrium lies at the origin and 
measures the angle in price space between where the data started relative to the 
equilibrium and where the prices are at any instant of time.  A line segment connecting 
current prices to the equilibrium functions as the hand of a clock, and as prices change, 
that line segment rotates around the equilibrium.  Anderson, et. al., (2004) presents a 
geometric interpretation of this analysis wherein the clockhand test measures the 
accumulated rotation of prices over time.  As a non-parametric test robust to both 
boundary restrictions and asynchronous trades, the clockhand test can incorporate the 
entire time-series of individual transactions from all periods and sessions.  
 
Figure 10 shows the cumulative angle changes based on individual transactions in all 6 
sessions.  There is a clear separation between the clockwise and counterclockwise 
treatments.  In addition, note that 2 of the counterclockwise treatments resulted in 
cumulative angle changes greater than2π .  I.e., in two of the sessions, the price orbit 
completed one cycle.   

 

Figure 10: Clockhand Model Plotting Cumulative Angle of Price Changes 

 
The sign test is a simple binomial test that counts the instances where the sign of the price 
change in a given trade matches the sign of the excess demand in both markets, i.e., 
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occurring.  This test is sensitive to both boundary effects and asynchronous trades and, 
therefore applies to individual transactions as well as period average prices.  Pooling over 
all sessions, there were a total of 124 data points, of which in 52 trials the price change 
was predicted correctly by excess demand in both the X1 and X2 markets.  Compared to a 
random prediction expecting 31 correct predictions, the test was significant at a p = 
4.11e-5.   
 

Result 3:  Excess Demand Dynamics Predict Price Movements 
Prices tend to move in the direction predicted by excess demand, both at the 
individual transaction level and across periods over time.   

 
C.  Accommodation and Linkage in the Absolute Model  
 
We now evaluate the predictive power of the Generalized Absolute Model to characterize 
price dynamics.  While excess demands predict well the direction of price movement, we 
now test whether they also effectively predict the magnitude of observed price changes.  
Generalized Absolute Model applies to the experimental data taking difference equation 
(5) with the instantaneous excess demand function as the conditional expectation for 
transactional price changes in structural estimation equations: 

( )
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1, 1, 1 1,1, 1 110 11 12

2,2, 1 120 21 222, 2, 1
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.   (7) 

The noise term 1, 2,,t t tε ε ε ′ ≡    is assumed to be mean zero and uncorrelated with past 

information (order flow, transaction volume, and prices), satisfying the usual conditions 
for regression analysis.   
 

We present results from estimating the econometric models equation-by-equation 
allowing intercepts to vary across sessions, using FGLS to account for Autoregressive 
Conditional Heteroscedasticity within each session.  The regressand corresponds to price 
changes at the transaction level, winsorized absolute price changes for X1 and X2 at 50 
and 25 units of X3, respectively, to control the influence of outliers.  The regressors 
consist of excess demand measured instantaneously based on the last available market 
prices and inventories.19   

 
Table 7:  Estimated Absolute Model Excess Demand Coefficients and Significance 

                                                           
19 We evaluated several other specifications, including OLS, Seemingly Unrelated Regressions, and fixed 
effects, as well as observational weighting (quantity weighted and time-weighted), with qualitatively 
similar results that differ mainly in coefficients’ estimated standard errors.  Introducing session-level fixed 
effects for coefficients results in noisy estimates as the specification fails to take advantage of the 
information available from the different excess demand dynamics in the clockwise and counterclockwise 
treatments.  For all tables using pooled results, we present session-level results in Appendix C. 
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Coefficient 
Standard 

Error t-Statistic p-Value 
a11 5.41 E-02 1.63 E-02 3.32 <0.01 
a12 1.32 E-02 8.97 E-03 1.47 0.14 
a21 6.07 E-03 1.00 E-02 0.60 0.55 
a22 1.47 E-02 4.71 E-03 3.11 <0.01 

 
Table 7 presents the estimated coefficients and associated significance measures for the 
Instantaneous Excess Demand of X1 and X2, with three key findings regarding the 
Classical Model.  First, Instantaneous Excess Demand for both goods are significant 
drivers of own-price changes, i.e., the coefficients a11 and a22 are both statistically 
significant and positive.  Second, neither of the off-diagonal coefficients, a12 and a21, are 
significant, suggesting excess demand conditions in one market has a negligible effect on 
price dynamics in the other.  Calculating an F-Test for the joint restriction, a12 = 0 = a21 in 
the SUR specification is only weakly rejected at the 10% level with a p-Value of 0.08.   
 
Combined, these observations suggest supporting evidence for the Classical Restrictions 
in the Generalized Classical Model. In particular price changes reflect own excess 
demand and not the excess demand in other markets as postulated by partial equilibrium 
theories. The next result summarizes the findings of this subsection. 
 

Result 4:  Absolute Model Estimates Support Classical Restrictions 
The estimated coefficients in the Generalized Absolute Model are consistent with 
the Classical Model’s restrictions: 
• Excess demand for a good has a significant impact on expected price changes 

for that good, supporting price adjustment models driven by partial 
equilibrium dynamics.   

• Cross-excess demand coefficients in the adjustment matrix are much smaller 
than own-excess demand coefficients and the hypothesis restricting these 
coefficients to be zero is not rejected at conventional significance levels. 

• Walras’ Fundamental Principle that the expected sign of a commodity’s price 
change aligns with the sign of its excess demand is violated only in states of 
extreme disequilibrium and satisfied in 69% of the sample observations.   

 
D.  Accommodation and Linkage in the Relative Model  
 
Though the regressand in the Relative Model as presented in Table 7 differs from that of 
the Absolute Model, we can reformulate the Relative Model’s structural equations to 
enforce consistency: 

( ) ( )
( ) ( )

1, 1, 1 10 1, 1 11 1, 1 1, 1 1 12 1, 1 2, 1 1 1,

2, 2, 1 20 2, 1 21 2, 1 1, 1 1 22 2, 1 2, 1 1 2,

t t t t t t t t t t

t t t t t t t t t t

P P a P a P Z P a P Z P

P P a P a P Z P a P Z P

ε
ε

− − − − − − − −

− − − − − − − −

− = + + +

− = + + +
  (8) 
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Under this specification, we ensure that the regressands in all of our estimation equations 
are consistent with one another (with the small expense of accommodating 
heteroscedasticity), a consistency that will prove useful in the next section comparing 
different model specifications.   
 
From the structural regression equation (8), we can apply the same estimation strategy 
adopted in the previous section to the Relative Model.  The estimated parameters 
appearing in Table 8 demonstrate a similar relationship to the Relative Model’s results in 
Table 7.  The adjustment matrix coefficients for own excess demand (a11 and a22) are 
much larger than those on cross-excess demand (a12 and a21), presenting material support 
for partial equilibrium adjustment dynamics.   

 
Table 8:  Estimated Relative Model Excess Demand Coefficients and Significance 

Coefficient Std Error t-Statistic p-Value 
a11 2.41 E-03 3.60 E-04 6.71 <0.01 
a12 4.60 E-04 1.08 E-04 4.27 <0.01 
a21 6.12 E-04 1.90 E-04 3.23 <0.01 
a22 1.42 E-03 1.75 E-04 8.12 <0.01 

 
In this specification, these cross-excess demand coefficients are estimated with sufficient 
precision to statistically reject the dominant diagonal restriction is rejected statistically.  
While the partial equilibrium model receives support, the general equilibrium 
adjustments can be detected in this specification.  As an empirical phenomenon, these 
adjustments could arise from behavioral artifacts that aren’t included in the abstract 
model, notably in how expectations of future liquidity could be informed by excess 
demand in other markets.   
 

Result 5:  Relative Model Estimates Statistically Reject Classical Restrictions 
The estimated coefficients in the Generalized Relative Model statistically deviate 
from Classical Model restrictions while supporting Walras’ Fundamental 
Principle: 
• Excess demand for a good has a significant impact on expected price changes 

for that good, supporting price adjustment models driven by partial 
equilibrium dynamics.   

• Cross-excess demand coefficients in the adjustment matrix are much smaller 
than own-excess demand coefficients though the hypothesis restricting these 
coefficients to be zero is rejected at conventional significance levels. 

• Walras’ Fundamental Principle that the expected sign of a commodity’s price 
change aligns with the sign of its excess demand is violated only in states of 
extreme disequilibrium and satisfied in 86% of the sample observations.   
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The estimated coefficients suggest that partial equilibrium influences will dominate 
general equilibrium influences so long as disequilibrium does not generate severe 
imbalances in excess demands.  In the Generalized Relative Model, Walras’ Fundamental 
Principle that the sign of a good’s expected price changes matches the sign of its excess 
demand holds for prevailing prices and inventories during 86% of observed transactions.   
 
8.  Conclusion:  Interpretations and Implications 
 
This paper explores market price dynamics under challenging conditions of an unstable 
equilibrium in which traditional models of price equilibration fail to converge to a unique 
interior equilibrium. However, the traditional models provide predictions of dynamics 
that allow the experimental study of underlying principles of dynamics.  We discover 
similar non-convergence in experimental markets, with transaction prices moving away 
from equilibrium and gains from trade persisting throughout the experiment session.  
Further, we find that frictionless models of price equilibration provide a useful predictive 
model of price dynamics.  These results underscore the positive value of equilibration 
dynamics for economic analysis in multiple market settings even in settings that do not 
satisfy all assumptions underlying the equilibration model. 
 
In estimating models of price dynamics, we are able to test the sensitivity of prices to 
disequilibrium in outside markets.  In so doing, we are able to quantify the importance of 
partial equilibrium adjustments on prices from shocks to excess demand for that good 
relative to general equilibrium adjustments on prices from shocks to excess demand for 
other goods.  Though statistical estimates reject the absence of general equilibrium 
adjustments, their estimated magnitudes are small compared to the first-order partial 
equilibrium adjustments.  As a test of Walras’ Fundamental Principle, we find the 
expected sign of a commodity’s price change accords with the sign of its excess demand 
in 83% of the sample.   
 
These results have implications that extend beyond testing theories of disequilibrium 
price dynamics.  In contrast to previous results, we demonstrate that prices in the 
commonly adopted continuous double auction with multiple markets need not converge 
and may not realize efficient allocations on the order of magnitudes often found in 
experiments with single markets and leads to questions about the role of coordination as 
part of multiple market equilibration.  Our findings also suggest that dynamic theories of 
equilibration can be useful in identifying the conditions under which these phenomena 
may occur. 
 
In applied settings ranging from financial markets to industrial organization, economic 
analysis often explicitly or implicitly relies on ignoring general equilibrium adjustments 
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on isolated markets.  It is difficult to conceive how researchers could practically account 
for the phenomena in the field.  However, experimental markets provide a viable setting 
for exploring the relative magnitude of partial and general equilibrium adjustments in 
economic analysis.  For now, the experiments provide data verifying Walras’ 
Fundamental Principle under the demanding conditions and invite exploration to other 
settings.   
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APPENDIX A:  Theoretical Background and Experimental Details 
 
A.1.  Notes on Experimental Design and Parameters 

The parameters chosen for the experiments reflected considerable research on the 
various possibilities.  This appendix provides an overview that attempts to help the reader 
understand the parameters used and provides those interested with suggestions about 
additional experiments and tests. 

Four parameters are used to form preferences and initial endowments across the 
experimental series.  These parameters {α, β, γ, q} interacted with preferences and 
endowments.  The interactions with preferences are as follows.  Notice that α is a scaling 
parameter for X2, β is a scaling parameter for X3 and γ is a scaling parameter for X1.  The 
parameter q operates on individuals to change the value of different goods across the 
individuals.  The functions studied when in parametric form are: 

U1 (X2, X3)  = min [X2/qα, X3/β] 

U2 (X1, X3)  = min [X1/γ, X3/qβ] 

U3 (X1, X2)  = min [X1/qγ, X2/α] 
The choice of experimental design also involves an interaction of the four 

parameters with initial endowments.  The following example illustrates the material that 
will be presented in the table in the next section.  The example is for the case of 
clockwise unstable parameters that were actually used in the experiments. 
 

Clockwise Parameters:   (γ, α, β, q) = (20, 40, 800, 1/3) 
 Type 1 Type 2 Type 3 
Preferences: min{3X2/40, X3/800} min{X1/20, 3X3/800} min{3X1/20, X2/40} 
Endowments: E1=(0,0,β)=(0,0,800) E2=(γ,0,0)=(20,0,0) E3=(0,α,0)=(0,40,0) 
 
 The predictions for this set of parameters are: 
(i) Equilibrium: (P1, P2) = (β/γ, β/α) = (40, 20) 
(ii) Dynamics:  Unstable time path moving in a clockwise direction 
 

Table A1 provides a pattern of parameters that created a background for the 
specific choice of parameters for implementation.  Parameters that theoretically lead to 
closed cycles and to stable paths have been studied by Anderson, et. al., (2003) and by 
Plott (2001).  While existing studies did not use the parameters in the table, the 
parameters used in those studies did lead to the same qualitative implications for system 
behavior as the parameters in the table.  Thus, we make no attempt here to study 
parameters that theoretically lead to stability or theoretically lead to closed cycles.  The 
question posed here is whether or not divergence can be observed in practice so the focus 
was on parameters that theoretically lead to divergence.  Those parameters correspond to 
specifications in the upper left and lower right of Table A1, below.  As can be seen, the 
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difference between the clockwise and counter-clockwise treatments resides in the choice 
of q and the choice of initial endowments.  
 

Table A.1.1: General Parameter Set for Stability Analysis 
 

Q 
Endowments 

(γ, α, β) = (20,40,800) 

type one (x1,x2,x3) = ( 0, α, 0)  

type two (x1,x2,x3) = ( 0, 0, β)  

type three (x1,x2,x3) = (γ, 0, 0)  

type one (x1,x2,x3) = ( 0, 0,β)  

type two (x1,x2,x3) = (γ, 0, 0) 

type three (x1,x2,x3) = (0,α,0) 
   
q>1 
q = 3 for 
experiments 

unstable counterclockwise 
equilibrium prices (40,20) 

Stable 
equilibrium prices (40,20) 

q=1 limit cycle 
counterclockwise 
equilibrium prices (40,20) 

limit cycle 
clockwise 
equilibrium prices (40,20) 

q<1 
q = 1/3 for 
experiments 

Stable 
equilibrium prices (40,20) 

unstable clockwise 
equilibrium prices (40,20) 

 
Table A2 contains the parameter set for the experiments conducted.  The information in 
this table is essentially the same as the information in Table 1 in the text.  It is included 
here for the convenience of readers who want to compare the parameters that were 
implemented to the more general possibilities. 
 

Table A.1.2:  Preferences And Endowments 
 Type 

 i = 1,2,3 
Ui(xi,yi,zi) endowments 

ω1 = (xi,yi,zi) 
Remarks 

Clockwise: q=1/3, (γ,α, β) = (20,40,800); Equilibrium Px = β/γ, Py = β/α  

 1 min{3y/40,z/800} ω1=(0,0,800) The classical model 
predicts divergence 
with tendencies in a 
clockwise direction. 

 2 min{x/20,3z/800} ω2=(20,0,0) 
 3 min{3x/20,y/40} ω3=(0,40,0) 

Counterclockwise: q = 3, (γ,α , β) = (20,40,800) 

 1 min{y/120,z/800} ω1=(0,40,0) The classical model 
predicts divergence 
with tendencies in a 
counterclockwise 
direction. 

 2 min{x/20,z/2400} ω2=(0,0,800) 
 3 min{x/60,y/40} ω3=(20,0,0) 
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A.2:  Initial Conditions and Cyclical versus Explosive Behavior 
 
 The cyclical price patterns depicted in Figure 2 depend in part on the initial 
conditions, which in the current market implementation could instead give rise to 
explosive price patterns.  Excess demand dynamics in a continuous market without noise 
presented in Figure A.2.1 demonstrates the potential for explosive, rather than cyclical 
price dynamics depending on where prices initiate.  Notably, from the training price 
conditions (25, 25), the clockwise model predicts such an explosive dynamic.  Further, 
transactions occur at prices throughout the price space over the course of the entire 
experiment, a result that’s incompatible with the precise predictions of the difference 
equations.   
 

 
Figure A.2.1:  Cyclical and Explosive Price Paths 

 
In practice, three features of the markets implemented in the experiment can give 

rise to phase changes that induce cyclical price dynamics even when prices may lie in the 
explosive region.  First, the limited number of units of X3 in the economy function as a 
price ceiling for P1 and P2 that puts a ceiling on the degree to which explosive prices can 
be observed.  Second, unmodeled variation in the prices at which trades execute is of 
sufficient magnitude to “jump phase” and move prices into a region of the phase diagram 
in which cyclical dynamics dominate.  Third, constraining trades to integer units of X1 
and X2 complicates the excess demand dynamics allowing for cyclical behavior to be 
observed from a larger set of starting conditions and substantially expanding the set of 
equilibrium prices.   
 
A.2.1 Effective Price Ceilings Bound Explosive Tendencies 
 
 A simple practical feature of the markets we study prevent us from observing 
unboundedly high prices.  In an economy with no more than 800 units of X3, the price of 
any good cannot exceed 800.  The highest transaction price in the observed sample 
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occurred for P2 = 600 in the explosive region of the CounterClockwise treatment, 
suggestive of an explosive tendency in prices.  Regardless, though, this explosiveness is 
limited by the available quantity of currency in the economy.       
 
A.2.2 Unmodeled Variation in Price Processes 
 
 While excess demand driven dynamics provide a reasonable model for expected 
price changes, it is an incomplete model and actual price changes are influenced by many 
other factors that are not included in the model.  The residual price variation is apparent 
in the time series presented in Figure 3 and the smoothed out exponentially weighted 
moving average prices presented in Figure 4.  Figure A.2.2 plots unsmoothed transaction 
prices in the price space, demonstrating substantial variation above and beyond that 
which is predicted by excess-demand dynamics. 
 

 
Figure A.2.2:  Transaction Price Variability 

 
Importantly, this unmodeled variability in prices is sufficient to systematically 

transition from explosive regions of the price space into the cyclical regions.  To establish 
this, we consider calibrated simulations of the price process based on the estimated 
parameters from Table A.3.B’s Aggregated Demand Model, starting from several initial 
positions in the explosive region while varying the amount of “noise” in the process from 
25% to 100% of the estimated variance.  Running 10,000 simulations for both treatments, 
we calculate the frequency with which the price process reaches the upper bound and the 
frequency with which it moves into the “Cyclical Region” as characterized by price pairs 
lying to the northeast of equilibrium (i.e., P1>40 and P2>20).   

Table A.2.1 presents the results of this analysis, with essentially all simulations 
passing through the cyclical region and rarely reaching the price ceiling.  Notably, 
essentially all simulations entered the Cyclical Region of price space and very rarely did 
the simulated price paths reach the maximum price ceilings.  Across all specifications for 
the Clockwise treatment, only 3 out of 90,000 simulations reached the price ceiling and 
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only 5 failed to pass through the Cyclical Region.  The CounterClockwise treatment 
simulations had more explosive tendencies, but in the noisiest conditions less than 11% 
of simulations reached the price ceiling while across all specifications, over 99% of 
simulated price paths entered the Cyclical Region.    
 

Table A.2.1: Properties of Simulated Price Paths 

    Panel A:  Clockwise Treatment 

    
Frequency of Reaching  

Price Ceiling  
Frequency of Entering  

Cyclical Regions 

  
Sim Variance 
as % of Fitted Var 0% 25% 100% 0% 25% 100% 

In
iti

al
  

P
ric

es
 (50, 10) 0% 0% 0% 0% 100% 100% 

(10, 10) 0% 0% 0% 0% 100% 100% 
(25, 25) 0% 0% 0% 0% 100% 100% 

                

    Panel B:  CounterClockwise Treatment 

    
Frequency of Reaching  

Price Ceiling 
Frequency of Entering  

Cyclical Regions 

  
Sim Variance 
as % of Fitted Var 0% 25% 100% 0% 25% 100% 

In
iti

al
  

P
ri

ce
s (50, 10) 0% 0% 11% 0% 100% 100% 

(10, 10) 0% 0% 9% 0% 100% 100% 
(25, 25) 0% 0% 10% 0% 100% 100% 

 
The price dynamics in these simulations are affected by partial equilibration 

forces arising from a good’s own excess demand as well as general equilibration forces 
driven by other goods’ excess demands and error correction dynamics.  The influence of 
these additional forces on expected price dynamics is demonstrated by the simulations in 
which the unmodeled variance of the price process is set to zero.  Notably, the price paths 
in this simulation never reach the price ceiling, demonstrating that general equilibration 
forces and error correction dynamics suffice to prevent explosive price paths.  Further, 
these additional forces are not sufficient to drive prices into the cyclical region of price 
space, which requires some noise in the price process to transition phases.   
 
A.2.3 Indivisibility, Excess Demand, and Multiple Equilibria 
  

The unmodeled variation in price dynamics need not be entirely behavioral in its 
origin and could arise from approximation errors in applying a theory of equilibrium 
based on abstract principles to a setting that doesn’t strictly satisfy all the assumptions of 
that theory.  As an example of one such approximation error, consider the simple 
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restriction that units of all commodities are indivisible even though the theory of price 
adjustment assumes individuals’ consumption decisions take place on a real-valued 
continuum of quantity and price.  Theoretically accounting for this indivisibility 
substantially expands the set of equilibria, as the friction associated therewith  .  A full 
analysis of these considerations presents a theoretical exercise well beyond the scope of 
the current paper.  Our intent here is simply to demonstrate the possibility for 
indivisibility to generate a variety of equilibria and potential price processes.    

First, we explain how to define the indivisible market excess demand as well as 
indivisible demand under the assumption that the commodity and price spaces are 
constrained to be integer-valued.  Then, we demonstrate how these demand functions 
could influence price dynamics and market equilibria, restricting attention to the case 
with clockwise parameters.  
 
A.2.3.1  Defining Integer-Valued Demand  
 

An agent’s indivisible demand function is obtained by maximizing their utility 
subject to a budget constraint with integer-valued variables.  Let us consider the first 
agent-type with endowments: 

( ) ( ) [ ]

{ }

1
2 3

1 1 2 2 3 10

max min 3 , / 20

      subject to 800

                      ,  1,2,3i

U X X X

P X P X X M

X i+

=
+ + = =

∈ ∈｢

    (A.2.1) 

For a given integer prices ( )1 2,P P , let ( )1
2X̂  be the utility maximizing quantity of 

the second in the case of ordinary real commodity space.  Ignoring the indivisibility 
constraint, of course this quantity will generally not be integer-valued but rather a real 

number.  Define 2 2
ˆX X =    to denote the largest integer less than or equal to 2X̂  and 

also 2 2
ˆX X =    denote the smallest integer larger than or equal to 2X̂ . The third good 

quantities demanded corresponding to 2X  and 2X  are respectively determined by the 

budget equation with  3 22800X P X= −  and   3 2 2800X P X= −  , each of which will be 

integer-valued.   
This agent is supposed to choose, as integral demand, whichever bundle of goods 

gives the largest utility, say, ( ) ( )( )1 1
2 2,X X .  As demonstrated by the indifference curves in 

figure A.2.3, the utility from the consumption bundle ( ) ( )( )1 1
2 30, ,X X is clearly larger than 

that derived from ( ) ( )( )1 1
2 30, ,X X , so the integer-valued demand vector is given by: 

( ) ( ) ( ) ( )1 1 1
1 2 2 3int , 0, ,D P P X X =  

     (A.2.2) 
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A.2.3  Indifference Curves for Integer

The third agent-type, which derives no utility from the numeraire good, presents a 
slightly more complicated optimization problem.  
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divisible goods and define 1 1
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A similar analysis applies to maximizing welfare and computing demand for the second 
type that derives utility from a complementary combination of commodities 

Indifference Curves for Integer

type, which derives no utility from the numeraire good, presents a 
slightly more complicated optimization problem.  

}
1 1 2 2 3 3 2

max min 3 , / 2

      subject to 40

                      ,  1,2,3

P X P X X M P+ + = =
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prices on the distance between prices and equilibrium, by which we define the 
Equilibrium Attraction Relative Model.   

1, 1 1,10 11 121, 1, 1

2, 1 2,20 21 222, 2, 1

40/

20/
t tt t

t tt t

Pa a aP P

Pa a aP P

ε
ε

−−

−−

−        
= + +         −       

&

&   (A.3.2) 

 
Table A.3.1 presents the coefficients on prices from estimating the Equilibrium 
Attraction model for both the absolute (Panel A) and the relative (Panel B) specifications, 
pooling all sessions into a common treatment.20  Though a statistically significant 
relationship, the estimated impact of price deviations from equilibrium on price 
innovations is nearly zero.  To illustrate, for every unit of X3 that prices deviate from 
equilibrium prices, we would expect a correction of only 0.022 units in the next 
transaction.   
 

Table A.3.1:  Estimated Coefficients in Equilibrium Attraction Models 
Panel A:  Absolute Attraction Panel B:  Relative Attraction 
Estimate Std Error t-Stat p-val Estimate Std Error t-Stat p-val

a11 2.22 E-02 5.38 E-03 4.21 <0.01 a11 2.75 E-04 9.89 E-05 2.75 0.01
a12 -2.28 E-03 5.41 E-03 -0.42 0.67 a12 -4.71 E-05 1.01 E-04 -0.46 0.64
a21 -2.50 E-03 2.41 E-03 -1.03 0.30 a21 -1.72 E-05 7.50 E-05 -2.30 0.02
a22 1.02 E-02 4.62 E-03 2.21 0.03 a22 3.02 E-04 1.45 E-04 2.09 0.04

 
The Equilibrium Attraction Model, rather than serving as a theoretically grounded model 
of disequilibrium price dynamics, serve as an econometric specification for testing the 
degree to which equilibrium prices predict price changes.  Indeed, the regression 
specifications in (A.3.1) and (A.3.2) can be interpreted as an Error Correction Model 
where transaction prices follow independent unit root processes converging to the 
equilibrium prices.  Despite lacking a theoretical foundation, this specification provides a 
viable reduced-form device for testing whether prices’ deviation from theoretical 
equilibrium directly predict price changes.  The weakness of this predictive relationship 
demonstrates the degree to which prices diverge from the theoretical equilibrium.   
 
A.3.B.  Comparing Model Specifications for Price Dynamics 
 
We can combine the regression specifications from the Equilibrium Attraction and 
Classical Models into an aggregated model that allows us to evaluate the relative 

                                                           
20 We apply the same treatment to price changes as we adopt in later sections to estimate the structural 
relationship between price changes and excess demand.  Using price changes at the transaction level, 
winsorized to limit outlier influence, we estimate all models equation-by-equation using FGLS accounting 
for Autoregressive Conditional Heteroscedasticity within each session.   
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explanatory power of Equilibrium Attraction, excess demand in the Classical Model, and 
excess demand in the Relative Classical Model.  The regression equation of the 
aggregated model for commodity X1 takes the form: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1, 1, 1 10 11 1, 1 12 2, 1

11 1, 1 1, 1 12 2, 1 1, 1

11 1, 1 1 12 2, 1 1

11 1, 1 1 1, 1 12 2, 1 1 1, 1 1,

40 20

       40 20

       

       

EAA EAA
t t t t

EAR EAR
t t t t

GA GA
t t t t

GR GR
t t t t t t t

P P a a P a P

a P P a P P

a Z P a Z P

a Z P P a Z P P ε

− − −

− − − −

− − − −

− − − − − −

− = + − + −

+ − + −

+ +

+ + +

 (A.3.3) 

 
The analogous model for commodity X2 is constructed similarly.  Note that equation 
(A.3.3) nests all the models evaluated in the paper, with the parameters superscripted by 
EAA, EAR, GA, and GR corresponding to the Equilibrium Attraction Absolute, 
Equilibrium Attraction Relative, Generalized Absolute, and Generalized Relative Models, 
respectively.  Our interest in this specification is purely empirical, as estimating this 
aggregate regression model allows us to identify which forces are most relevant to 
explaining price processes.  Table 9 presents the regression results for the model in 
equation (9), separately for commodity X1 (Panel A) and X2 (Panel B).     
 

Table A.3.B:  Estimated Aggregated Dynamic Model Coefficients 
Panel A:  Commodity X1  Panel B:  Commodity X2 

 

    

     

 Coeff Std Error t-Stat p-Val  Coeff Std Error t-Stat p-Val 

11

EAAa  -3.71 E-02 1.37 E-02 -0.27  0.79     
21

EAAa  1.27 E-03 5.05E-03  0.25  0.80  

12

EAAa  -1.50 E-05 7.55 E-03 -0.20  0.84     
22

EAAa  1.91 E-03 7.20E-03  0.26   0.79  

11

EARa   9.03 E-04 4.53 E-05 1.99  0.05     
21

EARa  -2.77E-05 1.30E-05  -2.14   0.03  

12

EARa  -1.37 E-04 9.09 E-05 -1.50  0.13     
22

EARa  3.30 E-05 4.31E-05  0.77   0.44 

11

GAa  3.05 E-02 2.30 E-02 1.33  0.19    
21

GAa  9.95 E-03 1.35E-02  0.74  0.46  

12

GAa  -4.60 E-03 1.49 E-02 -0.31   0.76    
22

GAa  -2.17 E-03 5.94E-03  -0.37  0.71  

11

GRa  2.68 E-03 4.79 E-04 5.59   <0.01    
21

GRa  3.93 E-04 1.77E-04  2.22   0.03  

12

GRa  4.11 E-04 1.37 E-04 2.99   <0.01    
22

GRa  2.19 E-03 2.21E-04  9.91   <0.01  

 
We first consider the empirical relevance of the absolute models for characterizing price 
dynamics, which seem quite limited compared to the relative models.  Only one of the 
eight coefficients associated with an absolute model, 21

EAAa , achieves marginal significance.  

However, this significance should be greeted with skepticism given the same coefficient 
was not statistically significant in the Equilibrium Attraction model specifications 
presented in Table A.3.1 that did not include excess demand measures in the set of 
regressors.  A Wald test of the joint zero restriction on all eight absolute model 
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coefficients is rejected at the 0.02 significance level, suggesting the absolute measures of 
excess demand and disequilibrium do have some explanatory power.     
 
We next consider the degree to which equilibrium attraction forces characterize expected 

price dynamics.  The marginal significance results indicate that 11
EARa  and 21

EARa  provide 

statistically significant predictors for expected price dynamics, but their influences are 
quite small with a price divergence of 100 leading to an expected correction of less than 
1%.  None of the Absolute Attraction predictors are statistically significant and a joint 

test that 11 12 21 22 0EAA EAA EAA EAAa a a a= = = =  is not rejected with a p-Value of 0.45.   

 
Our last observation seeks to evaluate the degree to which partial and general equilibrium 
adjustments influence expected price dynamics.  We begin by noting that the joint 
restriction 12 21 12 21 0GA GA GR GRa a a a= = = = is rejected by the data since 12

GRa and 21
GRa  both reach the 

threshold for statistical significance.  However, the magnitude of the diagonal 
coefficients ( )iiag  is clearly much greater than the magnitude of the off diagonal 

coefficients ( )ijag .   
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APPENDIX B:  Figures Presenting Time Series Results for All Sessions 
 

   

   

   
 

Figure B.1:  Transaction Price Time Series (Figure 3) 
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Figure B.2:  Period Average Prices and Phase Diagram (Figure 4) 
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Figure B.3: Excess Demand Dynamics (Figure 6) 
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Figure B.4: Period-End Allocation Efficiency (Figure 8) 

1 2 3 4 5 6 7 8 9 10

Trading Period

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
t 
E

ff
ic

ie
n

c
y
/P

e
rc

e
n

t 
R

e
s
id

u
a

l

Clockwise 021127 Allocation Efficiency
Residual X

1
Residual X

2
Residual X

3

Efficiency

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Trading Period

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
t 
E

ff
ic

ie
n

c
y
/P

e
rc

e
n

t 
R

e
s
id

u
a

l

Clockwise 021211 Allocation Efficiency

1 2 3 4 5 6 7 8 9 10 11

Trading Period

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
t 
E

ff
ic

ie
n

c
y
/P

e
rc

e
n

t 
R

e
s
id

u
a

l

Clockwise 030717 Allocation Efficiency

1 2 3 4 5 6 7 8 9 10 11 12

Trading Period

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
t 
E

ff
ic

ie
n

c
y
/P

e
rc

e
n

t 
R

e
s
id

u
a

l

CounterClockwise 030130 Allocation Efficiency

1 2 3 4 5 6 7 8 9

Trading Period

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
t 
E

ff
ic

ie
n

c
y
/P

e
rc

e
n

t 
R

e
s
id

u
a

l

CounterClockwise 030428 Allocation Efficiency
Residual X

1
Residual X

2
Residual X

3

Efficiency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Trading Period

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
t 
E

ff
ic

ie
n

c
y
/P

e
rc

e
n

t 
R

e
s
id

u
a

l

CounterClockwise 030620 Allocation Efficiency



-49- 

    
 

 
 

 
 

Figure B.5: Early-vs-Late Transaction Volume by Period (Figure 9) 
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APPENDIX C:  Session-Level Regression Results 
 
Table C.5.A:  Session-Level Results for Absolute Equilibrium Attraction Model 

Clockwise - 021127 CounterClockwise - 030130 
a11 a12 a21 a22 a11 a12 a21 a22 

Coeff 5.74E-02 -1.92E-01 -4.06E-03 6.37E-02 9.68E-03 2.09E-02 -2.11E-02 7.19E-03 

Std Err 1.34E-02 4.33E-02 5.15E-03 8.47E-03 1.12E-02 1.11E-02 8.13E-03 1.12E-02 

t-Stat 4.28 -4.44 -0.79 7.52 0.86 1.88 -2.60 0.64 
 

Clockwise - 021211 CounterClockwise - 030428 
a11 a12 a21 a22 a11 a12 a21 a22 

Coeff 3.91E-02 -1.40E-02 9.42E-03 1.32E-02 1.75E-02 1.83E-02 -9.10E-03 2.36E-02 

Std Err 1.44E-02 8.92E-03 6.84E-03 9.69E-03 9.79E-03 1.53E-02 4.77E-03 1.26E-02 

t-Stat 2.72 -1.57 1.38 1.36 1.79 1.20 -1.91 1.88 
 

Clockwise - 030717 CounterClockwise - 030620 
a11 a12 a21 a22 a11 a12 a21 a22 

Coeff 3.11E-02 -1.46E-03 1.92E-02 1.14E-02 -1.77E-03 8.49E-02 -1.92E-02 2.77E-02 

Std Err 1.73E-02 2.01E-02 7.14E-03 1.05E-02 1.26E-02 2.69E-02 1.17E-02 2.38E-02 

t-Stat 1.80 -0.07 2.68 1.08 -0.14 3.15 -1.64 1.16 
 

 
Table C.5.B:  Session-Level Results for Relative Equilibrium Attraction Model 

Clockwise - 021127 CounterClockwise - 030130 
a11 a12 a21 a22 a11 a12 a21 a22 

Coeff 1.07E-03 -2.71E-03 6.78E-04 2.36E-03 5.18E-04 5.67E-04 -6.89E-04 4.04E-04 

Std Err 7.18E-04 2.32E-03 4.29E-04 7.91E-04 3.54E-04 3.49E-04 2.00E-04 2.79E-04 

t-Stat 1.49 -1.17 1.58 2.98 1.47 1.62 -3.45 1.45 
 

Clockwise - 021211 CounterClockwise - 030428 
a11 a12 a21 a22 a11 a12 a21 a22 

Coeff 2.58E-04 -3.24E-04 1.55E-04 1.97E-04 1.16E-04 2.94E-04 -3.79E-04 4.40E-04 
Std Err 2.24E-04 1.38E-04 2.13E-04 3.02E-04 1.66E-04 2.58E-04 1.17E-04 3.35E-04 
t-Stat 1.16 -2.36 0.73 0.65 0.70 1.14 -3.25 1.31 

 
Clockwise - 030717 CounterClockwise - 030620 

a11 a12 a21 a22 a11 a12 a21 a22 
Coeff 2.95E-04 -1.11E-04 2.66E-04 5.52E-04 ` 7.69E-05 1.41E-03 -5.91E-04 5.88E-04 
Std Err 1.96E-04 2.26E-04 1.98E-04 2.92E-04 2.92E-04 6.25E-04 3.32E-04 6.81E-04 
t-Stat 1.51 -0.49 1.34 1.89 0.26 2.25 -1.78 0.86 
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Table C.7:  Session-Level Results for Absolute Excess Demand Model 
Clockwise - 021127 CounterClockwise - 030130 

a11 a12 a21 a22 a11 a12 a21 a22 

Coeff 2.55E-02 1.25E-03 -1.15E-02 -1.75E-03 -5.08E-02 -6.07E-03 2.11E-02 -3.36E-04 

Std Err 9.81E-03 1.42E-03 4.24E-03 5.01E-04 2.33E-02 2.30E-03 1.70E-02 1.76E-03 

t-Stat 2.59 0.88 -2.71 -3.50 -2.18 -2.64 1.24 -0.19 
 

Clockwise - 021211 CounterClockwise - 030428 
a11 a12 a21 a22 a11 a12 a21 a22 

Coeff 2.58E-04 -3.24E-04 1.55E-04 1.97E-04 1.16E-04 2.94E-04 -3.79E-04 4.40E-04 
Std Err 2.24E-04 1.38E-04 2.13E-04 3.02E-04 1.66E-04 2.58E-04 1.17E-04 3.35E-04 
t-Stat 1.16 -2.36 0.73 0.65 0.70 1.14 -3.25 1.31 

 
Clockwise - 030717 CounterClockwise - 030620 

a11 a12 a21 a22 a11 a12 a21 a22 
Coeff 2.95E-04 -1.11E-04 2.66E-04 5.52E-04 ` 7.69E-05 1.41E-03 -5.91E-04 5.88E-04 
Std Err 1.96E-04 2.26E-04 1.98E-04 2.92E-04 2.92E-04 6.25E-04 3.32E-04 6.81E-04 
t-Stat 1.51 -0.49 1.34 1.89 0.26 2.25 -1.78 0.86 

 
 

Table C.8:  Session-Level Results for Relative Excess Demand Model 
Clockwise - 021127 CounterClockwise - 030130 

a11 a12 a21 a22 a11 a12 a21 a22 

Coeff 8.89E-04 3.88E-05 2.86E-04 -2.98E-05 -3.34E-04 -5.46E-05 2.09E-03 -2.58E-05 

Std Err 2.52E-04 1.63E-05 9.03E-04 3.53E-05 5.26E-04 2.84E-05 4.93E-04 2.99E-05 

t-Stat 3.53 2.37 0.32 -0.84 -0.63 -1.92 4.24 -0.86 
 

Clockwise - 021211 CounterClockwise - 030428 
a11 a12 a21 a22 a11 a12 a21 a22 

Coeff 9.67E-04 2.06E-08 3.24E-04 -1.17E-05 5.29E-05 1.04E-05 1.69E-03 -1.37E-05 
Std Err 2.06E-04 9.49E-06 7.89E-04 6.04E-06 2.58E-04 1.18E-05 3.61E-04 8.56E-06 
t-Stat 4.70 0.00 0.41 -1.94 0.21 0.88 4.69 -1.61 

 
Clockwise - 030717 CounterClockwise - 030620 

a11 a12 a21 a22 a11 a12 a21 a22 
Coeff 3.20E-04 -1.03E-05 1.60E-03 -1.39E-05 ` -1.44E-03 -5.20E-05 2.65E-03 -2.84E-04 

Std Err 2.60E-04 1.40E-05 7.63E-04 9.87E-06 1.38E-03 6.07E-05 1.86E-03 1.35E-04 
t-Stat 1.23 -0.74 2.10 -1.41 -1.04 -0.86 1.42 -2.10 
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Table C.9:  Session-Level Results for Aggregated Model 
 

Panel A:  Clockwise Treatment Session Level Results 
 

Clockwise - 021127 

Good X1 11

EAAa  
12

EAAa  
11

EARa  
12

EARa  
11

GAa  
12

GAa  
11

GRa  
12

GRa  

Coeff -6.12E-02 -9.53E-02 5.42E-03 2.64E-03 -2.32E-03 1.52E-02 1.55E-02 -1.61E-03 

Std Err 1.42E-01 1.95E-01 1.44E-03 2.97E-03 7.06E-02 1.52E-02 3.46E-03 6.39E-04 

t-Stat -0.43 -0.49 3.77 0.89 -0.03 1.00 4.50 -2.51 

Good X2 21

EAAa
 22

EAAa
 21

EARa
 22

EARa
 21

GAa  
22

GAa  
22

GAa  
22

GRa  

Coeff -1.17E-01 2.77E-01 6.86E-06 -5.16E-03 -2.85E-03 -4.25E-03 -3.31E-03 4.36E-03 

Std Err 6.98E-02 1.11E-01 6.56E-04 2.25E-03 3.25E-02 7.40E-03 1.73E-03 1.47E-03 

t-Stat -1.67 2.50 0.01 -2.30 -0.09 -0.58 -1.92 2.96 
 

Clockwise - 021211 

Good X1 11

EAAa  
12

EAAa  
11

EARa  
12

EARa  
11

GAa  
12

GAa  
11

GRa  
12

GRa  

Coeff -1.33E-01 -4.18E-02 7.52E-04 7.56E-04 -2.36E-01 8.33E-02 1.22E-02 9.22E-05 

Std Err 9.99E-02 1.74E-02 2.80E-04 3.69E-04 2.10E-01 1.02E-01 2.59E-03 8.62E-04 

t-Stat -1.33 -2.40 2.68 2.05 -1.12 0.82 4.70 0.11 

Good X2 21

EAAa
 22

EAAa
 21

EARa
 22

EARa
 21

GAa  
22

GAa  
22

GAa  
22

GRa  

Coeff -8.89E-03 1.20E-02 -3.21E-05 -3.31E-04 1.19E-01 1.35E-02 -4.02E-03 3.30E-03 

Std Err 5.38E-02 1.69E-02 1.38E-04 2.87E-04 1.85E-01 5.35E-02 1.75E-03 1.23E-03 

t-Stat -0.17 0.71 -0.23 -1.15 0.65 0.25 -2.30 2.68 
 

Clockwise - 030717 

Good X1 11

EAAa  
12

EAAa  
11

EARa  
12

EARa  
11

GAa  
12

GAa  
11

GRa  
12

GRa  

Coeff -2.20E-01 -5.80E-02 7.58E-04 1.49E-03 -6.41E-02 -3.34E-02 4.29E-03 1.44E-03 

Std Err 1.16E-01 4.01E-02 4.31E-04 7.43E-04 2.53E-01 1.01E-01 3.47E-03 1.04E-03 

t-Stat -1.89 -1.45 1.76 2.00 -0.25 -0.33 1.24 1.39 

Good X2 21

EAAa
 22

EAAa
 21

EARa
 22

EARa
 21

GAa  
22

GAa  
22

GAa  
22

GRa  

Coeff -8.41E-02 -3.12E-02 1.71E-04 6.19E-04 -1.36E-01 2.93E-02 1.68E-03 3.17E-03 

Std Err 6.50E-02 3.57E-02 2.21E-04 3.92E-04 1.91E-01 3.95E-02 1.88E-03 1.09E-03 

t-Stat -1.29 -0.88 0.77 1.58 -0.71 0.74 0.89 2.92 
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Table C.9:  Session-Level Results for Aggregated Model (cont.) 
 

Panel B:  CounterClockwise Treatment Session Level Results 
 

CounterClockwise - 030130 

Good X1 11

EAAa  
12

EAAa  
11

EARa  
12

EARa  
11

GAa  
12

GAa  
11

GRa  
12

GRa  

Coeff -3.31E-01 3.67E-02 2.56E-03 -1.21E-03 -2.15E-01 -1.46E-01 7.65E-03 3.29E-03 

Std Err 9.61E-02 3.85E-02 6.23E-04 7.23E-04 1.12E-01 6.37E-02 2.56E-03 1.02E-03 

t-Stat -3.44 0.95 4.11 -1.68 -1.92 -2.29 2.99 3.23 

Good X2 21

EAAa
 22

EAAa
 21

EARa
 22

EARa
 21

GAa  
22

GAa  
22

GAa  
22

GRa  

Coeff 1.85E-02 2.82E-01 -8.02E-05 4.57E-04 2.65E-02 3.47E-02 -3.53E-03 9.58E-03 

Std Err 4.85E-02 1.41E-01 2.69E-04 7.43E-04 4.81E-02 3.82E-02 2.02E-03 1.96E-03 

t-Stat 0.38 2.00 -0.30 0.62 0.55 0.91 -1.75 4.90 
 

CounterClockwise - 030421 

Good X1 11

EAAa  
12

EAAa  
11

EARa  
12

EARa  
11

GAa  
12

GAa  
11

GRa  
12

GRa  

Coeff -6.92E-02 -7.08E-03 2.03E-04 -8.04E-04 -1.05E-01 -9.32E-02 7.10E-03 5.82E-04 

Std Err 4.41E-02 3.04E-02 1.04E-04 2.75E-04 9.39E-02 1.10E-01 2.01E-03 3.89E-04 

t-Stat -1.57 -0.23 1.95 -2.92 -1.12 -0.84 3.53 1.50 

Good X2 21

EAAa
 22

EAAa
 21

EARa
 22

EARa
 21

GAa  
22

GAa  
22

GAa  
22

GRa  

Coeff 1.63E-02 -1.98E-01 -4.00E-05 4.24E-04 1.10E-02 -4.47E-03 3.04E-03 1.79E-03 

Std Err 1.23E-02 9.16E-02 2.45E-05 1.86E-04 3.98E-02 3.39E-02 1.21E-03 4.62E-04 

t-Stat 1.32 -2.16 -1.64 2.27 0.28 -0.13 2.51 3.87 
 

CounterClockwise - 030620 

Good X1 11

EAAa  
12

EAAa  
11

EARa  
12

EARa  
11

GAa  
12

GAa  
11

GRa  
12

GRa  

Coeff -1.68E-01 -1.38E-01 1.69E-03 1.54E-03 1.48E-01 -1.02E-01 1.14E-02 5.49E-03 

Std Err 9.60E-02 1.69E-01 5.31E-04 2.61E-03 4.09E-01 2.12E-01 9.89E-03 3.51E-03 

t-Stat -1.75 -0.82 3.18 0.59 0.36 -0.48 1.15 1.57 

Good X2 21

EAAa
 22

EAAa
 21

EARa
 22

EARa
 21

GAa  
22

GAa  
22

GAa  
22

GRa  

Coeff 1.40E-01 -6.42E-02 -5.07E-04 7.92E-03 -6.65E-01 -1.27E-01 1.57E-02 5.72E-02 

Std Err 8.23E-02 3.19E-01 5.71E-04 1.58E-03 2.49E-01 1.87E-01 9.31E-03 7.17E-03 

t-Stat 1.70 -0.20 -0.89 5.02 -2.67 -0.68 1.69 7.97 
 
 


