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Abstract. The equilibrium concepts that we now think of as various forms
of backwards induction, namely subgame perfect equilibrium (Selten, 1965),

perfect equilibrium (Selten, 1975), sequential equilibrium (Kreps and Wilson,

1982), and quasi-perfect equilibrium (van Damme, 1984), are explicitly re-
stricted to games with perfect recall. In spite of this the concepts are well

defined even in games without perfect recall. There is now a small literature

examining the behaviour of these concepts in games without perfect recall.
We argue that in games without perfect recall the original definitions are

inappropriate. Our reading of the original papers is that the authors were

aware that their definitions did not require the assumption of perfect recall
but they were also aware that without the assumption of perfect recall the

definitions they gave were not the “correct” ones. We give definitions of two

of these concepts, sequential equilibrium and quasi-perfect equilibrium, that
identify the same equilibria in games with perfect recall and behave well in lin-

ear games without perfect recall. We also extend these definitions to nonlinear
games. Finally we give the appropriate redefinition of perfect equilibrium in

games without perfect recall for both linear and nonlinear games.

1. Introduction

The game theorists who defined the equilibrium concepts that we now think of as
various forms of backwards induction, namely subgame perfect equilibrium (Selten,
1965), perfect equilibrium (Selten, 1975), sequential equilibrium (Kreps and Wilson,
1982), and quasi-perfect equilibrium (van Damme, 1984), explicitly restricted their
analysis to games with perfect recall. In spite of this the concepts are well defined,
exactly as they defined them, even in games without perfect recall. There is now
a small literature examining the behaviour of these concepts in games without
perfect recall. Jeff Kline (2005) looks at what happens in games without perfect
recall to solutions defined in exactly the same way as they were defined in games
with perfect recall. Joe Halpern and Rafael Pass (2017) modify the definitions of
van Damme and Kreps and Wilson in a somewhat different manner than we do.
Adrian Marple and Yoav Shoham (2013) also define related concepts, though their
approach involves splitting the owners of information sets, and even the owners of
some nodes within an information set into separate players.

We shall argue that in games without perfect recall the original definitions are
inappropriate. Our reading of the original papers is not that the authors were
unaware that their definitions did not require the assumption of perfect recall,
but rather that they were aware that without the assumption of perfect recall the
definitions they gave were not the “correct” ones. In this paper we give definitions
of these concepts, that identify the same equilibria in games with perfect recall and
behave well in games without perfect recall. By “behave well” we mean exhibit
the same inclusions as the original concepts exhibit in games with perfect recall,

Date: IRNLP Version 4 May 27, 2018.
Key words and phrases. extensive form games; perfect recall; sequential equilibrium; quasi-

perfect equilibrium.

1



2 JOHN HILLAS AND DMITRIY KVASOV

namely, perfect and quasi-perfect equilibria should be sequential equilibria which, in
turn, should be Nash equilibria. Moreover in generic games perfect, quasi-perfect,
and sequential equilibria should coincide.

We shall, below, first define the concepts of sequential equilibria and quasi-
perfect equilibria. We focus on these concepts because they seem to us to be the
right concept for backward induction and a combination of backward induction and
admissibility respectively. Later we redefine the concept of extensive form perfect
equilibrium for games without perfect recall.

In the next section we shall briefly develop the notation we use and review some
of the facts about the equilibria of the various classes of games.

2. Extensive Form Games: Notation and Basic Results

We shall be using the model of extensive form games developed by Kuhn (1950,
1953) who modified and generalised the definition given by von Neumann and
Morgenstern (1947). Kuhn distinguished between games with perfect recall, in
which players remember at each occasion they move everything they knew and did
in the past, and games where this is not true. An implication of a player having
perfect recall is that any play of the game will cut each of the player’s information
sets at most once. Kuhn made this requirement part of his definition of an extensive
form game. Isbell (1957) expanded the class of games by dropping the requirement
that each play of a game cut each information set at most once. Isbell called games
in which this requirement was met linear games and the more general class of games
games where this condition was not assumed nonlinear games. This more general
definition was later, under the name “repetitive games,” considered by Alpern
(1988), and more famously, under the name “absent-mindedness,” by Piccione and
Rubinstein (1997a), and, following them, by many others, (Gilboa, 1997; Battigalli,
1997; Grove and Halpern, 1997; Halpern, 1997; Lipman, 1997; Aumann, Hart, and
Perry, 1997a,b; Piccione and Rubinstein, 1997b). In this paper we shall use Isbell’s
terminology and distinguish between linear and nonlinear games. We thus have
three successively broader classes of extensive form games: games with perfect
recall, linear games, and nonlinear games.

A definition of an extensive form game starts with the notion of a game tree.
There are two equivalent ways of defining a game tree. The first, used by Kuhn,
defined a game tree as a finite connected graph with no loops and a distinguished
initial node or root. More recently it has become typical to define a game tree
as a partially ordered finite set of nodes or equivalently in terms of a predecessor
function, which specifies the node that comes immediately before a given node.
These ways of defining a game tree are equivalent and given one definition one can
define the elements of the other definition. We shall use the terminology from each
definition as convenient. We let the finite set of nodes be X, the initial node x0
and the (immediate) predecessor function

p : X → X ∪ {∅},

the function that for every node gives the node that comes immediately before it
in the game tree (with p(x0) = ∅ and x0 is the only node for which this is true).
When thinking of the game tree as a graph the set {p(x), x} is a branch. We say
that t is a terminal node if there is no node x ∈ X with p(x) = t. We partition X
into the sets T of terminal nodes and D of nonterminal or decision nodes.

As well as the game tree an extensive form game Γ consists of: a finite set of play-
ers, N = {1, 2, . . . , N}; a set of actions, A, and a labeling function α : X\{x0} → A
where α(x) is the action at p(x) that leads to x such that if p(x) = p(x′) and x 6= x′

then α(x) 6= α(x′); a collection of information sets, H, and a function h : D → H
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that assigns for every decision node which information set the node is in; a function
n : H → N̂ = N ∪ {0}, where player 0 is Nature and n(h) is the player who moves
at information set h and Hn = {h ∈ H | n(h) = n}, the information sets controlled
by player n; a function ρ : H0 × A → [0, 1] giving the probability that action a is
taken at the information set h ∈ H0; and functions (u1, . . . , uN ) with un : T → R
being the payoff to player n. We shall also consider the collection of non-empty
subsets of Hn which we shall denote H̄n. An element H of H̄n is some collection
of information sets of Player n.

We let A(x) = {a ∈ A|a = α(x′) for some x′ with p(x′) = x}. That is, A(x) is
the set of choices that are available at node x. If x is a terminal node then A(x) = ∅.
If h(x) = h(x′), then A(x) = A(x′). For convenience and notational simplicity we
assume that if h(x) ∈ H0 and h(x) = h(x′) then x = x′, that is that all h ∈ H0 are
singletons.

Definition 1. If no path from x0 to a terminal node cuts any information set
more than once then we call the game a linear game.

The idea of perfect recall is that a player has perfect recall if, at each of his
information sets he remembers what he knew and what he did in the past. This
idea was introduced and formally defined by Kuhn (1950, 1953). Later Selten
(1975) gave an equivalent definition that is perhaps closer to the intuitive idea.
Ritzberger (1999) and, even more fundamentally, Alós-Ferrer and Ritzberger (2016,
2017) redefined extensive form games and gave a deep discussion of the meaning of
perfect recall. For our purposes the standard formulation of extensive form games
and definition of perfect recall are sufficient. We give here the definition of perfect
recall by Selten.

Definition 2. A player is said to have perfect recall if whenever that player has
an information set containing nodes x and y and there is a node x′ of that player
that precedes node x there is also a node y′ in the same information set as x′ that
precedes node y and the action of the player at y′ on the path to y is the same as
the action of the player at x′ on the path to x.

We now define the various notions of strategy that we shall use.

Definition 3. A pure strategy in an extensive form game for Player n is a
function that maps each of his information sets to one of the actions available at
that information set. We denote the set of Player n’s pure strategies by Sn, the
set of pure strategy profiles by S = ×n∈NSn, and the set of extended pure strategy

profiles by Ŝ = ×n∈N̂Sn.

Definition 4. A behaviour strategy in an extensive form game for Player n is a
function that maps each of his information sets to a probability distribution over the
actions available at that information set. We denote the set of Player n’s behaviour
strategies by Bn and the set of behaviour strategy profiles by B = ×n∈NBn.

Definition 5. A mixed strategy in an extensive form game for Player n is a
probability distribution over the player’s pure strategies. We denote the set of
Player n’s mixed strategies by Σn and the set of mixed strategy profiles by Σ =
×n∈NΣn.

In nonlinear games we also need to consider randomisations over behaviour
strategies. Different terms have been used to refer to such strategies in the lit-
erature. Isbell called them mixed strategies and called what we, and most of the
rest of the literature, call mixed strategies linear strategies; Alpern called them
randomised strategies; Selten called them behaviour strategy mixtures; and others
have called them mixtures of behaviour strategies. We follow Mertens, Sorin, and
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Zamir (2015) in calling them general strategies. We can consider such strategies
for linear games, but we do not need to do so.

Definition 6. A general strategy in an extensive form game for Player n is a
probability distribution over the player’s behaviour strategies. We denote the set
of Player n’s general strategies by Gn and the set of general strategy profiles by
G = ×n∈NGn.

In linear decision problems, that is, one player linear games the player always
has a pure strategy that is at least as good as any more general strategy. In
nonlinear decision problems this is not the case. A player may be able to do better
with a behaviour strategy than he can with any pure strategy. In games with more
than one player equilibria may involve players randomising, or, equivalently, players
being uncertain of what other players are choosing. In linear games this means that
we look for equilibria in mixed strategies, in nonlinear games we look for equilibria
in general strategies. Kuhn showed that in games with perfect recall one could
achieve the same uncertainty about the other players with behaviour strategies as
one could with mixed strategies and so, in such games one could instead look for
equilibria in behaviour strategies. We can be a little more explicit. We first define
the notion of the Kuhn-equivalence of two strategies.

Definition 7. Given two strategies of Player n, x and y in Sn ∪Bn ∪ Σn ∪Gn
we say that x is Kuhn-equivalent to y if for any general strategy profile g−n in G−n
of the other players the profiles (x, g−n) and (y, g−n) induce the same distribution
on the terminal nodes.

And we can now formally state Kuhn’s Theorem.

Kuhn’s Theorem. If Player n has perfect recall then for any mixed strategy
σn in Σn there is a behaviour strategy bn in Bn that is Kuhn-equivalent to σn. In
a linear game for any player n in N and for any behaviour strategy bn in Bn there
is a mixed strategy σn in Σn that is Kuhn-equivalent to bn.

The first part of Kuhn’s Theorem was stated and proved by Kuhn (1953). The
second part is almost implicit in Kuhn’s paper and was formally stated and proved
by Isbell (1957).

Remark 1. When we defined perfect recall we defined what it meant for a player
to have perfect recall and Kuhn’s Theorem refers to the equivalence of behaviour
and mixed stratgies for any player who has perfect recall. When we define linear
games we do not do so player by player and Kuhn’s Theorem only refers to linear
games in which all players satisfy the requirement that their information sets are cut
at most once by a path through the game. This is consistent with the way things
are normally done in the literature. It is however true that if a player satisfies
the requirement that none of her information sets are cut more than once by any
path through the tree then for any behaviour strategy of that player the player
has a Kuhn-equivalent mixed strategy, whether or not the other players satisfy
this requirement. It might, perhaps, be better to define“linear players” and state
Kuhn’s Theorem in this way and indeed Mertens, Sorin, and Zamir (2015) present
the results this way.

Since there is an infinite number of behaviour strategies the space of general
strategies is infinite dimensional. Fortunately, we do not need to consider all general
strategies. The following result allows us to restrict ourselves to a finite dimensional
subset of Gn. This result was proved by Alpern (1988).
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Proposition 1 (Alpern 1988). For any player n in N there is a finite number
Kn such that for any general strategy gn of Player n there is general strategy g′n
putting probability on only Kn elements of Bn that is Kuhn-equivalent to gn.

Proof. Each terminal node t in T defines a set of decision nodes of Player n on
the path from the initial node to t. For each of these nodes there is a branch
{x, y} from x with y also on the path to t. A behaviour strategy bn of Player n
induces a conditional probability on the branch {x, y} conditional on x having been
reached. Let qn(t, bn) be the product of the conditional probabilities generated by
bn on the branches following nodes owned by Player n that occur on the path
to t. If Player n has no nodes on the path to t we let qn(t, bn) = 1. Similarly
define q0(t, b0) for Nature, where b0 is Nature’s only strategy. Thus if the players
play b = (b1, b2, . . . , bN ) the probability that terminal node t will be reached is∏
n∈N̂ qn(t, bn). Notice that bn influences the distribution over terminal nodes only

through qn(t, bn).
Let

Qn = {(qt)t∈T ⊂ [0, 1]T | for some gn in Gn for all t qt =

∫
Bn

qn(t, bn)dgn(bn)}.

It is clear that Qn is the convex hull of those points (qt)t∈T in Qn with gn putting
probability only on one behaviour strategy, that is, of the set

Cn = {(qt)t∈T ⊂ [0, 1]T | for some bn in Bn for all t qt = qn(t, bn)}.
But since Cn (and Qn) are subsets of RT , by Carathéodory’s Theorem any q in

Qn can be written is a convex combination of at most T + 1 elements of Cn. That
is it is generated by a general strategy gn that puts probability on at most T + 1
elements of Bn.

We have shown that for any gn we can find a g′n that puts probability on only
T + 1 elements of Bn such that gn and g′n generate the same element of Qn. But
gn will influence the probability of a final node only through the element of Qn it
generates and the result follows. �

Remark 2. In our proof we have given T + 1 as the bound on the number of
behaviour strategies that may receive positive probability. This can be substantially
strengthened. In general many different terminal nodes may be associated with the
same set of edges following nodes of Player n on the path to that terminal node.
We would need in Qn only one dimension for each such set of edges.

x0

x1

L R

L R

a

b c

Figure 1. The absent-minded driver (Piccione and Rubinstein 1977).
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Remark 3. It is not true that we can restrict attention to only a fixed finite
subset of Bn. Consider the Absent-minded Driver example in Figure 1. We claim
that there is no finite set of behaviour strategies such that the outcome from any
behaviour strategy can be replicated by some mixture over the given set. Suppose
that we have T behaviour strategies b1, b2, . . . , bT with bt = (xt, 1 − xt) with xt

being the probability that the player chooses L. So, if the player plays bt he ends
up with outcome a with probability xt, with outcome b with probability xt(1−xt),
and with outcome c with probability (1 − xt)2. Let x̄ be the smallest value of xt

strictly greater than 0.
Consider the behaviour strategy b0 = (x̄/2, 1− (x̄/2)). This strategy gives out-

come a with probability x̄/2 and outcome b with probability (x̄/2)(1 − (x̄/2)).
Now for any bt which gives strictly positive probability of outcome b we have
that the ratio of the probability of outcome a to the probability of outcome b
is 1/(1− xt) ≥ 1/(1− x̄).

Thus if we have a general strategy putting probability only on b1, b2, . . . , bT

that gives outcome b with the same probability as b0, that is with probability
(x̄/2)(1− (x̄/2)) it will give outcome a with probability at least(

1

1− x̄

)( x̄
2

)(
1− x̄

2

)
=
( x̄

2

)( 2− x̄
2− 2x̄

)
>
x̄

2
,

and so it does not induce the same probabilities on outcomes as b0.

As a consequence of Proposition 1, instead of working with the infinite dimen-
sional space Gn we can instead work with the finite dimensional space

Ĝn = ∆Kn ×Bn
Kn ,

the Cartesian product of the Kn-simplex with Kn copies of Bn. The typical element
(α1, . . . , αk, . . . , αKn

, b1n, . . . , b
k
n, . . . , b

Kn
n ) ∈ Ĝn means that for each k Player n plays

his behaviour strategy bkn with probability αk. For every element of Gn there is a

Kuhn-equivalent element in the subset Ĝn.
And this allows us to avoid certain technical issues and, more importantly, to use

techniques of real algebraic geometry to prove the generic equivalence of sequential
and quasi-perfect equilibria.

We also need to define the completely mixed general strategies.

Definition 8. A general strategy gn in Gn of Player n is completely mixed if,
for any open subset O of Bn, gn(O) > 0. We denote the set of all completely mixed
general strategies of Player n by G0

n and the set of completely mixed profiles by G0.

We also define the corresponding subset of Ĝn.

Definition 9. A general strategy gn in Ĝn of Player n is completely mixed if
there is some g′n in G0

n such that g′n is Kuhn-equivalent to gn. We denote the set of

all such strategies of Player n by Ĝ0
n and the corresponding set of profiles by Ĝ0.

In the next section we look at a number of examples that give a good indication
of some of the necessary features of the definitions of quasi-perfect and sequential
equilibria in games without prefect recall.

3. Necessary Features of the Definition

In this section we shall look at a number of examples that illustrate some of the
issues that arise in defining the concepts that we are interested in in games without
perfect recall. Most of the central issues arise already in linear games and all of the
example we consider in this section are linear games.
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We first look at the game given in extensive form in Figure 2 in narmal form
in Figure 3. This is a very slight modification of a game considered by Kuhn
(1953). This is a two player zero-sum game in which each player has a unique
optimal strategy and so there is a unique equilibrium in mixed strategies. Player
1’s optimal strategy is not equivalent to any behaviour strategy.

Nature

1

12

1
2

1
2

In OutINOUT

S D S D

−2, 2 2,−2 2,−2 −2, 2

−1, 11,−1

Figure 2. A game without perfect recall.

Player 2

IN OUT

In,S 0, 0 3
2 ,−

3
2

Player 1 In,D 0, 0 − 1
2 ,

1
2

Out ,S − 3
2 ,

3
2 0, 0

Out ,D 1
2 ,−

1
2 0, 0

Figure 3. The corresponding normal form game.

Consider the normal form of the game given in Figure 3. Note that for Player 1,
the strategies (In,D) and (Out ,S ) are strictly dominated. Once the dominated
strategies are removed the game is similar to matching pennies and the unique
equilibrium is {(

1
4 , 0, 0,

3
4

)
,
(
3
4 ,

1
4

)}
,

a mixed strategy profile in which Player 1 is playing a strategy that is not equivalent
to any behaviour strategy.

Among other things this implies that there is no equilibrium in behaviour strate-
gies. For, if there were then the equivalent mixed strategies would be such that
neither player had a behaviour strategy that he preferred—this is the definition
of an equilibrium in behaviour strategies—and thus no pure strategy that he pre-
ferred. Thus that profile of mixed strategies would be an equilibrium, contradicting
the fact that this game has a unique equilibrium in mixed strategies in which one
of the players plays a strategy that is not equivalent to any behaviour strategy.
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Let us think for a moment why there is, in this example, no equilibrium in
behaviour strategies. In the mixed equilibrium Player 1 at his first information set
sometimes plays In and sometimes plays Out and at his second information set
sometimes plays S and sometimes plays D . However he coordinates his choices so
that if he plays In at his first information set he plays S at his second information set
and if he plays Out at his first information set he plays D at his second information
set. It is not possible to achieve such coordination using behaviour strategies.

Another candidate for an equilibrium in behaviour strategies is the profile of
behaviour strategies corresponding to an equilibrium of the agent normal form. The
equilibria of the agent normal form are (In,S , IN ), (Out ,D ,OUT ) and {((x, 1 −
x), (1/4, 3/4), (x, 1 − x)) | 0 ≤ x ≤ 1}. Why are these (or at least the equivalent
behaviour strategies) not equilibria? Player 1 could deviate to a different behaviour
strategy that involves different behaviour at both of his information sets.

We should not be surprised at the nonexistence of equilibria in behaviour strate-
gies. The definition of such equilibria allows coordination by the player in his
deviations that he is not permitted in his equilibrium strategies.

If we want a solution where such coordination is not permitted then the appropri-
ate solution is equilibria of the agent normal form, and the perfect equilibria—since
each player will have only one information set there is no need to distinguish be-
tween extensive form perfect, normal form perfect, or quasi perfect—of the game
will encompass whatever aspects of backward induction we want. In this paper we
shall consider solutions in which such coordination among the choices of a player
at his different information sets is possible.

In the game we have been considering there is a unique equilibrium and in that
equilibrium all information sets are reached with positive probability. There is no
need for backward induction arguments. Nevertheless it is instructive to look at
the example to see what the nature of a backward induction requirement will be.
In the example all information sets are reached so there should be no issue about
what the beliefs of the players will be.

Lets consider the beliefs of Player 1 at his second information set. It’s clear
that his beliefs will differ depending on what pure strategy he is playing. If he is
playing (In,S ) then he will assess a probability 3/7 on the left node and 4/7 on the
right node, while if he is playing the strategy (Out ,D) then he will assess assess a
probability 1 on the left node and 0 on the right node. Moreover his assessment
of what the other player is playing is also different. When Player 1 is playing the
strategy (Out ,D) then if called upon to move at his second information set he
will assess a probability of 1 on Player 2 having played IN rather than his prior
probability of 3/4.

In games with perfect recall there is an equivalence, roughly corresponding to
the equivalence between mixed and behaviour strategies shown by Kuhn, between
beliefs on the nodes of the information set and beliefs on what the other players are
playing. In games without perfect recall this is not so. It will be clear as we consider
other examples that beliefs about which node of an information set a player is at
are not rich enough to encompass what is needed in games without perfect recall.
Thus we shall think of a Player’s assessment as a belief about the strategies of the
other players, including Nature. Here, when Player 1 is playing (In, S), his beliefs
will be that with probability 4/7 Nature chose “Right” (and Player 2 chose IN with
probability 3/4 and OUT with probability 1/4) and with probability 3/7 Nature
chose “Left” and Player 2 choose IN . On the other hand, if he is playing (Out ,D)
then he will assess a probability 1 on the fact that Nature chose “Left” and Player
2 chose IN .
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Let us summarise the general features illustrated by the analysis in the previous
paragraph of our particular example. A player’s beliefs at an information set may
depend on which pure strategy he himself is playing. And, for each of his pure
strategies, his beliefs about the strategies of the others may not be an independent
product (across players) of probability distributions on the pure strategies of the
other players. Of course, this latter fact is also true in games with perfect recall.

1

T B

2

2

U D

L RL R

2, 6

1, 10, 00, 04, 4

Figure 4. No One-Deviation Principle.

Before proceeding further with our consideration of how we should define beliefs
we need to consider another aspect in which the situation differs between games
with perfect recall and games without perfect recall. In games with perfect recall
in order to show that a strategy is optimal, against beliefs consistent with it, it is
enough to show that at each information set it is optimal taking as fixed the choice
at the other information sets of the player (see Hendon, Jacobsen, and Sloth, 1996;
Perea, 2002). In games without perfect recall this is not true.

Consider the game of Figure 4. Player 1 decides whether to take an outside
option or allow the two agents of Player 2 to play a coordination game in which
Player 1 obtain the same payoff as Player 2.

Consider the profile in which Player 1 chooses T and Player 2 chooses DR. This
is an equilibrium. Moreover, if we consider only deviations at one information
set at a time, it appears to robustly satisfy backward induction type arguments.
Nevertheless, in the one person subgame beginning with Player 2’s first move there
is only one equilibrium, namely UL, and hence the only subgame perfect equilibrium
is (B,UL).

Thus there seems to be no hope that we can satisfy the “one deviation principle”
that several backward induction concepts satisfy in games with perfect recall.

Nevertheless when we consider a player at a particular information set we can-
not allow that player to deviate at any arbitrary collection of other information
sets following that one, or, at least, that such a requirement is problematic. In
the game of Figure 5 consider the equilibrium (T,RU). We claim that this is a
reasonable equilibrium, and in particular that it intuitively satisfies a reasonable
notion of backward induction. However, if we allow Player 2 at the node at which
he chooses between L and R to deviate at both information sets that would upset
this equilibrium.
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1

2

2

T B

L R

U DU D

2, 2 0, 0 0, 0 3, 3

1, 1

Figure 5. Cannot always deviate at multiple information sets.

One option would be to allow players to deviate at an information set and at
information sets all of whose nodes follow some node in the information set under
consideration. Such a requirement is however not strong enough. Consider again
the game of Figure 2. Since neither information set of Player 1 follows the other
in this sense we cannot at either information set have Player 1 consider deviating
at both of his information sets. Thus we would allow a strategy profile equivalent
to the equilibrium of the agent normal form, which we have argued we do not wish
to do. One could perhaps get around this by adding dummy moves at various
points throughout the game. We take a somewhat different approach, which seems
to us a little more attractive. When we consider deviations we will allow the
player to deviate at an arbitrary subset of her information sets, but require her
to update conditional on the event that one of the information sets in that subset
of information sets had been reached. Thus in the equilibrium (T,RU) considered
above Player 2 can deviate at both her information sets, but when she does her
beliefs about what Player 1 is playing should remain the Player 1 is playing T since
that is consistent with the fact that one of Player 2’s information sets was reached.

In the standard definition of beliefs, such as in Kreps and Wilson (1982), the
beliefs of a player, conditional on an information set being reached, are given by a
probability distribution over the nodes of that information set. We have, for the
most part, in this section referred instead to beliefs about what the other players
are playing. The game shown in Figure 6 shows that we need to do so.

All equilibria of this game involve Player 1 playing X. What should Player 2
believe at her information set? Notice that simply having some distribution over
the nodes of her information set does not tell Player 2 what to do. She also needs to
know what Player 1 will do at his second information set. Now, if we gave Player 1
a behaviour strategy we would specify a behaviour at Player 1’s second information
set. But this is not what Player 2’s beliefs should be. The pure strategies TD
and BU are strictly dominated by TU and BD respectively, and both are strictly
dominated by X. Thus Player 2 may be uncertain whether she is at the left node
or at the right node, but should believe that if she is at the left node then Player 1
will play U at his second information set and that if she is at the right node then
Player 1 will play D at his second information set. An efficient way of describing
these beliefs would be that at her information set Player 2 believes that Player 1
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1

1

2

X

T B

L R L R

U D U D U D U D

4, 4

5, 0 2, 1 0, 1 2, 0 2, 0 0, 1 2, 1 5, 0

Figure 6. Need Beliefs About Strategies

played either TU or BD. (A little further analysis shows that her beliefs must be
that these are equally likely.)

Thus we see that a player’s beliefs at an information set, or a collection of
information sets since, as we have seen earlier, we must allow a player to deviate
at a collection of information sets, must encompass not just where the player is
in the information set, but also what strategies the others are playing. When
we are working with mixed strategies and the players beliefs are about the pure
strategies of the others the players’ beliefs about the strategies of the others will
be concentrated on strategies that reach the information sets in question and so
generate the distribution over the nodes of the information sets.

We shall, in Section 5, provide definitions appropriate for nonlinear games. How-
ever, most of the issues that arise already arise in linear games and, since that setting
is both more familiar and simpler, we shall develop our definitions there first.

4. Definitions and Results for Linear Games

We shall now define sequential equilibria and quasi-perfect equilibria. Since
we have seen that we cannot hope to satisfy a one-deviation property and that
it will be necessary to consider players deviating simultaneously at a number of
information sets we shall define beliefs not at an information set but at a collection
of information sets. In the original definition of sequential equilibrium beliefs were
defined as a probability distribution over the nodes of an information set. Here
we define beliefs as distributions over the pure strategies that are being played,
including Nature’s strategy.

Definition 10. A system of beliefs µ defines, for each n in N and each H in
H̄n, a distribution µ(s0, s1, . . . , sN | H) over the extended profiles of pure strategies
that reach H. Given µ we also consider µSn

(sn | H) the marginal distribution on
Sn given H and µS−n

(s−n | sn, H) the conditional distribution on S−n conditional
on sn and H.

Recall that we have seen above that a player’s beliefs at an information set about
what strategies the other players are playing may differ depending on what pure
strategy he himself is playing.

We first define sequential equilibria.
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Definition 11. A pair (σ, µ) is a consistent assessment supported by a sequence
of completely mixed strategy profiles σt in Σ if σt → σ with µt a system of beliefs
obtained from σt as conditional probabilities and µt → µ.

Definition 12. A pair (σ, µ) is sequentially rational if, for each n, for each H
in H̄n, and for each sn in Sn, if µSn(sn | H) > 0 then sn maximises

EµS−n
(s−n|sn,H)un(tn, s−n)

over the set of all tn in Sn such that tn differs from sn only at information sets
in H.

Definition 13. A pair (σ, µ) is a sequential equilibrium if it is both consistent
and sequentially rational.

Quasi-perfect equilibria are defined in a similar way.

Definition 14. A strategy profile σ is a quasi-perfect equilibrium if there is
a sequence of completely mixed strategy profiles σt → σ with (σ, µ) a consistent
assessment supported by σt and (σ, µt) sequentially rational for all t.

Observe that the definitions of sequential equilibrium and quasi-perfect equilib-
rium differ only in requiring that (σ, µt) being sequentially rational for all t rather
than only (σ, µ) being sequentially rational.

We now give a number of results about the concepts we have defined. The first
two results say that in games with perfect recall we obtain the “same” equilibria
as the original definitions.

Proposition 2. If the game has perfect recall then for any sequential equilibrium
(σ, µ) there is a behaviour strategy profile b, Kuhn-equivalent to σ, that is the strat-
egy profile part of a sequential equilibrium according to the definition of Kreps and
Wilson (1982). Moreover for any sequential equilibrium in the sense of Kreps and
Wilson there is a Kuhn-equivalent mixed strategy profile σ and a system of beliefs
µ such that (σ, µ) is a sequential equilibrium.

Proof. We first show that if (σ, µ) is a sequential equilibrium then there is (b, µ̃)
with b Kuhn-equivalent to σ that is a Kreps-Wilson sequential equilibrium.

Suppose that the game has perfect recall and that (σ, µ) is a sequential equi-
librium. Thus there is σt, completely mixed, with σt → σ, µt obtained from σt

as conditional probability, µt → µ, and (σ, µ) sequentially rational in the sense of
Definition 12.

Now, by Kuhn’s Theorem, there are behaviour strategies bt Kuhn-equivalent to
σt and b Kuhn-equivalent to σ. Let µ̃t be the Kreps-Wilson beliefs obtained from
bt as conditional probabilities. Taking subsequences if necessary, we have µ̃t → µ̃,
and, moreover, µ̃ will give the same distribution over the nodes of each information
set H as would be implicit in µ(· | H). (And so, in games with perfect recall for
any sequential equilibrium (σ, µ), µS−n

(· | sn, H) is independent of sn for all sn
that make H possible.)

Now (b, µ̃) is, by construction, Kreps-Wilson consistent. And, if it were not
Kreps-Wilson sequentially rational then there would be some information set h
such that b put positive probability on some action a that did not maximise against
(b, µ̃). But then it must be that there is some pure strategy sn that takes action a at
h with µSn

(sn | {h}) > 0. But then there would be some pure strategy that differed
from sn only at h that did better against µS−n

(· | sn, {h}) than sn, contradicting
that (σ, µ) is a sequential equilibrium.

Now suppose that (b, µ̃) is a Kreps-Wilson sequential equilibrium supported by
the sequence (bt, µ̃t). Let σt be completely mixed and Kuhn-equivalent to bt and
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µt be obtained from σt as conditional probabilities. Again taking subsequences if
necessary, let σt → σ and µt → µ. We claim that (σ, µ) is a sequential equilibrium.

For any player n and for any H ∈ H̄n the beliefs µ(· | H) generated by σt wil
be the same as those that would have been generated by bt, since σt and bt are
Kuhn-equivalent. Moreover, since the game has perfect recall and the beliefs are
consistent with the strategy profile, the one-deviation principle holds. Thus we
need consider only single information sets {h} with h ∈ Hn.

Consider an information set h ∈ Hn. We claim that for any sn such that
µSn(sn | {h}) > 0 it cannot be that there is a better tn that differs from sn only
at h. For if there were then the action taken at h by sn must be both taken with
positive probability at h by bn and worse than some other action at h against (b, µ̃),
contradicting that (b, µ̃) is a Kreps-Wilson sequential equilibrium. Thus (σ, µ) is a
sequential equilibrium, as required. �

Proposition 3. If the game has perfect recall then for any quasi-perfect equilib-
rium σ there is a behaviour strategy profile b, Kuhn-equivalent to σ, that is a quasi-
perfect equilibrium according to the definition of van Damme (1984). Moreover, for
any quasi-perfect equilibrium in the sense of van Damme there is a Kuhn-equivalent
mixed strategy profile σ that is a quasi perfect equilibrium.

Proof. The proof is almost exactly the same as the proof of Proposition 2. �

The next two results say that the relation between the concepts is as it was in
games with perfect recall.

Proposition 4. Any quasi-perfect equilibrium is a sequential equilibrium strategy
profile.

Proof. This result follows from the observation following Definition 14 and the fact
that Eµt

S−n
(s−n|sn,H)un(tn, s−n) is continuous in µtS−n

(s−n | sn, H). �

Proposition 5. For any extensive game form, except for a semialgebraic set of
payoffs (to the terminal nodes) of lower dimension than the set of all payoffs, every
sequential equilibrium is a quasi-perfect equilibrium.

Proof. The proof follows in a straightforward way similar to the proof of the generic
equivalence of perfect and sequential equilibria in Blume and Zame (1994) and
the proof, based on Blume and Zame, of the generic equivalence of quasi-perfect
and sequential equilibria in Hillas, Kao, and Schiff (2017) or Pimienta and Shen
(2013). �

Finally we have the result proved for games with perfect recall by van Damme
(1984) and Kohlberg and Mertens (1986) relating quasi-perfect and sequential equi-
libria to proper equilibria (Myerson, 1978) of the normal form.

Proposition 6. Every proper equilibrium is a quasi-perfect equilibrium (and
hence a sequential equilibrium).

Proof. Suppose that σ is a proper equilibrium supported by the sequence σt of
completely mixed strategies with σt an εt-proper equilibrium. Let µt be obtained
from σt as conditional probability and, taking subsequences, if necessary, let µt →
µ.

Let H ∈ H̄n and sn and tn such that they differ only at information sets in H.
Thus if tn is better than sn against µtS−n

(· | sn, H) then, since tn differs only at

information sets in H, it must be that tn is better than sn against σt and, from
the definition of ε-proper equilibria, σtn(sn) < εtσtn(tn) and so µtSn

(sn | H)→ 0 or
µSn(sn | H) = 0. Thus σ is a quasi-perfect equilibrium, as required. �
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Since every game has a proper equilibrium this result also implies the existence
of sequential and quasi-perfect equilibria.

5. Extension to Nonlinear Games

We now give the definitions of sequential and quasi-perfect equilibria appropriate
for nonlinear games. If we look, as we would in defining consistent assessments, at
the limit of beliefs defined as the limit of beliefs derived as conditional probability
from completely mixed general strategies we may obtain, at some information sets,
beliefs that do not put positive probability on behaviour strategies that reach the
information sets under consideration with positive probability.

x0

x1

x2

T B

T B

T B

0, 0

L R

1

2

1,1

2,2

0,0-1,3

Figure 7. In a nonlinear game a consistent assessment may not
reach H.

Consider the nonlinear game given in Figure 7. Suppose we take a sequence
of general strategies gt such that gt puts all probability on the single behaviour
strategy profile bt = ((pt, 1 − pt), (qt, 1 − qt)) with (pt, qt) → (0, 0). In the limit
this is equivalent to the pure strategy profile (B,R). This clearly should not be
a sequential equilibrium—Player 2’s behaviour clearly should not be viewed as
sequentially rational against B. And yet, since the strategy B does not reach
Player 2’s information set, R is a best response against B.

Thus we need to add, to the beliefs over the strategies, beliefs over the infor-
mation sets under consideration and, when we define sequential rationality, make
our utility comparisons conditional on the collection of information sets. When we
could rely on the strategies given positive probability in the beliefs reaching the
information sets under consideration with positive probability, the beliefs over the
information sets were implicit in the beliefs over the strategies. When the strategies
may not reach the information sets this is no longer the case.

In defining quasi-perfect equilibria we require best responses against the beliefs
µt which put probability only on strategies that do reach the information sets on
which we are conditioning. However the strategies we test for optimality are given
by the limit belief µ and, while this does not matter in the example of Figure 7, it
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is not hard to find an example in which it will matter. Consider the game given in
Figure 8.

x0

x1

x2

T B

T B

T B

0, 0

U D

L R L R L R

1

1

2,2

3,1 1,0 -1,0 0,0-1,1 0,1

Figure 8. A consistent assessment where a player’s own strategy
may not reach H.

Consider a sequence gt where gt puts probability 1 on the single profile of be-
haviour strategies bt = ((bt11, b

t
12), bt2) = (((δt, 1− δt), (δt, 1− δt)), (δt, 1− δt)) where

b11 gives the distribution over {T,B} at Player 1’s first information set, b12 gives the
distribution over {U,D} at Player 1’s second information set, and b2 gives the dis-
tribution over {L,R} at Player 2’s information set, and δt → 0. Clearly the beliefs
conditional on Player 1’s second information set put probability 1 on gt → g where
g puts probability 1 on (a behaviour strategy profile Kuhn-equivalent to) the pure
strategy profile (BD,R). But BD does not reach Player 1’s second information
set and so if we tried to define quasi-perfect equilibrium as we did for linear games
there would be no strategy that does better than BD against R. Yet (BD,R) does
not seem to be a backward induction profile. At Player 1’s second information
set U is clearly better than D. We need specify a distribution over the nodes of
the information set—in this case, since there is only one node in the information
set, that is quite trivial—and test whether the expected payoff conditional on this
collection of information sets being reached is better than that obtained by some
other behaviour strategy that differs only at nodes in this collection of information
sets.

In linear games and when considering a single information set the beliefs over the
information set are straightforward to generate from a strategy profile that reaches
the information set; a strategy profile gives a distribution over the terminal nodes
and, in a linear game, each terminal node is associated with at most one node of
an information set. Thus we obtain a conditional distribution over the nodes of the
information set. In nonlinear games or when considering more than one information
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set the definition is just a little less straightforward. We use a modification of an
idea introduced by Grove and Halpern (1997) and Halpern (1997). They define
the upper frontier of an information set as the set of nodes that do not have any
node in the same information set preceding it. We extend this idea to collections
of information sets.

Definition 15. Given a collection of information sets H ∈ H̄n the initial frontier
of H is

Ĥ = {x ∈ H | there is no x′ in H that precedes x}.

Notice that the initial frontier of H is not the union of the upper frontiers of
the information sets in H. If there are more than one information set in H then a
node in one information set may be preceded by a node in another information set
in H. Thus Ĥ may differ from H even in linear games, and indeed even in games
with perfect recall, though in that case we do not need to consider collections of
information sets.

We now define the beliefs. We first amend the definition of beliefs we gave for
linear games to the case of nonlinear games. This essentailly involves replacing pure
strategies by behaviour strategies and mixed strategies by general strategies. We
then extend the definition of beliefs by adding a distribution over the frontier of the
collection of information sets. Finally we describe how we calculate the expected
utility.

Definition 16. A system of beliefs µ defines, for each n in N and each H in H̄n a
finite distribution µ(s0, b1, . . . , bN | H) over the choice of Nature and the profiles of
behaviour strategies. Given µ we also consider µBn(bn | H) and µB−n(b−n | bn, H)
the marginal distribution on Bn given H and the conditional distribution on B−n
conditional on bn and H.

It is convenient to work not just with finite distributions but with distributions
that can be embedded in some fixed finite dimensional space, just as we defined the
space of general strategy profiles above. We need a bit more than general strategies
since, once we condition on a particular information set, or collection of information
sets, the distribution over the players behaviour strategies may not be independent.
However, again in a similar way to the way we defined the restriction of the set of
general strategy profiles, Ĝ, we can define the restricted set of beliefs

M̂ = ∆∏
n∈N̂ Kn

×
(
×
n∈N

Bn
Kn

)
,

where K0 = |S0|, the cardinality of the pure strategy set of Nature. An element

µ̂ ∈ M̂ specifies for each player n a selection of Kn behaviour strategies and a
distribution over the profiles (s0, b1, b2, . . . , bN ) where, for each n the strategy bn
varies over the Kn specified behaviour strategies, and s0 varies over S0.

A player’s beliefs at an information set about what strategies the other players
are playing may differ depending on what behaviour strategy he himself is playing.
Notice also that, just as we did for linear games, we include the (pure) strategy of
Nature in the list of strategies over which Player n has beliefs.

Definition 17. An extended system of beliefs (µ, µ̃) is a pair where µ is a system
of beliefs as defined in Definition 16 and, for each n in N , each H in H̄n, and each
bn in Bn such that µBn(bn | H) > 0, µ̃ gives a distribution µ̃(· | bn, H) over Ĥ.

Definition 18. A pair (g, (µ, µ̃)) is a consistent assessment supported by a

sequence of completely mixed general strategies gt in Ĝ0 if gt → g with (µt, µ̃t) a
system of beliefs obtained from gt as conditional probabilities and (µt, µ̃t)→ (µ, µ̃).
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Remark 4. Because gt ∈ Ĝ and µt is derived from gt as conditional probability
we will have µt ∈ M̂ and so for any sequence gt there will be some subsequence
such that both gt and µt converge, since both Ĝ and M̂ are compact.

We are now in a position to define the expected payoff conditional on reaching a
particular collection of information sets H and sequential rationality would be that
at no collection of information sets of Player n could the player gain by deviating at
those information sets. To do this formally we require a little more notation. Our
definitions follow the definition of Kreps and Wilson (1982), appropriately modified
to apply to nonlinear games.

For any node x in the game tree we let p1(x) = p(x), the immediate predecessor
of x and inductively define pk(x) = p1(pk−1(x)); T (x) the set of terminal nodes
that follow x; T (H) the set of terminal nodes that follow some node in H.

The expected utility of a player deviating at a collection of information sets
H will depend on both the particular behaviour strategy she is deviating from,
which will influence her beliefs, and the behaviour strategy to which she deviates
which will determine her actions at the information sets in H. Thus we define the
probability over terminal nodes conditional on a collection of information sets H
of Player n with beliefs (µ, µ̃) who deviates from behaviour strategy bn to βn. If
the terminal node t is not in T (H) then Pµ,µ̃,bn,βn(t | H) = 0. If t is in T (H) then

there is a unique value of k such that pk(t) is in Ĥ and we have

Pµ,µ̃,bn,βn(t | H) = µ̃(pk(t))Eµ(b−n|bn,H)

k∏
i=1

βn(pi(t))(α(pi(t), h(pi(t)),

where

βm(α, h) =

{
βn(α, h), if m = n

bm(α, h), otherwise.

Having defined Pµ,µ̃,bn,βn(· | H) we also define the conditional expectation with
respect to this distribution and denote it Eµ,µ̃,bn,βn(· | H).

Definition 19. A pair (g, (µ, µ̃)) is sequentially rational if, for each n, for each
H in H̄n, and for each bn in Bn if µBn(bn | H) > 0 then bn maximises

Eµ,µ̃,bn,βn(un(z) | H)

over the set of all βn in Bn such that βn differs from bn only at information sets
in H.

Definition 20. A pair (g, (µ, µ̃)) is a sequential equilibrium if it is both consis-
tent and sequentially rational.

Definition 21. A strategy profile g is a quasi-perfect equilibrium if there is a
sequence of completely mixed general strategy profiles gt with (g, (µ, µ̃)) a con-
sistent assessment supported by gt, with (µt, µ̃t) obtained from gt as conditional
probabilities, and (g, (µt, µ̃t)) sequentially rational for all t.

Just as in Section 4 we showed that quasi-perfect and sequential equilibria as
defined in that section were, in games with perfect recall, equivalent to the standard
solutions we now wish to show that in a linear game the definitions we have now
given will define solutions that are equivalent to the solutions defined in Section 4.

One does need to take a little care in defining the beliefs in the Section 4 defini-
tions. First there is no unique map from behaviour strategies to mixed strategies
and so no unique map from beliefs over behaviour strategies to beliefs over pure
strategies. Kuhn (1953, page 211) does however give a canonical map that maps
a behaviour strategy to one of the mixed strategies that is Kuhn-equivalent to it.
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So given a belief µ over behaviour strategies we can define an equivalent belief µ̄
over pure strategies, though there may be many other different beliefs over pure
strategies that are also equivalent.

The second issue is that we cannot go directly from the limit belief µ over
behaviour strategies to the required equivalent belief over pure strategies. As we
have seen, the definition we use for nonlinear games allows the limit belief to put
probability only on behaviour strategies that do not reach the information sets
on which we are conditioning. Thus when we define the Section 4 beliefs we first
generate beliefs over S from the completely mixed beliefs µt. We then condition on
the set of pure strategies that reach the collection H. We call this distribution µ̄t.
Then, taking subsequences if needed, we let µ̄ be a limit of this sequence.

Proposition 7. In a linear game, if g is a quasi-perfect equilibrium then any
mixed strategy profile σ that is Kuhn-equivalent to g is a quasi-perfect equilibrium
as defined in Definition 14.

Proof. �

Proposition 8. In a linear game, if (g, (µ, µ̃)) is a sequential equilibrium, sup-
ported as a consistent assessment by the sequences gt and (µt, µ̃t), σ is a mixed
strategy profile that is Kuhn-equivalent to g and µ̄ a distribution on S defined from
the sequence µt as described above then (σ, µ̄) is a sequential equilibrium as defined
in Definitions 11, 12, and 13.

Proof. �

Proposition 9. In any finite game there exists a quasi-perfect equilibrium.

Proof. �

Proposition 10. Any quasi-perfect equilibrium is a sequential equilibrium strat-
egy profile.

Proof. The continuity of Eµ,µ̃,bn,βn(un(z) | H) in µ, µ̃ implies that if (g, (µt, µ̃t)) is
sequentially rational for all t then (g, (µ, µ̃)) sequentially rational, and the result
follows. �

6. Perfect Equilibrium

In this section we give a definition of perfect equilibria. In the case of perfect
equilibria there are no issues that are better illuminated in linear games and we
just give a definition that applies to both linear and nonlinear games. As we shall
see, this definition is more straightforward than the redefinitions of sequential and
quasi-perfect equilibria. We start by defining a perturbed game. We do this in such
a way that when the players use behaviour strategies it results in essentially the
same perturbations as used by Selten, and others following him. However we shall
define perturbed games in such a way that a perturbed game is a finite extensive
form game. We do so by adding the “mistakes” explicitly as moves of Nature rather
than as restrictions on some strategy space.

For a given extensive form game Γ a perturbation, δ, gives, for each information
set h in Hn and each action a in A(h) available at h, a positive number δha such
that for each h in Hn we have

∑
a∈A(h) δha < 1. A δ-perturbed game starts with

a move of Nature. We index the moves of Nature at this initial node by γ. If D is
the set of decision nodes of Γ and A(d) is the set of actions available at d then the
index γ specifies for each d in D a value γd being an element of {x} ∪ A(d). Thus
there are

∏
d∈D(|A(d)|+ 1) different values of γ.

Each γ indexes a copy of the original game except that in the copy at each
decision node d the action taken at d is the action taken by the player who moves
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at d if γd = x and the action γd otherwise. The probability that Nature chooses
γ at the initial node is given by ρ(γ) =

∏
d∈D δh(d)γd where if γd is in A(d) then

δh(d)γd is already defined and if γd = x then δh(d)x is defined as 1−
∑
a∈A(d) δh(d)a.

An information set in the perturbed game is the union over all the copies of the
original tree of the nodes corresponding to the nodes in a particular information
set of the original game. Informally this means that we assume that no player
“sees” anything directly about the chosen γ, though, since γ does affect the actions
“taken” by the players they may see some aspects indirectly. This is completely
consistent with the way perturbed games are traditionally treated though one may
wonder if we should allow a player to “see” whether, in the past he played an action
because he chose to or the action was played in spite of the fact that he chose to
take some other action. We argue below, in the context of a simple example, that
this difference does not really matter.

One might wonder why it is necessary to have a possible version of the game
for each decision node rather than just for each information set. Indeed for linear
games we could have the possibility of a mistake determined just once for each
information set. However for nonlinear games if one node in an information set
follows another in the same information set the determination of whether a mistake
occurs must be determined independently for each node. The definition we have
given does no harm (beyond making the perturbed game rather complicated) when
nodes in the same information set do not follow each other and is necessary when
they do.

We now illustrate the definition for a simple example. Consider the game given
in Figure 9. In the perturbed game there will be 27 copies of the game indexed
xxx, Txx,Bxx, xUx, . . . , BDR. We illustrate part of the perturbed game in Fig-
ure 10. We now consider the issue we alluded to earlier. Consider the second
information set of Player 1 containing the nodes u, v, and w. The hode v follows
the choice T at Player 1’s first information set while u and w follow the choice B.
Thus, in the perturbed game, Player 1 does not have perfect recall. Moreover one
might argue that it would be more accurate to split this information set into two,
one for the nodes following the (attempted) choice of T by Player 1 and another for
the nodes following the choice B. Doing this would also lead to perturbations of
games with perfect recall also having perfect recall. However there are a number of
disadvantages in defining perturbed games in this way. The strategy spaces of the
perturbed games would now be different to the strategy spaces of the unperturbed
game. They would also be more complicated to describe and the analysis would
be more intricate. It is also inconsistent with the implicit treatment of the issue in
Selten’s original definition of a perturbed game, and indeed in the treatment of all
those who followed him in defining concepts that depended on perturbations that
restricted the set of behaviour strategies available. In these definitions a player saw
only the realisation of the behaviour strategy and not the action whose probability
the chosen strategy maximised, that is, the strategy that the player “tried” to play.

We also claim that the argument that it is more natural to put the node v into
a different information set to that containing u and w depends on a particular
interpretation of the original unperturbed game. The game of Figure 9 tells us that
when Player 1 moves the second time and chooses between U and D she understands
exactly her situation, but it does not tell us why. One natural interpretation is that
she remembers that she moved before and chose B and observed Player 2 choosing
R. Another interpretation is that she neither remembers moving before nor seeing
Player 2 move but understands the game and knows that if she is being asked to
choose between U and D it must be that she earlier chose B and that Player 2
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Figure 9. A Simple Game
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Figure 10. A Perturbation of the Simple Game

then chose R. With this interpretation one would naturally place u, v, and w in
the same information set.

We also argue that it does not matter which way we define the perturbed game.
Consider the perturbed game as we have defined it with all of the second nodes of
Player 1 in the same information set. If we give Player 1 at her second node an
additional piece of information, namely whether or not she tried to play T at her
first node we are giving her a piece of information that no other player will observe
and that does not affect the distribution over the outcomes a, b, c, and d. While
she could certainly now make a different choice depending on what she had tried to
do at her first node that would have exactly the same effect on the final distribution
over terminal nodes as making a random choice at the one information set and we
already allow her to make random choices.

It is now straightforward to define perfect equilibria. If the original game was a
linear game then the perturbed game will be a linear game. If the original game
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was a nonlinear game then the perturbed game will be a nonlinear game. Moreover
the information sets will be the same in the original game and the perturbed game,
as will the actions available at those information sets. Thus the strategy sets will
be the same in the original game and the perturbed game. And the set Ĝ will not
depend on δ.

Definition 22. We say that g ∈ Ĝ is a perfect equilibrium if there is a sequence
of perturbations δt → 0 with δt > 0 and gt ∈ Ĝ an equilibrium of the δt-perturbed
game with gt → g.

Remark 5. If the original game was linear then we could work with the mixed
strategy space Σ instead of Ĝ. And, if the original game had perfect recall then a
perfect equilibrium would be Kuhn-equivalent to a behaviour strategy that would be
a perfect equilibrium according to Selten’s definition. Since Ĝ is finite dimensional
the existence of perfect equilibria follows in the standard way.

We would obtain exactly the same perfect equilibria if instead of perturbing the
game by explicitly adding the “mistakes” to the extensive form we restricted the
space of behaviour strategies for each player be requiring that each action be played
with some small probability as is more typical in definitions of perfect equilibrium.
Halpern and Pass (2017, page 14) give a definition of perfect equilibrium this way.

One issue that arises in defining perfect equilibrium in nonlinear games that
does not arise in linear games has to do with the fact that in a nonlinear game a
player may want to play exactly a particular completely mixed behaviour strategy.
Defining perturbations in the way in which we have in this section allows a player
to do so. It is not obvious to us that this is actually consistent with the idea that
players make small mistakes. An alternative approach would be to require that the
player play a completely mixed general strategy, that is, a strategy in G0

n, as we
defined earlier. We shall not formally define such a concept but we shall argue that
doing things in this way would actually define a different solution.

Consider the Absent-Minded Driver game given in Figure 1 with the player being
Player 1 and Player 1’s utility being 1 at outcome b and 0 everywhere else. Player
1 clearly maximises his expected utility by maximising the probability of b and he
does this by taking actions L and R each with probability one half. This leads to
outcome b with probability 1/4 and this is the most that the probability of b can be.
Now suppose that a second player, Player 2, plays after Player 1, without seeing
anything that Player 1 did, choosing between A and B, with Player 2’s choice not
affecting Player 1’s utility. If the outcome of Player 1’s choices was b then Player 2
obtains 0 from A and 3 from B; otherwise he obtains 1 from A and 0 from B. If the
probability of outcome b is strictly less then 1/4 then Player 2’s only best response
is to play A. If the probability of b is exactly 1/4 then any choice of Player 2 is a
best response.

So, if we define perfect equilibrium as we did in Definition 22 then the perfect
equilibria are {((1/2, 1/2), (x, 1 − x)) | 0 ≤ x ≤ 1} while if we made a definition
requiring that the perturbed general strategy profile be in G0 then the total prob-
ability of outcome b would be strictly less than 1/4 from any perturbed strategy
and the only perfect equilibrium would be ((1/2, 1/2), (1, 0)).

7. General Form Perfect Equilibrium

An important equilibrium refinement in linear games is that of normal form
perfect equilibrium which might be thought of as a relatively strong form of admis-
sibility. In the definition of an extensive form game strategies are not defined and
payoffs or utilities are associated to terminal nodes. To define the normal form we
define strategies and derive the utility of profiles of strategies from the utilities of
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the terminal nodes. For the games they defined, a subset of the games that we are
calling linear games, von Neumann and Morgenstern (1947) argued that what they
called the normalised form, which we usually now call the normal form, is sufficient
for analysis. Their argument applies equally well to the class of linear extensive
form games. However it does not apply to nonlinear games, which von Neuman
and Morgenstern did not consider.

In an extensive form game each profile of pure strategies generates a distribution
over the terminal nodes of the game tree and so to each profile of pure strategies we
can associate an expected payoff. Thus the normal form of a game consists of the
triple (N,S, u) where N is the set of players, inherited directly from the extensive
form game, S = ×n∈NSn the set of pure strategy profiles, and u : S → RN the
utility function giving, for each profile of pure strategies the expected utility of each
player.

We extend the utility function to profiles of mixed strategies by taking expecta-
tions. An equilibrium of a normal form game consists of a profile of mixed strategies
such that for each player, given the profile of mixed strategies of the others his mixed
strategy is at least as good as any other of his mixed strategies. In a linear game,
by Kuhn’s Theorem, for any behaviour strategy there is a mixed strategy that,
for any profile of strategies of the others, generates the same distribution over the
terminal nodes and hence the same expected payoff. Thus if there is no mixed strat-
egy that does better than the player’s equilibrium strategy then there is not any
behaviour strategy that does better. Moreover neither is there any general strategy
that does better. Given a general strategy, that is a probability distribution over
the set of behaviour strategies one could replace each behaviour strategy with a
Kuhn-equivalent mixed strategy and take the same distribution over those mixed
strategies which would, by construction, give the same distribution over terminal
nodes as the original general strategy. But a probability distribution over the prob-
ability distributions over the pure strategies is equivalent, in terms of the eventual
probability of each pure strategy, as some single direct distribution over the pure
strategies, that is a mixed strategy. Thus, in a linear game, if there is no mixed
strategy that does better than the equilibrium strategy, neither is there any general
strategy that does better. In a linear game an equilibrium in mixed strategies is
not vulnerable to deviations to general strategies.

The same is not true in nonlinear games. One could still define the normal form
in the same way and indeed still define equilibria in mixed strategies. However it
would no longer be true that equilibria in mixed strategies were not vulnerable to
deviations to behaviour strategies. And so the normal form is not a good represen-
tation of a nonlinear game and an equilibrium in mixed strategies is not a suitable
solution concept. Instead we define what we call the general form of the game.

Definition 23. The general form of an extensive form game is a triple (N,B, u)
where N is the set of players, B = ×Bn is the set of behaviour strategy profiles
and u : B → RN the utility function giving, for each profile of behaviour strategies
the expected utility of each player.

Again, we extend the utility function to profiles of general strategies by taking
expectations. An equilibrium of a general form game consists of a profile of general
strategies such that for each player, given the profile of general strategies of the
others his general strategy is at least as good as any other of his general strategies.
Just as in a normal form game if no pure strategy does better than a mixed strategy
then no mixed strategy will either, in a general form game if no behaviour strategy
does better than a general strategy then no general strategy will either.
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We define the best reply correspondence BR : G � G player by player as
BRn : G� Gn by

BRn(g) = arg max
x∈Gn

un(x, g−n)

and, for every ε > 0, the ε-best reply correspondence BRε : G � G player by
player as BRεn : G� Gn by

BRεn(g) = {x ∈ Gn | x({b | b /∈ BRn(g)}) ≤ ε}.

And similarly to the earlier analysis we can rather work with Ĝ so that we have
BR : Ĝ� Ĝ and BRε : Ĝ� Ĝ.

Definition 24. An ε-general form perfect equilibrium is a completely mixed
general strategy profile g in Ĝ0 such that g is in BRε(g). A general form perfect
equilibrium g is a limit of ε-general form perfect equilibria gε as ε→ 0.

The existence of ε-general form perfect equilibria follows from standard argu-
ments since Ĝ is convex and compact and BRε is closed graph nonempty convex
valued and BRε(g) ∩ Ĝ0 6= ∅ for all g. And any sequence of ε-general form perfect

equilibria has a convergent subsequence since Ĝ is compact.
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