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1. Introduction

Starting with the work of Williamson (1967), economists and management scientists
have studied organizational decision making in various types of hierarchical models
(e.g., Beckmann 1977; Calvo and Wellisz 1978, 1979; Keren and Levhari 1979; Qian
1994; Garicano 2000; Beggs 2001; Meagher 2003; Garicano and Rossi-Hansberg 2004,
2006; Patacconi 2009; Caliendo and Rossi-Hansberg 2012; Wu 2015). In order to max-
imize total payoff of a hierarchical organization, the organization has to decide the
number of employees in various hierarchical levels (i.e., layers) and the total num-
ber of layers of the organization. A common feature among many different versions
of hierarchical decision models is that successive layers of the hierarchy exhibit com-
plementarity. Take, for instance, the knowledge hierarchy model of Garicano (2000).
When lower-level workers become more knowledgeable, fewer problems are passed
on to their supervisors to solve. This reduces the cost of investing in knowledge among
higher-level workers because fewer of them are needed. If the value of solving prob-
lems increases, a straightforward application of monotone comparative statics (Mil-
grom and Shannon 1994) would suggest that the firm will decide to hire more knowl-
edgeable workers at all levels of the hierarchy, assuming that the total number of layers
in the hierarchy remains fixed. But the total number of layers is endogenous in an op-
timal hierarchy, and it turns out that the firm’s profit is not jointly supermodular (nor
quasi-supermodular) in workers’ knowledge and the number of layers. Unambigu-
ous comparative statics results of the organizational decision making are therefore not
easy to obtain, especially because the depth of a hierarchy, which is a key decision
made by the organization, is discrete in nature.

Existing research in hierarchical decision making uses numerical analysis and makes
functional form assumptions in order to tackle the problem, and the derivation of the
results is usually quite tedious.1 In this paper, we find that several types of hierarchy
models share two common properties in their objective functions which are econom-
ically meaningful. We propose a unified yet simple approach with few assumptions
to study comparative statics of decision making in all these models. We use this ap-
proach to address some classic questions in organizational decision making, such as
how productivity or cost of delay affects the organization’s decisions on the span of
control and the depth of a hierarchy.

Importantly, our approach also offers new and testable implications of organiza-

1 In knowledge hierarchy models (Garicano 2000; Garicano and Rossi-Hansberg 2004), the distri-
bution of the difficulty (or frequency) of problems is usually assumed to be exponential. Some results
obtained in this literature are based on numerical calculations (e.g., Garicano and Rossi-Hansberg 2006,
Garicano and Rossi-Hansberg 2012). Chen (2017) adopts a linear function for the monitoring intensity
in order to derive analytical results in the monitoring hierarchy model. Acemoglu and Newman (2002)
assume an exogenous number of layers for simplicity in their monitoring hierarchy model. Mookherjee
(2013) and Garicano and Van Zandt (2013) provide excellent surveys for these hierarchy models.
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tional decision making previously not available in the theoretical literature. First, the
firm only adds or drops one layer after a small shock to its productivity or delay cost,
which we call a property of one-step jump. Second, when the firm deletes a layer, its
characteristics at all existing layers increase after the reorganization. However, the
new characteristic at layer i cannot exceed the old characteristic at layer i + 1 (before
the reorganization). We call this an accordion property. These two predictions generate
bounds on the change of the number of layers and on the change of characteristics at
existing layers that hold well in the data.2

As an important extension of our benchmark model, we incorporate delay cost into
the knowledge hierarchy model to study how the urgency to produce products affects
important organizational decisions such as the depth of the hierarchy and relative em-
powerment of workers across different layers inside the hierarchy. Business decisions
are often time-critical. That is why floor traders are given a lot of leeway to make
decisions on the spot. The importance of delay cost for organizational decision mak-
ing is not confined to the finance sector. Galbraith (1977) found that “after 1964 the
problem facing Boeing was not to establish a market but to meet the opportunities re-
maining as quickly as possible. Now a delay of a few months would result in canceled
orders and fewer sales.” He reported that “to respond to competitive time pressure
from Douglas, Lockheed, and the British-French Concorde, Boeing was forced to dras-
tically reduce the time devoted to product development and design.” Whitney (1988)
showed that how fast an organization makes their decisions substantially affects its
profit and revenue. Furthermore, Rajan and Wulf (2006) explained that one major
reason for increased decentralization inside U.S. firms in recent years was to enable
“faster decision making and execution.” In addition, Bloom, Van Reenen and Sadun
(2010) argued that “tougher competition may make local manager’s information more
valuable, as delays to decisions become more costly.” In short, existing evidence sug-
gests that the cost of delay plays a key role in shaping organizational decisions of the
firm.

Theoretical literature on how delay cost affects organizational decision making is
scant. There is a literature starting from Radner (1992, 1993) that explores the op-
timal organizational structure that minimizes the processing time for a given task.3

However, important questions such as how increased demand for fast decision mak-
ing affects organizational decisions are left unanswered. This motivates us to study
the impact of the cost of delay on organizational decisions. Specifically, we assume

2 Caliendo, Monte and Rossi-Hansberg (2015) and Caliendo et al. (2015) show that most firms that
change their number of layers do it by adding or dropping one layer. Furthermore, they show that in
firms that remove one layer from the hierarchy, wages of employees at existing layers increase after the
reorganization. However, their wages (after the reorganization) are still lower that what their direct
supervisors earn before the reorganization. These empirical findings support our theoretical results of
one-step jump and the accordion property.

3 Other papers include Bolton and Dewatripont (1994) and Patacconi (2009).
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that workers acquire knowledge and communicate with supervisors in order to solve
problems and produce output, which is the same assumption as in Garicano (2000).
Different from Garicano (2000), we assume that if a problem is solved by agents higher
up in the hierarchy, it causes a greater loss in revenue due to delay in delivering the
good. Unsolved problems at the top layer generate losses as well, as the firm fails to
honor the contract and deliver the good, which results in punishment fees due to non-
performance or in loss of reputation of the firm. The rationale for our specification is
that output or sales are affected by how fast an organization carries out the produc-
tion. Naturally, the slower an organization makes decisions and deliver its products,
the more losses it bears.

The key insight from our extension is that increased delay cost (i.e., increased de-
mand for fast decision making) makes the firm less hierarchical and employees—
especially lower-level employees—more empowered. In order to prevent costly de-
lay, the firm recruits more knowledgeable workers at all levels so that there are fewer
problems waiting to be solved by upper management. As a result, workers at all lay-
ers are able to solve more problems and empowered more. Importantly, since delay
is cumulative, making agents at lower levels acquire knowledge and solve problems
(i.e., empowering them) is relatively more effective in reducing delay than making
middle or upper level workers do so. As a result, the firm invests disproportionately
on knowledge acquisition by lower level workers, and the range of problems they
can solve increases more compared to upper level workers. Therefore, lower level
workers are more empowered in the production process. These predictions are starkly
different from the effect of improved information and communication technology on
relative empowerment and wages across layers.4

Our theoretical finding from the extended model helps explain the difference in or-
ganizational decision making between Japanese firms and U.S. firms. As Aoki (1989,
1990) documented, workers on the production floor in Japan have higher authority
and deal with more complex problems compared with their U.S. counterparts. As a
result, they are more empowered. He noted that one key element of Toyota’s lean pro-
duction is to fasten the firm’s decision making process and make the firm respond to
changes in market environment more rapidly. Our theory shows that if a firm cares
more about delay in its production and decision-making process (like in Japan), it
should make employees at lower hierarchical levels acquire more knowledge and em-
power them more (i.e., compared with middle- and high-level managers). Therefore,
our model is useful for us understanding the phenomenon of high level of empow-
erment and authority for Japanese production workers that Aoki (1989, 1990) docu-
mented for Japanese firms.

4 Improved information technology makes all agents learn more without generating an effect on
relative empowerment across layers. Improved communication technology empowers agents at upper
layers, as they become more effective in communicating with their subordinates.
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The remainder of the paper is organized as follows. Section 2 proposes a gen-
eral model of hierarchies. Section 3 uses a unified yet simple approach to implement
comparative statics exercises in the general hierarchy model. Section 3 uses the same
approach to derive new and testable implications previously not available in the theo-
retical literature. Section 5 extends our benchmark model of the knowledge hierarchy
to study how increased cost of delay affects relative empowerment and relative wages
of workers in different layers. Section 6 concludes.

2. A General Model of Hierarchies

We assume that the profits from a hierarchical firm with L ≥ 2 layers can be written
as:

πL(z1, . . . , zL) = g(z1) + G(zL) +
L

∑
i=2

f (zi−1, zi), (1)

with Z ≥ zL ≥ . . . ≥ z1 ≥ 0. For L = 1, let

π1(z1) = g(z1) + G(z1).

The maximum number of layers is L, so the feasible set of L is {1, . . . , L}. The problem
for the firm is

max
L

{
max

z1,...,zL
πL(z1, . . . , zL)

}
. (2)

The “characteristics” zi of each layer i can be given different interpretations de-
pending on the context of the application. The objective function (1) encompasses the
leading models of managerial or production hierarchies in the literature. We illustrate
the generality of our formulation via some examples.

Example 1. In the knowledge hierarchy model (Garicano 2000), zi is the knowledge of level-i
workers (a smaller i refers to a lower layer). The wage of a worker with knowledge zi is ω + czi.
The distribution of the difficulty of problems is H(·). For each production worker (i.e., level-1
worker), the number of level-i supervisors required to deal with problems not solvable by their
subordinates is γ(1− H(zi−1)), where γ < 1 depends on the communications technology.
Knowledge acquisition is assumed to be cumulative; so zi has to be bigger than zi−1. The profit
per production worker is:

AH(zL)− (ω + cz1)−
L

∑
i=2

γ(1− H(zi−1))(ω + czi),

where A is the unit value of a solved problem (i.e., productivity).

We modify the above model to introduce an explicit delay cost.5 The real-world ex-

5 In the original Garicano model, there is an implicit delay cost of wages that need to be paid to each
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ample we consider is that a manufacturing firm receives an order from a customer. The
firm has to deliver the product to the customer by solving the problem that appears in
the production process and doing it on time. If the problem is solved by employees in
the bottom layer, the product is delivered on time and there is no delay. However, if
the problem is solved by employees in non-bottom layers, there will a punishment fee
for the late delivery as passing the problem to upper layers is time-consuming. In par-
ticular, we assume that the firm incurs an explicit delay cost of ϕ every time a problem
has to go up by one level. If none of the employees can solve the problem, the firm
cannot deliver the product (i.e., zero revenue) and incurs the highest punishment (i.e.,
(L− 1)ϕ) due to maximum delay. Based on the above description, the expected profit
per production worker is:

πL(z1, . . . , zL) = AH(zL)− (ω + cz1)−
L

∑
i=2

(1− H(zi−1)) (ϕ + γ(ω + czi)) . (3)

This objective function is a special case of (1), with g(z1) = −(ω + cz1), G(zL) =

AH(zL), and f (zi−1, zi) = −(1− H(zi−1))(ϕ + γ(ω + czi)).

Example 2. In the monitoring hierarchy model (Calvo and Wellisz 1978), zi is be the number
of workers at level i. Level L represents the production workers, and level 0 is the entrepreneur
with z0 = 1. (Note that we reverse the labeling of the levels here.) A worker at layer i loses
wage wi if shirking behavior is detected. This implies an incentive compatibility constraint:

wi − ψ ≥
(

1− g
(

zi

zi−1

))
wi,

where ψ is the disutility of exerting effort, and g(·) ≤ 1 is the probability of detection, which
decreases in the span of control zi/zi−1. Thus, the least costly incentive compatible wage equals
wi = ψm(zi/zi−1) ≡ ψ/g(zi/zi−1). We assume that m(·) is strictly increasing and weakly
convex. The profit of the firm is:

πL(z1, . . . , zL) = AQ(zL)−
L

∑
i=1

ψzim
(

zi

zi−1

)
, (4)

where A is the unit value of output (i.e., productivity), and Q(·) is total output as a function of
the number of production workers. In this example, g(z1) = −ψz1m(z1), G(zL) = AQ(zL),
and f (zi−1, zi) = −ψzim(zi/zi−1).

Example 3. In a hierarchy model with multiple production stages, each successive layer of the
firm improves the quality of its predecessor product from zi−1 to zi at a strictly convex cost

higher level employee who gets involved in solving a delayed problem.
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C(zi − zi−1). (We define z0 = 0 for the initial stage.) For concreteness, let

C(zi − zi−1) = b0 + b1(zi − zi−1) + b2(zi − zi−1)
2,

where zi ≥ zi−1, and b0, b1 and b2 are strictly positive. The firm receives payoff AB(zL) from
selling the final product, where A indexes the productivity of the firm and B(·) is increasing
and strictly concave. The profit of the firm is:

πL(z1, . . . , zL) = AB(zL)− K(z1)−
L

∑
i=2

C(zi − zi−1), (5)

where K(·) is an increasing and strictly convex function representing the cost of producing the
initial product. Note that the firm will not make an infinite number of small adjustments since
b0 is strictly positive. It will not make the final product in just one step if b2 is sufficiently large.
In this example, g(z1) = −K(z1), G(zL) = AB(zL), and f (zi−1, zi) = −C(zi − zi−1).

In each of the examples above, there is complementarity between the characteris-
tics of successive layers. In the knowledge hierarchy model, there is complementar-
ity between workers’ knowledge at level i − 1 and at level i. When workers at the
lower level can solve more problems, investing in knowledge of upper level workers
is cheaper, since fewer of them are required. In the monitoring hierarchy model, we
can show that ∂2 f /∂zi−1∂zi > 0 if m(·) is weakly convex. When there are more super-
visors, monitoring lower level employees is easier, which lowers the efficiency wage
of these workers, making it cheaper to employ more lower level employees. Finally, in
Example 3, a higher quality level chosen at the previous stage of production reduces
the marginal cost of improving quality at the current stage whenever the adjustment
cost function C(·) is weakly convex.

We make the following assumption for the general hierarchy model:

Assumption 1. f (zi−1, zi) is supermodular in (zi−1, zi).

Assumption 1 implies that πL(·) is supermodular in (z1, . . . , zL). Another key fea-
ture of the objective function (1) is that ∂2πL/∂zi∂zj = 0 for |i− j| > 1. An implication
of this observation is that the characteristics of the hierarchy above level j are related to
the characteristics below level j only through zj. Conditional on zj, the optimal struc-
ture of the hierarchy above level j can be determined separately from that below level
j. We call this property conditional separability.

Suppose a firm considers inserting M layers at the bottom of its existing hierarchy
without changing the characteristics of the existing L layers. The maximum increase
in profit from such a reorganization is:

δ
M
(z1) ≡ max

y1,...,yM
πL+M(y1, . . . , yM, z1, . . . , zL)− πL(z1, . . . , zL),
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where 0 ≤ y1 ≤ . . . ≤ yM ≤ z1. Note that δ
M
(z1) depends only on the characteristics

z1 at the bottom level but not on z2, . . . , zL, thanks to conditional separability. Similarly,
suppose a firm adds M layers on top of its existing hierarchy without changing the
characteristics of the existing L layers. The maximum increase in profit from such a
reorganization is:

∆
M
(zL) ≡ max

y1,...,yM
πL+M(z1, . . . , zL, y1, . . . , yM)− πL(z1, . . . , zL),

where zL ≤ y1 ≤ . . . ≤ yM ≤ Z.

We assume that both δ
M
(·) and ∆

M
(·) are single-crossing. Although these assump-

tions are not stated in terms of the primitive functions g, G and f , they are easily veri-
fied in practical applications.

Assumption 2. For any M ≤ L− L and any z′1 > z1, δ
M
(z1) ≥ 0 implies δ

M
(z′1) > 0.

Assumption 3. For any M ≤ L− L and any z′L < zL, ∆
M
(zL) ≥ 0 implies ∆

M
(z′L) > 0.

Observe that δ
M
(z1) > 0 is a sufficient (but not necessary) condition for inserting

extra layers at the bottom of the hierarchy to be profitable. Take the knowledge hi-
erarchy model with delay cost, for example. From equation (3), δ

M
(·) is equal to the

maximum value of

−cy1 + cz1 − (1− H(yM))(ϕ + γ(ω + cz1))−
M

∑
i=2

(1− H(yi−1)) (ϕ + γ(ω + cyi)) .

This expression is strictly increasing in z1 because (1− H(yM))γ < 1. Hence δ
M
(·)

is single-crossing from below. Intuitively, as production-level workers become more
knowledgeable, it is cheaper to elevate them into supervisors and replace them by less
knowledgeable workers at the bottom (the communications technology γ < 1 implies
that a firm needs fewer higher-level workers than lower-level ones). Similarly, it is
straightforward to verify that Assumption 2 holds in Example 2 when m(·) is weakly
convex. In the multi-stage production model of Example 3, we can use the first-order
conditions for y1, . . . , yM to show that

dδ
M
(z1)

dz1
= K′(z1)− K′(y1).

Because z1 > y1 and K(·) is strictly convex, δ
M
(·) is strictly increasing, which implies

that it is single-crossing from below.

Assumption 3 is related to a generalized version of diminishing returns. In Exam-
ple 1, suppose top-level workers are not very knowledgeable, so that it is profitable to
add extra layers to solve their problems (specifically, suppose ∆

M
(zL) ≥ 0). Then, this
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strategy remains profitable when top-level workers become even less knowledgeable.
In particular, ∆

M
(zL) in the knowledge hierarchy model with delay cost is equal to the

maximum value of

(1−H(zL))

[
A− A

1− H(yM)

1− H(zL)
− (ϕ + γ(ω + cy1))−

M

∑
i=2

1− H(yi−1)

1− H(zL)
(ϕ + γ(ω + cyi))

]
.

The expression in brackets is strictly decreasing in zL. Hence the above expression as
a whole is single-crossing from above.

In Example 2, we can use the first-order conditions for y1, . . . , yM to show that

d∆
M
(zL)

dzL
= −AQ′(zL) + A

yM

zL
Q′(yM)− 1

zL

(
ψy1m

(
y1

zL

)
+

M

∑
i=2

ψyim
(

yi

yi−1

))
.

When ∆
M
(zL) = 0, the term in parentheses is equal to AQ(yM)− AQ(zL). Thus, when

∆
M
(·) crosses zero, we have

d∆
M
(zL)

dzL
=

A
zL

(
[Q(zL)− zLQ′(zL)]− [Q(yM)− yMQ′(yM)]

)
,

which is negative because yM > zL and the function Q(z)− zQ′(z) is increasing in x
whenever Q(·) is concave. The function ∆

M
(zL) is indeed single-crossing from above.

Similarly, in Example 3, we can use the first-order conditions for y1, . . . , yM to show
that

d∆
M
(zL)

dzL
= −AB′(zL) + AB′(yM).

Assumption 3 holds as yM > zL and B(·) is strictly concave.

3. Comparative Statics

Let there be some parameter t in the objective function (1) such that

πL(z1, . . . , zL; t) = G(zL; t) + g(z1) +
L

∑
i=2

f (zi−1, zi).

Since we are going to compare the characteristics at a layer before and after the reor-
ganization, we need to be specific about the convention adopted to define “the same”
layer. For example, layer 2 in a 3-level hierarchy becomes layer 3 in a 4-level hierar-
chy if the new layer is added from below, but layer 2 in a 3-level hierarchy remains
layer 2 in a 4-level hierarchy if the new layer is added from above. More generally,
suppose a firm changes from having L layers with characteristics z to having L′ lay-
ers with characteristics z′. We say that this firm becomes more hierarchical and its
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characteristics increase (under the convention of adding layers from below) if L ≥ L′ and
(z′L−L′+1, . . . , z′L) ≥ (z1, . . . , z′L).

Proposition 1. Suppose Assumptions 1 and 2 hold, and G(zL; t) is supermodular in (zL, t).
Then a firm becomes more hierarchical and its characteristics increase (under the convention of
adding layers from below) with increases in t.

Proof. The assumptions imply that πL(z; t) is supermodular in (z, t). If the number of
layers remains unchanged, then the result follows directly from Milgrom and Shannon
(1994).

Next, suppose—contrary to the proposition—that the number of layers decreases
from L to L − j + 1 (j ≥ 2) when the parameter increases from t1 to t2 > t1. By
Assumption 2, δ

j−1
(zj) is single-crossing from below in zj.

Define π∗L(t) = maxz πL(z; t). Since both π∗L(·) and π∗L−j+1(·) are continuous, there
exists a t′ ∈ [t1, t2] such that π∗L(t

′) = π∗L−j+1(t
′). Let z = (z1, . . . , zL) be the optimal

vector of characteristics at t′ when there are L layers. Similarly, let z̃ = (z̃j, . . . , z̃L) be
the optimal vector of characteristics at t′ when there are L− j+ 1 layers. By conditional
separability and revealed preference,

πL(z; t′) = πL−j+1(zj, . . . , zL; t′) + δ
j−1

(zj; t′)

≤ πL−j+1(z̃; t′) + δ
j−1

(zj; t′).

Thus, πL(z; t′) = πL−j+1(z̃; t′) implies δ
j−1

(zj; t′) ≥ 0. Furthermore,

πL−j+1(z̃; t′) = max
y1,...,yj−1

πL(y1, . . . , yj−1, z̃j, . . . , z̃L; t′)− δ
j−1

(z̃j; t′)

≤ πL(z; t′)− δ
j−1

(z̃j; t′).

Thus, πL−j+1(z̃; t′) = πL(z; t′) implies δ
j−1

(z̃j; t′) ≤ 0. Assumption 2 then requires
that z̃j ≤ zj.

Because of conditional separability, (zj+1, . . . , zL) maximizes πL−j+1(·; t′) when the
bottom characteristic is fixed at zj, while (z̃j+1, . . . , z̃L) maximizes πL−j+1(·; t′) when
the bottom characteristic is fixed at z̃j. Supermodularity of πL−j+1(·; t′) and the fact
that z̃j ≤ zj then imply that z̃i ≤ zi for i = j + 1, . . . , L. We therefore have:

dπ∗L−j+1(t
′)

dt
=

∂G(z̃L; t′)
∂t

≤ ∂G(zL; t′)
∂t

=
dπ∗L(t

′)

dt
,

where the inequality follows because G(·) is supermodular. This inequality implies
that π∗L−j+1(·) must cut π∗L(·) from above whenever t increases until they intersect.
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However, by revealed preference, we have

π∗L−j+1(t1)− π∗L(t1) ≤ 0,

π∗L−j+1(t2)− π∗L(t2) ≥ 0.

This leads to the result that t1 ≥ t′ ≥ t2 (a contradiction). Hence L must weakly
increase when t increases. Moreover, we have established that zj ≥ z̃j at the point
when the firm switches from L − j + 1 to L layers. Thus, the characteristics at the
existing layers cannot decrease with t.

The above result helps us derive comparative statics in Examples 1–3. In particular,
because the profit function πL(·) is supermodular in (A, zL), Proposition 1 applies if
we take t = A. A positive productivity shock causes a firm to expand both vertically
and horizontally. The firm changes its organizational decision by increasing the num-
ber of layers after the positive shock. Moreover, the knowledge of workers in each
layer (in the knowledge hierarchy model) or the number of workers in each layer (in
the monitoring hierarchy model) increases when A increases. As a result, workers are
empowered more in the knowledge hierarchy model. In Example 3, a positive produc-
tivity shock causes the firm to adopt a more complex production process with more
stages of production. Moreover, the quality of the intermediate product at each step,
as well as quality of the final product at the end, increases when A increases. Our gen-
eral treatment shows that the three versions of hierarchy models yield qualitatively
the same comparative statics result with respect to a productivity shock.

For the next result, let

πL(z1, . . . , zL; t) = G(zL) + g(z1; t) +
L

∑
i=2

f (zi−1, zi; t).

Suppose a firm changes from having L layers with characteristics z to having L′ layers
with characteristics z′. We say that this firm becomes less hierarchical and its char-
acteristics increase (under the convention of adding layers from above) if L ≥ L′ and
(z′1, . . . , z′L′) ≥ (z1, . . . , zL′).

Proposition 2. Suppose Assumptions 1 and 3 hold, g(z1; t) is supermodular in (z1, t), and
f (zi−1, zi; t) is decreasing in t and supermodular in (zi−1, zi, t). Then a firm becomes less
hierarchical and its characteristics increase (under the convention of adding layers from above)
with increases in t.

Proof. If the number of layers does not change, then by Milgrom and Shannon (1994),
zi rises with t. Now, assume—contrary to the proposition—that the number of layers
increases from j to L when the parameter increases from t1 to t2 > t1. Suppose π∗j (t

′) =
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π∗L(t
′) at some t′ ∈ [t1, t2]. Let z = (z1, . . . , zL) be the optimal vector of characteristics

at t′ when there are L layers. Similarly, let z̃ = (z̃1, . . . , z̃j) be the optimal vector of
characteristics at t′ when there are j layers. By a similar argument as in the proof of
Proposition 1, we can show that ∆

L−j
(zj; t′) ≥ 0 and ∆

L−j
(z̃j; t′) ≤ 0. By Assumption 3,

we must have z̃j ≥ zj. By the conditional separability property and supermodularity,
this in turn implies that z̃i ≥ zi for i = 1, . . . , j− 1. We therefore have:

dπ∗j (t
′)

dt
=

∂g(z̃1; t′)
∂t

+
j

∑
i=2

∂ f (z̃i−1, z̃i; t′)
∂t

≥ ∂g(z1; t′)
∂t

+
L

∑
i=2

∂ f (zi−1, zi; t′)
∂t

=
dπ∗L(t

′)

dt
.

This inequality implies that π∗j (·) must cut π∗L(·) from below whenever they intersect.
However, by revealed preference, we have

π∗j (t1)− π∗L(t1) ≥ 0,

π∗j (t2)− π∗L(t2) ≤ 0.

This leads to the result that t1 ≥ t′ ≥ t2 (a contradiction). Hence L must weakly
decrease when t increases. Moreover, we have established that the characteristic at
level i increases from zi to z̃i at the point when the firm switches from L layers to j
layers as t increases. Therefore, zi cannot decrease with t.

The above result help us address a classic question in organizational decisions:
how does increased delay cost affect the optimal depth of the organization (Radner
1992, 1993; Radner and Van Zandt 1992; Beggs 2001; Patacconi 2009)? In the knowl-
edge hierarchy model of Example 1, the delay cost parameter ϕ satisfies the premise
of Proposition 2. Hence, when delay cost increases, the organization responds by de-
layering, while increasing the knowledge of workers and empower them more at all
remaining layers.6 Economically speaking, when delay becomes costly, the firm de-
cides to solve the problem faster. It achieves this goal by letting the problem pass
through fewer layers and by having a higher probably of solving it at each layer.7

4. Accordion Property and One-Step Jump

Propositions 1 and 2 are silent about the characteristics of the “new” layers that are
added to the firm hierarchy as parameters change. For example, suppose the number
of layers decreases strictly from L to L′ when delay cost rises infinitesimally from ϕ to
ϕ′. By Proposition 2, the corresponding z′L′ is greater than zL′ . But is it possible that

6 We note that Propositions 1 and 2 are not trivial corollaries of Milgrom and Shannon (1994),
as the overall maximization problem (2) is neither quasi-supermodular in (z1, . . . , zL, L) nor quasi-
supermodular in (z1, . . . , zL,−L).

7 In the knowledge hierarchy model, the communication technology parameter γ does not satisfy
the premise of Proposition 2. It is not possible to derive unambiguous comparative statics result for this
parameter without imposing further functional form or parametric restrictions on the general model.
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z′L′ > zL, so that top-level workers after the reorganization become more knowledge-
able and are empowered more than top-level workers before the reorganization? The
accordion property established below shows that the answer is no.

Proposition 3. Suppose Assumptions 1, 2 and 3 hold. If both L (with characteristics z̃) and
L + 1 (with characteristics z) are optimal at some t, and t enters the firm’s objective function
as defined in Propositions 1 or 2. Then for i = 2, . . . , L,

zi ∈ [z̃i−1, z̃i],

and z1 ≤ z̃1 and zL+1 ≥ z̃L.

Proof. Suppose t enters the firm’s objective function as defined in Proposition 2. We
first prove that zL+1 ≥ z̃L. Suppose the opposite is true, i.e., zL+1 < z̃L. Then, either
(a) there exists some i < L such that zi+1 ≥ z̃i; or (b) zi+1 < z̃i for all i < L. In case
(a), by conditional separability and supermodularity, zi+1 ≥ z̃i implies zL+1 ≥ z̃L, a
contradiction. In case (b), we have z2 < z̃1. Since L is optimal, it is unprofitable to add
a layer below z̃1, which implies δ

1
(z̃1) ≤ 0. But this implies δ

1
(z2) < 0, which means

profits can be increased by removing the bottom layer if the firm has L + 1 layers, a
contradiction.

Next, we prove that zi ≥ z̃i−1 for all i ≤ L. Suppose otherwise, and let zi < z̃i−1 for
some j ≤ L. But then conditional separability and the supermodularity of πL−i+2(·)
imply that zL+1 < z̃L, which contradicts our first conclusion.

In the proof of Proposition 2, we have already established that zi ≤ z̃i for all i ≤ L
when the firm is indifferent between L + 1 and L. Thus, zi ∈ [z̃i−1, z̃i].

Suppose t enters the firm’s objective function as defined in Proposition 1. Then we
proceed in an analogous manner by first proving that z1 ≤ z̃1. This implies that zi ≤ z̃i

for all i. Finally, Proposition 1 already establishes that zi ≥ z̃i−1. The proposition then
follows.

Figure 1 illustrates the accordion property. Suppose a firm switches from having 3
layers to 2 layers at some point t. Proposition 2 requires that z̃i ≥ zi for i = 1, 2, but
imposes no upper bound on z̃i. By Proposition 3, we establish that z̃i ≤ zi+1. Thus,
although the characteristics at any level may jump discontinuously as the parameter t
changes, the accordion property imposes a limit on the size of the jump.

Proposition 4 below establishes that if both L and L′ are optimal, then (generically)
L′ cannot differ from L by more than one. An implication of Proposition 4 is that the
optimal L is a step function falling (or increasing) by one layer at each step when the
parameter in interest changes continuously.
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Figure 1. The firm delayers from L = 3 to L = 2 at some ϕ as delay cost increases. Proposition
2 establishes that z̃i ≥ zi for i = 1, 2. Proposition 3 (the accordion property) establishes that z̃i is
sandwiched between zi and zi+1.

Proposition 4. Suppose Assumptions 1, 2 and 3 hold. If both L and L′ > L are optimal at
some t, then, generically, L′ = L + 1.

Proof. Let z̃ represent the vector of optimal characteristics corresponding to L, and let
z represent the vector of optimal characteristics corresponding to L′. Suppose to the
contrary that L′ ≥ L + 2. Apart from the non-generic case of L′ = L + 2 with zi = z̃i−1

for i = 1, . . . , L, there are three possibilities.

Case (1). zL′−1 > z̃L. Because L is optimal, we have ∆
1
(z̃L) ≤ 0, which implies

∆
1
(zL′−1) < 0. This contradicts the optimality of L′.

Case (2). z2 < z̃1. Because L is optimal, we have δ
1
(z̃1) ≤ 0, which implies δ

1
(z2) <

0. This contradicts the optimality of L′.

Case (3). Neither (1) nor (2) is true, i.e., z2 ≥ z̃1 and zL′−1 ≤ z̃L. In this case, there
are L layers between z̃1 and z̃L under organization structure L, and there are L′ − 2
layers between zL′−1 and z2 under organization structure L′. Because there are more
layers between a narrower range of characteristics in organization L′, there must exist
j ∈ {2, . . . , L} such that zj and zj+1 are both contained in the interval [z̃j−1, z̃j]. Define

D(z) ≡ max
y1,...,yj−1

{πj(y1, . . . , yj−1, z)} − max
y1,...,yj

{πj+1(y1, . . . , yj, z)}

to be the difference in profits if the organization has j layers rather than j + 1 layers,
conditional on the top layer’s having knowledge level z. Let ỹj−1(z) be the optimal
characteristic of the level below z when the organization has j layers, and let yj(z) be
the optimal characteristic of the level below z when the organization has j + 1 layers.
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Supermodularity of πj(·) implies that, for all z < z̃j,

ỹj−1(z) < ỹj−1(z̃j) = z̃j−1.

Similarly, supermodularity of πj+1(·) implies that, for all z > zj+1,

yj(z) > yj(zj+1) = zj.

Combining these two inequalities gives ỹj−1(z) < yj(z) for all z ∈ [zj+1, z̃j]. By the
envelope theorem,

D′(z) = f2(ỹj−1(z), z)− f2(yj(z), z).

Since f (·) is supermodular, D(z) is strictly decreasing for z ∈ [zj+1, z̃j]. Now, since
organization structure L is optimal, profits cannot be increased by adding a layer be-
low z̃j (while keeping everything above layer j fixed). This implies that D(z̃j) ≥ 0.
Since D(·) is strictly decreasing in the region [zj+1, z̃j], this implies D(zj+1) > 0. But
then the organization structure L′ is not optimal, because profits could be increased
by removing one layer below j + 1 while keeping everything above j + 1 fixed, which
leads to a contradiction.

The above proposition shows that when the firm changes its organizational de-
cision by delayering (due to a small shock to its cost), it only reduces the number
of layers by one generically. This prediction receives support form data on knowl-
edge hierarchies (Tag 2013; Frederic 2015; Caliendo, Monte and Rossi-Hansberg 2015;
Caliendo et al. 2015).

5. Extension

In this section, we provide an extended discussion of two issues related to the knowl-
edge hierarchy model in Example 1. First, we show that our unified approach can be
used to solve the organizational design problem regardless of whether knowledge ac-
quisition is assumed to be cumulative or non-cumulative. We emphasize that the com-
parative statics established before continue to hold even when knowledge acquisition
is non-cumulative. Second, we show that the knowledge hierarchy model with an ex-
plicit delay cost defined in Example 1 yields a distinctive prediction on how increased
delay cost affects relative knowledge acquisition (empowerment) of employees across
layers, which has interesting implication for organizational decision making. Because
this prediction requires additional assumptions beyond those specified in Assump-
tions 1–3, we leave the proof of this result to the Appendix.

There are two common versions of knowledge hierarchy models in the literature.
In some papers (e.g., Garicano and Rossi-Hansberg 2006) and in Example 1 of our
paper, knowledge acquisition is assumed to be cumulative: a supervisor has to invest

14



in learning everything that his subordinates know. For example, if production (level-
1) workers solve problems with difficulty z ∈ [0, z1] and their supervisors (level-2
workers) solve problems with difficulty z ∈ (z1, z2], these supervisors need to learn
everything from 0 to z2. The wage of level-2 workers is therefore assumed to be an
increasing function of z2. In some other papers (e.g., Garicano 2000; Caliendo and
Rossi-Hansberg 2012), knowledge acquisition is non-cumulative: a supervisor does
not have to learn what his subordinates know. Using the same example above, level-2
workers only need to invest in learning problems with difficulty between z1 and z2,
and their wages are an increasing function of z2 − z1. If we adopt the non-cumulative
version of the knowledge hierarchy model, the objective function of the firm is written
as:

AH(zL)− (ω + cz1)−
L

∑
i=2

(1− H(zi−1))[ϕ + γ(ω + c(zi − zi−1))]. (6)

The only difference between this equation and equation (3) is that the wage per em-
ployee at layer i is ω + c(zi− zi−1) instead of ω + czi, as employees at layer i only need
to acquire the incremental knowledge stock between layer i and layer i− 1. It is easy to
verify that this objective function satisfies Assumptions 1 to 3. Therefore, Propositions
1 to 4 continue to hold.

Next, we show the knowledge hierarchy model with explicit delay cost gener-
ates an unambiguous prediction on how increased delay cost affects empowerment
of workers. In both the cumulative version and the non-cumulative version of the
knowledge hierarchy model, workers at level i deal with problems with difficulty in
the range (zi−1, zi]. We say that a worker is more empowered if the range of problem he
deals with increases, i.e., if zi − zi−1 increases (for level-1 workers, we define z0 = 0).

Proposition 5. Assume the distribution H(·) of the difficulty of problems is the exponential
distribution. Suppose the marginal cost of delay ϕ increases and the firm does not adjust the
number of layers. The, regardless of whether knowledge acquisition is cumulative or non-
cumulative,

∂z1

∂ϕ
>

∂(z2 − z1)

∂ϕ
> . . . >

∂(zL−1 − zL−2)

∂ϕ
>

∂(zL − zL−1)

∂ϕ
≥ 0.

Proof. See the Appendix.

The key finding of Proposition 5 is a distributional effect: more costly delay causes
the firm to disproportionately empower its lower-level employees. The firm becomes
more knowledge-intensive at all levels of its hierarchy, but the increase in knowledge
is relatively greater among lower levels than among higher levels. Furthermore, we
show in appendix that z1 ≤ z2 − z1 ≤ . . . ≤ zL − zL−1. I.e., incremental knowledge
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stock increases when we move up the hierarchical ladder. Therefore, the percentage in-
crease in knowledge acquisition (in both the cumulative case and the non-cumulative
case) is also greater among lower levels than among higher levels.

Although we make a distributional assumption to prove the above proposition, the
basic intuition for the empowerment effect can be seen from the first-order conditions
of the objective function (3) with respect to the characteristics at layer i and at a higher
layer j > i (for the version of cumulative knowledge acquisition). The first-order
conditions imply that:

h(zi)

h(zj)

ϕ + γω + γczi+1

ϕ + γω + γczj+1
=

1− H(zi−1)

1− H(zj−1)
.

The left-hand-side of the above can be interpreted as the marginal rate of substitution
of raising zi relative to raising zj. Holding knowledge levels constant, the left-hand-
side of the above is increasing in ϕ because zj+1 > zi+1. In a knowledge hierarchy, the
benefit of empowering any given level of workers consists of two parts: (1) a reduction
in cost of delay; and (2) a saving in wage cost for supervisors. Since low-level super-
visors are cheaper than high-level supervisors, the first part (reduction in delay cost)
figures more prominently for low level workers than for high level workers, and an
increase in delay cost raises the advantage of empowering low-level workers relative
to empowering high-level workers.

The effect of increased delay cost on relative knowledge acquisition and empow-
erment in our model is starkly different from the effect of improved information and
communication technology on these variables in standard knowledge hierarchy mod-
els. In these standard models, improved information technology (i.e., a smaller c)
makes all agents acquire more knowledge without generating an effect on relative em-
powerment, while improved communication technology (i.e., a smaller γ) empowers
agents at upper layers more, as they become more effective in communicating with
subordinates. The introduction of an explicit delay cost into standard knowledge hier-
archy models yields economically important and empirically distinct predictions com-
pared to standard models.

6. Conclusion

Our paper provides a stylized representation of hierarchies that is general enough to
encompass several existing models of this organizational form. The model empha-
sizes two key features of hierarchies: complementarity and conditional separability.
Complementarity in hierarchies has been pointed out by, among others, Rosen (1982)
and Beggs (2001). Without the conditional separability property, however, comple-
mentarity itself does not yield unambiguous comparative statics when the number
of layers is an endogenous variable. We then use a unified framework to implement
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comparative statics exercises to derive implications of increased delay cost for orga-
nizational decision making. In particular, we show that when the demand for fast
decision making increases, the top manager should make the firm less hierarchical
and employees should be more empowered. Importantly, employees at lower hierar-
chical levels should be empowered much more than employees at upper hierarchical
levels, as this is the most effective to reduce delay cost. We also derive implications of
an increase in firm productivity for organizational decision making such as the depth
of the organization.

Garicano and Rossi-Hansberg (2006) exploit the Markovian property of the knowl-
edge hierarchy model to solve the optimal knowledge acquisition inside the hierar-
chy.8 This property is essentially the conditional separability property discussed in
our paper. We improve on their exercise by showing that this property holds for a class
of models and can be used to solve the optimal number of layers inside the hierarchy.
Moreover, we utilize this property (and the complementarity property) to derive other
comparative statics results of the hierarchy model (namely, one-step jump and the ac-
cordion property) which are consistent with the evidence but have not been explicitly
proven in the literature before.

Some papers in the literature treat the number of layers as a continuous variable
in order to simplify the problem (Keren and Levhari 1979; Qian 1994). However, this
treatment yields qualitatively different predictions. See Chen (2017) for a discussion.
Chen (2017) also explores different empirical predictions yielded by the knowledge
hierarchy model and the monitoring hierarchy model.

8 See the referral price defined in appendix 1.B of their paper.
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Appendix: Proof for Proposition 5

For i = 2, . . . , L, define yi ≡ zi − zi−1 as the incremental knowledge stock acquired by
employees at layer i. For i = 1, define y1 ≡ z1. Also assume that H is the exponential
distribution with parameter λ. Note that the exponential distribution is (weakly) log-
concave and entails a constant hazard rate, which greatly simplifies the analysis.

Part 1. Cumulative knowledge acquisition. With an exponential distribution, the first-
order conditions can be written as:

λ(ϕ + γω + γcz2) = ceλy1 ;

λ(ϕ + γω + γczi+1) = γceλyi , i = 2, . . . , L− 1; (7)

λA = γceλyL .

Since zi increases in i and γ ≤ 1, the first-order conditions (7) imply:

y1 < y2 < . . . < yL−1.

Lemma 1. In an optimal organization structure with cumulative knowledge acquisition, y2 ≥
1/λ.

Proof. Let L be the optimal number of layers and (z1, . . . , zL) be the corresponding
optimal knowledge levels. By definition, πL(z1, z2, . . . , zL) ≥ πL−1(z2, . . . , zL), which
implies that δ

1
(z2) ≥ 0. Recall that

δ̄1(z2) = max
ζ≤z2

cz2 − cζ − e−λζ(ϕ + γω + γcz2).

The optimal ζ∗ satisfies the first-order condition:

e−λζ∗(ϕ + γω + γcz2) = c/λ.

Thus, δ̄1(z2) ≥ 0 implies cz2 − cζ∗ − c/λ ≥ 0. Since ζ∗ = z1, we have y2 = z2 − ζ∗ ≥
1/λ.

Proposition 2 shows that the expressions on the left-hand-side of equation (7) are
increasing in ϕ, except for the last expression, which is constant with respect to ϕ. We
therefore have ∂yi/∂ϕ > 0 for i = 1, . . . , L− 1 and ∂yL/∂ϕ = 0.

To establish the ranking of the derivatives, we use an induction argument. First,
subtracting equation (7) for i = L− 2 from that for i = L− 1 yields:

eλyL−1 = eλyL−2 + λyL. (8)
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Because yL is fixed when ϕ changes, and because yL−1 > yL−2, this equation implies:

∂yL−2

∂ϕ
>

∂yL−1

∂ϕ
.

Next, suppose it is true that ∂yk−1/∂ϕ > ∂yk/∂ϕ for some k ∈ {4, . . . , L − 1}.
Similar to equation (8), we have the following:

eλyk−1 = eλyk−2 + λyk. (9)

Taking logs of both sides and differentiating with respect to ϕ gives

∂yk−1

∂ϕ
=

eλyk−2

eλyk−2 + λyk

∂yk−2

∂ϕ
+

λyk

eλyk−2 + λyk

1
λyk

∂yk
∂ϕ

,

By Lemma 1, λy1 ≥ 1, which implies λyk > 1 for all k ≥ 2. Thus, by the induc-
tion hypothesis, we know ∂yk−1/∂ϕ > (1/λyk)∂yk/∂ϕ. Equation (9) then implies
∂yk−2/∂ϕ > ∂yk−1/∂ϕ.

Finally, we deal with ∂y1/∂ϕ. The first two equations in (7) can be combined to
obtain:

γeλy2 = eλy1 + γλy3.

We can apply the same reasoning as the above to show that ∂y2/∂ϕ > ∂y3/∂ϕ implies
∂y1/∂ϕ > ∂y2/∂ϕ.

Part 2. Non-cumulative knowledge acquisition. The first order conditions of the objec-
tive function (6) with respect to zi’s are:

λ(ϕ + γω + γcy2) = c(eλy1 − γ);

λ(ϕ + γω + γcyi+1) = γc(eλyi − 1), i = 2, . . . , L− 1; (10)

λA = γceλyL .

First, we use the following the lemma to establish the ranking of knowledge ac-
quired by workers at various layers:

Lemma 2. When L is optimally chosen and when knowledge acquisition is non-cumulative,
we have

y1 ≤ y2 ≤ . . . ≤ yL.
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Proof. Since L is optimally chosen, we have ∆
1
(zL−1) ≥ 0, where

∆
1
(zL−1) = max

ζ≥zL−1

{
A(1− e−λζ)− e−λzL−1 (ϕ + γ(ω + c(ζ − zL−1)))− A(1− e−λzL−1)

}
= e−λzL−1 max

y≥0

{
A(1− e−λy)− (ϕ + γ(ω + cy))

}
.

Since yL = zL− zL−1 is the solution to the above maximization problem, ∆
1
(zL−1) ≥ 0

implies
λA ≥ λ (ϕ + γ(ω + cyL)) + λAe−λyL .

Using the first-order conditions (10) with respect to yL and yL−1, this inequality im-
plies yL ≥ yL−1. An induction argument using the first-order conditions (10) for
i = 2, . . . , L − 1 shows that yk ≥ yk−1 implies yk−1 ≥ yk−2. Finally, comparing the
first-order conditions (10) for y2 and y1 and using the fact that γ < 1 shows that
y2 > y1.

From the first-order condition (10) for yL, we have ∂yL/∂ϕ = 0. Proceeding itera-
tively with the first-order conditions (10) for yL−1, yL−2, . . . , y1 shows that ∂yi/∂ϕ > 0
for all i < L.

To establish the ranking of the derivatives, we use an induction argument. First,
subtracting the first-order condition for yL−2 from that for yL−1 yields:

eλyL−1 = eλyL−2 + λ(yL − yL−1). (11)

Because yL − yL−1 decreases with ϕ and yL > yL−1, this equation implies:

∂yL−2

∂ϕ
>

∂yL−1

∂ϕ
.

Next, suppose it is true that ∂yk−1/∂ϕ > ∂yk/∂ϕ for some k ∈ {4, . . . , L − 1}.
Similar to equation (11), we have the following equation:

eλyk−1 = eλyk−2 + λ(yk − yk−1). (12)

Taking logs of both sides and differentiating with respect to ϕ gives

∂yk−1

∂ϕ
=

eλyk−2

eλyk−2 + λ(yk − yk−1)

∂yk−2

∂ϕ
+

1
eλyk−2 + λ(yk − yk−1)

∂(yk − yk−1)

∂ϕ
,

By the induction hypothesis, we know ∂(yk − yk−1)/∂ϕ < 0. Furthermore, Lemma 2
shows that yk − yk−1 ≥ 0. Equation (12) then implies ∂yk−2/∂ϕ > ∂yk−1/∂ϕ.

Finally, we deal with ∂y1/∂ϕ. The first two equations in (10) can be combined to
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obtain:
γeλy2 = eλy1 + γλ(y3 − y2).

We can apply the same reasoning as the above to show that ∂y2/∂ϕ > ∂y3/∂ϕ implies
∂y1/∂ϕ > ∂y2/∂ϕ.
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