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Abstract

This thesis investigates a spatial Bertrand competition model in which
the economy consist of two cites given by line segments with different
unit transportation costs. It is shown that firms always choose locations
that minimize the total costs of delivering products to consumers and the
equilibrium market share depends on both relative transportation costs
and relative size between two cities.

1 Introduction
Since the work of Hotelling (1929), a rich and diverse literature on spatial com-
petition has emerged. Hoover (1936) analyzed spatial price discrimination by
firms with fixed locations. He concluded that a firm serving a particular market
point would be constrained in its local price by the marginal cost of service faced
by other firms in serving that point. In situations where demand elasticity is
‘not too high’, the price at the market point is equal to the marginal cost of the
firm with the next lowest marginal cost of serving the market point. This result
was extended and reinforced later by Hurter and Lowe (1976a, b).

Hurter and Lederer (1985) developed model with two firms competing in
location and price is analyzed for the case of spatial discrimination. Two games
are compared. In one game, firms first choose locations and then quantity
schedules; in the other, the final stage is choice of price schedules. Prices and
transport costs are lower under Bertrand competition. They showed that the
profits are higher under Cournot competition for low transport costs, but the
reverse holds for transportation costs. They also showed that the aggregate
welfare is higher in Bertrand competition case. In both games, firms locate in
such a way as to minimize their own transport costs.

On the other hand, Hamilton et al. (1989) and Anderson and Neven (1991)
showed that two firms agglomerate at the center of the linear market in the
two-stage location-quantity game.

In these papers, the unit transportation cost is assumed to be proportional
to the distance between the location of the firm and the market and common
across the firms over the whole linear city. But, in reality, the transportation
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cost may be differ across firms or regions. A typical example is different toll
fee by province in China. Or in a product variety problem, the transportation
costs can be interpreted as the additional production costs of switching to other
products. Technologies of some products are closely related to each other but
others are not. This may suggest additional switching costs at some point on a
linear market area.

This thesis extends the analysis by introducing a heterogeneous unit trans-
portation cost across different segments of the linear city aiming at investigating
how the gap of transportation costs affects the duopolistic location-price com-
petition.

It is shown that the transportation cost gap together with the size difference
between two provinces determines equilibrium of the spatial competition.

This thesis is organized as follows. Section 2 formulates the model. Section 3
presents the result of the model under basic assumptions. Section 4 endogenizes
the unit transportation cost in a numerical example. Section 5 concludes the
thesis. Proofs and calculations are presented in the Appendix.

2 Model
We assume a linear market area from 0 to 1 on a straight line as the Hotelling
model did. And additionally we assume the whole market area is divided into
two parts, say province A and B. Province A takes charge of the area between
[0, Y ] , and province B takes charge of the area between (Y, 1], where Y repre-
sents the border point.

On the demand side, a continuum of consumers are uniformly distributed
over the market area and each of them purchases one unit of good from a firm
providing a lower price. The utility level of a consumer at location x is given
by u(x) = U − p(x) , where U is a positive constant and p(x) is the price at
location x ∈ [0, 1].

On the supply side, let two firms, denoted A and B, are selling a homogeneous
product. Let a (resp. b) be the distance between firm A’s (resp. B’s) location
and regional border Y .There is regional restriction such that firm i belonging
to province i, can locate anywhere in their province but is not allowed to locate
another province. Each of them is able to supply the whole market.
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Figure 2.1: linear city structure

In order to highlight the impact of different transportation costs between
provinces, we assume a shipping model such that firm i bears the transportation
cost and charge delivered price pi(x) to the consumer at x. In other words, the
firm discriminates among consumers according to their location. To ship a unit
of product from its location to market at x, firm i should pay tix amount of
transportation cost, where ti is the unit transportation cost in province i , which
is constant in the same province, but differs in another province.

The marginal cost of production is normalized to zero for both firms without
loss of generality. The total cost of firm i to supply market x is as follows

CA(x) =


tA(Y − a)− tAx when x ∈ [0, Y − a]

tAx− tA(Y − a) when x ∈ (Y − a, Y ]

tBx− (tBY + tAa) otherwise

CB(x) =


(tBb+ tAY )− tAx when x ∈ [0, Y ]

tB(b+ Y )− tBx when x ∈ (Y, Y + b]

tBx− tB(Y + b) otherwise

3



Figure 2.2: firms’ delivery cost when tA < tB

Given border Y and the marginal transportation costs of each province (
tA and tB ), duopolists engage in the following two-stage game. In the first
stage, firms simultaneously decide how far they locate from the border in each
province (a and b ). After observing the rival’s location, in the second stage¸
each firm competes in terms of price. Each firm simultaneously chooses its price
level at every location x in the continuum [0,1] in oder to maximize its profit.
The profit of firm i at location x is given by πi(x) = pi(x)− tix.

3 Equilibria

3.1 Equilibrium patterns
To find the subgame perfect Nash equilibrium, we solve the game by backward
induction.

In the last stage, firms will decide their price schedules over the market area
they supply. Because each firm delivers its product, a firm’s price decision at
a particular location has no effect on actions at other locations. We can break
down the problem into subproblems at each location. First of all, at each point
x, firms would not propose a price level lower than their marginal cost C(x),
otherwise, the profit at x would be negative such that it is better to give up
providing a product at location x. Then, if Ci(x) < Cj(x) holds, firm i can gain
monopoly status through offering a price pi(x) ∈ [Ci(x), Cj(x)). Obviously, as
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Figure 3.1: optimal price level at each market point x given firms location fixed

long as they locate in different points, there always exist a market boundary
x̄, where the transportation costs of two firms are the same. That is, firm A
supplies the market in the interval of [0, x̄) with price pA(x) = CB(x)− ε , and
firm B supplies the market in the interval of (x̄, 1] with price pB(x) = CA(x)−ε,
where ε is positive and sufficiently small.

Given the optimal price schedules, in the first stage, each firm chooses a
location to maximize profits over its whole market area given the rival’s location.
Formally, a Nash location equilibrium is a pair (a∗, b∗) such that a∗ maximizes∫ x̄

0
[pA (x)−CA (x)]dx, and b∗ maximizes

∫ 1

x̄
[pB (x)−CB (x)]dx for all x ∈ [0, Y ].

However, those objective functions are continuous but are not differentiable
to firms’ locations. Three possible cases of equilibria are represented as follows.

Equilibrium pattern-I: firm A and firm B split the market of province A and
firm B become a monopolist in province B, i.e., x̄ ∈ (0, Y ).
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Figure 3.2: equilibrium pattern-I: firm A and firm B split the market of province
A and firm B become a monopolist in province B

The profits of two firms are:

πA = tA[x̄2 − (Y − a)2]
πB = tB

2 [3Y tA
tB
a+ 4Y − 3Y 2 − 1− b2 − (1− Y − b)2 − tA

tB
x̄a− (Y − x̄)b]

where x̄ is the market boundary and in this case given by x̄=Y- 1
2 [a− tB

tA
b].

Then, solving the profit maximization problem for each firm, the best re-
sponses are

a∗(b) =
1

3

(
2Y − tB

tA
b

)
(3.1)

b∗(a) =
2(1− Y )− a

4− tB
tA

(3.2)

If we solve simultaneous equations (3.1)-(3.2), the equilibrium locations are
given by

a∗ =
4Y − tB

tA

6− 2 tB
tA

= Y − x̄

2
(3.3)

b∗ =
4(1− Y )− 1

6− 2 tB
tA

=
1 + x̄

2
− Y (3.4)

6



Figure 3.3: equilibrium pattern-II: firm A and firm B split the market of
province B and firm A become a monopolist in province A

Equilibrium pattern-II: firm A and firm B split the market of province B
and firm A become a monopolist in province A, i.e., x̄ ∈ (Y, 1).

The profits are

πA = 1
2 [(3tAa+ tBb)Y − (tAa− tBb)x̄− 2tAa

2]

πB = (tAa+ tBb)
[
(1− Y − b) + 1

4tB
(tAa+ tBb)

]
where the market boundary x̄ is given by Y + 1

2 (b− tA
tB
a).

Hence, the best response of firm A is

a∗(b) =
2Y − b
4− tA

tB

(3.5)

and that of firm B is
b∗(a) =

1

3

[
2(1− Y )− tA

tB
a

]
(3.6)

Similarly, solving equations (3.5) and (3.6), we obtain

a∗ =
4Y − 1

6− 2 tA
tB

(3.7)
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Figure 3.4: equilibrium pattern-III: each firm become a monopolist in each
province

b∗ =
4(1− Y )− tA

tB

6− 2 tA
tB

(3.8)

Equilibrium pattern-III: each firm fully supplies the region each belongs to
but not supplies the other one, i.e., x̄ = Y . We call it the separated market
equilibrium. Since the objective function is continuous with respect to a and b,
this pattern can be included in either of the former two equilibria as a special
case. For example, when tA = tB , and Y = 1

2 , the two firms compete under
symmetric cost conditions so that the equilibrium locations are a∗ = b∗ = 1

4 .
Which kind of equilibrium occurs depends on the value of Y and the ratio

of unit transportation costs tA
tB

. Furthermore, there are not only these three
equilibria, but also varieties of corner solution equilibria in which at least one
of the firms locates on point 0, Y or 1 in equilibrium. However, such corner
solutions happen under situations that the gap between two provinces are ex-
tremely large, namely, the cases in which the area of the larger region is 4 times
larger than that of the smaller one, or the higher unit transportation cost is 3
times higher than that of the lower one. In this thesis, we only consider interior
solutions by assuming Y ∈ ( 1

4 ,
3
4 ) and tA

tB
∈ ( 1

3 , 3).
If define t ≡ tA

tB
, it can be shown that equilibrium pattern-I occurs when
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Figure 3.5: given transportation cost which equilibrium pattern occurs depends
on where the border Y is

Y ∈ ( 1
t+1 ,

3
4 ), and that equilibrium pattern-II occurs when Y ∈ ( 1

4 ,
1

t+1 ). If
Y = 1

t+1 , the equilibrium is pattern-III. Therefore¸ we can infer that even if
there is a large province, as long as the unit transportation cost there is relatively
low, the market will not be splitted. Namely, a separated market equilibrium
occurs such that each firm becomes a monopolist in each province.

3.2 Equilibrium analysis
First of all, if we exclude corner solutions mentioned above, we can always
show that firms locate on the midpoint of the market area they supply (i.e.
a∗ = x̄

2 , b
∗ = 1−x̄

2 ), which leads to a fact that the distance between the two firms
will always be kept as 1

2 in equilibrium. This can be verified by a straightforward
calculation of adding a∗ and b∗ up. The underlying reason is that closer location
leads to tougher price competition. Firms choose their locations as far apart as
possible in order to relax price competition.

If we know the market boundary x̄, we can easily compute the equilibrium
locations of firms. Hence, to analyze the marginal effect of regional size on the
location choice of firms ( ∂a

∂Y ,
∂b
∂Y ), we only have to figure out how the market

boundary x̄ responds to the change in the regional size. A sensible result is,
in any equilibrium, ∂x̄

∂Y > 0 holds, implying that the market share of firm A
expands if the area of province A becomes larger, and of course that of firm B
shrinks.

However, the profit change is not straightforward. This depends on the
equilibrium market structure. The profit of firm A is monotonically increasing
in Y if firm A supplies market in province A only as illustrated in Figure 3.6.
This is because as the area of province A enlarges, the market share of firm A
becomes larger, and thus, firm A moves right in equilibrium. Then the relocation
induces an increase in the transportation cost at markets on the left-hand side
of firm A, which reduces firm A’s profit. However, the profit increases because
the following two gains dominates the profit loss. One is that the relocation
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Figure 3.6: the profit of firm A is monotonically increasing in Y if firm A supplies
market in province A only

causes a decrease in transportation cost at market on the right-hand side. And
another is that the rival shrinks back such that it becomes more costly to supply
the market area of firm A. This allows firm A to set a higher price in its market
area.

If firm A supplies a part of province B in addition to the whole province
A, then whether its profit increases or not depends on the value of Y and the
relative transportation cost between the two provinces. First of all, if border
Y moves right, both firm A and firm B move right in equilibrium. Similar to
the former case, the relocation of firm A makes its transportation cost increase
at the market on the left-hand side but decreases at the market on the right-
hand side. However, the main difference is that firm B’s shipping cost to the
market in province A does not necessarily increase in pattern-II equilibrium as
illustrated in Figure 3.7. And obviously, a decrease in firm B’s shipping cost
will damage firm A’s profit since firm A has to lower its price schedule in each
market in province A. Therefore, we cannot obtain a consistent conclusion on
the effect of increasing Y on firm A’s profit in equilibrium pattern-II.
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Figure 3.7: the profit of firm A may decrease in Y in equilibrium pattern-II

4 Endogenous transportation costs
So far, we treated the unit transportation costs in each province as given. In
this section, we study how the optimal unit transportation cost is determined
from a social welfare point of view. For this purpose, we introduce governments
of two provinces to the game. Furthermore, we split the unit transportation
cost into two components, ti = T + τi. The fuel cost T are exogenous and fixed
over the segment [0, 1], and the toll fee τi (i = A,B) is determined by the local
government in province i. The total toll revenues in each province are attributed
to each government.

Accordingly, a preceding game stage should be added to the game. In this
stage, the local governments set τi simultaneously to maximize the social welfare
of own province, which consists of three parts: the consumer’s surplus, the firm’s
profit and the toll revenue of the government.

Here we consider a numerical case in which we set Y at 2
3 . The social welfare

of province A in equilibrium pattern-I is represented by the blue area in Figure
4.1. The first order condition for government A’s maximization problem is given
by

T + τA
T + τB

=
1

2
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Figure 4.1: shape of social welfare in equilibrium pattern-I
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That is exactly the same condition for the separated market equilibrium
(pattern-III). In other words, given τB and Y = 2

3 , since the pattern-I equilib-
rium is more efficient for province A, the government of province A tends to set
τA to ensure the equilibrium pattern-III instead of pattern-I.

Meanwhile, government B’s best response is to set τB = 0 for any value of
τA in the case of the equilibrium pattern-I or III. Because in such equilibrium
firm B is supplying a segment in province A, with a lower toll fee τB firm B can
gain more market share in province A. This is to shift the market boundary x̄
to the left.

Then, if we exclude the possibility of subsidy (τi < 0), both of two govern-
ment will set the toll fee equal to 0 in equilibrium.

5 Conclusions
A model of location-price competition between two firms who are confronted
with kinked transportation cost has been presented. In the first stage, firms
choose their locations under regional restriction. Then in the second stage, each
firm sets the delivered price schedules to maximize its profit.

We showed the existence and necessary conditions of different kinds of equi-
libria. There are two main results.

1. Equilibria in such a model can be classified into 3 patterns based on how
firms split the market area of two provinces. The necessary conditions
for a paticular equilibrium to realize are determined by the relative trans-
portation costs and relative sizes of porivences. A firm in a large province
can get monopoly position, as long as the unit transportation cost of that
province is lower than another province. On the contrary, markets in a
province with high transportation cost are more likely to be supplied by
outsiders.

2. In equilibrium locations, each firm’s location minimizes the costs of serving
its own market area, and the distance between the two locations is shown
to be maintaned as 1

2 . The main reason is that in a spatial price compe-
tition model, firms do not agglomerate to avoid profit loss due to intense
competition. This result is consistent with d’Aspremont, Gabszewicz, and
Thisse (1979).

Finally, a limitation of the model is that firms are not able to choose which
province they belong to. Thus, a possible extension of this model is to add
another game stage in which firms simultaneously choose a province they locate
in. Another possible extension is to reconstruct the model by assuming sequen-
tial entry of firms. Then, new patterns of equilibrium may emerge such as firms
agglomerate in only one province.
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Figure 5.1:

Appendix
First order conditions of firms’ profit maximization problem

For pattern-I, the profit of firm A can be represented by the area IEAJ in
Figure 5.1, which is equal to OaIKX − IKE −OaJA−AEX.

Then, we can easily compute the size of them as follows.

OaIKX = [tAX + 1
2 (tAa+ tBb)]X

IKE = 1
2X

2tA
OaJA = 1

2 (Y − a)2tA
AEX = 1

2 (a− Y +X)2tA

Since the height of point E can be expressed as [a−(Y −X)]tA or tBb+(Y −
X)tA. By equating them, we can derive the market boundary X as X=Y- 1

2 (a−
tB
tA
b).
The profit maximization problem of firm A is given by

max
a

πA = tA[x̄2 − (Y − a)2]

s.t. x̄=Y- 1
2 (a− tB

tA
b)

The first order condition is given by

a =
2Y − tB

tA
b

3
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Similarly, the profit maximization problem of firm B can be written as

max
b

πB = tB
2 [(3Y − x̄) tA

tB
a− (2Y − 1)2 − (1− Y − b)2 − (Y − x̄)b+ Y 2 − b2]

s.t. x̄=Y- 1
2 (a− tB

tA
b)

The first order condition is given by

b =
2(1− Y )− a

4− tB
tA

For pattern-II, the profit maximization problem of firm A is given as

max
a

πA = 1
2 [(3tAa+ tBb)Y − 2tAa

2 + (tBb− tAa)x̄]

s.t. x̄ = Y + 1
2 (b− tA

tB
a)

The first order condition is given by

a =
2Y − b
4− tA

tB

Similarly, the profit maximization problem of firm B is

max
b

πB = (tAa+ tBb)[(1− Y − b) + 1
4tB

(tAa+ tBb)]

s.t. x̄ = Y + 1
2 (b− tA

tB
a)

The first order condition is given by

b =
2(1− Y )− tA

tB
a

3

Necessary conditions for each equilibrium pattern

Because the equilibrium locations given by equations (3.3) and (3.4), the nec-
essary conditions for pattern-I are

a∗ > 0 ⇒ Y > tB
4tA

b∗ > 0 ⇒ Y < 3
4

tA
tB
a∗ > b∗ ⇒ Y > 1

tA
tB

+1

The last inequality comes form the fact that the transportation cost of firm A
to supply point Y is higher than that of firm B.

If we restict tA
tB
> 1

3 , the intersection of above conditions is Y ∈ ( 1
tA
tB

+1
, 3

4 ).

The same approach applies to equilibrium pattern-II. From the conditions,
we have

a∗ > 0 ⇒ Y > 1
4

b∗ > 0 ⇒ Y < 1− tA
4tB

tA
tB
a∗ < b∗ ⇒ Y < 1

tA
tB

+1

15



and the intersection will be Y ∈ ( 1
4 ,

1
tA
tB

+1
).

Then it is easy to check that equilibrium pattern-III happens when Y =
1

tA
tB

+1
.
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