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1 Introduction

Over centuries, procurement agencies have dominantly used low-price auctions to allocate
contracts. An important feature of the mechanism in practice is that the awarded sup-
plier performs the contracted tasks, taking the contract design and specification including
delivery schedule and quantity as given. The separation of the design phase from the task
performing phase helps preventing favouritism in awarding process and promoting supplier
competition. At the same time, the separation results in a conflict of incentives between
procurement buyers and contractors; lowest responsive bidders may not very much have
concerns on (ex post) cost overrun, delay, quality deterioration, etc. Resulting contracts
were thus not necessarily welfare maximizing, or most valuable for money (VFM), for
taxpayers.

Toward a more VFM contract, procurement agencies in a last few decades have intro-
duced alternative mechanisms in which not only price but also other non-monetary factors
are assessed in awarding process. The scoring auction – i.e., a form of multidimensional
bidding – is a typical practice. By year 2007, more than a half of the State Departments of
Transportation for instance had used the scoring auction.1

In the scoring auction, suppliers are requested to bid price and non-price proposals. The
auctioneer preannounces a scoring rule that specifies the way to rank suppliers based upon
their multidimensional bid as well as their attributes such as past performance and experi-
ence. Through more comprehensive comparison of proposals and attributes of suppliers,
the scoring auction allows the auctioneer to obtain greater welfare than with price-only
auctions (e.g., Bichler, 2000; Milgrom, 2004; Asker and Cantillon, 2008; and Lewis and
Bajari, 2011).

This paper offers a framework to analyze the scoring auction both theoretically and
econometrically. We construct a theoretical model of the scoring auction in which there
are n = 2 risk-neutral suppliers, each of which has a smooth and convex cost function
parameterized with a (K = 1)-dimensional signal. After drawing a signal, each supplier
submits an (L = 2)-dimensional bid, and the lowest-score bidder wins. We characterize
the equilibrium of the scoring auction. Then, we propose a semiparametric identification
method of the scoring auction model, where the bidder cost function is known up to the

1In Japan, more than 98 percent of construction projects by the Ministry of Land, Infrastructure, and
Transportation were auctioned off with the scoring auction in fiscal year 2014. See 2014 Annual Report
on the use of Sogo-Hyoka Nyusatsu:http://www.nilim.go.jp/lab/peg/siryou/20160708_
s_hinkakukon/H26_20160301_siryou40315_s160708.pdf
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K-dimensional signal.
Our contribution is threefold. First, we demonstrate the existence of a unique monotone

equilibrium in the scoring auction. A key to our approach is to break down the multidimen-
sional bidding process into two steps: each bidder selects a profit maximizing price-quality
pair for a given targeted score, and then the auction as bidding a score occurs. The ap-
proach allows us to characterize a scoring auction equilibrium with minimum restriction
on primitives, being free from the specifics of scoring rules – quasilinear (QL) – and of the
cost function – additively separable in quality and type, etc.2 Consequently, our model cov-
ers a wide range of scoring auction settings seen in practice.3 Furthermore, our approach
is applicable to more general forms of multidimensional bidding, such as the fixed-price
best-proposal auction by Thiel (1988) and the unit-price auction by Bajari et al. (2014).

Our analysis also uncovers a close link between the problem in the scoring auction and
that in the auction with risk-averse bidders. Regarding the value function of the optimal
price- and quality-choice problem as the bidder utility, we identify that the utility function
is generally nonlinear in its score.4 The first-order condition for optimal score bidding thus
has a similar structure as that seen in Maskin and Riley (1984). While this finding pro-
vides an intuitive view to equilibrium properties of the scoring auction, we are still left the
nontrivial problem regarding the second-order condition – for the existence of a monotone
equilibrium – in settings with multidimensional bids and types. We propose a sufficient
primitive condition for the single-crossing property in the scoring auction model. With this
property, we show the uniqueness of a monotone equilibrium in the scoring auction.5

2Existing literature deal with the optimization problem on multidimensional strategy and type spaces by
using pseudotype with which the problem can be reduced in to a unidimensional auction problem (e.g., Asker
and Cantillon, 2008). A crucial assumption this approach relies on is that the scoring function be quasilinear
or is a monotone transformation thereof. In practice, auctioneers commonly use non-QL scoring rules, e.g.,
Albano, Dini and Zampino (2009). Obviously, a monotone transformation converts some but not all non-QL
functions to a QL form.

3In real-world procurement auctions, a much wider variety of scoring rules than what has been examined
by theory are adopted. For example, many state departments of transportation (DOTs) in the United States,
including those in Alaska, Colorado, Florida, Michigan, North Carolina, and South Dakota, have adopted the
“adjusted bid,” in which a score is equal to the price bid divided by the quality bid (Molenaar and Yakowenko,
2007). The Department of Health and Aging in Australia also employs a price-per-quality-ratio awarding rule
for contracts that need to achieve better returns on public investment (The Department of Health and Ageing,
Australia, 2011). In addition, most public procurement contracts in Japan are allocated to the bidder with the
highest price-per-quality bid ratio. In Japan, the Ministry of Economy, Trade, and Industry uses a QL scoring
rule with a reserve price.

4The analogy in models of multidimensional bidding and Maskin and Riley (1984) was first discussed by
Thiel (1988).

5McAdams (2003) is the first study that shows the equilibrium existence in games with incomplete in-
formation where types and actions are multidimensional. More recently, Reny (2011) shows the equilibrium
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Second, we examine identification of the scoring auction model. Specifically, we pro-
pose a necessary and sufficient condition on bidder cost functions for the identification
of the multidimensional signal distribution from scoring auction data. To the best of our
knowledge, our analysis is the first to propose the condition.

To make our argument precise, let θ, q∗, and b∗ denote the bidder’s K-dimensional la-
tent signal, the observed (L−1)-dimensional equilibrium quality bid, and anL-dimensional
vector including the equilibrium price bid and the distribution of equilibrium scores. Let
C(q,θ) and Cqℓ(q,θ) with ℓ = 1, . . . , L − 1 denote the bidder’s cost function and its
marginal cost with respect to the ℓth dimensional quality, qℓ, and suppose that vector
function A(θ;q) := (C(q,θ), Cq1(q,θ), . . . , CqL−1(q,θ))T is well defined and smooth.
We show that the bidder’s system of best-response functions can be rearranged to an L-
dimensional nonlinear system, A(θ;q∗) = b∗. We then propose a necessary and sufficient
condition under which A(θ;q) is locally invertible with respect to θ for any q. The con-
dition – i.e., each dimension of θ has a unique impact on A(θ;q) – is satisfied if the cost
function is additively separable.6 By exploiting the global inverse function theorem, we
then show that the condition is equivalent to the existence of a unique solution to the non-
linear system.

Given that the approach relies on the bidder’s best response, our procedure is a natural
extension of the structural estimation method of auctions by Guerre, Perrigne and Vuong
(2000). At the same time, given that it relies on the invertibility of the system of func-
tions, our approach is related in spirit to the literature on identification for simultaneous
equation systems, which exploits the global invertibility of real functions (e.g., Matzkin
(2008)). Global invertibility – as in Beckert and Blundell (2008) and Berry, Gandhi and
Haile (2013) – plays the central role in demand estimation analyses, as well. Both papers
provide economically interpretable sufficient conditions (e.g., connected substitutes) for the
global invertibility of a demand system. In our analysis, the condition for the invertibility
is interpreted as relatively strong separability in the cost function.

Our final contribution is to provide an empirical analysis based on the structural method
we propose. We estimate the bidder’s multidimensional signal using the scoring auction
data. The data are from bid results of public procurement auctions for construction projects
in Japan, where score is given by the weighted sum of non-price attributes divided by price

existence in settings with multidimensional types and actions. Other studies on equilibrium existence fre-
quently referred to in the auction literature include Lebrun (1996) and Athey (2001).

6Note that the condition implies that K 5 L.
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(Price-per-Quality Ratio scoring rule). A series of counterfactual analyses suggest that the
changes in auction formats (i.e., first-score (FS) vs second-score (SS) auctions) and scoring
rules have limited impact on utilities of both the procurement buyer and suppliers (e.g., .7
percent improvement of the buyer’s utility for each of both changes). The gain from using
the scoring auction instead of conventional price-only auctions has, on average, greater
impact on both buyer and contractors’ welfare (e.g., 1.0 to 8.7 percent improvement of the
buyer’s welfare). The numbers vary depending on the quality standards set in price-only
auctions, which are supposed to be chosen by the contractors in the scoring auction. The
results suggest that a procurer can obtain an almost equivalent (slightly lower) gain with
the use of a price-only auction with a well-designed fixed quality standard.

The reminder of this article is organized as follows. Section 2 gives related literature.
Section 3 describes the model of scoring auctions. Section 4 gives the equilibrium analysis.
Section 5 discusses the identification of the distribution of bidders’ cost schedule param-
eters. Section 6 conducts empirical examinations using our structural estimation method,
and Section 6 concludes.

2 Related literature

Che (1993) gives the seminal analysis on scoring auctions. Branco (1997) relaxes the as-
sumption that the bidder’s private signal be independent, and Asker and Cantillon (2008)
extend Che (1993) to settings in which bidders’ signals are multidimensional. More re-
cently, Wang and Liu (2014) and Dastidar (2014) provide theoretical analyses that relax
the assumption that the scoring rule is quasilinear.

Our paper is also related to the analysis on multidimensional bidding in which bid-
ders submit non-price attributes only. Thiel (1988) analyzes the Fixed-Price Best Proposal
(FxPBP) auction in which the auctioneer predetermines the winner’s payment and the win-
ner is the bidder that proposes the best quality offer. He shows that the multidimensional
auction can be collapsed into a single-dimensional bidding problem – i.e., bidding the
auctioneer’s utility – and that the bidder’s payoff upon winning (utility) is nonlinear in its
single-dimensional bid. Bajari, Houghton and Tadelis (2014) analyze the multidimensional
unit-price auction, in which the bidder submits a vector of unit prices, each corresponding
to an item of the procurement contract. The winner is the bidder whose weighted sum of all
the itemized bids is the lowest.7 Regarding the itemized bids as non-price attributes, they

7Athey and Levin (2001) also study the multidimensional unit-price auction.
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analyze this auction by using a scoring auction model in which (i) score is an aggregation
of non-price attributes and (ii) payment (price) is a function of non-price attributes. By the
similar reason as Thiel (1988), the bidder utility is nonlinear in its strategy.

A large body of literature examines auctions in which the price is not the sole deter-
minant of the winner. In this literature, a set of papers analyzes multidimensional bidding
where non-price attributes are bidder characteristics – what bidders cannot choose at bid-
ding (e.g., Marion, 2007; Krasnokutskaya and Seim, 2011; Krasnokutskaya, Song and
Tang, 2013; and Mares and Swinkels, 2014). If the way to rank multidimensional bids
is public, the situation can fall into our framework.8 As multidimensional bidding out-
side of our framework, Asker and Cantillon (2008) discuss multidimensional bidding in
which bidders choose non-price attributes, but the auctioneer keeps the scoring rule secret
at bidding (i.e., menu auctions and beauty contests). Che (1993) and Asker and Cantillon
(2010) study optimal design in multidimensional bidding given that the auctioneer has a
quasilinear preference.

Our paper is also related to the literature on identification of the auction model, such
as Athey and Haile (2002) and Athey and Haile (2007), and the literature on the struc-
tural estimation method of auctions, including Paarsch (1992); Laffont, Ossard and Vuong
(1995); Guerre et al. (2000); and Krasnokutskaya (2011).9 Given the multidimensionality
in bidder private information, the structural estimation of the scoring auction model has a
challenge similar to that of the structural estimation of auctions with risk-averse bidders,
as in Guerre, Perrigne and Vuong (2009), Campo, Guerre, Perrigne and Vuong (2011),
etc.10 Similar to these analyses, our approach exploits a parametric assumption on the cost
function to address this challenge.

As for empirical analyses, Lewis and Bajari (2011) is the first structural analysis on
scoring auctions. They found that the A+B bidding (a scoring auction) in which the non-
price attribute is the number of days to complete the project, improves taxpayers’ welfare
by approximately 19%.11 Iimi (2016) and Koning and van de Meerendonk (2014) offer
analyses based on the reduced-form approach. So far, structural analyses have relied on

8If each bidder observes the identity of its competitors and their characteristics, bidders are ex ante asym-
metric.

9See Paarsch and Hong (2006) and Athey and Haile (2007) for book-length surveys. For a more recent
survey, see, e.g., Hickman, Hubbard and Sağlam (2012).

10More recent papers include Campo (2012) and Fang and Tang (2014).
11Nakabayashi (2013) and Takahashi (2014) also perform structural analyses to investigate the impacts of

small-business set asides and uncertainty of evaluating non-price attributes in design competition in procure-
ment settings.
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restriction either on the scoring rule (i.e., the QL form, as in Lewis and Bajari, 2011) or on
the cost function (e.g., an additively separable form in Takahashi (2014)). Neither of these
analyses discusses conditions under which the multidimensional type is identifiable in the
scoring auction.

3 The Model of Scoring Auctions

A buyer would like to procure an item through competitive bidding by n = 2 risk-neutral ex
ante symmetric suppliers. Based on the knowledge of n, each supplier submits a price bid
p ∈ R+, as well as an (L−1)-dimensional quality bid q = (q1, . . . , qL−1) ∈ [q1, q̄1]×· · ·×
[qL−1, q̄L−1] ≡ Q ⊂ RL−1. A scoring function, S(p,q) : RL → R, is common knowledge,
mapping the L-dimensional bid into a score. Let S := {S(p,q)|p ∈ R+,q ∈ Q} denote
the feasible set of score.

Let θ ∈ Θ := [θ0, θ̄0]×· · ·×[θK−1, θ̄K−1] ⊂ RK denote aK-dimensional private signal
that each supplier obtains prior to bidding. The supplier’s cost to perform the procurement
contract promising quality, q, is given by the cost function C(q,θ) defined on Q×Θ. Let
Cqℓ(q,θ) and Cθk(q,θ) denote the partial derivative of C(q,θ) with respect to qℓ and θk

with ℓ = 1, . . . , L− 1 and k = 0, . . . , K − 1.
Two scoring-auction formats are considered in the analysis: the first-score (FS) auction

and the second-score (SS) auctions. Let (pi,qi) denote supplier i’s multidimensional bid
in the scoring auction with i = 1, . . . n, and let (ppost,qpost) be the contracted payment and
quality. The bidder with the lowest S(p,q) wins, and only the winning bidder performs the
contract and receives a payment. Let s(j) denote the jth-lowest score in the auction with
j = 1, . . . , n.

In the FS auction, the contract payment and quality are equal to the winning bidder’s
bid – i.e., (ppost,qpost) = (pi,qi) if i wins. In the SS auction, the successful bidder can
choose (ppost,qpost) ex post such that S(ppost,qpost) = s(2).
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Then, bidder i’s problems in the FS and SS auctions are given as follows:

max
pi,qi

[
ppost − C(qpost,θi)

]
Pr{win|S(pi,qi)}, (FS)

subject to (ppost,qpost) = (pi,qi) if i wins.

max
pi,qi

Es(2)

[
max

ppost,qpost

{
ppost−C(qpost,θi)

∣∣S(ppost,qpost)=s(2)
}∣∣∣∣win

]
Pr{win|S(pi,qi)}.

(SS)

Throughout the paper, we impose the following four assumptions:

Assumption 1 (Regularity).

(i) The scoring rule, S(p,q), is sufficiently smooth with Sp(p,q) > 0 and Sqℓ(p,q) < 0

for all ℓ = 1, . . . , L− 1.

(ii) The bidder’s cost function, C(q,θ), is weakly convex and twice-continuously dif-
ferentiable for all θ ∈ Θ. In addition, Cqℓ(q,θ) = 0, Cθk(q,θ) > 0, and all are
bounded for all ℓ = 1, . . . , L− 1 and k = 0, . . . , K − 1.

(iii) The signal, θ, is distributed independently and identically according to a publicly
known joint density, f(θ), which is continuous, strictly positive, and bounded for all
θ ∈ Θ.

Assumption 1 is a set of regularity conditions. Condition (i) assumes that the score
function is monotone. Condition (ii) implies that the bidder’s total and marginal costs are
smooth and increasing in θ, and (iii) assumes independent private values. While assuming
independence of θ across suppliers, we allow for correlation of θ across dimension.

Given Assumption 1-(i), the scoring function is invertible with respect to p. It follows
that, for all s = S(p,q) ∈ S ,

P (s,q) = p (1)

is well defined for any q.12 Moreover, because S(p,q) is sufficiently smooth, P (s,q) is a
sufficiently smooth function.13

12Note that Function P (s,q) is discussed in Asker and Cantillon (2008), as denoted by Ψ(Q, tw), where
Q and tw correspond to q and s in our model.

13The partial derivatives of P (s,q) with respect to s and qℓ are given by Ps(s,q) = 1/Sp(p,q) and
Pqℓ(s,q) = −Sqℓ(p,q)/Sp(p,q), respectively, for all ℓ = 1, . . . , L− 1.
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Assumption 2 (Interior Solution). For all p ∈ R and θ ∈ Θ,

(i) (
−
Sqℓqm(p,q)Sp(p,q)− Sqℓ(p,q)Spqm(p,q)

Sp(p,q)2
− Cqℓqm(q,θ)

)
ℓ,m=1,...,L−1

is negative definite for all q ∈ Q;

(ii) for all ℓ = 1, . . . , L− 1,

(a) (
−
Sqℓ(p,q)
Sp(p,q)

− Cqℓ(q,θ)
)

ℓ=1,...,L−1

> 0

at qℓ,

(b) (
−
Sqℓ(p,q)
Sp(p,q)

− Cqℓ(q,θ)
)

ℓ=1,...,L−1

< 0

at q̄ℓ.

The assumption simply gives technical conditions needed to ensure that the bidder’s
problem in choosing an optimal q is strictly concave and has an interior solution; condition
(i) states that the bidder payoff upon winning, i.e., P (s,q)−C(q,θ), is strictly convex in q,
and (ii) states that the marginal payoff, i.e., Pqℓ−Cqℓ ≡ −Sqℓ/Sp−Cqℓ , eventually becomes
negative as q rises. In Section 5, we will discuss that the interior solution is necessary for
the identification of the bidders’ K-dimensional signals. Note that, given Assumption 1,
Assumption 2 is generally satisfied unless the auctioneer uses a reserve price or quality
bounds.

The condition is, of course, sufficient. Hence, an interior solution is guaranteed if we
relax condition (i) such that the marginal profit is constant if q is very irrelevant point in
the domain of C(q,θ) such as q such that Cqℓ = 0 or P (s,q)− C(q,θ) < 0.

Example: We briefly discuss a set of scoring rules used in practice and see that these
satisfy both Assumptions 1 and 2. Let V (·) and W (·) be strictly increasing, smooth, and
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concave functions, and let qb = (q1, . . . , qℓ) and qc = (qℓ+1, . . . , qL−1) for some ℓ ∈
{1, . . . L− 2}. Then, examples of the scoring functions are given as follows:

SQL(p,q) = p− V (q), (Quasilinear, QL)

SPQR(p,q) = p/V (q), (Price-per-Quality Ratio, PQR)

SABC(p,q) = (p− V (qb))/W (qc). (Hybrid, ABC)

As mentioned earlier, the lowest-score bidder wins. Note that the allocation, payment,
and payoffs are all invariant to a monotone transformation of the scoring function. Hence,
S(p,q) = log(p−V (qb))− logW (qc) is, for instance, equivalent to the ABC rule in terms
of outcome. Note also that no monotone function makes any pair of these scoring rules
equivalent in outcome.

Both QL and PQR are frequently used in practice (e.g., the US states DOT in Delaware,
Idaho, Oregon, Massachusetts, Utah, and Virginia for QL and Alaska, Colorado, Florida,
Michigan, North Carolina, and South Dakota for PQR).14 The last one (ABC) is discussed
in a report by the Federal Highway Administration (FHWA), called “Multiparameter Bid-
ding (A+B+C)” (California Department of Transportation, Caltrans, 2007). Component
(B), qb, includes the number of days required to complete the project, and (C) component,
qc, include the contractor’s past performance. By adjusting A+B bids by C when deter-
mining the winner, the scoring rule favors contractors with higher quality levels on past
projects, giving more chance to win in the current auction.

Now, let s = S(p,q). Then, P (s,q) is given by

P QL(s,q) = s+ V (q), (QL)

P PQR(s,q) = sV (q), (PQR)

P ABC(s,q) = V (qb) + sW (qc). (ABC)

under these scoring functions. These three scoring rules satisfy Assumptions 1 and 2 for
any convex cost function.

Assumption 3 (Single Crossing). The cost function is a quasilinear form:

C(q,θ) = θ0 + C0(q, θ1, . . . , θK−1).

14See Molenaar and Yakowenko (2007) for more details.
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Assumption 3 is a sufficient primitive condition for the single-crossing property or,
equivalently, strictly increasing differences of the bidder’s objective function (Lemma 1).
Note that the condition is for simplicity, keeping the number of type-space dimensions
equal to K. In fact, we do not need the condition if we augment the type space so that
an additional dimension plays the same role as θ0.15 With the single-crossing property, we
demonstrate that the FS auction has a unique pure monotone equilibrium (Section 4.3).16

Note that the assumption is not required for the equilibrium analysis of the SS auction or
of the FS auction with a QL scoring rule.

Assumption 4 (Identification). For each θ in the interior of Θ and for each q in Q, there

exists a K-dimensional nonsingular matrix, Γ, with which, for all k = 0, 1, . . . , K − 1,

C̃(q, θ̃) := C̃(q,Γθ) = C(q,θ) satisfies

|C̃θ̃k(q, θ̃)| >
∑
m ̸=k

|C̃θ̃m(q, θ̃)| (2)

or

|C̃qℓθ̃k(q, θ̃)| >
∑
m ̸=k

|C̃qℓθ̃m(q, θ̃)| (3)

for some ℓ ∈ {1, . . . , L− 1}.

The assumption addresses that, with an appropriate bijective transformation of θ, each
dimension of θ has a unique set of marginal or total costs on which it has a stronger impact
than the sum of all other dimensions of θ. An additively-separable cost function satisfies
the condition, i.e., Cqℓθk = 0 for all k ̸= ℓ. Moreover, many non-additively-separable cost
functions satisfies the condition, including the Cobb-Douglas form.17 Figure 1 illustrates
the cost function that violates Assumption 4. The assumption is satisfied if and only if the
Jacobian matrix of the L− 1-dimensional vector:

A(θ;q) := (C(q,θ), Cq1(q,θ), . . . , CqL−1(q,θ))T

15Appendix Appendix C gives a brief discussion on this point.
16The existing approach can show only the existence, but not the uniqueness, of a monotone equilibrium

in the FS auction. See, e.g., Athey (2001) and McAdams (2003).
17See Appendix B for examples of cost functions that satisfy our settings.
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is full column rank (Lemma 3).18 This implies that the cost function fails to satisfy the
assumption if K > L.

[Figure 1 about here.]

Note that, under Assumption 3, the Jacobian matrix of A(θ;q) is locally invertible
if and only if the Jacobian matrix of ∇qC(q,θ) is full column rank. Hence, if the cost
function satisfies Assumption 3, we need neither condition (2) nor k = 0 in expression (3)
of Assumption 4.

4 Equilibrium Analysis

In this section, we examine the equilibrium of the scoring auction by replicating with an
alternative game (called the score-bidding game). The key to our approach is that we
decompose the multidimensional bidding process into two steps: the selection of a profit
maximizing price-quality pair for a given targeted score and the auction as bidding a score.
The approach simplifies the equilibrium analysis of the scoring auction with minimum
restrictions on primitives in settings with multidimensional types. Moreover, our approach
uncovers a close connection of the scoring auction model to the auction with non-risk-
neutral bidders. We then show the uniqueness of a symmetric isotone equilibrium in the FS
auction (i.e., monotone in each dimension of multidimensional types).

4.1 An Outcome-equivalent Score-bidding Game

Bidder i’s problems (FS) and (SS) are equivalently expressed by the following two-step
maximization:

max
si

[
max

ppost,qpost

{
ppost − C(qpost,θi)

∣∣S(ppost,qpost) = si
}]

Pr(si 5 min
j ̸=i

sj), (FS’)

max
si

Es(2)

[
max

ppost,qpost

{
ppost − C(qpost,θi)

∣∣S(ppost,qpost) = s(2)
}∣∣∣∣win

]
Pr(si 5 min

j ̸=i
sj).

(SS’)

18If Γ is a diagonal matrix, the assumption implies that the Jacobian of A(θ;q) is a quasi-dominant diag-
onal (q.d.d.) matrix discussed in McKenzie (1960). Because Assumption 4 is weaker than the condition for
the Jacobian matrix to be q.d.d, Assumption 4 is not only sufficient but also necessary for a full column rank
Jacobian of A(θ;q) in our setting in which A(·) is differentiable.
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Obviously, the outcome of this game is equivalent to that of the original scoring auction
game. We call the alternative game the score-bidding game.

To solve the two-step optimization problem backward, let us first examine the value
function of the second-step maximization:

u(s,θ) := max
qpost

P (s,qpost)− C(qpost,θ),

where s = si(= s(1)) in the FS auction and s = s(2) in the SS auction. We call u : S×Θ →
R the induced utility function. Note that u(s,θ) is the amount of the payment bidder type
θ earns when winning. Because Assumption 2 guarantees a unique interior solution to the
second-step optimization problem, u(s,θ) is well defined. Moreover, u(s,θ) is sufficiently
smooth but generally nonlinear.19

By using u(·), we can then rewrite bidder i’s first-step problems as:

max
si∈S

u(si,θi) Pr{win|si}, (FS”)

max
si∈S

u(s(2),θi) Pr{win|si}. (SS”)

The expressions indicate an analogy of the scoring auction to the auction with non-risk-
averse bidders examined e.g., by Maskin and Riley (1984). In the scoring auction, u(s,θ)
is induced as the value function of the second-step maximization. This contrasts u(s,θ)
from the bidder’s utility function in Maskin and Riley (1984) who give this exogenously.
Later, we show that the sufficient smoothness and the log-supermodularity of u(s,θ) are
keys to the existence of a monotone equilibrium.

To conclude this subsection, we discuss how the bidder chooses qpost in the second-step
maximization. Let us define

q(s,θ) := argmax
qpost

{
P (s,qpost)− C(qpost,θ)

∣∣ s} .
19Because both P (s,q) and C(q,θ) are smooth, we have Ps(·) = 1/Sp(·) > 0 and Cθk > 0. Therefore,

the partial derivatives of u(s,θ) exist as:

us(s,θ) = Ps(s,q(s,θ)) > 0,
uθk(s,θ) = −Cθk(q(s,θ),θ) < 0 for all k = 0, . . . ,K − 1.

In addition, u(·) is twice-continuously differentiable. This is because (i) both P (·) and C(·) are twice-
continuously differentiable; (ii) applying the implicit function theorem to (4), we see that q(·) is differen-
tiable.
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The first-order condition (FOC) gives:

∇qP (s,q(s,θ)) =


Pq1(s,q(s,θ))

...
PqL−1(s,q(s,θ))

 =


Cq1(q(s,θ),θ)

...
CqL−1(q(s,θ),θ)

 = ∇qC(q(s,θ),θ). (4)

This suggests that the bidder chooses q so that its marginal revenue matches the marginal
cost given a target score s.

The previous example of scoring rules provides an intuition of the score bidding game
– a supplier’s competition for a cost reimbursement contract. Under the PQR scoring rule
where P (s,q) = sV (q), suppliers compete in terms of the unit price of V (q). The winner
is reimbursed for each unit of V (q) at s and chooses quality such that the marginal cost
equals the unit price of quality. Under the QL contract, the reimbursement consists of two
parts: (i) each unit of V (q) at a fixed price (equal to one), and (ii) a lump-sum subsidy, s.
The bidder who requests the minimum lump-sum subsidy wins.

The interpretation also makes the distinction clear between non-QL and QL scoring
rules. Under the non-QL scoring rule, suppliers are price makers – i.e., the unit price of
quality depends on s. Then, as price rises, (i) the inframarginal profit rises linearly and
(ii) there is an extramarginal profit due to the adjustment of q under the PQR scoring rule.
Thus, the induced utility is convex in s. On the other hand, suppliers are price takers under
the QL scoring rule, where the unit price of q is fixed. This makes u(s,θ) linear in s.
The difference of the curvature of u(s,θ) generally induces the difference in the expected
scores between the FS and SS auctions under the non-QL scoring rules.

4.2 Equilibrium in the Second-Score Auction

In the Second-Score (SS) bidding game, there exists a dominant strategy equilibrium, σII :

Θ → S , such that bidder i with i = 1, . . . , n chooses z(θi):

σII(θ) = min
q∈Q

S(C(q,θ),q) =: z(θ).

where z(θ) denotes the break-even score, i.e., the bidder’s minimum possible score subject
to non-negative payoffs. By construction, z(θ) satisfies u(z(θ),θ). It is easy to see that
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z(θ) is well defined.20 Moreover, z(θ) is strictly increasing and smooth.21 If the scoring
rule is QL, z(θ) is equivalent to the bidder’s pseudotype discussed in Asker and Cantillon
(2008).

By (4), the optimal quality choice in the SS bidding game is given by

qz(θ) := {q|∇qP (z(θ),q) = ∇qC(q,θ)}.

Assumption 2 ensures the uniqueness of qz(θ). Therefore, the equilibrium in the SS auction
is summarized as follows:

Proposition 1. In the SS auction, there exists a dominant strategy equilibrium in which

bidder i submits (p∗(θi),q∗(θi)) such that

(p∗(θi),q∗(θi)) = (P (z(θi),qz(θi)),qz(θi)),

where z(θi) and qz(θi) are given by

u(z(θi),θi) = 0,

∇qP (z(θi),qz(θi)) = ∇qC(qz(θi),θi).

Proof. See Appendix C.

The winner determines its ex post payment and quality, (ppost,qpost), such that S(ppost,qpost)

matches the second-lowest score.

4.3 Equilibrium in the First-Score Auction

Suppose that a symmetric pure monotone equilibrium strategy: σI : Θ → S exists in the
first-score (FS) bidding game. If all bidders play σI, then bidder i’s equilibrium multidi-

20Because Q is a compact set, the Weierstrass Theorem implies the existence of the minimum.
21To show the smoothness, recall that z(·) satisfies u(z(θ),θ) = 0 for all θ ∈ Θ. Therefore, by the

implicit function theorem, zθk(θ) := ∂z(θ)/∂θk exists locally for all k = 0, . . . ,K − 1 in the interior of Θ.
To show the strict increase, take the derivative on both sides of expression u(z(θ),θ) = 0 with respect to θk.
Then, we have

us(z(θ),θ)zθk(θ) + uθk(z(θ),θ) = 0.

Given that uθk < 0 and that us > 0, we have zθk(θ) > 0.
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mensional bid in the original FS auction is given by:

(p∗(θi),q∗(θi)) = (P (σI(θi),q(σI(θi),θi)),q(σI(θi),θi)) . (5)

Suppose that all bidders except for i follow σI. LetG(s) and g(s) denote the distribution
and density of the score by bidder i’s rival. Then, for bidder i, (FS”) is given by

max
si∈S

π(si,θi) = u(si,θi)[1−G(si)]
n−1. (6)

The following lemma demonstrates that Assumption 3 is a sufficient primitive condition
for the log-supermodularity of u(s,θ).

Lemma 1 (Single-crossing property). Assumption 3 implies that there exists a linear trans-

formation M, with which ũ(s, θ̃) := ũ(s,Mθ) ≡ u(s,θ) satisfies the following sorting

property:

∂

∂θk
u(s,θ)

us(s,θ)
< 0 for all k = 0, . . . , K − 1.

Proof. See Appendix D.

The idea of the proof is that we align the type space in the way that kth dimension of
the new type space is given by the composition of θ0 and θk for all k = 1, . . . , L − 1.
Specifically, the above inequality is reexpressed as:

1

us(s,θ)

[
u(s,θ)

us(s,θ)

(
L−1∑
ℓ=1

−Cqℓθk(q(s,θ),θ)qℓs(s,θ)

)
+ Cθk(q(s,θ),θ)

]
> 0.

The inequality does not hold in general because Cqℓ may rise much faster than C as θ rises
along kth dimension of its type space with k = 1, . . . , K − 1. If the cost function satisfies
the assumption, then we find a sufficiently large number, Mk, with which, by redefining
the type space as θ̃0 = θ0 −

∑K−1
k=1 Mkθ

k and as θ̃k = θk for all k = 1, . . . , K − 1, C
can rise sufficiently faster than Cqℓ on the new type space. In what follows, we slightly
abuse the notation of θ such that θ is an element of the new type space so that u(s,θ) is
log-supermodular.

The log-supermodularity of u(s,θ) implies the single-crossing property – i.e., ∂2π(s,θ)/∂s∂θk =
0 for all ℓ = 0, . . . , L−1.22 With the single-crossing property, McAdams (2003) has shown

22In our situation, u(s,θ) has its cross-partial derivative. Therefore, given (Guess), the log-
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the existence of a pure monotone equilibrium. We here demonstrate that a monotone equi-
librium is unique as well:

Proposition 2. The symmetric pure monotone equilibrium strategy, σI(·), is unique. More-

over, σI(θi) and q(σI(θi),θi) satisfy the L-dimensional system of best-response functions:

1−G(σI(θi))

(n− 1)g(σI(θi))
=

u(σI(θi),θi)

us(σI(θi),θi)
, (7)

∇qP (σI(θi),q(σI(θi),θi)) = ∇qC(q(σI(θi),θi),θi). (8)

It is easy to see that expression (8) is given by expression (4) with s = σI(θi) and
θ = θi. Hence, in what follows, we show that σI(θi) in (7) exists uniquely.

We first show that σ(·) is a unique solution to bidder problem (6) for some G(·). Let us
denote by s̄ = maxθ∈Θ z(θ), the score from which the least efficient bidder obtains zero
profits. We then guess that G(s) satisfies{

G(s) is strictly increasing and continuously differentiable;
G(s̄) = 1.

(Guess)

The single-crossing property is well known to ensure the pseudoconcavity of the bidder’s
objective function with respect to si.23 Therefore, if G(·) satisfies (Guess), expression (7)
is sufficient for the unique global maximum. Moreover, the solution is strictly increasing
in θ.24

To conclude the proof, we demonstrate that G(·) exists uniquely in the following two
steps. First, we construct a differential equation with respect to G(·) that is consistent with
the FOC expressed in (7). Next, we show that the differential equation has a unique solu-
tion. Note that the FOC implies that all bidders that choose the same score in equilibrium
have an identical value of u(·)/us(·). As shown below, this implies that the distributions
of the score and s − u(s, ·)/us(s, ·) have an equivalence in equilibrium. The differential
equation we construct is based on the equivalence of these two distributions so that it is
consistent with the FOC.

To show the equivalence of the two distributions, let us denote the cumulative distribu-

supermodularity of u(s,θ) is equivalent to the single-crossing property of the bidder’s interim expected
profit, π(si,θi).

23See, e.g., Matthews (1995).
24In Online Appendix I, we verify these points.
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tion of s− u(s,θ)/us(s,θ) given s by:

ξ(κ; s) := Pr

{
s− u(s,θ)

us(s,θ)
5 κ

}
. (9)

Let s∗i = σ(θi) and κ∗i := s∗i − u(s∗i ,θi)/us(s
∗
i ,θi). An important feature of the FOC is

that, for any bidder that also chooses s∗i in equilibrium, the value of s∗i − u(s∗i , ·)/us(s∗i , ·)
is equal to κ∗i as well.

Given the log-supermodularity of u(·) and the monotonicity of σI(·), this feature implies
that for any θ, σI(θ) < s∗i if and only if s∗ − u(s∗,θ)/us(s

∗,θ) < κ∗.25 Thus, we have

Pr{s∗i − u(s∗i ,θ)/us(s
∗
i ,θ) 5 κ∗i } = Pr{σI(θ) 5 s∗i }.

The expression shows the equivalence in the distributions of score and s − u(s, ·)/us(s, ·)
in equilibrium.

Eliminating subscript i and using the notation defined above, we rewrite the above
expression as:

ξ

(
s∗ − u(s∗,θ)

us(s∗,θ)
; s∗
)

= G(s∗)

subject to s∗ = σI(θ) for all θ. Then, plugging expression (7) to substitute out u(·)/us(·),
we obtain:

ξ

(
s− 1−G(s)

(n− 1)g(s)
; s

)
= G(s) (10)

subject to s = σI(θ). Given that ξ(·) is well defined for all s ∈ S , the expression constitutes
a differential equation with respect to G(s). This implies that if G(s) is the equilibrium
score distribution, it must be the solution to the differential equation.

Next, we show that the differential equation has a unique solution. Let κ(s) := minθ∈Θ s−
u(s,θ)/us(s,θ) and κ̄(s) := maxθ∈Θ s−u(s,θ)/us(s,θ). Because u(s,θ) is log-supermodular,
ξ(κ(s); s) = 0 and ξ(κ̄(s); s) = 1 for any s. It is easy to see that ξ(κ; s) is continuous and

25Let Θ∗
i is the set of bidders that submit s∗i . Note that for all θ ∈ Θ∗

i , s∗i − u(s∗i ,θ)/us(s
∗
i ,θ) = κ∗i .

Then, let θ′ is a bidder type that chooses a strictly lower score than s∗i . Given the monotonicity of σI(·),
there exists a bidder type, θ ∈ Θ∗

i , such that θ′ ≤ θ. Therefore, by the log-supermodularity of u(·),
s∗i − u(s∗i ,θ

′)/us(s
∗
i ,θ

′) < s∗i − u(s∗i ,θ)/us(s
∗
i ,θ). Conversely, let θ′′ denote a bidder whose value of

s∗i − u(s∗i , ·)/us(s∗i , ·) is strictly lower than κ∗i . By the log-supermodularity, there is a bidder type θ ∈ Θ∗
i

such that θ′′ ≤ θ. Then, by the monotonicity of σI(·), σI(θ
′′) < s∗i .
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strictly increasing in κ.26 Therefore, ξ : [κ(s), κ̄(s)] → [0, 1] is bijective given s. It follows
that ξ(κ; s) is invertible with respect to κ for all s ∈ S . Then, let κ(x, s) denote the inverse
of ξ(κ; s) with respect to κ for some x = ξ(κ; s) ∈ [0, 1].

Note that κ(x, s) is bounded, because κ(x, s) ∈ [κ(s), κ̄(s)] by definition. Moreover,
the next lemma shows that κ(x, s) is smooth in s for any x ∈ [0, 1]. These ensure that
κ(·, s) is Lipschitz continuous with respect to s.

Lemma 2 (Differentiability of κ(x, s)).
For any x ∈ [0, 1], κ(x, s) is differentiable with respect to s in the interior of S.

Proof. See Appendix E.

In Appendix F, we show that differential equation (10) has a unique solution with
boundary conditionG(s̄) = 1. In the appendix, we also demonstrate thatG(s) is strictly in-
creasing, which implies that G(s) satisfies (Guess). Recall that σI(θ) is the unique solution
to (7) given G(·). Hence, we conclude that σI(·) is the unique symmetric pure monotone
equilibrium.

4.4 Equilibrium Features of the Scoring Auction Model

We now demonstrate that κ(x, s) is an extension of the pseudotype discussed in Asker and
Cantillon (2008) to settings with non-QL scoring rules. Define

Θ(s, x) =

{
θ ∈ Θ

∣∣∣∣ξ(s− u(s,θ)

us(s,θ)
; s

)
= x

}
, (11)

representing the set of bidder types for whom the value of s− u(s,θ)/us(s,θ) is identical
and the cumulative distribution of s − u(s, ·)/us(s, ·) is equal to x. Let y(x) = G−1(x).

26Note that ξ(κ; s) is reexpressed as

ξ(κ; s) =

∫ κ

κ(s)

∫
{θ̃|s−u(s,θ̃)/us(s,θ̃)=κ̂}

f(θ̃)dθ̃dκ̂.

Taking the derivative with respect to κ, we have

∂

∂κ
ξ(κ; s) =

∫
{θ̃|s−u(s,θ̃)/us(s,θ̃)=κ}

f(θ̃)dθ̃ > 0.

Furthermore, this is bounded for any s ∈ S and κ ∈ [κ(s), κ̄(s)], because f(θ) is bounded for all θ ∈ Θ.
Given that ξ(·) is a smooth function, it is continuous.
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Then, from expression (10), we derive an equivalent expression of the FOC of the FS
bidding game as

y(x)′(1− x)n−1 − (n− 1)(1− x)n−2y(x) = −(n− 1)(1− x)n−2κ(x, y(x)).

Note that x represents a set of types whose equilibrium score is equal to y(x). Integrating
both sides gives a familiar form:

σI(θ) =

∫ 1

x

(n− 1)(1− x̃)n−2

(1− x)n−1
κ(x̃, y(x̃))dx̃ subject to x = G(σI(θ)). (12)

The optimal strategy in the FS auction is to choose the score equal to the conditional ex-
pectation of the second-lowest bidder’s κ(x, s).

Note that if the scoring rule is QL, we see that us(s,θ) = 1 and that u(s,θ) = s +

V (qz(θ)). Therefore, for any s ∈ S and x ∈ [0, 1], we have

κ(x, s) ≡ s− u(s,θ)/us(s,θ) = C(qz(θ),θ)− V (qz(θ)) ≡ z(θ)

for all θ ∈ Θ(x, s). This suggests that κ(x, s) in the QL scoring rule is the pseudotype in
Asker and Cantillon (2008). Under the QL scoring rule, x is the cumulative distribution of
z(θ) – i.e., Pr(z(θ)) = x.

Che (1993) and Asker and Cantillon (2008) discussed that the pseudotype is a pro-
ductivity measure. We show that so is κ(x, s) by referring to the PQR scoring rule (an
example of non-QL scoring rules) discussed above. If the scoring rule is PQR, κ(x, s) =
C(q(s,θ),θ)/V (q(s,θ)), i.e., the average cost (AC). If the scoring rule is QL, κ(x, s) =
C(qz(θ),θ) − V (qz(θ)), representing the minimum lump-sum subsidy required for the
bidder to achieve a nonnegative profit. Then, κ(x, s) under the QL rule is interpreted as the
bidder’s net cost (NC). It is easy to see that, in both cases, the lowest-κ supplier is awarded.

Note that each supplier chooses s strictly higher than its minimum AC or NC in the FS
competition. Because the unit price of V (q) is fixed under the QL scoring rule, the quality
level chosen is the one that minimizes NC under the QL rule. Under the PQR scoring rule,
on the other hand, q(s,θ) is greater than the efficient scale. This suggests that the score
will be strictly greater than the lowest rival’s minimum AC.

In the SS competition, the amount of cost reimbursement (under the QL rule, the lump-
sum part only) supplier i receives is independent of si. Hence, it is dominant for suppliers
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to choose their minimum NC or AC.27 As shown in the next subsection, the price-making
behavior in the FS auction causes inequivalence in the expected winning score between the
FS and SS auctions.

4.4.1 A Discussion on Expected Score Ranking

Our two-step approach also gives a great view on the comparison of the expected scores
across auction formats; the expected score ranking depends on the curvature of the (in-
duced) utility function as seen in Maskin and Riley (1984). However, comparison of the
expected scores involves the following two difficulties. First, score is an ordinary measure.
Hence, the ranking is subject to the curvature of a nonlinear monotone transform of the
scoring rule, yet the outcome of the scoring auction, e.g., the contracted price and quality,
is invariant to any monotone transform. Second, the buyer may not reveal its true true pref-
erence through the scoring rule. Therefore, our argument begins by setting aside welfare
implication. Then, if we focus on a linear scoring rule, i.e., s is linear in p, we obtain the
following observation.

Observation Suppose that Assumptions 1 and 2 are satisfied and that the scoring rule is
linear in price. Then, the expected score is weakly lower in the SS auction than in the FS
auction. Moreover, the expected scores are the same in the FS and SS auctions if and only
if the scoring rule is QL.

A formal discussion is given in Appendix G, which demonstrates that the expected
score in the FS auction is higher than in the SS auction if the bidder induced utility is
convex in s. Note that the observation is robust to the extent that the bidder optimization
for non-price attributes is unrestricted.

While limited, the observation provides a welfare implication. If the buyer has a car-
dinal preference and reveals its true preference through the scoring function, then the ex-
pected score represents the buyer utility. On top of these assumptions on buyer preference,
if the buyer utility is linear in price, our observation implies that the buyer has an advantage
in the use of the SS rather than FS auction. The result indicates that the buyer has a strict
advantage in the use of the SS rather than the FS auction if the scoring rule represents the
buyer’s true preference and if the scoring rule is non-QL, e.g., PQR and (A+B+C).

27In the contract, the winner chooses q(s(2),θ) which makes κ greater than the efficient scale.
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The observation also uncovers a salient feature of multidimensional bidding. A key
to the result above is that the choice in multidimensional attributes is made by the utility
recipient. Therefore, if the choice is restricted or made by other players than the utility
recipient, the expected score ranking may flip. An example for the latter situation is ex-
amined by Hansen (1988) who analyzes a homogeneous multiple-object procurement auc-
tion in which risk-neutral bidders submit a unit price of the item. The quantity produced
is determined by the auctioneer’s demand function. Given that the buyer’s preference is
quasilinear, he shows that the buyer has an advantage in the use of the first-price instead
of the second-price auction. For the former case, we show in the next section that binding
constraints in the second-step maximization makes the induced utility function convex with
a series of examples.

4.4.2 Reserve price, quality constraints, etc.

So far, we have focused on the case in which bidders can choose non-price attributes with-
out any restrictions (Assumption 2). We now relax the assumption to illustrate that our
two-step approach works in many cases. Moreover, we show that our approach is applica-
ble to more general settings of multidimensional bidding than scoring.

Let us consider the value function of the following constraint maximization problem:

u(s,θ) = max
q
p− C(q,θ) subject to S(p,q) = s, h(p,q) = 0, H(p,q) = 0 (13)

where h(p,q) and H(p,q) are, respectively, inequality and equality constraints. To the
extent that u(s,θ) in (13) is well defined and sufficiently smooth, our discussion so far is
applicable.28

For instance, Thiel (1988) examined the Fixed–Price Best–Proposal auction in which
bidders submit q only. The winner receives a fixed amount of payment, p̄, which is pre-
announced by the auctioneer. Given that S(p,q) is quasiconcave in his model, the induced
utility is well defined by (13) with H(p,q) ≡ p̄− p and h(p,q) being degenerated. More-

28As discussed in Section 5, a corner solution may entail nonidentification of the bidder’s multidimensional
signal. Furthermore, additional conditions may be needed to assure differentiability and Lipschitz continuity
of κ(·). Assuming the single-dimensional assumption, we have shown that κ(·) is Lipschitz continuous unless
two or more inequality constraints bind simultaneously. This is because us(s, ·) may jump at the score for
which two constraints bind at the same time. The proof is given upon request.
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over, the second derivative of u(s,θ) is:

uss(s,θ) = −
L−1∑
ℓ=1

L−1∑
m=1

Cqℓqm(q(s,θ),θ)qℓs(s,θ)q
m
s (s,θ)−

L−1∑
ℓ=1

Cqℓ(q(s,θ),θ)qℓss(s,θ).

(14)

The first term is strictly negative because C(q,θ) is strictly convex. It is easily shown that
the second term is nonpositive if S(p,q) is weakly concave in q.29 Thus, u(s,θ) is concave
in s.

In procurement settings, buyers may set a reserve price in the scoring auction. The
induced utility is given by (13) with h(p,q) ≡ p̄ − p = 0 and H(p,q) being degenerated.
As before, the induced utility is concave if the reserve price binds. This implies that even if
the auction uses the QL scoring rule, the expected score equivalence fails between the FS
and SS auction – i.e., the FS auction more likely yields a lower score.

Bajari et al. (2014) examined a unit price auction in which each bidder submits an
(L − 1)-dimensional unit price, which corresponds to submitting q in the scoring auction.
Bidders do not bid p. Instead, p is given by an additional constraint: p = P (q), which is
concave in q in their setting. Therefore, the scoring rule is given by S(P (q),q) = S̃(q).
The second-step maximization is thus described as maxq p−C(θ) subject to S̃(q) = s and
p = P (q). Given the concavity of P (·), uss is negative in their model.

In a homogeneous multiple-object procurement auction, risk-neutral bidders submit a
unit price of the item. If the awarded supplier chooses the quantity level, the bidder’s
problem is equivalent to the scoring auction with the PQR scoring rule, where the bidder
submits unit price s. Hansen (1988) instead examines the auction in which the auctioneer
chooses quantity procured, following its demand schedule. The multiobject auction can be
analyzed by setting, S(p, q) = p/q and H(p, q) ≡ D(q)− p/q, where D(q) is a decreasing
function.

29See Online Appendix II for the proof.
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5 Structural estimation of the scoring auction model

5.1 Outline

In this section, we demonstrate that the K-dimensional i.i.d. signal is identified from L-
dimensional bids if Assumptions 1 through 4 hold and K 5 L. The key to identification
is the invertibility of A(θ;q) ≡ (C,Cq1 , . . . , CqL−1) with respect to θ. We show that As-
sumption 4 is a necessary and sufficient condition for the global invertibility of A(θ;q).

5.2 Identification of the multidimensional signal in FS and SS auctions

We first examine the FS auction. Let (p∗,q∗) denote an observed multidimensional bid,
and let s∗ denote the associated score, given by s∗ = S(p∗,q∗). Suppose that p∗ and q∗ are
generated by equilibrium strategy σI(·), as discussed in (5). Then, s∗ satisfies the FOC, (7),
as

1−G(s∗)

(n− 1)g(s∗)
=

u(s∗,θ)

us(s∗,θ)
.

Given that the observed quality bid satisfies q∗ = q(s∗,θ), we have u(s∗,θ) = P (s∗,q∗)−
C(q∗,θ) and us(s∗,θ) = Ps(s

∗,q∗). Then, we rearrange the FOC as:

C(q∗,θ) = p∗ − Ps(s
∗,q∗)

1−G(s∗)

(n− 1)g(s∗)
. (15)

Moreover, q∗ = q(s∗,θ) satisfies (4) such that

∇qC(q∗,θ) = ∇qP (s
∗,q∗). (16)

Then, from equations (15) and (16), we have the following system of nonlinear equations:

A(θ;q∗) = b∗, where (17)

A(θ;q∗) =

[
C(q∗,θ)

∇qC(q∗,θ)

]
; b∗ =

[
p∗ − Ps(s

∗,q∗)(1−G(s∗))/(n− 1)g(s∗)

∇qP (s
∗,q∗)

]
. (18)

Given that bidders follow a strictly increasing strategy σI(·), b0 ≡ p − Ps(s,q)(1 −
G(s))/(n− 1)g(s) is monotone in s given q. This implies that b and s are one-to-one with
each other. In other words, for any observables (p∗,q∗), b∗ is uniquely given. Therefore,
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the monotonicity of b0 gives a refutable restriction on the distribution of s in the FS scoring
auction model.

The case of the SS auction is analogous; suppose that each bidder’s multidimensional
bid, (p∗,q∗), is generated by the equilibrium strategy σII(·).30 Then, the associated score,
s∗ = S(p∗,q∗), is given by

s∗ = σII(θ) = z(θ),

where p∗ and q∗ are given by

p∗ = P (s∗,q∗), and (19)

∇qC(q∗,θ) = ∇qP (s
∗,q∗). (20)

Then, the system of nonlinear equations is given as A(θ;q∗) = b∗ with

A(θ;q∗) =

[
C(q∗,θ)

∇qC(q∗,θ)

]
; b∗ =

[
p∗

∇qP (s
∗,q∗)

]
. (21)

Now, we discuss our approach to identification. First, P (·) is a known function. For the
FS auction, g(·) and G(·) can be obtained from observations on s∗ = S(p∗,q∗). Hence, all
elements of b∗ can be evaluated from the observed multidimensional bid, (p∗,q∗), in both
FS and SS cases. Furthermore, C(q,θ) is known except for θ. In other words, only θ is
the unknown element in the nonlinear system, A(θ;q∗) = b∗. Therefore, θ is identified
from observations if function A(θ;q) is invertible with respect to θ. More specifically,
if A(θ;q) is invertible with respect to θ, we can recover θ as the unique solution to the
nonlinear system. In what follows, we give a formal argument for this by demonstrating
that the nonlinear system has a unique solution.

The unique solution to the nonlinear system is shown by the global inverse function
theorem.31 In our situation, we have to show the following conditions: (i)A(θ;q) is locally
invertible for all θ ∈ Θ and q ∈ Q; (ii) A(θ;q) is a proper mapping for any θ and q; and
(iii) Θ is arcwise connected, and the image of A(θ;q) is simply connected for all q ∈ Q.

The following lemma demonstrates that Assumption 4 is equivalent to the local invert-
ibility of A(θ;q).

30In the SS auction, the winner also chooses (ppost,qpost), which is also observable. In this analysis, we
ignore the effect of these additional observations on identification.

31See Ambrosetti and Prodi (1995) for more details.
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Lemma 3. Suppose that K 5 L. Then, the cost function, C(q,θ), satisfies Assumption 4

if and only if the Jacobian matrix of A(θ;q) = (C(q,θ),∇qC(q,θ)T)T with respect to θ

is full column rank for all θ in the interior of Θ and q ∈ Q.

Proof. See Appendix H.

We then have a proposition regarding the global invertibility ofA(θ;q). Given the local
invertibility of A(·), our proof focuses on demonstrating the remaining conditions, (ii) and
(iii), for the global inverse function theorem.

Proposition 3. Suppose that K 5 L. Then, under Assumptions 1 through 4, vector-valued

function A(θ;q) is globally invertible with respect to θ for all q ∈ Q.

Proof. See Appendix I.

The following corollary is an immediate consequence of Proposition 3.

Corollary 1 (Identification). Under Assumptions 1 through 4, the bidder’s K-dimensional

signal is identified from L-dimensional bid samples.

Several remarks are in order. First, we briefly discuss the case in which Assumption 4
is not satisfied. If the cost function exhibits the rank-deficient Jacobian matrix of A(θ;q)
at q∗, then the impact of a dimension of θ on the marginal (and total) costs is identical to
that of another dimension or a linear combination of a set of other dimensions of θ at q∗. If
K-dimensional θ exhibits such dependence in the cost function, then two different bidder
types θ ̸= θ′ have the same total and marginal costs at q∗ – i.e., A(θ;q∗) = A(θ′;q∗).
Given that the optimal choice in s depends solely on θ in the scoring auction, these two
bidders are observationally equivalent, as their score and quality are identical to s∗ and q∗,
respectively. Therefore, the multidimensional signal is not identified.

Second, we make a note on identification when the second-step maximization has a
corner solution. For instance, expression (16) becomes inequality if a quality upper bound
binds:

∇qC(q∗,θ) = ∇qP (s
∗,q∗). (16′)

That is, one obtains A(θ;q∗) = b∗, suggesting that θ is not identified. In this case, one
may need to exploit additional observations or constraints on primitives for identification
or to use partial identification.
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Finally, we explore the specification test for the cost function. Suppose that the re-
searcher uses a cost function, Ĉ(q,θ), that may not be the true cost function, C(q,θ).
Given that the observation of the scoring auction data is L-dimensional, one needs addi-
tional variations in data to identify signals of (L + 1) or higher dimensions. This, in turn,
implies that there is no way to test the cost function with L-dimensioning bid data only.

Several ways have been proposed to obtain additional dimensions of information, such
as exogenous variations in the scoring rules and in the number of bidders.32 However, in
Appendix J, we show that at least the exogenous variation in the number of bidders does
not help to test the cost function if the scoring rule is QL.

Note that, while the cost function may be testable with non-QL scoring rule, it generally
has some limitations, as discussed in Athey and Haile (2007). For instance, the alternative
hypothesis is that some component of the specification is incorrect. A failure of the test may
indicate the presence of unobserved heterogeneity, risk aversion, non-equilibrium bidding
behavior, etc.

5.3 Estimation for the distribution of θ

Let T be the number of scoring auction samples, each indexed by t = 1, . . . , T . Let
θ̂i,t = (θ̂0i,t, . . . , θ̂

K−1
i,t ) with K 5 L be the solution to A(θ;q∗) = b∗, where b∗ is given by

(18) and (21) for the FS and SS auctions, respectively.
In the FS auction, both G(s) and g(s) are estimated by the standard kernel estimator.

Auction-specific heterogeneities, such as the number of bidders, properties of the item to be
purchased, etc., are controlled; let nt and xt = (x1t , . . . , x

d
t ) denote the number of bidders

and the covariates of auction t, respectively. Let g(s, n, x) denote the joint density function
of s, n, and x. Then, the kernel estimator for G(s, n, x) :=

∫ s

−∞ g(v, n, x)dv is provided by

Ĝ(s, n, x) =
1

ThGnh
d
Gx

T∑
t=1

1

nt

nt∑
i=1

1(si,t 5 s)KG

(
n− nt

hGn

,
x1 − x1,t
hGx

, · · · , xd − xd,t
hGx

)
,

(22)
where 1(·) is an indicator function, KG is a kernel with a bounded support, and hGn and

32The idea to exploit a variation in the scoring rule is seen in Asker and Cantillon (2008). For more detailed
arguments on the use of a variation in the number of bidders, see Athey and Haile (2002, 2007).
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hGx are bandwidths. Similarly, the kernel density estimator for g(s, n, x) is given by

ĝ(s, n, x) =
1

Thshgnh
d
gx

T∑
t=1

1

nt

nt∑
i=1

Kg

(
s− si,t
hs

,
n− nt

hgn
,
x1 − x1,t
hgx

, · · · , xd − xd,t
hgx

)
,

(23)
where Kg is a kernel with a bounded support and hs, hgn , and hgx are bandwidths. In
practice, the discrete variables, such as the number of bidders and the maximum quality
level, are smoothed out in the way that Li and Racine (2006) discuss.

Corollary 1 suggests that θ̂i,t is recovered in both FS and SS auctions. The estimation
for F (θ, x) :=

∫ θ0

−∞ · · ·
∫ θK−1

−∞ f(τ , x)dτ 0 · · · dτK−1 is given by the standard kernel method:

F̂ (θ, x) =
1

ThdFx

T∑
t=1

nt∑
i=1

1(θ ≤ θi,t)KF

(
x1 − x1,t
hFx

, · · · , xd − xd,t
hFx

)
,

where KF is a kernel with a bounded support, and hFx is a bandwidth. Similarly, the kernel
density estimator for the joint density function of θ and the covariate vector x is given by

f̂(θ, x) =
1

Thf0 · · ·hfK−1
hdfx

T∑
t=1

Kf

(
θ0 − θ0i,t
hf0

, . . . ,
θK−1 − θK−1

i,t

hfK−1

,
x1 − x1,t
hfx

, · · · , xd − xd,t
hfx

)
,

where Kf is a kernel with bounded support, and hf0 ,. . . , hfK−1
, and hfx are bandwidths.

6 An Empirical experiment

6.1 Data and Institution

The data used in our analysis contain the bid results of the procurement auctions for civil
engineering projects conducted from January 2010 through August 2014 by the Ministry of
Land, Infrastructure, and Transportation (MLIT) in Japan. The data include project names,
dates of auctions, engineers’ estimates, scoring auctions or not, and submitted bids with the
bidder’s identity. The ministry let 18,183 civil engineering projects during the study period.
The projects cost approximately 750 billion yen a year, which accounts for approximately
four percent of the public construction investment in Japan.

Among these, 6,610 projects were allocated through the scoring auction in which bid-
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ders were asked to submit a technical proposal.33 After removing samples with only one
bidder and possibly misrecorded auctions, we are left 5,142 scoring auction samples.34

Table 1 reports the sample statistics. The mean of winners’ bids and engineers’ esti-
mated prices were approximately 423 or 477 million yen, respectively. The quality bids
ranged from approximately 130 through 200. The score is calculated as the quality bid
divided by the price bid (Inverse PQR). The bidder with the highest score wins the project.
To control for project size heterogeneity, we report as the score the observed score multi-
plied by the engineer’s estimate for each auction. In each auction, approximately ten firms
participated, on average.

[Table 1 about here.]

While the quality-bid point is given by a weighted sum of all non-price attributes, includ-
ing noise level, completion time, and bidder experience, our data records the (aggregated)
quality-bid point. The lower bound of the point is 100 for all auctions, and the upper bound
is 150 to 200, depending on the auction. The bidder proposing nothing has a quality bid
equal to 100. Table 2 reports the sample statistics by upper bound in quality.

[Table 2 about here.]

6.2 Specifications

6.2.1 Percentage bids

Let (Bi,t, qi,t) and B̄t denote the raw values of bidder i’s price–quality pair and the engi-
neer’s estimate of scoring auction t ∈ T . Under the inverse PQR scoring rule, the actual
score is given by qi,t/Bi,t. In our analysis, we use the normalized price, pi,t = Bi,t/B̄t,
in replace with Bi,t to control for project size heterogeneity. Let qpost and ppost denote the
contracted quality and normalized price. We assume that the buyer’s utility from auction t

33There are three types of scoring auctions: Technical Proposal Type (Kodo Gijutsu Teian Gata); Regular
Type (Hyojun Gata); and Simple Type (Kan-i Gata). We use Technical Proposal Type and Regular Type. In
the Simple Type, bidders are not asked to turn in any proposal; instead, the buyer evaluates the bidder’s past
experience and the technology levels as non-price attributes. Hence, we removed these auctions from our
samples. The Simple Type is used for relatively smaller projects.

34Misrecorded auctions include those in which quality or price bids are too low or too high (outside of the
feasible level for the quality bid or less than 10% or greater than 200% of the engineer’s estimate for the price
bid).
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is represented by:

wt =
ppostt

qpostt

. (24)

For estimation purposes, we use the inverse of the score as bidder i’s score.35 The associ-
ated scoring rule is given by S(pi,t, qi,t) = pi,t/qi,t. Figure 2 shows the histogram of si,t for
the auction samples.

[Figure 2 about here.]

Finally, while we control the heterogeneity in project size by normalizing the price bid with
the engineer’s estimates, our sample still involves heterogeneity in the number of bidders
and the quality upper bound. Thus, the covariate x that we use is the quality upper bound.

6.2.2 Cost function

Given the data, we assume that L = K = 2. We use the following polynomial cost
function:

C(q,θ) =

{
(q + θ1)

β
+ θ0 if q > −θ1

θ0 otherwise,
(25)

where β is 2, 3, or 4 for the robustness of our analysis.

6.3 Estimation of θ

Let si,t = S(pi,t, qi,t). Given that P = pi,t and Ps = qi,t under the PQR scoring rule, we

have b =
(
pi,t − qi,t(1− Ĝ(si,t, nt, xt))/[(nt − 1)ĝ(si,t, nt, xt)], si,t

)T
. Hence, we have

(
θ̂0, θ̂1

)
=

(
pi,t − qi,t

1

nt − 1

1− Ĝ(si,t, nt, xt)

ĝ(si,t, nt, xt)
−
(
si,t
β

) β
β−1

,

(
si,t
β

) 1
β−1

− qi,t

)
.

For estimating Ĝ and ĝ, we use the triweight kernel:

K(u) =
35

32
(1− u2)31(|u| < 1).

35Recall that the outcome of the scoring auction is invariant to any monotone transformation of the scoring
rule.
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As usual, the bandwidths hs and hx are given by the so-called rule of thumb; hs =

ηs(
∑T

t=1 nt)
−1/5 and hx = ηx(

∑T
t=1 nt)

−1/5, where ηs = 1.06ρ̂s and ηx = 1.06ρ̂x, re-
spectively. Both ρ̂s and ρ̂x are sample standard deviations of the normalized scoring bids
and the observed covariate, respectively. The following figures are the estimated joint den-
sity functions assuming that the cost function is the quadratic polynomial (β = 2). Axes x
(horizontal) and y (depth) represent θ0 and θ1, respectively.

[Figure 3 about here.]

6.4 Counterfactual analyses

6.4.1 Second-price vs. FS auctions

One of the appeals of scoring auctions is that both the auctioneer and the bidders in-
crease welfare from a more complete comparison of suppliers’ attributes.(See, e.g., Mil-
grom (2004).) Our first empirical examination, thus, measures the gains from the use of
scoring auctions.

We create a series of counterfactual second-price auctions, in each of which the quality
level is fixed at q̄ = 110, 120, and 130. Using the estimated cost functions, we point-
estimate bidders’ costs at any quality standard, q̄. We then select the second-lowest cost as
p̂postt , the contract price of the counterfactual second-price auctions. The buyer’s utility in
the price-only auction is given according to (24) aswt = p̂postt /q̄t. Because the bidder’s cost
functions are differentiated by β = 2, 3, and 4, fifteen types of counterfactual second-price
auctions are generated.

Table 3 compares the buyer’s utilities in the observed FS auction versus a series of coun-
terfactual price-only auctions. The buyer’s expected gains depend crucially on q̄. While the
buyer’s utilities would drop by more than seven percent if q̄ = 110, the drop would be trivial
(merely .96 percent, for instance, if q̄ = 120 with the Quadratic cost function). Consid-
ering the buyer’s costly process of evaluating the quality bids in the scoring auction, the
results indicate that a simple low-price auction still performs well, as long as the buyer can
appropriately design the quality standard of the price-only auction.

Table 4 reports the winning bidders’ (normalized) expected payoffs, which is computed
by taking the average of the estimated (nominal) payoff divided by the engineer’s esti-
mate for each auction. The results show that the bidder’s payoff also varies, depending on
the quality standard in the price-only auction. Note that the positive relationship between
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payoffs and quality standards is due to greater information rents left over to bidders, as
suggested by Che (1993).

[Table 3 about here.]

[Table 4 about here.]

The results do not take into account the bidder’s participation decision. If bidders earn
more in the scoring auction than the price-only auction, scoring auctions can encourage
bidders’ participation. On the other hand, if the bid preparation costs are significantly
greater in a scoring auction than in a price-only auction, then participation is discouraged.
Given the buyer’s small gain from the scoring auction in comparison to the price-only
auction with q̄ = 160, our results suggest that a price-only auction with an appropriate q̄ is
still a good mechanism to allocate the government contract.

6.4.2 SS vs. FS auctions

We test Proposition 4: the introduction of the SS auction lowers the expected s. We create
counterfactual SS auction samples from the estimated parameters, θ̂i,t. Then, we measure
the difference between FS and SS auctions regarding the buyer’s and bidders’ utilities and
the contract quality level.36

Table 5 reports the buyer’s expected utility, E(wt). The SS auction lowers the values
by .71 to .72 percent, which is in line with the theoretical prediction. Note that the variance
is larger in the SS auction, which some buyers may not prefer.

Table 6 reports the expectation of the contracted quality. The quality level declines,
on average, by approximately .05 to .06 percents if SS auctions were used. This suggests
that the higher expected s is due to excessive quality proposal in the FS auction. In fact,
Table 7 shows that bidders earn larger payoffs in the FS auction, on average (about 2.3
percent). This suggests that, while the FS auction would result in a higher expected score
(or, equivalently, lower buyer utilities), the drawback can be remedied by more intensified
competition as the FS auction is more profitable for bidders under the PQR scoring rule.

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]
36The way to generate counterfactual SS auction samples is available in Online Appendix III.
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6.4.3 QL vs. PQR rules

Finally, we examine the impact of the change in the scoring rule. The QL rules that we
consider are given as

S(p, q) = p− ϕ(β)q, (26)

for some ϕ > 0. We choose ϕ(β) ≈ .0058, for example, for the auctions with the quality
upper bound is equal to 160. Using ϕ(β), we predict the expected winning score in the
QL scoring auction, which is given by the mean of the second-lowest pseudotype due to
the expected score equivalence. In Online Appendix IV, we show the way to generate the
counterfactual QL auction samples.

Table 8 reports the buyer’s gain from the counterfactual QL scoring auctions. In all
cases, utilities rise by .7 percent, on average. Note that standard deviations are larger in
our counterfactual QL scoring auctions because we use the SS auction to generate the QL
scoring auction samples.

Table 9 shows the winning bidder’s profits. The profits drop by about 3.8 to 4.0 percent.
This suggests that, using an appropriate QL scoring rule, the buyer can extract more rents
from bidders.

[Table 8 about here.]

[Table 9 about here.]

Table 10 compares the contracted quality levels in the observed FS auction and in simulated
QL scoring auctions. The quality bids rise by approximately .04 to .06 percent under the
well-designed QL scoring rule. This suggests that the QL scoring rule can limit the winner’s
informational rent while promoting higher quality proposals.

[Table 10 about here.]

7 Conclusion

In this research, we provide a method to analyze the scoring auction theoretically and
econometrically. Allowing a broad class of scoring rules, we demonstrate the existence and
the characterization of a symmetric monotone equilibrium of the scoring auction. Based
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on our theoretical model, we then examine identification of the scoring auction model.
Furthermore, we take our framework to the scoring auction data to quantify the impact of
the use of the scoring auction and the change in design of scoring auctions.

We restrict attention to the independent scoring rule, in which the bidder’s score de-
pends only on his or her price and quality bids. In practice, score may depend on other bid-
ders’ price and quality bids as well (an interdependent scoring rule). Albano et al. (2009)
suggest that the interdependent scoring rule may cause a significant efficiency loss, (ap-
proximately 11 percent in their estimation). Interesting future research may be to analyse
the scoring auction with an interdependent scoring rule. A counterfactual analysis would
quantify the expected score difference between the FS and SS auctions with an interdepen-
dent scoring rule.
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Appendix A Augmentation of Type Space Dimension

For simplicity we focus on the case in which the original type space is one dimensional:
θ1 ∈ Θ. Suppose that C(q, θ1) satisfies Assumptions 1 and 2. Then, define an alternative
cost function:

C+(q,θ) = C(q, θ1) +M1θ
1 + θ0,

where θ = (θ0, θ1) and

M1 = max
s,θ1

∣∣∣∣− u(s, θ1)

us(s, θ1)
Cqθ1(q(s, θ

1), θ1)qs(s, θ
1)

∣∣∣∣ .
Note that for all q and θ1, we have

C(q, θ1) = C+(q,θ),

Cq(q, θ
1) = C+

q (q,θ),

Cqq(q, θ
1) = C+

qq(q,θ)
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if θ0 +M1θ
1 = 0. Moreover, C+(·) satisfies Assumption 1 because we have

C+
θ1(q,θ) = Cθ1(q, θ

1) +M1 > 0,

C+
qθ1(q,θ) = Cqθ1(q, θ

1) = 0.

Therefore, if θ0 is distributed subject to θ0 + M1θ
1 = 0, the model based on cost func-

tion C+(q,θ) is equivalent to the original scoring auction model. We can thus adopt the
alternative cost function, C+(·), to analyze an equilibrium without any loss.

We show that the single-crossing property holds under cost function C+(q,θ): Define
u+(s,θ) := maxq P (s, q)− C+(q,θ). Note that

u+(s,θ) = u(s, θ1),

u+s (s,θ) = us(s, θ
1)(= Psq(s, ·)),

q(s,θ) = q(s, θ1)

if θ0 +M1θ
1 = 0. Therefore, we have

− ∂

∂θ1
u+(s,θ)

u+s (s,θ)

=
1

u+s (s,θ)

[
−u

+(s,θ)

u+s (s,θ)
C+

qθ1(q(s,θ),θ)qs(s,θ) + C+
θ1(q(s,θ),θ)

]
=

1

us(s,θ)

[
− u(s, θ1)

us(s, θ1)
Cqθ1(q(s, θ

1), θ1)qs(s, θ
1) +M1 + Cθ1(q(s, θ

1), θ1)

]
= 1

us(s, θ1)
Cθ1(q(s, θ

1), θ1)

> 0

if θ0 +M1θ
1 = 0. Note that qs(s,θ) = qs(s, θ

1) holds because

qs(s,θ) = Psq(s, q(s,θ))/(Cqq(q(s,θ),θ)− Pqq(s, q(s,θ))),

= Psq(s, q(s, θ
1))/(Cqq(q(s, θ

1), θ1)− Pqq(s, q(s, θ
1))),

= qs(s, θ
1)

if θ0 +M1θ
1 = 0.
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Appendix B Identifiable Cost Functions (Example)

We provide several examples of cost functions that satisfy Assumption 4.

Additively Separable Functions

We first consider an additively separable cost function:

C(q,θ) ≡ θ0 +
L−1∑
ℓ=1

cℓ(qℓ, θℓ), (A-1)

with cℓ
θℓ
(·) > 0 for all k = 0, . . . , L−1 and ℓ = 1, . . . , L−1. Because c0(θ0) and cℓ(qℓ, θℓ)

are continuous functions of qℓ and θℓ, they attain maximum and minimum values on Q×Θ.
Define M and m as follows:

M =
L−1∑
ℓ=1

max
qℓ,θℓ

|cℓθℓ(q
ℓ, θℓ)|+ 1, m = min

θ0
|c0θ0(θ0)|.

Then, this cost function satisfies Assumption 4 with

Γ−1 =

(
M/m 0

0 IL−1

)
,

where IL−1 is the identity matrix of size L− 1.

A Cobb-Douglas form with fixed cost

Consider the following cost function:

C(q,θ) = θ0 + (q1)θ
1 · · · (qL−1)θ

L−1

.

In this example, we assume that qℓ > 1 and θℓ > 0 for each ℓ ∈ {0, ..., L− 1}.
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The determinant of Jacobian matrix of C(q,θ), det Jθ is

det Jθ = det


c0θ0(θ

0)
∏L

ℓ=1(q
ℓ)θ

ℓ
ln q1 · · ·

∏L
ℓ=1(q

ℓ)θ
ℓ
ln qL

0 (1 + θ1 ln q1)f1(q,θ) · · · θ1 ln qLf1(q,θ)
... . . . . . . ...
0 θL ln q1fL(q,θ) · · · (1 + θL ln qL)fL(q,θ)



∝ det


1 + θ1 ln q1 θ1 ln q2 · · · θ1 ln qL

... . . . . . . ...
θL ln q1 · · · θL ln qL−1 1 + θL ln qL,


where fk(q,θ) = (q1)θ

1 · · · (qk−1)θ
k−1

(qk)θ
k−1(qk+1)θ

k+1
(qL)θ

L . We show that det Jθ is
non-singular. Consider the following matrix:

A ≡


1

ln q1
+ θ1 θ1 · · · θ1

... . . . . . . ...
θL · · · θL 1

ln qL
+ θL,

 .

Suppose that a1, ...,aL are linearly dependent, where ai is i-th column vector of A. Then,
there exists (y1, ..., yL)′ ̸= 0 such that

y1a1 + · · · yLaL = 0.

Since ai = θ + 1
ln qi

ei, where ei is the unit vector whose i-th element is one, we have

−θ

L∑
i=1

yi =


y1

ln q1

...
yL

ln qL

 .

Therefore, yi = −θi ln qi
∑L

i=1 yi holds for each i ∈ {1, ..., L}.37 Suppose
∑L

i=1 yi < 0.
Then, yi must be positive for each i ∈ {1, ..., L} since ln qi > 0 and θi > 0. Therefore,∑L

i=1 yi > 0. Analogously, suppose
∑L

i=1 yi > 0. Then, yi must be negative for each
i ∈ {1, ..., L}. Therefore,

∑L
i=1 yi < 0. The assumption of linearly dependence causes a

contradiction. Thus, a1, ...,aL are linearly independent. In other words, A is non-singular.

37Note that
∑L

i=1 yi is not zero. If
∑L

i=1 yi = 0, yi = 0 for each i ∈ {1, ..., L}. This result contradicts
(y1, ..., yL)

′ ̸= 0.
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Since det Jθ =
∏L

l=1
1

ln ql
detA, Jθ is also non-singular. Note that when the Jacobian

matrix of C̃(q, θ̃), Assumption 4 is satisfied. Therefore, the cost function in this example
satisfies Assumption 4 as desired.

Appendix C Proof of Proposition 1

Proof. Fix a bidder with type θ and let Ψ(s(2)) be an arbitrary distribution of the lowest
rival’s score. Then, the bidder’s optimal choice in s is given by the solution of

max
s

∫ ∞

s

u(τ,θ)dΨ(τ).

Note that u(s,θ) is strictly increasing in s and u(z(θ),θ) = 0. Hence, u(s,θ) S 0 for
s S z(θ), respectively. Therefore, for any s,∫ ∞

z(θ)

u(τ,θ)dΨ(τ)−
∫ ∞

s

u(τ,θ)dΨ(τ) =

∫ s

z(θ)

u(τ,θ)dΨ(τ) = 0.

This shows that bidding z(θ) is optimal for the bidder. Since Ψ(s(2)) is arbitrary, bidding
z(θ) is a weakly dominant strategy for all types.

Appendix D Proof of Lemma 1

Proof. Let Θ̃ denote the bidder’s original type space, and let θ̃ denote an element of the
set. In addition, let C̃(q, θ̃) denote the bidder cost function that satisfies Assumptions 1
through 3, and let ũ(s, θ̃) and q(s, θ̃) denote the bidder induced utility and the optimal
choice in quality in the second-step optimization, respectively.

Then, ũ(s, θ̃) is supermodular if and only if

− ∂

∂θ̃k
ũ(s, θ̃)

ũs(s, θ̃)

=
1

ũs(s, θ̃)

[
ũ(s, θ̃)

ũs(s, θ̃)

(
L−1∑
ℓ=1

−C̃qℓθ̃k(q(s, θ̃), θ̃)q
ℓ
s(s, θ̃)

)
+ C̃θ̃k(q(s, θ̃), θ̃)

]
> 0. (A-2)

The inequality does not hold in general, because the sign of the first term inside the square
bracket can be negative. This means that the bidder’s strategy may not be monotone, i.e.,
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the score chosen by the bidder in the first-step optimization may not rise as its type rises
along any dimension of its type space. Nonetheless, we show below that Assumption 3
always gives a way to align the type space appropriately so that the bidder’s action is
monotone in any dimension of its type space.

Let us then define

Mk = max
s,θ̃

∣∣∣∣∣ ũ(s, θ̃)ũs(s, θ̃)

(
L−1∑
ℓ=1

−C̃qℓθ̃k(q(s, θ̃), θ̃)q
ℓ
s(s, θ̃)

)∣∣∣∣∣ (A-3)

for all k = 1, . . . , K − 1 and consider a K times K nonsingular matrix:

M =



1 −M1 −M2 · · · −MK−1

0 1 0 · · · 0

0 0 1 . . . 0
... . . . . . . . . . ...
0 . . . 0 0 1


.

If we transform θ̃ by M, we have

Mθ̃ =


θ̃0 −

∑K−1
k=1 Mkθ̃

k

θ̃1

...
θ̃K−1

 .

Given that C̃(q, ·) is quasilinear, C̃(q,Mθ̃) is well defined as:

C̃(q,Mθ̃) = C̃(q, θ̃)−
K−1∑
k=1

Mkθ̃
k. (A-4)

Let θ = Mθ̃. We then denote by Θ a new type space defined as

Θ := [min θ0,max θ0]× · · · × [min θK−1,max θK−1], (A-5)

Given that Mk > 0 for all k = 1, . . . , K − 1, we have min θ0 < min θ̃0 and max θ0 =

max θ̃0. Moreover, we have [min θk,max θk] = [min θ̃k,max θ̃k] for all k = 1, . . . , K − 1.
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Hence, we observe that

Θ = [min θ0,max θ̃0]× [min θ̃1,max θ̃1]× · · · × [min θ̃K−1,max θ̃K−1],

meaning that Θ is obtained by stretching Θ̃ along its zero dimension downward. Note that
Θ is a superset of MΘ̃. On the other hand, because C̃(q, ·) is quasilinear, C̃(q,θ) is well
defined for all θ ∈ Θ (even for any θ ∈ Θ\MΘ̃).

Now, we define a cost function on the new type space as:

C(q,θ) := C̃(q,M−1θ) +
K−1∑
k=1

Mkθ
k.

Note that, for all θ ∈ Θ, C(q,θ) is well defined. Moreover, because C̃(q,Mθ̃) satisfies
(A-4), we have

C(q,Mθ̃) = C̃(q, θ̃) (A-6)

for all θ̃ ∈ Θ̃.
Then, the Jacobian matrix of (C(q,θ), Cq1(q,θ), . . . , CqL−1(q,θ))T with respect to θ

is given by:

J(θ;q) = J̃θ̃(θ̃;q)M−1,

=


1 M1 + C̃θ̃1(q, θ̃) · · · MK−1 + C̃θ̃K−1(q, θ̃)
0 C̃q1θ̃1(q, θ̃) · · · C̃q1θ̃K−1(q, θ̃)
...

... . . . ...
0 C̃qL−1θ̃1(q, θ̃) · · · C̃qL−1θ̃K−1(q, θ̃).

 .

Let u(s,θ) denote the induced utility defined on the new type space as

u(s,θ) := max
q∈Q

P (s,q)− C(q,θ).

Note that u(s,θ) ≡ ũ(s, θ̃). This implies that us(s,θ) = us(s,θ). Moreover, we see that

argmax
q
P (s,q)− C(q,θ) = argmax

q
P (s,q)− C̃(q, θ̃) ≡ q(s, θ̃).
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Thus, we denote by q(s,θ) = q(s, θ̃) the solution to the second-step optimization.
Then, we see that u(s,θ) is log-supermodular:

− ∂

∂θk
u(s,θ)

us(s,θ)

=
1

us(s,θ)

[
u(s,θ)

us(s,θ)

(
L−1∑
ℓ=1

−Cqℓθk(q(s,θ),θ)qℓs(s,θ)

)
+ Cθk(q(s,θ),θ)

]

=
1

ũs(s, θ̃)

[
ũ(s, θ̃)

ũs(s, θ̃)

(
L−1∑
ℓ=1

−C̃qℓθ̃k(q(s, θ̃), θ̃)q
ℓ
s(s, θ̃)

)
+Mk + C̃θ̃k(q(s, θ̃), θ̃)

]

= C̃θ̃k(q(s, θ̃), θ̃)
ũs(s, θ̃)

> 0

for all k = 1, . . . , K − 1, and

− ∂

∂θ0
u(s,θ)

us(s,θ)
=
C̃θ̃0(q(s, θ̃), θ̃)

ũs(s, θ̃)
> 0.

Appendix E Proof of Lemma 2

Proof. Let Θ̃ and θ̃ denote the original type space and an element in the set, respectively,
as in Appendix D. In addition, let C̃(q, θ̃) denote the bidder cost function that satisfies
Assumptions 1 through 3, and let ũ(s, θ̃) and q(s, θ̃) denote the bidder induced utility and
the optimal choice in quality in the second-step optimization, respectively. We then denote
by Θ̃(s, x) the set of bidder types for whom the value of s − ũ(s, θ̃)/ũs(s, θ̃) is identical
and the cumulative distribution of s− u(s, ·)/us(s, ·) is equal to x:

Θ̃(s, x) =

{
θ̃ ∈ Θ̃

∣∣∣∣∣ξ
(
s− u(s, θ̃)

us(s, θ̃)
; s

)
= x

}
, (A-7)

Then, define a type space: Θ := [min θ0,max θ̃0]×[min θ̃1,max θ̃1]×· · ·×[min θK−1,max θ̃K−1]

as in (A-5), where min θ0 = min(θ̃0 −
∑K−1

k=1 Mkθ̃
k) and Mk is given by (A-3). Then, type

space Θ is a superset of Θ̃. It follows that f(θ) = 0 for all θ ∈ Θ\Θ̃.
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Now we define

Θ+(x, s) =

{
θ ∈ Θ

∣∣∣∣κ(x, s) = s− u(s,θ)

us(s,θ)

}
. (A-8)

The set collects a set of types in Θ for whom the value of s − u(s, ·)/us(s, ·) is identical
and the cumulative distribution is equal to x, regardless of whether the realization of the
type is positive or zero. Hence, Θ+(x, s) expands the notion of Θ̃(x, s) to the new type
space, Θ, defined in (A-5). Specifically, Θ+(x, s) includes Θ̃(x, s) because κ(x, s) ≡
s − u(s,θ)/us(s,θ) if θ ∈ Θ̃(x, s). Set Θ+(x, s) also includes θ ∈ Θ\Θ̃ such that
s − u(s, θ̃)/us(s, θ̃) = κ(x, s). As seen in Appendix D, u(s, ·)/us(s, ·) is continuous and
strictly monotone in θ. Hence, Θ(x, s) is nonempty.

We first show that for all x ∈ [0, 1] and for all s1, s2 ∈ S ,

Θ+(x, s1) ∩Θ+(x, s2)

is nonempty.
If s1 = s2, the statement is true trivially. To see the case that s1 ̸= s2, suppose, by

contradiction, that Θ+(x, s1) ∩ Θ+(x, s2) is empty if s1 ̸= s2. Then, define LΘ(x, s) =

{θ|κ(x, s) = s − u(s,θ)/us(s,θ))}. That is, LΘ(x, s) denotes the lower contour set of θ
such that, for all θ ∈ LΘ(x, s), s − u(s,θ)/us(s,θ) is less than or equal to κ(x, s). Note
that the log-supermodularity of u(s,θ) implies that if θ is in LΘ(x, s), so is any θ′ ≤ θ.
More formally, (θ ∈ LΘ(x, s) and θ′ ≤ θ) ⇒ (θ′ ∈ LΘ(x, s)) for all s and x.38

Note that (min θ0, . . . ,min θK−1) is a common element for bothLΘ(x, s1) andLΘ(x, s2).
Therefore, if Θ+(x, s1) ∩Θ+(x, s2) is empty, then the LΘ(x, s1) is either the strict subset
or superset of LΘ(x, s2):

Case 1: LΘ(x, s1) $ LΘ(x, s2), or

Case 2: LΘ(x, s1) % LΘ(x, s2),

where % and $ denote strict superset and strict subset.
Consider Case 1. Note that sets LΘ(x, s1) ∩ Θ̃ and LΘ(x, s2) ∩ Θ̃ are not identical. If

they are, Θ+(x, s1) and Θ+(x, s2) would have a common element. Hence, LΘ(x, s1)∩Θ̃ $
38This means that Θ(x, s) is the frontier of LΘ(x, s) as being similar in spirit to the production possibility

frontier of the production set in the firm theory. The log-supermodularity of u(s,θ) plays the same role as
the free-disposal assumption.
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LΘ(x, s2) ∩ Θ̃. It follows that (LΘ(x, s2)\LΘ(x, s1)) ∩ Θ̃ is nonempty. Then, we have

x =

∫
{θ̃∈LΘ(x,s2)}

f(θ̃)dθ̃

=

∫
{θ̃∈LΘ(x,s1)}

f(θ̃)dθ̃ +

∫
{θ̃∈LΘ(x,s2)\LΘ(x,s1)}

f(θ̃)dθ̃

= x+

∫
{θ̃∈LΘ(x,s2)\LΘ(x,s1)}

f(θ̃)dθ̃

> x.

The last inequality holds because (LΘ(x, s2)\LΘ(x, s1)) ∩ Θ̃ is nonempty and because
f(θ) > 0 for all θ ∈ (LΘ(x, s2)\LΘ(x, s1)) ∩Θ. Therefore, we have a contradiction.

Obtaining a contradiction in Case 2 is analogous. In Case 2, LΘ(x, s2) is a strict subset
of LΘ(x, s1). Then, we have a contradiction:

x =

∫
{θ̃∈LΘ(x,s1)}

f(θ̃)dθ̃

=

∫
{θ̃∈LΘ(x,s2)}

f(θ̃)dθ̃ +

∫
{θ̃∈LΘ(x,s1)\LΘ(x,s2)}

f(θ̃)dθ̃

= x+

∫
{θ̃∈LΘ(x,s1)\LΘ(x,s2)}

f(θ̃)dθ̃

> x.

Therefore, for all x ∈ [0, 1] and for all s1, s2 ∈ S , there exists θ ∈ Θ+(x, s1) ∩Θ+(x, s2).
Next, we show the differentiability of κ(·). Given the previous result, we see that there

exists θ ∈ Θ+(x, s) ∩ Θ+(x, s + h) for some h ∈ R such that s + h ∈ S . Hence, there
exists θ that satisfies

κ(x, s) ≡ s− u(s,θ)

us(s,θ)
, and

κ(x, s+ h) ≡ s+ h− u(s+ h,θ)

us(s+ h,θ)

simultaneously for some h ̸= 0. Hence, we have

κ(x, s+ h)− κ(x, s)

h
=

[s+ h− u(s+ h,θ)/us(s+ h,θ)]− [s− u(s,θ)/us(s,θ)]

h
.
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Given that u(s,θ)/us(s,θ) is differentiable with respect to s, the mean-value theorem im-
plies that there exists s′ ∈ [s, s+ h] such that

[s+ h− u(s+ h,θ)/us(s+ h,θ)]− [s− u(s,θ)/us(s,θ)]

h
= 1− ∂

∂s

u(s′,θ)

us(s′,θ)
.

In the limit of h → 0, θ ∈ Θ+(x, s) ∩Θ+(x, s + h) still exists that satisfies this equality.
Therefore, we have

d

ds
κ(x, s) = lim

h→0

[s+ h− u(s+ h,θ)/us(s+ h,θ)]− [s− u(s,θ)/us(s,θ)]

h

= 1− ∂

∂s

u(s,θ)

us(s,θ)
.

This shows that κ(x, s) is differentiable with respect to s for all x ∈ [0, 1] and for all s in
the interior of S.

Appendix F Existence of a unique solution to (10)

Proof. Rewrite expression (10):

1−G(s)

(n− 1)g(s)
= s− κ(G(s), s). (A-9)

If G(s) is strictly increasing, G(s) has its inverse. Then, let y(·) denote the inverse of G(·).
Then, from (A-9), we obtain an ordinary differential equation:{

y′(x) =
n− 1

1− x
ζ(x, y(x)) with y(1) = s̄. (A-10)

where ζ(x, y(x)) = y(x)− κ(x, y(x)).
The reason that the ordinary differential equation has a unique solution is given as

follows.
Let sr < s̄ ≡ z(θ̄), and let xr = Pr{z(θ) 5 sr}. Then, consider the following

differential equation

y′(x) =
n− 1

1− x
ζ(x, y(x)) with y(xr) = sr. (A-11)
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First, the right-hand side is differentiable with respect to s for all x ∈ [0, xr]. This is
because, by Lemma 2, κ(x; s) is differentiable with respect to s for all x ∈ [0, xr]. Second,
κ(x; s) is bounded for all x ∈ [0, xr] and s ∈ S . These ensure that the right-hand side of
(A-11) is Lipschitz continuous with respect to s ∈ S for any x ∈ [0, xr]. Then, the standard
argument of the ordinary differential equation applies to see that y(·) is a unique solution
to (A-11).

It is easy to see that y′(xr) = 0 because κ(xr, sr) = t(sr) = 0. In addition, y′(·) is
strictly positive and bounded for all x ∈ [0, xr]. It follows that G(·) = y−1(·) satisfies
(Guess). Thus, there uniquely exists G(·) that satisfies (Guess) and (A-9).

Note that this argument holds even if sr is equal to s̄, i.e., the least efficient supplier,
θ̄ is indifferent between bidding and staying out. In this case, the right-hand side of (A-
11) goes to infinity as x → 1 for some s and fails to meet the Lipschitz condition.39 The
differential equation has multiple solutions for three initial values of y(1): −∞, s̄, and ∞.
If y(1) is negative infinite, then y(x) is decreasing at some x close to 1. Hence, it is not a
monotone equilibrium. If y(1) is positive infinite, y(x) is not an equilibrium given that sr

is finite.

Appendix G An Analysis on the Expected Score Ranking

Observe the second derivative of u(s,θ) with respect to s as

uss(s,θ) =Pss(s,q) +
L−1∑
ℓ=1

Psqℓ(s,q(s,θ))qℓs(s,θ). (A-12)

The first term is zero if score is linear in price.40 The term is positive or negative if the
marginal contribution of price to score is increasing or decreasing. Thus, the term is consid-
ered to capture cardinality of score. Suppose, for instance, that a buyer favors a substantial
quality improvement over deep price discounts. If the buyer uses a scoring function with
Spp > 0 (and Spqℓ < 0), this term is negative. If a buyer transforms a scoring function with
a nonlinear monotone function, the sign of this term may flip.

A noticeable feature of the scoring auction is that the sign of the second term is always
nonnegative. More specifically, if the second-step maximization is interior, the term is

39The argument follows Matthews (1995).
40The primitive expression of this term is: Pss(s,q) = −Spp(P (s,q),q)/Sp(P (s,q),q)3. Hence, the

term is zero if score is linear in price, i.e., Spp = 0.
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given by41

L−1∑
ℓ=1

Psqℓ(s,q(s,θ))qℓs(s,θ)

= −
L−1∑
ℓ=1

L−1∑
m=1

[
Pqℓqm(s,q(s,θ))− Cqℓqm(q(s,θ),θ)

]
qms (s,θ)q

ℓ
s(s,θ) = 0.

The inequality is due to the strict concavity of P (s,q)− C(q,θ) in q in the interior of Q.
The term captures the extent to which the optimal adjustment in q contributes to the

increase in the induced utility. This term is nonnegative if the bidder can optimize non-
price attributes without any restriction. A special case arises in the QL scoring rule (i.e.,
the scoring rule with Psqℓ = 0) in which the optimal q is constant for any choice in s – i.e.,
(q1s , q

2
s , . . . , q

L−1
s )T = 0. Therefore, the term is zero if and only if Psqℓ = 0 for all ℓ.42. For

any scoring rule in which (q1s , q
2
s , . . . , q

L−1
s )T ̸= 0, we see that this term is strictly positive.

We then claim the following proposition, focusing on the scoring rule with Spp = 0.

Proposition 4 (Expected Score ranking). Suppose that the score function is linear in p.

Then, the expected score in the FS auction is weakly larger than that in the SS auction.

Moreover, the expected scores are identical if and only if the scoring rule is QL.

Proof. Using (12), we observe the expected score in the FS auction as:

E[σI(θ(1))] =

∫ 1

0

{∫ 1

x

(n− 1)(1− x̃)n−2

(1− x)n−1
κ(x̃, y(x̃))dx̃

}
(1− x)n−1dx

=

∫ 1

0

∫ 1

x

(n− 1)(1− x̃)n−2κ(x̃, y(x̃))dx̃dx

where y(x) = G−1(x).
To examine the expected score in the SS auction, consider the cumulative distribution

41Differentiating Pqℓ(s,q(s,θ))− Cqℓ(q(s,θ),θ) = 0 with respect to s gives

Psqℓ(s,q(s,θ)) +
L−1∑
m=1

[
Pqℓqm(s,q(s,θ))− Cqℓqm(q(s,θ),θ)

]
qms (s,θ) = 0 (A-13)

for all ℓ = 1, . . . , L− 1. Multiplying by qℓs(s,θ) and summing over ℓ = 1, . . . L− 1 gives the expression.
42(If part) Obvious. (Only if part) Given that the Hessian matrix of P (s,q) − C(q,θ) is full-rank,

(q1s , q
2
s , . . . , q

L−1
s )T that satisfies (A-13) is zero if (Psq1 , Psq2 , . . . , PsqL−1) = 0.
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function of z(θ):

ψ(z) =

∫
{θ|z(θ)5z}

f(θ)dθ.

Let x = ψ(z). Given that z(θ) is continuous and that f(θ) > 0 for all θ ∈ Θ, ψ(z) is
continuous and strictly increasing. Hence, ψ−1(x) exists. Now, let z(x) := ψ−1(x).

Note that x is uniformly distributed on [0, 1].43 Then, the expected score in the SS
auction is

E[σII(θ(2))] =

∫ 1

0

{∫ 1

x

(n− 1)(1− x̃)n−2

(1− x)n−1
z(x̃)dx̃

}
(1− x)n−1dx.

=

∫ 1

0

∫ 1

x

(n− 1)(1− x̃)n−2z(x̃)dx̃dx.

Hence, E[σI(θ(1))] S E[σII(θ(2))] if and only if κ(x, y(x)) S z(x).
Then, consider the following two sets of types for some x ∈ [0, 1]:

Θ(x, y(x)) =

{
θ

∣∣∣∣ξ(y(x)− u(y(x),θ)

us(y(x),θ)
; y(x)

)
= x

}
,

Θ(x, z(x)) = {θ |ψ (z(x)) = x} .

Recall that z(θ) is continuous and strictly increasing (Subsection 4.2). Hence, by the same
token as in the proof of Lemma 2, we find a bidder type: θ ∈ Θ(x, y(x)) ∩Θ(x, z(x)).

Given the fact that the second term in expression (A-12) is nonnegative, u(s,θ) is
weakly convex in s if Spp(·) = 0. Then, we have

u(s,θ) = u(s,θ)− u(z(θ),θ) 5 us(s,θ)(s− z(θ)).

Thus, for any θ ∈ Θ(x, y(x)) ∩Θ(x, z(x)), we have

κ(x, y(x)) ≡ s− u(s,θ)

us(s,θ)
= z(θ) ≡ z(x).

Hence, the expected score is not less in the FS than in the SS auction. Note that uss(·) = 0

for all s and θ if and only if Psq(·) = 0 for all s and q, i.e., the QL scoring rule.
43Because z(x) is strictly increasing, the cumulative distribution of z(·) at z(x) is equal to x. By construc-

tion, ψ(z(x)) = ψ(ψ−1(x)) = x. This implies that the cumulative distribution function of x is x.
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Appendix H Proof of Lemma 3

Case in which K = L

Proof. First, we show that Assumption 4 implies that A(θ;q) is locally invertible for any
θ ∈ Θ and q ∈ Q.

Fix q in Q. Let Γ denote a nonsingular matrix, and let θ̃ := Γθ. Let intΘ denote the
interior of Θ. Then, there exists ϵ > 0 such that Bϵ(θ) := {θ′|d(θ′,θ) < ϵ} is in intΘ.
Then, ΓBϵ(θ) is also open in Θ. Then, for any θ ∈ intΘ, let Jθ(θ;q) denote the Jacobian
matrix of A(θ;q) with respect to θ; namely:

Jθ(θ;q) =


Cθ0(q,θ) Cθ1(q,θ) · · · CθK−1(q,θ)
Cq1θ0(q,θ) Cq1θ1(q,θ) · · · Cq1θK−1(q,θ)

...
... . . . ...

CqL−1θ0(q,θ) CqL−1θ1(q,θ) · · · CqL−1θK−1(q,θ)

 .

Then, C̃(q, θ̃) := C̃(q,Γ−1θ̃) is well defined in the neighborhood of θ̃.
Now, let Ã(θ̃;q) := (C̃(q, θ̃), C̃q1(q, θ̃), . . . , C̃qL−1(q, θ̃))T. Then, the Jacobian matrix

of Ã(θ̃;q) at θ is given by

J̃θ̃(θ̃;q) = Jθ(θ;q)Γ−1,

=


C̃θ̃0(q, θ̃) C̃θ̃1(q, θ̃) · · · C̃θ̃K−1(q, θ̃)
C̃q1θ̃0(q, θ̃) C̃q1θ̃1(q, θ̃) · · · C̃q1θ̃K−1(q, θ̃)

...
... . . . ...

C̃qL−1θ̃0(q, θ̃) C̃qL−1θ̃1(q, θ̃) · · · C̃qL−1θ̃K−1(q, θ̃)

 .

Then, J̃θ̃(θ̃;q) is a strictly diagonally dominant matrix by Assumption 4. Therefore,
J̃θ̃(θ̃;q) is nonsingular by the Levy-Desplanques theorem. Note that Γ−1 is nonsingular by
definition. Thus, Jθ(θ;q) is also nonsingular.

The above argument holds for all θ ∈ intΘ and for all q ∈ Q. Therefore, Jθ(θ;q) is
nonsingular for all θ ∈ intΘ and for all q ∈ Q.

Second, we show that the nonsingularity of Jθ implies Assumption 4. Suppose that
Jθ(θ;q) is nonsingular for all θ in the interior of Θ and q ∈ Q. Then, set Γ := Jθ(θ;q)
for all q and θ so that we have JθΓ

−1 = IL. Then, Assumption 4 is satisfied.
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Case in which K < L

Proof. As before, we first show that Assumption 4 implies the local invertibility of A(·).
Let D denote an L× (L−K) matrix such that its ℓth column with ℓ = {K, . . . , L− 1} is
given by

D =



0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

K−1∑
k=0

CqKθk + ϵ 0 0 · · · 0

0
K−1∑
k=0

CqK+1θk + ϵ 0 · · · 0

0 0
. . . 0

...
... . . .

0 0 0
∑K−1

k=0 CqL−1θk + ϵ



,

with some ϵ > 0. Then, for some z ∈ RL−K , define Â(θ, z;q) := A(θ;q) + Dz.
Now, let Ĵ(θ,z) denote the Jacobian matrix of Â. Then, for any (θ, 0) ∈ intΘ × RL−K ,
Ĵ(θ,z)(θ, z;q) is a full-rank matrix. Hence, applying the local inverse function theorem, we
have the inverse of Â(θ, z;q). Let Â−1(·) denote the inverse and T denote an operator that
trims L − K elements of an L-dimensional vector from the end. Then, because Â−1 :=(
Â−1

0 , · · · , Â−1
K−1, Â

−1
K , · · · , Â−1

L−1

)
, we have A−1 ≡ (Â−1

0 , · · · , Â−1
K−1) = TÂ−1(·). Note

that we have (θ, 0) = Â−1(A(θ;q);q). Therefore,

θ = T (θ, 0)

= T (Â−1(A(θ;q);q))

= A−1(A(θ;q);q).

Hence, A(·) is locally invertible for all θ ∈ Θ and for all q ∈ Q.
Next, we show the converse. Suppose that A(·) is locally invertible for any θ and q.

Then, from the above argument, Â(θ, z;q) := A(θ;q) + Dz has the nonsingular Jacobian
matrix for any (θ, 0) and for any q. Let Ĵ(θ,0)(θ, 0;q) denote the Jacobian matrix. Then,
set Γ = Ĵ so that we have ĴΓ−1 = IL. Then, Assumption 4 is satisfied.
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Appendix I Proof of Proposition 3

Proof. By the global inverse function, A(θ;q) is globally invertible if, for all q ∈ Q,

1. A(θ;q) is locally invertible and its inverse function is continuous;

2. A(θ;q) is proper;

3. Θ is arcwise connected, and the image of A(θ,q) is simply connected.

In Lemma 3, we have shown that A(θ;q) is locally invertible for all θ ∈ intΘ (where
intΘ denotes the interior of Θ) and q ∈ Q. We now show that A(θ;q) is locally invertible
for any θ ∈ ∂Θ. (where ∂Θ := Θ\ intΘ, the boundary of Θ.) LetBϵ(θ̃) := {θ|d(θ̃,θ) <
ϵ} denote the ϵ-neighborhood of θ̃. Suppose that A(θ̃;q) is not locally injective at θ̃ ∈
∂Θ. Then, for a fixed ϵ > 0, there exists θ ∈ Bϵ(θ̃) ∩ Θ such that A(θ̃;q) = A(θ;q).
Let δ := d(θ̃,θ). Then, for a fixed ϵ′ ∈ (0, δ), there exists θ′ ∈ Bϵ′(θ̃) ∩ Θ such that
A(θ̃;q) = A(θ′;q). Since θ /∈ Bϵ′(θ̃), we have θ ̸= θ′ and A(θ;q) = A(θ′;q). However,
by Assumption 4, A(θ;q) is injective for all θ ∈ intΘ. Thus, there exists ϵ > 0, such
that A(θ̃;q) ̸= A(θ;q) for all θ ∈ Bϵ(θ̃) ∩ Θ. Then, A(·; ·) is locally invertible with
respect to θ at θ̃ ∈ ∂Θ with the inverse A−1(·; ·) : A(Bϵ(θ̃) ∩Θ;q) → Bϵ(θ̃) ∩Θ, where
A(Bϵ(θ̃) ∩Θ;q) := {A(θ;q)|θ ∈ Bϵ(θ̃) ∩Θ}.

Next, we show that A−1(·) is continuous at any boundary points θ̃ ∈ ∂Θ. Take a
sufficiently small ϵ > 0. Let δ̄ := supd(θ̃,θ)<ϵ d(A(θ̃;q), A(θ;q)). Then, since A(·) is
continuous at θ̃ ∈ ∂Θ, for any δ ∈ (0, δ̄), there is an ϵ′ ∈ (0, ϵ) such that if d(θ̃,θ) < ϵ′, we
have d(A(θ̃;q), A(θ;q)) < δ. Furthermore, by the definition of δ, if d(A(θ̃;q), A(θ;q)) <
δ, then d(θ̃,θ) < ϵ holds. Therefore, if d(A(θ̃;q), A(θ;q)) < δ, we have

d(A−1(A(θ̃)), A−1(A(θ))) = d(θ̃,θ) (since A(·, ·) is locally invertible)

< ϵ.

Note that A(·, ·) is bijective with respect to θ in a neighborhood of θ̃. Therefore, for any
point b in a neighborhood of A(θ̃;q), there exists θ such that b = A(θ;q). Thus, A−1(·, ·)
is continuous, as required.

Second, we show that A(θ;q) is a proper map for all q ∈ Q. That is, we show that for
any compact subset Y ∈ {A(θ;q)|θ ∈ Θ)}, the inverse image of Y , A−1(Y ;q) := {θ ∈
Θ|A(θ;q) ∈ Y }, is also compact. Since A(θ;q) is continuous, A(Y ;q) is also closed
for any closed set Y . Furthermore, Θ is bounded. Therefore, by the definition of inverse
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image, A−1(Y ;q) is a subset of θ. Therefore, A−1(Y ;q) is bounded for all q ∈ Q. Thus,
A(θ;q) is a proper map.

Finally, we show that i) domain Θ is arcwise connected and that ii) image A(Θ;q) :=
{A(θ;q|θ ∈ Θ)} is simply connected. We show i) first. In our model, Θ is a Cartesian
product of simply connected interval [θk, θ̄k] for all k = 0, . . . , K−1. Thus, Θ is obviously
arcwise connected. Next, we show ii). Since C(q,θ) and Cqℓ(q,θ) are continuous, images
C(q,Θ) := {C(q,θ|θ ∈ Θ)} and Cqℓ(q,Θ) := {Cqℓ(q,θ|θ ∈ Θ)} are simply connected
for ℓ = 1, . . . , L− 1. Thus, image A(Θ;q) is also simply connected.

Appendix J A Test for the Cost Function

First, we define exogenous variation in the number of bidders:

Definition 1 (Athey and Haile (2007)). A bidding environment has exogenous variation

in the number of bidders if, for all n′, n′′ such that n′ < n′′ 5 n, F (·;n′) is identical to

F (;n′′).

Then, consider the case in which the econometrician seeks to estimate θ by using a
cost function, Ĉ(q,θ), that differs from the true cost function – i.e., Ĉ(q,θ) ̸= C(q,θ)
for some θ ∈ Θ and q. Then, let b∗(θ, n) = {p∗(θ, n), Ĝ∗(θ, n), ĝ∗(θ, n)} and q∗(θ, n)

denote observations implied by the bidder with type θ, given that the number of bidders in
the auction is n. Let θ̂(θ, Ĉ, n) denote the estimate. Then, the following two estimates:

θ̂(θ, Ĉ, n′) ≡A−1(b∗(θ, n′);q∗(θ, n′), Ĉ) and

θ̂(θ, Ĉ, n′′) ≡A−1(b∗(θ, n′′);q∗(θ, n′′), Ĉ)

generally differ for some or all θ. Then, values of F̂ (θ) – i.e., the distribution of θ̂ –
generally differ depending on n, which could give a testable implication because the true
distribution of θ is identical for all n.

In the following, we show that the test does not function if the scoring rule is QL. The
observation of bidder type θ in the scoring auction with n bidders implies that

C(q∗(θ),θ) = p∗(θ, n)− 1− Ĝ∗(θ, n)

(n− 1)ĝ∗(θ, n)
, (A-14)

Cqℓ(q∗(θ),θ) = Pqℓ(q∗(θ)) with ℓ = 1, . . . , L− 1. (A-15)
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We write q∗(θ) instead of q∗(θ, n) because q∗(·) is identical for all n under the QL scoring
rule. Given that C(q∗(θ),θ) and Cqℓ(q∗(θ),θ) with ℓ = 1, . . . , L − 1 are all identical for
any n, the right-hand side in expression (A-14) is constant for any n. Then, θ is recovered
as:

θ̂(θ, Ĉ) = A−1(b∗(θ);q∗(θ), Ĉ), (A-16)

for all Ĉ(·) that satisfies Assumptions 1 through 4. It is easy to see that F̂ (·;n′) = F̂ (·;n′′).
This implies that the scoring auction model does not give a refutable restriction on obser-
vations under the exogenous variation in the number of bidders.
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Figure 1: Case in which Assumption 4 does not hold.
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Figure 2: Distribution of Normalized Score for the set of auctions with the number of
bidders ranging from 2 through 5 and from 6 through 10 (top row), from 11 through 15 and
from 16 through 20 (middle row), and from 21 through 25 and 26 or greater (bottom row).
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Figure 3: Estimated cdf of θ. Each panel corresponds to the scoring auctions with the
quality upper bound equal to 150 (top left), 160 (top right), 170 (bottom left), and 180
(bottom right). The Gaussian kernel is used. The bandwidths for θ0 and θ1 for the quality
upper bound: 160 are, e.g., .0022 and 0.7176, respectively.
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Variable∗1 Obs Mean SD Min Max

Number of Bidders 5,142 9.88 6.39 2 34
Engineers’ Estimates∗2 5,142 477.0 1,100.0 200.0 37,600

Win Price Bids∗2 5,142 423.0 972.0 169.0 34,300
Win Quality-Bid Points 5,142 158.17 11.34 132.60 200.00

Win Scores 5,142 177.23 15.088 109.39 310.12

Price bids∗2 36,688 531.0 984.0 160.0 37,100
Quality-Bid Points 36,688 153.19 11.11 101.50 200.00

Scores 36,688 180.19 15.315 109.39 310.12
∗1The top five rows are the statistics for each auction; the bottom three rows are the
statistics for each bid. ∗2Units are Yen million.

Table 1: Sample statistics
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Quality-Bid
Upper bound

Obs Mean∗1 SD∗1 Min∗1 Max∗1

150 1,182 290.0 174.0 200.0 4,470.0
160 2,124 339.0 412.0 200.0 5,950.0
170 1,114 504.0 1,050.0 200.0 12,200
180 495 666.0 1,280.0 200.0 12,400
190 220 1,990.0 2,830.0 207.0 28,300
200 7 8,110.0 13,400 397.0 37,600

Total 5,142 477.0 1,100.0 200.0 37,600
∗1Numbers represent the statistics regarding the engineers’ estimates. Units
are Yen million.

Table 2: Project sizes (by Quality-Bid Upper bound)
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Form C(q,θ) q̄ Obs Mean SD Min Max Change∗3

FS∗1 - - 5,142 177.2 15.09 109.4 310.1 -
130 5,142 163.7 14.94 98.21 580.4 -7.66% (0.53%)
140 5,142 171.3 16.58 95.53 589.0 -3.34% (0.39%)

Quadratic 150 5,142 175.3 18.58 91.86 631.1 -1.10% (0.25%)
160 5,142 175.5 20.65 87.89 640 -0.96% (0.18%)
170 5,142 172.5 22.22 83.83 576.5 -2.69% (0.24%)

130 5,142 163.2 15.15 96.21 572.7 -7.94% (0.50%)
140 5,142 170.9 16.71 90.26 605.9 -3.55% (0.38%)

SP∗2 Cubic 150 5,142 175.0 18.79 83.19 637.9 -1.24% (0.24%)
160 5,142 174.7 21.38 75.73 638 -1.44% (0.37%)
170 5,142 169.8 23.97 68.36 575.7 -4.20% (0.53%)

130 5,142 161.9 14.87 93.79 561.9 -8.68% (0.51%)
140 5,142 170.1 16.44 84.88 593.7 -4.00% (0.40%)

Quartic 150 5,142 174.5 18.74 74.47 626.1 -1.51% (0.26%)
160 5,142 173.7 22.07 63.90 636 -2.00% (0.28%)
170 5,142 166.9 25.89 54.08 574.8 -5.82% (0.51%)

∗1Observed FS auctions. ∗2Counterfactual second-price auctions. ∗3Change in mean from
FS to SP auction; numbers in parentheses are standard deviations generated by bootstrap-
ping samples. ∗Sample auctions with the number of bidders equal to or greater than 2; in
FS auctions, profits are less than 1, and normalized bids are less than 150% of reserva-
tion prices; in simulated SP auctions, profits are less than 1, and price bids are less than
200% of reservation prices. Numbers in parentheses are standard deviations generated by
bootstrapping samples.

Table 3: Buyer’s Utilities (Price-only vs FS Auctions)
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Form C(q,θ) q̄ Obs Mean SD Min Max Change∗3

FS∗1 - - 5,142 0.059 0.075 0.000 0.762 -
130 5,142 0.040 0.067 0.000 0.674 -30.82% (1.50%)
140 5,142 0.046 0.071 0.000 0.716 -21.37% (1.46%)

Quadratic 150 5,142 0.053 0.076 0.000 0.745 -10.05% (1.39%)
160 5,142 0.060 0.083 0.000 0.774 2.58% (1.38%)
170 5,142 0.068 0.090 0.000 0.852 15.83% (1.48%)

130 5,142 0.041 0.067 0.000 0.685 -29.09% (1.37%)
140 5,142 0.046 0.072 0.000 0.722 -20.69% (1.45%)

SP∗2 Cubic 150 5,142 0.053 0.079 0.000 0.816 -8.82% (1.55%)
160 5,142 0.063 0.089 0.000 1.032 6.92% (1.71%)
170 5,142 0.074 0.103 0.000 1.275 26.57% (2.01%)

130 5,142 0.041 0.067 0.000 0.684 -29.25% (1.37%)
140 5,142 0.046 0.073 0.000 0.724 -21.15% (1.54%)

Quartic 150 5,142 0.054 0.082 0.000 1.027 -8.13% (1.81%)
160 5,142 0.065 0.098 0.000 1.413 11.52% (2.23%)
170 5,142 0.082 0.122 0.000 1.893 39.60% (2.89%)

∗1Observed FS auctions. ∗2Counterfactual second-price auctions. ∗3Change in mean from
FS to SP auction; numbers in parentheses are standard deviations generated by bootstrap-
ping samples. ∗Sample auctions with the number of bidders equal to or greater than 2; in
FS auctions, profits are less than 1, and normalized bids are less than 150% of reserva-
tion prices; in simulated SP auctions, profits are less than 1, and price bids are less than
200% of reservation prices. Numbers in parentheses are standard deviations generated by
bootstrapping samples.

Table 4: Bidders’ Payoffs (Price-only vs FS auctions)
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Form C(q,θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 177.23 15.088 109.39 310.12 -
Quadratic 5,142 178.51 21.292 98.26 646.5 0.72% (0.12%)

SS∗2 Cubic 5,142 178.50 21.232 98.26 644.9 0.71% (0.12%)
Quartic 5,142 178.48 21.135 98.26 636.8 0.71% (0.12%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the PQR rule.
∗Sample auctions with the number of bidders equal to or greater than 2; in FS auc-
tions, profits are less than 1, and normalized bids are less than 150% of reservation
prices; in simulated SP auctions, profits are less than 1, and price bids are less than
200% of reservation prices. Numbers in parentheses are standard deviations generated
by bootstrapping samples.

Table 5: Buyer’s utilities (FS vs SS auctions)
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Form C(q, θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 158.17 11.338 132.60 200.00 -
Quadratic 5,142 158.09 11.510 130.18 201.81 -0.05% (0.02%)

SS∗2 Cubic 5,142 158.09 11.457 131.93 201.56 -0.06% (0.01%)
Quartic 5,142 158.10 11.424 132.09 201.29 -0.05% (0.01%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the PQR rule.
∗Sample auctions with the number of bidders equal to or greater than 2; in FS auc-
tions, profits are less than 1, and normalized bids are less than 150% of reservation
prices; in simulated SP auctions, profits are less than 1, and price bids are less than
200% of reservation prices. Numbers in parentheses are standard deviations generated
by bootstrapping samples.

Table 6: Contracted Quality Levels (FS vs SS auctions)
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Form C(q, θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 0.0585 0.0752 0.0000 0.7616 -
Quadratic 5,142 0.0572 0.0776 0.0000 0.8251 -2.32% (1.09%)

SS∗2 Cubic 5,142 0.0571 0.0775 0.0000 0.8248 -2.34% (1.09%)
Quartic 5,142 0.0571 0.0775 0.0000 0.8246 -2.34% (1.09%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the PQR rule.
∗Sample auctions with the number of bidders equal to or greater than 2; in FS auc-
tions, profits are less than 1, and normalized bids are less than 150% of reservation
prices; in simulated SP auctions, profits are less than 1, and price bids are less than
200% of reservation prices. Numbers in parentheses are standard deviations generated
by bootstrapping samples.

Table 7: Bidder’s Payoffs (FS vs SS auctions)
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Form C(q, θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 177.23 15.088 109.39 310.12 -
Quadratic 5,142 178.46 20.041 103.25 547.73 0.69% (0.11%)

SS∗2 Cubic 5,142 178.46 20.094 102.79 549.31 0.69% (0.11%)
Quartic 5,142 178.47 20.132 102.67 550.68 0.70% (0.11%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the QL rule. ∗Sample
auctions with the number of bidders equal to or greater than 2; in FS auctions, profits are
less than 1, and normalized bids are less than 150% of reservation prices; in simulated
SP auctions, profits are less than 1, and price bids are less than 200% of reservation
prices. Numbers in parentheses are standard deviations generated by bootstrapping
samples.

Table 8: Buyer’s Utilities (QL vs PQR Scoring Rules)
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Form C(q, θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 0.0585 0.0752 0.0000 0.7616 -
Quadratic 5,142 0.0562 0.0752 0.0000 0.8157 -4.03% (1.05%)

QL∗2 Cubic 5,142 0.0562 0.0753 0.0000 0.8160 -3.89% (1.05%)
Quartic 5,142 0.0563 0.0754 0.0000 0.8161 -3.81% (1.05%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the QL rule. ∗Sample
auctions with the number of bidders equal to or greater than 2; in FS auctions, profits are
less than 1, and normalized bids are less than 150% of reservation prices; in simulated
SP auctions, profits are less than 1, and price bids are less than 200% of reservation
prices. Numbers in parentheses are standard deviations generated by bootstrapping
samples.

Table 9: Bidder Payoffs (QL vs PQR Scoring Rules)
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Form C(q, θ) Obs Mean SD Min Max Change

FS∗1 - 5,142 158.17 11.338 132.60 200.00 -
Quadratic 5,142 158.27 11.484 126.33 200.81 0.06% (0.04%)

SS∗2 Cubic 5,142 158.25 11.428 129.24 200.71 0.05% (0.03%)
Quartic 5,142 158.23 11.402 129.99 200.59 0.04% (0.02%)

∗1Observed FS auctions (PQR). ∗2Hypothetical SS auctions with the QL rule. ∗Sample
auctions with the number of bidders equal to or greater than 2; in FS auctions, profits are
less than 1, and normalized bids are less than 150% of reservation prices; in simulated
SP auctions, profits are less than 1, and price bids are less than 200% of reservation
prices. Numbers in parentheses are standard deviations generated by bootstrapping
samples.

Table 10: Contracted Quality Levels (QL vs PQR Scoring Rules)
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Online Appendix (Not for Publication)

Online Appendix I Proof of the Existence, Uniqueness, and Strict Mono-
tonicity of the Solution to (6)

Proof. We first show that a solution to the maximization problem (6) exists for all bidder
types.

Define θ+ := argmaxθ∈Θ z(θ) to denote the least efficient bidder among Θ. To the
bidder type, choosing s < s̄ brings a strictly negative payoff when winning, because
u(s,θ+) < 0 for all s < s̄. On the other hand, choosing s > s̄ is weakly dominated
by choosing s = s̄, because the probability of winning is zero for all s > s̄. Therefore,
choosing s̄ is optimal.

For any other bidder type in Θ, i.e., θ ∈ Θ\{θ+}, we have z(θ) < s̄. Then, the
derivative of its objective function, (6), is given by

us(s,θ)(1−G(s))− (n− 1)u(s,θ)g(s). (OA-1)

We have lims→s̄ 1 − G(s) = 0. In addition, lims→s̄ u(s,θ) > 0, and lims→s̄ g(s̄) > 0

given (Guess). Therefore, (OA-1) is strictly negative as s approaches s̄. On the other hand,
if s = z(θ), then 1 − G(s) > 0, u(s,θ) = 0, and g(s) being bounded given (Guess).
Therefore, (OA-1) is strictly positive. Because the bidder objective function is smooth in
s, there exists s in (z(θ), s̄) with which (OA-1) vanishes. Therefore, for any bidder type
θ ∈ Θ\{θ+}, the solution exists in (z(θ), s̄).

Next, we show that the solution is unique and strictly increasing in θ. As shown above,
s̄ is the optimal for the least efficient type, θ+. Hence, the solution is unique if θ = θ+.

For bidder type θ ∈ Θ\{θ+}, let s∗ denote a solution to the maximization problem.
Then, the log-supermodularity of u(s,θ) implies that

us(s
∗, θ̂)(1−G(s∗))− (n− 1)u(s∗, θ̂)g(s∗) T 0 (OA-2)

for any θ̂ ∈ Θ if and only if θ̂ T θ. This suggests that s∗ is suboptimal – i.e., too low
for all θ̂ ≥ θ and too high for all θ̂ ≤ θ.44 This, in turn, implies that, for all θ̂ ≥ θ, the
solution is strictly greater than s∗ and that, for all θ̂ ≤ θ, the solution is strictly smaller
than s∗. Because this is true for all θ ∈ Θ\{θ+}, we conclude that the optimal solution to

44Here, “≥” and “≤” denote vector inequalities.
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(6) is unique and strictly increasing in θ under (Guess).

Online Appendix II Proof of
∑L−1

ℓ=1 Cqℓ(q(s,θ),θ)qℓss(s,θ) = 0

Proof. Establish the following Lagrangian:

L(q, λ) = p̄− C(q,θ) + λ(V (q)− p̄+ s).

In the interior of {(s,θ)} in which the constraint is binding, the Kuhn-Tucker condition
gives

∇qC(q(s,θ),θ) = λ(s,θ)∇qV (q(s,θ)), (OA-3)

V (q(s,θ)) = p̄− s, (OA-4)

λ(s,θ) > 0. (OA-5)

Equation (OA-4) implies that V (q(s,θ)) is linear in s. By differentiating V (q(s,θ)) twice
with respect to s, we obtain:

L−1∑
ℓ=1

Vqℓ(q(s,θ))qℓss(s,θ) = −
L−1∑
ℓ=1

L−1∑
m=1

Vqℓqm(q(s,θ))qℓs(s,θ)q
m
s (s,θ).

Because the Hessian of V (q) is negative semidefinite, the right-hand side is nonnegative,
and so is the left-hand side for all θ and s. Applying this and (OA-5) to (OA-3), we have:

L−1∑
ℓ=1

Cqℓ(q(s,θ))qℓss(s,θ) = λ(s,θ)
L−1∑
ℓ=1

Vqℓ(q(s,θ))qℓss(s,θ) = 0.

Online Appendix III Generating counterfactual SS auction samples
from the estimated parameters

With L = 1, define

qz(θ) = q(z(θ),θ) ∈ R. (OA-6)
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Under the PQR scoring rule, qz(θ) = {q|Cq(q,θ)q = C(q,θ)}. Hence, solving the follow-
ing polynomial: (

qz + θ̂1i,t

)β
− qzβ

(
qz + θ̂1i,t

)β−1

+ θ̂0i,t = 0,

gives us the estimate of qz under the PQR scoring rule. Using q̂zi,t, the break-even score,
z(θ) = C(q̂z,θ)/q̂z, is estimated as

ẑ(θ̂i,t) =
1

q̂zi,t

[(
q̂zi,t + θ̂1i,t

)β
+ θ̂0i,t

]
.

Given that the contract quality (as well as price) matches the second-lowest score s(2) =

z(θ(2)), it is obtained as

q̂postII,t =

(
z(θ̂(2),t)

β

) 1
β−1

− θ̂1(1),t.

The winner’s payoff is, thus, given by

u(s(2),t, θ̂(1),t) = q̂postII,t · s(2),t −
(
q̂postII,t + θ̂1i,t

)β
− θ̂0i,t.

Online Appendix IV Generating the counterfactual SS auctions with
the QL scoring rule

Under the QL rule, the bidder’s pseudotype is given by z(θ) = minq C(q,θ)− ϕ(β)q. The
minimizer is qz(θ) ≡ q(z(θ),θ) as defined in (OA-6). Because Pq(s, q) = ϕ(β) for all s
and q, qz is given by

q̂zQL,i,t =

(
ϕ(β)

β

) 1
β−1

− θ̂1i,t. (OA-7)

Hence, the bidder’s pseudotype is estimated by

ẑi,t =
(
q̂zQL,i,t + θ̂1i,t

)β
+ θ̂0i,t − ϕ(β)q̂zQL,i,t. (OA-8)

The lowest pseudotype bidder wins and receives the payment pQL = z(θ(2)) + qz(θ(1)) in
the SS auction with the QL scoring rule. Thus, both are estimated from observations. The
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buyer’s utility from the contract is then estimated by

wQL,t = p̂QL,t/q
z
QL(θ̂(1),t).
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