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Abstract

We develop a version of Afriat’s Theorem that is applicable to a variety of choice

environments, beyond the setting of classical consumer theory. This allows us to

devise tests for rationalizability in the context of choice data on lotteries, contin-

gent consumption, and intertemporal consumption. We also establish a version

of Richter’s Theorem that characterizes the strict rationalizability of choice data

with a continuous utility function (rather than simply with a preference that may

not be continuous).
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1 INTRODUCTION

The most basic question in revealed preference analysis is whether the choices made by

an agent is consistent with a particular model of decision making. It is usually assumed

that there is an observer who records the alternatives chosen by an agent from different

feasible sets, which are subsets of a universal set of alternatives. A particular model of

decision making will have specific implications on observed choice behavior and ideally

one would like to find a condition on the set of observations that is both necessary and

sufficient for consistency with that model.
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To state this a bit more precisely, let us denote the universal set of alternatives by

X and let A be a collection of nonempty subsets of X; we interpret A as the collection

of feasible sets from which the agent’s choices are observed. We denote the agent’s

choices from a member A of A by c(A), which is a nonempty subset of A. The choice

correspondence c : A ⇒ X encodes the information collected by the observer on the

agent’s choice behavior, with different models of decision making leading to different

properties on c. Since it is canonical in economics to assume that one’s choices are

governed by optimization with respect to a preference relation, it is crucial that we

understand what properties on c are consistent with this behavior. This leads to the

notion of “rationalization” a preference relation % on X is said to rationalize c if

c(A) ⊆ {x ∈ A : x % y for every y ∈ A},

while it is said to strictly rationalize c if

c(A) = {x ∈ A : x % y for every y ∈ A}.

A utility function u : X → R is said to rationalize (or strictly rationalize) c if it induces

a preference with that property. The more stringent criterion of strict rationalizability

is appropriate when there is good reason to believe that unchosen alternatives, i.e., the

alternatives in A \ c(A), are strictly less preferred to those in c(A).

One of the most influential approaches in revealed preference theory toward identify-

ing rationalizable choice correspondences is due to Afriat (1967). This work is situated

in the classical model of consumer demand, where X is taken as Rn
+ (with n being the

number of distinct goods in the market), and A is a finite collection of linear budget sets.

Afriat’s Theorem says that so long as the choice correspondence c obeys a fairly intuitive

and easy-to-check property called “cyclical consistency,” then c can be rationalized by a

strictly increasing, continuous, and concave utility function on Rn
+. The converse of this

statement is also true in the sense that any agent who chooses with a locally nonsatiated

preference will have a choice correspondence that obeys cyclical consistency.

The significance of Afriat’s Theorem is evident from the large body of theoretical and

empirical work that it has inspired. However, the application of this result is restricted

to the analysis of consumer demand and to those situations where an agent’s choice

environment could be modeled in a formally similar way. This motivated one of the main

objectives of this paper: to develop a version of Afriat’s Theorem that is applicable to

many other choice environments.

We first show that a generalization of Afriat’s cyclical consistency property charac-

terizes those choice correspondences c that are rationalizable by a preference relation on
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X which is (strictly) increasing with respect to a given preorder D on X. This result

is obtained without imposing any conditions on X and A. If we further assume that X

is a metric space (satisfying some standard regularity conditions) and that A is a finite

collection of feasible sets, then c is rationalizable by a strictly increasing (with respect to

D) and continuous utility function. In particular, if we set X to be Rn
+ and the preorder

D to be the coordinatewise order on Rn
+, we recover the fact that (Afriat’s) classical

cyclical consistency property guarantees the rationalizability of c by a continuous and

strictly increasing utility function, which is the essence of Afriat’s Theorem.1

Of course, the strength of our result is that its applicability goes beyond the classical

consumption choice environment. For example, in many experimental studies, obser-

vations are collected from a subject who chooses among simple lotteries over monetary

outcomes. Assuming that there are n outcomes, the universal set X of alternatives in

that setup would be the (n − 1)-dimensional unit simplex (acting as the set of all pos-

sible lotteries), and A would be a finite collection of subsets of X. It is then natural to

ask if the subject’s choice behavior can be rationalized by a continuous utility function

that is increasing with respect to first order stochastic dominance. By choosing D to

be the first order stochastic dominance (partial) order, our theorem provides necessary

and sufficient conditions for c to possess this structure. More generally, our theorem can

be applied to other contexts where we may wish to determine the rationalizability of a

choice correspondence by a utility function satisfying certain properties appropriate to

that context. We show how our result can be applied to data collected from an agent

choosing contingent consumption, intertemporal consumption, or public policies.

Our extension of Afriat’s Theorem has something new to say even in the classical

environment of consumer demand. One issue we discuss is recoverability (Varian (1982)),

that is, the extent to which an outside observer is able to recover information on the

agent’s preferences from her observed choices, without subscribing to a particular utility

function that happens to rationalize the choice data. We are able to identify the set

of all recoverable preference pairs when rationalizing utility functions are allowed to be

continuous and strictly increasing. Another issue concerns testing for rationalizability

in the case where the observations consist of Engel curves (which are often estimated

in empirical studies of consumer demand). Since even a single Engel curve (defined

for a given price vector) corresponds to an infinite set of choice observations, Afriat’s

1 Our approach does not allow us to recover Afriat’s Theorem in its entirety because we cannot

guarantee that the rationalizing utility function is concave. Indeed, concavity is not a meaningful

property in our setup since we do not assume here that X is a vector space. In addition, our proof is

nonconstructive, and thus differs significantly from Afriat’s original proof.
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Theorem in its original form cannot be applied to test for rationalizability. However, in

our approach, we can relax the assumption that A is finite and we prove that a finite

family of Engel curves is rationalizable by a continuous and strictly increasing utility

function if, and only if, it satisfies the classical cyclical consistency property.

This paper also contributes to the theory of strictly rationalizable choice correspon-

dences. A very influential paper using this rationalizability criterion is Richter (1966);

Richter’s Theorem gives necessary and sufficient conditions under which a choice corre-

spondence c is strictly rationalizable, and (unlike Afriat’s Theorem) it does so without

positing any structure on either X or A. There is, however, a price to pay for this level

of generality: with no structure on X, it is not even meaningful to specify useful proper-

ties such as continuity and/or monotonicity on the rationalizing preference. The second

main objective of our paper is to formulate a version of Richter’s Theorem in which a

rationalizing preference can have these properties. To be precise, when X is a metric

space (satisfying some standard regularity conditions), and A is finite, we show that

a generalization of Richter’s “congruence axiom” characterizes those choice correspon-

dences that are strictly rationalized by a continuous and strictly increasing (with respect

to a given preorder D) utility function on X. This can be viewed as a continuous and

monotone version of Richter’s Theorem and, as in our earlier rationalizability results, it

is widely applicable.

Last, but not least, we would like to point out a methodological contribution of our

paper. Due to differences in their proof methods and in the contexts of their applications,

Afriat’s Theorem and Ricther’s Theorem are often treated separately in the literature.

On the other hand, this paper takes a unified approach to both results and our extensions

of these theorems allow them to be applicable in exactly the same choice environments.

In this way, we are able to clarify the relationship these results and also between the

cyclical consistency axiom and the congruence axiom (as well as their generalizations).

The paper is organized as follows. In Section 2 we define the basic concepts used

in our analysis and give examples of choice environments where our results are applica-

ble. Our extension of Afriat’s Theorem, together with the related extension of Afriat’s

cyclical consistency property is explained in Section 3. Section 4 is devoted to strict

rationalizability and our extension of Richter’s Theorem while the applications of our

results in a number of specific choice environments are discussed in Section 5.
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2. CHOICE ENVIRONMENTS

By a choice environment, we mean an ordered pair ((X,D),A), where (X,D) is a

preordered set and A is a nonempty collection of nonempty subsets of X.2 We interpret

X as the consumption space, that is, the grand set of all mutually exclusive choice

alternatives. We think of D as an exogenously given dominance relation on X, and view

the statement x D y as saying that x is an objectively better alternative than y (in the

sense that x D y implies that every individual in the society prefers x over y). Finally,

A is interpreted as the set of all feasible sets from which a decision maker is observed

to make a choice. For instance, if the data at hand is so limited that we have recorded

the choice(s) of an agent in the context of a single feasible set A ⊆ X, we would set

A = {A}. At the other extreme, if we have somehow managed to keep track of the

choices of the agent from every possible feasible set A ⊆ X (as is sometimes possible in

the controlled environments of laboratory experiments), we would set A = 2X\{∅}.
By a preference relation on X, we mean a complete preorder % on X. Such a

relation is said to extend D if (i) x % y whenever x D y, and (ii) x � y whenever x B y.

(Here � and B stand for the asymmetric parts of % and D, respectively.)

Given a choice environment ((X,D),A), we say that a set-valued map c : A⇒ X is

a choice correspondence (on A) if c(A) is a nonempty subset of A for each A ∈ A.

A preference relation % on X is said to rationalize the choice correspondence c if

c(A) ⊆ max(A,%) (1)

for each A ∈ A.3 We should emphasize that this notion of rationalizability is rather

weak; in fact, by itself, it does not impose any structure on choice correspondences since

every choice correspondence is rationalizable by the preference relation that declares all

alternatives in X indifferent.4 The situation becomes more interesting, however, if we

also require the preference relation that rationalizes c to extend the dominance relation

D, which is a natural requirement since we interpret D as an “objective” dominance

relation that all individuals agree on. We say that a choice correspondence c on A is

2 Terminology : A binary relation R on X is a nonempty subset of X ×X, but as usual, we write

x R y instead of (x, y) ∈ R.We say that R is a preorder on X if it is reflexive (that is, x R x for each

x ∈ X) and transitive (that is, x R y R z implies x R z for each x, y, z ∈ X). In turn, we say that R

is complete if either x R y or y R x holds for any x, y ∈ X. Finally, the asymmetric part of R is

defined as the binary relation R> on X such that x R>y iff x R y but not y R x. (This relation is never

complete, as it is not reflexive.)
3 Terminology : For any preorder % on a nonempty set X, and any nonempty subset A of X, we

let max(A,%) stand for the collection of all maximum alternatives in A with respect to %, that is,

max(A,%) := {x ∈ A : x % y for every y ∈ A}.
4 Put formally, X ×X rationalizes any choice correspondence c : A⇒ X.
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D-rationalizable if there is a preference relation % on X that not only rationalizes c

but also extends D. Provided that D is nontrivial in the sense that x B y holds for

some x, y ∈ X, the characterization of all D-rationalizable choice correspondences is a

nontrivial problem and this is the central issue addressed in this paper.

The following examples speak to the generality of our framework. To demonstrate

the applicability of our main results, we shall return to them later in the paper.

Example 1. (Classical consumption choice environments) Let n be a positive integer,

and denote by ≥ the coordinatewise ordering on Rn
+.5 We interpret n to be the number

of commodities available for consumption, and the jth entry in x = (x1, x2, ..., xn) as

the agent’s level of consumption of good j. We denote by B(p, I) the (linear) budget

set at a price vector p ∈ Rn
++ and income I > 0, that is, B(p, I) := {x ∈ Rn

+ : px ≤
I}. A classical consumption choice environment is ((Rn

+,≥),A), where A is a

nonempty subset of {B(p, I) : (p, I) ∈ Rn
++ × R++}. Afriat’s (1967) Theorem, which

we discuss in Section 3.1, is situated in this environment and it characterizes the ≥-

rationalizable choice correspondences c on A under the assumption that A is finite.

(The ≥-rationalization corresponds to rationalization by a preference relation on Rn
+

where the agent strictly prefers to have more of any good.)

Example 2. (Forges-Minelli choice environments) To deal with nonlinear pricing or

quantity restrictions, as well as constraint sets arising in games, some authors have

extended Afriat’s Theorem by modifying the classical consumption choice environment

to allow for nonlinear budget sets (cf. Matzkin (1991) and Chavas and Cox (1993)). In

particular, Forges and Minelli (2009) take as a primitive finitely many ordered pairs, say,

(A1,x1), (A2,x2), ..., (Ak,xk), where Ai is a subset of Rn
+ and xi is contained in Ai. Each

set Ai is assumed to be compact and comprehensive; the latter means that if y ∈ Ai,
then z ∈ Ai for any z ∈ Rn

+ such that z ≤ y. They interpret this data as corresponding

to the situation in which we observe a decision maker choosing the bundle xi from the

generalized budget set Ai, for i = 1, 2, ..., k. Their setup is captured by the choice

environment ((Rn
+,≥),A), where each element of A is compact and comprehensive. The

main result of Forges and Minelli (2009) generalizes Afriat’s Theorem by characterizing

≥-rationalizable choice correspondences in this environment.

Example 3. (Choice over lotteries) In many experiments designed to check whether

subjects are, say, expected utility maximizers, subjects are asked to make choices across

a menu of feasible sets that contain simple monetary lotteries. (In particular, the well-

5 Formally, x ≥ y iff xi ≥ yi for each i = 1, ..., n.
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known Allais paradox is framed in such a setting.) One could develop conditions in

this context that characterize the structure of observations consistent with expected

utility maximization (cf. Fishburn (1975)). However, we may wish to take a step back

and begin with a more basic question: are the subject’s choices rationalizable by some

preference relation over lotteries that is consistent with first-order stochastic dominance

(even if it may not admit an expected utility representation)? This question can be

addressed in our general framework as follows.

Let ∆n−1 stand for the (n−1)-dimensional unit simplex in Rn, that is, ∆n−1 := {p ∈
Rn

+ : p1 + · · ·+ pn = 1}. We interpret ∆n−1 as the space of all lotteries whose supports

are contained within a given set of n (certain) prizes. Assuming that the prizes are

monetary, it makes sense to order the lotteries by the associated first-order stochastic

dominance relation, which we shall denote by ≥FSD.6 The choice environment is thus

((∆n−1,≥FSD),A), where A is a nonempty collection of nonempty subsets of ∆n−1.

In this paper, we provide a characterization of those choice correspondences on A
that are ≥FSD-rationalizable. Just as the results of Afriat (1967) and Forges and Minelli

(2009) provide a practical procedure for testing ≥-rationalizability in their respective

choice environments, so our characterization provides an empirically implementable test

of ≥FSD-rationalizability in the case of choice over lotteries.7

3. RATIONALIZABILITY

The objective of this section is to extend Afriat’s Theorem beyond the confines of

the classical consumption choice environment. We begin with an explanation of that

classic result.

3.1. Afriat’s Theorem. Let O be a nonempty finite set of ordered pairs (p,x) in

Rn
++ × Rn

+\{0}. Each (p,x) ∈ O is interpreted as the observation that the consumer

has chosen the consumption bundle x at the price vector p. (Notice that all prices

are assumed to be strictly positive, but the consumer’s purchases of some (but not all)

goods may be zero.) The main problem addressed in Afriat (1967) is to determine the

conditions under which the set of observations O is consistent with the maximization of

6 Assuming that prize 1 is the lowest prize, prize 2 is the second lowest, and so on, we have p ≥FSD q

iff p1 + · · ·+ pj ≤ q1 + · · ·+ qj for each j = 1, ..., n.
7 It is also interesting to ask rationalizability-type questions in the case where observations consist

of choices made over acts (which are maps from states to outcomes); two examples are Green and

Osband (1991) and Bossert and Suzumura (2010). The former studies consistency with expected utility

maximization in the case where state probabilities are known. The latter addresses a similar issue but

instead imposes a weak restriction on preferences (over acts) that does not appeal to state probabilities.

A third example is our study of the demand for contingent consumption in Section 5.4.
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a strictly increasing utility function. In other words, it asks which data sets O would

admit a strictly increasing function u : Rn
+ → R such that

u(x) ≥ u(y) for all y ∈ B(p,px),

for each (p,x) ∈ O. Note that there is no loss of generality in assuming that px = 1 for

each (p,x) ∈ O.8 and we shall adopt this normalization in what follows.

We say that O satisfies the cyclical consistency condition if

p2x1 ≤ p2x2, ...,pkxk−1 ≤ pkxk and p1xk ≤ p1x1 (2)

implies that every one of these inequalities holds as an equality, for any integer k ≥ 2

and (p1,x1), ..., (pk,xk) ∈ O. (This property is also commonly known in its equivalent

formulation, due to Varian (1982), as the generalized axiom of revealed prefer-

ence.) One may readily check that if O is consistent with utility maximization with

respect to a strictly increasing utility function, then it must satisfy the cyclical consis-

tency condition.9 The nontrivial part of Afriat’s Theorem says that cyclical consistency

is in fact also sufficient for O to be consistent with the maximization of a continuous,

concave and strictly increasing utility function.10

To state Afriat’s Theorem in the language of choice environments, let P be the set

of price vectors observed in O, that is, P := {p : (p,x) ∈ O}, and put A := {B(p, 1) :

p ∈ P}. The choice environment ((Rn
+,≥),A) is a special case of the environment

we introduced in Example 1. Next, we define the choice correspondence c on A by

c(B(p, 1)) := {x : (p,x) ∈ O}. Since there is a one-to-one correspondence between the

sets A and P, we can identify c with the (normalized) demand correspondence d :

8 Given O, put O′ :=
{(

1
pxp,x

)
: (p,x) ∈ O

}
, and notice that O is consistent with utility maxi-

mization iff O′ is consistent with utility maximization, while qx = 1 for every (q,x) ∈ O′.
9 In fact, O obeys cyclical consistency so long as it is collected from an agent with a locally nonsatiated

preference.
10 To elaborate, the usual proof of this result (see, for example, Varian (1982)) shows that cyclical

consistency implies that a certain set of linear inequalities (usually referred to as the Afriat inequalities)

admits a solution. With this solution, one could explicitly construct a utility function u on Rn+ that

rationalizes the data. In the case when prices are strictly positive, this utility function is continuous,

concave, and strictly increasing. In fact, Afriat’s Theorem also allows for observed prices in the data

set to vanish for some goods; when that happens, the rationalizing utility function is still continuous

and concave, but it is no longer strictly increasing. Instead, u has the following weaker property:

u(y) > u(x) whenever y � x (that is, whenever yi > xi for every good i). In this paper, we focus on

Afriat’s Theorem in the case when the prices observed in the data set are all strictly positive, which

is empirically more relevant. This case is convenient because we can then set the dominance relation

as ≥, which is a continuous preorder, whereas the binary relation � is less well-behaved. Indeed,

the topological properties of the dominance relation will be relevant when we consider continuous

rationalizability (see Section 3.4).
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P ⇒ Rn
+ (associated with O) defined by d(p) := {x : (p,x) ∈ O}. At the cost of a slight

abuse of terminology, we say that d is ≥-rationalizable if c is ≥-rationalizable, and

that d (or c) is cyclically consistent if (2) implies that every one of those inequalities

holds as an equality, for any integer k ≥ 2, p1, ...,pk ∈ P and x1 ∈ d(p1), ...,xk ∈
d(pk). Afriat’s Theorem says, in particular, that d is ≥-rationalizable iff it is cyclically

consistent. Moreover, according to this theorem, cyclical consistency of d ensures its

rationalizability by a preference relation on Rn
+ that admits a continuous, concave and

strictly increasing utility representation.

3.2. Cyclical consistency in general choice environments. In order to formulate

a version of Afriat’s Theorem applicable in any choice environment, we must first gen-

eralize the cyclical consistency property for choice correspondences that are defined in

an arbitrary choice environment. We introduce such a generalization next.

Let ((X,D),A) be a choice environment. For any member A of A, we write A↓ to

denote the decreasing closure of A with respect to the preorder D on X, that is,

A↓ := {x ∈ X : y D x for some y ∈ A},

and let A↓↓ stand for the strictly decreasing closure of A with respect to D, that is,

A↓↓ := {x ∈ X : y B x for some y ∈ A}.

We say that a choice correspondence c on A satisfies cyclical D-consistency if, for

every integer k ≥ 2 and A1, ..., Ak ∈ A,

x1 ∈ c(A1) ∩ A↓2, ..., xk−1 ∈ c(Ak−1) ∩ A
↓
k and xk ∈ c(Ak) ∩ A↓1 (3)

imply

x1 ∈ A↓2\A
↓↓
2 , ..., xk−1 ∈ A

↓
k\A

↓↓
k and xk ∈ A↓1\A

↓↓
1 . (4)

If we choose k = 2 with A = A1 = A2 and x1 = x2 ∈ c(A), then cyclical D-consistency

implies c(A) ⊆ A\A↓↓ for each A ∈ A; in other words, for every feasible set A, the

agent’s choices are not dominated (in terms of D) within A.11

It is not hard to check that, in a classical consumption choice environment, cyclicalD-

consistency is equivalent to Afriat’s original cyclical consistency axiom and so we could

think of cyclical D-consistency as a generalization of Afriat’s concept to an arbitrary

choice environment. We shall see that this more general concept plays a role in an

11 In the case where D is a partial order (that is, x D y D x holds if, and only if, x = y), then (4)

could be re-stated as requiring x1 ∈ A2\A↓↓2 , ..., xk−1 ∈ Ak\A
↓↓
k and xk ∈ A1\A↓↓1 .
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arbitrary choice environment that is analogous to that played by cyclical consistency in

the classical environment.

It will be quite important for us to express cyclical D-consistency of c by using the

revealed preference relations induced by c, and there is indeed a succinct way of doing

this. Let us first recall that the transitive closure of a reflexive binary relation R on

X, which is denoted by tran(R), is the smallest preorder on X which contains R.12 We

define the binary relation R(c) on X by

x R(c) y if and only if (x, y) ∈ c(A)× A for some A ∈ A.

This relation, introduced first by Samuelson (1938) in the special case of consumption

problems, is often called the direct revealed preference relation induced by c, while

the transitive closure of R(c) is referred to as the revealed preference relation induced

by c. The motivation for this terminology is clear: if c is rationalizable by some preference

relation % on X, then x tran(R(c)) y implies x % y.

Now, there is no reason for the union of R (c) andD to be transitive, but the transitive

closure of R (c)∪ D is a preorder on X. This preorder is related to D-rationalizability

in essentially the same way that the revealed preference relation is linked to rational-

izability. Indeed, if c is D-rationalizable by some preference relation % on X, then

x tran(R(c)∪ D) y implies x % y. The next result uses this preorder to provide a char-

acterization of cyclical D-consistency that is useful in helping us develop a generalized

version of Afria’t Theorem.

Proposition 1.13 Let ((X,D),A) be a choice environment. Then, a choice correspon-

dence c on A satisfies cyclical D-consistency if, and only if,

x tran(R(c)∪ D) y implies not y B x (5)

for any x, y ∈ X.

3.3. Generalizing Afriat’s Theorem. It is quite clear that for a choice correspon-

dence c to be D-rationalizable by some preference relation %, it is necessary that it obeys

cyclical D-consistency. Indeed, consider any A1, ..., Ak ∈ A such that (3) holds. Since

x1 ∈ A↓2 and x2 ∈ c(A2), we know that x2 % x1. Repeating this observation, we obtain

xk % xk−1 % ...x1. Given that xk ∈ A↓1, there is a y ∈ A1 such that y D xk. On the other

12 It is easily verified that x tran(R) y iff there exist a positive integer k and x0, ..., xk ∈ X such that

x = x0 R x1 R · · · R xk = y.
13 This fact was kindly suggested to us by an anonymous referee of this journal; we are grateful to

him/her.
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hand xk % x1 % y since x1 ∈ c(A1), which therefore excludes the possibility that y . xk.

We conclude that xk ∈ A↓1 \A
↓↓
1 . In a similar way, we can show that xi ∈ A↓i+1 \A

↓↓
i+1 for

i = 1, 2, ..., k − 1.

The following result establishes that cyclical D-consistency is not just necessary but

also sufficient for D-rationalizability.

Theorem 2. Let ((X,D),A) be a choice environment. Then, a choice correspondence

c on A satisfies cyclical D-consistency if, and only if, it is D-rationalizable.

Theorem 2 extends the coverage of Afriat’s Theorem to the context of an arbitrary

choice environment. While it does capture the choice-theoretic gist of Afriat’s Theorem,

this result does not recover Afrait’s result exactly, even when we specialize to the clas-

sical consumption choice environment. The rationalizing preference relation in Afriat’s

Theorem is representable by a continuous, concave and strictly increasing utility function

on Rn
+, while Theorem 2 only guarantees rationalization by a preference relation that

extends the coordinate-wise order ≥. However, notice that Afriat’s Theorem assumes

that the number of observations is finite, and this is crucial to the stronger conclusions

obtained. Reny (2015) has provided an extension of Afriat’s Theorem (in the classical

consumption choice environment) where finiteness of the data set is not assumed; the

rationalizing preference relation he obtains is representable by a utility function that is

increasing and quasiconcave but Reny shows also that it is in general not possible to

guarantee the continuity and/or concavity of this function.

Our proof of Theorem 2 is also quite different from the one used by Afriat for his

result. Afriat’s proof relies very much on the linear structure of Rn, which makes it

inapplicable in our general context. Instead, our proof uses Szpilrajn’s Theorem to

guarantee the existence of a complete extension of the preorder tran(R(c)∪ D).14 We

then check that this complete preorder rationalizes c, and use Proposition 1 to show that

it also extends D. While our method of proof is nonconstructive, it has the advantage of

yielding a characterization of rationalizability in the context of any choice environment.

Moreover, this method, being purely order-theoretic, highlights the connection between

the fundamental rationalizability results of Afriat (1967) and Richter (1966). (We discuss

this issue in greater detail in Section 4.)

3.4. Continuous rationalizability in general choice environments. In empirical

studies using revealed preference methods, we would often wish to go beyond “explain-

ing” the observed choice data to making out-of-sample predictions. Formulating this

14 Szpilrajn’s Theorem says that every preorder admits a complete extension. It is well-known in set

theory that this theorem cannot be proved without the use of at least some form of the axiom of choice.
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within our framework, given a choice environment ((X,D),A), the observer may well

be interested in the agent’s choice behavior, not only over the members of A, but also

across a collection B of choice problems which is potentially a much larger (and possibly

infinite) subset of 2X . In that case, A is interpreted as a (random) sample of feasible

sets drawn from B, and the observer’s hypothesis is that the agent chooses according to

some preference relation on X (with given characteristics) for every set in B.

If a given choice correspondence c on A is rationalizable, the rationalizing preference

relation, say, %, could be used to make (set-valued) predictions of the agent’s behavior

across B. However, this research program hinges on the existence of an optimum with

respect to % in any member of B, which is generally not true (at least when some of

the members of B are infinite). This issue would be resolved if we endow X with a

topology in which each element of B is compact, and there is a rationalizing preference

relation % on X that is upper semicontinuous. Beyond this, it is often also convenient

for the set of optimal choices (with respect to %) to vary continuously with the sets in B
and that would typically require that the preference relation be lower semi-continuous

as well.15 For these reasons, it is important to find conditions under which a choice

correspondence can be rationalized by a continuous preference relation. Note also that

whenever X is the Euclidean space (or, more generally, a separable metric space), any

continuous preference relation on X will have a continuous utility representation.

This prompts the following definitions. Let ((X,D),A) be a choice environment

where X is a topological space. A function u : X → R is strictly D-increasing if (i)

u(x) ≥ u(y) whenever x D y, and (ii) u(x) > u(y) whenever x B y. (If X is a subset

of Rn and ≥ is the coordinatewise order, then to say that u is strictly ≥-increasing

is the same as saying it is strictly increasing in the usual sense.) We say that a choice

correspondence c on A is D-rationalizable by a continuous utility function if there

is a continuous and strictly D-increasing function u : X → R such that

c(A) ⊆ arg max{u(x) : x ∈ A} (6)

for every A ∈ A.

As we have noted in Section 3.1, Afriat’s Theorem guarantees that the rationalizing

utility function is continuous (amongst other properties). This conclusion relies on the

particular structure of the classical consumption choice environment, ((Rn
+,≥),A). First,

15 For example, a demand correspondence is upper hemicontinuous with respect to prices if the con-

sumer is maximizing a continuous preference; upper semi-continuity of the preference would not suffice

for the upper hemi-continuity of demand. More generally, if we endow B with the Hausdorff metric,

then the correspondence mapping B to max(B,%) is upper hemicontinuous on B if % is continuous.
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Rn
+ possesses a well-behaved topological structure, so it is meaningful to talk about the

continuity of preference relations defined on it. Second, Afriat’s Theorem assumes that

the observer makes finitely many observations, which means (in our terminology) that

c is a finite-valued map on a finite domain A.16

It turns out that analogous results can be established in other choice environments,

thereby yielding a generalization of Afriat’s Theorem, provided that they are endowed

with a well-behaved topological structure. In particular, let us consider ((X,D),A)

where (i) X is a locally compact and separable metric space, (ii) D is a continuous

preorder,17 and (iii) A is a collection of nonempty compact subsets of X. In what follows,

we refer to any such choice environment as a continuous choice environment. Our

“rationalization by a utility function” type results will all be proved within the context

of such environments. The following is a major case in point.

Theorem 3. Let ((X,D),A) be a continuous choice environment such that A is a finite

set. Then, a closed-valued choice correspondence c on A satisfies cyclical D-consistency

if, and only if, it is D-rationalizable by a continuous utility function.

It is possible to replace the finiteness requirement on A here with a continuity prop-

erty. In particular, the following result shows that if, in the context of Theorem 3, A
is not finite, but the preorder tran(R(c)∪ D) on X is known to be continuous, then

the conclusion of that theorem remains valid. As we shall demonstrate later, in certain

applications in which A is not finite, this requirement may be checked directly.

Theorem 4. Let ((X,D),A) be a continuous choice environment, and c a choice

correspondence on A such that tran(R(c)∪ D) is a continuous preorder on X. Then,

c satisfies cyclical D-consistency if, and only if, it is D-rationalizable by a continuous

utility function.

Similar to our proof of Theorem 2, and unlike the standard proofs of Afriat’s Theo-

rem, Theorems 3 and 4 are obtained by means of a nonconstructive method. The proofs

are based on a suitable extension of Szpilrajn’s Theorem that allows one to “continu-

ously complete” a continuous preorder. This result is known in topological order theory

16 In the classical consumption choice environment, Reny (2015) provides sufficient conditions under

which a (not necessarily finite) data set can be rationalized by an upper semicontinuous utility function.

See also Mas-Colell (1978), which studies the rationalizability of demand functions with continuous and

upper semicontinuous utility functions; in this case it is assumed that the demand function is specified

at all strictly positive prices and incomes (in other words, using our notation, A consists of all compact

linear budget sets).
17 Terminology : We say that a binary relation on a topological space X is continuous if it is a closed

subset of the product space X ×X.
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as Levin’s Theorem, and it is stated and proved in the Appendix.

When we apply Theorem 3 to the classical consumption choice environment, assum-

ing that A is finite and c is closed-valued, we obtain the conclusion that c obeys cyclical

consistency iff it is rationalizable by a strictly increasing and continuous utility function.

So we effectively recover Afriat’s Theorem, though there are two notable differences in

the results. First, while Afriat’s Theorem assumes that c is finite-valued, our result

only requires that c be closed-valued. The second difference is that we do not guarantee

that the rationalizing utility function is concave; in turns out that there is a noteworthy

reason for this difference, which we shall discuss in greater detail Section 3.6.

We now apply Theorem 3 to the other two examples considered in Section 2.

Example 2 (continued). The Forges-Minelli choice environment ((Rn
+,≥),A) is a

continuous choice environment since the elements of A are assumed to be compact.

They are also comprehensive, which means that A↓ = A for each A in A. Consequently,

the cyclical ≥-consistency of a choice correspondence c can be more simply stated in the

following way: for every integer k ≥ 2 and A1, ..., Ak ∈ A, if x1 ∈ c(A1) ∩ A2, ...,xk−1 ∈
c(Ak−1)∩Ak and xk ∈ c(Ak)∩A1, then x1 ∈ A2\A↓↓2 , ...,xk−1 ∈ Ak\A

↓↓
k and xk ∈ A1\A↓↓1 .

Theorem 3 says that so long as A is finite and c is closed-valued, then c is rationalizable

by a strictly increasing and continuous utility function iff it obeys cyclical ≥-consistency.

This recovers the result of Forges and Minelli (2009) and, in fact, generalizes it somewhat

since we assume here only that c is closed-valued (instead of finite-valued).

Example 3 (continued). In this case the choice environment is ((∆n−1,≥FSD),A),

where the elements of ∆n−1 are interpreted as simple lotteries with monetary outcomes,

and the lotteries are partially ordered by the first order stochastic dominance relation

≥FSD. If we endow ∆n−1 with the Euclidean metric and assume that the elements of A
are compact sets in ∆n−1, then this choice environment is continuous. Furthermore, let

us assume that the collection A is finite and we have observed a closed-valued choice

correspondence c on A. (In experimental settings, it is not uncommon for A to be a

finite collection of finite sets, in which case these conditions are satisfied immediately.)

Theorem 3 tells us that there is a continuous and ≥FSD-increasing utility function on

∆n−1 that rationalizes c iff c satisfies cyclical ≥FSD-consistency.18

3.5. Empirical tests of rationalizability. Theorem 3 may be utilized in empirical

18 There are other dominance relations that one could reasonably impose in the context of choice

over lotteries. An alternative that is more stringent than first order stochastic dominance is second

order stochastic dominance, which also induces a continuous partial order ≥SSD on ∆n−1; in this case,

rationalizability would involve checking for cyclical ≥SSD-consistency.
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applications in an arbitrary choice environment ((X,D),A), in much the same way that

Afriat’s Theorem is used in studying consumption choice. Indeed, empirical revealed

preference studies are usually based on finite data sets, which ensures that A is finite

and the observed choice correspondence c is finite-valued. In view of Theorem 3, the

issue reduces to checking whether or not c satisfies cyclical D-consistency. In general,

one may appproach this problem using the following four-step procedure.

(Step I) Check that c(A) ⊆ A\A↓↓ for each A ∈ A.

(Step II) Let c(A) stand for the set of all choices across all choice problems, that is, c(A) :=⋃
{c(A) : A ∈ A}. Construct the binary relation S on c(A) in the following

manner: xS y if there is an A ∈ A such that x ∈ c(A) and y ∈ A↓.19

(Step III) Identify all cycles in S, say, by using Warshall’s algorithm (see Varian (1982)).

(Step IV) Check whether (4) holds for every cycle found in Step III.

This description sets out a procedure for checking cyclical D-consistency that is

analogous to the familiar one used to check for cyclical consistency. It is well known that

verifying cyclical consistency in practice is computationally undemanding. Whether this

is also true of cyclical D-consistency property depends on the complexity of D and the

structure of the sets in A, but it seems likely that it will also be relatively straightforward

in the context of many empirical applications.20

3.6. A comparison with Afriat’s Theorem. At this point it is worth returning

again to the Afriat’s consumption choice model in order to highlight the distinction

between the rationalization obtained here and those obtained in Afriat’s analysis and

Reny’s (2015) extension of that analysis to the case of infinite choice data. Both of

those analyses yield a rationalizing preference relation that can be represented by a

quasiconcave utility function on Rn
+. On the other hand, neither Theorem 2 nor 3

says anything about the convexity of the rationalizing preference relation. There is

in fact a noteworthy reason for this. The rationalizing preference relation constructed

through our approach has actually another property which, in certain cases, precludes

the property of convexity. The result below gives more information about the structure

19 If c(A) has m elements, then there are at most m(m−1) nontrivial checks that one has to perform

in the construction of S. (Note that x1, ..., xk ∈ X obey (3) iff they form a cycle in S in the sense that

x1 S xk S xk−1, ....x2 S x1.)
20 For an empirical implementation of this testing procedure in the case where D ranks contingent

consumption bundles based on first order stochastic dominance, see Polisson et al. (2013) and the

related discussion in Section 5.4.
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of this preference relation, and highlights a fundamental difference between Afriat-type

constructions and ours.

Proposition 5. Let ((X,D),A) be a choice environment and c a choice correspondence

on A that satisfies cyclical D-consistency. Then, there is a preference relation % on X

that (i) extends D, (ii) rationalizes c, and (iii) satisfies

x ∈ max(A,%) if, and only if, x tran(R(c)∪ D) y for some y ∈ c(A) (7)

for every A ∈ A and x ∈ A. Moreover, under the conditions of Theorem 4, we can

choose % to have a continuous utility representation.

The “if” part of (7) is clear: indeed, for any preference relation % that extends D

and rationalizes c, it must be the case that if x ∈ A and x tran(R(c) ∪ D) y for some

y ∈ c(A), then x ∈ max(A,%). The non-trivial conclusion of this proposition is that,

under the hypothesis of cyclical D-consistency, we can find a preference relation that not

only extends D and rationalizes c, but for which the “only if” part of (7) also holds. In

other words, on any feasible set A ∈ A, such a preference relation will have more optimal

points besides the ones in c(A) only if it is ‘required’ to do so by the correspondence c

itself.

To wit, suppose we have two observations of a consumer in a classical consumption

choice environment. In both observations, the prices are p, with the consumer buying

a bundle x1 at one observation and x2 at another, with px1 = px2 = 1 and x1 6= x2.

Rationalizing these demands by a convex preference relation would entail that every

bundle on the line segment between x1 and x2 is also optimal for the individual at prices

p. By contrast, Proposition 5 says that there is a preference relation that declares only

x1 and x2 as optimal at prices p. Such a preference relation is, per force, not convex.

4. STRICT RATIONALIZABILITY

4.1. Richter’s Theorem. The notion of rationalizability allows for the possibility that

an agent’s observed choices at a given feasible set constitute some, but not all, of her

optimal choices. As we pointed out in Section 2, for this notion to be nonvacuous, we

must impose further constraints on the agent’s choice behavior, such as being consistent

with an exogeneously given dominance relation, that would preclude her being indifferent

across all alternatives. On the other hand, in economic contexts where such a relation

is not naturally present, or when the observer has reasons to believe that the unchosen

alternatives in a feasible set are strictly less preferred to the ones chosen, it may be

appropriate to adopt a stronger notion of rationalizability.
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Given a choice environment ((X,D),A) and a choice correspondence c on A, we say

that a preference relation % on X strictly rationalizes c if

c(A) = max(A,%) (8)

for every A ∈ A. If, in addition, % extends the preorder D, we say that it strictly

D-rationalizes c. If X is a topological space and there is a continuous and strictly

D-increasing function u : X → R such that, for every A ∈ A,

c(A) = arg max{u(x) : x ∈ A}

then we say that c is strictly D-rationalizable by a continuous utility function.

While it may sometimes be too demanding in the context of empirical studies, the

notion of strict rationalizability of a choice correspondence is widely studied in (rational

or boundedly rational) choice theory, and the property is understood as providing a

theoretical foundation for the utility maximization paradigm. (Classical references using

this concept include Samuelson (1938), Houthakker (1950), and Arrow (1959).) One of

the major results on strict rationalizability is found in the seminal work of Richter

(1966). This result is based on a property called the congruence axiom; a choice

correspondence c on A satisfies this axiom if

x tran(R(c)) y and y ∈ c(A) imply x ∈ c(A)

for every A ∈ A that contains x. In other words, whenever a feasible alternative x in a

choice problem is revealed preferred to an alternative y that is chosen in that problem,

then x must be chosen in that problem as well. Richter’s Theorem says that a choice

correspondence c on A is rationalizable iff it satisfies the congruence axiom.

4.2. The congruence axiom in general choice environments. In the context

of an arbitrarily given choice environment ((X,D),A), we would like to generalize

Richter’s Theorem by characterizing all choice correspondences on A that are strictly

D-rationalizable. Clearly, this calls for a suitable generalization of Richter’s congruence

axiom, so we begin our work in this section by introducing such a generalization: a

choice correspondence c on A is said to satisfy the D-congruence axiom if

x tran(R(c) ∪ D) y and y ∈ c(A) imply x ∈ c(A) (9)

for every A ∈ A that contains x, and

x tran(R(c) ∪ D) y implies not y . x (10)
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for every x, y ∈ X. This is a bonafide generalization of the standard congruence axiom.

Indeed, if we take D as the partial order 4X := {(x, x) : x ∈ X} (which says that there

is no dominance between any two distinct alternatives), then this definition coincides

with that of the standard congruence axiom.

It follows immediately from Proposition 1 that the D-congruence axiom is stronger

than cyclical D-consistency. Our next proposition reformulates D-congruence in a way

that makes the relationship between the two properties even clearer.

Proposition 6. Let ((X,D),A) be a choice environment. Then, a choice correspon-

dence c on A satisfies the D-congruence axiom if, and only if, for every integer k ≥ 2

and A1, ..., Ak ∈ A,

x1 ∈ c(A1) ∩ A↓2, ..., xk−1 ∈ c(Ak−1) ∩ A
↓
k and xk ∈ c(Ak) ∩ A↓1 (11)

imply (4) as well as

x↑1 ∩ A2 ⊆ c(A2), ..., x
↑
k−1 ∩ Ak ⊆ c(Ak) and x↑k ∩ A1 ⊆ c(A1).

21 (12)

Thus, while cyclical D-consistency requires that (3) implies (4), the D-congruence

axiom requires that (3) implies (4) and (12). It follows from Proposition 6 that the

four-step procedure set out in Section 3.5 for checking cyclical D-consistency can also

be used to check for the D-congruence axiom, provided that we modify Step IV in that

procedure to check that properties (4) and (12) hold for every cycle in S.

4.3. Generalizing Richter’s Theorem. The following result shows thatD-congruence

axiom is necessary and sufficient for the strong D-rationalizability of any choice corre-

spondence in any choice environment.

Theorem 7. Let ((X,D),A) be a choice environment. Then, a choice correspondence

c on A satisfies the D-congruence axiom if, and only if, it is strictly D-rationalizable.

Theorem 7 is best viewed as a monotone version of Richter’s Theorem, but it is worth

noting that this result is a proper generalization of Richter’s Theorem. Indeed, setting

D to be the preorder 4X in Theorem 7, we recover the exact statement of Richter’s

Theorem. Given the groundwork we have laid out so far, this result has a short proof

and, in particular, the sufficiency of the D-congruence axiom for strict rationalizability

follows easily from Proposition 5. That proposition says that when c obeys cyclical D-

consistency, there is a preference relation % that not only D-rationalizes c but has the

21 For any x in X, we let x↑ stand for the increasing closure of {x} with respect to D, that is,

x↑ := {y ∈ X : y D x}.
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added property that (for all A ∈ A) the set max(A,%) is minimal, even though it may

be a strict superset of c(A). In fact, one could go on to show that when c obeys the

stronger property of D-congruence, the two sets will coincide for all A ∈ A.

Just like we have done in the case of our extensions of Afriat’s Theorem, and for the

same motivating reasons, we would like to upgrade Theorem 7 to obtain a monotone

and continuous version of Richter’s Theorem. This following result covers this case.

Theorem 8. Let ((X,D),A) be a continuous choice environment such that A is a finite

set. Then, a closed-valued choice correspondence c on A satisfies the D-congruence

axiom if, and only if, it is strictly D-rationalizable by a continuous utility function.

4.4. Strict rationalizability in classical choice environments. If only to provide

a quick application, we now return to the classical Afriat model, and investigate what

it would take for the observed consumption demand data to be strictly rationalizable

in that model. To this end, take a nonempty finite set P of price vectors in Rn
++,

and let d : P ⇒ Rn be a correspondence such that d(p) is a nonempty subset of

Rn
+\{0} with pd(p) = 1, for all p ∈ P . (Recall that in Section 3.1 we refer to this map

as a (normalized) demand correspondence on P .) P induces a classical consumption

choice environment ((Rn
+,≥),A), where A := {B(p, 1) : p ∈ P} and with d we can

define the choice correspondence c on A by c(B(p, 1)) := d(p),. We say that d satisfies

the ≥-congruence (or congruence) axiom, or that d is strictly ≥-rationalizable by a

continuous utility function, if c possesses the corresponding properties, respectively.

Since pd(p) = 1 for all p ∈ P , there is no y in B(p, 1) with y > x for any x in

B(p, 1) . Furthermore, B(p, 1)↓ = B(p, 1), so x tran(R(c) ∪ ≥) y iff x tran(R(c)) y.

Given these observations, one readily checks that d satisfies the ≥-congruence axiom iff

it satisfies the congruence axiom. Thus, Theorem 8 yields the following result.

Proposition 9. Let P be a nonempty finite set in Rn
++ and d a closed-valued (normal-

ized) demand correspondence on P . Then d is strictly ≥-rationalizable by a continuous

utility function if, and only if, it satisfies the congruence axiom.

We note that Proposition 9 is related to a theorem of Matzkin and Richter (1991),

which also provides a characterization of strict rationalizability of d, but under the

hypothesis that d is single-valued. The rationalizing preference relation on Rn
+ obtained

by Matzkin and Richter is representable by a continuous, strictly increasing, and strictly

concave utility function on Rn
+. In our case, the last property is not guaranteed: if d

is not convex-valued, a preference relation that strictly rationalizes d cannot be convex,

and hence, no utility function that represents this relation can be even quasiconcave.
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5. FURTHER APPLICATIONS

The main theorems of Sections 3 and 4 provide methods for studying (strict) rationaliz-

ability in choice environments well beyond the examples we have covered so far. In this

section, we provide further applications of our results in several economically important

and widely-studied choice environments.

5.1. Choice over policy space. In formal political science, it is common to model

political positions as points in a Euclidean space Rn
+, where n is interpreted as the number

of issues over which a policymaker may form a preference. However, in this context, it is

no longer sensible to require individual preferences to extend the coordinate-wise order≥;

indeed the policymaker may well have an ideal position in Rn
+ that is strictly preferred to

all other alternatives. If the observer has no further knowledge about the policymaker’s

preferences, then this is captured by requiringD to equal ∆Rn . The choice environment in

thus ((Rn,∆Rn),A), where we assume that A is a nonempty finite collection of compact

subsets of Rn
+. Suppose, in addition, that the policymaker’s observed choices is given by

some closed-valued correspondence c on A. In this setting, there is no nontrivial test for

rationalizability, but it still possible to test for strict rationalizability. Theorem 8 tells

us that c is strictly rationalizable by a continuous utility function on Rn
+ iff it satisfies

the congruence axiom.22

Suppose one makes the further hypothesis that the policymaker will always agree with

the position of a certain group of agents I; this can be formally captured by requiring the

policymaker’s preference relation on Rn
+ to extend a (not necessarily complete) preorder

&I on Rn
+ (which we interpret as group I’s policy preferences and which we assume is

observable).23 Theorem 3 says that, provided &I is continuous, A is a finite collection

of compact sets, and c is closed-valued, the following holds: there is a continuous utility

function that &I-rationalizes c iff it obeys cyclical &I-consistency.

5.2 Recoverability. In this application, we turn again to classical consumption choice

environments. As in Section 4.4, take a nonempty finite set P of price vectors in Rn
++,

and let d stand for the (normalized) demand correspondence on P . Suppose d satisfies

cyclical consistency, and denote by U(d) the collection of all continuous utility functions

22 Kalandrakis (2010) provides a different revealed preference analysis in a similar setting. In our

terminology, Kalandrakis considers the case where each A ∈ A has two elements, and characterizes

those single-valued choice correspondences on A that can be rationalized by a concave (hence contin-

uous) utility function on Rn. Our rationalization imposes weaker assumptions on A and c, and the

rationalizing utility function we obtain, while continuous, need not be concave. (Such nonconcavities

may arise naturally in policy spaces; see, for example, Stiglitz (1974).)
23 For example, we may have &I= ∩i∈I &i, where &i is the member i’s preference relation on Rn+.
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u : Rn
+ → R that ≥-rationalize d. (By Theorem 3, U(d) 6= ∅.) Since different members of

U(d) will have different preference rankings across bundles, it would be useful to find out

the extent to which we may identify the actual preference relation of the agent without

subscribing to any one utility function that ≥-rationalizes d. Formally, we would like to

characterize the subsets S(d) and S ′(d) of Rn
+ × Rn

+ such that

(x,y) ∈ S(d) iff u(x) ≥ u(y) for each u ∈ U(d)

and

(x,y) ∈ S ′(d) iff u(x) > u(y) for each u ∈ U(d).

This formulation of the problem is the same as what Varian (1982) calls the Recover-

ability Problem, except that Varian considers the case where U(d) consists of continuous

and concave utility functions that ≥-rationalizes d. Given the weaker assumptions on

the utility functions we impose here, the relations S(d) and S ′(d) are bound to be smaller

than those studied by Varian (1982). Moreover, in certain contexts, it is sensible not to

impose a concavity, or even quasiconcavity, requirement on the utility functions (even

when it is possible to rationalize d by such a utility function). To wit, consider a sit-

uation in which the consumer chooses a contingent consumption over n states of the

world, subject to a linear budget set, where a bundle d(p) is the bundle demanded at

the state prices p. In such a context, as also noted by Halevy et al. (2014), we may

well wish to draw inferences of the agent’s preferences (based on her observed choices)

without assuming that she has a quasiconcave utility function, since that assumption

would exclude risk-seeking and/or elation-seeking preferences.24

For bundles x and y in Rn
+, we say that x is revealed preferred to y if x tran(R(c)∪

≥)y, where, as usual, c is the choice correspondence induced by d (Section 4.4). This is

equivalent to saying that there are finitely many p1, ...,pk ∈ P and x1 ∈ d(p1), ...,xk ∈
d(pk) such that

x ≥ x1, p1x1 ≥ p1x2, ...,pk−1xk−1 ≥ pk−1xk and pkxk ≥ pky. (13)

We say that x is revealed strictly preferred to y if any of the inequalities in (13)

is strict. It is clear that if x is revealed (strictly) preferred to y, then (x,y) belongs

to S(d) (respectively, S ′(d)). Our next result, whose proof relies on Proposition 5 and

24 For example, suppose that n = 2 and the consumer’s true utility function is u(x1, x2) = π1v(x1) +

π2v(x2), where πi > 0 for i = 1, 2, and v is strictly increasing but not concave. Then u will not be

quasiconcave and predicting the consumer’s preference from d while assuming quasiconcavity can lead

to false conclusions. On the other hand, the predictions captured by S(d) and S′(d) will be correct.
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Theorem 3, shows that the converse is also true, thereby yielding a practical method of

computing the preorders S(d) and S ′(d).

Proposition 10.25 Let P be a nonempty finite set in Rn
++ and d a closed-valued

(normalized) demand correspondence on P which satisfies cyclical ≥-consistency. Then,

(i) (x,y) ∈ S(d) if, and only if, x is revealed preferred to y; and

(ii) (x,y) ∈ S ′(d) if, and only if, x is revealed strictly preferred to y.

5.3 Rationalizability of Engel curves. Consider a researcher who has estimated

the Engel curves at a finite set of price vectors. When is it the case that these curves

correspond to those of a decision maker maximizing a continuous and strictly increas-

ing utility function? This rationalizability problem cannot be directly addressed by

Afriat’s Theorem, since even a single Engel curve presumes uncountably many choice

situations.26 We can, however, provide an answer fairly easily by appealing to Theorem

4. To be precise, the choice environment is of the form ((Rn
+,≥),A), where

A := {B(p, I) : p ∈ P and I ∈ I}, (14)

with P being a nonempty finite subset of Rn
++ and I being a nondegenerate closed

interval in R+. We are given a demand correspondence of the form d : P × I⇒ Rn
+ such

that px = I for every x ∈ d(p, I) and (p, I) ∈ P × I. (The map I 7→ d(B(p, I)) is the

Engel curve of the agent at the price vector p.) Abusing the terminology, we say that

d (or the Engel curves induced by d) satisfies cyclical ≥-consistency or the congruence

axiom if the choice correspondence c : B(p, I) 7→ d(p, I) on A satisfies the corresponding

property.

This is essentially the setup of Blundell et al. (2003), who estimated Engel curves on a

finite set of price vectors and then tested if these curves satisfied cyclical ≥-consistency.

Of course, the Engel curves of a utility maximizing consumer must obey cyclical ≥-

consistency, but empirical welfare analysis based on data that satisfies this property

(such as the one carried out by Blundell et al. (2003)) presumes that it is also sufficient

for rationalizability. This presumption is by no means self-evident, but the following

result shows that it is nevertheless correct.

25 If we do not require P to be finite or d to be closed-valued, then so long as d obeys cyclical

consistency we obtain the following: (i) x is revealed preferred to y iff x % y for each preference %
that ≥-rationalizes d and (ii) x is strictly revealed preferred to y iff x � y for every preference % that

≥-rationalizes d. (But, in this case, preferences need not be continuous.)
26 While the rationalizability theorem of Reny (2015) applies to infinite data sets that satisfy cyclical

consistency, the utility function it constructs is in general not continuous.
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Proposition 11. Let ((Rn
+,≥),A) be the choice environment defined by (14), and let

d : P × I ⇒ Rn
+ be an upper hemicontinuous demand correspondence. Then there

exists a continuous utility function u : Rn
+ → R that (i) ≥-rationalizes d if, and only

if, d satisfies cyclical ≥-consistency, and (ii) strictly ≥-rationalizes d if, and only if, d

satisfies the ≥-congruence axiom.27

As A is not finite here, we cannot make use of Theorem 3 to prove this proposition.

Instead, our proof uses the upper hemicontinuity of d to ensure that tran(R(c)∪ ≥) is

a continuous preorder on Rn
+, where c is the choice correspondence on A induced by d.

This allows us to use Theorem 4 to obtain a continuous utility function that (strictly)

≥-rationalizes d as asserted in Proposition 11.

5.4 Contingent consumption. Suppose there are n states of the world, where the

probability of each state i, which we denote by πi, is known to both the consumer and

the observer. The consumer chooses a bundle of contingent consumption subject to a

linear budget set at a given vector of state prices. In such a context, Varian (1983) and

Green and Srivastava (1986), among others, have developed characterizations of data sets

consistent with the hypothesis that the consumer maximizes an expected utility function.

Our objective here is to develop a test for a more permissive model of rational behavior.

We ask if the agent’s behavior is consistent with the maximization of a continuous utility

function that is strictly increasing with respect to first order stochastic dominance.28

In formal terms, we consider the choice environment ((Rn
+,≥FSD,π),A), where P is

a nonempty finite subset of Rn
++, A := {B(p, 1) : p ∈ P}, and ≥FSD,π is the first order

stochastic dominance relation on Rn
+ induced by the probability vector π := (π1, ..., πn).29

Note that the binary relation ≥FSD,π is a continuous preorder on Rn
+, but, unlike the first

order stochastic dominance relation we worked with in Example 3 in Section 3.4, it is not

a partial order. (For instance, (1, 2) and (2, 1) are equivalent with respect to &FSD,( 1
2
, 1
2
).)

Now, for any closed-valued (normalized) demand correspondence d on P , Theorem 3

says that d is ≥FSD,π-rationalizable by a continuous utility function u : Rn
+ → R iff

it obeys cyclical ≥FSD,π-consistency.30 To actually implement such a test on data, one

27 For an empirical implementation of the test for cyclical consistency on Engel curves see Blundell

et al. (2003).
28 Easy examples show that it is possible for a preference to be representable by utility function that

is strictly &FSD,π-increasing, without being representable by an expected utility function.
29 For any n-vector z = (z1, z2, ..., zn) and real number a ≥ 0, put I(z, a) := {i : zi ≤ a}. Then, for

any nonnegative n-vectors x and y, we have x ≥FSD,π y iff
∑
i∈I(x,a) πi ≤

∑
I(y,a) πi for each a ≥ 0.

30 Since >FSD,π⊃> (where >FSD,π and > are asymmmetric parts of ≥FSD,π and ≥ respectively), d is

≥-rationalizable whenever it is ≥FSD,π-rationalizable.
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could use the four-step procedure set out in Section 3.5.31

5.5. Intertemporal consumption. Consider a researcher who observes a consumer

choosing consumption of a single good across n different future dates, subject to a given

wealth and the price of consumption at different dates. A consumption stream in this

framework is an element x of Rn
+ and the price vector is an element p of Rn

++. (For an

experiment where subjects are observed to make choices in such a setting, see Andreoni

and Sprenger (2012).) To avoid issues that may arise due to dynamic inconsistency,

we assume that the analyst observes the commitment choices of the agent, that is, the

consumer cannot deviate from her chosen consumption stream.32

In the study of intertemporal consumption, a question that has received quite a

lot of attention is whether consumers display impatience. This property is a feature

of geometric discounting, even though there is considerable evidence challenging its

empirical prevalence. (See, for instance, Frederick et al. (2002) for a survey.) There

are revealed preference tests that specifically checks for consistency with the geometric

discounting model (cf. Browning (1989) and Echenique et al. (2015)), but it would also

be interesting to test whether the consumer’s behavior exhibits impatience, whether or

not it satisfies geometric discounting. Our results can be used to devise such tests.

Let us first consider the case where the consumer, instead of being impatient, is in-

different about the timing of consumption. Formally, an intertemporal utility function

U : Rn
+ → R exhibits neutral time preference if it is strictly increasing and symmetric.

(By symmetry of U here, we mean that U(x) = U(xσ) for any x ∈ Rn
+ and any permu-

tation σ on N := {1, 2, ..., n}, where xσ stands for the n-vector (zσ(1), ..., zσ(n)).) In turn,

we define the binary relation &sym on Rn
+ by x &sym y if x ≥ yσ for some permutation σ

on N . Obviously, a person who is indifferent over the timing of consumption would be

indifferent between y and yσ (for any σ), so, assuming that she prefers more to less, she

would prefer x over y whenever x &sym y. It is readily verified that &sym is a continuous

preorder on Rn
+ (but it is not a partial order unless n = 1). Moreover, an intertem-

poral utility function U : Rn
+ → R exhibits a neutral time preference iff it is strictly

&sym-increasing. Suppose P is a nonempty finite set in Rn
++ and d is a closed-valued

(normalized) demand correspondence on P . By Theorem 3, d is &sym-rationalizable by

a continuous utility function iff it satisfies cyclical &sym-consistency.

31 Polisson et al. (2015) have recently implemented this test procedure on the experimental data

collected by Choi et al. (2007). See also the related tests carried out by Heufer (2014) on this data set.
32 There is a related strand of revealed preference studies where observations consist of choices made

over consumption-date pairs (rather than consumption streams); see, for example, Demuynck (2009)

and Dziewulski (2015).
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To test for impatience, we would require the consumer’s utility function to be strictly

increasing with respect to a different preorder. Given any x ∈ Rn
+, let us call an n-vector

y an improving swap of x if y = xσ for some permutation σ on N such that there

exist k and l in N with k < l, xk ≤ xl, σ(k) = l, σ(l) = k and σ(j) = j for all

j ∈ N\{k, l}. (For example, (4, 3, 6, 5) is an improving swap of (4, 3, 5, 6).) The bundle

y is an improving permutation of x if y is obtained from x by means of a sequence

of improving swaps. Lastly, we define the binary relation &+ on Rn
+ by setting x &+ y

whenever there is a vector z, which is an improving permutation of y, such that x ≥ z.

(Clearly, &+ is a continuous preorder on Rn
+.) We say that an intertemporal utility

function U : Rn
+ → R exhibits positive time preference if it is strictly&+-increasing.33

Once again, by appealing to Theorem 3, we see that cyclical&+-consistency characterizes

those (normalized) demand correspondences that are rationalizable by continuous utility

functions with positive time preference.

APPENDIX

Proof of Proposition 1. Let c be a choice correspondence on A such that (5) holds for every

x, y ∈ X. Take any integer k ≥ 2 and A1, ..., Ak ∈ A. Pick any x1, ..., xk ∈ X with

xi ∈ c(Ai) ∩A↓i+1 (mod k) for each i = 1, ..., k.

Then, for every i, there is a yi+1 (mod k) ∈ Ai+1 (mod k) such that xi+1 (mod k)R(c) yi+1 (mod k) D

xi. It follows that

xk tran(R(c)∪ D) xk−1 tran(R(c)∪ D) · · · tran(R(c)∪ D) x1.

Now take any y ∈ A↓1 such that y D xk. Then, x1 tran (R(c)∪ D) y, so the previous observation

yields xk tran (R(c)∪ D) y. By (5), therefore, y B xk cannot hold. In view of the arbitrary

choice of y in A↓1, we may thus conclude that xk does not belong to A↓↓1 . That xi does not

belong to A↓↓i+1 is analogously established for each i = 1, ..., k − 1. Thus c satisfies cyclical

D-consistency.

Conversely, assume that c is a choice correspondence on A which satisfies cyclical D-

consistency. Suppose x tran(R(c) ∪ D) y but y B x. Then, there exist x1, ..., xk and y1, ..., yk

in X such that

x D xk R(c) yk D xk−1 R(c) · ·· D x2 R(c) y2 D x1 R(c) y1 D y B x D xk. (15)

33 For instance, suppose U is defined by U(x) :=
∑n
i=1 v(i,xi), where v is strictly decreasing in this

its first component, and strictly increasing in the second. Then U exhibits positive time preference.

Note that any function that is strictly &+-increasing must also be strictly ≥-increasing.

25



Since xi R(c) yi, there is an Ai ∈ A such that (xi, yi) ∈ c(Ai) × Ai, for each i = 1, ..., k.

Therefore, (15) implies that xi ∈ c(Ai) ∩ A↓i+1 (mod k) for each i = 1, ..., k. By cyclical D-

consistency of c, then, xk does not belong to A↓↓1 , but this is false because y1 ∈ A1 and

y1 B xk. �

Proof of Theorem 2. We have already proved at the beginning of Section 3.3 that any choice

correspondence that obeys cyclicalD-consistency isD-rationalizable. Conversely, assume that c

is a choice correspondence onA that satisfies cyclicalD-consistency. Define%∗:= tran(R(c)∪ D
),which is a preorder on X. By Szpilrajn’s Theorem, there is a complete preorder % on X that

extends %∗. As R (c) ⊆ %, we have x % y if there is an A ∈ A with (x, y) ∈ c(A)×A. It follows

that c(A) ⊆ max(A,%) for every A ∈ A. It remains to show that % extends D, and for this, it

is enough to show that B ⊆ �∗. To this end, take any two elements x and y of X such that

x B y. By definition of %∗, we have x %∗ y. Furthermore, y %∗ x cannot hold since, otherwise,

Proposition 1 would imply that x B y is false. We thus have x �∗ y, as we sought. �

Our proofs of Theorems 3 and 4 are built on the following result of topological order theory.

Levin’s Theorem. Let X be a locally compact and separable metric space and % a contin-

uous preorder on X. Then there is a preference relation on X that extends % and admits a

continuous utility representation.

This result, which we refer to here as Levin’s Theorem, is actually a special case of the

main theorem of Levin (1983), who only assumed that X is a locally compact, σ-compact

and second countable Hausdorff space. It is well-known in topological order theory; see, for

instance, Herden (1989), Bridges and Mehta (1996), and Herden and Pallack (2002). Given

that this theorem is a main building block for some of the central results of this paper, we

would like to provide here a fairly direct and accessible proof, based on the following better

known theorem.

The Nachbin Extension Theorem.34 Let X be a compact Hausdorff space, and Y a

nonempty closed subset of X. Let % be a continuous preorder on X. If f is a continuous and

%-increasing real map on Y, then there is a continuous and %-increasing real map F on X

with F |Y = f.35

We now show how one may easily derive Levin’s Theorem from this result. (Levin’s original

proof was fairly long, and did not make use of Nachbin’s Theorem.)

Lemma A. Let X be a compact metric space, and % a continuous preorder on X. Then, there

is a continuous and strictly %-increasing map U : X → [0, 1].

34 This result obtains as a consequence of putting together Theorems 4 and 6 of Chapter 1 of Nachbin

(1965). (Nachbin actually assumes that % is a partial order on X in these results, but so long as X is

compact and Hausdorff, his proofs apply (without modification) to the case of preorders as well.)
35Note that neither f nor F is strictly %-increasing in this theorem.
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Proof of Lemma A. Define Ω := {(x, y) ∈ X × X : not x % y}. If Ω = ∅, then x ∼ y

for all x, y ∈ X, so any constant real map on X fulfils the requirements of the lemma. We

assume, then, Ω 6= ∅. In turn, for any (x, y) ∈ Ω, we define the function vx,y : {x, y} → R as

vx,y(x) := 0 and vx,y(y) := 1, which is a continuous and %-increasing function on {x, y}. By

the Nachbin Extension Theorem, for each (x, y) ∈ Ω there is a continuous and %-increasing

function ux,y : X → R such that ux,y(x) = 0 and ux,y(y) = 1; we denote the collection of these

functions by U . Then, it is readily checked that

x % y iff u(x) ≥ u(y) for every u ∈ U

for every x, y ∈ X. In what follows, we assume, without loss of generality, that each u ∈ U is

[0, 1]-valued. (Otherwise, we would have replaced each u in U with, say, 1
π arctanu+ 1

2 .)

As usual, we let C(X) stand for the set of all continuous real functions on X, and metrize

this set by means of the sup-metric. Since X is compact, C(X) is a separable metric space.

As a metric subspace of a separable metric space is separable, therefore, there is a countable

subset V of U which is dense in U . Now, take any elements x and y of X. Obviously, if x % y,

then v(x) ≥ v(y) for every v ∈ V (because V ⊆ U). Conversely, if v(x) ≥ v(y) for every v ∈ V,
then denseness of V in U is easily seen to imply that u(y) > u(x) cannot hold for any u ∈ U ,
and hence, x % y. Thus:

x % y iff v(x) ≥ v(y) for every v ∈ V. (16)

Let us now enumerate V as {v1, v2, ...}, and define U :=
∑∞ 2−ivi. An immediate application

of the Weierstrass M -Test shows that U is a (well-defined) continuous [0, 1]-valued map on X.

Moreover, it is plain from (16) that U is strictly %-increasing. �

Lemma B. Let X be a locally compact and separable metric space, and Y a nonempty

compact subset of X. Let % be a continuous preorder on X. Then, there is a continuous and

%-increasing map U : X → [0, 1] such that

x � y implies U(x) > U(y) (17)

for every x, y ∈ Y.

Proof of Lemma B. Every locally compact and separable metric space is σ-compact, so

there is a sequence (K ′m) of nonempty compact subsets of X such that K ′1 ⊆ K ′2 ⊆ · · · and

X =
⋃∞K ′i. Put Ki := K ′i ∪Y for each i, and note that Y ⊆ K1 ⊆ K2 ⊆ · · · and X =

⋃∞Ki.

By Lemma A, there is a continuous V : Y → [0, 1] such that V (x) > V (y) whenever x � y

(for every x, y ∈ Y ). Let %i := % ∩(Ki ×Ki) for each i ∈ N, and note that, by the Nachbin

Extension Theorem, there is a continuous and %1-increasing map U1 : K1 → [0, 1] such that

U1|K1 = V. Similarly, there is a continuous and %2-increasing map U2 : K2 → [0, 1] such that

U2|K2 = U1, and so on. For any x ∈ X, we let m(x) stand for the smallest integer such

27



that x ∈ Km(x), and define U : X → [0, 1] by U(x) := Um(x). Then, U is a continuous and

%-increasing map that satisfies (17) for every x, y ∈ Y. �

Proof of Levin’s Theorem. We need to prove that there is a continuous and strictly %-

increasing map U : X → [0, 1]. To this end, we again use σ-compactness of X to find a sequence

(Km) of nonempty compact subsets of X such that K1 ⊆ K2 ⊆ ··· and X =
⋃∞Ki. By Lemma

B, for every positive integer i, there is a continuous and %-increasing map Ui : X → [0, 1] such

that

x � y implies Ui(x) > Ui(y) for every x, y ∈ Ki.

Then, U : X → [0, 1], defined by U(x) :=
∑∞ 2−iUi, is a continuous and strictly %-increasing

map. �

We now turn to the proofs of Theorems 3 and 4. We will actually prove Theorem 4 before

Theorem 3, as it will be easier to deduce the latter from the former.

Proof of Theorem 4.36 The “if” part of the assertion follows from Theorem 2. To prove

its “only if” part, we apply Levin’s Theorem to %∗:= tran(R(c)∪ D) to find a continuous

and strictly %∗-increasing real map u on X. As we have proved in the second paragraph of

the proof of Theorem 2, %∗ is an extension of D. Therefore, u is also strictly D-increasing.

Finally, as R (c) ⊆ %∗, we have x %∗ y, and hence, u(x) ≥ u(y), if there is an A ∈ A with

(x, y) ∈ c(A)×A. It follows that c(A) ⊆ arg max{u(x) : x ∈ A} for every A ∈ A. �

The following auxiliary lemma will be used in the proof of Theorem 3.

Lemma C. Let R, S and T be binary relations on a metric space X such that R and T are

closed, and S is compact, in X ×X. Then R ◦ S, S ◦R and R ◦ S ◦ T are closed in X ×X.

Proof of Lemma C. We will only prove here that R ◦ S ◦ T is closed; the arguments for the

remaining cases are similar. Suppose (xm) and (ym) are two sequences that converge to x and

y, and we have xmR ◦ S ◦ T ym for each m. Then, there are sequences (zm) and (wm) such

that xmRzm S wm T ym. Since S is compact, we may assume, after passing to subsequences if

necessary, that (zm) and (wm) are convergent. Since R, S and T are closed in X ×X, we thus

have xR lim zm S limwm T y, which means xR ◦ S ◦ T y. �

Proof of Theorem 3. The “if” part of the assertion follows from Theorem 2. To prove its

“only if” part, we will use Lemma C to prove that tran(R(c) ∪ D) is a continuous preorder on

X. In view of Theorem 4, this will complete our proof.

We being by noting that R(c) is a compact relation because A is a finite collection of

compact sets and c is compact-valued. Furthermore, D is closed in X × X by assumption.

36 While the compactness of the sets in A is part of the definition of a continuous choice environment,

we do not rely on this property in this proof.
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Therefore, Lemma C guarantees that the relation E1 :=D ◦R(c) ◦ D is closed in X×X. More

generally,

Ek :=D ◦R(c) ◦ D ◦R(c) ◦ .... ◦ R(c) ◦ D

where R(c) appears k ∈ N times on the right hand side is also closed relation in X × X (by

repeated application of Lemma C). Suppose x tran(R(c) ∪ D) y. Then either x D y or there is

an integer k ≥ 4 and x1, ..., xk ∈ X such that

x D x1R(c)x2 D x3R(c) · · · R(c)xk D y.

In other words, xEk y. Crucially, we can always ensure that xEk y for some k ≤ |A|. Indeed,

if xEk y and k > |A|, then there must be an A ∈ A, and positive integers i and j such that

j > i and both (xi, xi+1) and (xj , xj+1) belong to c(A)×A. In that case we can write

x D x1R(c)x2 D · · · D xiR(c)xj+1 D · · ·xk D y,

which means that xEm y for some m ∈ {1, ..., k − 1}. We conclude that

tran(R(c)∪ D) =D ∪E1 ∪ E2 ∪ · · · ∪ E|A|.

Therefore, tran(R(c)∪ D) is closed in X×X, being the union of finitely many closed relations.

In other words, tran(R(c)∪ D) is a continuous preorder on X, as we sought. �

Proof of Proposition 5. Define %∗:= tran(R(c)∪ D), and let % stand for the preference

relation we have found in the second paragraph of the proof of Theorem 2. (If the conditions

of Theorem 4 are satisfied, we let % be the preference relation that is induced by the map

u we found in the proof of Theorem 4.) We have seen in that paragraph that % extends D

and rationalizes c. Now take any A ∈ A and any x ∈ A. If x %∗ y for some y ∈ c(A), then

x % y % z for every z ∈ A, so x ∈ max(A,%). Conversely, suppose x %∗ y is false for any

y ∈ c(A), and pick an arbitrary y in c(A). Then, y R(c) x, so y %∗ x. It follows that y �∗ x,
and hence y � x, which means that x does not belong to max(A,%). �

Proof of Proposition 6. Let c be a choice correspondence on A. Assume that c satisfies the

D-congruence axiom, and take any integer k ≥ 2 and A1, ..., Ak ∈ A. Pick any x1, ..., xk ∈ X
with xi ∈ c(Ai) × A↓i+1 (mod k) for each i = 1, ..., k. Then, as the D-congruence axiom implies

the cyclical D-consistency axiom (Proposition 1), (4) must hold. To prove (12), pick any

y ∈ A1 with y D xk. As pointed out in the first paragraph of the proof of Proposition 1,

we have xk tran(R(c)∪ D) x1, and it follows that y tran(R(c)∪ D) x1. By the D-congruence

axiom, therefore, y ∈ c(A1). Thus: x↑k ∩ A1 ⊆ c(A1). That x↑i ∩ Ai+1 ⊆ c(Ai+1) is analogously

established for each i = 1, ..., k − 1.

Conversely, suppose that (3) implies (4) and (12), for every integer k ≥ 2 andA1, ..., Ak ∈ A.
Then, in particular, c satisfies cyclical D-consistency. So, for any fixed, but arbitrary, x, y ∈ X
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with x tran(R(c) ∪ D) y, Proposition 1 implies that y . x cannot hold. To complete our proof,

therefore, take any A ∈ A, and assume that x ∈ A and y ∈ c(A). Given that x tran(R(c) ∪ D)

y, there exist an integer k ≥ 2, and x1, ..., xk and y2, ..., yk in X, such that

x D xk R(c) yk D xk−1 R(c) · ·· D x2 R(c) y2 D y = x1.

Then, for each i = 2, ..., k, there is an Ai ∈ A such that xi ∈ c(Ai) and yi ∈ Ai. In particular,

x1 ∈ A↓2, x2 ∈ A
↓
3,..., and xk−1 ∈ A↓k. Setting A1 := A, we also have xk ∈ A↓1. Thus, (3) holds,

so, by hypothesis, (12) holds. In particular, x↑k ∩ A1 ⊆ c(A1), which implies that x ∈ c(A), as

we sought. �

Proof of Theorem 7. The proof of the “if” part of the assertion is straightforward. To

prove its “only if” part, we note that if c satisfies the D-congruence axiom, then it is cyclically

D-consistent, and hence there is a preference relation % on X which extends D and satisfies

c(A) ⊆ max(A,%) for every A ∈ A (Theorem 2). Moreover, as we have seen in Proposition 5,

we can choose % such that (7) holds for every A ∈ A and x ∈ A. But then, for any A ∈ A,
if x ∈ max(A,%), then x tran(R(c)∪ D) y for some y ∈ c(A), and hence, x ∈ c(A) by the

D-congruence axiom. Thus, c(A) = max(A,%) for every A ∈ A, and we are done. �

Proof of Theorem 8. We only need to prove the “only if” part of the assertion. For this, it

is enough to apply the argument given in the proof of Theorem 7 (but this time use the second

part of Proposition 5 as well) to find a continuous utility function that strictly D-rationalizes

c. �

Proof of Proposition 10. (i) Suppose x is not revealed preferred to y. In that case, put

A∗ := A ∪ {x,y}, where A = {B(p, 1) : p ∈ P}, and define the correspondence c∗ : A∗ ⇒ Rn+
by c∗(B(p, 1))) := d(p) for each p ∈ P , and c∗({x,y}) := y. Since x is not revealed preferred

to y, that is, (x,y) is not in tran(R(c)∪ ≥), and c obeys cyclical ≥-consistency, c∗ also

obeys cyclical ≥-consistency. By construction, (y,x) ∈ R(c∗) but (x,y) does not belong to

tran(R(c∗)∪ ≥). By Proposition 5 there exists a continuous function u∗ that ≥-rationalizes

c∗, and hence u∗ ∈ U(d), such that u∗(y) > u∗(x). We conclude that (x,y) does not belong to

S(d).

(ii) We define A∗ and c∗ as in the proof of (i). If x is not revealed preferred to y, then we

know from the proof of (i) that (x,y) is not in S(d) and hence not in S′(d). Now suppose x is

revealed preferred to y, but not strictly so. In that case, one could check that c∗ still satisfies

cyclical ≥-consistency and hence Theorem 3 tells us that there is a continuous function u∗∗

that ≥-rationalizes c∗. Since x tran(R(c∗) ∪ ≥) y, and by construction, yR(c∗) x, we obtain

u∗∗(x) = u∗∗(y). As u∗∗ ∈ U(d), it follows that (x,y) does not belong to S′(d).37 �

37 An alternative way of proving this result is to first notice that the set of preferences that ≥-

rationalize d are precisely those preferences that extend tran(R(c)∪ ≥) (see the proof of Theorem 2).
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Proof of Proposition 11. The “only if” parts of the claims in both (i) and (ii) are straight-

forward. By the definition of d, px = I for all x ∈ d(p, I); as we have explained in Section

4.4, this property of d, together with the congruence axiom, guarantees that d obeys the

≥-congruence axiom. Therefore, by Theorem 4, the ‘if’ part of the claims in both (i) and

(ii) hold if tran(R(c)∪ ≥) is continuous for the choice correspondence c : B(p, I) 7→ d(p, I)

on A. Note that, if y tran(R(c)∪ ≥) z, then there are (p1, I1), . . . , (p
k, Ik) ∈ P × I and

x1 ∈ d(p1, I1), . . . ,x
k ∈ d(pk, Ik) such that

y ≥ x1,p1x1 ≥ p1x2, ...,pk−1xk−1 ≥ pk−1xk and pkxk ≥ pkz. (18)

Crucially, we may choose p1, . . . ,pk to be distinct. Indeed, cyclical ≥-consistency requires

that if pr = ps for some r < s, then Ir ≥ Is; thus B(ps, Is) ⊆ B(pr, Ir) and it follows that

prxr ≥ prxs+1, that is, we may ‘snip off’ the part of the sequence in (18) between r+ 1 and s.

Take any y,y1,y2, ..., z, z1, z2, ... ∈ Rn+ such that ym → y, zm → z and ym tran(R(c) ∪
≥) zm for each m. We wish to show that y tran(R(c) ∪ ≥) z. Indeed, each pair of ym and

zm is linked by a sequence of inequalities like (18), where the price vectors in that sequence

are distinct. This property, together with the finiteness of P , guarantees that we can find

subsequences ymt and zmt and distinct vectors p1, . . . ,pk in P such that

ymt ≥ x1
mt
,p1x1

mt
≥ p1x2

mt
, ...,pk−1xk−1mt

≥ pk−1xkmt
and pkxkmt

≥ pkzmt .

By the upper hemicontinuity of d, and after passing to further subsequences if necessary, we

obtain Il,mt → Il > 0 and xlmt
→ xl ∈ d(pl, Il). Thus,

y ≥ x1,p1x1 ≥ p1x̄2, ...,pk−1xk−1 ≥ pk−1xk and pkxk ≥ pkz,

which means that y tran(R(c)∪ ≥) z, as we sought. �
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