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Abstract

The procurement of an innovation involves motivating a research effort to generate

a new idea and then implementing that idea efficiently. If research efforts are unver-

ifiable and implementation costs are private information, a trade-off arises between

the two objectives. The optimal mechanism resolves the tradeoff via two instruments:

a monetary prize and a contract to implement the project. The optimal mechanism

favors the innovator in contract allocation when the value of innovation is above a

certain threshold, and handicaps the innovator in contract allocation when the value

of innovation is below that threshold. A monetary prize is employed as an additional

incentive but only when the value of innovation is sufficiently high.
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1 Introduction

When buyers have specific needs that the products and services available on the market

cannot readily satisfy, they may procure an innovation. This is, however, considerably more

involved than procuring a readily available product. While the latter process can simply

focus on identifying the most qualified provider, the former involves identifying and motivat-

ing potential innovators to engage in costly research to generate an idea and subsequently

identifying the best implementor (which may or may not be the innovator). Questions then

arise as to how to incentivize potential innovators. Should the buyer offer a prize? Or should

the buyer favor innovators when awarding the contract to implement the project?

A lack of consensus on this issue is apparent in the treatment of unsolicited proposals.

According to Hodges and Dellacha (2007), public procurement authorities in most countries

would consider unsolicited proposals, but they follow different approaches in rewarding the

proposers. In some countries, public authorities are explicitly prevented from directly re-

warding unsolicited project proposals; hence, the incentive to submit a project proposal can

only come from participation in the tender for its implementation should the public authority

decide to pursue the project. By contrast, other countries, such as Chile, Korea, Italy, and

Taiwan, have adopted specific procedures for unsolicited proposals that grant the proposer

an advantage at the implementation stage.

A similar lack of consensus is found in the public procurement of innovation. For example,

Europe is currently developing an explicit strategy of using public procurement to foster

demand for innovative goods and services, but how contract rights should be assigned remains

an open question. In this regard, the European Commission has outlined two different

procurement models. Under the “Pre-commercial procurement” (PCP) model, the public

authority procures R&D activities from the solution exploration phase to prototyping and

testing, but it reserves the right to tender competitively the newly developed products or

services.1 By contrast, under the “Innovation Partnerships” model, research and production

are procured through one single tender, with the innovator also obtaining the contract rights

over the production of the innovation.2

To study the interplay between ex ante R&D incentives and ex post implementation

efficiency, we develop a framework where an innovation can be of value to a single buyer.

Innovations that increase the quality or reduce costs of public services can have high degree

of specificity because of the public good nature of the good or service to which the innovation

1See EC (2007) and https://ec.europa.eu/digital-agenda/en/pre-commercial-procurement
2See EU (2014a) at paragraph 49 and Article 31.
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is targeted (e.g., or traffic management systems). Innovations that improve the functionality

of parts with product-specific design also fall within this category.

We first consider a baseline model in which a single innovator can generate an idea by in-

vesting in a costly research effort: higher research effort leads (stochastically) to better ideas.

Not only does this model clearly reveal our insights, but the single-innovator assumption is

also often relevant as many innovative projects procured by public agencies are unsolicited,

and arrive at a given point in time. The innovation gives rise to a project that can be

implemented by a number of firms, including the innovator. The value of the proposal is

verifiable and the innovator can thus be rewarded with a monetary prize as well as through

the contract for the implementation of the project.

As monetary prizes have no impact on allocative efficiency, they may appear to be su-

perior to contract rights for providing incentives for innovation. Indeed, prizes would be

preferable in the absence of any agency problem at the implementation stage. The optimal

mechanism would then reward the innovator with a monetary prize when the buyer finds its

project worthy of pursuing, but the right to implement the project would be based purely

on the implementors’ merits. We show that the situation is different, however, when agency

problems generate some rents at the implementation stage, as these rents could then be used

to motivate the innovator at no additional cost to the buyer; in this case, contract rights can

be a central tool for providing incentives for innovation.

To capture this, we suppose that potential implementors are privately informed about

their costs. The optimal mechanism then provides incentives for research effort through a

combination of monetary prizes and implementation contract rights. The intuition is simple:

a standard procurement auction would pick the implementor with the lowest cost but would

also give it an information rent; it is instead optimal to use this rent to incentivize the

innovator. Hence, when the proposal is of sufficient merit, the innovator is favored in the

implementation tender and may thus win the contract even if its cost is not the lowest.

Furthermore, the project may be implemented even when, because of high costs, it would

not be implemented in a standard procurement auction. Conversely, the optimal mechanism

biases the implementation tender against the innovator when the project has a low value.

Monetary prizes, however, remain valuable: if the project is of particular merit, the innovator

may receive a financial compensation in addition to being favored in the implementation

tender. Finally, whenever such a prize is awarded, it is awarded regardless of whether or not

the innovator eventually wins the contract.

Comparative statics reflect the same insights. When information rents are significant,

it can be optimal for the buyer to rely solely on contract rights to incentivize innovation.
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By contrast, the optimal mechanism involves a prize (that is, contract rights alone are not

sufficient) when costs are not very heterogeneous or when the number of firms is high (as

the innovator’s information rent is low) or when the value of innovation is high (as the

information rent may be insufficient to motivate effort).

Equipped with these findings, we extend the model to allow for multiple innovators.

This situation is relevant when the buyer has a clear sense about the type of innovation she

needs and its feasibility. We show that the above insights carry over. First, our analysis

confirms the optimality of the use of contract rights for rewarding innovations: the project

values affect the optimal allocation of contract rights, with the proposer of a high-value

project being favored at the implementation stage. Second, a “winner-takes-all” principle

holds, in the sense that at most one project is awarded a prize; this monetary prize is now

warranted when the project is particularly valuable and/or when an innovator’s research

effort is particularly worth incentivizing.

Our analysis also clarifies whether the selection of the project and the choice of the

implementor should be independent or joint decisions. When the choice of the project does

not affect implementors costs, the project can be selected independently of the choice of the

implementor; a project is then chosen based solely on its merit, without regard to which

firm will implement it. Still, as in the single-innovator case, the choice of the implementor

remains biased in favor of or against the innovator, depending on the value of its proposal.

When instead the choice of the project affects implementors’ costs, it can be optimal to

distort the project selection as well; in this case, both the project selection and the choice

of implementor should depend on the values of the proposals as well as on implementation

costs.

The paper is organized as follows. In Section 2, we discuss the related literature. In

Section 3, we study the case of a single innovator. Section 3.1 establishes the model, Section

3.2 presents a number of benchmarks, and section 3.3 develops the main analysis. In Section

4, we extend the analysis to the case of multiple innovators. In Section 5, we discuss the

insights that our analysis offers for the approaches used in practice for unsolicited proposals

and innovation procurement. In Section 6, we make some concluding remarks.

2 Related Literature

On prizes versus property rights to motivate innovation. Our issue of prize vs.

contract is reminiscent of the well-known debate about patent systems as an effective method
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of motivating innovation — see Maurer and Scotchmer (2004) and Cabral et al. (2006) for

reviews. Just as in our model, the patent system involves ex post distortion (in terms of both

too little quantity and foreclosure on competing firms), making prizes apparently preferable —

see, e.g., Kremer, 1998. Yet the literature has shown that, as in this paper, ex post distortion

can be an optimal way to motivate ex ante innovation. The difference lies in the motivation

for the ex post distortion. In the case of Weyl and Tirole (2012), for instance, the supplier has

private information at the ex ante (innovation) stage; he obtains property rights to facilitate

information revelation. In our case, the private information in the ex post implementation

stage, coupled with limited liability, forces the buyer to give up rents to the winning supplier.

These rents can be harnessed as incentives for innovation, but only when the allocation of

the contract rights is shifted in favor the innovator. That is, the distortion in the allocation

of contracts rights arises a way to incentivize innovation.

On bundling sequential tasks. Our analysis is related to the literature on whether

two tasks should be allocated to the same agent (“bundling”) or to two different agents

(“unbundling”). The existing literature finds that this choice can be driven by problems of

adverse selection (see, e.g., Ghatak, 1997; Armendariz and Gollier, 1998), monitoring (Besley

and Coate, 1995; Armendariz, 1999; Rai and Sjöström, 2004), moral hazard (Stiglitz, 1990;

Varian 1990; Holmstrom and Milgrom, 1991; Itoh, 1993), or agents’ limited liability (Laffont

and Rey, 2003). More recently, a second strand of literature has focused more specifically

on sequential tasks, highlighting the role of externalities across tasks (Bennett and Iossa,

2006), budget constraints (Schmitz, 2013), information on the ex post value of the second

task (Tamada and Tsai, 2007), or competition among agents (Li and Yu, 2011). Our paper

contributes to this literature by showing that the implementation decision should depend

on the value of the proposed project(s) as well as on the implementor’s characteristics. Full

unbundling is therefore typically not optimal, while pure bundling is optimal only under

rather specific conditions — namely, when the innovator is in a much better position to

implement its project.

On discrimination and bidding parity in auctions. Our analysis is also related to

the literature on discrimination in auctions, which finds it optimal to distort the allocation

to reduce the information rents accruing to the bidders: discrimination against efficient

types helps level the playing field and elicit more aggressive bids from otherwise stronger

bidders (Myerson, 1981, and McAfee and McMillan, 1985). In a similar vein, when bidders

can invest in cost reduction, an ex post bias in the auction design can help to foster bidders’

ex ante investment incentives (Bag 1997) or to prevent the reinforcement of asymmetry

among market participants (Arozamena and Cantillon, 2004). Likewise, manipulating the
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auction rules can help motivate selfish investment in cost reduction by an incumbent firm

(Laffont and Tirole, 1988) or favor the adoption of an efficient technology by an inefficient

firm (Branco, 2002). We contribute to this literature by showing that when investment is

“cooperative” (in the sense of Che and Hausch, 1999) and directly benefits the buyer, both

favoritism and handicapping are optimal, depending on the value of the proposed project

and on the bidders’ costs.

On relational contracting. A large literature shows how long-term relations can be

used to build trust and spur efforts and innovation. Interestingly, in a recent paper, Calzo-

lari et al. (2015) emphasize that trust and rents from reduced supplier competition provide

substitute ways of encouraging innovation. Using a large dataset on the German car manu-

facturing industry, they find that higher levels of trust are associated not only with higher

investment levels, but also with more competitive procurement.

3 Unsolicited Proposals

We consider here the case in which a single innovator may propose a project, as is often

the case with unsolicited proposals. The decision facing the buyer is whether to adopt the

project and, if so, how to implement it via competition among multiple firms.

3.1 Model

A principal (buyer) oversees a project involving two stages: Innovation and Implementation.

In the first stage, an innovator, say firm 1, invests in developing the project proposal:

exerting effort  ≥ 0 costs the innovator () and leads to a project whose value for the

principal is a random variable . We assume that  (·) is increasing, strictly convex and twice
differentiable, and satisfies 0 (0) = 0. The variable  is drawn from  := [ ̄] according

to a c.d.f.  (·|), which admits a twice-differentiable density  (·|) in the interior. We
assume that raising  shifts the distribution  (·|) in the sense of a Monotone Likelihood
Ratio Property:

(0|0)
(|0) 

(0|)
(|)  for any 

0   and 0   ( )

We assume that although the effort choice  by the innovator is unobservable to all parties

other than firm 1, the value  of the resulting project is publicly observable and verifiable,

once the project proposal is unveiled. The verifiability of  is a reasonable assumption in

many procurement contexts, where projects can be described using precise functional and
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performance terms. For example, in the case of technology improvements for faster medical

tests, transport units with lower energy consumption, or information and communication

technology (ICT) systems with interoperability characteristics,  may respectively capture

the speed increase for the medical test, the degree of energy efficiency of the transport unit,

or the technical functionalities of the ICT system verified in submitted prototypes.

In the second stage,  potential firms, including the innovator, compete to implement

the project. Each firm  ∈  := {1  } faces a cost , which is privately observed and
drawn from Θ :=

£
 
¤
according to a c.d.f. (·), which admits density (·) in the interior.

We assume that    and ()() is nondecreasing in , for each  ∈  .

Suppose that the innovator generates an innovation worth . If the project is not imple-

mented, all parties obtain zero payoff. If instead the principal pays  for the project, then

the principal internalizes the welfare of

 − 

By the revelation principle, we can formulate the problem facing the principal as that of

choosing a direct revelation mechanism. A direct mechanism is denoted by: ( ) :  ×Θ →
∆ ×R, which specifies the probability ( ) that firm  implements the project and the

transfer payment ( ) that it receives, when the project developed by firm 1 has value 

and firms report types  := (1  ), where ∆
 := {(1  ) ∈ [0 1]|

P
∈  ∈ [0 1]}.

The dependence of the mechanism on the project value  reflects its verifiability, whereas

the absence of the argument  arises from its unobservability to the principal.

For each  ∈  , let

( 
0
|) := E− [( (0 −))− ( (

0
 −))]

denote the interim expected profit that firm  could obtain by reporting a cost 0 when it

actually faces a cost , and let

( ) := ( |)

denote firm ’s expected payoff under truthful revelation when its type is .

Then, the revelation principle requires the direction mechanism ( ) to satisfy incentive

compatibility:

( ) ≥ ( 
0
|) ∀ ∈ ∀ ∈ ∀ ( 0) ∈ Θ2 ()

The timing of the game is as follows:
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1. The principal offers a direct revelation mechanism specifying the allocation decision

(i.e., whether the project will be implemented and, if so, by which firm) and a payment

to each firm, as functions of firms’ reports on their costs.

2. The innovator chooses ; the value  is realized and observed by all parties.

3. Firms observe their costs and decide whether to participate.

4. Participating firms report their costs, the project is implemented (or not), and transfers

are made according to the mechanism.

Note that firms participate only after learning their cost. In particular, this means that

the principal cannot force the firms to participate before the project is developed by the

innovator. This is a natural assumption in many settings and particularly so in the case

of unsolicited proposals because until the nature of the project–its value and the costs of

implementing it–is determined, the identities of the candidates capable of executing the

project will not be known. This makes it difficult for the principal to solicit the relevant

firms and to force them to buy in. This feature requires the direct mechanism ( ) to satisfy

individual rationality:

( ) ≥ 0 ∀ ∈ ∀ ∈ ∀ ∈ Θ ()

It will be seen that, together with (), this requirement will cause the principal to leave

information rents to the selected implementor.3

We also assume that the principal must at least break even for each realized value  of

the project. In other words, a feasible mechanism ( ) must satisfy limited liability:

E [ ( )] ≥ 0 ∀ ∈  ()

where

 ( ) :=
X
∈

[ ( )  −  ( )]

denotes the principal’s surplus upon realizing the value  of the project. Public projects are

scrutinized by various stake-holders such as legislative body, project evaluation authority,

consumer advocacy groups, and media, which reject a project that is likely to run a loss.

3In the absence of the individual rationality constraint, the principal could implement the project without

any rents accruing to the firms because the firms could be required to “buy-in” to a contract via an upfront

fee. As a result, the first best could be achieved at the implementation stage, and there would be no gain

from using contract rights to reward the innovator; monetary prizes would indeed be preferable.
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Limited liability may arise from such a political feasibility constraint. It is not crucial that

the constraint is of the particular form assumed in (); the general thrust of our analysis

carries through as long as there there is some cap on either the maximum loss the principal

can sustain or the maximum payment she can make to the firm.4

Finally, as the innovator chooses effort  in its best interest, the mechanism must also

satisfy the following moral hazard condition:

 ∈ argmax
̃
{E [1( 1) | ̃]− (̃)}  ()

The principal’s problem is to choose an optimal mechanism satisfying these constraints.

More formally, she solves the problem:

[ ] max


E [ ( ) | ] 

subject to (), (), () and ()

3.2 Benchmarks

Before solving [ ], it is useful to begin with two benchmarks.

No adverse selection ex post In this benchmark, we shut off the adverse selection

problem by assuming that the principal observes the firms’ implementation costs. Formally,

the problem facing the principal will then be the same as [ ], except that the constraint

() is absent. We label such the relaxed problem [ − ], where “FB” refers to first-

best implementation efficiency. In this problem, once the principal approves the project,

she can have any firm  implement the project by simply paying its true cost . In other

words, the implementing firm does not command any information rents. As will be formally

stated shortly, this feature implies that the principal finds no reason to rely on contracting

rights to provide incentive for the innovator. Hence, to deal with the moral hazard problem

(), the principal will solely rely on the monetary prize. The logic, which conforms to

the conventional wisdom, is clear: monetary prize is distortion-free, while contracting rights

do involve distortion.

Thus, the solution to [ − ] is characterized as follows:

4Without any constraint on the maximum payment the principal can make to the firm, the optimal

mechanism would not be well defined: the principal would find it desirable to pay an arbitrarily large bonus

to the innovator only for a vanishingly set of projects with values close to . Such a scheme may be of

theoretical interest but is unreasonable and unrealistic.
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Proposition 1. (First-Best) There exist  and , both strictly positive, such that the

optimal mechanism solving [ −] awards firm  a contract to implement the project with

probability:

 ( ) :=

(
1 if   min {min 6= } ,
0 otherwise,

with a transfer that simply compensates the winning firm’s cost, except that firm 1 is paid

additionally a monetary prize equal to

1 () :=

(
E
£P

∈  ( ) ( − )
¤
 0 if   ̂

0 if   ̂

where ̂ is such   ̂  ̄ and solves () = 1, where

() := 
(|)
(|) 

and  satisfies ().

Proof. See Appendix A. ¤
The manner in which the optimal mechanism awards the cash prize is intuitive, and

follows the familiar logic from the moral hazard literature (e.g., Mirrlees (1975); Holmstrom

(1979)). The realized project value  is an informative signal for the innovator’s effort, and

paying an additional dollar to the innovator for a project with value  relaxes () by
(|)
(|) . Multiplied with the shadow value  of relaxing (),  () = 

(|)
(|)

gives the incentive benefit to the principal by relaxing () at the optimum. Naturally, the

optimal mechanism calls for paying the maximal feasible prize to the innovator if  ()  1

and zero prize otherwise. Given ( ), the incentive benefit
(|)
(|) is strictly increasing

in , so the threshold value ̂ is well-defined. Simply put, the optimal mechanism calls

for paying as much as possible to the innovator whenever the project value  is high enough

to indicate that the incentive benefit exceeds the cost, and nothing otherwise. In the former

case, () must be binding, so the maximal feasible prize is given by the net surplus the

project generates after reimbursing the implementing firm.

In sum, given no adverse selection, the principle never uses contracting rights to motivate

the innovating firm.

No moral hazard ex ante In this benchmark, we shut off the moral hazard problem by

assuming that the project value follows some exogenous distribution  () which does not
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depend on effort. Formally, the problem facing the principal in this benchmark coincides with

[ ] except that the moral hazard constraint () is absent and the distribution function

 (|) is replaced by some exogenous distribution  (). The resulting problem, labeled

[ − ], conforms to the standard optimal auction design problem, except for the ()

constraint. Ignoring the latter, the optimal auction solution, labeled the optimal second-

best mechanism, is familiar from Myerson (1981). One can easily see that this solution

satisfies (), and thus constitutes an optimal solution to [−] as well. As the associated
analysis is standard, we provide the characterization of the optimal solution without a proof.

Proposition 2. (Myerson) The optimal second-best mechanism awards firm  the contract

to implement the project with probability:

 ( ) :=

(
1 if () ≤ min {min 6= ()} ,
0 otherwise,

where () :=  +
()

()
is firm ’s virtual cost.

3.3 Optimal Mechanism

We now consider problem [ ], in which the principal faces ex post adverse selection with re-

spect to firms’ implementation costs as well as an ex ante moral hazard problem with respect

to the innovator’s effort. Throughout the analysis, we assume that an optimal mechanism

exists, which induces an interior effort level ∗. The following Proposition characterizes this

optimal mechanism:

Proposition 3. There exists ∗  0 such that the optimal mechanism solving [ ] is char-

acterized as follows:

() The mechanism assigns a contract to firm  = 1   to implement the project with

probability

∗ ( ) =

(
1 if ∗

 ( ) ≤ min
©
min 6=∗

 ( )
ª


0 otherwise,

where

∗
 ( ) :=

(
 ()−min {∗ ()  1} ()

()
if  = 1

 () if  6= 1 , with ∗ () := ∗
(|∗)
(|∗) 
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() The mechanism awards firm  a transfer

∗ ( ) := ∗ () +
Z 



∗
 ( )

where:

— the second term reflects the information rent generated by the expected probability

of contract assignment ∗
 ( ) = E− [

∗
 ( ( −))], and

— the first term corresponds to a “cash prize,” which is zero for a non-innovator

(i.e., ∗ () := 0 for  6= 1) and, for the innovator ( = 1), is equal to

∗1() :=

(
E
£P

∈ ∗ ( ) [ − ()]
¤
 0 if ∗ ()  1

0 if ∗ ()  1

() The effort ∗ satisfies ∗  0 andZ


Z


∙
∗1() +

1()

1()
∗1( )

¸
()(|∗) = 0(∗)

Proof. See Appendix B. ¤
To gain more intuition about this characterization, it is useful to decompose the princi-

pal’s payment to each firm into two components. The first component is the information rent

that she must pay to elicit the firm’s private information. By the standard envelope theorem

argument, this component is uniquely tied to–and should therefore be interpreted as being

necessitated by–the awarding of the contract to a firm. We thus call this contract payment.

The second component is the constant amount paid to all cost types of a firm, including the

highest cost type . As this component is not warranted by contract assignment, we call it

the cash prize and denote it by ∗ (). Obviously, the principal would never pay any cash

prizes to non-innovating firms  = 2  . For the innovating firm  = 1, however, a cash

prize may be necessary. The question is how the principal should combine these two types

of payments to encourage innovation.

The key observation in answering this question hinges on the incentive benefit ∗() =

∗ (|)
(|) . As explained earlier, this term represents the value of paying a dollar to the

innovator for developing a project worth –more precisely, the effect
(|)
(|) of relaxing

() and its worth ∗ to the principal. If moral hazard were not a concern, then we

would have ∗ = 0 and thus ∗ () = 0, and the optimal mechanism would reduce to the

optimal second-best auction mechanism described in Proposition 2. However, the above
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characterization shows that the moral hazard constraint is binding. The simple intuition

is that, while the second-best auction gives away some information rents when the project

is implemented and would thus induce the innovator to exert some effort (so as to increase

the likelihood of implementation), these rents do not depend on the realized value of the

project;5 as a result, the procurer, who does not bear the cost of effort, wishes to induce a

higher effort so as to increase the expected value (net of these rents) of the project.

Given ∗  0, the incentive benefit ∗(·) is nonzero, and the optimal mechanism de-

parts from the optimal second-best mechanism. In particular, the contract assignment now

depends on the realized value of the contract, through the shadow cost ∗
 ( ). For a

non-innovating firm (i.e.,  6= 1), the shadow cost is the same as its virtual cost, (), just
as in the second-best benchmark. For the innovator, however, the shadow cost differs from

its virtual cost by a term, ∗()1(1)
1(1)

, which reflects the need to incentivize the innovator:

Awarding the contract to the innovator with type  by an additional unit of probability

necessitates giving information rent to types below , paying
1(1)

1(1)
in expectation to the

innovator ex ante, and each dollar paid to the innovator yields the incentive benefit of ∗().

Intuitively, rewarding the innovator for a low-value project (evidence of low effort) hurts

innovation incentives, whereas rewarding the firm for a high-value project (evidence of high

effort) enhances its incentive for innovation. Indeed, by ( ), ∗ () = ∗ (|
∗)

(|∗) in-

creases in , and there exists a unique ̃ ∈ ( ) such that ∗ (̃) = 0. Thus, when   ̃,

rewarding the innovator reduces its innovation incentive: ∗ ()  0. Hence, it is not op-

timal for the principal to award a cash prize to the innovator. For the same reason, each

dollar paid as information rents harms the innovator’s incentive, causing the shadow cost

∗
1(; 1) of assigning the contract to the innovator to exceed its virtual cost 1(1), by

−∗ ()()() ( 0). Hence, the optimal mechanism calls for biasing the contract

allocation against the innovator in comparison with the second-best.

When instead   ̃, there are two possibilities. If   ̂ := sup { ∈  | ∗ () ≤ 1},
then the incentive benefit ∗ () of paying a dollar to the innovator is positive but less than

one. Hence, it is still optimal to award no cash prize, as this would entail a net loss for

the principal. However, a fraction ∗ () of the information rent accruing to the innovator

goes toward its innovation incentive, which reduces the shadow cost ∗
1( 1) of assigning

the contract to the innovator below its virtual cost 1(1) by ∗ ()()(). Hence,

compared with the second-best benchmark, the optimal mechanism distorts allocation of

the contract in favor of the innovator.

5That is, increasing the value of the project increases the probability of its implementation, but does not

affect the rents obtained when it is actually implemented.
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If instead   ̂, then a dollar payment to the firm yields more than a dollar incentive

benefit. A cash prize is then clearly beneficial, which is why ∗1()  0. Hence, it pays

the principal to transfer any surplus she collects, either through the cash prize or through

the information rent; that is, () is binding. Furthermore, any increase in information

rents for the innovator simply crowds out the cash prize by an equal amount; it follows that

the incentive benefit of the information rent paid to the innovator is at most one 1 (and

not ∗ ()  1), and the shadow cost ∗
1( 1) reduces to the production cost 1. That is,

compared with the second-best, the optimal mechanism distorts allocation of the contract

in favor of the innovator to such an extent that the innovator is treated as an “in-house”

supplier. Any further distortion in favor of the innovator reduces the total “pie” — and thus

the cash prize to the innovator — more than it increases the information rent to that firm,

and it is thus suboptimal.

We state these observations more formally as follows:

Corollary 1. There exists ̃ and ̂, with   ̃  ̂ ≤ , such that the optimal mechanism

has the following characteristics:

• If   ̃, then no prize is awarded and ∗1( ) ≤ 1 ( ), whereas ∗ ( ) ≥  ( )

for all  6= 1;

• If ̃    ̂, then no prize is awarded but ∗1( ) ≥ 1 ( ), whereas ∗ ( ) ≤
 ( ) for all  6= 1;

• If   ̂, then a prize is awarded to the innovator and ∗1( ) ≥ 1 ( ), whereas

∗ ( ) ≤  ( ) for all  6= 1.

Whether it is optimal to award a monetary prize (i.e., ̂  ̄) depends on how much

efforts need to be incentivized and on how much incentive would already have been provided

by the information rents stemming from a standard second-best auction. For instance, we

show in Appendix C that awarding a prize can be optimal when the range of project values

is large (as innovation incentives then matter a lot) as well as when there is either little cost

heterogeneity or a large number of firms (in which case the procurement auction does not

generate much in information rents).

Corollary 1 shows that the optimal mechanism departs from a standard second-best

auction in different ways for high-value and low-value projects. This mechanism can moreover

be easily implemented in practice using simple variants to common procurement designs.
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•   ̃: Bonus. In this range, the contract allocation is biased in favor of the innovator,

so the innovator may implement the project despite not being the most efficient firm.

In practice, this could be achieved by giving the innovator a bidding credit in the

tendering procedure. Bidding credits can take many forms, but most commonly, they

consist of additional points in the score of the original proponent’s bid or of financial

support for bidding purposes. This system is, for example, adopted in Chile and Korea.

•   ̃: Handicap. In this range, the contract allocation is biased against the innovator,

who may not implement the project despite being the most efficient firm. We are

not aware of the use of such a bias for procuring innovative projects; however, such

handicap systems are used, for example, when governments want to favor domestic

industries.6 We discuss this further below (see the remark on handicaps).

We note further that in the region where a monetary prize is optimal, the mechanism

can be implemented in a very familiar and simple manner:

•   ̂: Full delegation. In this region, the innovator is awarded a monetary prize

∗1 () equal to the full value of the project (net of information rents) and is allocated

the contract if 1  min {min6=1 ()}. This can be achieved by delegating the
procurement to the innovator for a fixed price equal to the value of the project. Indeed,

suppose that the principal offers a payment  to the innovator to deliver the project

either by itself or by subcontracting with a different firm. The innovator then acts as a

prime contractor with the authority to assign production. Facing the price   ̂ and

given 1, the innovator chooses (( ·) ( ·)) : Θ → ∆×R−1 so as to solve:

max


E−1
h
( − 1)1( 1 −1) +

P
6=1 {( 1 −1)− ( 1 −1)}

i


subject to () and ()

The standard procedure of using the envelope theorem and changing the order of

integration results in the optimal allocation  solving

max

E−1

"
( − 1)1( 1 −1) +

X
6=1
[ − ()]( 1 −1)

#


which is exactly the allocation ∗ for the case of   ̂.

6Under “preferential price margins”, purchasing entities accept bids from domestic suppliers over foreign

suppliers as long as the difference in price does not exceed a specific margin of preference. The price preference

margin can result from an explicit “buy local policy,” e.g., the “Buy America Act.”
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The above results also have implications for whether or not to implement a project. For

instance, for  = 1, we have:

• For   ̃, ( )  () ( ): Compared with the first-best, there is a downward

distortion — under-implementation of the project — which is even more severe than in

the standard second-best.

• For ̃    ̂, ()  ( )  : There is still a downward distortion compared

with the first-best, but it is less severe than in the standard second-best.

• For  ≥ ̂, we have ()  ( ) = : There is no distortion anymore; the project is

implemented whenever it should be, from a first-best standpoint.

Illustration. To illustrate the above insights, consider the following example: (i) imple-

mentation costs are uniformly distributed overΘ = [0 1]; (ii) the innovator can exert an effort

 ∈ [0 1] at cost  () = ; and (iii) the value  is distributed on [0 1] according to the density

 (|) = +(1− ) 2 (1− ); that is, exerting effort increases value in the MLRP sense, from

a triangular density peaked at  = 0 for  = 0 (where, in particular,  (1|0) = 0) to a better
(in fact, uniform) distribution for  = 1. Note that  (|) = 2 − 1 ≷ 0⇐⇒  ≷ ̃ = 12.

The linearity of the cost and benefits ensures that it is optimal to induce maximal effort

(∗ = 1) as long as the unit cost  is not too high. Conversely, as long as ∗ = 1, the

Lagrangian multiplier ∗ increases with the cost . For exposition purposes, we will use

different values of ∗ (reflecting different values of ) to illustrate the role of innovation

incentives.

Consider first the case in which only the innovator can implement its project (i.e.,  = 1).

Figure 1 depicts the range of the firm’s costs for which the project is implemented under

optimal contract for different project values . Figure 1-(a) depicts the case of ∗ = 08,

whereas Figure 1-(b) shows the case of ∗ = 4. As the cost is uniformly distributed, the

highest cost for which the project is implemented also equals the probability of the project

being implemented, ∗ () := E [∗1( )]. Compared with the second best, depicted by the

dashed line, the optimal mechanism implements the project for a smaller range of project

costs (thus with a lower probability) when the project has a low value (namely, when  

̃ = 12) and for a larger range of costs (thus with a higher probability) when the project

has a high value (  ̃). When ∗ = 4 (Figure 1-(b)), stronger innovation incentives are

required and there is a range of values   ̂ (where ̂ = 58  ̃) for which () is binding:

the procurer then exhausts the contracting as means of incentive and starts offering a cash
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prize. As noted, in such a case the optimal assignment coincides with the first-best, depicted

by the dotted line.

Figure 1

Sticking to the case ∗ = 4 (where  = 0  ̃  ̂  1), Figure 2 illustrates the situation

where a second firm can implement the project as well (i.e.,  = 2), with the same cost

distribution (i.e., firm 2’s cost is also uniformly distributed over Θ = [0 1]):

• For   ̃ (see Figure 2-(a), where  = 14): Compared with the first-best or the

standard second-best, it is again optimal to bias the allocation of the contract against

the innovator. This is now achieved in two ways, however. As before, the project is

implemented less often than in the second-best (and thus, a fortiori, than in the first-

best); the optimal mechanism shifts the vertical boundary of project implementation

to the left of the second best (depicted by the dashed line). But in addition, when

the project is implemented, the innovator obtains the contract less often than in the

first-best or the standard second-best, where the more efficient implementor would be

selected; graphically, this is reflected by the triangular shaded area.

• For ̃    ̂ (see Figure 2-(b), where  = 712): Compared with the standard

second-best (depicted by the dashed lines) it is now optimal to reward the innovator,

both by implementing the project more often (rectangular shaded area) and by favoring

the innovator in the competition with its rival (triangular shaded area).
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• Finally, for  ≥ ̂ (see Figure 2-(c), where  = 45), the innovator’s shadow cost then

corresponds to its actual cost: The allocation of the contract thus favors the innovator

even more over the other firm, and the project is also implemented substantially more

often than in the standard second-best (in particular, it is now implemented whenever

1  ); still, it is implemented less often than in the first-best (e.g., when 2    1

and  (2) = 22); graphically, the rectangular and triangular shaded areas further

expand.

Figure 2

Remark: On the feasibility of handicaps. The optimal mechanism relies on a “stick and

carrot” approach: it rewards good proposals by conferring an advantage in the procure-

ment auction (possibly together with a monetary prize) and punishes weak proposals with a

handicap in the procurement auction. Yet in practice, while many innovation procurement

mechanisms involve innovation prizes or distort the contract allocation in favor of the inno-

vators, handicaps for weak projects do not appear to be used. This may stem from the risk of

manipulation: an innovator with a low-value project may, for instance, strategically choose

to participate in the implementation tender through a different firm to avoid the handicap.

To see how the mechanism would need to be adjusted if handicaps were explicitly ruled

out, suppose that the innovator cannot be left worse off than under the standard second best
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allocation.7 That is, the mechanism must take into account the additional constraint:

1( )  1 ( )

In Online Appendix A, we show that, keeping constant the multiplier  for the innovator’s

incentive constraint, ruling out handicaps has no impact on the contract right for high-value

projects (namely, those with  ≥ ̃), as ∗1( )  1 ( ) in this case. By contrast, for

low-value projects (i.e., those with   ̃), the no-handicap constraint is binding and the

contract right increases from ∗1( ) to 

1 ( ). Interestingly, the no-handicap constraint

does not affect the size of the prize. Of course, removing the “stick” raises the cost of

providing innovation incentives, and thus we would expect an increase in the multiplier of

the incentive constraint  (implying that the favorable bias for a high-value project is larger

and that the monetary prize is more often awarded) and a reduction in the optimal innovation

effort.

Remark: On simple rules. The above mechanism makes the contract allocation contin-

gent on the realized value of the project. In practice, this value can be difficult to measure

objectively or costly to verify, which in turn calls for simpler rule. Yet, we show in Online

Appendix B that our main insight carries over when the buyer can assess the value of the

project, but is required to use the same auction rules (that is,  ( ) =  () and  () = )

whenever deciding to implement the project: as long as the project is not always imple-

mented, the optimal auction rule introduces a bias in favor of the innovator. Interestingly,

handicaps are never optimal in this case; in addition, as long as the principal observes the

value of the project, such mechanism can be used regardless of whether this value is also

observed by the firms, or can be verified by third parties such as courts.

4 Procuring Innovation from Multiple Suppliers

We now assume that several firms may innovate and propose projects, as well as implement

them. This case captures the problem of a buyer who has a specific need that readily available

products or services cannot satisfy, and who decides to procure an innovation to satisfy this

need. Illustrative examples include the Norwegian Department of Energy procuring a new

technology for carbon capture and storage;8 or the Scottish Government procuring low-

cost, safe and effective methods of locating, securing and protecting electrical array cables

7It can be checked that this indeed ensures that the innovator is never worse off than a pure contractor

— see Online Appendix A.
8http://ted.europa.eu/udl?uri=TED:NOTICE:214787-2011:TEXT:EN:HTML&src=0
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in Scottish sea conditions.9 In both instances, the public authority put out a RFP, and

multiple firms responded with different projects.

For the sake of exposition, we will suppose from now on that each firm  = 1   can

come up with a project of value , which is publicly observable and distributed over 

according to a c.d.f.  (|) with density (|), where  denotes firm ’s innovation

effort.10 We assume that firms decide on these efforts simultaneously, and denote by e =

(1  ) the profile of the efforts. The alternative projects correspond to competing ways

to fulfill the same need, so they are perfect substitutes, meaning that the buyer will choose

one project at most. The previous setting corresponds to the special case where   is

concentrated on  for all  6= 1.
In practice, a firm’s cost of implementing a project may depend on who proposed it. In

some cases, the innovator has cost advantages in implementing the project. In other cases,

the innovator has cost disadvantages in implementation; an example is when the innovator is

an R&D specialty firm that lacks manufacturing capabilities necessary for implementing its

R&D. To accommodate such an interdependency between innovation and implementation,

we assume that firm ’s cost of implementing project  is given by  + 
 , where:

• as before,  is an idiosyncratic shock, privately observed by firm  and distributed

according the c.d.f. ;

• 
 represents an additional cost, potentially both project- and firm-specific, which for

simplicity is supposed to be common knowledge.

Without loss of generality, we consider a direct revelation mechanism that specifies an

allocation and a payment to each firm as a function of realized project values, v = (1  ),

and of reported costs. Note that an allocation involves a decision as to which project is

selected as well as who implements that project.

A mechanism is thus of the form ( ) :   ×Θ → ∆2 × R. The problem facing the

principal can therefore be expressed as:

max
e

Ev [ (v ) | e] 

where the ex post net surplus is now equal to

 (v ) =
X
∈

£
 (v )−  (v )

¤


9http://ted.europa.eu/udl?uri=TED:NOTICE:436615-2013:TEXT:EN:HTML&src=0
10While formally all implementors are also innovators, the case of “pure contractors” can be accommo-

dated by setting the density to zero for   .

20



subject to () and (), where now firms’ interim expected profits when lying and reporting

the truth are respectively given by

(v 
0
|) = E−[(v 0 −)−

X
∈
( + 

 )

 (v 

0
 −)] and (v ) = (v |)

and are also subject to limited liability and moral hazard constraints, which respectively

become:

E [ (v ) | e] ≥ 0 ∀v ∈  

 ∈ argmax
̃
Ev

£
(v ) | ̃ −

¤− (̃
) ∀ ∈ 

As in the previous section, we assume that an optimal mechanism exists, which induces

an interior profile of efforts e∗. The following Proposition then partially characterizes this

optimal mechanism:

Proposition 4. There exists λ∗ =
¡
1∗  ∗

¢ ≥ 0 such that the optimal mechanism

solving [ ]:

• selects firm  to implement project  with probability

∗ (v ) =

(
1 if  −∗

 (v )− 
 ≥ max

©
0max()6=()  −∗

 (v )− 


ª
,

0 otherwise,

where

∗
 (v ) := ()−

µ
()

max{max () 1}

¶µ
()

()

¶
, and () := 

 (
|∗)

 (|∗) 

• awards each firm  a transfer

∗ (v ) := ∗ (v) +
X
∈




∗
 (v ) +

Z 



X
∈

∗
 (v )

where ∗
 (v ) = E−[

∗
 (v  −)]; and the transfer includes a cash prize

∗ (v) := E

"X
∈

∗ (v )
©
 − 

 − ()
ª#



which is positive only if ()  max
©
max∈ () 1

ª
.
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Proof. See Appendix D. ¤
To interpret this characterization, consider first the case in which known implementation

cost differences are additively separable across implementors and projects: 
 = + for

all  and . Then, the project selection is simply based on the “net values” of the projects,

 − , without regard for who is awarded the contract to implement the chosen project.11

Hence, there is no need to wait until the realization of the costs before selecting the project.

However, the realized project values still do affect the choice of the implementor through

their impact on virtual costs — the ∗
 (v )s, which depend on all realized values, including

those of unselected projects.12 In particular, an increase in  raises both the probability

that project  is selected and the probability that firm  is chosen to implement it, even

when a project  6=  is selected. In this sense, there is again a bias in favor of innovators

with high-value projects.

If the separability condition is not satisfied, the choices of the project and of the imple-

mentor are more intimately linked. Suppose for instance that 
 = 0  

 = ̄ for all  and

 6= : that is, each firm has a cost advantage of ̄ for the project it proposes vis-à-vis other

firms. If two firms  and  are such that   , but  is significantly lower than , the

desire to exploit this cost advantage may lead the principal to choose project  over project

.

A few other observations are worth making. First, as intuition suggests, the optimal

allocation ∗ (v ) is nondecreasing in (
 −) and nonincreasing in (v− ). In addition,

as all firms are now potential innovators, each virtual cost ∗
 (v ) is characterized by two

cutoffs, ̃ and ̂, defined as in the previous section but with somewhat different implications.

As before, each innovator benefits from a bias at the implementation stage when   ̃ :=

−1 (0) and is instead handicapped when   ̃. To what extent a firm will actually

benefit from this bias or be harmed by the handicap, however, now depends on the relative

magnitude of the shadow values () across firms and thus depends also on the values

brought by the other projects, v−.

Second, a “winner-takes-all” principle holds in the sense that generically at most one

firm is awarded a prize. As in the case of single innovator, a prize is worth giving only

when the incentive benefit  () exceeds one. But with multiple innovators, there may be

11To see this, note that the difference in surplus when a contractor  implements project  or project  is

given by ³
 − −  − 

´
−
³
 − −  − 

´
=
³
 − 

´
−
³
 − 

´


and thus does not depend on which contractor  is selected.
12Note that for a “pure contractor,”  (v ) =  (), as in a standard second-best auction.
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several firms  for which  ()  1. Due to the limited liability of the buyer, an additional

dollar paid to a firm is one less dollar available to reward another firm. As the incentive

benefit of a dollar is proportional to  (), the marginal benefit of the prize is maximized by

concentrating the prize to firm with the highest shadow value of incentive  (). Splitting

the available cash across firms is never optimal for the same reason that it was never optimal

to give less than the maximal prize to the innovator in the single innovator case. In the same

vein, even if  ()  1 for several firms, only firm ̂ := max∈{()} will face undistorted
virtual cost ∗

̂ (v ̂) = ̂; the others will instead face a distorted virtual cost equal to

∗
 (v ) =  +

∙
1−  ()

 ̂ (̂)

¸
 ()

 ()
 

Note that if firms are ex ante symmetric (i.e.,  () =  () and 
 = ), then from

MLRP, the highest  () corresponds to the highest ; hence, the best project is selected,

and only that project can ever be awarded a prize. By contrast, if firms are not ex ante

symmetric, then the prize will instead be given to the firm whose effort was most worth

incentivizing (i.e., the firm with the highest  ()), even if it is not the one with the best

project (i.e., the highest ).

In the same vein, the receiver of the prize is not necessarily the firm whose project is

selected. For instance, if innovators are better placed to implement their own projects, then

if firms are otherwise ex ante symmetric (so that 1 () = 2 () =  ()), the firm with the

best project may receive a prize (if the value of its projects exceeds ̂ = −1 (1)), and yet

cost considerations may lead the principal to select another project.13

Remark: On innovation strategies. We have so far assumed that firms’ R&D efforts only

affected the values of their projects. In practice, firms may also adopt innovation strategies

targeting projects on which they are more likely to be better positioned for their implementa-

tion. This would further reinforce the need for taking into account the values of the projects

when deciding over the allocation of contract rights. While a standard procurement auction

would actually encourage such self-serving innovation strategies, introducing a bias in favor

of innovators with high-value projects would mitigate these incentives and encourage instead

the adoption of more valuable innovation strategies.

13Consider for example the case  = 2, and suppose that 11 = 22 = 0  12 = 21 = +∞ (that is, a firm

can only implement its own project). In this case, if 1  max
©
2 ̂

ª
but 1  2, then firm 1 receives a

prize but firm 2’s project is selected if the cost difference is large enough.
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5 Discussion

5.1 Unsolicited Proposals

As mentioned in the Introduction, some countries do not allow public authorities to directly

reward unsolicited proposals. Our analysis suggests instead that it can be optimal to reward

valuable proposals through contract rights and possibly by monetary prizes. Hodges and

Dellacha (2007) describe three alternative ways used in practice:

◦ Bonus system. The system gives the original project proponent a bonus in the tendering
procedure. A bonus can take many forms but most commonly involves additional points in

the score of the original proponent’s technical or financial offer. This system is, for example,

adopted in Chile and Korea. For example, the first two unsolicited proposals for airport

concessions in Chile obtained a bonus equal to 20 percent points of the allowed score, whilst

the third airport proposal received 10 percent points.14

◦ Swiss challenge system. The Swiss challenge system gives the original proposer the

right to counter-match any better offers. It is most common in the Philippines and is also

used in Guam, India, Italy, and Taiwan. Under this procedure, the original proposer will

counter the lowest rival bid and win the contract if and only if its cost is less than that

bid. Anticipating this, the rival bidders will optimally shade their bids above their costs

in response. Hence, in equilibrium the system distorts the contract allocation in favor of

the proposer (who wins the contract even when its cost is above the rivals’ costs, and for

sure when its cost is less than theirs). But the degree of the favoritism implemented by the

system does not match that required by our optimal mechanism (see Proposition 3); the

system often goes too far in favoring the proposer.15

14These projects concerned respectively the expansion of the airports of Puerto Montt (June 1995), Iquique

(August 1995) and Calama (Ocober 1997).
15To illustrate this point, suppose  = 2 and firm 1 is the innovator as in our baseline model. In that

case, firm 1 counters any bid 2 by firm 2 if and only if 2  2. Knowing this, firm 2 picks its bid 2 to solve

max
2
(1−(2))(2 − 2)

whose first-order condition is:

2 − 1−(2)

(2)
= 2

Given firm 1’s behavior, this means that the contract is allocated to firm 1 if and only if

1 − 1−(1)

(1)
 2

conditional on the project being implemented at all. In the case  is uniform on [0 1], this boils down
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◦ Best and final offer system. Here, the key element is multiple rounds of tendering, in
which the original proponent is given the advantage of automatically participating in the

final round. It is used in Argentina and South Africa.

Our analysis suggests that these mechanisms have some merit, as biasing the implemen-

tation stage in favor of the innovator may indeed promote innovation. The bonus system

has the additional merit of allowing the advantage to be linked to the value of the proposed

project, with higher project values resulting in greater advantages. By contrast, the Swiss

challenge system and the best and final offer system grant an unconditional advantage to the

innovator, which in our analysis is sub-optimal. Note that none of these systems provides

for explicit handicapping.

5.2 Bundling R&D and Implementation

In the practice of innovation procurement, we observe two polar cases.

First, there is pure bundling, where the firm whose project is selected also implements it.

This approach was, for instance, followed in US Defense Procurement in the 1980s, where

the winner of the technical competition for the best prototype was virtually assured of being

awarded the follow-on defense contract (see Lichtenberg, 1990; and Rogerson, 1994). More

recently, the European Procurement Directive 2014/24/EU has introduced so-called "Inno-

vation Partnerships" for the joint procurement of R&D services and large-scale production.

Second, there is unbundling, where project selection and implementation are kept entirely

separate; therefore, the firm whose project was selected is treated exactly the same way as any

other firm at the implementation stage. Examples include research contests or the European

Pre-commercial Procurement (PCP) model. In both cases, firms compete for innovative

solutions at the innovation stage, and the best solution(s) may receive a prize. The procurer

does not commit itself to acquire the resulting innovations.

Our analysis identifies the circumstances in which the two extreme cases are optimal.

Corollary 2. 1. Pure bundling is optimal if for each  ∈  , 
 = 0  

 = ̄ for

 6= , where ̄  sup ∈(()− ).

2. Unbundling is optimal if there exists 1 2 ⊂  with 1 ∪2 =  and 1 ∩2 = ∅
such that, for each  = 1, 


 =∞∀ and that for each  ∈ 2  ∈ 1, 


 =∞∀

and 
 = 0. In this case, the optimal mechanism selects the project  from 1 with

to 1  1+2
2
, or 2  21 − 1. Comparing with Figure ??, the resulting allocation tends to involve more

excessive favoritism toward firm 1 than the optimal allocation.
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the highest value  if  ≥ min (), rewards the innovator  ∈ 1 with the highest

()  1, and awards the implementation contract to a firm  ∈ 2 with the lowest

virtual cost ()  .

Pure bundling can be optimal when there are large economies of scope between R&D

and implementation as described by the condition in (i). For example, in the procurement of

complex IT systems, the knowledge advantage of the software developer typically translates

into a considerable cost advantage on the management and upgrading of the software. In

this case, selecting the same firm for both R&D and implementation is likely to be better.

However, even in that case, our results stress that project selection should be based on both

value and cost considerations.

By contrast, unbundling is optimal when firms specialize in either innovation or in im-

plementation (e.g., manufacturing or construction). Corollary 2-(ii) describes such a case:

firms are partitioned into two groups so that one specializes in innovation and the other

specializes in implementation. In that case, the optimal mechanism selects the project and

rewards the innovator from the former group, according to the first-best scheme in Proposi-

tion 1, and awards the implementation contract to a firm in the second group according to

the second-best scheme in Proposition 2.

Unbundling is sometimes prescribed as an affirmative action policy toward so-called small

and medium enterprises (SMEs). In both Europe and the US, procurement programs aimed

at stimulating R&D investment from SMEs provide for separation between the R&D stage

and the implementation stage, with funding provided based on firms’s project proposals. The

Small Business Innovation Research (SBIR) program in the US or the UK’s Small Business

Research Initiative (SBRI) are characterized by this separation between project selection and

implementation.16 Such a policy can be justified based on Corollary 2-(ii) on the ground that

small or medium R&D firms often lack manufacturing capabilities and thus would at a clear

disadvantage when the R&D competition is bundled with the contract implementation. For

instance, the SMEs may comprise group 1 and non-SMEs may comprise 2, in which case

the government wishes to promote research effort specifically from SMEs and bans non-SMEs

from proposing a project (as under SBIR and SBRI).

A similar reasoning suggests that when base university research may play a key role in

R&D activities, separation between selection and implementation may also help to promote

their participation. When instead innovators are also likely to play a role at the implemen-

tation stage, unbundling is never optimal.

16See, respectively, http://www.sbir.gov/ and https://sbri.innovateuk.org.
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6 Conclusions

Procuring innovative projects requires incentivizing potential innovators’ research efforts as

well as an efficient implementation of the selected projects. Our analysis highlights a trade-off

between these two objectives when implementors have private information about their costs.

To solve this trade-off, the optimal mechanism relies on contract rights (possibly combined

with monetary prizes).

A number of issues are worth exploring further. First, we have focused on situations in

which the value of the proposals can be contracted upon. This is a plausible assumption when,

for instance, the proposal involves a prototype or when performance measures — operational

or productivity indicators, energy consumption, emissions, etc. — are available and can be

used in the tender documents; yet another possibility is to rely on evaluation committees. In

other situations (e.g., base research), however, the difficulty of describing the project and/or

non-verifiability issues may make it impossible to contract ex ante on the ex post value of

the projects. When ex post the value is verifiable, the literature suggests that the procurer

can replicate the above mechanism (see, e.g., Maskin and Tirole (1999)); a similar remark

applies when ex post the value of the project is observed by the parties but is non-verifiable

by third parties such as courts (see, e.g., Maskin (1999) and Moore and Repullo (1988)). The

situation is different when the value of the project is private information (e.g., only the buyer

observes it). Yet, the spirit of our insights carries over when for instance the procurer must

use the same auction rules whenever she decides to implement the project (see the remark on

simple rules at the end of Section 3.3). Characterizing the optimal mechanism under private

information is beyond the scope of this paper but clearly constitutes an interesting avenue

for future research.

Second, we have ignored the costs of participating in procurement tenders. In practice,

submitting a tender bid may require tender development costs (e.g., complex estimations and

legal advice) that involve significant economic resources, in which case biasing the tender

in favor of the innovator may discourage potential implementors from participating in the

tender. It would therefore be worth endogenizing participation in the tender and exploring

how the optimal mechanism should be adjusted to account for these development costs.

More generally, accounting for endogenous entry is a promising research avenue.17

Likewise, we have assumed that the procurer was benevolent. In practice, corruption

concerns and, more generally, institution design may matter, which may call for limiting the

17For recent work on the role of discrimination in auctions with endogenous entry, see, e.g., Jehiel and

Lamy (2015).
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discretion given to the procuring agency. Balancing this with the provision of innovation

incentives constitutes another promising research avenue.

Finally, we have focused on a situation where the innovation is valuable to a single buyer

— and thus has no “market” value. An interesting extension would be to consider multiple

buyers, so as to allow for the possibility that extra contractual incentives for research effort

arise from the commercialization of the innovation. Exploring the role of market forces

would also help to shed light on possible anti-competitive effects of alternative mechanisms

for public procurement of innovation.18

18See the 2014 European State Aid framework for research, development and innovation (EU 2014b).
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Appendix

A Proof of Proposition 1

To solve [ − ], we focus on the relaxed problem:

[ 0 − ] max

E[

X
∈

( )− ( )|]

subject to (), () and

E[( )− ( )] ≥ 0 ∀  (0)

This problem is a relaxation of [ − ] since (0) requires () to hold only on

average. At the same time, whenever a mechanism satisfies (0), one can construct at least

one mechanism that satisfies (), without affecting other constraints. Hence, there is no

loss in restricting attention to [ 0 − ]. To solve [ 0 − ], we first observe that for each

 6= 1, the constraint (0) must bind. If not, one can always lower the expected payment
to increase the value of the objective without tightening any constraints. Next, define

1( ) := E[1( )− 11( )]

Then, we can weaken [ 0 − ] further to:

[ 00 − ] max

E[

X
∈
( − )( )− 1()|]

subject to

1() ≥ 0 ∀ (00)

E[
X
∈
( − )( )] ≥ 1() ∀ (00)




E [1()|] ≥ 0() ( 00)

Note that the weakening occurs with the moral hazard constraint: ( 00) is a first-order

necessary condition of ().

Let (), (), and  denote the multipliers for constraints (00), (00) and ( 00),

respectively. Then, the Lagrangian (more precisely its integrand) is given by:

(  ) := [1 + ()]

(X
∈

( ) ( − )

)
− 1() [1 + ()− ()−  ()]− 0 () 
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where

 () := 
(|)
(|) 

The optimal solution (  ( )  1 ()    ()   ()) must satisfy the

following necessary conditions.

First, since the Lagrangian is linear in ’s, the optimal solution  ( ) is as defined

in Proposition 1. Next, the Lagrangian  is also linear in 1(); hence, its coefficient must

be equal to zero:

1 + ∗()− ∗ ()− ∗() = 0 (1)

Next, the optimal effort  must satisfy




E[(  )|]

¯̄̄̄
=

= 0 (2)

Finally, complementary slackness implies that, for each ,

()1 () = 0 (3)

()

(
E[
X
∈

 ( ) ( − )− 1 ()

)
= 0 (4)

and


∙Z



1 ()(|) − 0()

¸
= 0 (5)

We first prove that   0. Suppose not. Then, () = 0 for all  ∈  . It then

follows from (1) that ()  0 for all  ∈  . By (3), this means that 1 () ≡ 0. As
 =  , it then follows from (4) that for any   , () = 0. Collecting these facts

together, we conclude that

E[(  )] = E[max{0  −min

{}]

which is increasing in  (and strictly so for a positive measure of ). By ( ), this

means that



E[(  )|]  0

a contradiction to (2). We thus conclude that   0.

If   ̂, then ()  1, and thus 1 + () − ()  0. Hence, by (1),

()  0 and, by (3), we have 1 () = 0. It in turn follows from (4) that () = 0

provided that   .
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If instead   ̂, then ()  1, and thus 1− ()− ()  0. Hence, by (1),

()  0. But then, by (4), we must have

 () = E

"X
∈

 ( ) ( − )

#


as claimed in Proposition 1.

Next, we show that   ̂  ̄. First, by ( ),  () is strictly increasing in ,

and there exists ̃ ∈ ( ̄) such that  (̃) = 0 ( 1); it follows that ̂  ̃ ( ). Second,

we must have   ̂ with positive probability (i.e.,  cannot be too small). Suppose to

the contrary that ()  1 for all  ∈  . Then, as argued above 1 () = () = 0

for all  ∈  . In this case, by the convexity of (·), we must have  = 0, or else we obtain
a contradiction to (5). But then, we get

(  ) = max{0max

( − )}− 0 () 

As the first term is increasing in  (and strictly so for a positive measure of ), and 0 (0) = 0,

we thus get a contradiction to (2).

Finally, we prove that   0. Given   0, it follows from (5) thatZ


1 ()(|) = 0()

As   ̂ for a positive measure of , the left side is strictly positive. This implies that

  0, or else the right-hand side vanishes as 0(0) = 0.

B Proof of Proposition 3

To solve [ ], we first reformulate () in terms of interim allocation and payment rules. For

each  ∈  and for any  ∈  and any  ∈ Θ, let ( ) :=
R
−

 ( ) − (−) and

( ) :=
R
−

 ( ) − (−) denote the interim allocation and payment for firm  and

( ) := ( )− ( ) (6)

denote firm ’s expected profit. For each  ∈  , () then can be stated as

( )− ( ) ≥ ( 
0
)− ( 

0
)∀  0

The associated envelope condition then yields

( ) =  () +

Z 



( ) (7)
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where

 () := ( )

is the rent enjoyed by firm  when its cost is highest. Using (7), we can express firm ’s

expected rent asZ


( ) () =

Z


"
() +

Z 



( )

#
 ()

= () +

Z


( )
 ()

 ()
 ()  (8)

For each  6= 1, the rent () does not help to relax any constraint and reduces the surplus
for the principal, so it is optimal to set () = 0 for all .

Using (6) and (8), the total expected transfer to the firms can be expressed as:Z


X
∈

 ( )  () =
X
∈

Z


( ) ()

=
X
∈

Z


[( ) + ( )]  ()

=
X
∈

½
() +

Z


( )() ()

¾
= 1() +

Z


X
∈

 ( )() ()  (9)

where () :=  +
()

()
denotes firm ’s virtual cost.

Substituting (9) into the principal’s objective function, we can rewrite () as follows:

∀ ∈ 

Z


(X
∈

( ) [ − ()]

)
() ≥ 1() (c)

Let () ≥ 0 denote the multiplier associated with this constraint.
The innovating firm’s individual rationality simplifies to

∀ ∈  1() ≥ 0 (c)
Let () ≥ 0 denote the multiplier associated with this constraint.
We next focus on the first-order condition for the effort constraint.Z



Z


∙
1() +

1(1)

1(1)
1( )

¸
()(|) ≥ 0() (d)
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Note that we formulate the condition as a weak inequality to ensure the nonnegativity of

the multiplier. Let  ≥ 0 be the associated multiplier.
Then, [ ] can more succinctly be reformulated as follows:

max
()1()

R


©R


£P
∈ ( ) [ − ()]

¤
()− 1()

ª
(|)

subject to (c), (c) and (d)

The integrand of the Lagrangian is given by:

(  ) := [1 + ()]

⎧⎪⎪⎨⎪⎪⎩
∙
 − 1 −

µ
1−  ()

1 + ()

¶
1(1)

1(1)

¸
1( ) +

X
∈
 6=1

[ − ()]( )

⎫⎪⎪⎬⎪⎪⎭
− 1() [1 + ()− ()−  ()]− 0 () 

where

 () := 
(|)
(|) 

The optimal solution (∗ ∗ ( )  ∗1 ()  
∗ ∗ ()  ∗ ())must satisfy the following nec-

essary conditions. First, observe that the Lagrangian  is linear in 1(); hence, its coefficient

must be equal to zero:

1 + ∗()− ∗ ()− ∗() = 0 (10)

The Lagrangian is also linear in ’s, so the optimal allocation must satisfy, for every

  :

∗ ( ) =

(
1 if  ∈ argmin

n
̃( )

o
and ̃ ( ) ≤ ,

0 otherwise,

where

̃( ) :=

(
 ()− ∗()

1+∗()
()

()
if  = 1

 () if  6= 1
where ∗ () = ∗ (|

∗)
(|∗) .

Next, the optimal effort ∗ must satisfy





Z


Z


(  ∗)(|∗) ()  = 0 (11)

Finally, complementary slackness implies that, for each ,

∗()∗1() = 0 (12)

∗()

(Z


X
∈

∗ ( ) [ − ()] ()− ∗1()

)
= 0 (13)
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and

∗
∙Z



Z


∙
∗1() +

1(1)

1(1)
∗1( )

¸
 () (|∗) − 0(∗)

¸
= 0 (14)

We now provide the characterization. Consider first the case where   . From (10),

̃( ) ≥ , and thus ̃( ) and ∗
 ( ) both yield ∗ ( ) = 0 for every  ∈  ;

furthermore, (c) and (c) together imply
∗1() = 0 =

Z


X
∈

∗ ( ) [ − ()] ()

Hence, the characterization of ∗ ( ) given in Proposition 3 is correct.

We now focus on the range   . Again, there are two cases depending on the value of

. Consider first the case   ̂∗, where ∗ ()  1. Hence, 1 + ∗()− ∗ ()  ∗() ≥ 0,
and (10) thus implies ∗()  0. The complementary slackness condition (12) then yields

∗1() = 0. This, together with Lemma 4 (see Appendix D) and the complementary slackness

condition (13), implies that ∗() = 0. Hence, ̃1( 1) = 1 (1) − ∗ ()1(1)1(1) =

∗
1( 1).

Let us now turn to the case   ̂∗, where ∗ ()  1. Hence, 1− ∗ ()− ∗()  0, and

(10) thus implies that ∗()  0; from the complementary slackness condition (13), we thus

have

∗1() =
Z


X
∈

∗ ( ) [ − ()] ()

Suppose ∗()  0. Lemma 4 then implies ∗1()  0, contradicting the complementary

slackness condition (12). Therefore, ∗() = 0. It follows now from (10) that 1 + ∗() =

∗ (). We therefore conclude that ̃1( 1) = 1 = ∗
1( 1).

The transfer payment ∗ follows from (9), with ∗1() as described above and 
∗
() = 0 for

all  6= 1. The above characterization is valid only when the optimal allocation is monotonic
(another necessary condition from incentive compatibility). This follows the assumption that
()

()
is nondecreasing in , which implies that 

∗
 ( ) = (), for  6= 1, and

∗
1( 1) = 1 (1)−min {1  ()} 1(1)

1(1)
= 1 +max {0 1−  ()} 1(1)

1(1)


are all nondecreasing in .

We next prove that ∗  0. Suppose ∗ = 0. Then, ∗(·) = 0, so (10) again implies that
∗(·)  0 and ∗(·) = ∗1(·) = 0. Hence,

(  ∗) = max{0  −min


()}
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which increases for a positive measure of . It follows that





Z 



Z


(  )()(|)
¯̄̄̄
=∗

=

Z 



Z


max{0  −min


()}()(|∗)  0

which contradicts (11).

Next, we show that ∗  0. It follows from (14) and ∗  0 thatZ


Z


∙
1() +

1()

1()
∗1( )

¸
()(|) = 0()

The left-hand side is strictly positive, which implies that ∗  0, or else the right side vanishes

since 0(0) = 0.

C On the Optimality of Offering a Prize (̂  ̄)

As mentioned, whether it is optimal to award a monetary prize (i.e., ̂  ̄) depends on how

much innovation incentives are required and on how much would already be provided by the

standard second-best auction. We show in this Appendix that a monetary prize is optimal

when: (i) there is either little cost heterogeneity (see Section C.1) or a large number of firms

(see Section C.2), as the procurement auction does not generate much information rents,

and thus provides little innovation incentives; or (ii) the range of project values is large (see

Section C.3), so that innovation incentives then matter a lot.

Throughout this Appendix, we start with an environment for which there exists an opti-

mal mechanism with no monetary reward, and then consider variations of this environment

for which the optimal mechanism must involve a prize.

The baseline environment, for which there exists an optimal mechanism with no monetary

reward, consists of a distribution  (·|) for the value  and a distribution  (·) for the cost
of each firm  ∈  , such that ∗ (·) = 0, which amounts to ̂∗  ̄, or

  ̄ :=
 (̄|)
 (̄|)  (15)

and implies that ∗ (·) = 0. The optimal allocation is therefore such that ∗ ( ) = 0 for
any  ≤  and, for   :

∗1 ( ) =

(
1 if ∗

1 (1)  min { 2 (2)    ()} 
0 otherwise.
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For further reference, it is useful to note that the objective of the principal, as a function of

, can be expressed as:Z ̄



Z ̄



X
∈

∗ ( ) [ −  ()]  ()  (|)

+ 

(Z ̄



Z ̄



∗
1 ( 1)1 (1) (|)1 − 0 ()

)


where the innovator’s expected probability of obtaining the contract is given by:

∗
1 ( 1) =

Z
−1

∗1 ( ) −1 (−1) 

The first-order condition with respect to  yields:Z ̄



Z ̄



X
∈

∗ ( ) [ −  ()]  ()  (|∗) 

= 

(
00 (∗)−

Z ̄



Z ̄



∗
1 ( 1)1 (1) (|∗)1

)
 (16)

The optimal effort ∗ moreover satisfies the innovator’s incentive constraint 0 (∗) =  (∗),

where the innovator’s expected benefit is given by:

 () :=

Z ̄



Z ̄



∗
1 ( 1)1 (1) (|)1

C.1 Reducing Cost Heterogeneity

Suppose first that costs become increasingly less heterogeneous: the cost of each firm  ∈ 

becomes distributed according to
 () over the rangeΘ


 =

£
 ̄


=  +

¡
̄ − 

¢

¤
. For

each  ∈ N∗, we will denote by , , 
1 (1) and 

1 ( 1) the values associated with

the optimal mechanism. We now show that, for  large enough, this optimal mechanism

must include a monetary prize.

We first note that as  goes to infinity, the innovator’s effort tends to the lowest level, :

Lemma 1.  tends to  as  goes to infinity.

Proof. The innovator’s expected benefit becomes

 () :=

Z ̄



Z ̄





1 ( 1)


1 (1) (|)1

40



and satisfies:

| ()| ≤
Z ̄



Z +
̄−




1 |(|)|  =
¡
̄ − 

¢ R ̄

|(|)| 




Therefore, as  goes to infinity, the expected benefit  () converges to 0, and the innova-

tor’s effort thus converges to the minimal effort, . ¤
Furthermore:

Lemma 2. As  goes to infinity:

• The left-hand side of (16) tends to

∞ :=
Z ̄



( − )  (|)   0

• In the right-hand side of (16), the terms within brackets tend to 00 ().

Proof. The left-hand side of (16) is of the form
R ̄

1 () , where

1 () :=  (|)
Z ̄





X
∈

 ( ) [ −  ()] 
 () 

Furthermore, for any   , ̂ () := min∈ { ()}   for  is large enough (namely, for

 such that ̄

  or  

¡
̄ − 

¢
 ( − )), and so

1 () =  (|)
Z ̄





h
 − ̂ ()

i
 () 

which is bounded:

|1 ()| 
¯̄̄
max


 (|)
¯̄̄
max { −  0} 

and converges to

lim
−→∞

1 () = ( − )  (|) 
Using Lebesgue’s dominated convergence theorem, we then have:

lim
−→∞

Z ̄



1 ()  =

Z ̄



lim
−→∞

1 ()  = ∞

We now turn to the right-hand side (16). The terms within brackets are

00 ()−
Z ̄



Z ̄





1 ( 1)


1 (1) (|)1
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where the first term tends to 00 () and the second term is of the form
R ̄

2 () , where

2 () =  (|)
Z ̄






1 ( 1)


1 (1) 1

satisfies:

|2 ()|  max

| (|)|

Z ̄




1 =

¡
̄ − 

¢
max | (|)|



and thus tends to 0 as  goes to infinity. ¤
To conclude the argument, suppose that the optimal mechanism never involves a prize.

Condition (16) should thus hold for any , and in addition, the Lagrangian multiplier 

should satisfy the boundary condition (15). We should thus have:Z ̄



Z ̄




X
∈

 ( ) [ −  ()]  ()  (|) 


 (̄|)
 (̄|)

(
00 ()−

Z ̄



Z ̄





1 ( 1)1 (1) (|)1

)


Taking the limit as  goes to infinity, this implies:

∞ =
Z ̄



( − )  (|)    (̄|)
 (̄|)

00 () 

which is obviously violated when the return on effort is sufficiently high (e.g., 00 () is low

enough).

C.2 Increasing the Number of Firms

Let us now keep the cost distributions fixed, and suppose instead that additional firms are

introduced in the environment with the same cost distribution as the innovator:  () =

1 () for  = +1  +. Letting again denote by , , 
1 (1) and 


1 ( 1) the

values associated with the optimal mechanism, we now show that the optimal mechanism

must involve a prize for  large enough.

By construction, 
1 (1) ( 1)   for any 1  , whereas the lowest  () becomes

arbitrarily close to 1 () =  as  increases; it follows that the probability of selecting the

innovator, 
1 ( 1), tends to 0 as  goes to infinity:

Lemma 3. 
1 ( 1) tends to 0 as  goes to infinity.
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Proof. The probability of selecting the innovator satisfies:


1 ( 1) ≤ Pr

∙

1 (1) ≤ min

=+1+
{1 ()}

¸
≤ Pr

∙
1 ≤ min

=+1+
{1 ()}

¸
=

£
1−1

¡
−11 (1)

¢¤
 (17)

where the second inequality stems from 
1 (1) ≥ 1, and the last expression tends to 0

when  goes to infinity. ¤
It follows that Lemma 1 still holds, that is, the innovator’s effort tends to the lowest

level, , as  goes to infinity. To see this, it suffices to note that the innovator’s expected

benefit, now equal to

 () =

Z ̄



Z ̄




1 ( 1)1 (1) (|)1

satisfies:

| ()| ≤
Z ̄



 () 

where

 () := |(|)|
Z ̄




1 ( 1) 1

is bounded (by
¡
̄ − 

¢
max {|(|)|}) and, from the previous Lemma, tends to 0 as 

goes to infinity. Hence, as  goes to infinity, the expected benefit  () converges to 0, and

the innovator’s effort thus tends to .

Likewise, Lemma 2 also holds; that is,

• The left-hand side of (16) tends to ∞. To see this, it suffices to follow the same steps
as before, noting that 1 (), now given by

1 () =

Z ̄



X
∈

 ( ) [ −  ()]  ()  (|) 

is still bounded:

|1 ()|  max { −  0}
¯̄̄
max


 (|)
¯̄̄


and tends to  −  for any   :
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— ̂ () = min∈ { ()} is almost always lower than  when  is large enough.

Indeed, for any   0, we have:

Pr
h
̂ () ≤  + 

i
≥ Pr

∙
min

=+1+
{ ()} ≤  + 

¸
= Pr

∙
min

=+1+
{} ≤ −11 ( + )

¸
= 1− £1− 

¡
−11 ( + )

¢¤


where the last expression converges to 1 as  goes to infinity. Therefore, for any

  0, there exists ̂1 () such that for any  ≥ ̂1 (),

Pr
h
̂ () ≤  + 

i
≥ 1− 

— Hence, for  ≥ ̂1 ():

 −  ≥
Z ̄



X
∈

 ( ) [ −  ()]  () ≥ (1− ) ( −  − ) 

where the right-hand side converges to  −  as  tends to 0.

The conclusion then follows again from Lebesgue’s dominated convergence theorem.

• In the right-hand side of (16), the terms within brackets tend to 00 (). To see this, it
suffices to note that 2 (), now given by

2 () =  (|)
Z ̄




1 ( 1)1 (1) 1

— is still bounded:

|2 ()|  max

| (|)|

Z ̄




1 ( 1) 1

≤ max

| (|)|

Z ̄



£
1−1

¡
−11 (1)

¢¤
1

— and converges to 0: Indeed, for any   0,

|2 ()|  max

| (|)|

(Z + 
2



1 +

Z ̄

+ 
2

£
1−1

¡
−11 ( + )

¢¤
1

)
 max


| (|)|

n
2
+
¡
̄ − 

¢ £
1−1

¡
−11 ( + )

¢¤o
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But there exists ̂2 () such that, for any  ≥ ̂2 ():¡
̄ − 

¢ £
1−1

¡
−11 (1)

¢¤ ≤ 

2


and thus

|2 ()|  max

| (|)| 

— It follows that the second term converges again to 0:

lim
−→∞

Z ̄



2 ()  =

Z ̄



lim
−→∞

2 ()  = 0

The conclusion follows, using the same reasoning as in Section C.1.

C.3 Increasing the Value of the Innovation

Let us now keep the supply side (number of firms and their cost distributions) fixed and

suppose instead that:

•  is initially distributed over  = [ ̄]; for the sake of exposition, we assume  À ̄,19

so that the innovation is always implemented.

• For every ∈ N∗, the value  becomes distributed over   = [ ̄ =  + (̄ − )],

according to the c.d.f.  (|) =  ( + ( − ) |).

As before, letting , , 
1 (1), and 

1 ( 1) denote the values associated with the

optimal mechanism, we now show that this optimal mechanism must involve a prize for 

large enough.

We first note that the virtual costs remain invariant here: 
 (

 ) =  ( ) =

 () for   1 and, as

 () = 
 (

|)
(|) = 

(|)
(|) 

we also have


1 (

 1) = 1 (1)−min { ()  1} 1 (1)

1 (1)

= 1 (1)−min { ()  1} 1 (1)

1 (1)

= 1 ( 1) 

19Namely,   min∈
©


¡
 ̄
¢ª
.
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As by assumption, the innovation is always implemented in this variant, the probability of

obtaining the contract only depends on these virtual costs and thus also remains invari-

ant:  (
 ) = ∗ ( ) for any  ∈  . It follows that, in the right-hand side of (16),

the terms within brackets also remained unchanged: using 
1 (

 1) = ∗
1 ( 1) and

 (
|)  =  (|) , we have:

00 ()−
Z ̄



Z ̄




1 (

 1)1 (1) 

 (

|) 1 = Γ∗ () 

where

Γ∗ () := 00 ()−
Z ̄



Z ̄



∗
1 ( 1)1 (1)  (|) 1

By contrast, the left-hand side of (16) is unbounded as goes to infinity: using
P

∈ ∗ ( ) =

1 (as by assumption, the innovation is always implemented here),  (|)  =  (|) 
and

R ̄

 (|)  = 0, we have:Z ̄



Z ̄



X
∈

 (
 ) [ −  ()]  () 


 (

|) 

=

Z ̄



Z ̄



X
∈

∗ ( ) [ + ( − )−  ()]  ()  (|) 

= ∗ ()− ∗ () 

where:

∗ () =

Z ̄



Z ̄



X
∈

∗ ( )  ()  (|)  =
Z ̄



 (|) 

∗ () =

Z ̄



Z ̄



X
∈

∗ ( ) ()  ()  (|) 

To conclude the argument, suppose that the optimal mechanism never involves a prize.

Condition (16) should thus hold for any , and in addition, the Lagrangian multiplier 

should satisfy the boundary condition (15). We should thus have:

∗ ()  ∗ () +
 (̄|)
 (̄|)Γ

∗ () 

which is obviously violated for a large enough .
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D Proof of Proposition 4

As earlier, the incentive compatibility constraint can be replaced by the envelope condition:

(v ) = (v) +

Z 



(v ) ∀(v ) ∈   ×Θ∀ ∈  (18)

where

(v ) = E−

"X
∈

 (v  −)

#


Using condition (18), we can rewrite the limited liability constraint as:

E

"X
∈

 (v )
©
 − ()

ª# ≥X
∈

(v) ∀v ∈   ()

Let (v) ≥ 0 denote the multiplier associated with this constraint.
Also, from (18) individual rationality boils down to

(v) ≥ 0 ∀v ∈  ∀ ∈  ()

We let (v) ≥ 0 denote the multiplier associated with this constraint.
Finally, using (7), firm ’s expected rent and the total expected transfer to the firms can

respectively be expressed asZ


(v )() = (v) +

Z


( )
()

()
() (19)

and Z


X
∈

(v )() =
X
∈

(v) +

Z


X
∈

 (v )(() + 
 )() (20)

and the moral hazard constraint can be replaced by the associated first-order condition,

which, using (18), (19), and (20), can be expressed as:20

Ev

"
(v) +

()

()

X
∈

 (v )

¯̄̄̄
¯  −

#
≥ 0() ∀ ∈  ()

We formulate again these conditions as weak inequalities to ensure the nonnegativity of the

associated multipliers, which we will denote by λ =
¡
1  

¢
.

20For simplicity, we normalize the firms’ efforts in such a way that firms face the same cost (); any

asymmetry can, however, be accommodated through the distributions  (|).
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The principal’s problem can then be more succinctly reformulated as follows:

[ ] max
x()e

Ev
hP

∈  (v )
¡
 − ()− 



¢−P∈ (v)
¯̄̄
e
i

subject to (), (), and ().

The analysis of this problem follows the same steps as for the case of a single innovator,

and we only sketch them here. The integrand of the Lagrangian is now given by:

(v  ) := [1 + (v)]

(X
∈

∙
 −  −

µ
1− ()

1 + (v)

¶
()

()
− 



¸
 (v )

)
−
X
∈

(v)
£
1 + (v)− (v)− ()

¤−X
∈

0()

where

() := 
 (

|)
(|) 

The first-order conditions for the monetary prize (v) and for the probability 

 (v ) yield,

respectively:

1 + ∗(v)− ∗ (v)− ∗() = 0 ∀v ∈  ∀ ∈  (21)

and

∗ (v ) =

(
1 if  − ̃(v )− 

 ≥ max
n
max()6=()  − ̃(v )− 

 0
o
,

0 otherwise,

(22)

where

̃ (v ) := ()− ∗()
1 + ∗(v)

()

()


Note that ̃ (v ) can be expressed as

 +

∙
1− ∗()

1 + ∗(v)

¸
()

()


where (21) and ∗ (v) ≥ 0 together imply that the term within brackets is non-negative. It

follows that

̃ (v ) ≥  (23)

and that ̃ (v ) increases with .

The complementary slackness associated with () implies that for every v ∈  ,

∗(v)

(
E

"X
∈

∗ (v )
©
 − ()

ª#−X
∈

∗ (v)

)
= 0 (24)
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whereas the complementary slackness associated with () implies that for every  ∈  and

every v ∈  ,

∗ (v)
∗
 (v) = 0 (25)

We now prove the following result:

Lemma 4. Fix any v such that max
©
 − 



ª
 . We have

E

"X
∈

∗ (v )
£
 − 

 − ()
¤#

 0 (26)

if either (i)  ≥ 2 or (ii)  = 1 and either 1 − 11   or 1 (
1)  0.

Proof. We first focus on the case in which  ≥ 2. Fix any v such that  − 
 −   0

for some  . Further, fix any  such that
P

 

 (v )  0 for a positive measure of s (a

project that does not satisfy this property is never adopted with positive probability and

can be ignored).

Consider first the particular case in which project  is always implemented and allocated

to the same firm :  (v ) = 1 (this can, for instance, happen when  is large and 
 is

prohibitively high for  6= ). In that case:

E

"X
∈

 (v )
£
 − 

 − ()
¤#

=

Z 



£
 − 

 − ()
¤
()

= − 
 − 

0

where the inequality stems from (22), applied to  = ,21 and (23).

Let us now turn to the case in which no firm is selected with probability 1 to implement

project  (because project  is not always implemented and/or different firms are selected

to implement it). By (22), the optimal allocation rule is then such that


 (v ) := E−

£
 (v  −)

¤
21Generically, this condition implies  −   ̃

¡
v 

¢
; we ignore here the non-generic case  −  =

̃

¡
v 

¢
.

49



is nonincreasing in  for all  ≤  − 
 and equals zero for any    − 

 . Further, it

is strictly decreasing in  for a positive measure of  if 

 (v )  0, and by the choice of

, there is at least one such firm.

Now, for every  define

̄
 (v ) =

(
̄ if  ≤  − 



0 if    − 
 

where ̄ is a constant in (0 1) chosen so thatZ 



̄
 (v )() = ̄ (

 − 
 ) =

Z 




 (v )()

Clearly, ̄ , and hence ̄

 (v ·), is well defined.

We have:

E

"X
∈

 (v )
£
 − 

 − ()
¤#

=
X


Z 




 (v )

£
 − 

 − ()
¤
()

=
X


Z min{− }




 (v )

£
 − 

 − ()
¤
()


X


Z min{− }



̄
 (v )

£
 − 

 − ()
¤
()

=
X


̄

Z min{− }



£
 − 

 − ()
¤
()

=
X


̄
¡
max{ − 

 −  0}¢
≥0

The second equality stems from the fact that 
 (v ) = 0 for    − 

 , and the strict

inequality follows from the fact that  − 
 − () is strictly decreasing in  and, in the

relevant range
£
min{  − 

 }
¤
, 

 (v ) is nonincreasing in  and strictly decreasing

in  for a positive measure of  for some , whereas by construction, ̄

 (v ·) is constant

and Z min{− }



̄
 (v )() =

Z min{− }




 (v )()
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Summing the above string of inequalities over all , we obtain the desired result.

Next consider the case in which  = 1. In this case, 1
1 (v 1) = 11(v 1) = 1 for

̃1(
1 1) ≤ 1 and zero otherwise. Because 

 (v ) is constant when it is strictly positive,

the strict inequality above does not follow from the above argument. But the strict inequality

does still hold if 1 − 11   or if 1 (
1)  0.

In the former case, the last inequality above becomes strict, thus yielding the desired

result. To consider the latter case, assume without loss 1 − 11 ≤ . Because 1 (
1)  0,

we have 1(1)  1 + (1), so ̃1 (
1 1)  1, which implies that there exists ̃  1 − 11

such that 11(v 1) = 1 for 1  ̃ and 11(v 1) = 0 for 1  ̃. Let ̌ := sup{ ≤
|1 − 11 − 1() ≥ 0}. If ̃ ≤ ̌, then

E
£
11(v )

£
1 − 11 − 1(1)

¤¤
=

Z ̃



£
1 − 11 − 1(1)

¤
(1)  0

If ̃  ̌, the same result holds because

E
£
11(v )

£
1 − 11 − 1(1)

¤¤
=

Z ̃



£
1 − 11 − 1(1)

¤
(1)



Z ̃



£
1 − 11 − 1(1)

¤
1(1) +

Z 1−11

̃

£
1 − 11 − 1(1)

¤
1(1)

=

Z 1−11



£
1 − 11 − 1(1)

¤
1(1)

=0

where the strict inequality holds because 1−11−1(1)  0 for 1 ∈ (̃ 1−11) (which in

turn holds because ̌  ̃  1−11), and the last equality follows from integration by parts.

¤
Without loss of generality, assume  ≥ 2 (otherwise, there would be a single innovator,

a case studied earlier). There are two cases. Consider first the case in which ()  1 for

every  ∈  . By (21), we must then have

∗ (v) = 1 + ∗(v)− ∗()  0

and the complementary slackness condition (25) thus yields ∗ (v) = 0 for every firm  ∈
 . This, together with (26) and the complementary slackness condition (24), implies that

51



∗(v) = 0, and thus

̃(v 1) = ()− ∗()
()

()
:= ∗

 ( 1)

Consider next the case in which max∈
©
∗()

ª
 1. Let ̂ = argmax∈

©
∗()

ª
for

the firms that have the highest ∗(). Applying (21) to  ∈ ̂ then yields

∗(v) = ∗ (v) + ∗()− 1  ∗̂ (v) ≥ 0 (27)

whereas applying (21) to firm  6∈ ̂ yields

1 + ∗(v)− ∗ (v) = ∗()  ∗() = 1 + ∗(v)− ∗(v)

It follows that ∗(v)  ∗ (v) ≥ 0 for  ∈ ̂   6∈ ̂. Therefore, by complementary slackness

(25), ∗(v) = 0, so that only firms  ∈ ̂ can receive a positive monetary prize: ∗(v) = 0 for

 6∈ ̂. Finally, the complementary slackness condition (24) yields

X
∈̂

∗ (v) =
X
∈

∗(v) = E

"X
∈

∗ (v )
©
 − ()

ª#


By Lemma 4, the total prize must be strictly positive for all v such that   
 + for some

 . Given the atomlessness of (·|) for all , ̂ is a singleton with probability one. Hence,
for any v such that   

 +  for some  , and max{∗()}  1, with probability one
only one firm receives the monetary prize.

Last, we derive the characterization of the optimal allocation rule. By the above argu-

ment, there exists at least one firm  ∈ ̂ such that ∗ (v)  0, and for that firm, (25) yields

∗ (v) = 0. However, then (21) applied to all  ∈ ̂ along with the fact that ∗() = ∗()

for   ∈ ̂ means that ∗ (v) = 0 for all  ∈ ̂. It then follows that

1 + ∗(v) = max

{∗()}

We thus conclude that

̃(v 1) = ()−
µ

∗()

max 
∗()

¶µ
()

()

¶
:= ∗

 ( 1)
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Online Appendix
Not for publication

A Forbidding Handicaps

We explore here how the optimal mechanism is modified when handicaps are ruled out.

Specifically, we suppose that the innovator cannot be handicapped compared to the standard

second best allocation. That is, for every  and :

1( ) ≥ 1 ( ) (NH)

where:

1 ( ) :=

(
1 if 1(1) ≤ min {min 6=1 ()} ,
0 otherwise.

Letting ( ) ≥ 0 be the multiplier of the no-handicap constraint (NH), the Lagrangian
becomes

( ) := [1 + ()]

⎧⎪⎪⎨⎪⎪⎩
∙
 − 1 (1) +

 ()

1 +  ()

1(1)

1(1)
+

 ( )

1 +  ()

¸
1( ) +

X
∈
 6=1

[ − ()]( )

⎫⎪⎪⎬⎪⎪⎭
− 1() [1 + ()− ()−  ()]− 0 () + ( )[1( )− 1 ( )]

and the additional complementary slackness is

( )
£
1( )− 1 ( )

¤
= 0 (28)

The Lagrangian is still linear in ’s, so the optimal allocation must satisfy, for every

  :

̄( ) =

(
1 if  ∈ argmin

©
̄( )

ª
and ̄ ( ) ≤ ,

0 otherwise,

where the shadow cost is now given by:

̄( ) :=

(
 ()− ()

1+()

()

()
− ()

1+()
if  = 1

 () if  6= 1 with  () := 
(|)
(|) 

When   ̃, ̄1( 1)  1 (1), and we can thus ignore the constraint (); hence

( ) = 0, implying ̄1( 1) = 1( 1) and ̄1( ) = ∗1( ). Let us now consider the
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case   ̃. If  ( ) = 0, the above characterization yields again ̄1( ) = ∗1( ), and

  ̃ then implies ̄1( 1)  1(1) and thus ̄1( )  1 ( ) for at least some s,

contradicting (); therefore, we must have  ( )  0, and the complementary slackness

condition (28) thus implies ̄1( ) = 1 ( ), and thus ̄1( 1) = 1(1).

The other constraints are unaffected; thus the optimal effort  must satisfy





Z


Z


(  )(|) () = 0

and complementary slackness implies that, for each ,

()1() = 0

()

(Z


X
∈

̄( ) [ − ()] ()− 1()

)
= 0

and



∙Z


Z


∙
1() +

1()

1()
̄1( )

¸
()(|) − 0()

¸
= 0

Going through the same steps as before and summing up, we have:

• Ruling out handicaps implies that contract rights are allocated according to the stan-
dard second-best for low-value projects: For   ̃,  ( ) = − ()1(1)1 (1) ( 0)

and ̄( ) = () for all  (and thus, ̄( ) =  () for all  as well).

• Ruling out handicaps has instead no impact on optimal contract rights for high-value
projects: For   ̃,  ( ) = 0 and ̄( ) = ∗ ( ) for all .

In addition, forbidding handicaps does not affect the size of the monetary prize when

such a prize is given:

• For   ̂,  () = 1−  ()  0 and thus 1 () = 0 and  () = 0.

• For   ̂,  () = 0 and  () = 1+ (), and thus ̄1( 1) = 1 and thus ̄1( ) =

∗1( ), based on 1 ( 1) = 1 and  ( ) =  () for  6= 1; it follows that

1() =

Z


X
∈

∗ ( ) [ − ()] () = ∗1 () 

Note however that ruling out handicaps can affect the conditions under which a prize

is given: banning handicaps alters the multiplier , which in turn affects the threshold ̂,

which is determined by the condition  (|)  (|) = 1.
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B Fixed allocation

We show here that our main insight carries over when the procurer is required to use the

same tender rules whenever she decides to implement the project. The optimal mechanism

relies on contract rights (possibly combined with monetary prizes) to induce the innovator

to exert effort. Indeed, as long as the project is not always implemented, it is optimal to

bias the implementation auction in favor of the innovator (handicaps instead should never

be used).

Specifically, we consider a setup where, should the procurer wish to implement the project,

the mechanism ( ) ∈ ∆ × R cannot depend on . We can then simply denote by ()

the probability that firm  implements the project and by () the transfer payment that it

receives.

The timing of the game is now as follows:

1. The buyer offers a mechanism specifying the allocation  and a payment  to each

firm .

2. The innovator chooses ; the value  is then realized.

3. The buyer observes  and decides whether to implement the project, in which case

firms observe their costs and decide whether to participate.

4. Participating firms report their costs, the project is allocated (or not), and transfers

are made according to the mechanism ( ).

If the procurer decides to implement the project, firm ’s expected profit no longer de-

pends on the project value , and can thus be written as

() := ()− ()

where () :=
R
−

 () − (−) and () :=
R
−

 () − (−). Using incentive

compatibility, this expected profit can be expressed as

() =  +

Z 



()

where

 := ()
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is the rent enjoyed by firm  when its cost is highest. As before, it is optimal to set  = 0

for  6= 1, and thus the total expected transfer to the firms is given byZ


X
∈

 ()  () = 1 +

Z


X
∈

 ()() () 

where () :=  +
()

()
denotes firm ’s virtual cost. It follows that the procurer chooses

to implement the project when:Z


(X
∈

() [ − ()]

)
() ≥ 1

As the left-hand side strictly increases with , there exists a unique ̌ ∈ [ ̄] such that this
constraint is strictly satisfied if   ̌, and violated if   ̌.

Obviously, if ̌ = ̄, then the project is never implemented, and thus the innovator has

no incentive to provide any effort. The assumption that ̄   guarantees that this is not

optimal. Conversely, if ̌ =  then the project is always implemented. This could be optimal

if even low-value projects were still sufficiently desirable, but implies again the innovator

has no incentive to provide any effort, as it obtains for sure the same information rents,

regardless of the realized value of the project. From now on, we will focus on the case where

the optimal threshold is interior, i.e., ̌ ∈ ( ̄). Let  ≥ 0 denote the multiplier associated
with the above constraint for  = ̌:Z



(X
∈

() [̌ − ()]

)
() ≥ 1 ()

The innovating firm’s individual rationality boils down here to

1 ≥ 0 ()

Let  ≥ 0 denote the multiplier associated with this constraint.
Finally, the first-order condition for the effort constraint becomes:Z

≥̌

Z


∙
1 +

1(1)

1(1)
1()

¸
()(|) ≥ 0() ()

Let  ≥ 0 be the associated multiplier.
The buyer’s problem can then be formulated as follows:

max
̌()1

R
≥̌
©R



£P
∈ () [ − ()]

¤
()− 1

ª
(|)

subject to (c), (c) and (d)
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The Lagrangian is given by:

 =

Z
≥̌

(Z


"X
∈

() [ − ()]

#
()− 1

)
(|)

+

"Z


(X
∈

() [̌ − ()]

)
()− 1

#

+1 + 

∙Z
≥̌

Z


∙
1 +

1(1)

1(1)
1()

¸
()(|) − 0()

¸


Re-arranging terms, it can be expressed as  =
R

(  ̌)(), where

(  ̌) := [1−  (̌|) + ]

⎧⎪⎨⎪⎩
∙
̌ − 1(1) +



1 + ̌

1(1)

1(1)

¸
1() +

X
∈
6=1

[̌ − ()]()

⎫⎪⎬⎪⎭
− [1−  (̌|)] 1 (1−  + ̌− ̌)− 0()

where:

̌ :=


1−  (̌|) and ̌ :=


1−  (̌|)
denote the weighted value of the Lagrangian multipliers  and  (weighted by the probability

of implementing the project), and:

 := 

Z
≥̌

(|)
1−  (̌|) and ̌ :=

 + ̌̌

1 + ̌


where

 :=

Z
≥̌


(|)

1−  (̌|)

The optimal solution (∗ ̌∗ ∗ ()  ∗1 
∗ ∗ ∗) must satisfy the following necessary

conditions. First, observe that the Lagrangian  is linear in 1(); hence, its coefficient must

be equal to zero:

1− ∗ + ̌∗ − ̌∗ = 0 (29)

where ̌∗ and ̌∗ denote the optimal values of the weighted multipliers, and

∗ :=
∗

1−  (̌|∗)
Z
≥̌

(|∗)

The Lagrangian is also linear in ’s, so the optimal allocation must satisfy, for every

  :

∗ () =

(
1 if  ∈ argmin

n
̃()

o
and ̃ () ≤ +̌∗̌

1+̌∗ ,

0 otherwise,
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where

̃() :=

(
 ()− ∗

1+̌∗
()

()
if  = 1

 () if  6= 1 (30)

We next prove that ∗  0. Suppose ∗ = 0, which implies ∗ = 0. Together with (30)

and (29), this yields

(  ̌∗) = [1−  (̌∗|) + ∗]
Z


max
n
0 ̌∗ −min


 ()

o
 () 

and thus





Z


(  ̌∗)()

¯̄̄̄
=∗

= −(̌
∗|∗)

Z


max
n
0 ̌∗ −min


 ()

o
() (31)

where, in the right-hand side:

• The first term, −(̌
∗|∗), as

− (̌|)  0 (32)

for any ̌∗ ∈ ( ̄). To see this, note that

−(̌|) = 


[1−  (̌|)] =

Z
≥̌

(|)

where from ( ), (|)  0 for   ̃ and (|)  0 for   ̃. Therefore,

if ̌ ≥ ̃, then
R
≥̌ (|)  0. If instead ̌  ̃, then

R
̌

(|)  0; but by

construction, Z
≥̌

(|) +
Z
̌

(|) = 



Z
(|) = 0

implying again that
R
≥̌ (|)  0.Z



X
∈

() [̌ − ()] () ≥ 1

• The second term is also positive. Indeed, we have:Z


max
n
0 ̌∗ −min


 ()

o
() 

Z


max
n
0 ̌ −min


 ()

o
()

≥
Z


X
∈

∗ () [̌ − ()] ()

≥ 0

where the first inequality stems ̌  ̌ for any ̌∗  ̄, and the last one follows from

() and ().
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It follows that the right-hand side of (31) is positive, and thus





Z


(  ̌∗)()

¯̄̄̄
=∗

 0

which violates the optimality of ∗. We thus conclude that ∗  0.

Given ∗  0, (32) implies ∗  0. It then follows from (30) that the innovator benefits

from a favorable bias in the allocation of the contract rights.

Finally, complementary slackness implies that, for each ,

̌∗∗1 = 0 (33)

̌∗
(Z



X
∈

∗ () [ − ()] ()− ∗1

)
= 0 (34)

When (0 )∗  1, we have:

1− ∗ + ̌∗  ̌∗ ≥ 0
and (29) thus implies ̌∗  0. The complementary slackness condition (33) then yields

∗1 = 0.

When instead ∗  1 we have:

1− ∗ − ̌∗  0

and (29) thus implies that ̌∗()  0; from the complementary slackness condition (34), we

thus have

∗1() =
Z


X
∈

∗ () [̌
∗ − ()] ()
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