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1. Introduction

Incomplete information games have posed difficult challenges for empirical work

in economics. The empirical literature has largely proceeded by designing identifica-

tion strategies for specific extensive forms: for any given extensive form, the analyst

solves for a Bayes-Nash equilibrium, and uses this equilibrium to determine the map-

ping between observed equilibrium strategies and players’ unobserved types. In some

settings, such as commonly studied auction games, clean models of equilibrium be-

havior enable empirical researchers to identify and estimate underlying primitives

from observed auction outcomes, yielding a rich methodological and applied litera-

ture. However, for a large set of extensive-form games that are important in practice,

equilibrium characterization is difficult; multiple equilibria often exist, with different

equilibria yielding qualitatively different outcomes, and often no complete characteri-

zation of these equilibria exists. This class encompasses, for example, certain types of

bargaining games, non-standard auctions, signaling games, games with persistent pri-

vate information, nonstationary games, and oligopoly pricing games with incomplete

information. Relative to the rich empirical literature on standard auctions, propos-

als for identification and estimation under many of these extensive forms have been

scarce.

The theoretical literature on mechanism design, pioneered by Myerson (1981) and

others, has proposed a different approach. The revelation principle allows the ana-

lyst to study incomplete information games, independently of specific extensive forms,

by studying revelation mechanisms – the mappings between agent types and phys-

ical outcomes induced by the Bayes-Nash equilibria of extensive form games. Any

such mapping from types to outcomes must be incentive compatible for all types;

conversely, any incentive compatible mapping can be supported as an equilibrium

of some incomplete-information game. Hence, studying incentive compatible reve-

lation mechanisms is equivalent to studying the full class of outcomes that can be

supported as equilibria of incomplete information games. This abstract notion of rev-

elation mechanisms appears unamenable to empirical settings. A contribution of our
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paper is to make a precise connection between the mechanism design revelation prin-

ciple approach and empirical work, and then to propose an extension of this concept

which allows for identification and estimation in settings, such as sequential games,

where the econometrician often does not observe an agent’s full vector of contingent

actions.

In this paper, we propose a class of techniques for empirical analysis of incomplete

information games, independently of specific extensive forms. We suppose that the

econometrician observes multiple repetitions of a trading game, and that in each rep-

etition she observes, for each agent, the final allocation (i.e. whether the good traded

hands and, if so, to whom), any transfers paid by each agent, and one additional piece

of information, analogous to the report made by the agent to the mechanism designer

in a theoretical mechanism design framework. This additional piece of information

may either be an action taken by the agent, or some proxy—a variable such as an

agent’s initial action in a sequential game or some characteristic of the agent known to

the econometrican but not to the opposing parties. The identification arguments and

estimation procedure are analogous in the observed action and proxy cases, but the

proxy case is much more general. Rather than analyzing strategies in the context of

specific extensive form equilibria, we think of agents’ actions/proxies as choices from

a menu of feasible expected physical outcomes induced by the Bayes-Nash equilibrium

of the game. We show that this expected physical outcome menu is sufficient to sum-

marize agents’ choices in equilibrium; moreover, this menu can be estimated by the

econometrician. If an agent is observed choosing a given point on the menu of feasi-

ble physical outcomes, the marginal costs of other feasible options on the equilibrium

menu allow the econometrician to derive bounds on the agent’s unobserved type. In

the case that all types play distinct actions in equilibrium, we show that these bounds

collapse to single points, so that the mapping between observed actions and agent

types is point-identified independently of the extensive form of the game. If types do

not play distinct actions, our approach gives bounds on the values of agents playing

any given action; these bounds are the best possible, in the sense that no information

about the extensive form of the game can allow more precise identification of values.
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For estimation we propose procedures for both discrete and continuous actions

cases. In the discrete case, we propose an empirical ironing procedure reminiscent of

Myerson (1981) to enforce convexity of the outcome menu in the process of estima-

tion. For the continuous case, we propose a nonparametric local polynomial regression

estimator for values, which estimates pointwise the mapping from actions to values

as the ratio of two nonparametric derivative estimates. Additionally, we propose a

nonparametric continuous analog of the discrete ironing procedure, using constrained

cubic splines to estimate continuous menus with convexity constraints.

We illustrate this approach using Monte Carlo simulations of the bilateral bargain-

ing game studied in Satterthwaite and Williams (1989). This game, referred to as

a k double auction, has a continuum of qualitatively different equilibria. Without

prior knowledge of the precise equilibrium played and the bargaining power weights,

the traditional structural approach of inverting player’s best-response function (as is

done in first price auctions in Guerre, Perrigne, and Vuong (2000), for example), fails.

The identification and estimation approach we propose, on the other hand, does not

require this prior knowledge, and we demonstrate that it performs well in practice in

estimating player’s valuations.

We show that our method can be extended in a number of directions, using tools de-

veloped in the empirical auctions literature for particular extensive forms. We show

that the assumption of independent values can be relaxed; in a setting with non-

independent private values, one can proceed by estimating type-contingent menus

and using their subgradients for value estimates. We show that we can combine

our approach with tools used to analyze settings with unobserved heterogeneity, pio-

neered by Krasnokutskaya (2011), in a large class of generalized bidding games, using

deconvolution arguments to recover unobserved-heterogeneity-corrected menus from

observed probability/transfer outcomes.

We apply our estimation approach to data from a secret reserve price auction

followed by dynamic, two-sided bargaining. This mechanism is used in business-to-

business transactions between used-car dealers as well as other settings (Elyakime,
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Laffont, Loisel, and Vuong (1997)). This game has multiple equilibria and no com-

plete theoretical characterization. In the data, we observe final transaction price, an

indicator for whether or not trade occurred (the allocation), and the secret reserve

price of the seller, which we assume is strictly increasing in the seller’s underlying

valuation. We combine our proxy variable approach with our methods to correct for

unobserved heterogeneity to estimate the mapping from observed reserve price offers

from sellers to seller’s values. We find that the estimated distribution of values is

close to bounds on seller valuations estimated in Larsen (2014), which used the same

data but exploited outcomes of the bargaining game. An advantage of the approach

we propose is that it is applicable even in settings where only the final outcome is ob-

served, and not the intermediate actions, such as intermediate offers in a bargaining

game.

We use our estimates to compute counterfactual revenue in a setting where, rather

than participating in an auction—which increases competition among buyers and

thus decreases market power of buyers—the high bidder and seller face each other in

a single, take-it-or-leave-it offer bargaining game, with the offer made by the buyer.

We find that sellers’ gains from trade would decrease by approximately $390–960

per car, suggestive that, in the current mechanism, seller’s benefit from a substantial

degree of market power.

Several previous papers in the structural estimation literature propose methods

that rely on similar ideas to the revelation-principle identification we present here. In

particular, the past two decades have seen a number of innovations that yield iden-

tification of primitives of interest by plugging in directly observable agent actions,

choice probabilities, or outcome probabilities rather than fully solving for equilibria

of games. For example, Guerre, Perrigne, and Vuong (2000) demonstrated that valua-

tions in a first price auction can be identified directly from distributions and densities

of observed bids. The approach of Guerre, Perrigne, and Vuong (2000) can be thought

of as a special case of ours, where ours generalizes the idea to arbitrary incomplete

information trading games. Our approach is also related to Tamer (2003), which

derived identification results in static discrete games relying on plugging in empirical
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measures of probabilities that cannot be pinned down uniquely by a model (due to

multiplicity of equilibria). In dynamic games, Bajari, Benkard, and Levin (2007) and

others proposed two-step methods in which the first step involves estimating policy

functions directly from observed choice probabilities rather than from solving the

model. Similiar procedures are also adopted in Athey and Nekipelov (2010) applied

to search position auctions, in Nekipelov, Syrgkanis, and Tardos (2015) applied to ad

auctions, and in Hortaçsu and McAdams (2010) applied to treasury auctions. Agar-

wal and Somaini (2014) present a method for estimating preferences from reported

rankings in a matching game; as in our setting, the authors treat agents as choosing

an expected outcome from a menu that can be estimated in the data. In contempo-

raneous work, Kline (2016) provides an identification argument that is closely related

to ours for trading games with observed actions, deriving stronger results than our

paper in the non-independent private values case under an additional assumption

about equilibrium monotonicity. Our work differs in focusing on both estimation and

identification, deriving results relating to menu convexity, and applying our approach

to cases where actions are not fully observed.

A number of other papers have built on earlier insights in Guerre, Perrigne, and

Vuong (2000), Tamer (2003), and others to achieve feasible estimation approaches

in particular settings. For the most part these settings have been cases in which the

equilibrium of the game can be characterized and the extensive form is known, and the

advantage of plugging in empirical objects in these cases is that it avoids the need to

solve for the equilibria. A contribution of our approach is that it yields identification,

and a corresponding estimation approach, in arbitrary incomplete information trading

settings in which the full characterization of equilibria and the extensive form may

be unknown.

2. Model

Throughout, agents will be indexed by i. Uppercase Xi will denote random vari-

ables or vectors, lowercase xi will denote realizations, and bold xi (·) will denote

functions. For all such objects, we will use a −i subscript to denote the vector of



A MECHANISM DESIGN APPROACH TO IDENTIFICATION AND ESTIMATION 7

objects for all agents other than i. For example, X−i ≡ (X1 . . .Xi−1,Xi+1 . . .Xm),

where m is the number of agents.

We consider an incomplete information trading game. In this section, we consider

an information environment with asymmetric independent private values; in Sub-

section 5.1 we extend these results to allow for arbitrarily correlated values. Agents

i ∈ {1, 2, . . .m} have values Vi for a single indivisible good, where each Vi is drawn in-

dependently from a continuous bounded distribution Fi, supported on [vi, v̄i].
1 Agent

i’s value is observed only by i. All agents are risk-neutral. Let xi be an indicator

representing i attaining the good, and ti ∈ R any net payment made by i. If agent i

has value Vi = vi, her utility for the pair (xi, ti) is linear in her value, as is standard

in the theoretical mechanism design literature:

vixi − ti.

Agents play trading game G . The solution concept is Bayes-Nash equilibrium.2 We

will analyze G in normal form (thus, we do not require refinements such as perfection).

First, values Vi are drawn Fi (·) and observed by each agent i. Having observed their

types Vi, agents choose (potentially mixed) strategies: si : R → ∆Ai, mapping

values vi ∈ R into actions ai ∈ ∆Ai, where Ai is the space of actions available to i.

The outcome allocation and transfers for all agents

(x1, t1) , (x2, t2) . . . (xm, tm)

are calculated as a function of actions a1 . . .am. We will refer to the individual

allocation and transfer functions as xi (a1 . . .am) , ti (a1 . . .am). We assume nothing

about the structure of G , except that each agent i has some outside option āi which

leads to some outcome x̄i, and transfer normalized to t̄i = 0.

1Our results apply to discrete distributions as well, but assuming continuous types throughout
simplifies exposition.
2A variety of processes can lead agents to play Bayes-Nash equilibria, from assuming agents have
full common knowledge of game rules and prior distributions, to assuming that agents are naive and
converge to playing best responses by various learning processes. We do not take a stance on any
particular set of assumptions underlying the Bayes-Nash equilibrium concept.
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Fixing some strategy si, we define Σi (vi) as the set of all actions ai ∈ Ai played

by type vi with positive probability under strategy si (·). Let

s−1
i (ai) = {vi : ai ∈ Σi (vi)} ,

that is, s−1
i (ai) is the set of types vi which play ai with positive probability under

strategy si.

Two examples of such incomplete information trading games are the following:

Example 1. Auction: Agents {1 . . .m} participate in an auction. Actions ai belong

to a space that depends on the rules of the auction. For example, in a sealed-bid

auction, the actions are sealed bids in R. In an ascending or multi-round auction,

actions are history-contingent bidding strategies. Agents’ outside options are to leave

without participating in the auction, leading to x̄i = 0.

Example 2. Bargaining game: Seller (player 1) and buyer (player 2) bargain over

an indivisible good. The seller’s outside option is x̄1 = 1, and the buyer’s outside

option is x̄2 = 0. Once again, the form of the actions ai depends on the specific rules

of the bargaining game; the game could be a take-it-or-leave-it offer by one party or

an alternating-offer bargaining game, or could follow any other bargaining protocol.

Assuming all other agents play according to their equilibrium strategies, if type

vi of i plays action ai, she attains some expected physical outcome (Pi (ai) , Ti (ai)),

defined as:

Pi (ai) ≡ E [xi (ai,A−i)] , Ti (ai) ≡ E [ti (ai,A−i)]

that is, the expectation of the allocation xi (ai,A−i) and transfer ti (ai,A−i) over

the actions A−i of players −i (which, from i’s perspective, is a random vector). The

expected utility that type vi of agent i attains from playing action ai, relative to her

outside option, is:

viPi (ai) − Ti (ai) − vix̄i

In Bayes-Nash equilibrium, all types vi of each agent i must be optimally choosing

actions with respect to the distributions of opponents’ actions A−i. This implies that,



A MECHANISM DESIGN APPROACH TO IDENTIFICATION AND ESTIMATION 9

for all i, vi, the following incentive compatibility condition must hold:

ai ∈ Σi (vi) =⇒ ai ∈ arg max
a′i

viPi (a
′
i) − Ti (a

′
i) − vix̄i (1)

Note that, in addition to incentive compatibility, we require individual rationality:

ai must do better than the outside option, so the total utility maxa′i viPi (a
′
i) −

Ti (a
′
i) − vix̄i must be nonnegative. However, this condition will not play a major

role in our primary identification and estimation arguments, with the exception of

the unobserved heterogeneity correction in Subsection 5.2.

Equivalently, we can write:

vi ∈ s−1
i (ai) =⇒ viPi (ai) − Ti (ai) > viPi (a

′
i) − Ti (a

′
i) ∀a′i (2)

(1) is a necessary and sufficient condition for strategies si (vi) to constitute a Bayes-

Nash equilibrium. Importantly, (1) does not directly reference either the extensive

form of the game — that is, the functions xi (a1 . . .am) , ti (a1 . . .am) — or the

distribution of opponents’ actions A−i, avoiding specifying beliefs or any particular

equilibrium refinement. This is because neither of the objects xi (a1 . . .am) and

ti (a1 . . .am) enter directly into the utility function of type vi of agent i. From

the perspective of agent i, the equilibrium of G defines a menu of feasible expected

physical outcomes (Pi (ai) , Ti (ai)), indexed by action choices ai. This menu is a

sufficient statistic for i’s choice in equilibrium – each type vi of agent i chooses

the item (Pi (ai) , Ti (ai)) from the equilibrium menu which affords her the highest

utility. We will exploit this menu in a variety of ways below to obtain identification

and estimation results.

3. Identification

In this section we derive identification results for the model described above. In

Subsection 3.1, we discuss identification in the case in which the econometrician

observes agents’ actions directly, as in many simultaneous-move trading games such

as a sealed-bid auctions or a double auction. Here we prove that the slope of the
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(P, T) menu, evaluated at the action chosen by the agent, provides identification

of the agent’s valuation. The arguments we present in this case are related to a

variety of arguments already known in the literature to some extent, although, to

our knowledge, this paper, along with Kline (2016), is the first general exposition

of how these arguments can be used for identification. We demonstrate that this

identification argument holds regardless of whether the structure of the equilibria of

the game is known. We focus on these results first because they provide the necessary

backdrop for our main result.

Our main result, which is new to the literature, is found in Subsection 3.2. Here

we generalize our approach to trading games—such as alternating-offer bargaining

or other sequential bargaining or multistage auction games—in which the econome-

trician cannot observe all contingent actions of agents. Here we require that the

econometrician observe a proxy for agents’ types. This proxy may be an initial ac-

tion of a dynamic game or a first-stage bid, or some other feature of the data, such

as demographic characteristics about an agent that the econometrican observes but

other agents do not.

In all cases, we assume the econometrician observes multiple independent instances

of the trading game G , where instances of G are indexed by j. Thus, in each instance

of the game, values Vij are independently drawn from Fi. We assume that in each

instance j of the game, the econometrician observes outcomes xij (the allocation) and

tij (the transfer). If players are asymmetric (i.e. not exchangeable in their indices, i),

we assume the econometrican also observes the identity i of any player whose value

is to be identified. If players are symmetric, Fi = F for all i.

3.1. Fully Observed Actions Case. In this section, we assume that in each in-

stance j of the game, in addition to observing xij and tij, the econometrician observes

agents’ actions aij. Examples of cases in which the econometrican may observe agents’

actions are any sealed-bid trading game or any simultaneous-move trading game. This

includes not only first price or second price auctions, where the structure of equilibria
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is well-known in the theoretical and empirical literature, but also any arbitrary sealed-

bid trading game where such properties may be less well-known or less well-behaved,

such as the Medicare median-price auction discussed in Cramton, Ellermeyer, and

Katzman (2015). This also includes sealed-bid trading games with multiple equi-

libria, such as a k double auction (Satterthwaite and Williams 1989). We assume

nothing else about the structure of the game, or the particular equilibrium being

played (except that the same equilibrium is played in each instance j). In particular,

the equilibrium need not be increasing or in pure strategies; the median-price auction

is such an example. However, we will obtain stronger results when such an increasing,

pure-strategy equilibrium does exist.

It is also worth noting that for our identification argument to hold, it need not be

the case that all agents are behaving according to an equilibrium. In particular, for

identification of the valuation of a particular agent i, it need only be the case that i

is best-responding to other agents’ actions, regardless of whether those other agents’

actions themselves represent best-responses.

In Section 2, we argued that the expected outcome functions (Pi (ai) , Ti (ai)) if

sufficient to summarize agents’ choices in equilibrium. The basis of our identification

approach is that these expected outcome functions can also be estimated by the

econometrician. While estimation will be discussed in more detail in Section 4, we

simply note here that we from observing n instance of the game, we can consistently

estimate (Pi (ai) , Ti (ai)) by taking the empirical averages of xij, tij conditional on

agent i choosing action ai:

P̂i (ai) =

∑n
j=1 xij1aij=ai∑n
j=1 1sij=ai

, T̂i (ai) =

∑n
j=1 tij1aij=ai∑n
j=1 1aij=ai

For any given action value ai, the econometrician can then use (2) to bound the

values of any type vi ∈ s−1
i (ai), that is, any type vi that plays ai with positive

probability in equilibrium. We state this identification result as the following theorem:
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Theorem 1. For any ai, all vi ∈ s−1
i (ai) satisfy:

vi >
Ti (ai) − Ti (a

′
i)

Pi (ai) − Pi (a′i)
∀a′i : Pi (a′i) < Pi (ai)

vi 6
Ti (a

′
i) − Ti (ai)

Pi (a′i) − Pi (ai)
∀a′i : Pi (a′i) > Pi (ai)

Proof. Follows immediately from (2). �

The intuition behind this identification result is as follows. The econometrician

observes multiple instances of equilibrium play; hence, the econometrician can take

sample averages conditional on any observed action value ai to estimate the expected

physical outcome (Pi (ai) , Ti (ai)) indexed in equilibrium by action ai, that is, the

menu of expected physical outcomes {(Pi (ai) , Ti (ai))} available to agent i in equi-

librium. Ranking these actions according to their expected allocation P(·), agent i’s

chosen action reflects how the agent traded off P(·) and the expected transfer T(·),

yielding bounds on the agent’s value.

In Figure 1, we illustrate a hypothetical equilibrium menu in a setting where agents

possible actions are a′i ∈ {a1
i , ...,a5

i}. If we observe an agent choosing point a3
i , it must

be the case that the agent’s value vi ∈ s−1
i (a3

i) is lower than the “marginal cost”

Ti (a
′
i) − Ti (a

3
i)

Pi (a′i) − Pi (a
3
i)

of items a′i ∈ {a4
i ,a

5
i} with Pi (a

′
i) > Pi (a

3
i). Likewise, the agent’s value must be

higher than the marginal cost

Ti (a
3
i) − Ti (a

′
i)

Pi (a3
i) − Pi (a

′
i)

from items a′i ∈ {a1
i ,a

2
i} with Pi (a

′
i) < Pi (a

3
i). Thus, the value of any agent

type choosing point a3
i lies between the upper and lower marginal costs from point

(P (a3
i) , T (a3

i)), represented by the slopes of the green lines labeled v (a3
i) , v̄ (a3

i)

respectively.

Since any action played in equilibrium must be optimal for some type, the inequal-

ities in Theorem 1 must have nonempty intersection; in particular, this implies that
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Figure 1. Hypothetical menu

T (ai)

P (ai)

a1
i

a2
i

a3
i

a4
i

a5
i

a6
i

v (a3
i)

v̄ (a3
i)

Notes: Hypothetical menu. The slopes of the green lines are upper and lower bounds for
the value of an agent choosing action a3i .

the menu {(Pi (ai) , Ti (ai))} of actions played with positive probability in equilibrium

must be convex, ruling out the existence of points such as a6
i in Figure 1.

3.1.1. Pure Strategies. We can derive further results if we assume that the equilibrium

of G is in pure strategies; that is, each v plays a single action with positive probability

in equilibrium, so that Σi (vi) contains only a single value ai for any vi. Then we can

think of the strategy si (vi) as a function mapping values to actions ai ∈ Ai. The

informativeness of the bounds in Theorem 1 depends on the degree to which different

types play different actions in game G .3 Specifically, suppose agents with types δ

apart play strictly different actions; that is, si (vi + δ) 6= si (vi) ∀vi. Then, we have

3We will think of actions a,a′ which induce the same expected physical allocation and transfer
(P (a) , T (a)) as identical. Hence, without loss of generality, distinct actions a,a′ lead to distinct
physical outcomes.
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for any v:

vi 6
Ti (si (vi + δ)) − Ti (si (vi))

Pi (si (vi + δ)) − Pi (si (vi))
6 vi + δ (3)

vi − δ 6
Ti (si (vi)) − Ti (si (vi − δ))

Pi (si (vi)) − Pi (si (vi − δ))
6 vi (4)

Hence, for any ai, s−1
i (ai) is an interval with length at most 2δ. In particular,

if si (·) fully separates types, the intervals s−1
i (ai) all collapse onto single points,

leading to the following result:

Corollary 1. If, in game G , each type vi has a distinct best response action si (vi),

the inverse mapping s−1
i (ai) from actions to types is pointwise identified.

Proof. Follows immediately from Equations 3 and 4. �

As we demonstrate below, the menu {(Pi (ai) , Ti (ai))} is convex, which implies that

the inequalities in Theorem 1 are tightest for those values of Pi (a
′
i) which are closest

to Pi (ai). Supposing we have ordered actions ai s.t. Pi (ai) is strictly increasing,

then in the case where si (·) is strictly increasing as well, we have the following:

vi = lim
δ→0

Ti (si (vi)) − Ti (si (vi − δ))

Pi (si (vi)) − Pi (si (vi − δ))

3.1.2. Differentiable, Increasing Actions. In many examples the functions Ti and Pi

are smoothly increasing, in addition to si (·), and all three objects are differentiable,

in which case this expression simplifies further.

Corollary 2. If ai ∈ R and the functions Ti,Pi, si are monotonically increasing and

differentiable, we have:

vi = s−1
i (ai) =

dTi
dai
dPi
dai

=
T ′i (ai)

P′i (ai)

In Subsection 4.2, we will describe an estimation strategy based on Corollary 2.

We note in the following example that existing identification arguments for some

easily solveable trading games, such as first price auctions, are special cases of our

argument.
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Example 3. Consider a first price auction in a symmetric IPV environment. Bidder

i chooses a bid bi, and the maximum opposing bid is given by Mi ∼ G(·). In this

setting, Pi(bi) = G(bi) and Ti(bi) = biG(bi). Player i’s value is then given by

vi =

dTi
dbi
dPi
dbi

=
big (bi) +G (bi)

g (bi)
= bi +

G (bi)

g (bi)

This expression is equivalent to that derived in the identification argument presented

in Guerre, Perrigne, and Vuong (2000). Note, however, that this explicit solution

requires knowing the rules/extensive form of the game, whereas our approach does

not.

3.1.3. Theoretical Properties of the (P, T) Menu. We now provide several observations

about the structure of the equilibrium menu {(Pi (ai) , Ti (ai))}. We first define a

number of terms from convex analysis; see, for example, Rockafellar (1997) for more

details regarding these and related objects.4

Let {(Pi (ai) , Ti (ai))} denote the set of all (Pi (ai) , Ti (ai)) pairs. We will define

a subgradient of a set {(Pi (ai) , Ti (ai))} at point ai as any value ν such that

Ti (a
′
i) > Ti (ai) + ν (Pi (a

′
i) − Pi (ai)) ∀a′i,

that is, a line in p, t space of slope ν passing through (Pi (ai) , Ti (ai)) which lies

weakly below all points in {(Pi (ai) , Ti (ai))}. We define the graph of {(Pi (ai) , Ti (ai))}

as the function obtained by joining the points in order of increasing Pi (ai) values.

Proposition 1. (1) The graph of {(Pi (ai) , Ti (ai))} is convex.

(2) For any ai, s
−1
i (ai) for any ai is the collection of subgradients of {(Pi (ai) , Ti (ai))}

at Pi (ai). Each s−1
i (ai) is a closed interval, and the union of all s−1

i (ai)

contains the interval of values [vi, v̄i].

(3) If we order actions ai by the values of Pi (ai), s−1
i (ai) is setwise increasing

in ai. For any ai,a
′
i, the intervals s−1

i (ai) , s−1
i (a′i) intersect at at most one

point.

4Note that our notation is adapted to our setting, and does not correspond exactly to Rockafellar
(1997)
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Proof. See Appendix A.1.

�

Remark. Proposition 1 can be interpreted as follows. Part 1 formalizes the sense in

which we refer to the menu {(Pi (ai) , Ti (ai))} as convex. Part 3 states that s−1
i (ai) is

higher for values of ai with higher probabilities Pi (ai). This is related to the classic

fact in single-crossing mechanism design that implementable allocation rules must be

monotone, assigning higher bundles to higher types. Intuitively, under our “convex

menu” interpretation of equilibria, convex menus have monotonically increasing mar-

ginal costs, hence agents that choose bundles with higher Pi (ai) pay higher marginal

costs, and thus must have higher values.

Together, parts 2 and 3 also state that each s−1
i (ai) is an interval, and distinct

intervals s−1
i (ai) , s−1

i (a′i) intersect at no more than a single point. This implies

that the bounds of Theorem 1 effectively partitions the interval of values [vi, v̄i].

While in general this does not allow us to identify the exact types of each agent,

this identification result is the best possible, in the sense that different types in the

same interval vi ∈ s−1
i (ai) are observationally equivalent from the perspective of the

econometrician observing xij, tij,aij, regardless of the extensive form of the game

played. Thus, the bounds in Theorem 1 capture the full empirical content of the

incomplete information games model. This allows us to draw a parallel to mechanism

design: if the econometrician observes xij, tij,aij, the extensive-form structure of the

game is largely irrelevant for the question of identification of s−1
i (ai); the extensive

form matters only insofar as it affects the equilibrium mapping of types vi to expected

physical outcomes {(Pi (ai) , Ti (ai))}.

3.2. Main Result: Actions Not Fully Observed. In many contexts, it is impos-

sible for the econometrician to observe the entire action vector aij in any instance j of

the game. For example, in a multiple-offer bargaining game, observing ai would entail

observing all actions contingent on all possible sequences of back-and-forth offers from

other agents, or in an ascending auction, all bid strategies over all sequences of bids,

within a single instance j of the game. Thus, observing ai would not simply mean
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observing what actions i took, but what actions i would have taken in every history

of the game, including those not reached; this would be equivalent to observing a set

of instructions player i would have given to another agent to play on her behalf.

However, in many cases the econometrician will be able to observe a proxy Zi which

is correlated with Ai, but uncorrelated with A−i. In this section, we show that such

proxies Zi allow the econometrician to derive lower bounds on the utility of any given

type in equilibrium. Moreover, if the proxy fully separates types of the agent, we can

once again recover the entire mapping from types to actions.5

Definition 1. Zi is a proxy for Ai if Zi and Ai are not independent, and Zi is

independent of A−i.

Two examples in which this condition is satisfied are:

Example 4. Suppose that Ai specify strategies in a multiple-round bargaining game.

If i always makes the first offer in the game, the first offer cannot depend on other

actions A−i. So the first offer satisfies the conditions of Definition 1.

Example 5. Suppose we observe characteristics Zi of agent i, such as demographic

information or information about the agent’s behavior in other settings, which are

correlated with her value Vi (and hence her action Ai), but are unobserved by other

players −i. Then Zi must be independent of A−i, since other agents can’t condition

their actions on i’s private information. So these characteristics satisfy the condi-

tions of Definition 1. For example, in the setting of Ambrus, Chaney, and Salitsky

(2014)—that of Spanish rescue parties negotiating with North African pirates—the

amount of earmarked money raised by the captive’s family back home is known to the

econometrician and to the buyer (the rescue party) but is unobserved to the seller

(the pirates). This earmarked money can serve as an proxy for the rescue party’s

action.

5The “proxy variable” terminology is used similarly in Levinsohn and Petrin (2003), who use flex-
ible functions of proxy variables such as investments or material inputs to control for unobserved
productivity.
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Supposing that Zi satisfies our Definition 1, we know that:

E [(xi (Ai,A−i) , ti (Ai,A−i)) | Zi = zi] =

E [E [(xi (Ai,A−i) , ti (Ai,A−i)) | Ai,Zi = zi] | Zi = zi]

Since we have assumed Zi is independent of A−i, we can ignore the inner condi-

tioning on Zi:

= E [E [(xi (Ai,A−i) , ti (Ai,A−i)) | Ai] | Zi = zi]

= E [(Pi (Ai) , Ti (Ai)) | Zi = zi]

Hence, conditional expectations of xi, ti with respect to zi recover convex combi-

nations of {(Pi (ai) , Ti (ai))}.

In some cases, there is some proxy Zi which can be shown to be a one-to-one

function of type Vi, that is, Vi = z−1
i (Zi) .6 For example, suppose the game G is a

multiple-round bargaining game, with a first sealed-bid stage in which the optimal

bid is a strictly increasing function of type vi. In this case, the mapping zi (·) is fully

identified from the data.

If zi is a one-to-one function of type, then (Pi (zi) , Ti (zi)) is exactly the physical

outcome attained by the unique type z−1
i (z). Moreover, for any other z′i, the physical

outcome (Pi (z
′
i) , Ti (z

′
i)) is attainable by type z−1

i (zi). Also, there are types vi +

δ, vi − δ playing different actions zi (vi + δ) , zi (vi − δ). As in Subsection 3.1, this

implies the following bounds for any δ:

vi 6
Ti (zi (vi + δ)) − Ti (zi (vi))

Pi (zi (vi + δ)) − Pi (zi (vi))
6 vi + δ (5)

vi − δ 6
Ti (zi (vi)) − Ti (zi (vi − δ))

Pi (zi (vi)) − Pi (zi (vi − δ))
6 vi (6)

6Once again, we will treat different values of z as identical if they induce the same physical outcome
(P (z) , T (z)).
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Thus, as in Subsection 3.1, the bounds collapse to a single point, and the entire

mapping zi (·) is identified, which we state as the following extension of Corollary 1:

Corollary 3. If, in game G , each type vi is one to one with zi, the inverse mapping

vi = z−1
i (zi) from proxies to types is pointwise identified.

Proof. Follows immediately from Equations 5 and 6. �

We also obtain the immediate extension of this result, that if the (Pi(z), Ti(z))

menu, as a function of the proxy, is differentiable, it’s slope directly corresponds to

the valuation of agent i:

Corollary 4. If zi ∈ R and the functions Ti,Pi, zi are monotonically increasing and

differentiable, we have:

vi = z−1
i (zi) =

dTi
dzi
dPi
dzi

=
T ′i (zi)

P′i (zi)

More generally, using any proxy which satisfies our Definition 1 — even if that

proxy is not strictly increasing in the agent’s value—we can derive a lower bound

for the utility of any given type of the agent in equilibrium. Since the graph of

{(Pi (ai) , Ti (ai))} is convex, any conditional expectations with respect to zi fall within

its convex hull. That is to say, for any zi that satisfies Definition 1, the graph

{(Pi (zi) , Ti (zi))} lies strictly above the graph {(Pi (ai) , Ti (ai))}. This allows us to

lower-bound the utility of any given type vi in equilibrium:

Corollary 5. For any proxy satisfying Definition 1, a lower bound on the equilibrium

utility of vi is given by maxzi viPi (zi) + T (zi)

Intuitively, bundles {(Pi (zi) , Ti (zi))} are probably distributions over outcomes

{(Pi (ai) , Ti (ai))} from different actions ai. Hence, agents can achieve the physi-

cal outcome associated with any value of zi by using a mixed strategy corresponding

to the distribution over ai induced by zi.
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4. Estimation

We now present an approach for estimating valuations in incomplete information

trading games. The approach follows the identification argument above closely. We

focus this section on the case where the agent’s actions are either fully observable

and are increasing in the agent’s type, or where a proxy is observed that is increasing

in the agent’s type; in either of these two cases, the estimation strategy will be the

same. We first discuss estimation in the case of discrete actions/proxies, and then in

the case of continuous actions/proxies.

Our goal is to estimate a player’s valuation using observations of the game, where

in each instance of the game we observe the outcomes (allocation and transfer) and

either an action or proxy. Given that the estimation strategy is the same in the

action and proxy cases, we will, without loss of generality, refer to “actions” in this

section, rather than actions/proxies. Throughout the estimation section, we will focus

on estimation for a single agent, thus we will omit subscripts i, writing for example

a, v,P (·) , T (·) to mean ai, vi,Pi (·) , Ti (·).

4.1. Discrete Actions. Suppose that there are a finite number of actions, so that

s ∈ {a1 . . .aK}, with generic element ak. As above, we order the values of ak in

terms of increasing probability P (ak) of attaining the asset. We wish to identify

the set of types s−1 (ak) choosing each action value ak. Again, we suppose that

the econometrician observes multiple instances of the trading game, and that in each

instance she observes the action aj, the trade outcome xj and the transfer tj. We can

construct a family of two-step estimators as follows. First, we construct estimates

P̂ (ak) , T̂ (ak) as the averages of xj, tj respectively conditional on actions ak. Utilizing

the convex structure of the set of pairs {(P (ak) , T (ak))}, we can then choose, as in

Theorem 1:

max
k′<k

[
T̂ (ak) − T̂ (ak′)

P̂ (ak) − P̂ (ak′)

]
6 ŝ

−1 (ak) 6 min
k′>k

[
T̂ (ak′) − T̂ (ak)

P̂ (ak′) − P̂ (ak)

]
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Asymptotically, all ratios
T̂(ak)−T̂(ak′)

P̂(ak)−P̂(ak′)
converge to their population equivalents,

hence ŝ
−1 (ak) consistently estimates the bounds of the set s−1 (ak).

A disadvantage of this estimator is that, in finite samples, the set of {(P (ak) , T (ak))}

pairs may not be convex, in which case the lower and upper bounds may cross for

some values of a. An alternative strategy is to adopt an “empirical ironing” proce-

dure: rather than using the {(P (ak) , T (ak))} graph directly, we take its convex hull,

and use the subgradients of the convex hull to estimate values.

For a given collection of
[
P̂ (·) , T̂ (·)

]
pairs, we define the supporting hyperplane

H (p; ν) of slope ν, as the highest line of slope ν which lies below all {(P (ak) , T (ak))}

pairs:

b (ν) ≡ max {b : T (ak) > b+ νP (ak) ∀ak}

H (p;ν) ≡ b (ν) + νp

We construct the convex hull of [P (·) , T (·)] at any point p by taking the supremum

over all supporting hyperplanes:

F (p) = sup
ν
H (p;ν)

We will estimate ŝ
−1 (ak) using the set of subgradients of F (p) at point P (ak);

that is, the set of slopes ν such that H (p;ν) attains the supremum at point P (ak):

ŝ
−1 (ak) = {ν : H (P (ak) ;ν) = F (P (ak))}

F (p) is an upper envelope of linear functions H (p; v), so it is convex. Thus, it

admits subgradients at any point p, and the collection of subgradients is setwise

increasing in p. Asymptotically, since the true graph {(P (ak) , T (ak))} is convex, the

inferred ŝ
−1 (ak) has the same limit as the first estimator. However, using the convex

hull of {(P (ak) , T (ak))} ensures that the estimator produces attainable bounds in

finite samples.

In the discrete case, estimating the sets of values ŝ−1 (ak) is equivalent to estimating

the subgradients of the convex graph {(P (ak) , T (ak))}. We have described a simple
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two-step procedure which accomplish this estimation by estimating the P̂ (ak) , T̂ (ak)

values, then calculating subgradients based on these. However, it is conceivable that

one could construct a more efficient estimator by estimating the subgradients directly

from the observed data, rather than estimating the P̂ (ak) , T̂ (ak) functions as an

intermediate step.

4.2. Continuous Actions. In many cases of interest the equilibrium strategies (or

the transformations between proxies and values) are smooth functions of values, and

the equilibrium P (a) , T (a) are also smooth. In this case, we can estimate the map-

ping from actions to values using nonparametric regression. In particular, assume

that the mappings P (a) , T (a) are differentiable, and the function v = s−1 (a) is

continuous. Corollary 2 implies that:

s−1 (a) =
dT
ds
dP
ds

If we can nonparametrically estimate the derivatives T̂ ′ (a) , P̂′ (a) as functions of

actions a, their ratio is a consistent estimator for s−1 (a). Nonparametric derivative

estimation of smooth functions can be done using local polynomial regression (Fan

and Gijbels, 1996). The local polynomial regression estimator for T (a) at a given

point a with degree p, bandwidth h, kernel Kh is:

[
β̂0 (a) , β̂1 (a) . . . β̂p (a)

]
= arg min

β

∑
j

[tj − p∑
k=0

βk (aj − a)
k

]2
Kh (aj − a)


(7)

In this expression, p represents the degree of the local polynomial fit; Fan and

Gijbels suggest using even polynomial orders p = k + 2m + 1 for estimating first

derivatives, hence local quadratic regression with p = 2 is appropriate for our case.

Kh (·) is a kernel function of bandwidth h; common kernel functions include Gauss-

ian or Epanechnikov kernels. The coefficient βk estimates the kth derivative of T .

Therefore, an estimate of the first derivative T̂ ′ (a) is given by performing a local
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polynomial regression of the observed transfer, tj, on the observed action, aj, and

taking the coefficient on the linear term in (7), β̂1. Similarly, an estimate of the first

derivative P̂′ (a) is given by performing a local polynomial regression of the observed

allocation, xj (i.e., an indicator for whether the player won), on the observed action,

aj, and taking the coefficient on the linear term in the regression.

We note here that Fan and Gijbels, chap. 4.2, describe the following rule-of-thumb

bandwidth selection procedure for local quadratic regression. First, one fits a global

quintic polynomial by standard OLS:

ˆ̂
T (a) = α0 + α1a . . . + α5s

5

Let the residual variance from the regression be s̃2. The rule of thumb bandwidth is

then equal to the following “variance components”-like formula:

ĥ = Cν,p (K)

 s̃2∑n
i=1

(
ˆ̂
T ′′ (ai)

)2


1
7

Where Cν,p (K) is a kernel-specific constant, which is approximately 1 for the Gaussian

kernel and 2 for the Epanechnikov kernel. Intuitively, this procedure chooses smaller

bandwidths for functions that can be fitted better by polynomials. A similar approach

applies to estimation of P̂(·).

As in Subsection 4.1, this estimation procedure may result in a nonconvex {(P (a) , T (a))}

menu, and it may be desirable to “iron” the empirical menu function, constraining it

to be convex during estimation. In addition, it is often desirable to enforce monotonic-

ity of the P (a) function. In a manner similar to Judd (1998) and Schumaker (1983),

we propose a spline-based procedure to nonparametrically estimate the P (·) , T (·)

functions while imposing convexity of the [P (·) , T (·)] menu. In Appendix B, we de-

scribe the construction of the quadratic and cubic spline bases shown in Figure 2.

Constraining the quadratic (cubic) spline coefficients to be nonnegative ensures that

the target function is nondecreasing (convex). By construction, the quadratic splines

have two continuous derivatives, and the cubic splines three continuous derivatives.
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Figure 2. Quadratic/cubic spline basis

Notes: Quadratic and cubic spline basis functions, with knots at x = (1, 2, 3, 4, 5, 6) . In
addition, the quadratic spline basis includes an intercept term, and the cubic spline basis
includes slope and intercept terms.

Estimation then proceeds in two stages: first, P (a) is nonparametrically estimated

as a smooth function of a, possibly constrained to be monotonic using quadratic

splines. Then, T (·) is estimated as the composite function T̂ (P (a)), where T̂ (·) is

constrained to be a convex cubic spline. Since T̂ (p) is a cubic spline, the estimated

mapping s−1 (a) = dT
dP

is guaranteed to be continuous and differentiable.

4.3. Simulations. To illustrate our method, we choose a setting that previously ex-

isting methods are incapable of handling: a k double auction. A k double auction is

a bilateral bargaining game of incomplete information in which both parties simulta-

neously submit sealed offers. If the buyer’s offer (pB) exceeds that of the seller (pS),

trade occurs at price p = kpS + (1 − k)pB, where k ∈ [0, 1]. The parameter k can be

considered a bargaining power weight. A k double auction with k = 1 corresponds to

the seller-optimal mechanism (a take-it-or-leave-it offer by the seller) and a k double

auction with k = 0 corresponds to the buyer-optimal mechanism (a take-it-or-leave-it

offer by the buyer).

As demonstrated in Satterthwaite and Williams (1989), this game has infinitely

many equilibria that can be qualitatively quite different. Therefore, it is impossible

to back out buyer and seller valuations from observed offer data using equilibrium
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first order conditions, as is done in first price auctions in Guerre, Perrigne, and Vuong

(2000) and the follow-on literature, for example, where the equilibrium is unique.7

Also, even if the model were to have a unique equilibrium, solving for equilibria in k

double auctions is somewhat more involved, as described below. The mechanism de-

sign approach we propose herein solves both of these issues by identifying/estimating

valuations through exploiting the incentive compatibility constraints that must be

satisfied by players’ observed choices, rather than actually specifying or solving for

the equilibrium.

Satterthwaite and Williams (1989) demonstrated that, for any k = [0, 1], a contin-

uum of increasing, differentiable equilibria exist satisfying the following linked differ-

ential equations:

pB(−1)(pS(s)) = pS(s) + kpS
′
(s)

(
s+

Fs(s)

fs(s)

)
(8)

pS(−1)(pB(b)) = pB(b) + (1 − k)pB
′
(b)

(
b−

1 − Fb(b)

fb(b)

)
(9)

where s ∼ Fs is the seller’s value, b ∼ Fb is the buyer’s value, and pB(−1)(·) and

pS(−1)(·) are the inverses of the buyer’s and seller’s strategies. Satterthwaite and

Williams (1989) provided an approach for solving for equilibria numerically given

knowledge of the distributions of player types. A point (s,b,p) is chosen in the set

P = {(s,b,p) : s 6 s 6 p 6 b 6 b, s 6 s,b > b}, and then a one-dimensional

manifold passing through this point is traced out using differential equations defined

by (8) and (9). This path traces out an equilibrium. An example of a solution path

crossing through a point in P is shown in Figure 3. This approach does not allow

for identification of players’ value distributions, only for solving for equilibria given

knowledge of the distributions. We use their approach to solve for an equilibrium

and simulate data from equilibrium play, then apply our method for estimating the

underlying valuations to illustrate the estimator’s performance.

7It is important to note that, as in much of the structural literature, we require that the same
equilibrium be selected at all observations in a given sample. This assumption does not imply that
the researcher knows which equilibrium is selected, only that it be the same in each realization of
the game observed in the data.
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Figure 3. An Equilibrium in the k Double Auction

Notes: A solution to the k = 1/2 double auction, lying with the tetrahedron
P = {(s,b,p) : s 6 s 6 p 6 b 6 b, s 6 s,b > b}. This solution passes through the point
(s,b,p) = (0.375, 0.625, 0.5). Buyer valuations are drawn from a N(0.6, 0.3) and seller
valuations from a N(0.5, 0.2), with each distribution truncated to lie between [0, 1].

We draw 5,000 realizations of buyer valuations from a N(0.6, 0.3) and seller val-

uations from a N(0.5, 0.2), with each distribution truncated to lie between [0, 1].

We set k = 1/2. We choose an equilibrium passing through the point (s,b,p) =

(0.375, 0.625, 0.5), which is the equilibrium path illustrated in Figure 3. We solve for

this equilibrium using the Satterthwaite and Williams (1989) approach, and then use

the simulated draws of buyer and seller valuations to simulate offers and outcomes

(the allocation and transfer). We treat these 5,000 realizations of the buyer offer, al-

location, and transfer as our data and estimate the (P, T) menu and infer valuations.

We focus on estimating buyer valuations for this exercise. For estimation, we apply

the local polynomial approach described in Section 4.2.

The estimated menu for the buyer is displayed in Figure 4. As with the illustrative,

hypothetical menu displayed in Figure 1, the horizontal axis is the expected proba-

bility of trade corresponding to different offers and the vertical axis is the expected

transfer at these offers. The expected probability of trade and expected transfer are

estimated in separate local polynomial regressions. The estimates are displayed in red
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dots. Dashed lines display pointwise 95% confidence bands computed from a nonpara-

metric bootstrap constructed by resampling from the data 200 times and performing

estimation on each bootstrap sample. The menu is estimated quite precisely.

Figure 4. Estimated (P, T) Menu from k Double Auction

Notes: (P, T) menu estimated from local polynomial regressions. Red dots indicate
estimates, dashed lines indicate 95% confidence bands from 200 bootstrap replications.

It is important to note that Figure 4—the menu—is only a display of data; the

menu by itself does not yet impose the structure of our method. That structure

comes into play when we interpret the slope of the menu as providing information

about buyer valuations. Estimates of this slope are given by the linear terms in the

local polynomial regressions. In Figure 5 we plot the observed buyer offers on the

horizontal axis and the estimated buyer values (in red dots) on the vertical axis.

Dashed lines correspond to pointwise 95% confidence bands. The solid blue line

represents the true valuations. The estimated values reflect the true values quite

well, with the 95% confidence bands containing the truth over most of the range of

offers.

We also remark here that this estimation exercise did not exploit any information

about the value of k (the bargaining power), the offers made by the seller, or the par-

ticular equilibrium being played. Recall that any point in the tetrahedron displayed
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Figure 5. Estimated Buyer Values from k Double Auction

Notes: Estimated buyer values from derivatives of (P, T) menu estimated from local
polynomial regressions. Red dots indicate estimates, dashed lines indicate 95% confidence
bands from 200 bootstrap replications, and solid blue line indicates true values.

in Figure 3 has an equilibrium passing through it, and these equilibria will vary de-

pending on the value of k. Indeed, the generated data in our simulation exercise could

have come from any fixed value of k and any fixed equilibrium, and the mechanism

design approach would still have returned reasonable estimates of valuations based

solely on the observed buyer offer, the allocation, and the transfer.

We conjecture that, in some settings, modeling a bargaining game as k double

auction in this fashion may serve as a reasonable alternative to imposing a Nash

bargaining structure on the game. Such a framework would allow the presence of

incomplete information, unlike Nash bargaining, and would allow for bargaining power

(k in this case) to be flexible. The method would require repeated realizations of the

game, with observations of the final transfer, the allocation (both from cases where

trade occurred and did not occur), and some initial offer (such as a list price or

indicative bid) or proxy for the player’s valuation. We leave further exploration of

this possibility for future work.
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5. Extensions: Correlated Values and Unobserved Heterogeneity

We now provide two important extensions to our identification arguments provided

above. In Subsection 5.1, we show that our approach generalizes to non-independent

private value settings. In Subsection 5.2, we extend our approach to allow for unob-

served game-level heterogeneity.

5.1. Non-independent private values. In this subsection, we relax the assumption

that values of different agents are independent. Suppose that agents’ values V1 . . .Vm

are drawn from some joint distribution F (v1 . . . vm), which is common knowledge to

all agents. This incorporates and generalizes, for example, the affiliated private value

model of first-price auctions analyzed by Li, Perrigne, and Vuong (2002). As above,

we suppose that the agents play trading game G . We assume that the equilibrium

of the game is separating: equilibrium strategies are described by the si (vi), where

each si is invertible. We show that, as in Subsection 3.1, we can derive bounds on

the inverse functions s−1
i (·) for each ai.

Let si (·) denote the equilibrium strategy of agent i. Since values are not inde-

pendent, equilibrium actions will be given by some joint distribution G (a1 . . .an),

derived from F (v1 . . . vn) and the equilibrium strategy si (·). Fix any given value

vi of player i; conditional on vi, the distribution over values of agents −i is some

F (v−i | vi). This conditional distribution of values, combined with the equilibrium

strategies of other players s−i, induces a conditional distribution over opponents’ ac-

tions G (a−i | vi). Thus, in equilibrium, if type vi of agent i plays action a′i, she

attains the physical outcome [Pvii (a′i) , Tvii (a′i)], defined as the expectation of the

physical outcomes xi (a
′
i,A−i) , ti (a

′
i,A−i) when A−i ∼ G (a−i | vi). That is,

Pvii (a′i) = E [xi (a
′
i,A−i) | A−i ∼ G (a−i | vi)]

Tvii (a′i) = E [ti (a
′
i,A−i) | A−i ∼ G (a−i | vi)]
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In order for type vi to play action ai = si (vi) in equilibrium, as in Subsection 3.1,

si (vi) must then satisfy:

si (vi) = arg max
ai
viP

vi
i (ai) − T

vi
i (ai) − vix̄i (10)

As in Subsection 3.1, this allows us to bound s−1
i (ai), the unique type that plays

ai in equilibrium.

Proposition 2. for each ai value, the unique v = s−1
i (ai) satisfies:

v >
T
vi=s−1

i (ai)

i (ai) − T
vi=s−1

i (ai)

i (a′i)

P
vi=s−1

i (ai)

i (a′i) − P
vi=s−1

i (ai)

i (a′i)
∀
{
a′i : P

vi=s−1
i (ai)

i (a′i) < P
vi=s−1

i (ai)

i (ai)
}

(11)

v 6
T
vi=s−1

i (ai)

i (a′i) − T
vi=s−1

i (ai)

i (ai)

P
vi=s−1

i (ai)

i (a′i) − P
vi=s−1

i (ai)

i (ai)
∀
{
a′i : P

vi=s−1
i (ai)

i (a′i) > P
vi=s−1

i (ai)

i (ai)
}

(12)

In the case that the distribution F (v1 . . . vn) has full support, these bounds collapse

to a single point.

Proof. Follows from (10). �

If the distribution F (v1 . . . vn) has full support on the rectangle [min v1, max v1]×

[min v2, max v2]× . . ., then the equilibrium probability distribution over action tuples

G (a1 . . .an) will likewise have full support on the product rectangle of actions played;

thus, by observing multiple independent repetitions of G , the econometrician can

consistently estimate both the equilibrium action distribution G (a1 . . .an), and the

outcomes conditional on all action tuples:

Pi (a1 . . .an) = E [xi (a1, . . .an) | a1, . . .an]

Ti (a1 . . .an) = E [ti (a1, . . .an) | a1, . . .an]

Note that G
(
a−i | vi = s−1

i (ai)
)
, the equilibrium action distribution conditional

on v = s−1
i (ai), involves the unknown quantity s−1

i (ai). However, this is equivalent

to the conditional distribution G (a−i | ai), which can be derived from G (a1 . . .an).
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Thus, for any ai, the econometrician can estimate the functions:

P
vi=s−1

i (ai)

i (a′i) = E [xi (a
′
i,A−i) | A−i ∼ G (a−i | ai)]

T
vi=s−1

i (ai)

i (a′i) = E [ti (a
′
i,A−i) | A−i ∼ G (a−i | ai)]

These functions, plugged into the equations in Proposition 2, allow us to identify

the unique s−1
i (ai).

This approach is related to that of Li, Perrigne, and Vuong (2002), although it is

more general, as it applies to incomplete information trading games more broadly,

rather than just auctions, showing that our identification strategy applies to pri-

vate value settings with correlated values. The argument utilizes the fact that any

type vi must play an equilibrium action that is a best response to the distribution

of opponents’ actions conditional on her type. These conditional distributions can

be estimated by the econometrician, allowing us to identify types essentially as in

Subsection 3.1.

Our approach in this section requires that the equilibrium strategy si (vi) is strictly

separating. This assumption is necessary because it allows us to estimate the distribu-

tion G (a−i | vi) for the unique vi = s−1
i (ai) using the observed G (a−i | ai). If si is

not invertible, in general s−1
i (ai) is a set of vi values; thus, the observed G (a−i | ai)

is a mixture over distributions G (a−i | vi) for different values vi ∈ s−1
i (ai). We thus

cannot use G (a−i | ai) to consistently estimate Pvii (a′i) , Tvii (a′i) for any given type

vi when si is not invertible.

5.2. Unobserved heterogeneity. We now consider an extension of our identifica-

tion arguments to a setting with unobserved game-level heterogeneity, similar to the

unobserved auction-level heterogeneity in the model of Krasnokutskaya (2011), but

applied to the general incomplete information trading games we consider here, rather

than only static first price auctions. We refer to the class of games we study here

as generalized bidding games, although, as before, these games need not be auctions;

many bargaining games would also fit into this class. The important feature of games
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in this class is that actions consist of a price offer. Throughout this section, we refer

to the observed actions case, although these results apply to the proxy case as well.

We define the class of generalized bidding games as follows. In the first stage,

common component W is drawn from H (·) and commonly observed by all agents

1 . . .m, but not the econometrician. In the second stage, agents’ private values Vi

are drawn independently from distributions Fi (·); agents’ values are then

Ṽi = Vi +W

In the third stage, agents take actions ãi ∈ R, which are observed by the econome-

trician. We require the game to satisfy the following property:

Definition 2. We say that game G satisfies the generalized bidding game property

for all ã1 . . . ãm,∆, and for all i:

xi (ã1 + ∆, ã2 + ∆, . . . ãm + ∆) = xi (ã1, ã2, . . . ãm) (13)

ti (ã1 + ∆, ã2 + ∆, . . . ãm + ∆) = ti (ã1, ã2, . . . ãm) + ∆ (xi (ã1, ã2, . . . ãm) − x̄i)

(14)

In the case of an auction, (13) implies that if all agents increase bids by a constant

amount ∆, the price paid by the winning bidder increases by ∆.

Since the common component W is observed by all agents prior to agents’ action

choices, agents can condition their strategies on the common component W; thus, we

can think of agents’ strategies in generalized bidding games as functions si (vi,w)

mapping common components and private values into actions. Bayes-Nash equilib-

rium in the full game requires that agents’ strategies constitute Bayes-Nash equilibria

conditional on any value of w. Fixing a given value of w, the game is identical to

that of Subsection 3.1. Let Awi denote the random variable representing i’s equilib-

rium action when the common component is w. As in Subsection 3.1, we define the

expected probability and transfer that i achieves when playing ai in equilibrium as:

Pwi (ai) ≡ E
(
xi
(
ai,A

w
−i

))
, Twi (ai) ≡ E

(
ti
(
ai,A

w
−i

))
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Type vi of i’s expected utility from playing ai when the common component is w

is:

(vi +w)P
w
i (ai) − T

w
i (ai) − (vi +w) x̄i

Analogous to Subsection 3.1, equilibrium in a generalized bidding game with com-

mon component w requires that i’s strategy si (vi,w) maximizes her utility, in ex-

pectation over the distributions of other agents’ actions Aw−i. That is, fixing w, for

all i, vi, we require

si (vi,w) ∈ arg max
ai

(vi +w)P
w
i (ai) − T

w
i (ai) − (vi +w) x̄i

In the following proposition, we show that the equilibria of generalized bidding

games have a “translation invariance” property with respect towj – if actions a1 . . .an

are equilibrium actions conditional on w, actions ai+w
′−w are equilibrium actions

under w′.

Proposition 3. Fix some value of w, and suppose that bidding strategies:

s1 (v1,w) . . . sm (vm,w)

constitute an equilibrium. Then, for any common component w′, bidding strategies:

s1 (v1,w
′) = s1 (v1,w) +w

′ −w

...

sm (vm,w′) = sm (vm,w) +w′ −w

constitute an equilibrium.

Proof. See Appendix A.2. �

Motivated by this theorem, we will define markup equilibria by requiring that agents

play the same equilibrium for any common component w:
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Definition 3. A markup equilibrium is a set of markup strategies si (vi), such that:

si (vi,w) = si (vi) +w

and si (vi) constitute equilibrium strategies for w = 0.

Suppose wj = 0. We will define the markup function as the expected transfer for

w = 0:

Mi (ai) = E
[
T 0i (ai)

]
= E

[
ti
(
ai,A

0
−i

)]
In the equilibrium conditional on w = 0, Ti (ai) =Mi (ai), hence we have as before

in Subsection 3.1:

s−1
i (ai) >

Mi (ai) −Mi (a
′
i)

Pi (ai) − Pi (a′i)
∀a′i : Pi (ai) > Pi (a′i)

s−1
i (ai) 6

Mi (a
′
i) −Mi (ai)

Pi (a′i) − Pi (ai)
∀a′i : Pi (ai) < Pi (a′i)

Thus, if we can recover the function Pi (ai) ,Mi (ai), we can bound values as in

Subsection 3.1.

Again, we suppose that the econometrician observes multiple independent obser-

vations of a generalized bidding game. The econometrician can estimate probability

and transfer functions conditional on observed actions which we will refer to as:

P̃i (ãi) ≡ E
[
xi

(
ãi, Ã−i

)]
, T̃i (ai) ≡ E

[
ti

(
ãi, Ã−i

)]
Proposition 4. Pi (·) ,Mi (·) are uniquely determined by P̃i (ãi) , T̃i (ãi) , fW , fai. All

of these objects are identified from observing multiple independent repetitions of a

generalized bidding game. Thus, Pi (·) ,Mi (·) are identified.

Proof. See Appendix A.3. �

The intuition behind our identification result is as follows. Since the unobserved pri-

vate value components vi are independent by assumption, any correlation in observed

actions ãi must be caused by to the unobserved heterogeneity W. Using a method

similar to Krasnokutskaya (2011), we can thus separately recover the distribution fW
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of the unobserved heterogeneity term W, and the distribution of actions fai gener-

ated by the markup strategies, from the observed distribution of actions fãi , through

a deconvolution argument. We then show that the distributions fW , fai allow us to

recover Pi (ai) ,Mi (ai) from the functions P̃i (ãi) , T̃i (ãi) through a series of decon-

volutions and convolutions against H (·). The functions P̃i (ãi) , T̃i (ãi) are expected

values of observables, hence they are identified; thus, the functions Pi (ai) ,Mi (ai)

are identified.

Once we have recovered Pi (ai) ,Mi (ai), we can bound the value s−1
i (ai) of any

agent playing the unobserved action ai. We can then calculate the distribution of

values conditional on any observed action ãi by integrating against the distribution

H (·).

6. Application to Secret Reserve Auction with Bargaining

In this section, we apply our approach to estimate the valuations of used-car sell-

ers in wholesale used-car markets. In wholesale used car markets, used-car dealers

sell cars to other used-car dealers at auction houses. The mechanism employed by

the auction houses consists of a secret reserve price, set by the seller, followed by an

ascending price auction between multiple potential buyers. If the secret reserve price

is not met, the highest bidder and the seller enter into an alternating-offer bargaining

game. While the full equilibrium of this game is difficult to characterize, Larsen (2014)

proves that the seller’s optimal secret reserve price is a strictly increasing function of

her value. Hence, the secret reserve price satisfies our conditions in Definition 1 for

a proxy which is a one-to-one function of type. In addition, while the game does not

exactly satisfy our definition of generalized bidding games in Subsection 5.2, Larsen

(2014) shows that equilibria of this bargaining game satisfy the equilibrium transla-

tion property of Subsection 3. Thus, we can combine the approaches described in

Subsections 5.2 and 3.2 to estimate the equilibrium mapping from sellers’ unobserved

markup offers to sellers’ values.
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The data consists of 135,000 realizations of the auction/bargaining game. For each

game, the primary variables we observe are the seller’s reported secret reserve price,

the final transaction price, the final allocation (i.e. an indicator for whether the car

sold), as well as the high bid from the auction.

6.1. Estimation. We handle observed and unobserved heterogeneity as in Larsen

(2014); we summarize these aspects only briefly here. First, we control for ob-

served heterogeneity following the homogenization approach of Haile, Hong, and

Shum (2003) by estimating a linear regression of reserve prices and auction high

bids on a large set of observable characteristics and treating the residuals from this

regression as homogenized reserve prices/auction bids. Let r̃ = r + w represent the

residualized reserve price, where w is an additively separable, game-level, unobserved

heterogeneity scalar term as in Subsection 5.2 and r is the reserve price net of any

observed/unobserved heterogeneity. We estimate the densities of w and r, fw and fr,

using a likelihood approach, modeling each as normal distributions.

With these densities in hand, our main estimation steps are then the following:

(1) Nonparametrically estimate the functions P̃ (r̃) , T̃ (r̃)

(2) Using the estimated densities fr, fw and the estimated P̃ (r̃) , T̃ (r̃), correct for

unobserved heterogeneity to estimate the underlying menu functions P (r) ,M (r)

(3) Take derivatives of the menu P (r) ,M (r) to get value estimates v (r)

We describe each step in turn.

6.1.1. Nonparametric estimation of P̃ (r̃) , T̃ (r̃). For step 1, we use local linear regres-

sions of xj, tj on r̃j to estimate the functions P̃ (r̃) , T̃ (r̃). We use normal kernels,

and we choose a bandwidth this is larger than the statistically optimal bandwidth,

as later steps of the estimation benefit from smoothness of the P̃ (r̃) , T̃ (r̃) functions

in this stage.
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6.1.2. Unobserved heterogeneity. In Proposition 4, we showed that M (r) ,P (r) are

identified from the functions

T̃ (r̃) , P̃ (r̃) , fr (·) , fw (·)

In particular, P (r) solves:

P̃ (r̃) =

´∞
r=−∞ P (r) fr (r) fw (r̃− r)dr´

fr (r) fw (r̃− r)dr

and, M (r) solves

T̃ (r̃) − E (w∆P | r̃) =

´∞
r=−∞M (r) fr (r) fw (r̃− r)dr´

fr (r) fw (r̃− r)dr

Given the estimates of fr (·) , fw (·) , P̃ (r̃) , T̃ (r̃), we solve for P (r) ,M (r) using mini-

mum weighted distance, using our shape-constrained spline basis functions. We model

P (r) as a quadratic spline with 7 knots, constrained to be nondecreasing. We choose

spline coefficients to minimize the following objective function:

min
P̂(·)

[(ˆ
P̂ (r) fr (r) fw (r̃− r)dr

)
−

(
P̃ (r̃)

ˆ
fr (r) fw (r̃− r)dr

)]2
With the estimated P (r) function, we can then plug this in to estimate the term

E (w∆P | r̃) as: ˆ
P (r) (r̃− r) fr (r) fw (r̃− r)dr

We model M (r) indirectly as the function M (P (r)), where M (·) is a cubic spline

with 7 knots, constrained to be convex. We will choose M (·) to minimize:

min
M̂(·)

[(ˆ
M̂ (P (r)) fr (r) fw (r̃− r)dr

)
−
(
T̃ (r̃) − E (w∆P | r̃)

)(ˆ
fr (r) fw (r̃− r)dr

)]2
We use standard gradient descent methods to perform spline optimization.

In Figure 6, we show the local linear estimates of P̃ (r̃) , T̃ (r̃), as well as the un-

observed heterogeneity corrected estimates P (r) , T (r). Intuitively, the unobserved

heterogeneity corrections work as follows. For probabilities, the P̃ (r̃) function is
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essentially a noisy version of the P (r) function; thus, correcting for unobserved het-

erogeneity will imply that P (r) is steeper than P̃ (r̃). For transfers, unobserved het-

erogeneity necessitates two corrections to the T̃ (r̃) function. First, we subtract from

T̃ (r̃) the term E (w∆P | r̃), which represents the expected value of the unobserved

heterogeneity conditional on r̃. Intuitively, for higher values of r̃, we will observe

that trades tend to happen at higher prices, but much of this is due to the unob-

served heterogeneity term w being higher on average, rather than the markup M (r)

being higher. Comparing the “locpoly” line to the “debiased” line, correcting for

E (w∆P | r̃) makes the slope of T̃ (r̃) significantly less negative. Secondly, M (r) is es-

sentially a de-noised version of T̃ (r̃)−E
(
w∆P̃ | r̃

)
, and thus the slope and concavity

of M (r) are both larger in absolute value than that of T̃ (r̃)−E (w∆P | r̃). The net ef-

fect is that M (r) is much less negatively sloped—and somewhat more concave—than

the original nonparametric estimate T̃ (r̃).

6.1.3. Value estimation. Since our menu M (P (r)) is represented as a convex sum of

splines, we can analytically take its derivatives, giving us the final estimated mapping

v (r) from reserve prices to values.

6.2. Results and counterfactual. In the left panel of Figure 7, we show the es-

timated [P (r) ,M (r)] menu. In the right panel, we show the estimated mapping

v (r) between the reserve price r and the inferred value v (r). The estimated reserve-

value mapping v (r), combined with the distribution fr of reserve prices, gives us an

estimated distribution Fv of sellers’ values, and we plot this in Figure 8.

We use the value estimate to compute a simple counterfactual measuring the how

the seller’s expected gains from trade would decrease, relative to the current mech-

anism, if all market power were given to buyers. The current mechanism, with a

first-stage auction followed by a second stage of alternating-offer bargaining, may

award the lion’s share of market power to the seller, as competition between buyers

in the auction reduces market power on the buyer side. We simulate a counterfac-

tual mechanism where, instead, the high-bidder from the auction and the seller meet

in a one-time, take-it-or-leave-it offer bargaining game, with the offer made by the
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Figure 6. Deconvolution graphs

Notes: “Locpoly” lines represent the local polynomial regression estimates of P̃ (r̃) , T̃ (r̃) .
“Decon” lines are the spline estimates of P (R) , T (r) . The “debiased” line represents

T̃ (r̃) − E
(
w∆P̂ | r̃

)
. “Fitted” lines are the minimum-distance fits of P (r) , M (r) to target

functions.

buyer. For simplicity, we compute this counterfactual with the buyer’s value set to the

mean high bid from the auction (which, after controlling for observed and unobserved

heterogeneity, is simply zero).

Before discussing the results, it is necessary to comment on individual rationality

(IR) constraints. Throughout our identification arguments and estimation process,

we have only used the incentive compatibility conditions of sellers—that is, the con-

dition that outcomes under the reserve prices chosen are preferred to the outcomes
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Figure 7. Menu and value estimates

Notes: The left panel shows the final estimated menu. The right panel shows the
estimated mapping from reserve prices to values. The reserve price itself is shown in red
for comparison.

Figure 8. Estimated value CDF/PDF

Notes: Value CDF, estimated from the CDF of reserve prices combined with the mapping
shown in Figure 7.

from any other possible choice of reserve price. Our results do not rely on or im-

pose IR/participation constraints. This feature can be considered a strength of our

approach, in that it relies on weaker conditions than IR constraints would require,

but for the purposes of counterfactual analysis, it is necessary to know which seller’s

would participate in the counterfactual mechanism. For our counterfactual exercise,

we enforce the IR constraint in the current mechanism, assuming that sellers whose
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Figure 9. Menu vs counterfactual

Notes: “Base” is the original menu, from the left panel of Figure 7. “IR-enforced” is the
convex hull of the menu and the IR point (P, T) = (1, 0). “Counterfactual” is the menu
available to the seller under the counterfactual of a single take-it-or-leave-it offer from a
buyer.

IR constraint is violated do not trade. An IR-enforced menu can be computed as the

convex hull of the original menu and the individual rationality point (P, T) = (1, 0).

In Figure 9, the original menu for the current mechanism is shown in blue. The

modified, IR-enforced menu is shown green. The orange line in Figure 9 represents

the “menu” faced by sellers under this buyer-offer counterfactual bargaining process;

it lies strictly above, and thus is dominated by, the IR-constrained menu. We find

that in the counterfactual mechanism, giving all the bargaining power to the buyer

would reduce the average seller’s gains from trade by $385. As stated above, this

welfare change assigns zero change to seller types for whom the IR constraint was

binding. If we instead consider only seller types in the range where the IR constraint

was non-binding, the average decrease in the sellers’ gains from trade is $961.

7. Conclusion

This paper provided a new, nonparametric identification and estimation approach

for trading games of incomplete information. The approach relied on exploiting the
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incentive compatibility of the direct revelation mechanism corresponding to the ac-

tual, underlying (and unknown) extensive form game, rather than attempting to solve

for or exploit the equilibrium of this game directly. The main result demonstrated

how this approach can be applied in settings where players’ actions may not be ob-

servable. We believe the approach has the potential to be a useful identification and

estimation tool in a number of incomplete-information settings where closed-form

equilibrium solutions may not exist, or where players’ actions may be difficult to fully

observe, such as incomplete information sequential bargaining games.
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Appendix

Appendix A. Proofs

A.1. Proof of Proposition 1.

Proof. Part 2. We can rearrange the inequalities in Theorem 1 to:

(Pi (a
′
i) − Pi (ai)) vi 6 Ti (a

′
i) − Ti (ai) ∀a′i (15)

Hence, any type vi ∈ s−1
i (ai) is a subgradient of {(Pi (ai) , Ti (ai))} at ai. Each

individual inequality in (15) describes a closed convex set, hence their intersection is

a closed convex set, which is a closed interval in R. Since each type vi must play

some action si (vi), the union of s−1
i (ai) for all actions ai is the support of values vi.

Part 3. Fix some ai,a
′
i and suppose that Pi (a

′
i) > Pi (ai). For any vi ∈ s−1

i (ai),

by (15), we must have:

Ti (a
′
i) − Ti (ai) > vi (Pi (a

′
i) − Pi (ai))

For any v′i ∈ s−1
i (a′i), we must have:

Ti (a
′
i) − Ti (ai) 6 v

′
i (Pi (a

′
i) − Pi (ai))

Since by assumption Pi (a
′
i) > Pi (ai), we have v′i > vi. Moreover, if vi = v′i, we

must have

vi =
Ti (a

′
i) − Ti (ai)

Pi (a′i) − Pi (ai)

Thus, the intersection of s−1
i (ai) , s−1

i (a′i) contains at most a single point.

Part 1. Given a set of points (pi, ti), one can verify that the graph of (pi, ti) is

convex if and only if every secant line lies above every point (pi, ti). Formally, for

any p1,p2,p3, if tp1 + (1 − t)p2 = p3, and 0 6 t 6 1, then

t3 6 tp1 + (1 − t)p2
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Consider any ai. Suppose we have a′i,a
′′
i s.t. tPi (a

′
i) + (1 − t)Pi (a

′′
i ) = Pi (ai) ,

and 0 6 t 6 1. We know that the {(Pi (ai) , Ti (ai))} graph admits some subgradient

v at ai. Thus,

Ti (ai) + (Pi (a
′
i) − Pi (ai)) v 6 Ti (a

′
i)

Ti (ai) + (Pi (a
′′
i ) − Pi (ai)) v 6 Ti (a

′′
i )

Hence,

Ti (ai) + (tPi (a
′
i) + (1 − t)Pi (a

′′
i ) − Pi (ai)) v (ai) 6 tTi (a

′
i) + (1 − t) Ti (a

′′
i )

Ti (ai) 6 tTi (a
′
i) + (1 − t) Ti (a

′′
i )

as desired.

�

A.2. Proof of Proposition 3.

Proof. Fixing common component w, we have

Pwi (ai) ≡ E
[
xi
(
ai,A

w
−i

)]
Twi (ai) ≡ E

[
ti
(
ai,A

w
−i

)]
If strategies si (vi,w) constitute an equilibrium under w, it must be that, for all

i, vi:

si (vi,w) ∈ arg max
ai

(vi +w)P
w
i (ai) − T

w
i (ai) − (vi +w) x̄i

We wish to show that conjectured equilibrium strategies s′i (vi,w
′) = si (vi,w) +

(w′ −w) constitute an equilibrium under w′. Let Aw
′

i = s′i (Vi,w
′) denote the ran-

dom variable representing i’s action under w′, assuming that i plays according to the

conjectured equilibrium strategies si. We define P̃w
′

i (ai) , T̃w
′

i (ai) as the expected al-

location and transfer i achieves under w′, assuming opponents’ actions are distributed
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as Aw
′

−i. That is,

Pw
′

i (ai) = E
[
xi

(
ai,A

w′

−i

)]
Tw

′

i (ai) = E
[
ti

(
ai,A

w′

−i

)]
In order to prove our theorem, we need to show that:

s′i (vi,w) + (w′ −w) ∈ arg max
ai

(vi +w
′)Pw

′

i (ai) − T
w′

i (ai) − (vi +w
′) x̄i

We will show a slightly stronger result: for any ai, the expected utility from playing

ai + (w′ −w) under w′,Aw
′

−i (net of the outside option) is the same as the expected

utility from playing ai under w,Aw−i. That is,

(vi +w
′)Pw

′

i (ai + (w′ −w)) − Tw
′

i (ai + (w′ −w)) − (vi +w
′) x̄i =

(vi +w)P
w
i (ai) − T

w
i (ai) − (vi +w) x̄i (16)

Thus, if ai maximizes the RHS, ai + (w′ −w) maximizes the LHS, and we are

done. �

A.2.1. Proof of (16).

Proof. We have:

Pw
′

i (ai + (w′ −w)) = E
[
xi

(
ai + (w′ −w) , Aw

′

−i

)]
By construction of s′i (vi,w

′) = si (vi,w)+(w′ −w), the random variable Aw
′

i has

the same distribution as Awi + (w′ −w). Thus,

E
[
xi

(
ai + (w′ −w) ,Aw

′

−i

)]
= E

[
xi
(
ai + (w′ −w) ,Aw−i + (w′ −w)

)]
By the generalized bidding game property in Definition 2,

xi
(
ai + (w′ −w) ,Aw−i + (w′ −w)

)
= xi

(
ai,A

w
−i

)
,
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hence,

E
[
xi
(
ai + (w′ −w) ,Aw−i + (w′ −w)

)]
= E

[
xi
(
ai,A

w
−i

)]
Thus we have shown that

Pw
′

i (ai + (w′ −w)) = Pwi (ai) (17)

For transfers, we have:

Tw
′

i (ai + (w′ −w)) = E
[
ti
(
ai + (w′ −w) ,Aw−i

)]
= E

[
ti
(
ai + (w′ −w) ,Aw−i + (w′ −w)

)]
Again using Definition 2, we have:

ti
(
ai + (w′ −w) ,Aw−i + (w′ −w)

)
= ti

(
ai,A

w
−i

)
+ (w′ −w)

(
xi
(
ai,A

w
−i

)
− x̄i

)
Hence,

E
[
ti
(
ai + (w′ −w) ,Aw−i + (w′ −w)

)]
=

E
[
ti
(
ai,A

w
−i

)]
+ E

[
(w′ −w)

(
xi
(
ai,A

w
−i

)
− x̄i

)]
(18)

The term E
[
ti
(
ai,A

w
−i

)]
= Twi (ai). Using linearity of expectations, the right

term simplifies to:

E
[
(w′ −w)

(
xi
(
ai,A

w
−i

)
− x̄i

)]
= (w′ −w)

(
E
[
xi
(
ai,A

w
−i

)]
− x̄i

)
= (w′ −w) (Pwi (ai) − x̄i)

Hence, we have shown that:

Tw
′

i (ai + (w′ −w)) = Twi (ai) + (w′ −w) (Pwi (ai) − x̄i) (19)
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Once again, i’s expected utility from playing ai+ (w′ −w) when common compo-

nent is w′ and opponents’ actions are distributed as Aw
′

−i is:

(vi +w
′)Pw

′

i (ai + (w′ −w)) − Tw
′

i (ai + (w′ −w)) − (vi +w
′) x̄i

Using the expressions in (17) and (19), this is:

= [(vi +w
′)Pwi (ai) − T

w
i (ai) − (w′ −w) (Pwi (ai) − x̄i)] − (vi +w

′) x̄i

= [(vi +w)P
w
i (ai) − T

w
i (ai)] − (vi +w) x̄i

Hence we have proved equality in (16). �

A.3. Proof of Proposition 4. As before, we observe actions ãij, allocations xij,

transfers tij for a number of repetitions j of the game. We suppose that:

ṽij = vij +wj

Following our definition of markup equilibria,

ãij = aij +wj

Following Krasnokutskaya (2011), we can identify the distributions fW , fai using

correlation in actions ai across players. We can also empirically estimate the func-

tions:

P̃i (ãi) ≡ E
[
xi

(
ãi, Ã−i

)]
, T̃i (ai) ≡ E

[
ti

(
ãi, Ã−i

)]
The functions involved in the markup equilibrium are probability of trade and

“markup” M (ai) as a function of the markup action ai:

Pi (ai) = E [xi (ai,A−i)] , Mi (ai) = E [ti (ai,A−i)]

Below, we show that the functions Pi (ai) ,Mi (ai) are identified from the functions

Pi (ãi) , Ti (ãi) , fW , fai .
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A.3.1. Probabilities. First, note that:

P̃i (ãi) = E
[
xi

(
ãi, Ã−i

)]
= E [E [xi (W +Ai,W +A−i) | Ai,W +Ai = ãi] |W +Ai = ãi]

By Definition 2, we have

xi (w+ ai,w+A−i) = xi (ai,A−i) ∀w

=⇒ E [xi (W +Ai,W +A−i) | Ai, ãi =W +Ai] = E [xi (Ai,A−i) | Ai] = Pi (Ai)

Hence,

P̃i (ãi) = E [Pi (Ai) |W +Ai = ãi]

P̃i (ãi) =

´∞
ai=−∞ Pi (ai) fai (ai) fw (ãi − ai)dai´∞

ai=−∞ fai (ai) fw (ãi − ai)dai

This shows that P̃i (ãi) is equal to Pi (ai) convolved against the function

fai (ai) fw (ãi − ai)´∞
ai=−∞ fai (ai) fw (ãi − ai)dai

Convolution mappings are invertible, and fai (·) , fw (·) are identified, hence Pi (ai)

is identified from the data.

A.3.2. Markup transfers. First, note that

T̃i (ãi) = E
(
ti

(
ãi, Ã−i

))
= E [E [ti (W +Ai,W +A−i) | Ai,W +Ai = ãi] |W +Ai = ãi]

By Definition 2, we have

ti (W +Ai,W +A−i) = ti (Ai,A−i) +W (xi (Ai,A−i) − x̄i)

Taking expectations,

E [ti (W +Ai,W +A−i) |W,Ai]
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= E [ti (Ai,A−i) |W,Ai] + E [W (P (Ai) − x̄i) |W,Ai]

=Mi (Ai) +W (Pi (Ai) − x̄i)

Hence,

T̃i (ãi) = E [(Mi (Ai) +W (Pi (Ai) − x̄i)) |W +Ai = ãi]

Since we are conditioning on the event W +Ai = ãi, we can substitute out for W:

= E [(Mi (Ai) + (ãi −Ai) (Pi (Ai) − x̄i)) |W +Ai = ãi]

In integral form, this equation is:

T̃i (ãi) =

´∞
ai=−∞Mi (ai) fai (ai) fw (ãi − ai)dai´∞

ai=−∞ fai (ai) fw (ãi − ai)dai
+

´∞
ai=−∞ (ãi − ai) (Pi (ai) − x̄i) fai (ai) fw (ãi − ai)dai´∞

ai=−∞ fai (ai) fw (ãi − ai)dai
(20)

The rightmost term represents the average common component of payment. We

can define this as:

E (w∆P | ãi) ≡
´∞
ai=−∞ (ãi − ai) (Pi (ai) − x̄i) fai (ai) fw (ãi − ai)dai´∞

ai=−∞ fai (ai) fw (ãi − ai)dai

Since we have shown that Pi (ai) is identified, E (w∆P | ãi) can be calculated for

any ãi. We can rearrange (20) to:

T̃i (ãi) − E (w∆P | ãi) =

´∞
ai=−∞Mi (ai) fai (ai) fw (ãi − ai)dai´∞

ai=−∞ fai (ai) fw (ãi − ai)dai

The term T̃i (ãi) can be estimated from the data, so the entire LHS is known. The

RHS is a convolution of Mi (ai) against

fai (ai) fw (ãi − ai)´∞
ai=−∞ fai (ai) fw (ãi − ai)dai

hence, it is invertible, and thus M (ai) is identified.
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Appendix B. Spline construction

Let the dependent variable be x, and suppose we wish to estimate F̂ (x) using

splines. Given a knot sequence x1 . . . xn, we define the quadratic splines Sq1 . . .Sqn+1:

Sq1 =
2

x2 − x1

[
|x− x1|+ −

|x− x1|
2
+ − |x− x2|

2
+

2 (x2 − x1)

]
...

Sqk =
2

xk+1 − xk−1

[
|x− xk−1|

2
+ − |x− xk|

2
+

2 (xk − xk−1)
−

|x− xk|
2
+ − |x− xk+1|

2
+

2 (xk+1 − xk)

]
...

Sqn =
2

xn − xn−1

[
|x− xn−1|

2
+ − |x− xn|

2
+

2 (x2 − x1)
− |x− xn|+

]
Sn+1 = 1

As shown in Figure 2, each Sqk behaves like a smoothened step function, increasing

on the interval [xk−1, xk+1]. By constraining coefficients β1 . . .βn to be nonnegative,

we can constrain the target function to be nondecreasing. Moreover, each Sqk has the

property that limx→∞ Sqk (x) = 1; hence, to constrain the target function to always

lie below some bound M, we need only constrain
∑n+1
k=1 βk 6 M. We impose the

constraint that
∑
k βk 6 1 in estimating P̂ (σ).

The family of cubic splines Sck we use are integrals of the Sqk functions, hence they

are quadratic splines in first derivative space; that is,

Sc1 =

ˆ x
−∞ S

q
1 (x)dx

...

Scn =

ˆ x
−∞ S

q
n (x)dx

Scn+1 = x

Scn+2 = 1
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Constraining the coefficients β1 . . .βn to be nonnegative ensures that the target

function is convex.


