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Abstract

We develop a model where the unemployed workers in the city can find a job either

directly or through weak or strong ties. We show that, in denser areas, individuals choose

to interact with more people and meet more random encounters (weak ties) than in sparsely

populated areas. We also demonstrate that, for a low urbanization level, there is a unique

steady-state equilibrium where workers do not interact with weak ties, while, for a high level

of urbanization, there is a unique steady-state equilibrium with full social interactions. We

show that these equilibria are usually not socially efficient when the urban population has

an intermediate size because there are too few social interactions compared to the social

optimum. Finally, even when social interactions are optimal, we show that there is over-

urbanization in equilibrium.
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1 Introduction

It is well-established that in denser and more populated areas (such as big cities), individuals

have more random contacts (weak ties) and thus are more likely to have bigger networks than in

less dense areas. Sociologists argue that relationships in large cities are less personal. People in

large cities, in comparison with people in small towns or rural areas, experience general deficits

in the quality of interpersonal relations (strong ties).1 However, people in small towns or rural

areas base their social networks on the limited number of people who live nearby whereas people

in large cities have a great deal of choice in constructing their social networks and can seek out

others with similar values, interests, and life-styles.2 As a result, urbanites are less likely than

rural dwellers to base their personal networks on traditional sources (such as family) and are

more likely to include voluntary sources, such as friends, coworkers and club members.

The aim of this paper is to propose a simple model that captures and explains these facts

and analyze the consequences in the labor market.

To be more precise, we develop a model where each agent meet strong and weak ties that

can help them find a job.3 We define a weak tie when the social interaction between two persons

is transitory (like for example random encounters). On the contrary, a person has a strong-tie

when the relationship is repeated over time, for example members of the same family or very

close friends.4 Each individual can be in three different states: either she is unemployed and

her strong tie is also unemployed or she is unemployed and her strong tie is employed (or the

reverse) or both are employed. Workers move between the city and the rural area. In the city,

the unemployed workers can find a job either directly or through weak and strong ties and

the unemployed workers have to decide how much time (effort) to spend with weak ties. This

depends on own effort, on agglomeration economics (since in denser areas, workers tend to meet

more people) and on the competition in the labor market (the more employed workers live in

the city, the easiest is to meet one of them; the same is true for the unemployed workers).

1This is the perspective of the so-called social disorganization theory and the social capital literature (see e.g.

Wirth, 1938, Coleman, 1988, and Putman, 1993, 2001).
2This is the so-called subculture theory (see e.g. Fisher 1976, 1982).
3The fact that workers use their friends and relatives (social networks) to find a job is well-documented. See,

e.g. Ioannides and Loury (2004).
4This is not the precise definition of weak ties first used by Granovetter. In Granovetter’s (1973), weak ties

are expressed in terms of lack of overlap in personal networks between any two agents; i.e. weak ties refer to a

network of acquaintances who are less likely to be socially involved with one another. Formally, two agents A and

B have a weak tie if there is little or no overlap between their respective personal networks. Vice versa, the tie is

strong if most of A’s contacts also appear in B’s network.
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We show that, in denser areas (i.e. more populated areas like cities), individuals choose

to interact with more people and meet more random encounters (weak ties) than in sparsely

populated areas. Although those relationships may not be personal nor strong, yet those weak

ties are the ones to matter most for providing social support, in particular in finding jobs. We also

demonstrate that, for low urbanization levels, there is a unique steady-state equilibrium where

workers do not interact with weak ties, while, for high level of urbanization, there is a unique

steady-state equilibrium with full social interactions. We finally show that these equilibria are

usually not socially efficient when the urban population has an intermediate size because there

are too few social interactions compared to the social optimum. Even when social interactions

are optimal, we show that there is over-urbanization in equilibrium.

The rest of the paper unfolds as follows. In the next section, we describe the relation to

the literature. Section 3 describes the basic environment of the model while, in Section 4,

we determine the steady-state equilibrium. In Section 5, we derive the comparative statics

properties of our equilibrium and discuss the efficiency results in Section 6. Finally, Section 7

concludes the paper. All the proofs of the propositions can be found in the Appendix.

2 Related literature

Our paper contributes to the literature on “social interactions and cities”, which is a small but

growing field. There are, in fact, few papers that explicitly model both aspects.

Urban economics and economics of agglomeration There is an important literature

in urban economics looking at how interactions between agents create agglomeration and city

centers.5 However, very few models have put forward the role of social interactions in the

agglomeration process. Beckmann (1976) was among the first to propose an urban model with

global social interactions. This model describes the urban structure of a single city and shows

that, in equilibrium, agents are distributed according to a unimodal spatial distribution. More

recently, Mossay and Picard (2011, 2013) propose interesting models in which each agent visits

other agents so as to benefit from face-to-face communication (social interactions) and each trip

involves a cost which is proportional to distance. The models provide an interesting discussion

of spatial issues in terms of use of residential space and formation of neighborhoods and show

under which condition different types of city structure emerge. Furthermore, Ghiglino and Nocco

(2012) extend the standard economic geography model a la Krugman to incorporate conspicuous

5See Fujita and Thisse (2013) for a literature review.
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consumption. In their model, agents are sensitive to comparisons within their own type group

as well as with agents that are outside their own type group. They show that agglomeration

patterns depend on the network structure where agents are embedded in. All these models are

different from ours since there is no labor market and weak and strong ties are not explicitly

modeled.

Peer effects, social networks and urbanization There is a growing interest in theo-

retical models of peer effects and social networks (see e.g. Akerlof, 1997; Glaeser et al., 1996;

Ballester et al., 2006; Calvó-Armengol et al., 2009). However, there are very few papers that

explicitly consider the interaction between the social and the geographical space.6 Brueckner

et al. (2002), Helsley and Strange (2007), Brueckner and Largey (2008) and Helsley and Zenou

(2014) are exceptions but, in all these models either the labor market is not included or weak

and strong ties are not modeled. Zenou (2013) is the only paper that has both aspects but

the focus is totally different since the paper mainly explains the differences between blacks and

whites in terms of labor market outcomes.7 Schelling (1971) is clearly a seminal reference when

discussing social preferences and location. Shelling’s model shows that, even a mild preference

for interacting with people from the same community can lead to large differences in terms

of location decision. Indeed, his results suggest that total segregation persists even if most of

the population is tolerant about heterogeneous neighborhood composition.8 Our model is very

different from models a la Schelling since we focus on weak and strong ties and their impact on

labor-market outcomes.

To the best of our knowledge, our paper is the first one to provide a model that shows how

urbanization affects social interactions. We show that workers interact more with their weak

ties in more urbanized areas. Thus, the paper provides a first stab at a very important question

in both social networks and urban economics.

6Recent empirical researches have shown that the link between these two spaces is quite strong, especially within

community groups (see e.g. Bayer et al., 2008; Hellerstein et al., 2011; Ioannides and Topa, 2010; Patacchini and

Zenou, 2012; Topa, 2001). See also Ioannides (2012, Chap. 5) who reviews the literature on social interactions

and urban economics.
7See also Calvó-Armengol et al. (2007), Calvó-Armengol and Jackson (2004) and Zenou (2014) for models of

weak and strong ties in the labor market but where the urban space is not modeled.
8This framework has been modified and extended in different directions, exploring, in particular, the stability

and robustness of this extreme outcome (see, for example, Zhang, 2004 or Grauwin et al., 2012).
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3 Basic environment

The total size of the population is N . People can live either in the city, which population size

is Nc, or in the rural area, with population size of Nr, with Nr +Nc = N .

3.1 Dyads

We assume that individuals belong to mutually exclusive two-person groups, referred to as dyads.

We say that two individuals belonging to the same dyad hold a strong tie to each other. We

assume that dyad members do not change over time. A strong tie is created once and for all

and can never be broken. We can think, for example, of a married couple (or members from the

same family) so that they tend to stay together for a long time.

Each individual can be in either of two different states: employed or unemployed. Dyads,

which consist of paired individuals, can thus be in three different states,9 which are the following:

(i) both members are employed −we denote the number of such dyads by d2;

(ii) one member is employed and the other is unemployed (d1);

(iii) both members are unemployed (d0).

3.2 Aggregate state

By denoting the employment level and the unemployment level in the city at time t by Ec(t)

and Uc(t), we have: ⎧⎨⎩ Ec(t) = 2d2(t) + d1(t)

Uc(t) = 2d0(t) + d1(t)
(1)

Since the total urban population is Nc, we have

Ec(t) + Uc(t) = Nc (2)

or, alternatively,

d2(t) + d1(t) + d0(t) =
Nc

2
(3)

3.3 Rural versus urban areas

We assume that only people belonging to a d0 dyad can freely choose where to live between the

urban and the rural area. The other people, belonging either to a d1 or d2 dyad, who are mostly

9The inner ordering of dyad members does not matter.
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employed, stay for ever in the city c. This is because workers in a d0 dyad are all unemployed

and thus are ready to move to improve their utility. On the contrary, workers from the other

dyads, who are mostly employed, will not find it optimal to move to the rural area. We can

easily show that this is optimal in equilibrium.

3.4 Labor market

The rural labor market is perfectly competitive and has no friction. In other words, everybody

can obtain a job in the rural area and it is assumed that the rural wage is flexible enough to

guarantee that there is full-employment.10 The wage in the rural area wr is thus determined by

the marginal productivity of workers, i.e.

wr = f
0 (N −Nc) (4)

As usual, we assume that f 0 (.) > 0 and f 00 (.) ≤ 0 and that the Inada conditions hold. These
assumptions reflect the implicit assumption that the land endowment is limited and the agricul-

tural sector exhibits decreasing returns with respect to labor input.

3.5 Information transmission in the city

The labor market in the city is not perfectly competitive because, for example, of search frictions.

Let us now describe the information transmission about jobs in the city.

Each job offer is taken to arrive to both employed and unemployed workers at rate λ. If

an employed worker hears about a job, she automatically direct it to her strong tie. This is

a convenient modelling assumption, which stresses the importance of on-the-job information

(Ioannides and Loury, 2004). All jobs and all workers are identical (unskilled labor) so that

all employed workers obtain the same wage wc. Therefore, the employed workers, who hear

about a job, pass this information on to their current matched partner since they cannot use

this information for themselves. They can also transmit this job information to a weak tie if

they meet one.

As stated above, we assume that only members of a d0 dyad can migrate. Since they are

newcomers in the city relatively to other dyad members, an unemployed worker in a d0 dyad is

assumed to have no social connections, i.e. no contact with weak ties. This is because it takes

10This is a standard assumption in the migration literature (see e.g. Zenou, 2011) and it does make sense,

especially in developing countries, where jobs in rural areas are mostly from the agricultural sector and easy to

obtain. Also many rural firms are family related and thus coordination failures and thus search frictions should

not be too large (see e.g. Yamada, 1996; Marcouiller et al., 1997; Maloney, 1999).
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time to meet weak ties and people who are stuck in a d0 dyad tend to interact mostly with their

strong ties and isolate themselves from the urban community. As a result, the only way they

can find a job is by hearing directly about it at rate λ. On the contrary, an unemployed worker

in a d1 dyad can meet weak ties and obtain job information from them. We denote by γ ∈ [0, γ]
the effort of interacting with weak ties for an unemployed worker in a d1 dyad. There is an

effort cost, which is given by cγ (c > 0). We also assume that there are agglomeration effects so

that the higher is the urban population Nc, the easier is to meet weak ties (see, e.g. Desmond,

2012, for evidence). The agglomeration effect is captured by φ(Nc(t)), with φ0(.) > 0, φ00 ≤ 0
and 0 < φ ≤ φ(·) ≤ φ ≤ 1.

As a result, an unemployed worker in a d1 dyad will hear about a job from a weak tie at

rate γφ (Nc(t)) 2λd2(t)/d1(t). Indeed, the rate at which an unemployed worker obtains a job

from a weak tie is increasing in her own effort γ, in the urban population Nc(t) and depends

on 2λd2(t)/d1(t), the fraction of employed workers who are aware about a job. In other words,

2λd2(t)/d1(t) captures something similar to the matching function in the search literature (Pis-

sarides, 2000) where the number of employed workers in the d2 dyad is 2d2(t) while the number

of unemployed workers who are in competition for job information is d1(t). Hence, an unem-

ployed worker in a d1 dyad can find a job either directly at rate λ or through her strong tie

at rate λ or through her weak tie at rate γφ (Nc(t)) 2λd2(t)/d1(t). Letting g(t) be the rate at

which an unemployed worker in a d1 dyad finds a job (or equivalently the rate at which a d1

dyad becomes a d2 dyad), we have

g(t) ≡ 2λ+ γφ (Nc(t)) 2λ
d2(t)

d1(t)
(5)

Finally, we assume that each dyad “dies” at rate δ. If we think of the married couple

interpretation of a dyad, this means that the couple in the dyad retires and leave the economy.

In that case, they are replaced by a new d0 dyad. For example, if a d1 dyad “dies”, then a new

d0 dyad will be created. The rational for this is that a new dyad is composed of young workers

who have not worked yet. This is an overlapping generation model. As a result, at each period

of time t, δ [d2(t) + d1(t) + d0(t)] die and δ [d2(t) + d1(t) + d0(t)] = δNc(t)/2 are born as a d0

dyad. Observe that λ, the rate at which a person hears from a job, is individual specific while

δ, the rate at which a dyad dies, is dyad specific.

This information transmission protocol defines a continuous time Markov process. The state

variable is the relative size of each type of dyad. Transitions depend on labor market turnover

and the nature of social interactions as captured by γ. Because of the continuous time Markov

process, the probability of a two-state change is zero (small order) during a small interval of
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time t and t+ dt. This means, in particular, that both members of a dyad cannot change their

status at the same time. For example, two unemployed workers cannot find a job at the same

time, i.e. during t and t + dt, the probability assigned to a transition from a d0−dyad to a
d2−dyad is zero. Similarly, two employed workers (d2−dyad) cannot both become unemployed,
i.e. switch to a d0−dyad during t and t+ dt. This applies to all other dyads mentioned above.

3.6 Flows of dyads between states

It is readily checked that the net flow of dyads from each state between a small interval of time

t and t+ dt is given by: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
•
d2(t) = g(t)d1(t)− δd2(t)
•
d1(t) = 2λd0(t)− [δ + g(t)] d1(t)
•
d0(t) =

δNc(t)
2
− 2λd0(t)− δd0(t) +

1
2

•
Nc(t)

(6)

where g(t) is defined by (5) and

•
Nc(t) = α [Wu

0c(t)−Ω] (7)

where Wu
0c(t) is the lifetime expected utility of an unemployed worker in a d0 dyad living in the

city, Ω is lifetime expected utility of a rural worker and α > 0 is a parameter. As stated above,

all rural workers who migrate to the city start as unemployed in a d0 dyad. Because people in

the same dyad are married (or family members), the migration decision is always made together

(within the dyad) and not individually. In other words, it is not possible for two persons from

the same dyad to live in different areas.

Let us explain (6). The positive change of d0 dyads over time is due to the fact that, at each

period of time t, δ [d2(t) + d1(t) + d0(t)] die and δ [d2(t) + d1(t) + d0(t)] = δNc(t)/2 are born as

a d0 dyad and that
1
2

•
Nc(t) workers migrate to the city in a d0 dyad. The negative change of d0

dyads over time is due to the fact that one of the workers from a d0 dyad finds a job directly

(2λ) and that the dyad dies (δ). For d1 dyads, they increase their size because one of the workers

from a d0 dyad got a job directly (2λ) but they lose people because either the dyad died (δ) or

because the unemployed worker from the d1 dyad obtained a job (g(t)). Finally, for d2 dyads,

they gain people from d1 dyads (g) but lose people since the dyad can die at rate δ.

Remember that the number of employed workers in the city, Ec(t), is given by Ec(t) =

2d2(t)+d1(t) whereas the number of unemployed workers, Uc(t), is given by Uc(t) = 2d0(t)+d1(t).

As a result, Nc(t) = Ec(t)+U(t) = 2 [d0(t) + d1(t) + d2(t)]. In steady state,
•
d2(t) = 0,

•
d1(t) = 0,

8



•
d0(t) = 0 and

•
Nc(t) = 0, and the flows in the labor market can be described by the following

figure:

[Insert F igure 1 here]

By solving (6) in steady state, we obtain:

d∗0 =
δN∗c

2(δ + 2λ)
(8)

d∗1 = d
∗
2

∙
δ

2λ
− γφ(N∗c )

¸
(9)

d∗2 =
2λ2N∗c

(δ + 2λ)[δ + 2λ(1− γφ(N∗c ))]
(10)

For d∗1 to be strictly positive, we assume that

2λφγ < δ (11)

Moreover, for d∗2 to be positive, we assume that δ+2λ(1− γφ) > 0, which can be rearranged as

2λφγ < δ + 2λ (12)

Combining (11) and (12) leads to

2λφγ < δ (13)

3.7 Steady-state asset value equations

Let us write the steady-state lifetime expected utilities of all workers (i.e. the Bellman equa-

tions). For a rural worker, we have:

rΩ = wr − δΩ (14)

where Ω is lifetime expected utility of a rural worker, wr is the rural wage defined by (4), and

r is the discount rate. Observe that, in rural areas, people live in family within a dyad. As in

the urban area, a dyad that dies (at rate δ) is automatically replaced by a new dyad (but a d2

dyad since there is full employment). As a result, in rural areas, all workers are in a d2 dyad

(forever). When they migrate to the city, they switch from a d2 dyad from the rural area to a

d0 dyad in the city.

Let us now write W e
c , the lifetime expected utility of an urban worker who is employed in

the city. It is given by:

rW e
c = wc − δW e

c (15)
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where wc is the (exogenous) urban wage. Observe that being employed does not depend on

which dyad you belong to. This is because, in this model, people are employed for ever until

they exist the economy (at rate δ) either because they retire or they die. This is, however, not

true for the unemployed workers because their chance of escaping unemployment depends on

which dyad they belong to. Denote byWu
0c, the lifetime expected utility of an urban unemployed

worker in a d0 dyad. Then, we have:

rWu
0c = b+ λ(W e

c −Wu
0c) + λ(Wu

1c −Wu
0c)− δWu

0c (16)

Indeed, when someone is unemployed in a d0 dyad, she obtains an unemployment benefit of

0 < b < wc. Then, she can hear directly about a job at rate λ and become employed and thus

obtains a surplus of W e
c −Wu

0c > 0 or her partner in the dyad, who is also unemployed, finds a

job at rate λ, and thus switches to a d1 dyad so that the surplus is now W
u
1c−Wu

0c > 0. Finally,

the dyad can die at rate δ and the negative surplus is 0−Wu
0c < 0.

Finally, the lifetime expected utility of an urban unemployed worker in a d1 dyad is equal

to:

rWu
1c = b− βγ + g∗(W e

c −Wu
1c)− δWu

1c (17)

where g∗ is the steady-state rate at which the unemployed worker from a d1 dyad finds a job

and is equal to:11

g∗ = 2λ+ γφ (N∗c ) 2λ
d∗2
d∗1

(18)

Indeed, an unemployed worker in a d1 dyad earns an unemployment benefit of b and pays a cost

of βγ for interacting with weak ties in the city where β > 0 is the marginal cost (remember that

γ is the worker’s effort). This worker can leave unemployment at rate g∗ and obtain a surplus

of W e
c −Wu

1c > 0 or the dyad can die at rate δ. We assume that γ ≤ b/β, which ensures that
b−βγ ≥ 0. Since b/β is the natural upper bound of γ, we set γ = b/β without loss of generality.
As a result, condition (13) can be written as:

2λφ
b

β
< δ (19)

Solving for the Bellman equations, we easily obtain

Wu
0c =

b+ λ(W e
c +W

u
1c)

r + δ + 2λ
(20)

Wu
1c =

b− βγ + g∗wc
r+δ

r + δ + g∗
(21)

11A variable with a star indicates that it is a steady-state equilibrium variable.
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W e
c =

wc

r + δ
(22)

Ω =
wr

r + δ
(23)

4 Steady-state equilibrium

4.1 Definition

Definition 1 A steady-state equilibrium (N∗c , γ∗) is such that the equilibrium migration condi-

tion is satisfied
•
Nc(t) = 0, i.e.

Wu
0c = Ω (24)

which determines N∗c , and the unemployed workers in a d∗1 dyad optimally choose γ that maxi-

mizes Wu
1c.

4.2 Optimal choice of social interactions

Let us determine the optimal γ. Unemployed workers in a d∗1 dyad choose γ that maximizes

Wu
1c, taking as given N

∗
c , d

∗
1 and d

∗
2. Define

N c ≡ φ−1
µ

δβ(r + δ + 2λ)

4λ2(wc − b) + 2λγβ(r + δ + 2λ)

¶
(25)

We have the following result:

Proposition 1 Assume (19).

(i) If the city population is sufficiently small, i.e. Nc < N c, then unemployed workers in a d
∗
1

dyad choose not to interact with weak ties, i.e. γ∗ = 0.

(ii) If the city population is sufficiently large, i.e. Nc ≥ Nc, then unemployed workers choose

to fully interact with weak ties, i.e. γ∗ = γ.

This is an interesting result that links urban population to social interactions. The intuition

of this result is as follows. When choosing their optimal social-interaction effort γ, workers trade

off the long-run benefits of increasing γ, which is finding a job more quickly, and the short-run

costs, which is simply the effort cost βγ. Moreover, the benefits from increasing γ is captured

by g∗, the rate at which the workers leave unemployment, which increases with γ but depends

on the size of the urban population Nc (agglomeration effect). When this population size is too

small, the benefits are lower than the costs and workers are better off not interacting with weak

11



ties and only relying on direct methods and their strong ties. When urbanization increases above

a certain population size, the benefits outweigh the costs and it becomes optimal for workers

to fully interact with weak ties. Observe that N c depends on the different parameters of the

model. Since φ(.) is an increasing function, it can be seen that N c is decreasing with wC and

λ and increasing with b, β, δ. Take, for example, λ and δ. The higher is λ (or the lower is δ),

the lower is N c and the less likely the unemployed workers will choose γ = 0. This is because

the returns from increasing γ are higher while the cost is unaffected. The same intuition runs

for wC − b.
Let us now discuss the main result of our proposition, which is that social interactions increase

with urbanization. As stated in the Introduction, there is a literature in sociology that supports

this result (see e.g. Wirth, 1938, Coleman, 1988, and Putman, 1993, 2001).12 Let us review in

more detail this literature. Fisher (1982) found that urban dwellers had more dispersed networks

containing a higher proportion of non-kin relations than did rural dwellers. This concurs with

Wellman’s (1979) research in a number of Toronto neighborhoods demonstrating that personal

networks are geographically dispersed with large variations in the number of contacts living

in the neighborhood. In a review of different studies in the US, Korte (1980) concluded that

urbanism positively affects only those relationships which are peripheral; central relationships

including ties between families and friends, remained unchanged. Palisi and Canning (1986)

found that urbanism was positively associated with the frequency of interaction among friends.

However, although individuals may have fewer strong relationships in cities than in villages,

they have more random encounters (weak ties), which are more important for support. As Gra-

novetter’s (1973) seminal work on the strength of the weak ties argues, weak ties are superior

to strong ties for providing support in getting a job. He criticized the assumption that strong

ties in close networks were strong in resource terms. Using the example of searching for a job,

Granovetter found that neighborhood based close networks were limited in getting information

about possible jobs (see also Lin and Dumin 1986). In a close networks everyone knows each

other, information is shared and so potential sources of information are quickly shaken down,

the networks quickly becomes redundant in terms of access to new information. In contrast

Granovetter stresses the strength of weak ties involving a secondary ring of acquaintances who

have contacts with networks outside ego’s network and therefore offer new sources of information

on job opportunities. The network arrangements in play here involve only partially overlapping

12This, in fact, goes back to Tonnies (1957) and Simmel (1995) with the idea of rural gemeinschaft (or commu-

nity) and urban gesellchaft (or association).
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networks composed mainly of single-stranded ties. Amato (1993) examines the differences be-

tween urban and rural dwellers, as well as between large cities and smaller towns inhabitants, in

the breadth of assistance received and provided by friends and family. He finds that urbanites

receive more help from friends than do rural dwellers, give more help to friends, expect more

help from friends, and expect less help from relatives. In other words, he finds little support

for the social disorganization theory that argues that urban dwellers receive and provide less

support from friends and relatives compared to rural people. In a study on the relationships

between health outcomes and social networks in several east London neighborhoods, Cattell

(2001) concluded that the most robust networks in terms of health outcomes are those Solidar-

ity Networks that combine positive aspects of dense and loose networks. They consist of a wide

range of membership groups, made up of similar and dissimilar people involving strong local

contacts of family or local friends and neighbors on the one hand, plus participation in formal

and informal organizations on the other. As Cattell concludes “the more varied the network,

the greater the range of resources accessible, and the greater the potential benefits to health.”

(Cattell 2001: 1513).

In economics, there are few papers testing this type of relationship. Wahba and Zenou (2005)

is an exception and they find that, in Egypt, in denser cities, people are more likely to find a

job through weak ties than in less dense cities.

4.3 Characterization of equilibrium

Equation (20) implies that the asset value of an unemployed worker in the d0 dyad,W
u
0c, increases

with Wu
1c. Because W

e
c does not depend on γ, we know that Wu

0c|γ=γ is larger than Wu
0c|γ=0 if

and only if Wu
1c|γ=γ is larger than Wu

1c|γ=0, i.e., the city population is sufficiently large so that
Nc > N c.

Definition 2 A No-Interaction Equilibrium
¡
NNI∗
c , γNI∗

¢
is when all workers in the city choose

γNI∗ = 0 while a Full-Interaction Equilibrium
¡
NFI∗
c , γFI∗

¢
is when all workers in the city choose

γFI∗ = γ.

The city population is determined by the decision of the new entrants to migrate to the city.

This requires that the asset value of a rural employed worker to be equal to that of an urban

unemployed worker in the d0 dyad, i.e. Ω = W
u
0c. The following proposition characterizes the

equilibrium.

Proposition 2 Assume (19).
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(i) If Nc < N c, then there exists a No-Interaction Equilibrium
¡
NNI∗
c , γNI∗

¢
such that all

urban workers provide effort γNI∗ = 0.

(ii) If Nc ≥ N c, then there exists a Full-Interaction Equilibrium
¡
NFI∗
c , γFI∗

¢
such that all

urban workers exert effort γFI∗ = γ.

In the proof of Proposition 2, we provide, for each equilibrium, the equilibrium values of

the numbers of dyads, d∗0, d
∗
1 and d

∗
2, the equilibrium urban population size N∗c , the level of

urban unemployment U∗c , the job arrival rate of an unemployed worker in a d1 dyad, g∗, and all

the equilibrium value functions for all workers. This proposition confirms our previous result

showing how urbanization (capture by Nc) affects the social behavior of workers.

4.4 Existence and uniqueness of equilibrium

Since, in Proposition 2, the condition for equilibrium depends on Nc, an endogenous variable,

we need to examine under which condition there exists an equilibrium and if it is unique. The

determination of the city population Nc is described in Figure 2(a) and Figure 2(b).

[Insert F igures 2(a) and 2(b) here]

In Figure 2(a), the horizontal axis represents the urban population Nc from the right. The

rural population Nr is represented by the difference between N and Nc. The vertical axis shows

the asset values Ω and Wu
0c. Ω is represented by a upward sloping curve (with respect to the

urban population Nc) because dΩ/dNc = −dΩ/dNr = −f 00/(r + δ) > 0. From (32), (33) and

(35), we know that Wu
0c|γ=0 is independent of Nc whereas Wu

0c|γ=γ is increasing in Nc. Observe
first that Ω and Wu

0c|γ=0 has a unique interaction if Wu
0c|γ=0 > f 0(N)/(r+δ) because we assumed

the Inada conditions for f(·). Observe second that Wu
0c|γ=γ > Wu

0c|γ=0 as long as Figure 2(b) is
relevant. The Inada condition for f(·) combined with the fact that Wu

0c|γ=γ,φ=φ(N) has a finite
value, ensures that Ω and Wu

0c|γ=γ has at least one intersection.
In Figure 2(a), when the total population N increases, the urban population, Nc, also in-

creases. This can be confirmed by totally differentiating Ω = Wu
0c|γ=0 since we have: dNc/dN =

1 > 0. When the city population reaches bNc, the regime switches from the no-social interac-

tion case (γ∗ = 0) to the full social interaction case (γ∗ = γ) and the equilibrium population

distribution is determined by Ω = Wu
0c|γ=γ . We have the following proposition:

Proposition 3 Assume (19).
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(i) If N∗c is small enough, i.e. N∗c < N c, then the city is characterized by no social interaction

(γ∗ = 0) and there is therefore a No-Interaction Equilibrium
¡
NNI∗
c , γNI∗

¢
. Furthermore,

if Condition (52) holds, then the No-Interaction Equilibrium
¡
NNI∗
c , γNI∗

¢
is unique and

given by (37)−(38) (see Figure 2(a)).

(ii) If N∗c is large enough, i.e. N∗c > N c, then the city is characterized by full social interactions

(γ∗ = γ) and there is therefore a Full-Interaction Equilibrium
¡
NFI∗
c , γFI∗

¢
. Furthermore,

if Conditions (52) and (53) hold, then the Full-Interaction Equilibrium
¡
NFI∗
c , γFI∗

¢
is

unique and given by (45)−(47) (see Figure 2(b)).

When the level of urbanization is low, the contact rate with weak ties, φ(Nc), is also low so

that it is not worth devoting much effort to interact with weak ties. As the urban population

grows, the agglomeration effect regarding the contact rate gets larger and it becomes rewarding

to social interact with weak ties. As will be shown in the next section, the urban population

size, N∗c , increases with the total population size (rural plus urban), N , in the No-Interaction

equilibrium. Moreover, N∗c , determined by (44), has the property that limN→∞N∗c =∞. Hence,
there exists a threshold value of N under which we observe the No-Interaction equilibrium and

beyond which we observe the Full-Interaction equilibrium. Thus, if we consider a continuous

growth process of total population size, there will be a regime change from the No-Interaction

equilibrium to the Full-Interaction equilibrium in the city.

5 Comparative statics

In this section, we provide the results of basic comparative statics with respect to the urban

population size, N∗c , and the unemployment rate, u∗c = U∗/N .

5.1 No-Interaction Equilibrium

Let us start with the No-Interaction equilibrium
¡
NNI∗
c , γNI∗

¢
, where N∗c is determined by (44)

and is described in Figure 2(a). In order to focus on the unique No-Interaction equilibrium, we

assume that condition (52) holds. We provide here explanations based on the figure and relegate

the formal proofs to the Appendix. As shown in Figure 2(a), an increase in the urban wage, wc,

in the unemployment benefit, b, or in the direct job arrival rate, λ, raises the asset value of an

urban unemployed worker in a d0 dyad, W
u
0c|γ=0, whereas it doesn’t affect the asset value of a

rural employed worker, Ω. Hence, by increasing these variables, cities will attract more people
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and the urban population size, N∗c , will become larger. Furthermore, an increase in the exit

rate, δ, or the discount rate, r, lowers the asset values, but the reduction is larger for an urban

unemployed worker. As a result, N∗c , decreases. An increase in the total population, size N ,

reduces Ω, leading to a larger N∗c .

The effects on unemployment rate can be readily examined. Because the number of unem-

ployed workers is given by (38), the effect of an increase of wc, b, or r on the unemployment rate,

u∗c = U∗/N , is proportional to that of N∗c . An increase in N affects both the numerator, U∗,

and the denominator, N , of u∗c = U∗/N . Still, we can see from the Appendix that ∂N∗c /∂N = 1,

implying that ∂(N∗c /N)/∂N = (N −N∗c )/N2 > 0. Hence, we know that an increase in N raises

u∗c . However, an increase in δ or λ has additional impacts on u∗c , making its total effect on

unemployment rate ambiguous. The following proposition summarizes our findings:

Proposition 4 Suppose that Condition (52) holds. In the No-Interaction equilibrium
¡
NNI∗
c , γNI∗

¢
,

an increase in wc, b, N , or λ, or a decrease in δ or r increases the urban population size, N∗c .

Moreover, an increase in wc, b, or N , or a decrease in r increases the unemployment rate, u
∗
c.

An increase in δ or λ has an ambiguous effect on u∗c .

5.2 Full-Interaction Equilibrium

We next examine the Full-interaction equilibrium, where the urban population size is determined

by (51) and is described in Figure 2(b). Here, we assume that conditions (52) and (53) hold so

that the model has the unique Full-Interaction equilibrium
¡
NFI∗
c , γFI∗

¢
. As shown in Figure

2(b), a higher value of wc shifts the asset value of an urban unemployed worker in a d0 dyad,

Wu
0c|γ=γ, upwards whereas it doesn’t change the asset value of a rural employed worker, Ω.

Thus, it increases N∗c . Furthermore, an increase in N lowers Ω whereas it doesn’t change

Wu
0c|γ=γ, resulting in a larger N∗c . Unfortunately, the effects of a change in other parameters

are ambiguous.

The effects of unemployment rate, u∗c , are somewhat more complicated in this case because

now the urban population size (and hence density) has agglomeration effects on the contact rate

with weak ties described by φ(Nc). From (47), we can see that, on the one hand, a larger N∗c

has an direct effect of raising u∗c . On the other hand, it indirectly lowers u∗c by raising φ(Nc).

Such an indirect effect is not sufficient to dominate the direct effect in the case of an increase in

wc, but it is so in the case of an increase in N .
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Proposition 5 Suppose that conditions (52) and (53) hold. In the Full-Interaction equilibrium¡
NFI∗
c , γFI∗

¢
, an increase in wc or N increases the urban population size, N∗c . Moreover, an

increase in wc increases the unemployment rate, u
∗
c , whereas an increase in N decreases it. An

increase in b, δ, λ, or r has ambiguous effects on N∗c and u∗c .

The following table summarizes all our comparative statics results:

No-Interaction equilibrium (γ∗ = 0)

wc b N δ λ r

N∗c + + + − + −
u∗c + + + ? ? −
Full-Interaction equilibrium (γ∗ = γ)

wc b N δ λ r

N∗c + ? + ? ? ?

u∗c + ? − ? ? ?

Table 1: Comparative statics for both equilibria

6 Efficiency

In this section, we explore the efficiency properties of each equilibrium. Our questions are as

follows: (i) are the decisions in terms of social interactions, γ∗, efficient? and (ii) is the degree

of urbanization, N∗c , efficient? We follow the search and matching literature (Pissarides, 2000)

by defining the social welfare, SW , as the sum of utilities of all workers, i.e.

SW =

Z ∞

0

e−rt [f(N −Nc(t)) +Ec(t)wc + Uc(t)b− βd1(t)γ(t)] dt (26)

The dynamics of the number of dyads are given by (6). Note that

Ec(t) = 2d2(t) + d1(t) (27)

Uc(t) = 2d0(t) + d1(t) (28)

and

Nc(t) = 2 [d0(t) + d1(t) + d2(t)] (29)
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The planner chooses γ(t) and Nc(t) that maximize (26) under the flow constraint (6). We obtain

the present-value Hamiltonian:

Ht = e
−rt {f(N −Nc(t)) +Ec(t)wc + Uc(t)b− βd1(t)γ(t)}

+ μ1(t)[2λd0(t)− (δ + g(t))d1(t)] + μ2(t) [g(t)d1(t)− δd2(t)]

where μ1(t) and μ2(t) are the Lagrangian multipliers (or co-state variables) corresponding to
•
d1(t) and

•
d2(t). We don’t need to write the constraint corresponding to

•
d0(t) because we use

(29). The control variables of the social planner are γ(t) and Nc(t) and the state variables are

d1(t) and d2(t). We have the following result:

Proposition 6 When the urban population is sufficiently small (Nc ≤ No
c), there is no social

interactions in equilibrium and it is optimal from a social welfare viewpoint, i.e. γ∗ = γo = 0.

When the urban population is sufficiently large (Nc > N∗c), there is full social interactions in

equilibrium and it is optimal from a social welfare viewpoint, i.e. γ∗ = γo = γ. When the

urban population takes intermediate values (No
c < Nc ≤ N∗c), there is no social interaction in

equilibrium (γ∗ = 0) while full social interactions are optimal (γo = γ).

Define bφo as bφo ≡ βδ(δ + 2λ)

2λ(bδ + 2wcλ)
. (30)

As shown in the proof of Proposition 6, γ = γ is optimal if φ > bφo and γ = 0 is optimal if

φ < bφo. Define next No
c as

No
c ≡ φ−1

³bφo´ .
Then, we obtain that γ = γ is optimal if Nc > N

o
c and γ = 0 is optimal if Nc < N

o
c . Because (34)

and (30) result in sgn
hbφ∗ − bφoi = sgn [wc − b], we know that N∗c > No

c , implying Proposition

6. Figure 3 describes when the equilibrium decision on social interactions is optimal and when

it is not.

[Insert F igure 3 here]

From the comparative statics results (Table 1), we know that the urban population size becomes

larger when the total population size increases. Thus, the results of Proposition 6 imply that, as

the total population grows, the economy experiences steady urbanization. During this process,

the social-interaction decision is efficient only at an early and a late stage of urbanization but

not at an intermediary stage of urbanization. The source of this inefficiency is due to (positive)
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externalities related to the decision on interacting with weak ties. Indeed, social interactions

with weak ties make it more likely for an unemployed worker belonging to a d1 dyad to find

a job and thus to switch to a d2 dyad. This implies that a higher level of social interactions

increases the number of employed workers in d2 dyads, which, in turn, raises the possibility of

job information transmission through weak ties (i.e. increases g∗) for d1 dyads. However, an

unemployed worker in a d1 dyad ignores this positive externality on other unemployed workers

when making her social-interaction decision γ, resulting in inefficiency of this decision.

Next, we move to the efficiency analysis of urban population size, N∗c . In order to focus on the

properties of urbanization, we mainly restrict our attention to the cases where the equilibrium

decision on social interactions is efficient (i.e., γ∗ = γo, or equivalently, Nc ≤ No
c or Nc > N

∗
c).

In such cases, the equilibrium condition for N∗c , (24), is equal to

Ω =

½
Wu
0c|γ=0 for γ = 0

Wu
0c|γ=γ for γ = γ

whereas the optimal condition is given by

Ω =

½
Θot |γ=0 for γ = 0
Θot |γ=γ for γ = γ

where Θot |γ=0 and Θot |γ=γ are defined in (65). As shown in the proof of propositions 6 and 7 in
the Appendix, we have that: Wu

0c|γ=0 > Θot |γ=0. Moreover, if the discount rate, r, is sufficiently
small and the exit rate, δ, is not extremely high (δ < 2λ), we also have Wu

0c|γ=γ > Θot |γ=γ .13

These results imply that the curves of Wu
0c|γ=0 and Wu

0c|γ=γ are above the curves of Θot |γ=0 and
Θot |γ=γ , as can be seen in Figures 4(a) and 4(b), respectively.

[Insert F igures 4(a) and 4(b) here]

We have the following proposition.

Proposition 7 When the No-interaction equilibrium is optimal (γ∗ = γo = 0), the equilibrium

urbanization level N∗c is higher than the optimal level one No
c . When the Full-interaction equilib-

rium is optimal (γ∗ = γo = γ), the equilibrium urbanization level N∗c is higher than the optimal

level one No
c if r is sufficiently small and δ < 2λ.

Such over-urbanization partly arises from the search frictions in the urban labor market.

Indeed, when deciding whether to migrate or not, each migrant compares the discounted sum

13 If δ ≥ 2λ, the unemployment rate exceeds at least 50%. We believe such a case should be treated as an

exception.
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of expected income. Given the existence of urban unemployment, such decision leads to over-

urbanization (as in, e.g., Harris and Todaro, 1970). In addition, in the Full-Interaction equilib-

rium, there exists agglomeration (positive) externalities and congestion (negative) externalities

from finding jobs via weak ties. Indeed, when a worker decides to migrate to the city, it in-

creases the size of the urban population and thus the possibility of contacting a weak tie, which

is represented by the term φ(Nc) in g(t). This creates positive agglomeration externalities. At

the same time, the decision to migrate increases the number of workers in d0 dyads, which, in

turn, increases the number of workers in d1 dyads. This, in turn, decreases the possibility of

job information transmission from a weak tie, which is represented by the term d2/d1 in g(t).

This results in the congestion negative externality. Here, the effect of the negative external-

ity dominates the effect of the positive one when workers don’t discount the future and the

unemployment rate is not extremely high, and this is why we observe over-urbanization even

in the Full-Interaction equilibrium as compared to the social optimum. Finally, we can briefly

comment on the case for which γ∗ 6= γo (i.e., No
c < Nc ≤ N∗c). In this case, although we cannot

determine analytically the efficiency properties of N∗c , simple numerical examples indicate that

Wu
0c|γ=γ > Θot |γ=0.14 Therefore, it would be safe to conclude that this economy experiences too

much urbanization in general.

In summary, there are two market failures. The first one stems form social interactions

(at intermediate levels of urban population) so that there are too few social interactions in

equilibrium. The second comes from urbanization. When social interactions are optimal, which

corresponds to either small or large cities, there is too much agglomeration or urbanization in

equilibrium.

7 Conclusion

We develop a model where unemployed workers in the city can find a job either directly or

through weak or strong ties. We show that, in denser areas, individuals interact with more

people and have more random encounters (weak ties) than in sparsely populated areas. We

also demonstrate that, for low urbanization levels, there is a unique steady-state No-Interaction

equilibrium where workers do not interact with weak ties, while, for high level of urbanization,

there is a unique steady-state Full-Interaction equilibrium with full social interactions. Thus, if

14We tried two specifications of φ(Nc) (i.e., φ(Nc) = Nc/(1 +Nc) and φ(Nc) = 1 − exp[−Nc]). We also tried

various sets of parameter values. For any combination, we obtained that Wu
0c|γ=γ > Θo

t |γ=0. These simulation
results are available upon request.
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we consider a continuous growth process of total population size, there will be a regime change

from the No-Interaction equilibrium to the Full-Interaction equilibrium in the city. We show that

these equilibria are usually not socially efficient when the urban population has an intermediate

size because there are too few social interactions compared to the social optimum. When the

equilibrium level of social interactions is optimal, the equilibrium urbanization level is always

higher than the optimal level one, leading to over-urbanization.

There are many empirical studies that try to measure agglomeration economies in different

cities (see, for example, Glaeser, 2010). However, few studies have put forward the role of

social interactions and social networks in agglomeration and urbanization. Usually, following

Marshall (1890) and Jacobs (1969), authors have emphasized the role that cities can play in

speeding the flow of ideas. The interactions of smart and skilled people in urban areas enhances

the development of person-specific human capital and increases the rate at which new ideas

are formed. We believe that the role of social interactions and the fact that people tend to

extend their social networks by meeting more weak ties in bigger cities that help them find a job

are crucial in explaining agglomeration. We also believe that this can lead to over-urbanization,

which would imply that cities are oversized. These issues certainly need more thorough empirical

investigations.
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8 Appendix: Proofs

Proof of Proposition 1: Let us determine the optimal γ. Unemployed workers in a d∗1 dyad

choose γ that maximize Wu
1c, taking as given N

∗
c , d

∗
1 and d

∗
2. Using (21) and (18), we obtain

∂Wu
1c

∂γ
=

h
−β + 2λφ (N∗c ) d

∗
2

d∗1
wc
r+δ

i
(r + δ + g∗)−

³
b− βγ + g∗ wc

r+δ

´
2λφ (N∗c )

d∗2
d∗1

(r + δ + g∗)2

=
−β(r + δ + g∗) + wx

r+δ
(r + δ + g∗)2λφ (N∗c )

d∗2
d∗1
− (b− βγ)2λφ (N∗c )

d∗2
d∗1
− g∗ wc

r+δ
2λφ (N∗c )

d∗2
d∗1

(r + δ + g∗)2

=
−β

h
r + δ + 2λ+ γ2λφ (N∗c )

d∗2
d∗1

i
+ wc

r+δ
(r + δ)2λφ (N∗c )

d∗2
d∗1
− (b− βγ)2λφ (N∗c )

d∗2
d∗1

(r + δ + g∗)2

=
−β(r + δ + 2λ) + wc2λφ (N

∗
c )

d∗2
d∗1
− b2λφ (N∗c ) d

∗
2

d∗1

(r + δ + g∗)2

=
d∗2
d∗1

2λφ (N∗c ) (wc − b)− β
d∗1
d∗2
(r + δ + 2λ)

(r + δ + g∗)2

This implies that

sgn

∙
∂Wu

1c

∂γ

¸
= sgn

∙
2λφ(N∗c )(wc − b)− β

d∗1
d∗2
(r + δ + 2λ)

¸
Using (9) and (10), we see that

d∗1
d∗2
=

δ

2λ
− γφ(N∗c )

Plugging
d∗1
d∗2
into the above equation, we can see that

sgn

∙
∂Wu

1c

∂γ

¸
= sgn

∙
2λφ(N∗c )(wc − b) + β

µ
γφ(N∗c )−

δ

2λ

¶
(r + δ + 2λ)

¸
.

This leads to

∂Wu
1c

∂γ
R 0⇔ γ R δ

2λφ(N∗c )
− 2λ(wc − b)

β(r + δ + 2λ)

This condition only depends on N∗c . We therefore know that an unemployed worker in the d∗1

dyad choose either γ = 0 (no interaction at all with weak ties) or γ = γ (maximum interaction

with weak ties), i.e. we have only corner solutions.

Let us characterize all the solutions of this maximization problem.

(i) If

δ

2λφ(N∗c )
<

2λ(wc − b)
β(r + δ + 2λ)

,

which is equivalent to

φ(N∗c ) >
δβ(r + δ + 2λ)

4λ2(wc − b)
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then γ∗ = γ. Since φ0(.) > 0, this means that, if N∗c > N c, then γ∗ = γ, where

N c ≡ φ−1
µ
δβ(r + δ + 2λ)

4λ2(wc − b)
¶

(ii) If

δ

2λφ(N∗c )
− 2λ(wc − b)

β(r + δ + 2λ)
> γ,

which is equivalent to

φ(N∗c ) <
δβ(r + δ + 2λ)

4λ2(wc − b) + 2λγβ(r + δ + 2λ)

then γ∗ = 0. Since φ0(.) > 0, this means that, if N∗c < N c, then γ∗ = 0, where

N c ≡ φ−1
µ

δβ(r + δ + 2λ)

4λ2(wc − b) + 2λγβ(r + δ + 2λ)

¶
(31)

(iii) If

0 <
δ

2λφ(N∗c )
− 2λ(wc − b)

β(r + δ + 2λ)
< γ

then both cases γ∗ = 0 and γ∗ = γ can arise.

Figure A1 illustrates these different cases.

[Insert F igure A1 here]

Let us now deal with case (iii) only since the other cases are straightforward. Then, using

the fact that γ = b/β, Wu
1c can be written as:

Wu
1c|γ=0 =

b+ 2λwc
r+δ

r + δ + 2λ
(32)

Wu
1c|γ=γ =

2λδwc

(r + δ)[βδ(r + δ + 2λ)− 2bλ(r + δ)φ(N∗c )]
(33)

Comparing the asset values under no social interaction (γ = 0) to that under full social interac-

tion (γ = γ), we can see that Wu
1c|γ=0 = Wu

1c|γ=γ if and only if

φ(N∗c ) = bφ ≡ βδ(r + δ + 2λ)

2λ[b(r + δ) + 2wcλ]
(34)

Furthermore, we have that

∂
³
Wu
1c|γ=γ − Wu

1c|γ=0
´

∂φ(Nc)
=

∂
³
Wu
1c|γ=γ

´
∂φ(Nc)

=
4bβwcδλ

2

[βδ(r + δ + 2λ)− 2bλφ(Nc)(r + δ)]2
> 0 (35)

As a result, an unemployed worker in the d∗1 dyad always chooses γ
∗ = γ if and only if φ(Nc) > bφ

and chooses γ∗ = 0 if and only if φ(Nc) < bφ. From the assumption that φ0(Nc) > 0, we have a

threshold regarding the city population: bNc ≡ φ−1(bφ), i.e.
bNc ≡ φ−1

µ
βδ(r + δ + 2λ)

2λ[b(r + δ) + 2wcλ]

¶
(36)
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Since γ = b/β, then it is easily verified that bNc = N c, given by (25). Observe also that

bNc = N c < N c

which implies that an unemployed worker in the d∗1 dyad always chooses γ = γ in case (iii).

Proposition 1 summarizes these results.

Proof of Proposition 2: Using (23), the steady-state migration equilibrium condition (24)

can be written as

Wu
0c =

f 0 (N −Nc)
(r + δ)

Hence, the equilibrium conditions given in Proposition 1 (see the proof of Proposition 1) become

f 0(N −Nc)
r + δ

= Wu
0c|γ=0 =

b+ λ(W e
c + W

u
1c|γ=0)

r + δ + 2λ
if and only if Nc < N c,

f 0(N −Nc)
r + δ

= Wu
0c|γ=γ =

b+ λ(W e
c + W

u
1c|γ=γ)

r + δ + 2λ
if and only if Nc ≥ N c.

From these conditions, we obtain Proposition 2.

Let us first characterize the No-Interaction Equilibrium for which all workers provide zero

effort, i.e. γ∗ = 0. Using (8), (9) and (10) and the fact that γ = 0, we easily obtain:

d∗0 =
δN∗c

2(δ + 2λ)
, d∗1 =

λδN∗c
(δ + 2λ)2

, d∗2 =
2λ2N∗c
(δ + 2λ)2

(37)

Since the urban unemployment level is: U∗c = 2d∗0 + d
∗
1, we obtain:

U∗ =
δ (δ + 3λ)N∗c
(δ + 2λ)2

(38)

From (18), we obtain:

g∗ = 2λ (39)

From (20), (21), (22) and (23), we have:

Wu∗
0c |γ=0 =

(r + δ) (r + δ + 3λ) b+ λ (r + δ + 4λ)wc

(r + δ) (r + δ + 2λ)2
(40)

Wu∗
1c |γ=0 =

(r + δ)b+ 2λwc

(r + δ) (r + δ + 2λ)
(41)

W e∗
c =

wc

r + δ
(42)

Ω =
f 0 (N −N∗c )

r + δ
(43)
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Finally, the migration equilibrium condition (24) is given by Wu
0c = f 0 (N −Nc) / (r + δ). By

using (40), this equation (24) can be written as

f 0 (N −N∗c ) =
(r + δ) (r + δ + 3λ) b+ λ (r + δ + 4λ)wc

(r + δ + 2λ)2
(44)

which implicitly defined N∗c .

Let us now characterize the Full-Interaction Equilibrium for which all workers provide max-

imal effort, i.e. γ∗ = γ. Proceeding exactly as above, we easily obtain:The equilibrium values

are given by:

d∗0 =
δN∗c

2(δ + 2λ)
, d∗1 =

2λ2N∗c
(δ + 2λ)[δ + 2λ(1− γφ(N∗c ))]

∙
δ

2λ
− γφ(N∗c )

¸
(45)

d∗2 =
2λ2N∗c

(δ + 2λ)[δ + 2λ(1− γφ(N∗c ))]
(46)

U∗ =
δ (δ + 3λ)− 2λγφ(N∗c ) (δ + λ)

(δ + 2λ)[δ + 2λ(1− γφ(N∗c ))]
N∗c (47)

g∗ =
2δλ

δ − 2λγφ(N∗c )
(48)

Wu
0c =

βδ [b (r + δ) (r + δ + 2λ) + λwc (r + δ + 4λ)]− 2bλφ(N∗c ) (r + δ) [b (r + δ) + λwc]

(r + δ) (r + δ + 2λ) [δβ (r + δ + 2λ)− 2λbφ(N∗c ) (r + δ)]
(49)

Wu
1c =

2βδλwc

(r + δ) [βδ (r + δ + 2λ)− 2bλφ(N∗c ) (r + δ)]
, W e

c =
wc

r + δ
, Ω =

f 0 (N −N∗c )
r + δ

(50)

f 0 (N −N∗c ) =
βδ [b (r + δ) (r + δ + 2λ) + λwc (r + δ + 4λ)]− 2bλφ(N∗c ) (r + δ) [b (r + δ) + λwc]

(r + δ + 2λ) [δβ (r + δ + 2λ)− 2λbφ(N∗c ) (r + δ)]

(51)

This completes the proof.

Proof of Proposition 3: To show that there is a unique equilibrium with γ∗ = 0, we need to

show that Wu
0c|γ=0

¯̄̄
Nc=0

> f 0(N)/ (r + δ). This is equivalent to:

(r + δ) (r + δ + 3λ) b+ λ (r + δ + 4λ)wc > (r + δ + 2λ)2 f 0(N) (52)

To show that there is a unique equilibrium with γ∗ = γ, we further need to show that Ω0(Nc)|Nc=N∗c >
∂ Wu

0c|γ=γ /∂Nc
¯̄̄
Nc=N∗c

. This is equivalent to:

− (r + δ + 2λ) [1 + γφ (N∗c )]
2
f 00 (N −N∗c ) >

4λ3wc (2λ+ δ) (r + δ) γφ0 (N∗c )n
(r + δ)

h
δ−2λγφ(N∗c )
1+γφ(N∗c )

i
+ 4λ2

o2 (53)

This completes the proof.
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Proof of Propositions 4: In the No-interaction equilibrium, the urban population size, N∗c , is

determined by (51). By totally differentiating (51), we obtain, after straightforward but tedious

calculations, the following results of basic comparative statics:

∂N∗c
∂δ

=
b(r + δ)2(r + δ + 4λ) + 2wcλ

£
r2 + δ2 + 6δλ+ 4λ2 + 2r(δ + 3λ)

¤
f 00(N −N∗c )(r + δ)(r + δ + 2λ)3

< 0

∂N∗c
∂λ

= −(wc − b)(r + δ)(r + δ + 6λ)

f 00(N −N∗c )(r + δ + 2λ)3
> 0

∂N∗c
∂b

= − (r + δ)(r + δ + 3λ)

f 00(N −N∗c )(r + δ + 2λ)2
> 0

∂N∗c
∂wc

= − λ(r + δ + 4λ)

f 00(N −N∗c )(r + δ + 2λ)2
> 0

∂N∗c
∂N

= 1 > 0

∂N∗c
∂r

=
b(r + δ)2(r + δ + 4λ) + 2wcλ

£
r2 + δ2 + 6δλ+ 4λ2 + 2r(δ + 3λ)

¤
f 00(N −N∗c )(r + δ)(r + δ + 2λ)3

< 0

The equilibrium unemployment rate is defined by

u∗ =
U∗

N

where U∗ is given by (38). Hence, we readily obtain

∂u∗

∂δ
=
N∗c λ(δ + 6λ) + δ(δ + 2λ)(δ + 3λ)

∂N∗c
∂δ

N(δ + 2λ)3

∂u∗

∂λ
=

δ
h
−N∗c (δ + 6λ) +

¡
δ2 + 5δλ+ 6λ2

¢ ∂N∗c
∂λ

i
N(δ + 2λ)3

∂u∗

∂b
=

δ(δ + 3λ)

N(δ + 2λ)2
∂N∗c
∂b

> 0

∂u∗

∂wc
=

δ(δ + 3λ)

N(δ + 2λ)2
∂N∗c
∂wc

> 0

∂u∗

∂N
=

δ(δ + 3λ)
³
−N∗c +N ∂N∗c

∂N

´
N2(δ + 2λ)2

=
δ(δ + 3λ) (N −N∗c )

N2(δ + 2λ)2
> 0
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∂u∗

∂r
=

δ(δ + 3λ)

N(δ + 2λ)2
∂N∗c
∂r

< 0

This completes the proof.

Proof of Propositions 5: Here, we assume that (53) holds, i.e.,

Ω0(Nc)
¯̄
Nc=N∗c

−
∂ Wu

0c|γ=γ
∂Nc

¯̄̄̄
¯
Nc=N∗c

> 0 (54)

to ensure that the model has the unique Full-interaction equilibrium. In the Full-interaction

equilibrium, the urban population size is determined by (51). By totally differentiating (51), we

can obtain

∂N∗c
∂δ

=

⎡⎣Ω0(Nc)¯̄Nc=N∗c − ∂ Wu
0c|γ=γ
∂Nc

¯̄̄̄
¯
Nc=N∗c

⎤⎦−1½− b(r + δ)2

(r + δ)2(r + δ + 2λ)2

− 2wcλβ
2δ2(r + δ + 2λ)

£
(r + δ)2 + 6(r + δ)λ+ 4λ2

¤
(r + δ)2(r + δ + 2λ)2 [βδ(r + δ + 2λ)− 2b(r + δ)λφ(N∗c )]

2

+
4wcλ

2bβ(r + δ)
£
2δ(r + δ)2 − (r − 8δ)(r + δ)λ− 2(r − 3δ)λ2¤φ(N∗c )

(r + δ)2(r + δ + 2λ)2 [βδ(r + δ + 2λ)− 2b(r + δ)λφ(N∗c )]
2

− 8wcλ
3b2(r + δ)2(r + δ + λ)φ(N∗c )2

(r + δ)2(r + δ + 2λ)2 [βδ(r + δ + 2λ)− 2b(r + δ)λφ(N∗c )]
2

¾

∂N∗c
∂λ

=

⎡⎣Ω0(Nc)¯̄Nc=N∗c − ∂ Wu
0c|γ=γ
∂Nc

¯̄̄̄
¯
Nc=N∗c

⎤⎦−1

×
½
β2δ2(r + δ + 2λ) [wc(r + δ + 6λ)− 2b(r + δ + 2λ)]

(r + δ + 2λ)2 [βδ(r + δ + 2λ)− 2b(r + δ)λφ(N∗c )]
2

+
4bβδ(r + δ)λ [2b(r + δ + 2λ)−wc(r + δ + 3λ)]φ(N∗c )
(r + δ + 2λ)2(βδ(r + δ + 2λ)− 2b(r + δ)λφ(N∗c ))2

− 4b2(2b− wc)(r + δ)2λ2φ(N∗c )2

(r + δ + 2λ)2(βδ(r + δ + 2λ)− 2b(r + δ)λφ(N∗c ))2

¾

∂N∗c
∂b

=

⎡⎣Ω0(Nc)¯̄Nc=N∗c − ∂ Wu
0c|γ=γ
∂Nc

¯̄̄̄
¯
Nc=N∗c

⎤⎦−1

×
(
β2δ2(r + δ + 2λ)2 + 4βδλ

£
wcλ

2 − b(r + δ)(r + δ + 2λ)
¤
φ(N∗c )

(r + δ + 2λ) [βδ(r + δ + 2λ)− 2b(r + δ)λφ(N∗c )]
2

+
4b2(r + δ)2λ2φ(N∗c )2

(r + δ + 2λ) [βδ(r + δ + 2λ)− 2b(r + δ)λφ(N∗c )]
2

¾
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∂N∗c
∂wc

=

⎡⎣Ω0(Nc)¯̄Nc=N∗c − ∂ Wu
0c|γ=γ
∂Nc

¯̄̄̄
¯
Nc=N∗c

⎤⎦−1

× λ [βδ(r + δ + 4λ)− 2b(r + δ)λφ(N∗c )]
(r + δ)(r + δ + 2λ) [βδ(r + δ + 2λ)− 2b(r + δ)λφ(N∗c )]

(55)

> 0

∂N∗c
∂N

= −f
00(N −N∗c )
r + δ

⎡⎣Ω0(Nc)¯̄Nc=N∗c − ∂ Wu
0c|γ=γ
∂Nc

¯̄̄̄
¯
Nc=N∗c

⎤⎦−1

= −f
00(N −N∗c )
r + δ

⎡⎣−f 00(N −N∗c )
r + δ

− ∂ Wu
0c|γ=γ
∂Nc

¯̄̄̄
¯
Nc=N∗c

⎤⎦−1 (56)

> 1

∂N∗c
∂r

=

⎡⎣Ω0(Nc)¯̄Nc=N∗c − ∂ Wu
0c|γ=γ
∂Nc

¯̄̄̄
¯
Nc=N∗c

⎤⎦−1

×
½
−(r + δ) [b(r + δ) + wcλ] + wcλ(r + δ + 2λ)

(r + δ)2(r + δ + 2λ)2

+

4wcβ
2δ2λ3(r+δ+2λ)

(βδ(r+δ+2λ)−2b(r+δ)λφ)2 −
2wcβδλ

2(3(r+δ)+4λ)

βδ(r+δ+2λ)−2b(r+δ)λφ
(r + δ)2(r + δ + 2λ)2

⎫⎬⎭
where the inequality in (55) comes from assumptions (54) and (19) which states that δ > 2γφλ,

and the inequality in (56) comes from (54) and the assumption that f 00(·) ≤ 0.
In the Full-interaction equilibrium, U∗ is given by (47). Hence, we can see that

∂u∗

∂δ
=

β(δ + 2λ)
n
βλN∗c (δ + 6λ) +

∂N∗c
∂δ

£
βδ(δ + 2λ)(δ + 3λ)− 4bλ3N∗c φ0(N∗c )

¤o
N(δ + 2λ)2 [β(δ + 2λ)− 2bλφ(N∗c )]2

−
4bβλφ(N∗c )

h
λN∗c (δ + 3λ) +

∂N∗c
∂δ
(δ + 2λ)

¡
δ2 + 3δλ+ λ2

¢i
N(δ + 2λ)2 [β(δ + 2λ)− 2bλφ(N∗c )]2

+
4b2λ2φ(N∗c )2

h
λN∗c +

∂N∗c
∂δ
(δ + λ)(δ + 2λ)

i
N(δ + 2λ)2 [β(δ + 2λ)− 2bλφ(N∗c )]2
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∂u∗

∂λ
=

∂N∗c
∂λ
(δ + 2λ) [β(δ + 2λ)− 2bλφ(N∗c )] [βδ(δ + 3λ)− 2bλ(δ + λ)φ(N∗c )]

N(δ + 2λ)2 [β(δ + 2λ)− 2bλφ(N∗c )]2

−
N∗c β

h
4bλ3

∂N∗c
∂λ

φ0(N∗c ) + βδ(δ + 6λ)
i

N(δ + 2λ) [β(δ + 2λ)− 2bλφ(N∗c )]2

+
4bδλN∗c φ(N∗c ) [β(δ + 3λ)− bλφ(N∗c )]
N(δ + 2λ)2 [β(δ + 2λ)− 2bλφ(N∗c )]2

∂u∗

∂b
=
−4N∗c βλ3φ+ ∂N∗c

∂b

©
β2δ(δ + 2λ)(δ + 3λ) + 4b2λ2(δ + λ)φ(N∗c )2

N(δ + 2λ) [β(δ + 2λ)− 2bλφ(N∗c )]2

− 4bβλ
£
λ2N∗c φ0(N∗c ) +

¡
δ2 + 3δλ+ λ2

¢
φ(N∗c )

¤ª
N(δ + 2λ) [β(δ + 2λ)− 2bλφ(N∗c )]2

∂u∗

∂wc
=

∂N∗c
∂wc

(
β2δ(δ2 + 5δλ+ 4λ2)− 4bβλ ¡δ2 + 3δλ+ λ2

¢
φ(N∗c )

N(δ + 2λ) [β(δ + 2λ)− 2bλφ(N∗c )]2

+
2λ2

£
2b2(δ + λ)φ(N∗c )2 + β2δ − 2bβλN∗c φ0(N∗c )

¤
N(δ + 2λ) [β(δ + 2λ)− 2bλφ(N∗c )]2

)
(57)

> 0

∂u∗

∂N
= − 1

N2(δ + 2λ)

½
(N∗c −N

∂N∗c
∂N

)
δβ(δ + 3λ)− (δ + λ)2bλφ(N∗c )

β(δ + 2λ)− 2bλφ(N∗c )

+
4bβλ3NN∗c φ0(N∗c )

(β(δ + 2λ)− 2bλφ(N∗c ))2
∂N∗c
∂N

¾
(58)

< 0

∂u∗

∂r
=

∂N∗c
∂r

©
β2δ(δ + 2λ)(δ + 3λ) + 4b2λ2(δ + λ)φ(N∗c )2

N(δ + 2λ) [β(δ + 2λ)− 2bλφ(N∗c )]2

− 4bβλ
£
λ2N∗c φ0(N∗c ) + φ(N∗c )

¡
δ2 + 3δλ+ λ2

¢¤ª
N(δ + 2λ) [β(δ + 2λ)− 2bλφ(N∗c )]2

where the inequality in (57) comes from assumption of concavity of φ(·) and assumption (19)
which states that δ > 2γφλ, and the inequality in (58) comes from the facts that ∂N∗c /∂N > 1

and N > N∗c , and assumption (19).
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Proof of Propositions 6 and 7: Using (27) and (28), the present-vaule Hamiltonian can be

written as:

Ht = e
−rt {f(N −Nc(t)) + [2d2(t) + d1(t)]wc + [Nc(t)− 2d2(t)− d1(t)] b− βd1(t)γ(t)}

+ μ1(t)

½
2λ

µ
Nc(t)

2
− d1(t)− d2(t)

¶
−
∙
δ + 2λ

µ
1 +

γd2(t)

d1(t)
φ(Nc(t))

¶¸
d1(t)]

¾
(59)

+ μ2(t)

∙
2λ

µ
1 +

γd2(t)

d1(t)
φ(Nc(t))

¶
d1(t)− δd2(t)

¸
Moreover, we need to consider the inequality constraints γ ≥ 0 and γ ≥ γ. The Lagrangian

for the maximization problem becomes

Lt = Ht + ξ0γ + ξ1(γ − γ).

The first-order conditions for the maximization are

Nc(t) : 0 =
∂Lt

∂Nc(t)
,

γ(t) : 0 =
∂Lt
∂γ(t)

,

d1 :
•
μ1(t) = −

∂Lt
∂d1(t)

,

d2 :
•
μ2(t) = −

∂Lt
∂d2(t)

,

This is equivalent to

0 =
∂Ht

∂Nc(t)
= e−rt

£−f 0(N −Nc(t)) + b¤+ μ1(t)λ+ (μ2(t)− μ1(t))2λγd2(t)φ
0(Nc(t)) (60)

0 =
∂Ht

∂γ(t)
+ ξ0 − ξ1 = −e−rtβd1(t) + 2λφ (Nc(t)) d2(t) [μ2(t)− μ1(t)] + ξ0 − ξ1 (61)

•
μ1(t) = −e−rt(wc − b− βγ) + μ1(t)(δ + 4λ)− 2μ2(t)λ

•
μ2(t) = −2e−rt(wc − b) + 2μ1(t)λ [1 + γφ(Nc(t))] + μ2(t) [δ − 2γλφ(Nc(t))]

We evaluate the optimal allocation at a steady state. Then, the last two differential equations

yield

μ1(t) =
e−rt

r + δ + 2λ

∙
wc − b− βγ +

2λ(wc − b+ βγ)

r + δ + 2λ− 2γλφ(Nc)
¸

(62)

μ2(t) = 2e
−rt rwc + βγλ [1 + γφ(Nc)] + wc[δ + λ [3− γφ(Nc)]]− b[r + δ + λ [3− γφ(Nc)]]

(r + δ + 2λ) [r + δ + 2λ− 2γλφ(Nc)] (63)

Equation (61) can be written as

∂Ht

∂γ(t)
= ξ1 − ξ0,
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which implies that the optimal γ is a corner solution. If ξ0 > 0 and ξ1 = 0, then γ
o = 0, whereas

if ξ0 = 0 and ξ1 > 0, then γo = γ. Substituting (62) and (63) into (61), we obtain:

sgn

∙
∂Ht

∂γ(t)

¸
= sgn

∙
β

∙
γφ(Nc)− δ

2λ

¸
+
2λφ(Nc) (wc − b− βγ)

r + δ + 2λ− 2γλφ(Nc)
¸
.

Because we have assumed (19), i.e. δ > 2γφλ, then ∂Ht/∂γ(t) > 0 can be possible only

when wc − b − βγ = wc − 2b > 0. Moreover, plugging the steady state conditions (8), (9) and
(10), into the Hamiltonian (59), we obtain

Ht|γ=γ̄ −Ht|γ=0 = bNcλ[−βδ(δ + 2λ) + 2λ(bδ + 2wcλ)φ(Nc)]
(δ + 2λ)2[β(δ + 2λ)− 2bλφ(Nc)] (64)

Define bφo ≡ βδ(δ + 2λ)

2λ(bδ + 2wcλ)

From (64) and using (19), we know that if

Ht|γ=γ̄ R Ht|γ=0 ⇔ φ R bφo
Let No

c denote the urban population that satisfies

φ(No
c) =

bφo
which means that

No
c = φ−1

µ
βδ(δ + 2λ)

2λ(bδ + 2wcλ)

¶
Remember that bφ∗ was the equilibrium threshold defined by (34). Simple comparison yields

bφ∗ − bφo = rβδ(wc − b)
(bδ + 2wcλ) [b(r + δ) + 2wcλ]

> 0,

implying that N∗c > N
o
c .

Next, we examine whether the urbanization level is optimal when the equilibrium level of

social interaction is efficient. Substituting μ1(t) and μ2(t) in (62) and (63) and using (60), we

obtain that

Ω =

½
Θot |γ=0 for γ = 0
Θot |γ=γ for γ = γ

,

where Θot |γ=0 and Θot |γ=γ are defined by

Θot |γ=0 ≡
b

r + δ
− λ(wc − b)(r + δ + 4λ)

(r + δ) (r + δ + 2λ)2
, (65)

Θot |γ=γ ≡
b

r + δ
− λ

(r + δ) (r + δ + 2λ)

∙
wc − 2b+ 2βwcλ

c(r + δ + 2λ)− 2bλφ(Nc)
¸

+
4wcλ

3φ0(Nc)Ncb/β
(r + δ)(δ + 2λ)(δ + 2λ− 2bλφ(Nc)/β)(r + δ + 2λ− 2bλφ(Nc)/β)
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and Ω is given by (23) (Ω ≡ f 0(N −Nc)/ (r + δ)). In contrast, the equilibrium urbanization

level is determined by

Ω =

½
Wu
0c|γ=0 for γ = 0

Wu
0c|γ=γ for γ = γ

,

where Wu
0c|γ=0 and Wu

0c|γ=γ are given by

Wu
0c|γ=0 =

b(r + δ)(r + δ + 3λ) + wcλ(r + δ + 4λ)

(r + δ)(r + δ + 2λ)2

and

Wu
0c|γ=γ =

βwcδλ(r + δ + 4λ)− 2b2λφ(Nc)(r + δ)2 + b(r + δ)[βδ(r + δ + 2λ)− 2wcλ2φ(Nc)]
(r + δ)(r + δ + 2λ)[βδ(r + δ + 2λ)− 2bλφ(Nc)(r + δ)]

.

Taking the difference, we have:

Wu
0c|γ=0 −Θot |γ=0 =

2(wc − b)λ(r + δ + 4λ)

(r + δ)(r + δ + 2λ)2
> 0.

Moreover, from the concavity of φ(·) and 0 < φ ≤ φ(·), we know that φ(Nc) > φ0(Nc)Nc. Then,

we have:

Wu
0c|γ=γ −Θot |γ=γ

> Wu
0c|γ=γ −

b(r + δ + 3λ)− λ [wc − b+ 2λwc/ (r + δ + 2λ− 2bλφ(Nc)/β)]
(r + δ) (r + δ + 2λ)

− 4wcλ
3φ(Nc)b/β

(r + δ)(δ + 2λ)(δ + 2λ− 2bλφ(Nc)/β)(r + δ + 2λ− 2bλφ(Nc)/β) .

Hence, we obtain that

lim
r→0

(Wu
0c|γ=γ −Θot |γ=γ) =

w − 2b
δ + 2λ

+
eβwcλ [β (δ + 2λ)− 3bλφ(Nc)]
(δ + 2λ) [β (δ + 2λ)− 2bλφ(Nc)] > 0

where the last inequality comes from the fact that γ = γ can be optimal only when wc− 2b > 0,
and assumptions δ < 2λ and (19) which states that δ > 2γφλ. From figures 4(a) and 4(b), we

obtain the results of the proposition.
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Figure 1: Flows in the labor market in steady state
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Figure 3: Equilibrium versus optimal social interactions
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Figure 4(b): Equilibrium versus optimal population 
distribution when there are full social interactions
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Figure A1: Optimal choice of social interactions


