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Abstract

Money plays important roles in modern financial systems. This
study develops a banking model comprising monetary factors in
order to investigate the relationship between money and banking
crises. In the model, it is assumed that banking deposit contracts
are not contingent on the state of nature. We show that under
incomplete contracts, a banking crisis may occur when inflation
is sufficiently low or high. The result appears to be consistent
with empirical evidence. We also show that the zero-inflation pol-
icy can be optimal under either complete or incomplete banking
contracts, despite the Friedman rule eliminating the possibility of
crises.
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was a stark reminder of the importance of liquidity, incomplete financial

contracts, and macroeconomic policies.

In modern financial systems, money is crucial to liquidity, storage,

transactions, payments, and so on. Since the central bank can create

money without any costs and can control the inflation rate in the long

run, monetary policies affect the portfolio choice of financial institutions,

which in turn determine the likelihood that the entire banking system will

run out of liquidity and experience a crisis. In addition, recent empirical

studies show that banking crises and inflation are positively correlated

(Demirguc-Kunt and Detragiache, 1998, 2005; Hardy and Pazarbasioglu,

1998; Boyd et al., 2002), which implies that inflation is arguably the

main factor that helps to predict a banking crisis. Despite the apparent

importance of monetary factors in financial systems, prior studies on

monetary and banking crisis models have treated these topics in isolation,

making it difficult to see the relationship between the two. In this study,

we develop a banking model comprising monetary factors to examine how

much money banks set aside for the future during a crisis, why banking

crises tend to occur in high inflationary economies, and what the optimal

rate of inflation is, given the importance of financial intermediaries.

More specifically, we extend the two-period-lived overlapping gener-

ation model of Champ et al. (1996) and Smith (2002), which creates

an endogenous transaction role for money based on two factors: spatial

separation and limited communication. First, spatial separation allows

us to assume a set-up in which the agents in the economy are born in

one of two symmetric islands, and a random fraction of agents on one is-

land is relocated to the other at the end of each period. Furthermore, the

stochastic relocations act as shocks to agents’ liquidity preferences, which

creates a role for banks to provide insurance against these shocks, as in

Diamond and Dybvig (1983). Next, because of limited communication,

we can assume that relocated agents must use fiat money because the

privately issued liabilities are not accepted in the new location. Instead,

the non-relocated agents can transact using checks or other credit instru-

ments. This assumption allows money to be held even when dominated

in the rate of return.
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This study focuses on incomplete deposit contracts that result banking

defaults, based on Allen and Gale (1998, 2004), because standard deposit

contracts cannot be made contingent on any shocks in practice. As an

alternative, Champ et al. (1996) and Smith (2002) consider only a situa-

tion in which banks offer complete deposit contracts to depositors. That

is, the incentive constraint of non-relocated agents is always satisfied,

so banks never default. This difference of the deposit contracts in each

model leads to the difference of definitions of a banking crisis. Champ et

al. (1996) and Smith (2002) regard a banking crisis as the case in which

banks exhaust their cash reserves, liquidate their physical investments,

or both. In this paper, we define a banking crisis as the case in which de-

positors withdraw their funds early to satisfy future consumption, which

then leads to bank defaults.

Under incomplete contracts, banks must promise fixed repayments to

early withdrawers independently of the state of nature. In this case, the

banks must choose one of two types of contract: a default-preventing

contract and a contract with defaults. Under the default-preventing con-

tract, all banks hold enough reserves to self-insure themselves against

liquidity shocks and promise low returns, which in turn generates sol-

vency. Under the contract with defaults, banks find it optimal to re-

duce their reserve holdings and default with positive probability because

avoiding default is costly. The banks compare the two types of contracts

and choose one for depositors. We show that the latter contract may be

adopted when the inflation rate is sufficiently low or high.

We also examine an optimal monetary policy. In the model with com-

plete banking contracts, Smith (2002) shows that the Friedman rule (zero

nominal interest rate) eliminates banking crises completely, but is never

optimal. However, he does not specify an optimal rate of money growth.

In contrast, we show that the zero-inflationary policy (fixed money sup-

ply) maximizes the steady-state welfare when banks can offer complete

deposit contracts to depositors. In addition, we show that the zero-

inflationary policy can be also optimal even when banks are forced to of-

fer incomplete (non-contingent) deposit contracts. Our results imply the

sub-optimality of the Friedman rule, which eliminates any types of crises
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under incomplete contracts. When the Friedman rule is implemented,

the banks can offer the perfect insurance to agents and the risk-sharing

term attains maximum. However, the level of intergenerational transfer

is very low, which implies that the banks invest less in storage technol-

ogy, and the level of consumption is also low. The zero-inflationary policy

must balance these two opposing forces.

1.1 Related Literature

Our work is related to a number of important studies in banking lit-

erature. Bryant (1980) and Diamond and Dybvig (1983) are seminal

studies that provide the first models of banking crises. Both papers

have consumers with random liquidity demands and show that deposit

contracts allowed this risk to be insured. Since then, banking models

have been developed using two different approaches. The first is crises

based on panics. The second is crises based on poor fundamentals arising

from the business cycle. The panic-based approach is taken by Diamond

and Dybvig (1983), Wallace (1988), Cooper and Ross (1998), Peck and

Shell (2003), and Ennis and Keister (2009, 2010), among others, while

the fundamental-based approach is taken by Bryant (1980), Chari and

Jagannathan (1988), Champ et al. (1996), and Allen and Gale (1998,

2004), among others. There is a long-standing debate about the under-

lying causes of financial crises and how these events are best captured in

economic models. While the current paper belongs to the second category

of crises, most of the abovementioned studies do not focus on monetary

factors.

An important contribution to the literature on money and banking

crises is that of Champ et al. (1996). They construct overlapping gen-

eration economies where spatial separation and limited communication

create a transaction role for money, and random liquidity shocks create a

role for banks. They show that there will be a banking crisis if the shock

is large enough to exhaust the banks’ cash reserves, which is supported in

empirical evidence from Canada and United States for the period 1880-

1910. Smith (2002) considers a similar framework and shows that in an
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economy with high inflation, banks have an incentive to minimize cash

reserves ex ante, which in turn increases banking fragility ex post. He

also shows that the Friedman rule is suboptimal, despite the policy elim-

inating crises. The current paper develops this framework by considering

incomplete contracts.

Other contributions on money and banking crises include Chang and

Velasco (2000), Diamond and Rajan (2006), Skeie (2008), and Allen et

al. (2014). Chang and Velasco (2000) introduce money as an argument

in the utility function of the Diamond and Dybvig model, and develop a

model of currency and banking crises. They show that a flexible exchange

rate system achieves the social optimum if monetary policies are designed

appropriately. Diamond and Rajan (2006) develop a banking model in

which demand deposits are repayable in money. They show that price

adjustments improve risk sharing because they introduce a form of state

contingency to contracts, but that variations in the transaction value of

money can lead to a banking crisis. Allen and Gale (1998) construct a

banking model in which crises are caused by weak fundamentals and show

that nominal contracts and an injection by the central bank achieve an

incentive-efficient allocation. Allen et al. (2014) develop a variant of the

Allen and Gale (1998) model, and show that with incomplete nominal

deposit contracts, a decentralized equilibrium allocation can be efficient if

the central bank accommodates the demands of the private sector for fiat

money. Skeie (2008) extends the Diamond and Dybvig (1983) model and

studies the effects of nominal contracts and monetary policy on interbank

markets and banking fragility. However, these three-period models do not

consider the effects of long-run inflation on financial systems.1

This study also bears a theoretical similarity to the work of Antinolfi

et al. (2001), Boyd et al. (2004), Antinolfi and Keister (2006), and

Matsuoka (2012).2 Antinolfi et al. (2001) study the relationship be-

1Recently, banking models have been developed using a search-theoretic approach
of money. See Berentsen et al. (2007), Williamson (2002), and Gu et al. (2013).

2The overlapping generations model with spatial separation and limited commu-
nication has become a workhorse for many areas of macroeconomics, including the
analysis of business cycles, economic growth, financial development, and monetary
policy. See, for example, Schreft and Smith (1997, 1998, 2000), Gomis-Porqueras and
Smith (2003), Bhattacharya et al. (2009), Haslag and Martin (2007), Bhattacharya
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tween various policies of the lender of last resort (LLR) and inflationary

equilibria in a pure-exchange economy. They find that an LLR policy in

which the central bank freely lends money at a zero nominal interest rate

generates the Pareto optimal steady-state equilibrium and non-optimal

inflationary equilibria. Antinolfi and Keister (2006) study a LLR policy

and a monetary policy in a similar environment, and find that the policy

combination achieves the market equilibrium that closely approximates

the first-best allocation of resources. Their LLR policy plays a key role in

mitigating communication friction, which generates a transaction role for

money. Boyd et al. (2004) compare the situation with competitive versus

monopolistic banking systems. They show that a monopolistic banking

system faces a higher probability of banking crises when the inflation

rate is below some threshold, while a competitive system is more frag-

ile otherwise. Matsuoka (2012) considers a situation in which interbank

markets are imperfect because of limited commitment, and shows that a

proper combination of central bank loans and a monetary policy restore

the constrained efficiency. Those analyses, however, consider only a situ-

ation in which banks can offer complete deposit contracts and do not go

bankrupt. In this study, we focus on incomplete (non-state-contingent)

deposit contracts, which are the most significant source of banking crises.

The remainder of the paper proceeds as follows. The next section lays

out the basic elements of the model. Section 3 describes the equilib-

rium with complete banking contracts, based on Smith (2002). Section

4 describes the equilibrium with incomplete banking contracts. Section

5 illustrates equilibria with numerical examples. Finally, Section 6 con-

cludes the paper.

2 The Environment

Periods are represented by t = 0, 1, 2, . . . . The world is divided into

two spatially separated-symmetric locations, and each location is popu-

lated by an infinite sequence of two-period-lived overlapping generations.

and Singh (2008a, b), Ghossoub and Reed (2010), and Ghossoub (2012).
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For simplicity, we consider a single-consumption-good economy with no

population growth.

Young agents are ex ante identical and of unit mass. They are endowed

with w > 0 units of goods when young, and none when old. They

consume only when old and have the logarithmic utility function, u(ct) =

ln(ct), where ct denotes the old-age consumption of agents born at period

t.3

There are two types of assets: storage investment and money. One

unit of the good invested in the storage investment at period t yields

R > 1 units of the good at period t+ 1. The storage investments can be

“scrapped.” We assume that one unit of the storage investments scrapped

at period t yields r < 1 units of the good at the end of period t, where

1 − r represents a liquidation cost. One unit of the good invested in

money at period t yields pt/pt+1 units of the good at period t+1, where

pt denotes the price level at period t.

As in Townsend (1987), we introduce a transaction role for money

by assuming that the two locations are spatially separated and that the

communication between them is limited. The limited communication

prevents privately issued liabilities from being verifiable in the other loca-

tion. However, money is universally recognizable and noncounterfeitable,

thus is accepted in both locations. In addition, during each period, agents

can trade and communicate only with others in the same location.

At the beginning of period t, each young agent makes a bank deposit.

After their deposits have been allocated between investments and money,

a fraction πt of the agents in each location is relocated to the other

location. These agents are called “movers.” As in the Diamond and

Dybvig model, relocation plays the role of a “liquidity preference shock,”

and it would be natural to assume that banks arise endogenously to

insure agents against these shocks. It is also assumed that an agent’s

type is private information so that banks cannot tell whether the person

withdrawing is a mover or a non-mover at the end of period t. The

relocation probability πt is a random variable, which represents not only

3As in Champ et al. (1996) and others, this assumption of logarithmic utility
allows us to solve the banks’ problem analytically.
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the fraction of all movers under a continuum of young agents, but also the

aggregate liquidity shock. That is, a higher value of πt corresponds to a

higher ratio of movers and demand for money. This is publicly observable,

and identically distributed over time. Let F represent the distribution

function, which is assumed to be smooth and strictly increasing on [0, 1],

and f the associated density function. The distribution F is common

knowledge.

Let Mt denote the per capita stock of money outstanding at period t,

where the initial money supply, M0, is exogenously given and held by the

old at the initial period 0. The government sets the money growth rate,

σ, once and for all in the initial period under the following government

constraint:

τt =
σ − 1

σ
mt, (1)

where mt is the real money balance. The variable τt shows the real value

of the lump-sum transfer (tax) under σ < (>)1. That is, if σ < (>)1,

the monetary injections (withdrawls) are accomplished via the lump-sum

transfer to (tax on) young agents.

3 Complete Banking Contracts

In this section, we consider the benchmark case in the sense that banks

can offer complete deposit contracts in which the amount that can be

withdrawn at each date is contingent on πt. The model described here is

based on Smith (2002).

As in Diamond and Dybvig (1983), the savings of all young agents will

be intermediated. At period t, banks take deposits w + τt from young

agents, and choose how much to invest in storage, it, and money balances,

mt. Movers must be given money or liquidated storage investments. The

deposit contract can be represented by a pair of functions, dmt (πt) and

dnt (πt), where the m and n represent movers and non-movers, giving the

return of movers and non-movers conditional on πt.

As is standard, we assume that the deposit market is competitive.

Thus, banks behave as Nash competitors and announce return schedules

(dmt (πt), d
n
t (πt)), taking the announced return schedules of other banks
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as given. Let αt and βt denote the fraction of cash reserves bank pays out

to movers and the fraction of storage investments liquidated at the end of

period t, respectively. The bank’s optimization problem is to maximize

the expected utility of a representative agent:∫ 1

0

{
πt ln(d

m
t (πt)(w + τt)) + (1− πt) ln(d

n
t (πt)(w + τt))

}
f(πt)dπt, (2)

subject to the following constraints:

it +mt = w + τt, (3)

πtd
m
t (πt)(w + τt) = αt(πt)

pt
pt+1

mt + βt(πt)rit, (4)

(1− πt)d
n
t (πt)(w + τt) = (1− αt(πt))

pt
pt+1

mt + (1− βt(πt))Rit, (5)

dmt (πt) ≤ dnt (πt), (6)

as well as 0 ≤ αt(πt) ≤ 1, 0 ≤ βt(πt) ≤ 1, and the usual non-negativity

constraints. Constraint (3) is the bank’s balance sheet constraint. Con-

straint (4) states that movers must be given either money or the proceeds

of liquidated investments. Constraint (5) states that the real payments to

non-movers are equal to the value of the bank’s remaining cash reserves

plus the income from the non-liquidated investments. Constraint (6) is

the incentive constraint that non-movers have no incentive to misrepre-

sent their preferences. As seen below, the incentive constraint is always

satisfied under complete contracts.

Defining γt ≡ mt/(w + τt) as a reserve-deposit ratio, we can rewrite

constraints (4) and (5) as:

πtd
m
t (πt) = αt(πt)

pt
pt+1

γt + βt(πt)(1− γt)r,

(1− πt)d
n
t (πt) = (1− αt(πt))

pt
pt+1

γt + (1− βt(πt))(1− γt)R.

Both αt and βt are chosen after the realization of πt, while γt is chosen

before the realization of πt. Hence, the optimal values of αt and βt can

be chosen as the functions of γt and πt, as follows:
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max
αt,βt∈[0,1]

πt ln

[
αtγt
πt

pt
pt+1

+
βt

π
(1− γt)r

]
+ (1− πt) ln

[
(1− αt)γt
1− πt

pt
pt+1

+
(1− βt)(1− γt)

1− π
R

]
.

The solutions to the problem are:

αt(πt) =

 πt

π∗
t

if 0 ≤ πt ≤ π∗
t ,

1 if π∗
t < πt ≤ 1,

(7)

βt(πt) =

{
0 if 0 ≤ πt ≤ π∗∗

t ,

πt − R(1−πt)
rIt

γt
1−γt

if π∗∗
t < πt ≤ 1,

(8)

where

It ≡ R
pt+1

pt
, π∗

t ≡ γt
γt + (1− γt)It

, and π∗∗
t ≡ γt

γt + (1− γt)
r
R
It
.

Note that π∗
t < π∗∗

t for any It. When the demand for liquidity is below

the critical value, π∗
t , banks are able to meet the demand using their own

cash reserves. Under such circumstances, it is optimal for them to pay out

their remaining reserves to non-movers and not to liquidate their storage

investments. When a liquidity shock between π∗
t and π∗∗

t occurs, all cash

reserves of banks are paid out to movers, but they do not liquidate their

investments because the opportunity cost of providing better insurance

against the liquidity shock is sufficiently high. In this situation, the

bank faces a “liquidity crisis.” When the demand for liquidity is greater

than π∗∗
t , banks pay out all their reserves to the movers and liquidate

some of their investments. In this case, the benefit of providing better

insurance outweighs its cost, indicating that the bank faces a “costly

liquidity crisis.”

Then, the returns to movers and non-movers can be represented by the
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πt
10 π∗

t π∗∗
t

R
It
γt + r(1− γt)

(1− γt)R + R2

rIt
γt

R
It
γt +R(1− γt)

dmt

dnt

dmt , d
n
t

Figure 1: The deposit returns under complete contracts

following functions:

dmt (πt) =


R
It
γt +R(1− γt) if 0 ≤ πt < π∗

t ,

R
It

γt
πt

if π∗
t ≤ πt < π∗∗

t ,

R
It
γt + (1− γt)r if π∗∗

t ≤ πt ≤ 1,

(9)

dnt (πt) =


R
It
γt +R(1− γt) if 0 ≤ πt < π∗

t ,
R(1−γt)
1−πt

if π∗
t ≤ πt < π∗∗

t ,

(1− γt)R + R2

rIt
γt if π∗∗

t ≤ πt ≤ 1.

(10)

Figure 1 illustrates the relationship between the deposit returns, dmt (πt)

and dnt (πt), and πt given in (9) and (10), holding R and It constant. Note

that for πt ∈ [0, π∗
t ), money provides more consumption than is needed by

the movers, and both returns are equalized. For πt ∈ [π∗
t , π

∗∗
t ), investment

liquidation does not occur, and the difference between the two returns

is increasing in πt. For πt ∈ [π∗∗
t , 1], banks liquidate their investments

to prevent the gap from widening further. Note also that the incentive

constraint (6) is always satisfied.
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We now proceed to solve the optimal value of γt. Substituting the

optimal values of αt and βt into the banks’ objective function, we obtain

the optimal problem:

max
γt∈[0,1]

∫ 1

0

{
πt ln(d

m
t (πt)) + (1− πt) ln(d

n
t (πt))

}
f(πt)dπt, (11)

subject to (9) and (10). The bank’s objective function is a function of γt
and It. Inserting (9) and (10) into (11), the objectives can be rewritten

as:

X(γt, It) ≡ max
γt∈[0,1]

∫ π∗
t

0

ln

(
R

It
γt +R(1− γt)

)
f(πt)dπt

+

∫ π∗∗
t

π∗
t

{
πt ln

(
R

It

γt
πt

)
+ (1− πt) ln

(
R(1− γt)

1− πt

)}
f(πt)dπt

+

∫ 1

π∗∗
t

{
πt ln

(
R

It
γt + (1− γt)r

)
+ (1− πt) ln

(
(1− γt)R +

R2

rIt
γt

)}
f(πt)dπt.

The optimal value of γ(It), which is defined as a function of It, is the

solution to this problem and implicitly defined by:

(1− γt)
(
1− r

R
It

)
π∗∗
t =

∫ π∗∗
t

π∗
t

F (πt)dπt. (12)

The optimal value of γ(It) results from the trade-off between the two

forces. First, since the return on cash is lower than on storage investments

(i.e., It ≥ 1), banks prefer to minimize cash reserves. At the same time,

since they strive to provide insurance by equalizing the returns between

movers and non-movers for all realizations of πt, they must hold sufficient

cash reserves. At the margin, the welfare gains from risk-sharing exactly

offset the cost implied by the return dominance of storage investments

over cash reserves.

As established in Smith (2002, Proposition 3), the optimal reserve-

deposit ratio satisfies the following properties:

Lemma 1 (i) γ(1) = 1, (ii) γ(R/r) = 0, (iii) γ′(It) < 0.

The proof of this is omitted. An increase in It makes money costly, which

gives an incentive for banks to hold less reserves. When It = 1, which
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is the Friedman rule, the return rates of both assets are equalized, and

banks invest their entire deposits in cash reserves because cash has the

advantage of insuring against the liquidity shock.

An equilibrium consists of sequences for prices {It} and the decision

rules of banks {γt, αt, βt}, such that (i) given {It}, the decision rules

solve the banks’ problems in each period; (ii) the market clears when

money is traded for goods at the beginning of each period; and (iii) the

government budget constraint in equation (1) holds in each period.

The money market clears if

mt = γ(It)(w + τt). (13)

Substituting the government budget constraint (1) into (13) yields

mt =
γ(It)w

1− σ−1
σ
γ(It)

. (14)

Combining (13) and (14), we obtain the after-tax/transfer income of

young agents at t:

Y (It) ≡ w + τt =
w

1− σ−1
σ
γ(It)

. (15)

By definition, It = Rpt+1/pt = σRmt/mt+1. Inserting (14) into this

definition yields

It = σR
γ(It)

γ(It+1)

1− σ−1
σ
γ(It+1)

1− σ−1
σ
γ(It)

, (16)

which describes the equilibrium evolution of the gross nominal interest

rate, {It}∞t=0.

We proceed to study the stationary behavior of the economy. From

(16), the steady-state (gross) nominal interest rate is given by:

I = σR. (17)

Note that the money growth rate, σ, is equal to the steady-state inflation

rate.

Let us consider the relationship between inflation and the probability

of a liquidity crisis in the steady state. Using simple calculations, we find
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that both cut-off values, π∗ and π∗∗, are decreasing in I, implying that

inflation increases the probability of a liquidity crisis. Higher inflation,

which means higher opportunity costs of holding money, induces banks

to economize, which in turn means that banks more often exhaust money,

scrap productive investments, or both.

In the steady state, the expected utility of a representative young agent

(2) is only defined as a function of I, as follows:4

W (I) ≡ lnY (I) +X[γ(I), I], (18)

which states that the effects of the nominal interest rate (or equivalently,

the inflation rate) on the steady-state welfare consist of two components.

The first component represents an intergenerational transfer. Since any

seigniorage collected is rebated to the young, inflation leads to a transfer

of goods from the old money holders to the young agents. The sec-

ond component represents risk-sharing between movers and non-movers.

Since inflation decreases the rate of return on money and increases the

probability of crises, it produces inequality between movers and non-

movers.

The following proposition provides the optimal monetary policy that

maximizes the steady-state welfare.5

Proposition 1 In an economy with complete banking contracts, the op-

timal monetary policy is to set the net money growth rate equal to zero

(i.e., I = R).

For the proof, see the Appendix. When the Friedman rule (i.e., I = 1) is

implemented, the banks can offer the perfect insurance to agents, which

implies that the liquidity crisis is completely eliminated and the risk-

sharing term X[γ(1), 1] attains a maximum. On the other hand, the

level of the after-tax/transfer income, Y (1), is very low, which implies

that the banks invest less in storage technology and the level of con-

4We use the terms expected utility and welfare interchangeably.
5Smith (2002) shows that the Friedman rule (i.e., I = 1) is suboptimal in this

economy with random liquidity shocks; however, he does not provide the optimal rate
of inflation.
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sumption is low. The zero inflation policy must balance the two effects.6

Bhattacharya and Singh (2008a) show that the equilibrium allocation

under I = 1 is identical to the constrained-efficient allocation in this

environment.

In this section, we deliberately avoid using terminology such as “bank-

ing crisis” and instead use “liquidity crisis.” This is because the incentive

constraint (6) is always satisfied and the non-movers withdraw their funds

when they are old. That is, the banks never default, which does not seem

to capture some features of the reality observed in 2008. In the next sec-

tion, we will consider a situation in which incomplete banking contracts

may create a banking crisis.7

4 Incomplete Banking Contracts

In the benchmark model described in the previous section, banks can

offer state-contingent deposit contracts. However, we do not observe

such complex contracts in reality. In this section, we focus on incomplete

banking contracts. That is, we assume that banks are forced to offer

non-contingent deposit contracts to agents, as in Allen and Gale (1998,

2004a, b), where this type of contract can be justified by transaction

costs, asymmetric information, and the nature of the legal system.

Under incomplete contracts, the return to movers, dmt , does not depend

on the value of πt. However, the return to non-movers, dnt , does depend on

the value of πt because non-movers get whatever assets are left over. More

specifically, without loss of generality, by setting dnt = ∞, we ensure that

non-movers receive the residue of the bank’s assets at next period. Thus,

the deposit contract is characterized by the return to movers, dmt ≡ dt
and the portfolio choice.

6Bhattacharya and Singh (2008b) consider a setting in which liquidity shocks are
realized before the bank has chosen its portfolio and show that a negative net money
growth rate is optimal.

7In existing literature, including Champ et al. (1996), Smith (2002), among others,
a “banking crisis” is defined as a situation in which withdrawal demand is greater than
total cash reserves and depositors in need of cash suffer consumption losses. In this
study, such a situation is said to be a “liquidity crisis” rather than a “banking crisis.”
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As in the previous section, the bank faces the following constraints on

the choices it, mt, and dt:

πtdt = αt
pt
pt+1

γt + βtr(1− γt), (19)

(1− πt)d
n
t (πt) = (1− αt)

pt
pt+1

γt + (1− βt)R(1− γt), (20)

dt ≤ dnt (πt). (21)

The main difference between complete and incomplete contracts is that

the return to movers, dt, is fixed and chosen before the realization of πt

because of the incompleteness of contracts. Since non-movers receive the

residue of the bank’s assets at t+1, claiming of these assets has to absorb

the shocks to the movers.

To categorize the economy into three states according to the realization

of πt, we give the cut-off values of liquidity shock as follows:8

π̃∗
t =

R

It

γt
dt
, π̃∗∗

t =
Rr(1− γt) +

R2

It
γt − rdt

(R− r)dt
,

where we use γt = mt/(w + τt) and It = Rpt+1/pt.

When πt ∈ [0, π̃∗
t ), we say the economy is in the normal state. In

the normal state, the bank can meet the cash demands of movers us-

ing only its reserves. Next, when πt ∈ [π̃∗
t , π̃

∗∗
t ), which is classified as

the liquidation state, the bank can satisfy the demands of movers only

by liquidating some storage investment without violating the incentive

constraint (21). In this case, the bank is said to be illiquid, but solvent.

Finally, under πt ∈ [π̃∗∗
t , 1], the economy can be classified as being in a

crisis state, which means that the bank cannot satisfy the demands of

movers, even by liquidating all its assets, and hence defaults. In this

case, the bank is insolvent. We discuss these three states in detail below.

Let us first consider the normal state. In this case, the realization of

πt is below the critical value π̃∗
t , and banks can pay out only a fraction

of its reserves to the movers. That is, the banks will not exhaust their

8We assume π̃∗
t ≤ π̃∗∗

t , which can be reduced to dt ≤ R(1 − γt) + Rγt/It. This
assumption ensures that banks will always find it optimal to liquidate the storage
investments last. We will check later whether the assumption holds in equilibrium.
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cash reserves and will not liquidate their investments (i.e., αt < 1 and

βt = 0). Since the movers receive the fixed return dt, the remaining

reserves (R
It
γt−πtdt) go to the non-movers. The return schedule of movers

and non-movers is given by:

(xm
t (πt), x

n
t (πt)) =

(
dt,

R(1− γt) +
R
It
γt − πtdt

1− πt

)
, (22)

where xm
t (πt) and xn

t (πt) denote the return to movers and non-movers,

respectively, in the realization of πt.

Next, consider the liquidation state in which banks liquidate part of

their storage investments. Then, all cash reserves of banks are paid out

to the movers and some investments are liquidated to meet the liquidity

demands of movers, where the incentive constraint (21) is still satisfied

(i.e., αt = 1 and βt > 0). In this case, the banks are in “liquidity crises,”

but remain solvent. From equation (19), the proportion of the liquidated

investments is

βt =
πtdt − R

It
γt

r(1− γt)
.

By substituting this into equation (20), we obtain the return to the non-

movers. Then the return schedule is given by:

(xm
t (πt), x

n
t (πt)) =

(
dt,

R(1− γt)− R
r
(πtdt − R

It
γt)

1− πt

)
. (23)

Finally, we consider the crisis state in which all non-movers withdraw

their funds at the end of the first period. In this case, banks exhaust

their cash reserves and liquidate much of their storage investments and

the incentive constraint is violated. That is, the non-movers misrepresent

their preferences, announce that they are movers, and withdraw their

funds from their banks. As a result, banks go bankrupt. In this case,

the banks distribute their available resources to their depositors equally.

The return schedule is given by

(xm
t (πt), x

n
t (πt)) =

(
R

It
γt + r(1− γt),

R

It
γt + r(1− γt)

)
. (24)
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The deposit contract is characterized by the pair (dt, γt). Then we

have the bank’s problem as follows:

max
dt,γt

∫ 1

0

{
πt ln(x

m
t (πt)) + (1− πt) ln(x

n
t (πt))

}
f(πt)dπt,

where

xm
t (πt) =

{
dt if 0 ≤ πt < π̃∗∗

t ,

R
It
γt + r(1− γt) if π̃∗∗

t ≤ πt ≤ 1,
(25)

xn
t (πt) =


R(1−γt)+

R
It
γt−πtdt

1−πt
if 0 ≤ πt < π̃∗

t ,
R(1−γt)−R

r
(πtdt− R

It
γt)

1−πt
if π̃∗

t ≤ πt < π̃∗∗
t ,

R
It
γt + r(1− γt) if π̃∗∗

t ≤ πt ≤ 1.

(26)

Since banking contracts cannot depend on the realization of πt, the

bank optimization problem must be solved at the initial stage. The next

lemma establishes the property of the optimization problem.

Lemma 2 It is optimal for banks to set dt ≥ R
It
γt (i.e., π̃

∗
t ≤ 1).

The proof is given in the Appendix. This result states that a liquidation-

preventing contract, in which banks choose not to liquidate their storage

investments for any πt (i.e., π̃
∗
t > 1), is never optimal. In other words,

the banks will admit at least to scraping investments when they exhaust

their cash reserves.

There are then two different deposit contracts that need to be con-

sidered: default-preventing contracts (Section 4.1) and contracts with de-

faults (Section 4.2).

4.1 Default-Preventing Contracts

Consider first default-preventing contracts (DPC) that do not have

any equilibrium with banking defaults. Banks can avoid bank runs by

offering a sufficiently low return for movers, having sufficiently large cash
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reserves, or both. That is, the banks’ portfolio (dt, γt) must satisfy the

following condition:

R

It
γt ≤ dt ≤

R

It
γt + r(1− γt), (27)

which is equivalent to π̃∗
t ≤ 1 ≤ π̃∗∗

t . Since the crisis state is not possible

under DPC, the banks maximize the following expected utility:

X̃(dt, γt, It) ≡ max
dt,γt

∫ π̃∗
t

0

{
πt ln(dt) + (1− πt) ln

[
R(1− γt) +

R
It
γt − πtdt

1− πt

]}
f(πt)dπt

+

∫ 1

π̃∗
t

{
πt ln(dt) + (1− πt) ln

[
R(1− γt)− R

r
(πtdt − R

It
γt)

1− πt

]}
f(πt)dπt,

(28)

subject to (27). The next lemma establishes the property of this solution.

Lemma 3 Under DPC, at the optimum, constraint (27) is binding (i.e.,

dt =
R
It
γt + r(1− γt) or π̃∗∗

t = 1).

The proof is shown in the Appendix. If dt <
R
It
γt + r(1− γt), it would be

possible to increase the expected utility by holding dt constant and re-

ducing γt, since It ≥ 1. The lemma implies that the problem of contracts

with defaults, which is discussed in the next subsection, has an interior

solution.

Figure 2 illustrates the relationship between deposit returns and πt,

holding R and It constant. Note that for small values of πt (i.e., 0 ≤ πt ≤
π̃∗
t ), money provides more consumption than is needed by the movers, so

some money is stored and given to non-movers. The return inequality

between movers and non-movers is increasing in πt. For higher values

of πt (i.e., π̃∗
t < πt ≤ 1), banks liquidate their investments to prevent

the gap from widening further. In this case, the return to non-movers is

given by (1−γt)R+ R2

rIt
γt, which is independent of πt. Note also that the

incentive constraint (21) is always satisfied.
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Figure 2: The deposit returns under DPC

The above problem can be rewritten as:

max
γt∈[0,1]

∫ 1

0

πtf(πt)dπt ln

[
R

It
γt + r(1− γt)

]
+

∫ π̃∗
t

0

(1− πt) ln

[
(R− πtr)(1− γt) + (1− πt)

R
It
γt

1− πt

]
f(πt)dπt

+

∫ 1

π̃∗
t

(1− πt) ln

[
R(1− γt) +

R2

rIt
γt

]
f(πt)dπt,

where π̃∗
t = R

It
γt/(

R
It
γt + r(1 − γt)). The first-order condition for this

problem is:

R
It
− r

r(1− γt) +
R
It
γt

[∫ 1

0

πtf(πt)dπt +

∫ 1

π̃∗
t

(1− πt)f(πt)dπt

]

+

∫ π̃∗
t

0

(1− πt)[(1− πt)
R
It
− (R− πtr)]

(R− πtr)(1− γt) + (1− πt)
R
It
γt
f(πt)dπt = 0. (29)

Let γ̃ (It) denote the value of γt that satisfies (29) and d̃ (It) the corre-

sponding return to movers, expressed as a function of the (gross) nominal

interest rate. The optimal reserve-deposit ratio, γ̃ (It), satisfies the fol-

lowing properties:
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Lemma 4 (i) γ̃(1) = 1, (ii) γ̃(R/r) = 0, (iii) γ̃′(It) < 0.

The proof of this is in the Appendix. The intuition of these results is

similar to that under complete deposit contracts. From Lemma 4, we see

that d̃(1) = R, d̃(R/r) = r, and d̃′(I) < 0. As in the previous section, the

government budget constraint and the market-clearing condition are the

same, and hence (1) and (13) continue to hold in equilibrium. Therefore,

in the steady-state equilibrium, the after-tax/transfer income of young

agents is given by:

Ỹ (I) ≡ w + τ =
w

1− I−R
I

γ̃(I)
. (30)

In the steady state, the expected utility of a representative young agent

(2) is only given by a function of I, as follows:

W̃ (I) ≡ ln Ỹ (I) + X̃

[
R

I
γ̃(I) + r(1− γ̃(I)), γ̃(I), I

]
. (31)

Having characterized the welfare, we provide the optimal monetary

policy under DPC.

Proposition 2 Suppose that the banks provide DPC. Then the optimal

monetary policy is to set the net money growth rate equal to zero (i.e.,

I = R).

For the proof, see the Appendix. The proposition confirms the robustness

of the optimality of the zero-inflationary policy, despite the Friedman rule

eliminating a costly liquidity crisis.9

4.2 Contracts with Defaults

Consider the optimal contract with banking defaults. Banks offer good

returns to depositors in the normal state by taking the default risk. That

is, banks will choose the portfolio (dt, γt) satisfying:

R

It
γt + r(1− γt) ≤ dt ≤

R

It
γt +R(1− γt), (32)

9Since d → R as I → 1, we have π̃∗ → 1.
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Figure 3: The deposit returns under the contract with defaults

which is equivalent to the combination of (A.1) and π̃∗∗
t ≤ 1.

Figure 3 illustrates the relationship between the deposit returns and

πt, holding R and It constant. Note that for small values of πt (i.e.,

0 ≤ πt < π̃∗
t ), money provides more consumption than the promised-

constant repayments to the movers, and the difference of the two returns

is increasing in πt. For πt ∈ [π̃∗
t , π̃

∗∗
t ), the banks scrap their investments

to meet the liquidity demands of movers without violating the incentive

constraint. The difference between the returns of movers and non-movers

is decreasing in πt. For high values of πt (i.e., πt ≥ π̃∗∗
t ), it is impossible

to pay the movers the fixed return dt without violating the incentive

constraint, and a banking default inevitably ensues. Since the banks

are identical, these widespread defaults can be interpreted as a “banking

crisis.”

Substituting (25) and (26) into the bank’s objective function yields the
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problem:

X̂(dt, γt, It) ≡ max
dt,γt

∫ π̃∗
t

0

{
πt ln(dt) + (1− πt) ln

[
R(1− γt) +

R
It
γt − πtdt

1− πt

]}
f(πt)dπt

+

∫ π̃∗∗
t

π̃∗
t

{
πt ln(dt) + (1− πt) ln

[
R(1− γt)− R

r
(πtdt − R

It
γt)

1− πt

]}
f(πt)dπt

+

∫ 1

π̃∗∗
t

ln

[
R

It
γt + r(1− γt)

]
f(πt)dπt. (33)

Let (d̂(It), γ̂(It)) denote the solution to this problem, expressed as a

function of the (gross) nominal interest rate. The properties of these

values are given as follows:

Lemma 5 (i) γ̂(1) = 1 and d̂(1) = R, (ii) γ̃(R/r) = 0 and d̂(R/r) = r.

The proof is shown in the Appendix. These results are similar to those

obtained in Lemma 1 and 4. Owing to the complexity, however, we are

unable to show analytically that γ̂′(It) < 0 and d̂′(It) < 0. Numerical

simulations in the next section confirm this result.

The after-tax/transfer income of young agents in the steady-state equi-

librium is:

Ŷ (I) ≡ w + τ =
w

1− I−R
I

γ̂(I)
. (34)

In the steady state, the expected utility of a representative young agent

is given as the function of I, as follows:

Ŵ (I) ≡ ln Ŷ (I) + X̂
[
d̂(I), γ̂(I), I

]
. (35)

Comparing Ŵ (I) and W̃ (I), we can see whether the banks should avoid

bankruptcy or accept the risk of default with probability 1−F (π̃∗∗
t ). More

precisely, it is better for the banks to take the risk of default if

Ŵ (I) > W̃ (I). (36)
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5 Numerical Examples

To clarify the concepts and results presented so far, we provide a se-

quence of numerical examples of equilibria with complete and incomplete

banking contracts. In these examples, we successively decrease the scrap

value r to illustrate the properties of banking contracts. The equilibrium

values (the reserve-deposit ratio, the cut-off values, and welfare) are il-

lustrated for the case where r = 0.8 in Table 1, r = 0.7 in Table 2, and

r = 0.4 in Table 3. In all our examples, w = 1 and R = 1.2, and πt is

uniformly distributed so that f(π) = 1. In addition, the (gross) nominal

interest rate, I, varies between 1.00 and 1.28. Although an interbank

asset market has not been modeled here, the low scrap value captures a

situation in which banks have to sell their long-term assets at “fire-sale”

prices.

Table 1: r = 0.8

Complete Contracts DPC Contract with Defaults

I γ π∗ π∗∗ W γ̃ π̃∗ W̃ γ̂ π̃∗ π̃∗∗ Ŵ
1.00 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000
1.01 0.9653 0.9649 0.9763 0.0057 0.9829 0.9884 0.0028 0.9785 0.9824 0.9907 0.0035
1.02 0.9328 0.9316 0.9533 0.0108 0.9607 0.9729 0.0063 0.9549 0.9637 0.9838 0.0072
1.04 0.8737 0.8693 0.9089 0.0196 0.9105 0.9362 0.0136 0.9052 0.9244 0.9746 0.0145
1.08 0.7726 0.7588 0.8251 0.0323 0.8058 0.8521 0.0266 0.8046 0.8418 0.9672 0.0270
1.12 0.6869 0.6620 0.7461 0.0402 0.7073 0.7640 0.0355 0.7088 0.7571 0.9680 0.0357
1.15 0.6293 0.5962 0.6889 0.0438 0.6396 0.6983 0.0396 0.6418 0.6936 0.9711 0.0397
1.18 0.5756 0.5347 0.6329 0.0455 0.5766 0.6339 0.0416 0.5789 0.6308 0.9751 0.0418
1.20 0.5413 0.4958 0.5960 0.0459 0.5369 0.5917 0.0420 0.5391 0.5894 0.9779 0.0422
1.24 0.4750 0.4218 0.5225 0.0446 0.4617 0.5092 0.0406 0.4634 0.5081 0.9834 0.0408
1.28 0.4102 0.3520 0.4490 0.0411 0.3906 0.4289 0.0368 0.3917 0.4284 0.9883 0.0369

Table 2: r = 0.7

Complete Contract DPC Contract with Defaults

I γ π∗ π∗∗ W γ̃ π̃∗ W̃ γ̂ π̃∗ π̃∗∗ Ŵ
1.00 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000
1.01 0.9708 0.9705 0.9826 0.0048 0.9886 0.9932 0.0019 0.9838 0.9870 0.9917 0.0026
1.02 0.9435 0.9424 0.9656 0.0091 0.9733 0.9840 0.0042 0.9663 0.9736 0.9851 0.0054
1.04 0.8940 0.8902 0.9329 0.0164 0.9377 0.9613 0.0094 0.9294 0.9460 0.9751 0.0108
1.08 0.8102 0.7980 0.8714 0.0270 0.8588 0.9061 0.0191 0.8537 0.8890 0.9639 0.0202
1.12 0.7406 0.7182 0.8138 0.0334 0.7805 0.8448 0.0262 0.8034 0.8455 0.9537 0.0251
1.15 0.6948 0.6644 0.7724 0.0362 0.7253 0.7974 0.0295 0.7768 0.8194 0.9458 0.0273
1.18 0.6531 0.6147 0.7323 0.0377 0.6738 0.7501 0.0312 0.7538 0.7956 0.9387 0.0289
1.20 0.6270 0.5835 0.7060 0.0379 0.6415 0.7188 0.0315 0.7400 0.7806 0.9342 0.0296
1.24 0.5781 0.5249 0.6545 0.0370 0.5810 0.6572 0.0304 0.7154 0.7525 0.9258 0.0306
1.28 0.5323 0.4706 0.6038 0.0344 0.5254 0.5972 0.0273 0.6938 0.7264 0.9179 0.0310
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Table 3: r = 0.4

Complete Contracts DPC Contracts with Defaults

I γ π∗ π∗∗ W γ̃ π̃∗ W̃ γ̂ π̃∗ π̃∗∗ Ŵ
1.00 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000
1.01 0.9783 0.9781 0.9926 0.0035 0.9955 0.9985 0.0007 0.9910 0.9929 0.9940 0.0015
1.02 0.9582 0.9574 0.9854 0.0067 0.9895 0.9964 0.0017 0.9815 0.9861 0.9886 0.0030
1.04 0.9219 0.9190 0.9715 0.0121 0.9750 0.9912 0.0038 0.9623 0.9730 0.9794 0.0058
1.08 0.8616 0.8521 0.9453 0.0197 0.9403 0.9777 0.0080 0.9324 0.9504 0.9628 0.0096
1.12 0.8131 0.7953 0.9210 0.0242 0.9019 0.9610 0.0114 0.9096 0.9309 0.9482 0.0120
1.15 0.7823 0.7576 0.9036 0.0261 0.8723 0.9469 0.0132 0.8950 0.9175 0.9381 0.0133
1.18 0.7552 0.7234 0.8869 0.0271 0.8429 0.9317 0.0141 0.8822 0.9049 0.9287 0.0142
1.20 0.7389 0.7022 0.8761 0.0272 0.8237 0.9211 0.0143 0.8744 0.8969 0.9227 0.0146
1.24 0.7094 0.6631 0.8552 0.0266 0.7864 0.8990 0.0136 0.8603 0.8817 0.9113 0.0150
1.28 0.6835 0.6278 0.8350 0.0250 0.7510 0.8761 0.0116 0.8480 0.8673 0.9005 0.0151

Note first that banks that must offer incomplete contracts to depositors

hold more cash reserves (or equivalently, make fewer storage investments)

than banks that can offer complete contracts, except in the case with

sufficiently high r and high I. In addition, as the inflation rate rises,

which means that the opportunity cost of holding cash increases, the

equilibrium reserve-deposit ratio, γ, declines under both complete and

incomplete contracts, as indicated by Lemma 1 and 4. With an increas-

ing inflation rate, the probabilities of a costly liquidity crisis, 1− F (π∗∗)

and 1−F (π̃∗), increase for both contracts. Alternatively, the probability

of bankruptcy, 1 − F (π̃∗∗), and inflation take a hump-shaped relation-

ship when the contract with defaults is adopted. For sufficiently low and

high inflation rates, the probability of bankruptcy becomes low, while

it is high for mild inflation rates. The intuition is as follows. With an

increase in the inflation rate, the banks not only hold low cash reserves

(or equivalently, make more storage investments), but also promise low

returns to depositors who withdraw early. This implies that the incen-

tive constraint (21) is more likely to be satisfied. As a result, increases

in the inflation rate put downward pressure on the cut-off value, π̃∗∗. At

the same time, the number of depositors served liquidated investments

increases (equivalently, a decline in π̃∗) and the returns to non-movers

decrease, implying that the incentive constraint is less likely to be satis-

fied. As a result, increases in the inflation rate put upward pressure on

the cut-off value, π̃∗∗. For high inflation rates, the latter effect dominates

the former effect, and then π̃∗∗ is increasing in I. Tables 1–3 also show

the range in which the probability of bankruptcy is increasing in inflation

as the scrap value, r, declines.
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Second, note that, as shown in Proposition 1 and 2, the Friedman

rule (I = 1.00) eliminates any types of crises, but is never optimal for

both banking contracts. At I = 1.00, the gain from the intergenerational

transfer outweighs the loss of return inequality between movers and non-

movers. The zero-inflationary policy (I = 1.20) balances the two effects

and achieves the maximum welfare under complete contracts and DPC,

but not under the contract with defaults. When the banks choose the

contracts with defaults, the monetary authority may have an incentive to

implement an inflationary policy when r is sufficiently low, as illustrated

in Tables 2 and 3.

Finally, we confirm the detailed welfare values. From all tables, we

can see that the welfare under complete banking contracts are highest

among them, which is reasonable because the incompleteness of con-

tracts imposes a welfare cost on the depositors under the restriction on

the consumption smoothing between states. Alternatively, our interests

are to compare the levels of welfare under DPC with those under the con-

tracts with defaults. When r = 0.4 and 0.8, we can confirm that banks

will choose the contract with defaults from I = 1.00 to 1.28. More-

over, considering the concavity of the welfare function, even if the value

of I increases further, we can guess that this relationship is consistent.

However, the consistent relationship does not hold under r = 0.7. That

is, the DPC will be adopted when 1.12 ≤ I < 1.24. Instead, once the

nominal interest rate falls below I = 1.12 or exceeds I = 1.24, the con-

tract with defaults will be adopted. In other words, the banking defaults

never occur under 1.12 ≤ I < 1.24. However, a banking crisis can oc-

cur with a positive probability under I < 1.12 or 1.24 ≥ I. It other

words, a banking crisis occurs in either very low inflation (and deflation)

environments or very high inflation environments, yielding a U-shaped

relationship between a banking crisis and inflation.10 Importantly, note

that in any of the cases, a costly liquidity crisis can occur for any I > 1

under incomplete contracts, but its probability is lower than under com-

plete contracts. Although there are few historical episodes of crises in

very low inflation environments (e.g., the U.S. during the Great Depres-

10Jiang (2008) obtains similar results in a “dollarized” model economy.
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sion and Japan in the 1990s), there are many episodes in inflationary

environments. Our results are consistent with existing empirical liter-

ature reporting the positive relationship between a banking crisis and

inflation.11

6 Conclusions

We have studied a monetary equilibrium economy in which banks pro-

vide a liquidity service to risk-averse depositors. In contrast to existing

literature, we have considered a situation in which the banks must offer

incomplete (non-state contingent) deposit contracts. We have shown that

the equilibrium with incomplete contracts can result in serious banking

crises. Banking crises tend to occur under relatively low or high infla-

tion rates because the banks tend to choose the contract with defaults

described above. Empirical evidence provide strong support for our re-

sults. In addition, we have shown that a zero-inflationary policy can be

optimal under incomplete contracts and under complete contracts.

Our model can be extended in many ways. We discuss two possibilities

here. The first is related to the policy analysis of the lender of last

resort. One of the important roles of a lender of last resort is to provide

elastic money in response to the liquidity demands of troubled banks.

However, as many economists have pointed out, the policy can create a

moral hazard that banks take excessive risks when choosing portfolios.

Introducing a lender of last resort in our model, the moral hazard can be

captured by changing the equilibrium contract types.12 Another direction

is related to the industrial organization of banks. Existing literature show

that the competitive structure of the banking industry has significant

impacts on financial outcomes.13 It would be fruitful to compare the

probability of a banking crisis and the optimal monetary policy across

11See Demirguc-Kunt and Detragiache (1998, 2005), Hardy and Pazarbasioglu
(1998), and Boyd et al. (2002).

12Antinolfi et al. (2001), Antinolfi and Keister (2006), and others, abstract from
the moral hazard problem associated with the presence of a lender of last resort in
their models.

13See, for example, Boyd et al. (2004) and Ghossoub (2012).

27



different banking systems under incomplete contracts. We leave these

important issues for future research.
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Appendix

Proof of Proposition 1: Because of the concavity of the utility func-

tion, the conditionW ′(R) = 0 is necessary and sufficient to obtain Propo-

sition 1. From (15) and (17), we obtain the derivative of the first term

of (18):
Y ′(I)

Y (I)
=

I(I −R)γ′(I) +Rγ(I)

I[I − (I −R)γ(I)]
.

Substituting I = R yields:

Y ′(R)

Y (R)
=

γ(R)

R
. (a.1)

Next, we consider the derivative of the second term of (18). Applying

the Envelope Theorem, we have:

∂

∂I
X[γ(I), I] = X2[γ(I), I],

where X2 is the derivative of X[γ, I] with respect to its second argument.

With an elaborate calculation, we obtain:

X2[γ(I), I] =
1

I

(∫ π∗∗

π∗
F (π)dπ − π∗∗

)
. (a.2)

Substituting the first-order condition (12) into equation (a.2) yields:

X2[γ(I), I] = −γ(I)

I
,

which becomes −γ(R)/R at I = R, completing the proof of the proposi-

tion. �

Proof of Lemma 2: Suppose that 0 < dt <
R
It
γt, which is equivalent to

π̃∗
t > 1. Then, the only possible state is the normal state. In this case,

the bank’s problem is:

max
dt,γt

∫ 1

0

{
πt ln(dt) + (1− πt) ln

[
R(1− γt) +

R
It
γt − πtdt

1− πt

]}
f(πt)dπt,
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subject to 0 ≤ γt ≤ 1. Since It ≥ 1, γt = 0 maximizes the above objective

function, contradicting our assumption. �

Proof of Lemma 3: Differentiating (28) with respect to dt yields

∂

∂dt
X̃(dt, γt, It) =

∫ 1

0
πtf(πt)dπt

dt
−
∫ π̃∗

t

0

πt(1− πt)

R(1− γt) +
R
It
γt − πtdt

f(πt)dπt

−
∫ 1

π̃∗
t

πt(1− πt)

r(1− γt) +
R
It
γt − πtdt

f(πt)dπt.

Supposing dt = r(1− γt) +
R
It
γt, we obtain:

∂

∂dt
X̃

(
r(1− γt) +

R

It
γt, γt, It

)
=∫ π̃∗

t

0

π(R− r)(1− γt)f(πt)dπt[
r(1− γt) +

R
It
γt

] [
(R− πtr)(1− γt) + (1− πt)

R
It
γt

] > 0,

which means that constraint (27) is binding. �

Proof of Lemma 4: Define X̄(γt, It) ≡ X̃(R
It
γt + r(1− γt), γt, It). Eval-

uating the first derivative of X̄(γt, It) with respect to its first argument

at It = 1 yields:

X̄1(γt, 1) =
R− r

r(1− γt) +Rγt

[∫ 1

0

πtf(πt)dπt +

∫ 1

π̃∗
t

(1− πt)f(πt)dπt

]

−
∫ π̃∗

t

0

πt(1− πt)(R− r)

(R− πtr)(1− γt) + (1− πt)Rγt
f(πt)dπt

=
R− r

r(1− γt) +Rγt

∫ 1

π̃∗
t

f(πt)dπt

+

∫ π̃∗
t

0

πt(1− γt)(R− r)2

[r(1− γt) +Rγt][(R− πtr)(1− γt) + (1− πt)Rγt]
f(πt)dπt > 0,

implying that the solution must be at the boundary point, γt = 1. This

establishes part (i) of the lemma. In addition, we obtain

X̄1

(
γt,

R

r

)
= −

∫ π̃∗
t

0

(1− πt)(R− r)

(R− πtr)− γt(R− r)
f(πt)dπt < 0,
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implying that the solution must be γt = 0, which establishes part (ii) of

the lemma.

Since the optimal value of γ̃ (It) is determined by implicit differentia-

tion of the identity:

X̄1(γ̃ (It) , It) ≡ 0,

we obtain:

γ̃′ (It) = −X̄12(γ, It)

X̄11(γ, It)
.

Differentiating X̄1 (γt, It) with respect to It yields

X̄12(γ, It) = −r(π̃∗
t )

2

Rγ2
t

[∫ 1

0

πtf(πt)dπt +

∫ 1

π̃∗
t

(1− πt)f(πt)dπt

]

−
∫ π̃∗

t

0

(1− πt)
2(R− πtr)

R
I2

[(R− πtr)(1− γt) + (1− πt)
R
It
γt]2

f(πt)dπt

− R− r

R

π̃∗
t (1− π̃∗

t )

γt(1− γt)
f(π̃∗

t )
∂π̃∗

t

∂It
< 0.

In addition, by strict concavity, we have X̄11 < 0. Therefore, we obtain

γ̃′ (It) < 0.

This completes the proof of the lemma. �

Proof of Proposition 2: As in the previous proof of Proposition 1,

W̃ ′(R) = 0 allows us to achieve Proposition 2 because of the concavity

of the utility function. From (30), we obtain the derivative of the first

term of (31):
Ỹ ′(I)

Ỹ (I)
=

I(I −R)γ̃′(I) +Rγ̃(I)

I[I − (I −R)γ̃(I)]
.

By evaluating this derivative at I = R, we obtain:

Ỹ ′(R)

Ỹ (R)
=

γ̃(R)

R
. (a.3)

Next, we consider the derivative of the second term of (31). Define

X̄(γ(I), I) ≡ X̃(R
I
γ̃(I) + r(1 − γ̃(I)), γ̃(I), I). Applying the Envelope
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Theorem yields:
∂

∂I
X̄[γ̃(I), I] = X̄2[γ̃(I), I],

where X̄2 is the derivative of X̄[γ̃, I] with respect to its second argument.

With an elaborate calculation, we obtain:

X̄2[γ̃(I), I] = − π̃∗

I
+

π̃∗

I

∫ π̃∗

0

(1− π)(R− r)(1− γ̃(I))

(R− πr)(1− γ̃(I)) + (1− π)R
I
γ̃(I)

f(π)dπ.

(a.4)

With some long, but straightforward calculations, the first-order condi-

tion (29) can be reduced to

(1− r)(1− γ̃(I)) =

∫ π̃∗

0

(1− π)(R− r)(1− γ̃(I))

(R− πr)(1− γ̃(I)) + (1− π)R
I
γ̃(I)

f(π)dπ.

(a.5)

Substituting (a.5) into (a.4) yields:

X̄2[γ̃(I), I] = − γ̃(I)

I
,

which becomes −γ̃(R)/R at I = R. This completes the proof of the

proposition. �

Proof of Lemma 5: The solution (d̂(It), γ̂(It)) is derived from the

following first-order conditions:

X̂1(dt, γt, It) =

∫ π̃∗
t

0

πt

(
1

dt
− 1− πt

R(1− γt) +
R
It
γt − πtdt

)
f(πt)dπt

+

∫ π̃∗∗
t

π̃∗
t

πt

(
1

dt
− 1− πt

r(1− γt) +
R
It
γt − πtdt

)
f(πt)dπt

+
∂π̃∗∗

t

∂dt
f(π̃∗∗

t ) ln

(
dt

r(1− γt) +
R
It
γt

)
= 0,
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X̂2(dt, γt, It) = −
∫ π̃∗

t

0

(1− πt)
(
1− 1

It

)
R

R(1− γt) +
R
It
γt − πtdt

f(πt)dπt

+

∫ π̃∗∗
t

π̃∗
t

(1− πt)
(

R
It
− r
)

r(1− γt) +
R
It
γt − πtdt

f(πt)dπt

+

∫ 1

π̃∗∗
t

R
It
− r

r(1− γt) +
R
It
γt
f(πt)dπt

+
∂π̃∗∗

t

∂γt
f(π̃∗∗

t ) ln

(
dt

r(1− γt) +
R
It
γt

)
= 0.

Evaluating X̂2(dt, γt, It) at It = 1 yields:

X̂2(dt, γt, 1) =

∫ π̃∗∗
t

π̃∗
t

(1− πt) (R− r)

r(1− γt) +Rγt − πtdt
f(πt)dπt+

∫ 1

π̃∗∗
t

R− r

r(1− γt) +Rγt
f(πt)dπt

+
R

dt
f(π̃∗∗

t ) ln

(
dt

r(1− γt) +Rγt

)
> 0,

implying then the solution must be γ̂ = 1. Since the optimal value d̂(It)

satisfies condition (32), by applying the Squeeze Theorem, we obtain

limI→1 d̂(It) = R, which establishes part (i) of the lemma.

Next, consider the case of It = R/r. Evaluating X̂2(dt, γt, It) at It =

R/r yields:

X̂2

(
dt, γt,

R

r

)
= −

∫ π̃∗
t

0

(1− πt) (R− r)

R(1− γt) + rγt − πtdt
f(πt)dπt < 0,

which means, the solution must be γ̂ = 0. By also evaluating X̂1(dt, γt, It)

at It = R/r, we obtain:

X̂1(dt, 0, R/r) =

∫ π̃∗∗
t

0

πt

(
1

dt
− 1− πt

r − πtdt

)
f(πt)dπt−

Rrf(π̃∗∗
t )

(R− r)dt
ln

(
dt
r

)
< 0,

implying the solution must be d̂ = r. As a result, we establish part (ii)

of the lemma.
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