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Abstract

We propose an abstract method of systematically assigning a “rational” preference

to non-rationalizable choice data. We define an individual welfare functional as a map-

ping from stochastic choice functions into weak orders. A stochastic choice function (or

choice distribution) gives the empirical frequency of choices for any possible opportu-

nity set (framing factors may also be incorporated into the model). We require that for

any two alternatives x and y, if our individual welfare functional recommends x over y

given two distinct choice distributions, then it also recommends x over y for any mix-

ture of the two choice distributions. Together with some mild technical requirements,

such an individual welfare functional must weight every opportunity set and assign a

utility to each alternative x which is the sum across all opportunity sets of the weighted

probability of x being chosen from the set. It therefore requires us to have a “prior

view” about how important a choice of x from a given opportunity set is.

1 Introduction

1.1 Behavioral welfare debates

In economics, the concept of individual welfare is used to guide the economist in making

recommendations as well as in making comparisons of alternative situations. The word

“welfare” can be interpreted in many different ways. For example, it might refer to a

revealed preference. It also might refer to some measure of well-being, such as income.
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Standard welfare economics is grounded on the assumption that each individual has

a single and consistent preference ranking over social outcomes or her own consumption,

which can be identified from choice.1 In such a context, the concepts of “better” or “worse”

for a given consumer are easily defined. Given basic consistency postulates, such a notion

of welfare aids in making predictions out of sample, which in turn allows us to understand

the implications of certain institutional changes.

However, welfare might also refer to some other measure of well-being, which may not

be entirely determined by choice alone. For example, welfare might refer to income, life

span, or other measures of happiness.

We propose in this paper a systematic method of discussing welfare based on choices.

It can be applied when all other relevant factors affecting welfare are assumed to be held

constant.

There are several reasons for defining such a notion. As mentioned, the concept of

welfare is used in helping to guide us in making decisions. The economic, choice-based

notion of revealed preference might be reasonably applied in most situations. Indeed,

Thaler and Sunstein [37, 38] have recently proposed the controversial notion of “libertarian

paternalism” (see also Mitchell [27]). The notion suggests we do nothing if individual choices

are consistent. However, the assumption that individuals rank outcomes consistently is

controversial. Many types of behavioral anomalies and biases have been found.2 The

community of economists has recently addressed such evidence; and the research program

of “behavioral economics” (or psychology and economics) has become established as an

accepted framework of descriptive analysis. In this context, libertarian paternalism states

that when individuals exhibit inconsistency, something must be done, and in this sense

paternalism is somehow necessary. However, we have as of yet no systematic method of

studying what should be done.

The following example is meant to clarify the nature of our exercise.

Example 1 You are going to give a gift to your friend. You know that they choose x out

of set {x, y}, and they choose y out of set {x, y, z}.
Which one of x, y and z should you give them?

Two natural arguments could be put forth. Perhaps y should be given, as it is chosen

from a larger set. On the other hand, perhaps x is better, as it beats y in a direct compar-
1In general, such a preference need not be complete or transitive.
2This literature is vast. Some reference works include Kahneman, Slovic and Tversky [16], Kahneman

and Tversky [17], and Thaler [36].
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ison. Within the standard framework of revealed preference, we can say nothing. Which

view should be taken, if either, cannot be answered with the tools of classical economics.

Any ranking of the two outcomes amounts to an outside value judgment, and thus falls

squarely in the domain of normative economics. We propose a formal framework for inves-

tigating such outside value judgments, allowing us to bring the tools of axiomatic economics

to work on the problem.

Even if choice is rationalizable by means of a single consistent preference ranking, as

social planners, we may be interested in other concepts of welfare. A number of authors

claim that economists should make a distinction between ‘decision utility’ that governs

choice, and ‘experienced utility’ that determines subjective level of welfare (see for example

Kahneman, Wakker, and Sarin [18]). Clearly, retrospective evaluation of outcomes is not

a choice-based procedure and thus cannot be tested using classical economic models; but

it may be a factor which we believe is relevant. Our model will also help us to understand

what can be done when this is the case.

A number of studies in neighboring disciplines such as neuroscience claim that choices

have rather little to do with subjective perception of welfare, and that it is determined by

(or at least related to) the amount of certain chemicals in brain [6].

We need notions of welfare because without such a notion, it becomes difficult, if not

impossible, to make choices for an individual. If you decide to give x to the individual,

should that be treated as a choice from {x, y, z}? Or should it be treated simply as a choice

from {x}? And in either case, was it appropriate to have chosen x? Such discussions become

more complicated when more individuals are involved, and the constraining factors become

part of some equilibrium concept. Moreover, without notions of better or worse, the most

basic concepts of welfare economics (for example, Pareto optimality and envy-freeness) are

without meaning.

1.2 Our approach

In this paper, we imagine that an economist must determine an individual’s welfare as a

function of choice data. The method the economist uses to determine welfare might itself

be influenced by data other than choice (such as empirical observations about retrospective

evaluation or brain activities), and we believe it natural to allow sufficient freedom in the

set of possible methods. However, we study the restriction of these methods to observable

choice data; holding all other relevant features fixed.

We imagine that the economist follows a given rule in providing welfare prescriptions
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for inconsistent choice data. Such a rule is modeled as a function mapping arbitrary choice

data into a ranking over alternatives. The data is taken to be a list of empirical distributions

of choices indexed by choice situations. In general, these empirical distributions may or

may not be rationalized either in the deterministic or stochastic sense. Let us call such a

rule an individual welfare functional.

We interpret the output of an individual welfare functional for a given set of choice

data as a “suitable” proxy for individual welfare, not a “true” or “correct” preference.

Philosophically, it is not clear what a “true” preference would look like; even if choices are

consistent, revealed preference may not be the same as “true” preference. In particular,

we do not imagine a procedure by which our recommended preference induces choice. This

marks the departure of our work from work on revealed preference.

We now discuss our axioms. We abstain from discussing axioms which attempt to

define welfare. It is our belief that the definition of welfare must necessarily be subjective,

depending on both the decision maker and the modeller. Rather, our main ideas are in

consistency of welfare across data. This allows our work to be sufficiently broad, so that it

may be applied to many different problems in which we may be interested.

Our basic axiom is called Combination. It is a consistency requirement in aggregating

situation dependent choices. It roughly says, if two choice situations both support x over

y, then the choice data obtained by joining the two also supports x over y.

Our main result is as follows. The combination axiom, combined with other technical

axioms, implies a form of linear aggregation. The ranking of alternatives is determined by

a utility function. The utility of any alternative in our representation is merely a linear

function of the choice probabilities of all alternatives. In general, the utility of x can depend

on the probability that some alternative y is chosen, where y may not even be present in

any situation where x is present. This implies that the choice of any alternative z in any

situation has some “weight” in influencing the utility of x.

While the general family of individual welfare functionals may be interesting for many

environments, oftentimes it may be unnatural to allow the utility of an alternative to depend

on the probability that unrelated alternatives are chosen. To remedy this situation, we

study the imposition of additional axioms. One such axiom is binary independence, which

specifies that the ranking between two alternatives should not be affected by empirical

choice probabilities of other alternatives. A related axiom, binary monotonicity, specifies

that utility of an alternative should respond positively to the probability that it is chosen.

The additional axioms can deliver a more structured class of individual welfare functionals.

In this class, every pair consisting of a situation and a choice from that situation has its
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own weight. This weight specifies a “prior view” about how important it is to choose that

alternative in that situation. The utility of the alternative is then just the sum across all

situations of the corresponding weight times the probability the alternative was chosen in

that situation.

The paper is organized as follows. Section 2 presents the main results. Section 3

strengthens these results to discuss basic notions of independence, whereby utility of an

alternative becomes a weighted sum of the probability of being chosen. Section 4 discusses

methods for narrowing down these weights; and Section 5 is devoted to a conclusion and

connection of our work to the vast literature studying welfare.

2 Model and basic axioms

Let X be a finite set of alternatives where |X| ≥ 4. Let B ⊂ 2X be a family of observable

opportunity sets. We assume |B| ≥ 2 for all B ∈ B. For each B ∈ B, let F (B) be a set of

possible framing factors associate with B, and let F =
⋃

B∈B F (B).

Example 2 Let B = {x, y, z}. Then one may for example think of F (B) being a set of

linear orderings over {x, y, z}. Let >∈ F (B) be one such order, where z > y > x. Then,

the pair (B,>) corresponds to presenting the set {x, y, z}, in the form of an ordered triple

(z, y, x). This allows choice to depend on the order of appearance of alternatives.

Example 3 Let B = {x, y, z}. Then one may for example think of F (B) = X being a set

of reference points (in any sense). Let a ∈ F (B) be one such reference point. Then, the

pair (B, a) corresponds to presenting the set {x, y, z} together with the reference point a.

Let Θ be the set of observable pairs of choice opportunity and framing factors; namely,

let Θ ⊂ B × F be defined as Θ = {(B, f) ∈ B × F : f ∈ F (B)}.3 We call elements

of Θ situations. Each element θ ∈ Θ therefore specifies (Bθ, fθ) with fθ ∈ F (Bθ). Let

P =
∏

θ∈Θ ∆(Bθ) be the set of all possible empirical distributions of choice, where p(x|θ)
refers to the empirical probability (relative frequency) of x ∈ Bθ being chosen in the choice

situation θ = (Bθ, fθ). An element in P is called a situation-dependent choice distribution,

or simply a choice distribution. Such empirical distributions are arbitrary, and may or may

not satisfy any deterministic choice consistency conditions (Chernoff [8], Sen [35], Arrow

[2]) or stochastic consistency conditions (Luce [23], Falmagne [9]). They may even violate
3Rubinstein and Salant [32] consider a model in which a choice problem comes in the form of such pair,

and investigate a rationalizability condition for choice functions defined over the extended domain.
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more general conditions (Kalai, Rubinstein and Spiegler [19], Masatlioglu and Ok [28],

Rubinstein and Salant [31, 32], Tyson [39]).

Remark 1 There is some loss of generality to taking our data to be situation-dependent

choice distributions as the primitive, as opposed to raw choice data. Choosing our primitive

in this way amounts to an implicit normalization, where the number of times a particular

choice problem has been faced becomes irrelevant. To illustrate, consider data in which

the choice problem {x, y} appears ten times and the choice problems {y, z} and {x, z} each

appear just once. A simple kind of scoring rule, say, simply counting the number of times

each alternative is chosen, likely supports x and y over z simply because z does not appear

in choice problems very frequently. Our framework does not allow us to discuss such rules;

but we believe the normalization we have chosen to be natural. It avoids a type of bias

which can arise due to the number of times a specific problem is faced.

Even after normalizing the choice frequencies for each given θ, there may be more θ’s

with x ∈ Bθ than there are θ’s with y ∈ Bθ. This issue can be resolved by appropriately

weighting the pair (x, θ).

An individual welfare functional is a function that maps each situation-dependent choice

distribution to a complete and transitive binary relation over X. Equivalently, it is given

as a family of binary relations indexed by choice distributions, {%p}p∈P , where %p is a

complete and transitive ordering over X for each p ∈ P .

Example 4 Suppose X = {x, y, z}, and that Θ can be identified with the set of subsets of

X. That is, for all nonempty B ⊂ X, there exists a unique θ ∈ Θ for which Bθ = B.

A simple example of an individual welfare functional fixes some u : X → R, and

defines %p as being the ordinal ranking consistent with the function v : X → R defined by

v(w) = u(w)
∑

θ∈Θ p(x|θ).

First, we impose the following three axioms.

Combination: For every p, q ∈ P and λ ∈ (0, 1),

x %p y and x %q y imply x %λp+(1−λ)q y,

and

x �p y and x %q y imply x �λp+(1−λ)q y.
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The combination axiom requires that the ranking specified by the concatenation of

two choice distributions is consistent with the rankings specified by the original choice

distributions. It states that when taking two disjoint datasets, each of which recommend

that x be ranked over y, then x is ranked over y overall.

Another interpretation of combination is also possible.4 Every day, the economist ob-

serves individual choice and makes a welfare prescription. On days when it is cloudy, the

individual chooses according to p, and on days when it is sunny, she chooses according to

q. Whether it is cloudy or sunny, x is always at least as good as y. Suppose now that the

economist has no way of knowing whether it is cloudy or sunny, but she believes that either

could be true with equal probability. The economist may identify this uncertain situation

with the choice distribution (1/2)p + (1/2)q. Such an identification relies on an implicit

reduction assumption which may throw out important data. The axioms state that whether

or not it is cloudy or sunny is irrelevant to the ranking of x over y. As x is at least as good

as y in either contingency, x should be considered at least as good as y in general.

The following axiom states that the individual welfare functional is non-imposed. The

individual has the freedom to effect any preference over a given set of four alternatives.

Diversity: For every list of four distinct alternatives x, y, z, w ∈ X, there is p ∈ P such

that x �p y �p z �p w.

Lastly we postulate a continuity requirement.

Continuity: For every x, y ∈ X, the set {p ∈ P : x %p y} is closed.

Definition 1 A series of vectors in R
∑

θ∈Θ |Bθ|, denoted {ux}x∈X , is said to be diversified

if for all distinct four elements x, y, z, w, there do not exist non-negative numbers α, β and

a vector r ∈ R|Θ| with the property that

(i)

uw(θ, b)− uz(θ, b) = α(ux(θ, b)− uy(θ, b)) + β(uy(θ, b)− uz(θ, b)) + r(θ)

and ∑
θ∈Θ

r(θ) = 0

or,

(ii)

uw(θ, b)− uz(θ, b) 5 α(ux(θ, b)− uy(θ, b)) + β(uy(θ, b)− uz(θ, b)) + r(θ)
4This interpretation was suggested to us by Mark Machina
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and ∑
θ∈Θ

r(θ) 5 0.

The definition of diversification is somewhat complicated; however, after the statement

of our main theorem, its role should become clear.

The following is our main theorem. It states that whether or not x is ranked at least

as good as y depends linearly on the choice probabilities of every alternative in every

situation. That is, for every alternative x, for every situation θ and every alternative

b ∈ Bθ there is a real number ux(θ, b) by which the probability that b is chosen in situation

θ is multiplied. Thus, the choice probabilities of alternatives other than x and y in arbitrary

choice situations may be relevant for determining the ranking between x and y. In a later

section, we will explore conditions which free our individual welfare functional from such

dependence.

Theorem 1 An individual welfare functional {%p}p∈P satisfies Combination, Diversity and

Continuity if and only if there exists a diversified series of vectors in R
∑

θ∈Θ |Bθ|, denoted

{ux}x∈X , such that for every x, y ∈ X and p ∈ P ,

x %p y ⇐⇒
∑
θ∈Θ

∑
b∈Bθ

ux(θ, b)p(b|θ) =
∑
θ∈Θ

∑
b∈Bθ

uy(θ, b)p(b|θ).

Moreover, when another series of vectors {vx}x∈X satisfies the above condition, there is a

positive scalar λ and a series of vectors {βx}x∈X in R
∑

θ∈Θ |Bθ|

vx(θ, b) = λux(θ, b) + βx(θ, b),

where for all x, y ∈ X:

(i) βx(θ, b)− βy(θ, b) = βx(θ, b′)− βy(θ, b′) for all θ ∈ Θ, b, b′ ∈ Bθ;

(ii)
∑

θ∈Θ

∑
b∈Bθ

βx(θ, b) =
∑

θ∈Θ

∑
b∈Bθ

βy(θ, b).

Diversification of vectors can now be understood as a condition that directly states that

for all x, y, z, w, x %p y %p z need not imply that w %p z (Similarly, z %p y %p x need not

imply z %p w). As an axiom on the individual welfare functional, its role is a technical one.

It allows us to complete a critical induction step in the proof. It essentially forces the space

of vectors (ux − uy)(x,y) to be full-dimensional, so that several important linear equalities

can be solved uniquely.
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3 Binary Independence

3.1 Binary Independence

Thus far, we have been concerned only with the combination axiom; and our resulting

representation theorem is very general. No axiom rules out dependence of the ranking of

a pair of alternatives from the choice probabilities of other alternatives. In this section,

we propose just such a notion. The axiom of binary independence states formally that a

ranking depends only on the probabilities of the alternatives under consideration. Binary

monotonicity states that this ranking should somehow depend positively on these proba-

bilities; that is, if x is ranked above y for one distribution, and the probability of x only

increases to another distribution (where the probability of y may decrease), then we should

not claim that y is ranked above x for the new distribution.

Binary Independence/Monotonicity: For every x, y ∈ X and p, q ∈ P :

(i) if p(x|θ) = q(x|θ) for all θ ∈ Θ with x ∈ Bθ and p(y|θ) = q(y|θ) for all θ ∈ Θ with

y ∈ Bθ, then x %p y if and only if x %q y;

(ii) if x %p y and p(x|θ) 5 q(x|θ) for all θ ∈ Θ with x ∈ Bθ and p(y|θ) = q(y|θ) for all

θ ∈ Θ with y ∈ Bθ, and at least one of these inequalities are strict, then x �q y.

3.2 Result on the domain of multinomial choices

In this subsection, we assume that Θx = {θ ∈ Θ : Bθ 3 x} 6= ∅ for all x ∈ X, and |Bθ| = 4

for all θ ∈ Θ. This assumption is made for technical reasons, as will be discussed in a later

section.

The next property states that any pair of alternatives which are never chosen should be

ranked as indifferent.

Dummy: For every x, y ∈ X, if p ∈ P is such that p(x|θ) = 0 for all θ ∈ Θx and p(y|θ) = 0

for all θ ∈ Θy, then x ∼p y.

Definition 2 A series of vectors {ux}x∈X , where ux is an element in R|Θx|
++ for each x, is said

to be diversified if the series of vectors ũx in R
∑

θ∈Θ |Bθ|, which is given by ũx(θ, x) = ux(θ)

for each θ ∈ Θx and zero elsewhere, is diversified.

The next theorem is similar to Theorem 1, however, the utility representation of the

induced ranking states that the utility of an alternative depends only on the choice proba-

bilities of that alternative.
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Theorem 2 Assume that Θx 6= ∅ for all x ∈ X, and |Bθ| = 4 for all θ ∈ Θ. Then, an

individual welfare functional {%p}p∈P satisfies Combination, Diversity, Continuity, Binary

Independence/Monotonicity and Dummy, if and only if there exists a diversified series of

strictly positive vectors {ux}x∈X , where ux is an element in R|Θx|
++ for each x, such that for

all x, y ∈ X,

x %p y ⇐⇒
∑

θ∈Θx

ux(θ)p(x|θ) =
∑
θ∈Θy

uy(θ)p(y|θ)

for every p ∈ P .

Moreover, {ux}x∈X is unique up to common positive scalar multiplications.

3.3 Result on the domain including choice from triples

Given x, y, z ∈ X, let Θ{x,y,z} = {θ ∈ Θ : Bθ = {x, y, z}}.

Semi-strong Dummy: For every x, y, z ∈ X, if p ∈ P is such that p(x|θ) = 0 for all

θ ∈ Θx \ Θ{x,y,z}, p(y|θ) = 0 for all θ ∈ Θy \ Θ{x,y,z} and p(x|θ) = p(y|θ) for all

θ ∈ Θ{x,y,z}, then x ∼p y.

Theorem 3 Assume that Θx 6= ∅ for all x ∈ X, and |Bθ| = 3 for all θ ∈ Θ. Then, an

individual welfare functional {%p}p∈P satisfies Combination, Diversity, Continuity, Binary

Independence/Monotonicity and Semi-strong Dummy, if and only if there exists a diversified

series of strictly positive vectors {ux}x∈X , where ux is an element in R|Θx|
++ for each x, such

that for all x, y ∈ X,

x %p y ⇐⇒
∑

θ∈Θx

ux(θ)p(x|θ) =
∑
θ∈Θy

uy(θ)p(y|θ)

for every p ∈ P , for all θ for which Bθ ⊃ {x, y} and |Bθ| = 3, ux(θ) = uy(θ).

Moreover, {ux}x∈X is unique up to common positive scalar multiplications.

The following example shows that the diversity axiom is independent of the other axioms

used in the characterization.

Example 5 Let X = {x, y, z, w} and Θ = {θ1, θ2}, where Bθ1 = {x, y, z} and Bθ2 =

{z, y, w}. Consider the scoring rule given by

U(x) = p(x|{x, y, z}) + p(x|{x, y, w}), U(y) = p(y|{x, y, z}) + p(y|{x, y, w})

and

U(z) = p(z|{x, y, z}), U(w) = p(w|{x, y, w}).

Then, x %p w and y %p w always imply w %p z, which cannot satisfy the diversity axiom.
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3.4 Result on the domain including binary choices

For technical reasons, when the choice situations can involve binary choices, a few more

axioms are needed to characterize individual welfare functionals as in Theorem 2. To see

why this is the case, imagine a domain in which all choice situations involve only binary

choices. Then binary independence/monotonicity is clearly vacuous, and extra structure is

needed. The axioms in this section deliver this extra structure.

Given p ∈ P , θ ∈ Θ and qθ ≡ q(·|θ) ∈ ∆(Bθ), let (qθ, p−θ) be the situation dependent

choice distribution that coincides with qθ at θ and with p elsewhere.

Proportionality: For every x, y, z ∈ X and p ∈ X such that y ∼p z �p x, any θ ∈ Θ

with Bθ = {x, y}, and qθ ∈ ∆(Bθ),

then if

x ∼(1−λ)p+λ(qθ,p−θ) y

it follows that

x ∼(1−λ
2 )p+λ

2
(qθ,p−θ) z.

Also, let Θ{x,y} = {θ ∈ Θ : Bθ = {x, y}}.

Strong Dummy: For every x, y, z ∈ X, if p ∈ P is such that p(x|θ) = 0 for all θ ∈
Θx\(Θ{x,y}∪Θ{x,y,z}), p(y|θ) = 0 for all θ ∈ Θy\(Θ{x,y}∪Θ{x,y,z}), and p(x|θ) = p(y|θ)
for all θ ∈ Θ{x,y} ∪Θ{x,y,z}, then x ∼p y.

Theorem 4 Assume that Θx 6= ∅ for all x ∈ X. Then, an individual welfare functional

{%p}p∈P satisfies Combination, Diversity, Continuity, Binary Independence/Monotonicity,

Proportionality and Strong Dummy if and only if there exists a diversified series of strictly

positive vectors {ux}x∈X , where ux is an element in R|Θx|
++ for each x, such that for all

x, y ∈ X,

x %p y ⇐⇒
∑

θ∈Θx

ux(θ)p(x|θ) =
∑
θ∈Θy

uy(θ)p(y|θ)

for every p ∈ P , and for all θ for which Bθ ⊃ {x, y} and |Bθ| = 2 or 3, ux(θ) = uy(θ).

Moreover, {ux}x∈X is unique up to common positive scalar multiplications.

The following example shows that the diversity axiom may not follow from the others.

Example 6 Let X = {x, y, z, w} and Θ = {θ1, θ2}, where Bθ1 = {x, y} and Bθ2 = {z, w}.
Consider the scoring rule given by

U(x) = p(x|{x, y}), U(y) = p(y|{x, y}), U(z) = p(z|{z, w}), U(w) = p(w|{z, w}).
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Then, we have x %p z if and only if w %p y, which cannot satisfy the diversity axiom.

4 Narrowing down the weights

Our concern is mostly with a formal consistency requirement or informational efficiency re-

quirement for normative prescriptions, and not with substantive views about which weights

should be used.5 This is useful for a normative model, as it leaves us with a large family

of rules. A modeller can choose an individual welfare functional that best accomodates her

subjective judgment of how choice should be tied to welfare.

Here we propose several ways to narrow down the weights, in order to respect choice

and eliminate unnecessary or unjustified paternalism. One suggestion is that one should

avoid putting a larger prior weight on a particular alternative without any sufficient reason.

Of course, what is meant by ‘sufficient’ reason depends on what kind of choice frames are

in present. We study a few possibilities, which are clearly not exhaustive.

4.1 Weights on opportunities

Our representation theorems allow us to weight situations by how many elements are avail-

able. That is, the economist may have a certain prior weight about the importance of being

chosen from a large set.

For simplicity, we assume that for all B ∈ B, F (B) is a singleton; so that Θ may be

formally identified with a class of elements of B; without loss of generality, assume Θ ⊂ B.

For all permutations π : X → X and for all B ∈ Θ, we require that π−1(B) ∈ Θ. For

p ∈ P , the probability of x being chosen from B is written as p(x|B).

Given p ∈ P and π, a permutation over X, define pπ by

pπ(x|B) = p(π−1(x)|π−1(B)).

The following axiom is adapted from social choice theory. It formally states that the

names of alternatives are irrelevant to the operation of the individual welfare functional

Neutrality: For all p ∈ P , x, y ∈ X and any permutation π over X,

x %p y ⇐⇒ π(x) %pπ π(y).

5Of course, the Diversity and Dummy axioms rule out certain lists of potential weights.
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Corollary 1 An individual welfare functional as characterized in Theorem 2 or 4 further

satisfies Neutrality if and only if there exists a function u : {|B| : B ∈ B} → R++ such that

ux(B) = u(|Bθ|)

for all x ∈ X and B ∈ B with x ∈ B.

One may here give a solution to the problem in the leading example. Being chosen from

larger sets is more important whenever u is increasing. Being chosen in direct comparisons

is of highest importance when u(2) > u(k) for all k 6= 2.

This individual welfare functional respects choice. To see this, for simplicity, assume

Θ = {B ∈ 2X : |B| = 2}. Suppose now that there exists a strict preference � such that

x1 � x2 � · · · � xn, and that choice is made according to this ranking in a deterministic

manner. Then, the score given to alternative xk, which is the k-th best element, is

U(xk) =
n−k+1∑

l=2

C(n− k, l − 1)u(l).

This is obviously decreasing in k, and the assigned ranking agrees with �, whatever u is.

Here u has nothing to say.

4.2 Weights on framing factors

Let F (B) be the set of linear orderings over B, which describe possible orders of appearance.

Given B ∈ B, an order >∈ F (B), and x ∈ B, let r(x,B,>) be the rank of x in B with

regard to the order >. For example, r(x,B,>) = 1 if x is the first element to be presented

from B according to >, and r(x,B,>) = |B| if it is the last one.

In this case, one can impose additional structure to the previous example, so as to

incorporate weights on framing, by writing ux(θ) as a function of |Bθ| and r(x,Bθ, >θ

), say ux(θ) = u′(|Bθ|, r(x,Bθ, >θ)). We believe it is sensible for the function u′ to be

nondecreasing in its second argument. This might be because it an alternative which is

listed in the back is less likely to be chosen, so that being chosen nevertheless is valued

more.6

4.3 Adjusting to the number of appearance

When some alternative appears in more situations than others, that is, when |Θx| is not

equal across x’s, one may worry about the possibility that x is valued highly simply because
6Though, it also allows for the possibility that u has a sudden drop or spike. This may be the case when

being the last one has a focal-point effect.
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of this. The class of individual welfare functionals we obtain allows one to adjust weights

according to how many choice problems in which an alternative appears, by letting for

example

ux(θ) =
u′(x,Bθ, fθ)

|Θx|
for all x ∈ X, θ ∈ Θx.

5 Conclusion and related literature

In this paper we have discussed how to prescribe a preference ranking for a given individual

based on observed choices when these choices may be inconsistent. We consider a function

that maps choice data (a situation dependent empirical distribution) into a complete and

transitive ordering over alternatives.

The main axiom we impose is Combination, which states that if, in two situations,

the data respectively support x over y, then the choice data obtained by joining the two

situations also supports x over y.

Together with other mild axioms, we obtain a scoring type rule, where we must form a

prior view about the reletive importance of different choices in forming the preference that

should be assigned.

The additional axioms, primarily Binary Independence, deliver a more structured class

of scoring rules, where the score for a given alternative depends only on its empirical choice

probability. It is of interest that when choice is consistent, the rationalizing preference is

the preference assigned to the data.

Our framework should be contrasted with the classical approach which seeks to explain

choice through preference. One might ask why one should care about complete and transi-

tive preference in the first place. Completeness and transitivity are the classical hallmarks

of “rationality,” and thus most of welfare economics takes these notions (at the very least as

primitive). Secondly, the set of complete and transitive preferences are much smaller than

the set of arbitrary choice functions. This simplifies analysis and allows us to represent the

individual problem as a classical maximization problem. Lastly, it provides a reasonable

method for choosing alternatives out of sample. A different approach would be to construct

a normative theory that extends any given choice function to a choice function on the entire

domain (which is not necessarily rationalizable).
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5.1 Related literature

In this section, we compare our approach to related ideas. Within the basic revealed

preference paradigm, it may not be possible to establish a natural consensus on a notion

of revealed preference which can rationalize all possible choice functions. To see this, note

that a choice model has three dimensions that work to determine welfare: specification,

observation of choices, and identification. Let us suppose, for the sake of argument, that

the individual’s entire choice function can always be uncovered, so that there are no issues

of prediction. We desire a model that can explain all possible types of behavior (such a

model by definition has no testable implications). This specification of the model itself

involves a subjective choice on the part of the modeller. Given data, identification becomes

an issue as well. However, even an identified model involves a belief that defining welfare

as identified preference is reasonable. When a model is not identified for some data, it

can be identified by making more restrictive assumptions on the specification (throwing

away possible explanations). When there are competing theories all of which can explain

a given choice pattern, it is not meaningful to speak of the “correct” model–model choice

is inherently subjective. This is because all economic models of choice are “as if” models,

and do not actually model the explicit process driving choice. The key tradeoff in model

choice is between identification and explanation. We do not want to rule out potential

natural explanations in an ad-hoc fashion, but allowing more possible explanations results

in a model which is identified less frequently. Recognizing that there are tradeoffs and

subjectivity even in the choice of a model, we suggest that explicitly modelling welfare as

a subjective construct on the part of the modeller is useful. We discuss the concerns and

tradeoffs in more detail through several following examples.

A naive model would simply eschew the requirement of complete and transitive welfare

judgments. Aside from the fact that applied welfare economics is based on the assumption

that individuals have complete and transitive rankings, the issue with this approach is that

welfare judgments are useful for making decisions out of sample. With any theory, we can

never get out more than we put in. A good descriptive theory should be able to extrapolate

data and bring it to a situation which has not yet been observed.

Usually modellers seek to define welfare as some concept from which choice can be

derived through some process or procedure. In the classical revealed preference paradigm,

choice must be obtainable as maximization of preference (welfare), where a preference is a

complete and transitive relation. Often it is required that the choice function is equal to
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the maximizing correspondence of a rational preference.7

A common argument is that “irrational behavior” is observed because the choice setting

is misspecified, and that relevant factors have been somehow ignored. This may in fact be

true, and there may be a general, extended model of choice in which all empirically observed

behavior becomes rationalizable by a complete and transitive relation. To take a simple

example, there are many economic instances in which an action is irrational in the short-run

but rational in the long-run. In such cases, seemingly irrational or paradoxical behavior

can be rationalized by suitably redefining the choice domain. The two main issues with this

approach can be explained simply as follows. First, enlarging the choice domain necessitates

observing more choices in order to identify the model. This data may simply be unavailable.

Secondly, and more importantly, as rationality has testable implications, it is by definition

refutable. Therefore, for any choice setting, it is at least conceivable that there may be a

decision maker who does not behave rationally in this model.

Alternatively, many works stay within the classical choice domain and seek to explain

choice from welfare, but weaken either the hypothesis that welfare is represented as a

complete and transitive relation, weaken the hypothesis that welfare drives choice through

maximization, or both. This requires specifying a model consisting of some form of welfare

and some procedure by which welfare drives choice. But if two different models explain the

same choices, we have no way of identifying which, if either of the two, is the “correct” one

in terms of the actual welfare the individual experiences or the actual choice procedure she

follows. This is irrelevant for models which seek only to predict behavior, but for models

which seek to evaluate welfare, it can be critical.

Our approach dissociates choice from the derived welfare. Welfare can be defined from

choice, but the converse need not be true. In this dimension at least, our model is closer to

an econometric model, which might seek to find a “reasonable approximation” to preference.

5.2 Models weakening classical rationality hypotheses

In an innovative recent paper, Green and Hojman [11] (see also Ambrus and Rozen [1]) treat

an individual as a ‘society’ populated with multiple personalities who may have conflicting

preferences. They weaken the assumption that welfare is represented as a complete and

transitive relation and instead assume welfare might be represented as a list of complete

and transitive relations. They discuss maximization, but the object they maximize is now
7An alternative notion would require only that the choice function is a subcorrespondence of this maxi-

mizing correspondence–this model can always be rationalized by a welfare relation ranking each alternative

as indifferent.
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an aggregate preference. They imagine that a rule is used to aggregate the conflicting

preferences. In order to tie choice non-trivially to their welfare concept, the rule must

satisfy certain properties. In particular, they assume that it is a scoring rule. They show

that for almost all scoring rules (specifically all but the Borda score), any choice function

can be rationalized by some list of preferences.

Their notion of rationalization is quite weak, in that they only require the choice function

only to be a subcorrespondence of the maximizer correspondence. Typically, the set of such

lists may be quite large. Thus, in their framework, there are two degrees of freedom:

freedom in the choice of a scoring rule and freedom in the list of preferences rationalizing

the choice function given the scoring rule. In general, then the model is not identified, so

that they cannot make absolute welfare statements. They can only make absolute welfare

comparisons over a pair of alternatives when all preferences in the list agree. If; however,

they assume the underlying preferences in the list have some cardinal structure (making a

stronger identifying assumption), they can make stronger welfare statements.

Bernheim and Rangel [4, 5] also discuss welfare when choice may not be rationalizable.

They also argue that welfare should not be defined through a positive model, but rather

should be treated as a normative exercise. Their approach is to define several binary rela-

tions through choice. They also consider different framing factors, and define a few binary

relations. The more important of the two states that an individual is unambiguously better

off if she never chooses y when x is available. If choices are defined on a rich domain (in-

cluding all finite sets), this relation is acyclic. A naive extension of Bernheim and Rangel’s

theory to an environment in which choices from some budgets may be unobserved may lead

to a cyclic relation. This is not problematic, as their intent is to consider environments in

which complete data is available. However, their approach cannot be directly applied to

field data, unless some positive theory is proposed to fill in the details. While Bernheim and

Rangel’s theory can be applied to many economic environments, it is a theoretical possibil-

ity that many alternatives remain unranked. As they note, there are methods of ranking

unranked alternatives. Our work is intended to be an abstract, prescriptive approach which

ranks all alternatives from the outset (applying to general choice models).

Kőszegi and Rabin [21] suggest that irrational choice may be due to mistakes or biases.

They suggest a choice-based procedure for eliciting these mistakes, inspired by the decision

theory literature. Specifically, they ask an individual to place a bet on which alternative

they will choose in the future. Failure to select this alternative is interpreted as a mistake

which should presumably be corrected. In this context, they define the “true” preference

to be the preference induced by the ex-ante preference over bets. This is an example of
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enriching the choice space in order to uncover a rationalizing preference.8 Of course, this

methodology tells us nothing when the choices over bets cannot themselves be rationalized.

Following is a partial discussion of the literature in which notions of rationalizability

are generalized, but which provide testable implications, and thus cannot be used to eval-

uate welfare for all possible decision makers. The literature on revealed preference theory

characterizing conditions under which choice can be rationalized by the maximization of a

preference is vast. Classic papers are by Samuelson [33, 34], who first provided the rational-

izability condition in the market setting. For abstract choice functions, Chernoff [8], Arrow

[2] and Sen [35] provide conditions in the deterministic setting under which observed choice

is rationalizable. In a stochastic choice setting, Luce [23, 24] provides conditions under

which the choice probability of an alternative from a set is proportional to some cardinal

utility assigned to it. Falmagne [9] offers conditions under which there is a probability mea-

sure over preferences such that the choice probability of an alternative is the probability of

the set of preferences for which it is maximal.

Kalai, Rubinstein, and Spiegler [19] provide a condition under which observed choice is

rationalizable as a maximal element according to multiple criteria, in which choices need

not come from a single objective. Tyson [39] provides a condition under which observed

choice is explained as if it is obtained by satisficing an underlying preference. This is a

milder procedural rationality requirement than maximization. Mariotti and Manzini study

choice which can be rationalized by sequentially eliminating alternatives [26] by a list of

binary relations. Masatlioglu and Ok [28] consider an extended domain of choice functions

in which a choice problem comes in the form of a pair of a set and a reference point. They

provide a condition under which observed choice is rationalizable by maximizing preference

with a bias toward the reference point. Rubinstein and Salant [31] study choices from

lists, providing a generalized rationalizability condition. Further, Rubinstein and Salant

[32] studies rationalizability analysis in a general setting in which a choice problem comes

in the form of a pair of a set and an arbitrary framing factor. We consider arbitrary choice

data, which may or may not be rationalizable in any sense. We are interested in how we

can assign preference in a normative or prescriptive sense.

Another related literature is the social choice literature which seeks to define choice

functions from tournaments. A tournament is an arbitrary binary relation, interpreted as
8For this to make complete sense, one must assume that there is no complementarities between the

alternatives under consideration and the payoffs to the bets. This seems reasonable in practice. Such a

procedure might not identify all mistakes. By placing a bet on an alternative, extra incentive is added to

choose that alternative in the future.
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a social preference. The well-known Condorcet paradox demonstrates that if preference is

cyclic, maximizing choices may not exist. A very good early survey is Moulin [29]. One

possible approach is to define some kind of metric on the set of all preferences, rational or

otherwise. Then for any tournament, the closest rational preference (or preferences) to it

can be determined. This then specifies a choice function through maximization. A common

metric minimizes the number of preference reversals needed to turn a tournament into a

rational preference (this is related to the so-called Kemeny rule, see Young [41]). More

closely related is a work of Rubinstein [30] which characterizes a family of rules mapping

tournaments to weak orders. Our work differs from these in that a choice function need

not be rationalizable by any preference, cyclic or not.

Lastly, our formal model and analysis are similar to those in expected utility theory

in the context of games (Gilboa-Schmeidler [15]), inductive inference (Gilboa-Schmeidler

[14]), case-based decision making (Gilboa-Schmeidler [12]), relative utility (Ashkenazi and

Lehrer [3]), and social aggregation of preferences (Young [40]). Most of our axioms are

borrowed directly from this literature. One technical difference, though, is that our domain

is larger in the sense that choice distributions are conditioned by different situations, which

makes it difficult to establish the uniqueness of the obtained individual welfare functional.

Moreover, choice distributions do not form a vector space, but are rather elements of some

convex set. While the techniques here essentially follow the same ideas as in the previous

works, necessary modifications are needed to accomodate these differences.

5.3 Directions for future research

Our work offers a prescriptive approach to the problem of evaluating welfare when choice

data is inconsistent. There are several obvious paths to follow in this direction.

Firstly, we have throughout assumed that our individual welfare functional satisfies

Diversity. This condition requires that the output of an individual welfare functional is

non-imposed on the individual who makes choices. It is similar to the citizen’s sovereignty

requirement of social choice. In the interest of libertarianism, such a requirement is natural.

That is, when the classical rationality postulates are satisfied, it seems natural for welfare to

coincide with classical revealed preference. However, in order to allow our individual welfare

functional to be more paternalistic, we may wish to force certain preferences on individuals.

For example, some individuals may have self control problems–the case of addiction is a

prime example. Such an individual may choose to consume an addictive substance even

though it harms her. Our notion of individual welfare functional would then say that the
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consumption of this substance makes the individual better off. However, such an individual

may not feel better off. We might therefore imagine a program which leads this individual

to be addicted to the substance to be a bad one, even though it is one which he himself

would choose. Our axioms at this stage do not allow such recommendations.

Secondly, there is a question of time-dependence. Individuals may make repeated

choices, say between x and y. In an environment where they have never before consumed

these types of alternatives, they must experiment. Suppose we observe an individual who

has consumed x in the first five periods, but then consumed y in the last five. It seems

plausible to suspect that this individual has learned that they prefer y to x. However, the

primitive of our model (a probability distribution over choices) does not allow us to make

such conclusions.

Lastly, there is the question as to what rationality actually means. Our work has

taken as given that rationality is rationalizability by a complete and transitive preference.

However, weaker (and stronger) notions of rationality certainly exist. In more structured

environments, for example, in the theory of choice over lotteries, satisfaction of the inde-

pendence axiom is often understood as a basic tenet of rationality. This is an issue of the

specification of the range of our individual welfare functional (related is the issue of domain

specification; however it seems natural to allow our individual welfare functional to take as

input any stochastic choice function).

6 Proofs

6.1 Proof of Theorem 1

Given p ∈ P and a vector u ∈ R
∑

θ∈Θ |Bθ|, let

u · p =
∑
θ∈Θ

∑
b∈Bθ

u(θ, b)p(b|θ)

Lemma 1 There exists a series of vectors in R
∑

θ∈Θ |Bθ|, denoted {uxy}x,y∈X,x 6=y, such that

for every x, y ∈ X,

(i) {p ∈ P : uxy · p = 0} = {p ∈ P : x %p y};
(ii) {p ∈ P : uxy · p > 0} = {p ∈ P : x �p y};
(iii) {p ∈ P : uxy · p 5 0} = {p ∈ P : y %p x};
(iv) {p ∈ P : uxy · p < 0} = {p ∈ P : y �p x};
(v) neither uxy = 0 or uxy 5 0;

(vi) uyx = −uxy.
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Moreover, if another vector series of vectors {vxy}x,y∈X,x 6=y delivers the above properties,

then there is a series of positive numbers {λxy}x,y∈X,x 6=y and a series of vectors in R|Θ|,

denoted {rxy}x,y∈X,x 6=y, such that for every x, y ∈ X,

(1)

vxy(θ, b) = λxyuxy(θ, b) + rxy(θ)

for all θ ∈ Θ and b ∈ Bθ;

(2)
∑

θ∈Θ rxy(θ) = 0;

(3) λxy = λyx;

(4) ryx = −rxy.

Proof.

Existence: Fix x, y ∈ X, and let Cxy = {p ∈ P : x %p y} and Cyx similarly. By Diversity,

there exists p ∈ P for which x �p y. Moreover by continuity, {p ∈ P : x �p y} is relatively

open. For any q ∈ Cxy, by combination, as there exists p ∈ P for which x �p y, for all

λ > 0, x �λp+(1−λ)q) y, so we establish that Cxy is the closure of {p ∈ P : x �p y}.
Note that Cxy ∪ Cyx = P by completeness.

Let Φxy = {λ(p− q) : λ = 0, p ∈ Cxy, q ∈ Cyx}, and define a binary relation %xy over P

by

p %xy q if p− q ∈ Φxy

Since Cxy and Cyx are compact by continuity, Φxy is closed, hence %xy is a continuous

binary relation.

Claim 1 If d, e ∈ Φxy, then d + e ∈ Φxy.

Proof. Without loss of generality, let d, e ∈ Cxy − Cyx, and let d = p1 − p2 and

e = q1 − q2, where p1, q1 ∈ Cxy and p2, q2 ∈ Cyx. By the combination axiom, p1+q1

2 ∈ Cxy

and p2+q2

2 ∈ Cyx. Therefore d+e
2 = p1+q1

2 − p2+q2

2 ∈ Cxy − Cyx. Therefore d + e ∈ Φxy.

Claim 2 %xy is complete.

Proof. Case 1: If p ∈ Cxy and q ∈ Cyx, then it is obvious that p %xy q.

Case 2: Suppose p, q ∈ Cxy. Let r ∈ P be such that y �r x. Choose λ so that (1−λ)p+λr ∈
Cxy, (1− λ)q + λr ∈ Cxy, and at least one of them is in Cyx. For example, choose λ to be

the supremal λ for which (1 − λ)p + λr ∈ Cxy and (1− λ)q + λr ∈ Cxy; that one of them
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is in Cyx follows by continuity. Without loss of generality, suppose (1 − λ)q + λr ∈ ∂Cxy,

then we have

[(1− λ)p + λr]− [(1− λ)q + λr] = (1− λ)(p− q) ∈ Φxy,

which implies p− q ∈ Φxy.

Case 3: If p, q ∈ Cyx, the proof is similar to Case 2.

Claim 3 %xy is transitive.

Proof. Suppose p %xy q and q %xy r. Since p − q ∈ Φxy and q − r ∈ Φxy, from the

previous claim we have p− r = (p− q) + (q − r) ∈ Φxy.

Claim 4 For every p, q, r ∈ P and λ ∈ (0, 1), p %xy q if and only if λp + (1 − λ)r %xy

λq + (1− λ)r.

Proof. This follows as (λp + (1− λ)r)− (λq + (1− λ)r) = λ(p− q).

Since %xy satisfies the state-dependent version of Anscombe-Aumann subjective ex-

pected utility theorem (see Kreps [22], Karni-Schmeidler-Vind [20]), there is a vector

ũxy ∈ R
∑

θ∈Θ |Bθ| such that

p %xy q ⇐⇒ ũxy · p = ũxy · q

for every p, q ∈ P .

Moreover, the vector ũxy is unique in the sense that if there is another vector ṽxy that

delivers the above condition then there exist a positive number λxy and a vector r̃xy ∈ R|Θ|

such that ṽxy(θ, b) = λxyũxy(θ, b) + r̃xy(θ) for every θ ∈ Θ and b ∈ Bθ.

Fix any p∗ ∈ Cxy ∩ Cyx, and let αxy = ũxy · p∗. Define a vector uxy ∈ R
∑

θ∈Θ |Bθ| by

uxy(θ, b) = ũxy(θ, b)− αxy

|Θ| for every θ and b ∈ Bθ. Then, it satisfies

uxy · p = 0 ⇐⇒ x %p y

for all p ∈ P . This delivers the properties (i)-(iv).

To show property (v), suppose uxy = 0. Then, since uxy · p = 0 for all p ∈ P , we

have x %p y for all p ∈ P , which is a contradiction to diversity. A similar contradiction is

obtained for the case uxy 5 0.

Uniqueness: Suppose vxy satisfies

vxy · p = 0 ⇐⇒ x %p y
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for all p ∈ P . Then, vxy also forms a representation for %xy, where vxy · p∗ = 0 holds for

p∗ ∈ Cxy ∩ Cyx. By the uniqueness of representation of %xy above, there exist a positive

number λxy and a vector r̃xy ∈ R|Θ| such that

vxy(θ, b) = λxyũxy(θ, b) + r̃xy(θ)

= λxy

(
uxy(θ, b)− αxy

|Θ|

)
+ r̃xy(θ)

= λxyuxy(θ, b) + rxy(θ)

for every θ ∈ Θ and b ∈ Bθ, where rxy is defined by rxy(θ) = r̃xy(θ)− αxy

|Θ| for each θ. Since

vxy · p∗ = uxy · p∗ = 0, we have
∑

θ∈Θ rxy(θ) = 0.

Lemma 2 For every distinct x, y, z ∈ X and ε, η ∈ R, if εuxy + ηuyz 5 0, then ε = η = 0.

Proof. Since neither uxy = 0 or uxy 5 0 holds, if either of ε and η is zero, so is the

other. Suppose both are non-zero. Without loss of generality, suppose that ε, η > 0. Then,

we have εuyx 5 −ηuyz = ηuzy. Therefore, z %p y implies y %p x, contradicting Diversity.

Similar contradictions are obtained for the other cases.

Lemma 3 Let {uxy}x,y∈X,x 6=y be the series of vectors obtained in Lemma 1. Then, for

every three distinct x, y, z, there exist unique numbers α, β > 0 and r ∈ R|Θ| such that

uxz(θ, b) = αuxy(θ, b) + βuyz(θ, b) + r(θ)

for all θ ∈ Θ and b ∈ Bθ, and ∑
θ∈Θ

r(θ) = 0.

Proof. As for all p ∈ P , %p is transitive, there does not exist p ∈ P such that

uxy · p = 0, uyz · p = 0 and − uxz · p > 0.

For each θ ∈ Θ, let 1θ ∈ R
∑

θ∈Θ |Bθ| be that vector whose coordinate is 1 at all (θ, ·) and

0 elsewhere. Also, for each θ ∈ Θ and b ∈ Bθ, let 1θ,b ∈ R
∑

θ∈Θ |Bθ| be that vector whose

coordinate is 1 only at (θ, b) and 0 elsewhere.

By a nonhomoegeneous version of the Farkas’ lemma (see Proposition 4.2.3 of [10]),

there exist non-negative numbers α, β, {λθ,b}θ∈Θ,b∈Bθ
, {µθ}θ∈Θ and {νθ}θ∈Θ such that

uxz = αuxy + βuyz +
∑
θ∈Θ

∑
b∈Bθ

λθ,b1θ,b +
∑
θ∈Θ

µθ1θ −
∑
θ∈Θ

νθ1θ
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and ∑
θ∈Θ

µθ −
∑
θ∈Θ

νθ = 0.

Hence,

uxz = αuxy + βuyz +
∑
θ∈Θ

µθ1θ −
∑
θ∈Θ

νθ1θ.

Note that for all p ∈ P ,
(∑

θ∈Θ µθ1θ −
∑

θ∈Θ νθ1θ

)
· p = 0.

Consequently, if α = 0, then for all p ∈ P , y %p z implies x %p z, contradicting

Diversity. Hence α > 0. Similarly, β > 0.

A symmetric argument applied to −uxy, −uyz and uxz delivers δ, γ > 0 and nonnegative

numbers {ρθ}θ∈Θ and {τ θ}θ∈Θ such that

uxz 5 δuxy + γuyz +
∑
θ∈Θ

ρθ1θ −
∑
θ∈Θ

τ θ1θ,

where ∑
θ∈Θ

ρθ −
∑
θ∈Θ

τ θ 5 0.

By taking the sum of these inequalities, we have(∑
θ∈Θ

ρθ1θ −
∑
θ∈Θ

τ θ1θ

)
−

(∑
θ∈Θ

µθ1θ −
∑
θ∈Θ

νθ1θ

)
= (α− δ)uxy + (β − γ)uyz.

Therefore, for all p ∈ P ,

0 = (α− δ)uxy · p + (β − γ)uyz · p.

By the same logic as in Lemma 2, appealing to Diversity, we conclude α = δ and β = γ.

This further implies that ∑
θ∈Θ

µθ −
∑
θ∈Θ

νθ =
∑
θ∈Θ

ρθ −
∑
θ∈Θ

τ θ = 0.

Then define r(θ) = µθ − νθ, for example.

To see that α, β, and r are unique, suppose by means of contradiction that

(α− δ)uxy(θ, b) + (β − γ)uyz(θ, b) + r′(θ)− r(θ) = 0

where α, δ, β, and γ > 0, and
∑

θ∈Θ r(θ) =
∑

θ∈Θ r′(θ) = 0.

Suppose without loss of generality that α− δ, β− γ > 0. If x �p y, then uxy · p > 0 and

as (r′ − r) · p = 0, we conclude that uyz · p < 0, or x �p y implies z �p y, a contradiction

to diversity.
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Lemma 4 There exist a series of vectors {uxy}x,y∈X,x 6=y, as in Lemma 1, such that for

every three distinct x, y, z the condition uxy + uyz = uxz holds.

Moreover, when another series of vectors {vxy}x,y∈X,x 6=y satisfies the above condition, there

is a positive number λ and a series of vectors in R|Θ|, denoted {rxy}x,y∈X,x 6=y, such that for

every x, y, z ∈ X,

(1)

vxy(θ, b) = λuxy(θ, b) + rxy(θ)

for all θ ∈ Θ and b ∈ Bθ;

(2)
∑

θ∈Θ rxy(θ) = 0;

(3) ryx = −rxy;

(4) rxy + ryz = rxz.

Proof. The proof of this statement is by induction, and is similar to that of Gilboa-

Schmeidler [13]. Specifically, let us order X = x1, ..., xK . Begin with x1, x2, x3. Lemma 3

guarantees the existence of ux1x2 , ux2x3 , and ux1x3 for which

ux1x3(θ, b) = αux1x2(θ, b) + βux2x3(θ, b) + r(θ),

where
∑

θ∈Θ r(θ) = 0.

Define ux1x3(θ, b) = ux1x3(θ, b), ux1x2(θ, b) = αux1x2(θ, b), and ux2x3(θ, b) = βux2x3(θ, b)+

r(θ), and verify that ux1x3 = ux1x2 + ux2x3 . We also define u functions relating to (x3x1),

(x2x1) and (x3x2) as the negatives of the (x1x3), (x1x2) and (x2x3) functions and note that

the order structure is preserved (by the fact that
∑

θ∈Θ r(θ) = 0).

Now, we induct as follows. Let m < n and suppose that for all j, l < n, uxjxl is defined.

Further, suppose that for all j < m, uxjxn is defined. If m = 1, by taking ux1x2 as given, we

may define ux1xn and uxnx2 as previously, by using Lemma 3. Otherwise, we use Lemma 3

to establish that (defining uxnxm and uxmxn = −uxnxm implicitly)

αux1xn + uxnxm = ux1xm

for some α > 0.

For any j < m, it follows by the induction hypothesis that

ux1xn + uxnxj = ux1xj .

Applying Lemma 3 to j, n, and m, we obtain
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µuxjxn(θ, b) + ηuxnxm(θ, b) + r(θ) = uxjxm(θ, b)

for some µ, η > 0 and r ∈ RΘ, where
∑

θ∈Θ r(θ) = 0.

Subtract the last two lines from the first (using the identities uxnxj = −uxjxn and

ux1xj + uxjxm = ux1xm , the latter of which is by the induction hypothesis) and obtain

(α− 1)ux1xn + (1− η)uxnxm + (1− µ)uxnxj = −r.

For all p ∈ P , r · p = 0, so that for all p ∈ P ,

((α− 1)ux1xn + (1− η)uxnxm + (1− µ)uxnxj ) · p = 0.

Consequently, if any of α, η, or µ is not equal to one, a contradiction to diversity is

obtained. Conclude that they all equal one, and furthermore that r = 0, completing the

induction hypothesis. We therefore know there exist uxy satisfying the conclusion of the

Lemma.

To establish the uniqueness result, suppose vxy also satisfies the conclusion of the lemma.

In particular, we know that there exists, for all x, y, some λxy and rxy ∈ RΘ for which

vxy(θ, b) = λxyuxy(θ, b) + rxy(θ), where
∑

θ∈Θ r(θ) = 0 from Lemma 1. Consequently, as

vxy + vyz = vxz, we know that

λxyuxy + rxy + λyzuyz + ryz = λxzuxz + rxz = λxz(uxy + uyz) + rxz.

Subtracting the right hand side from the left, we obtain

(λxy − λxz)uxy + (λyz − λxz)uyz = rxz − rxy − ryz.

As is usual, unless λxy = λxz and λyz = λxz, we have a contradiction to diversity.

Moreover, this also establishes rxz = rxy + ryz. That λ is constant for all pairs now follows

trivially.

Proofs about diversity

First we show that the diversity of {%p}p∈P implies the desired property of the series

of vectors.

The diversity condition implies that for all distinct x, y, z, w ∈ X, there exists p ∈ P

such that x %p y %p z �p w; or

uxy · p = 0, uyz · p = 0, uzw · p > 0
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By Proposition 4.2.3 of [10], there do not exist non-negative numbers α, β, {λθ,b}θ∈Θ,b∈Bθ
,

{µθ}θ∈Θ and {νθ}θ∈Θ such that

−uzw = αuxy + βuyz +
∑
θ∈Θ

∑
b∈Bθ

λθ,b1θ,b +
∑
θ∈Θ

µθ1θ −
∑
θ∈Θ

νθ1θ

and ∑
θ∈Θ

µθ −
∑
θ∈Θ

νθ = 0.

This implies that there cannot exist non-negative numbers α, β and a vector r ∈ R|Θ|

such that

−uzw(θ, b) = αuxy(θ, b) + βuyz(θ, b) + r(θ)

and ∑
θ∈Θ

r(θ) = 0.

Likewise, diversity also implies that for w, z, y, x, there exists some p ∈ P for which

w �p z %p y %p x; so that uwz · p > 0, uzy · p ≥ 0, and uyx · p ≥ 0. Similarly to the previous

argument, there cannot exist non-negative numbers α, β and a vector r ∈ R|Θ| such that

−uwz(θ, b) = αuyx(θ, b) + βuzy(θ, b) + r(θ)

or by taking negation:

−uzw(θ, b) 5 αuxy(θ, b) + βuyz(θ, b) + r(θ)

where ∑
θ∈Θ

r(θ) 5 0.

Thus, the vectors are diversified.

Now, we show that {%p}p∈P satisfies diversity given that the vectors are diversified. By

the Farkas’ Lemma we have been using, the fact that the vectors are diversified guarantee

that for any x, y, z, w ∈ X which are distinct, there exists p ∈ P for which x %p y %p z �p w

and q ∈ P for whihc x �q y %q z %q w. Furthermore, there exists s ∈ P for which

w %s x %s y �s z. So we obtain uxy · p ≥ 0, uyz · p ≥ 0, and uzw · p > 0, uxy · q > 0,

uyz · q ≥ 0, and uzw · q ≥ 0, and finally uxy · s ≥ 0 and uyz · s > 0. We do not know the sign

of uzw · s. Consider now λ, γ, η > 0 which sum to one, where η is arbitrarily small. Then

in particular uxy · (λp + γq + ηs) > 0, uyz · (λp + γq + ηs) > 0 and uzw · (λp + γq + ηs) > 0.

Thus, x �λp+γq+ηs y �λp+γq+ηs z �λp+γq+ηs w.
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Establishing the representation

Now, fix e ∈ X, and define ue ≡ 0 ∈ R
∑

θ∈Θ |Bθ|, and for any other x ∈ X, define ux = uxe.

Given p ∈ P and x, y ∈ X, we have

x %p y ⇐⇒ uxy · p = 0 ⇐⇒ (uxe + uey) · p = 0 ⇐⇒ (uxe − uye) · p = 0

⇐⇒ ux · p = uy · p.

Uniqueness: Take the representation {ux}x∈X constructed above, where ue = 0. Suppose

another series of vectors {vx}x∈X satisfies the above condition. Then, the series of vectors

{vx − vy}x,y∈X,x 6=y satisfies the condition in the previous lemma. Hence there is a scalar λ

and a a series of vectors in R|Θ|, denoted {rxy}x,y∈X,x 6=y, such that for every x, y, z ∈ X,

(1)

vx(θ, b)− vy(θ, b) = λ(ux(θ, b)− uy(θ, b)) + rxy(θ)

for all θ ∈ Θ and b ∈ Bθ;

(2)
∑

θ∈Θ rxy(θ) = 0;

(3) ryx = −rxy;

(4) rxy + ryz = rxz.

Define βe = ve and βx = rxe + βe for every x 6= e.

6.2 Implications of Binary Independence

Lemma 5 For every θ ∈ Θ with |Bθ \ {x, y}| = 2, uxy(θ, b) = uxy(θ, b′) for all b, b′ ∈
Bθ \ {x, y}.

Proof. Let p∗ ∈ P such that uxy · p∗ = 0, so that x ∼p y. Let θ ∈ Θ for which |Bθ \
{x, y}| = 2, and consider any {p(b|θ)}b∈Bθ\{x,y}, {q(b|θ)}b∈Bθ\{x,y} satisfying

∑
b∈Bθ\{x,y} p(b|θ) =∑

b∈Bθ\{x,y} q(b|θ) =
∑

b∈Bθ\{x,y} p∗(b|θ). By condition (i) in the monotonicity axiom, re-

placing {p∗(b|θ)}b∈Bθ\{x,y} by {p(b|θ)}b∈Bθ\{x,y} or {q(b|θ)}b∈Bθ\{x,y} does not change the

indifference condition. Hence we have∑
b∈Bθ\{x,y}

uxy(θ, b)(p(b|θ)− q(b|θ)) = 0.

Since {p(b|θ)}b∈Bθ\{x,y} and {q(b|θ)}b∈Bθ\{x,y} are otherwise arbitrary, we have uxy(θ, b) =

uxy(θ, b′) for all b, b′ ∈ Bθ.

Similar arguments deliver the following lemmata.

Lemma 6 uxy(θ, x) > uxy(θ, b) for all θ ∈ Θ with x ∈ Bθ and b ∈ Bθ \ {x}.
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Lemma 7 uxy(θ, b) > uxy(θ, y) for all θ ∈ Θ with y ∈ Bθ and b ∈ Bθ \ {y}.

6.3 Proof of Theorem 2

Assume that Θx 6= ∅ for all x ∈ X, and |Bθ| = 4 for all θ ∈ Θ.

For each θ ∈ Θ, fix some b−xy(θ) ∈ Bθ \ {x, y}. The above lemma ensures that the

choice of b−xy(θ) does not matter. Define ûxy ∈ R
∑

θ∈Θ |Bθ| by

1. if x, y ∈ Bθ,

ûxy(θ, x) = uxy(θ, x)− uxy(θ, b−xy(θ))

ûxy(θ, y) = uxy(θ, y)− uxy(θ, b−xy(θ))

ûxy(θ, b) = 0 for all b ∈ Bθ \ {x, y}

2. if x ∈ Bθ and y /∈ Bθ,

ûxy(θ, x) = uxy(θ, x)− uxy(θ, b−xy(θ))

ûxy(θ, b) = 0 for all b ∈ Bθ \ {x}

3. if x /∈ Bθ and y ∈ Bθ,

ûxy(θ, y) = uxy(θ, y)− uxy(θ, b−xy(θ))

ûxy(θ, b) = 0 for all b ∈ Bθ \ {y}

4. if x, y /∈ Bθ,

ûxy(θ, b) = 0 for all b ∈ Bθ

Lemma 8

ûxy · p = uxy · p

for all p ∈ P .
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Proof. Let Θx = {θ ∈ Θ : x ∈ Bθ} and Θy = {θ ∈ Θ : y ∈ Bθ}. By Lemma 5, we have∑
θ∈Θ

∑
b∈Bθ

uxy(θ, b)p(b|θ)

=
∑

θ∈Θx∩Θy

(
(uxy(θ, x)− uxy(θ, b−xy(θ))p(x|θ) + (uxy(θ, y)− uxy(θ, b−xy(θ))p(y|θ))

)
+

∑
θ∈Θx\Θy

(uxy(θ, x)− uxy(θ, b−xy(θ))p(x|θ)

+
∑

θ∈Θy\Θx

(uxy(θ, y)− uxy(θ, b−xy(θ))p(y|θ)

+
∑

θ∈Θ\(Θx∪Θy)

uxy(θ, b−xy(θ))

+
∑

θ∈Θx∩Θy

uxy(θ, b−xy(θ))

+
∑

θ∈Θx\Θy

uxy(θ, b−xy(θ))

+
∑

θ∈Θy\Θx

uxy(θ, b−xy(θ))

Choose any q ∈ P for which for all θ ∈ Θ, q(x|θ) = q(y|θ) = 0. Then uxy · q = 0 by

Dummy. Moreover,

uxy · q

=
∑

θ∈Θ\(Θx∪Θy)

uxy(θ, b−xy(θ))

+
∑

θ∈Θx∩Θy

uxy(θ, b−xy(θ))

+
∑

θ∈Θx\Θy

uxy(θ, b−xy(θ))

+
∑

θ∈Θy\Θx

uxy(θ, b−xy(θ))

However, these are the last four terms in the preceding expression. Conclude that

uxy · p = ûxy · p.

By construction,

ûyx = −ûxy

for all x, y ∈ X. Lemma 8 also guarantees that

ûxy · p + ûyz · p = ûxz · p
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for all p ∈ P .

Lemma 9 For all x, y, z ∈ X and θ ∈ Θx,

ûxy(θ, x) = ûxz(θ, x).

Proof. Note that

ûxy · p =
∑

θ∈Θx

ûxy(θ, x)p(x|θ) +
∑
θ∈Θy

ûxy(θ, y)p(y|θ),

ûyz · p =
∑
θ∈Θy

ûyz(θ, y)p(y|θ) +
∑
θ∈Θz

ûyz(θ, z)p(z|θ)

and

ûxz · p =
∑

θ∈Θx

ûxz(θ, x)p(x|θ) +
∑
θ∈Θz

ûxz(θ, z)p(z|θ).

Since |Bθ| = 4, one may vary p(x|θ) linearly independently of p(y|θ) and p(z|θ). Hence

we have

ûxy(θ, x) = ûxz(θ, x).

Now, fix x ∈ X and fix some e 6= x, and define for all θ ∈ Θx, ux(θ) = ûx(θ, x).

Lemmas 6 and 7 ensure that ux is strictly positive; moreover Lemma 9 establishes that ux

is independent of the choice of e.

Now, fix x, y ∈ X and choose some e /∈ {x, y}. Then in particular ux(θ) = ûx(θ, x) and

ux(θ) = ûy(θ, y).
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Then, we have (using Lemma 9 for the third equivalence)∑
θ∈Θx

ux(θ)p(x|θ)−
∑
θ∈Θy

uy(θ)p(y|θ) = 0

⇐⇒
∑

θ∈Θx

uxe(θ, x)p(x|θ)−
∑
θ∈Θy

uye(θ, y)p(y|θ) = 0

⇐⇒
∑

θ∈Θx

uxe(θ, x)p(x|θ)−
∑
θ∈Θy

uye(θ, y)p(y|θ) +
∑
θ∈Θe

(uxe(θ, e)− uye(θ, e))p(e|θ) = 0

⇐⇒
∑

θ∈Θx

uxe(θ, x)p(x|θ) +
∑
θ∈Θe

uxe(θ, e)p(e|θ)−

∑
θ∈Θy

uye(θ, y)p(y|θ) +
∑
θ∈Θe

uye(θ, e)p(e|θ)

 = 0

⇐⇒ ûxe · p− ûye · p = 0

⇐⇒ ûxe · p + ûey · p = 0

⇐⇒ ûxy · p = 0

⇐⇒ uxy · p = 0

⇐⇒ x %p y.

Uniqueness: Recall the uniqueness result in Lemma 1 that if there is another series of

vectors {vxy}x∈X satisfies the above condition, then there is a scalar λ and a a series of

vectors in R|Θ|, denoted {rxy}x,y∈X,x 6=y, such that for every x, y, z ∈ X,

(1)

vxy(θ, b) = λuxy(θ, b) + rxy(θ)

for all θ ∈ Θ and b ∈ Bθ;

(2)
∑

θ∈Θ rxy(θ) = 0;

(3) ryx = −rxy;

(4) rxy + ryz = rxz.

Let {v̂xy}x∈X be the series of vectors obtained from {vxy}x∈X as in the current argument.

Since all the terms in rxy are canceled out along the above procedure, we have ûxy = λv̂xy

for all x, y ∈ X.

6.4 Proof of Theorem 3

Construction of {ûxy}x,y,x 6=y is the same as above.

Lemma 10 For all x, y, z ∈ X and θ ∈ Θx,

ûxy(θ, x) = ûxz(θ, x).
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Proof. Note again that

ûxy · p =
∑

θ∈Θx

ûxy(θ, x)p(x|θ) +
∑
θ∈Θy

ûxy(θ, y)p(y|θ),

ûyz · p =
∑
θ∈Θy

ûyz(θ, y)p(y|θ) +
∑
θ∈Θz

ûyz(θ, z)p(z|θ)

and

ûxz · p =
∑

θ∈Θx

ûxz(θ, x)p(x|θ) +
∑
θ∈Θz

ûxz(θ, z)p(z|θ).

Pick θ ∈ Θ{x,y,z}, and let p(x|θ) = p(y|θ) = α > 0 and p(x|θ′) = p(y|θ′) = 0 for all

θ′ 6= θ.

Then by Semi-strong Dummy, we have x ∼p y, which implies (ûxy(θ, x)+ûxy(θ, y))α = 0.

Hence, we obtain

ûxy(θ, x) = −ûxy(θ, y) = ûyx(θ, y).

In a similar manner, we obtain

ûyz(θ, y) = −ûyz(θ, z) = ûzy(θ, z),

ûxz(θ, x) = −ûxz(θ, z) = ûzx(θ, z).

Again fix θ ∈ Θ{x,y,z}, and let p(y|θ) = p(z|θ) = α > 0 and q(y|θ) = q(z|θ) = β > 0,

and let p and q coincide outside of θ. Then the relationship ûxy ·p+ ûyz ·p = ûxz ·p together

with the above deliver

3(α− β)ûxy(θ, x) = 3(α− β)ûxz(θ, x).

Since α is arbitrary, we obtain the desired result.

The rest of the proof goes on in the same manner as in the previous section.

6.5 Proof of Theorem 4

Lemma 11 For all x, y, z ∈ X and θ ∈ Θ with Bθ = {x, y},

uxy(θ, x)− uxy(θ, y)
2

= uxz(θ, x)− uxz(θ, y).
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Proof. Given θ ∈ Θ with Bθ = {x, y}, let qθ be a degenerate distribution on x. We

claim that there exists p ∈ P be such that

uyz · p = 0, uxy · p < 0, uxz · p < 0.

Notice that uxz ·p = uxy·p+uyz ·p = uxy·p. Moreover, we can choose uxy·p = uxz ·p = −c < 0,

where c > 0 is a sufficiently small number.

To see this, first note that by Diversity and Continuity, there exist p1, p2 in the relative

interior of P for which y �p1 z �p1 x and z �p2 y �p2 x. By taking an appropriate convex

combination of p1 and p2, we guarantee the existence of p3 ∈ P for which

uyz · p3 = 0, uxy · p3 < 0, uxz · p3 < 0.

To see that in fact we may choose c to be arbitrarily small, note that we may also similarly

guarantee the existence of p4 ∈ P for which

uyz · p4 = 0, uxy · p4 = 0, uxz · p4 = 0.

The result then follows by taking an appropriate convex combination of p3 and p4.

Now, let λ ∈ (0, 1) satisfy

(uxy(θ, x)− uxy(θ, y))(1− p(x|θ))λ = c,

. Then the previous equality implies that x ∼(1−λ)p+λ(qθ,p−θ) y is the case. By Proportion-

ality, we have x ∼(1−λ
2
)p+λ

2
(qθ,p−θ) z, which implies that

(uxz(θ, x)− uxz(θ, y))(1− p(x|θ))λ
2

= c

holds. Thus we obtain the desired result.

For each θ ∈ Θ with Bθ 6= {x, y}, fix some b−xy(θ) ∈ Bθ \ {x, y}. The above lemma

ensures that the choice of b−xy(θ) does not matter.

Define ûxy ∈ R
∑

θ∈Θ |Bθ| by

1. if Bθ = {x, y},

ûxy(θ, x) = (uxy(θ, x)− uxy(θ, y))/2, ûxy(θ, y) = (uxy(θ, y)− uxy(θ, x))/2

2. otherwise, same as before
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Lemma 12

ûxy · p = uxy · p

for all p ∈ P .

Proof. Let Θ{x,y} = {θ ∈ Θ : Bθ = {x, y}}, Θx = {θ ∈ Θ : x ∈ Bθ} and Θy = {θ ∈ Θ :

y ∈ Bθ}. By Binary Independence, we have∑
θ∈Θ

∑
b∈Bθ

uxy(θ, b)p(b|θ)

=
∑

θ∈Θ{x,y}

(
uxy(θ, x)− uxy(θ, y)

2
p(x|θ) +

uxy(θ, y)− uxy(θ, x)
2

p(y|θ)
)

+
∑

θ∈Θx∩Θy\Θ{x,y}

(
(uxy(θ, x)− uxy(θ, b−xy(θ))p(x|θ) + (uxy(θ, y)− uxy(θ, b−xy(θ))p(y|θ))

)
+

∑
θ∈Θx\Θy

(uxy(θ, x)− uxy(θ, b−xy(θ))p(x|θ)

+
∑

θ∈Θy\Θx

(uxy(θ, y)− uxy(θ, b−xy(θ))p(y|θ)

+
∑

θ∈Θ\(Θx∪Θy)

uxy(θ, b−xy(θ))

+
∑

θ∈Θ{x,y}

uxy(θ, x) + uxy(θ, y)
2

+
∑

θ∈Θx∩Θy\Θ{x,y}

uxy(θ, b−xy(θ))

+
∑

θ∈Θx\Θy

uxy(θ, b−xy(θ))

+
∑

θ∈Θy\Θx

uxy(θ, b−xy(θ))

By Strong Dummy, the terms from fifth to ninth on the right-hand-side add up to zero.

Therefore the right-hand-side is equal to ûxy · p.

By construction, we have

ûyx = −ûxy

for all x, y ∈ X. Also, the above lemma guarantees that

ûxy · p + ûyz · p = ûxz · p

for all p ∈ P .
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Lemma 13 For all x, y, z ∈ X and θ ∈ Θx,

ûxy(θ, x) = ûxz(θ, x).

Proof. When θ is such that Bθ = {x, y}, it follows from

ûxy(θ, x) =
uxy(θ, x)− uxy(θ, y)

2
= uxz(θ, x)− uxz(θ, y) = ûxz(θ, x).

For the other cases, it follows from the same argument as before.

Now, define ux ∈ R|Θx| by

ux(θ) = ûxe(θ, x)

for each θ ∈ Θx. Then, we have∑
θ∈Θx

ux(θ)p(x|θ)−
∑
θ∈Θy

uy(θ)p(y|θ) = 0

⇐⇒
∑

θ∈Θx

ux(θ)p(x|θ)−
∑
θ∈Θe

ue(θ)p(e|θ)−

∑
θ∈Θy

uy(θ)p(y|θ)−
∑
θ∈Θe

ue(θ)p(e|θ)

 = 0

⇐⇒ ûxe · p− ûye · p = 0

⇐⇒ ûxe · p + ûey · p = 0

⇐⇒ ûxy · p = 0

⇐⇒ uxy · p = 0

⇐⇒ x %p y.

Uniqueness: Recall the uniqueness result in Lemma 1 that if there is another series of

vectors {vxy}x∈X satisfies the above condition, then there is a scalar λ and a a series of

vectors in R|Θ|, denoted {rxy}x,y∈X,x 6=y, such that for every x, y, z ∈ X,

(1)

vxy(θ, b) = λuxy(θ, b) + rxy(θ)

for all θ ∈ Θ and b ∈ Bθ;

(2)
∑

θ∈Θ rxy(θ) = 0;

(3) ryx = −rxy;

(4) rxy + ryz = rxz.

Let {v̂xy}x∈X be the series of vectors obtained from {vxy}x∈X as in the current argument.

Since all the terms in rxy are canceled out along the above procedure, we have ûxy = λv̂xy

for all x, y ∈ X.
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6.6 Proof of Corollary 1

Lemma 14 For all x, y ∈ X and B ∈ Θ with x, y ∈ B, ux(B) = uy(B).

Proof. Let p ∈ P be such that p(x|B) = p(y|B) = 1
2 , and x, y are never chosen

elsewhere and the distribution there is uniform over the other alternatives.

By applying Neutrality with regard to the permutation between x and y, we have x ∼p y,

which implies 1
2ux(B) = 1

2uy(B). Hence ux(B) = uy(B).

Thus, there exists a function u : B → R++ such that

ux(B) = u(B)

for all B ∈ B with x ∈ B. The remaining is to show that u(B) depends only on the

cardinality of B.

Lemma 15 For all B,C ∈ B with |B| = |C|, u(B) = u(C).

Proof. Pick x ∈ B \ C and y ∈ C \B. Let p ∈ P be such that

(i) p(x|B) = 1, p(y|C) = 1, p(x|{x, y}) = p(y|{x, y}) = 1
2 , and x, y are never chosen

elsewhere and the distribution there is uniform over the other alternatives. By applying

Neutrality with regard to the permutation between x and y, we have x ∼p y, which implies

u(B) + 1
2u({x, y}) = u(C) + 1

2u({x, y}). Hence u(B) = u(C).

References

[1] Ambrus, Attila and Kareen Rozen, Revealed Conflicting Preferences, manuscript, 2008.

[2] Arrow, Kenneth., Rational Choice Functions and Orderings, Econometrica 26 (1959)

121-7.

[3] Ashkenazi, G. and E. Lehrer, Relative Utility, manuscript, 2001.

[4] Bermheim, Douglas and Antonio Rangel, Toward Choice-Theoretic Foundations for

Behavioral Welfare Economics, American Economic Review Papers and Proceedings,

97(2), May 2007, 464-470.

[5] Bernheim, Douglas and Antonio Rangel, Beyond Revealed Preference: Choice Theo-

retic Foundations for Behavioral Welfare Economics, Quarterly Journal of Economics,

forthcoming.

37



[6] Camerer, C., D. Loewenstein, and D. Prelec, Neuroeconomics: How Neuroscience can

Inform Economics, Journal of Economic Literature 43, 9-64, 2005.

[7] Carmichael, H. Lorne and W Bentley MacLeod, How should a Behavioral Economist

do Welfare Economics?, working paper, Queen’s University, 2002.

[8] Chernoff, H., Rational Selection of Decision Functions, Econometrica 22, 422-43, 1954.

[9] Falmagne, J. C., A Representation Theorem for Finite Random Scale Systems, Journal

of Mathematical Psychology, 18(1978), 52-72.

[10] Florenzano, M. and C. Le Van, Finite Dimensional Convexity and Optimization,

Springer, 2001.

[11] Green, Jerry R. and Daniel A. Hojman, Choice, Rationality, and Welfare Measurement,

working paper, Harvard University, 2007.

[12] Gilboa, Itzhak, and David Schmeidler, Case-Based Decision Theory, Quarterly Journal

of Economics, 110 (1995) 605-639.

[13] Gilboa, Itzhak, and David Schmeidler, Act similarity in case-based decision theory,

Economic Theory, Vol. 9 (1997) 47-61.

[14] Gilboa, Itzhak, and David Schmeidler, Inductive Inference: An Axiomatic Approach,

Econometrica, 71 (2003), 1-26.

[15] Gilboa, Itzhak, and David Schmeidler, A derivation of expected utility maximization

in the context of a game, Games and Economic Behavior, Volume 44, Issue 1, July

2003, Pages 172-182.

[16] Kahneman, D., Slovic, P., and Tversky, A. Judgment under uncertainty: Heuristics

and biases, New York, Cambridge University Press, 1982.

[17] Kahneman, D., and Tversky, A. (Eds.), Choices, values and frames, New York, Cam-

bridge University Press, 2000.

[18] Kahneman, Daniel, Peter P. Wakker and Rakesh Sarin, Back to Bentham? Exploration

of Experienced Utility, Quarterly Journal of Economics, Volume 112, Issue 2, 1997,

Pages 375-405.

[19] Kalai, Gil, Ariel Rubinstein and Rani Spiegler, Rationalizing Choice Functions by

Mutltiple Rationales, Econometrica, 70 (2002), 2481-2488.

38



[20] Karni, Edi, David Schmeidler and Karl Vind, On State Dependent Preferences and

Subjective Probabilities, Econometrica Vol. 51, No. 4 (July 1983), 1021-1031.
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