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Abstract

This paper develops a theory of inductive derivations of personal views from
experiences focusing on limited trials and partial memories. The theory allows us
to discuss how a player might simplify his view of a complicated situation. Two new
concepts of marked information pieces and tested actions are introduced for this
purpose. Each player accumulates local memories as long-term term memories up
to marked pieces and tested actions, and constructs a view. At unmarked pieces, he
behaves following his prescribed regular behavior pattern without thinking about it.
A derived view is typically small, partial, and sometimes prejudiced relative to the
original game situation. This paper studies the emergence of such views. One result
is the characterization of a Nash equilibrium relative to the relevant domain of the
objective game based on the limited and partial views of the individual players.

1. Introduction

Game theory has been successful in describing how to play a game when the rules are well
described and well understood by the players. However, the theory does not describe
the origin of the beliefs of the players about the rules and structure of the game. A new
theory called inductive game theory can be used to unearth the origin and emergence of
individual beliefs/knowledge on the structure of a socio-economic situation. The theory
is “inductive” in the sense that it describes how a player (an individual person) builds
his beliefs/knowledge from his experiences.

Kaneko-Matusi [10] initiated this theory in the context of “festival games” study-
ing the issues of discrimination and prejudice. In this theory, prejudices emerge from
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limited experiences and limited understandings of the game situation. Kaneko-Kline
[9] gave a more entire discourse on inductive game theory touching on various steps of
induction, e.g., memories, experiences, derivations of views, and their behavioral im-
plications. That paper gave positive results on how the beliefs of a player might be
inductively derived from his experiences. On the negative side, it pointed out how a
player’s observational and memory capabilities might cause difficulties in the various
steps of his long inductive processes. Success at avoiding those difficulties relied on the
choice of an appropriate domain of accumulated experiences and memory function. In
one successful case of that paper, however, the domain may become large and unman-
ageable for a player in a typical game situation.

In the present paper, we will focus on much smaller domains of accumulated experi-
ences, which are made possible by the introduction of the notions of “marked (informa-
tion) pieces” and “tested actions”. These notions allow us to use inductive game theory
to study how players might simplify and manage complex social game situations. We
start with one motivating example, which we will use throughout the paper to illustrate
our results. After this example, we will give a brief historical review on related works.

Coordination Game with Precision F’(“; (1): Suppose that an objective extensive
game is played by two players and has k£ rounds. In each round, each player ¢ chooses a
pair of actions (a;, b;) from {0,1} x{1,2,3}. The a-type action a; is more payoff relevant
than the b-type action b; for both players. At each round if they succeed in coordinating
both actions, they get the highest payoff. However, the payoffs from coordinating the
a-type actions are rapidly decreasing as the rounds proceed. The game structure is
depicted for the case of Kk = 1 in Fig.1.1. For our purpose, the information structure
in the extensive game can be arbitrary, but we assume that each player can distinguish
his previous actions at each round.

A possible profile of actions is written as a vector ((a11,b11), -.-, (1%, b1x)), ((a21, b21),
ooy (@2k, bag)), where (aj, by ) is the action taken by player ¢ = 1,2 at round ¢t =1, ..., k.
Since each endnode of the game can be expressed as a profile of actions, we can specify
the payoff to player ¢ as

hi((a11,b11), -, (1%, b1k)), ((a21, b21), ..., (a2k, bax))
k k
= > (1= aw — ag) /107" + 30 (2 = |bar — bas])/10%
=1 i=1
It would be better for each player to be precise for the choice of an a-type action in
the beginning, but he doesn’t need to be precise at later rounds or for the choice of the
b-type action.

Consider the size of a game with k = 5 rounds. The first round ends with 6 x 6 = 62
possible nodes, and in the second round, the same size tree is concatenated to each
endnode of the first round. At the end of the second round, we have 62 x 62 nodes.



(1.0001,1.0001)
(1.0002,1.0002)
(1.0001,1.0001)

Player 2

(0.0001,0.0001)
(0.0001,0.0001)
(0.0001,0.0001)

Regular path

Xo
Player 1

Figure 1.1:

Continuing in the same manner, the number of endnodes in the entire game is
6225 = (6°)2 = 7,776% = 60, 466, 176. (1.1)

Here we see that a simple game can become gigantic and potentially unmanageable for
a player when the number of rounds increases. It is fair to say that this situation with
k = 5 may still be regarded as not large in the standard game theoretic sense as well as
in the ordinary social sense. One question we address is this paper is how a player might
simplify this kind of a game in order to understand it and make a strategic decision.

Our starting point for inductive game theory is that a player has no a priori knowl-
edge about the game structure before he plays it. He will learn about the payoff struc-
ture, number of rounds, sequence of moves, and actions only from playing the game. In
order to learn the five round game in its entirety, for example, a player would need to
experience over 60 million paths! In many social situations, individuals have far fewer
experiences. Even if one did have such a large set of experiences, he would surely forget
some parts. Additionally, it is very questionable that he would be able to observe all the
aspects of the game from playing it, e.g., the strategies and payoffs of the other players
might not be observed by him.

In a situation with a “large” structure, a player focuses on what he views as im-
portant. First, he marks the information that he views as important, which we will call
“marked information pieces”. He might also try out only some of his available actions to
induce different experiences, which we will call “tested actions.” These tests are made by
a player as a deviation from what we call his “regular behavior”. The notion of “regular
behavior” plays a crucial role in inductive game theory. If a player wants to learn about
the situation by changing his own actions, he needs to assume that the behaviors of the



other players have some regularity. Otherwise, he could not conclude whether his trial
or other players’ (irregular) behaviors caused a change in his observations.

The regular behavior in a social situation is specified as a strategy profile in our
theory. This prescribes an action to be taken by a player in each contingency that
might arise. For example, in the five round coordination game F%, the (information-
independent) regular behavior might be for player 1 to choose ((0,2),(1,1),(1,2),(0,3),(0,1))
and for player 2 to choose ((1,3),(1,1),(0,2),(0,2),(0,3)). The path induced by this reg-
ular behavior in the first round is the dark line in Fig.1.1. Over the five rounds, these
give player 1 a payoff of 0.1017. The best that player 1 could hope for is found by
mimicking the strategy of player 2, which gives him and his opponent 1.1121 each.

Consider a possible analysis by player 1. Suppose that he presumes that the only
important pieces of information in this game are the first round choice and the payoff
information. He now marks the root piece and any endpieces he experiences. How many
endpieces he experiences will depend on how many experiments he makes. Suppose that
he will only experiment with his a-type action at the root piece. His tested actions then
include the regular behavior (0,2) as well as (1,2) in the first round. In rounds two to five,
he sticks to his regular behavior ((1,1),(1,2),(0,3),(0,1)). To find how his experiments
affect his payoff, he plays the five round game at least two times. After he collects
his experiences from several plays, he may try to build a simple view of the five round
game. Since he only regards the first round as important, his view will involve only that
round. In addition, we will presume throughout this paper that his view is only a one
player game in that player 2 follows his regular behavior and is effectively regarded as
an environment of player 1. Then, he may construct the simple game of Fig.1.2, where
he may still know that 6 available actions but knows only the resulting outcomes from
two actions. This game is much simpler than the objective game since it involves only
2 endpieces as opposed to more than 60 million. It requires only one comparison for
player 1 to determine that he should change his regular behavior to improve his payoff
to 1.1017, which is close to the best possible payoff 1.1121.

In this paper we will discuss how a player might inductively derive such a view from
such a complicated extensive form game. We also discuss under what conditions the
regular behavior of the players is found to be optimal in their inductively derived views.
The main contribution of this paper is to show that an inductively derived view may
become small and partial relative to the entire situation by introducing marking pieces
and tested actions. To show this, we will introduce a measure on the size of a view in
Section 8, which is simply the number of endnodes of an extensive game. With this
measure we can discuss how much the derived view is reduced relative to the objective
situation.

For the basic idea of inductive game theory, we can find various people treating
the same problem in the history, while a little has been discussed in the recent game
theory. Inductive game theory is related to Plato’s Republic [18], as well as the works
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of Bacon [1] and Hume [6]. Those works questioned and explored our limitations on
beliefs/knowledge. Inductive game theory succeeds this tradition, and, in fact, it is also
related to literature in sociology and social psychology in that human inductive behavior
depends critically on the social context (cf, Mead [17] for such discussions and Collins
[3] for more recent developments of those sociological ideas).

Our theory also shares some of the motivations behind the “bounded rationality” of
Simon [19] and the “standards of behavior” of von Neumann-Morgenstern [21]. Yet, it
is methodologically quite different and has a more basic and close connection with the
epistemic logic approach to game theory (cf., Kaneko [7]). This basic connection is that
inductive game theory provides experiential foundations for the basic beliefs/knowledge
in epistemic logic.

We have deviated from the standard literature of game theory and economics (cf.,
Luce-Raiffa [14] for a classical textbook and Osborne-Rubinstein [16] for a recent text-
book). This deviation is needed since we want to focus on the origin and emergence of
beliefs/knowledge in individual experiences. This may sound similar to the case-based
decision theory of Gilboa-Schmeidler [5] and inductive logic of Carnap [2]. Our theory
is different since it focuses on social structures and is methodologically more finitistic,
particularly in this paper.! It also differs from evolutionary game theory where a player
does not think about the social structure, and ”memories” are remaining only in the
distribution of strategies (cf. Weibull [20]).

Now, we should go further into the basic description of the theory.

"Kancko [8] discussed methodological difficulties arising from infinities involved in game theory and
economics, and argued that more finitistic treatments of social problems are needed. Finite, small and
partial views considered here have the same spirit.
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2. Description of Inductive Game Theory

For discussions of the partial views obtained from limited experiences, we need some
understanding of inductive game theory. Here, we give a short version of the discourse
given in Kaneko-Kline [9], while focusing on the direction this paper takes.

1: Situations: Inductive game theory starts with a basic system of social situations as
described in the top part of Fig.2.1. Focussing on one social situation such as (I'°, m?)
and making a simplifying assumption that behaviors of players are separated from other
situations, the target social situation is represented as a sequence like the one in the
bottom part of the figure.

A specific situation (I'°, m®) consists of an extensive game I'° with memory functions
m® = (m¢,...,m?). The memory function m¢ for each player 7 is a new concept to game
theory introduced in [9] and it describes local (short-term) memories occurring within
one play of I'°. This memory function is separated from the description of I'° and is
needed to describe the basic ingredients for a player’s subjective view.

The description of an extensive game we use is essentially the same as one in the sense
of Kuhn [13]. One difference is that an information piece, rather than an information set,
is attached to each node. We do not treat the concept of an information set as a basic
concept in our theory. Information sets fit well with players who are fully cognizant of
the game structure, but not with those who learn by their experiences. We will discuss
more about our treatment of information as pieces in Section 3.

2: Regular Behaviors and Limited Trial Deviations: The reader may wonder
how a player can, at first, behave without any a priori knowledge on the structure of
the social situation. In fact, we often behave without knowledge on the structure of the
situation. We simply make a choice or follow some learned rule of behavior. Players



typically behave following prescribed regular behavior patterns and occasionally make
some trial deviations. An extreme example is a default action, i.e., when a player meets
in a new decision situation, he chooses the first available action.

If players use only their regular behaviors, then they would only get a very narrow
view of the situation. In order to learn more about the structure of the game, they
make some trial deviations. In Kaneko-Kline [9], the unilateral trial domain and several
others were considered. In many games, like the coordination game with five rounds I’%
of Section 1, the unilateral trial domain becomes quite large and unmanageable. In the
present paper, we consider partial trial domains made possible by our introduction of
marked pieces and tested actions.

3: Limited Accumulations of Experiences as Long-term Memories: In addition
to the time constraints, a player is constrained by his cognitive ability to store his
experiences as memories. Some experiences are more likely to remain as long-term
memories, and some disappear from his mind. A player retains only a small set of long-
term memories relative to his full potential with unlimited trials and storage capacity.

The transformation from short-term memories to long-term ones has a lot of steps.
In Kaneko-Kline [9], these steps were summarized as an informal theory. In the present
paper we consider memories up to marked pieces and tested actions. Taking these
constraints into account, we adopt a specific memory function called the marked exact
perfect recall memory function. This memory function describes a player who recalls
exactly his part of his marked and tested paths within each play.

4: Induction from Long-term Memories to a View: A player constructs his
view from the long-term memories stored in his mind. Kaneko-Kline [9] gave a general
definition of inductively derived views, and showed that the inductive derivation of such
a view is sometimes impossible and sometimes generates many views, which are due
the general setting in [9]. In this paper, we avoid those difficulties by adopting the
exact perfect recall memory function, and can use a more stringent definition of the
inductively derived view than in [9]. This enables us concentrate our research on small
and partial views derived from experiences.

It is a contribution of the paper that the introduction of marked pieces and tested
actions make the inductively derived view is much smaller and more partial than the
original game situation. This suggests that a player may be able to consider his behavior
in a large game situation. Therefore, we have a natural connection to the next step.

5: Behavioral Use of an Inductively Derived View: After a player constructs a
view, he can use it to determine if his behavior is optimal. Kaneko-Kline [9] obtained
an experiential characterization of Nash equilibrium for the full objective game with
n-players. In this paper, due to the smallness and partiality of the views, there may be
a great distance between subjective optimality and objective optimality. Nevertheless,
we show that the subjectively optimal behaviors can be regarded as objectively optimal



in a restricted sense. In this way, we can give a corresponding connection to Nash
equilibrium.

We will give a measure of the sizes of personal view as well as of the objective game,
which will be introduced in Section 8. This enables us to discuss the smallness and
partiality of personal views relative to the objective game in a meaningful manner.

3. Extensive Games, Memory Functions, and Behavior

This section summarizes the basic theory of extensive games, and introduces memory
functions. An extensive game I' and a memory function m; are used both for the
description of an objective situation and for a subjective personal view. We use the
convention of describing the objective situation as (I'°, m®) and a personal view for a
generic player i as (I', m%).

3.1. Extensive Game with Partial Actions

Our definition of an extensive game for the objective description is, more or less, equiv-
alent to that of Kuhn [13]. The main differences are in the treatment of information and
memories. These differences are important for the coherent development of inductive
game theory. We discuss them after giving the definition of an extensive game. Then,
we will modify the definition to describe a personal view of player 1.

For notational simplicity, we sometimes make use of a function with the empty do-
main, which we call an empty function. When the empty domain and some (possibly
nonempty) region are given, the empty function is uniquely determined.

Definition 3.1 (Extensive Games). A marked extensive game I' = ((X, <), (A, W), M,
{(¢y, Az) }zex, (m, N), h) is defined as follows:

K1(Game Tree): (X, <) is a finite tree;

K11: X is a finite non-empty set of nodes, and < is a partial ordering over X;

K12: {x € X : 2 < y} is totally ordered with < for any y € X;?

K13: X is partitioned into the set X of decision nodes and the set X of endnodes
so that every node in XP has at least one successor, and every node in X has no

successors;3

K14: X has the smallest element zg, called the root.

>The binary relation < is called a partial ordering on X iff it satisfies (i)(irreflexivity): = ¢ z; and
(ii)(transitivity): = < y and y < z imply = < z. It is a total ordering iff it is a partial ordering and
satisfies (iii)(totality): z <y, z =y ory < z for all z,y € X.

3We say that y is a successor of x iff x < y, and that y is an immediate successor of z, denoted by
z <’ y, iff z < y and there is no z € X such that 2 < z and z < y.

YA node z is called the smallest element iff z < y or z =y for all y € X.



K2(Information Function): W is a finite set of information pieces and A : X — W is a
surjection with A(z) # A(z) for any z € XP and 2z € XF;

K3(Marked Pieces): M is an arbitrary (possibly empty) subset of W;

K4(Available Action Sets): Ay is a finite set of available actions for each x € X;

K41: A, =0 for all z € XF;

K42: for all z,y € XP, A(z) = A(y) implies A, = Ay;

K43: for any x € X, ¢, is a bijection from the set of immediate successors of x to Ay;

K5(Player Assignment): N is a finite set of players and © : W — 2V is a player
assignment with the following condition;

K51: |n(w)| =1if w e {\(z): 2 € XP} and 7(w) = N if w € {\(x) : 2 € XF};

K6(Payoff functions): h = {h;}ien, where h; : {\(z) : = € XF} — R is a payoff
function for player i € N.

By K42, we can write A, for A, when \(z) = w.
The main differences between Kuhn’s [13] definition and ours are:

(1) the use of information pieces rather than information sets consisting of nodes having
the same information;

(2) some information pieces are marked (see K3 above).

The difference (1) is essential to capture players who do not have full knowledge of
the social situation. We assume that an information piece is symbolically given, for
example, it is a sentence or simply a symbol. In one play of the game, a player obtains a
sequence of information pieces along the realized path. This is the source for information
about the game structure. The difference (2) is the source for smallness and partiality
of personal views. Now, let us discuss the differences (1) and (2) in detail.

In our interpretation, when a player arrives at a node x, he receives the information
piece w = A(z). From the objective point of view, information sets consisting of nodes
can be derived from the above definition, i.e., a pair (w, 7) of an information piece w and
a player i determines the corresponding information set {z : A(z) = w and ¢ € 7(x)}.
However, the player is not presumed to be able to carry out such a derivation before
he forms his beliefs about the structure of the game. He has too little knowledge about
the game structure to know which nodes fit where. Here, we emphasize that nodes
and, a fortiori, information sets are hypothetical constructs. On the other hand, the
information pieces are tangible to a player.

The set M of marked (information) pieces is additional to an extensive game of
Kuhn [13] and it is used to describe the part of the game that each player regards as
important. While the set M is arbitrary here, some requirement will be given in Section



4. The roles of marked pieces will become clearer when we talk about a memory function
and trials.

An extensive game is said to be fully marked iff W = M. Given the set M of marked
pieces, we denote M; = {w € M :i € w(w)} as the set of player i’s marked pieces. From
the marked pieces, we can define the set of marked nodes:

XM ={re X :\Nz)e M}yand XM = XM nX,, (3.1)

where X; = {z € X :i € m- ()} is the set of nodes for player i.
In this paper, we assume throughout that:

(3iA): the objective game I'* = ((X°, <?), (X°, W®), M° {(¢2, A2) }zex, (7°, N°), h°)
is given as an extensive game satisfying all the above conditions.

Furthermore, each piece of information w contains a minimal content of information:

M1: the set A, of available actions;
M2: the value 7°(w) of the player assignment 7° if w is a decision piece;

M3: his own payoff h¢(w) (as a numerical value) if w is an endpiece.

The information about the available actions, player assignment and payoff contained in
M1, M2 and M3 is interpreted as written on each piece w. These assumptions are made
to simplify the description.

For the subjective use of an extensive game, we replace condition K43 by the fol-
lowing K43’ :

K43': for any x € X, ¢, is an injection from the set of immediate successors of = to A,.

Here, some actions in A; may not be associated with any immediate successors. The
reason for this is to allow for limited trials. All the available actions are still assumed to
be perceived by the player who moves at node x (i.e., M1), but their resulting paths are
not considered or understood by him unless he tries them. In the coordination game
F% with precision in Section 1, according to M1, player 1 is informed that he has six
available actions at the root node, but he has tried only two actions (0,2) and (1,2).
Hence, in this personal view, the root has only two immediate successor nodes, which is
depicted in Fig.1.2. When we require only condition K43’ for I", we call I" as an extensive
game with partial actions.

A Dbasic question for inductive game theory is how a player derives a view on the
social situation from his accumulated experiences. In this paper, we assume that

(3iiA): a personal view T¥ = (X, <), (N, W), M?, {(¢h, AL} pexs, (0, {i}), ) s
one-player extensive game with partial actions.

Since this is a 1-person game, only the payoff function for player 7 is listed.

10



Kaneko-Kline [9] considered extensive games in a weaker sense relaxing the root
node assumption and requiring ¢, in K43 to be only a function. This generalization
was to allow more general personal views that might include other players.

3.2. Memory and Behavior

In the standard game theory, the memory capability of a player is expressed in terms
of information sets.” In inductive game theory, however, memory is the source for a
personal view. We need to separate the memory capability of a player from information
pieces and give an explicit definition of memory. Here, we define a memory function and
a strategy for a player. The memory function describes a player’s short-term memory.

Let us return to an extensive game I' either with K43 or K43'. For each node z, the
injection ¢, associates an action with an immediate successor of x. Using this, we define:
x <q y iff x < y and either p,(y) = a or (p,(2') = a and 2/ < y for some immediate
successor x’ of x). This means that action a at node z leads to node y. When z is an
endnode, ¢, is the empty function and is a bijection since A, is empty by K41.

To discuss the personal memory capacity, the history up to an information piece
within the game I' is important. We start with a definition of a path. The path to a node
x is defined as the unique sequence of nodes x1, ..., t;m4+1 = z satisfying {z1, ...,z } =
{ye Xy <z}andz; < x44q fori = 1,...,m. Now, we define the history of information
pieces received and actions taken up to x. The (objective) history to x is given as:

0(x) = (M21),01), s (A(@m), am ), A()), (3-2)

where (21, ..., Zm+1) is the path to z and z; <4, 441 for t = 1,...,m. By K2 and K43
(or K43'), 6(x) is uniquely determined, and is the entire history up to z.

Now, we focus on a node z for player ¢, and the history of his information pieces and
actions up to z. Let (z,, ..., xkl7xkl+1> be the subsequence of nodes for player ¢ in the
path (z1,...,Tm+1), i.e., the subsequence is defined by the property that i € 7 - A(zy,)
for t =1,...,1 + 1. We define the history to x relative to player i as:

()i = ((M@hy)s k)5 oos (M@hy ), iy )s Mk 1)) (3-3)

where each ag, is the action taken at xzy, to connect to x. Since x = xy,41 belongs to
player i, we have xy, , = z. Finally, we define the marked history relative to player i,
which we denote by 0(z)M. The history 0(z)M = (A (1), aty)s s (M@1,)s ts)s AYter1))
is the maximal subsequence of §(z); with A(y,,) € M for all k =1,...,5s+ 1.
Kaneko-Kline [9] discussed a variety of memory functions, some of which included
information pieces of other players. In this paper, we restrict attention to the marked

>Traditionally, the memories about his previous moves as well as the information he obtained previ-
ously are described by information sets in I'. In this treatment, memories themselves are interpreted as
being written in an information set (cf., Kuhn [13] and Kline [12]).

11



exact-perfect recall memory function.

Definition 3.2 (Marked Exact-Perfect Recall Memory Function): The MR-
memory function mZM R of player i is given as follows. For each node x € X; = {x € X :
iem-Ax)},
{0(x)My if \M(z) e M
mR(z) (3.4)
[A@)} if A(z) ¢ M.
MR

In the following, we sometimes refer to the sequence 6(x)M in m!

() as a memory
thread.

This memory function gives player i perfect recall about his own marked pieces and
tested actions within I". At unmarked pieces, he recalls nothing about the past and
receives only the current information piece. Note that he has no observations of other
players’ pieces, and no memories of them.

Now, we have completed the extensive game description and the memory function
describing short-term memories. These are used both for the description of the objective
situation and the personal view discussed in Section 1. In this paper,

(3iB): the objective description is given as a pair (I'°, m°) = (I'°, (mME ... mMR)) of
an n-person game I'> and a profile of memory functions m® = (mg,...,m2);

(3iiB): a personal view of player i is a pair (I', mM%), where I'? is a 1-player fully
marked extensive game with partial actions and m™¥ is the exact-perfect
memory function.

Recall that by “fully marked”, we mean that all pieces in I'* are marked by player i.

We use a behavior pattern to describe the behavior of players in the recurrent ob-
jective situation (I'°,m®) and also to describe a subjective strategy in a personal view
('Y, m?) for player i. While the objective situation is repeated such as in the bottom
figure of Fig.2.1, we do not treat the behavior as a strategy over the repeated play, but
rather as a strategy, or behavior for one play.

Let I' = ((X, <), A, W), M, {(¢,, Az) }zex, (7, N), h) be an an extensive game with
partial actions and let meR be the marked memory function for player ¢ € N. We say
that a function o; defined over the set of decision nodes X = {zx € X? :i € 7 A(z)}
is a behavior pattern (strategy) iff it satisfies: for all x,y € XZ»D ,

oi(x) = ¢ (2) for some immediate successor z’ of z; (3.5)

m B (z) = m}F(y) implies o4(x) = o4(y). (3.6)

The first states that o; prescribes an “available” action to each decision node. The
second requires o; to depend only upon local memories, and is often called the mea-
surability condition. We say that an n-tuple of strategies o = (071, ...,0y,) is a profile of

12



behavior patterns. We denote, by (o}, 0_;), the profile obtained from o by substituting
o for o; in 0.

We allow for multiple interpretations of a behavior pattern. When the player has
no idea about how to behave, for example, in some new game for society, his behavior
is based on a default choice. A behavior pattern for a slightly experienced player is
best interpreted as a norm or standard of behavior learned or copied by watching other
players in the same or a similar game. With these interpretations, we can avoid the
difficulty that a player may have no structural beliefs/knowledge of the game but still
has a well defined behavior pattern.

A final remark is that we assume no chance moves. We avoid chance moves because
their introduction gives certain conceptual problems and will create some unnecessary
complications. Without chance moves, a profile of behavior patterns o = (o1, ...,0p)
determines a unique path z1, ..., 41 in the extensive game I'.

4. Trials, Unilateral Domains and Memory Kits

The source for a player’s personal view is his accumulated long-term memories of past
experiences. In Section 4.2, we formulate the partial unilateral trial domain of accumu-
lation and define a corresponding memory kit. The domain of accumulation is based
on some behavioral and cognitive postulates. First, in Section 4.1, we briefly discuss an
informal theory of postulates that suggest some partial unilateral trial domain of accu-
mulation [deleted fragment here|. See Kaneko-Kline [9] for an informal theory treating
the complete unilateral trial domain. Recall that the point of the present paper is to
treat small and partial domains when the unilateral trial domain becomes too large to
manage.

4.1. Informal Theory of Behavior, Trials and Memorization

The informal postulates we give are divided into two types: behavioral and cognitive.
The postulates in this paper have to do with the marked pieces and limited trials. We
start our informal theory with the behavioral postulates.

(1): Postulates for Behavior and Trials: The first postulate is the rule-governed
behavior of each player in the recurrent situation ..., (I'°,m?), ..., (I'°, m°), ...
Postulate BH1 (Regular Behavior): Each player, i, typically behaves regularly
following his behavior pattern o¢.

As already stated, player ¢ may have adopted his regular behavior for some time
without thinking about it. Without assuming regular behavior for the players, a player
may not be able to extract any causal pattern from his experiences. In essence, learning
requires some regularity.
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After having followed some social regular behavior for some time, players might
wonder what would happen if they changed their behavior. To learn the pattern as well
as responses, a player may make some trial deviations. We postulate that such trial
deviations take place in the following manner.

Postulate BH2 (Occasional Deviations): Once in a while (infrequently), each
player unilaterally makes a trial deviation o; from his regular behavior ¢, and then
returns to his regular behavior.

Early on, such deviations may be unconscious or not well thought out. Neverthe-
less, a player might find that a deviation leads to a better outcome, and he may start
making deviations consciously in the future. Once he has become conscious of his be-
havior/deviation, he might make more and/or different trials. In fact, this postulate
allows a player to make no trial deviation. This partiality will be stated in the following
two postulates.

Postulate BH3(Marked Pieces): Each player, i, makes a trial only at a marked
information piece.

Postulate BH4 (Limited Trials): Each player, i, experiments over only some possi-
ble behaviors.

The objective situation may be too large for a player with limited cognitive abilities
to handle. Consequently, each player marks some parts as being important and leave
the others unmarked. At these marked pieces, a player will consciously consider trials,
which may be only some subset of the full set of available actions. Formally, these two
postulates will be captured by restricting a trial strategy set given in Section 4.2.

(2): Cognitive Postulates: Each player may learn something through his regular
behavior and deviations. What he obtains in an instant is described by his short-term
memory, m;(z). For the transition from short-term memories to long-term memories,
there are various possibilities. Here we list some postulates based on bounded memory
abilities of a player.

The first postulate states that if a short-term memory does not occur frequently
enough, it will disappear from the mind of a player. We give this cognitive bound on a
player in postulate form as follows:

Postulate CP1 (Forgetfulness): If experiences (short-term memories) are infrequent
for player i, then they would disappear from a player’s mind.

The word “infrequent” is relative to player i as well as his consciousness. In contrast
to the behavior postulates, this postulate is more subjective.

In the face of the cognitive bound of forgetfulness on player ¢, only some memories
become lasting. We assume that the first type of memories that become lasting are the
regular ones since they occur quite frequently. The process of making a memory last by
repetition is known as habituation.
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Postulate CP2 (Habituation): A short-term (local) memory becomes lasting as
a long-term memory in the mind of player ¢ by habituation, i.e., if he experiences
something frequently enough, it remains in his memory as a long-term memory.

By CP2, when all players follow their regular behavior patterns, the short-term
memories experienced by them will become long-term memories by habituation. The
remaining possibilities for long-term memories are the memories of trials made by some
players. We postulate that a player may consciously spend some effort to memorize the
outcomes of his own trials.

Postulate CP3 (Conscious Memorization Effort at Marked Pieces): Each
player makes a conscious effort to memorize his marked pieces as well as the results
of his own trials at them.

Postulate CP3 means that when a player makes a trial deviation at a marked piece,
he also makes a conscious effort to record his experience in his long-term memory. These
memories are more likely to remain if they are repeated frequently enough relative to
his trials. Since the players are presumed to behave independently, the trial deviations
involving multiple players will occur infrequently, even relative to one player’s trials.
Thus, the memories associated with multiple players’ trials do not remain as long-term
memories.

We have assumed that when a player receives an unmarked piece, he follows his
regular behavior without becoming conscious about it. We interpret CP3 as additionally
meaning that an experience at such an unmarked piece does not appear in the mind of
the player as a long-term memory, while such experiences along the regular path must
be frequent enough.

As we noted above, this is an informal theory, and may be compatible with various
formulations of the individual accumulated long-term memories. Nevertheless, here, we
interpret Postulates CP1 to CP4 and BH1 to BH3 as suggesting that we can concentrate
on a partial domain of accumulation of player which will be described formally in Section
4.2.

Since the above informal theory is highly finitistic, in particular, it includes forget-
fulness, we think that simulation studies of this informal theory and others may lead to
future progress with inductive game theory.

4.2. Collecting Information at Marked Pieces and Partial UT-domains

Kaneko-Kline [9] gave an informal theory suggesting a unilateral trial domain of accu-
mulation. Here, we focus on partial unilateral trial domains which are suggested by the
informal theory given above.

Consider the objective situation (I'°, m°) = (I'°, (m{M % . mM~)) where the players

follow some given regular behavior patterns ¢® = (09, ...,02). First, we assume the
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following very basic condition on the set of marked pieces M? and 0° = (09, ...,02):

RO(Regular Marked Endnode): \°(z) € M?° for the endnode x induced by ¢° =
(09,...,00).

Recall that any profile of behavior patterns ¢ = (o1, ...,0,) determines a unique
path x1, ..., 41 to an endnode z,,41. We define the marked cane domain for player ¢
relative to o as

DZMC(U) ={z1, s Tipy1} N XioM, (4.1)

where XPM = {z € X° :i € 7°(z) and \°(z) € M°}. This is the sequence of marked
nodes for player i on the path determined by the behavior profile o. A role of marked
information pieces is to allow player i to make trial deviations at those pieces. To
describe this role, we define a trial strategy set ¥; to be a subset of the set ¥¢ of all
strategies for ¢ satisfying the following three conditions:

TO(Regular Behavior): ¢f € 3;;

T1(Deviations at Marked Pieces Only): if 0¢(x) # o0;(x) for some o; € 3;, then
A°(z) is marked;

T2(Closed with respect to Marking): Let x be an endnode, ie., x € XoFE If
Y <o,(y) * for some marked node y € XfM and some o; € ¥;, then x is also marked.

The set 3J; expresses permissible trial deviations for player i. Condition TO is a basic
requirement. Condition T1 means that a trial deviation can be made only at a marked
piece. Condition T2 states that if an endnode follows a marked node by some trial
strategy in Y;, then that endnode is marked by player .

A trivial example for a trial strategy set X; is the singleton set {¢¢}, which is the
smallest one and gives no freedom for player ¢ to make trials. The largest one is given
as the set E;’M of all strategies o; satisfying, for all z € X7,

oi(x) € A° if \(x) € M° and o4(x) = 0%(z) if \(z) & M. (4.2)

In this case, player 7 has the freedom to choose any action at a marked node, but keeps
to his regular action at unmarked nodes. In general, a set 3; satisfying TO-T2 is a
subset of EfM .
We can now present the domain for accumulating memories in this paper. Consider
a pair (0°,%;), where 0° = (09, ...,09) is the regular behavior profile for (I'°, m°) and
Y is a trial strategy set for player i. Player i’s partial UT-domain for (c°,%;) is given
as:
DY(0°, %) = U DMe(o°,,0). (4.3)

0;,€Y;

When ¥; is the smallest set {09}, DM¢(a° ;, %) coincides with the cane domain DM¢(5°).

When %; = XM the domain of accumulation DY (0°, $2M) is the set of marked nodes
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that are reachable by unilateral deviations at marked nodes. The UT-domain discussed
in Kaneko-Kline [9] is the special case where M? = W? and ¥; = X9.

The domain DY (0°,3;) is the set of nodes reachable from the regular behaviors
and trials. Since nodes are hypothetical constructs from the viewpoint of the outside
observer, we need to translate this set in terms the constructs tangible for player ¢
himself. That is, we translate DZU (6°,%;) to the corresponding memory kit. Let us
denote DZU (0°,%;) by D; for simplicity. We say that Tp, is a memory kit for domain
D; iff

Tp, = U mi(); (4.4)
xzeD;
The kit Tp, represents the entire set of memory threads remaining in the mind of player
7. In Section 5, it will be used to construct a skeleton for a personal view.

Coordination Game with Precision (2): Let us see the concepts developed above
in the coordination game with precision (I'%,, m®). To present marking and testing in a
systematic manner, we give the following constraints on >; and M°. Let p and r positive
integers, where p is the number of marked nodes in each path and r is the number of
tested action at each marked node. Now, let X" be a set of information-independent
strategies in X9M satisfying 09 € X" and
(1-M): for each path {x1,...,211} to endnode z11, [{z € {z1,...,x11} : © € X?M}| = p;
(2-M): |{o;(x) : 0; € SE"}| = r for all decision nodes z € XM.
Note that by the assumption of information-independence, each strategy in X" is ex-
pressed as a sequence of actions such as ((a;1,bi1), .., (a5, bi5)). In (T'g, m®), p can be
1,...,6, and r can be 1,...,6. When p = 1, player ¢ makes no trials. This case is too
trivial.

Consider one case with p = 2 and r = 2 which corresponds to example given in the

introduction. We assume that only player i’s first decision nodes and the endnodes are
marked. We also specify a regular pair of (information-independent) strategies:

((agh ?1)7 M ((135, ?5)) = ((07 2)7 (17 1)7 (17 2)7 (07 3)7 (07 1)) (45)
((agh bgl)v ) <a’g57 35)) = ((17 3)7 (17 1)7 (07 2)7 (07 2)7 (07 3)) (46)

Now, we consider player 1’s test strategy set 3] and the resulting memory kit. Suppose
that X7" consists of two (information-independent) strategies:

2111)7" = {(<a117b21)7 (a{fm ?2)7 teey (a(1)57b(1)5))7 ain € {07 1}} (47)

That is, player 1 makes only one additional trial of deviation for the a-type action
at round 1 and follows his regular behavior otherwise. In this case, the memory kit
Tp, = Uzep, mi(z) of player 1 is given as
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{(X°(z0))} U {{(X°(z0), (a11,2), X°(z' (a11)) : a11 € {0,1}}, (4.8)

where z'(0) and 2z!(1) are the endnodes induced by his a-type actions 0 and 1 at round
1, provided that otherwise the players follow the behaviors of (4.5) and (4.6). Thus, the
memory kit Tp, consists of only three memory threads.

Contrary to the tininess of (4.8), this set of threads could become gigantic when we
adopt the full set W for M and the set of all strategies ¥; = 7. In this case, the trial
deviations for player i are all sequences ((a11,b11), ..., (@15, b15)). Hence, the cardinality
of D1 = DY(0°,%1) is the sum of reachable nodes and is given as

1
1+61+62+63+64+6523(66—1):9331. (4.9)
This is the same as the cardinality of the memory kit T, .

5. Inductively Derived Views

Now, we are in a state to consider how player ¢ constructs his personal view from his
memory kit Tp, = ,ep, m7(z) given by (4.4). It will be shown that the definition of
induction given in this paper is almost deterministic. The standard notion of induction
involves bold and sophisticated reasoning from a finite number of experiences (memories)
to a general rule (view), which suggests that there might be infinitely many candidates
for a view. Our definition of the deterministic induction method becomes possible by
the adoption of the (marked) exact-memory function for a player and the restricted
domain of accumulation. This allows us to focus on the problem of small and partial
views.

The memory kit Tp, provides all the ingredients for a player’s induction. Our defi-
nition of induction is as follows.

Definition 5.1 (Inductively Derived View). A pair (I, m?) = (((X?, <), (X}, W),
M {(ph, A Yaexi, (78, N, hY), m?) is an inductively derived view (an i.d.view for
short) from the memory kit Tp, iff

P1(Construction of an Extensive Game): I'? is a fully marked 1-person extensive
game with partial moves and N* = {i} satisfying:

(a)(Preservation of the Informational Structure): the set ©(I) of histories in T coin-
cides with Tp,;

(b)(Action Sets): for each node z € X*, AY = AS;
at each = node in I'? is given as the set A;’\i
N(x) in T

, i.e., the set A% of available actions

(z)

of available actions at information piece

(z)
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(c)(Correct Payoffs): h' - X(z) = h¢ - \'(z) for each endnode z in I';

M

P2(Construction of a Memory Function): m* = m™# is the marked exact perfect

memory function for I'%.

Let us explain the above definition and give remarks on several points. Player
i constructs I'* from the accumulated long-term memories Tp,. First, this game is
required to be fully marked, i.e., M* = W, Since player ¢ has constructed this game
in his mind, he is conscious of every information piece in the game I'*. Second, this
game is an extensive game with partial actions, i.e., only K43’ is assumed in order to
accommodate the limited trials of a player.

Recall that the ingredients available to player ¢ are given in the memory kit Tp,.
Player 7 uses some additional hypothetical nodes X to construct a tree with the binary
relation <* . Then he attaches an information piece \'(z) from Tp, to each node z and
consequently all pieces in W* come from Tp,. By M1 in Section 3, the attached piece
M(x) has the information about the available actions AS, (@) Condition Pla requires

that the set ©(T"%) of histories in I'coincides with the kit Tp,. Condition P1b requires
the set A% of available actions in ' to be A‘;i (@) Note also that IV is a 1-player game

for player ¢ himself, which is compatible with M2.

It follows from our assumptions on the memory function and domain of accumulation
that the endnodes in X* will always be assigned endpieces from W® and the decision
nodes in X* will always be assigned decision pieces from W°. Consequently, we can
require, in Plc, that the payoff for \(z) in I is the payoff for X(z) in T'°. The
availability of the payoff information comes from M3 - the payoff of player i is written
on each endpiece.

Condition P2 simply requires the memory function m* = m™# in I'*. Kaneko-Kline
[9] gave a more general formulation of P2, but we do not need such a general formulation
since we assume the exact perfect recall memory functions for the objective situation
and the subjective description.

Now, consider the existence and uniqueness of an i.d.view. Both are answered in
the affirmative in the following theorem.

Theorem 5.1 (Existence and Uniqueness up to Isomorphisms). Let D; =
DY(5°,%;) be a partial UT-domain.

(1): There exists an inductively derived view (I, m¢) from T, .

(2): Let (I';m) and (I",m’) be two i.d.views of player i from Tp,. The two views are
isomorphic in the sense that there is a bijection ¢ : X — X' such that for all z,y € X,

(a) ¥(x) <" ¢(y) if and only if z < y; (b) A(z) = N (¥(2));
(c) Az = Al (d) @2 (y) = @y (W (¥));
(e) hi(z) = hi(¥(2)); (f) m(z) = m'(¢(2)).
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Proof.(1): Under the assumptions of this paper, the memory kit Tp, has enough in-
formation to construct an i.d.view. First, we let X! = Tp,. Indeed, if a sequence
(w1, a1), ..., (wg, ax), wiy1) is in Tp,, any initial segment ((w1,a1), ..., (w, al),wlﬂ) (1<
k) is also in Tp,. For any two sequences (£, v) and (n,w) in Tp, we write (§,v) <* (n,w)
iff (¢,v) is an initial segment of (n,w). Then, (Tp,, <) can be regarded as a tree sat-
isfying K1. Next, we define W* to be the set of information pieces that appear in T, .
Then, let M = W' the game is fully marked, let N = {i}; the game is a 1-person
game involving only player i, and let m* = mM % to satisfy P2.

The components X, { A%}, xi, and h? are then simply derived from Xp, = Tp, using
M1 and M3. Specifically, for each x = (w1, a1), ..., (g, ar), wry1) in Tp,, we let A\’ (z)
= Wiy, AL = A;’Ukﬂ, and the payoffs are defined by hy.

The treatment of {8 },c i is a little more delicate, but under our assumptions it is
uniquely defined. If z = (w1, a1), ..., (wk, ax), Wit1) is in Tp, and it has no immediate
successors, then ¢! is the empty function. Otherwise, x = ((wy,ay), ..., (wk, ag), Wri1)
has an immediate successor y = ((w1,a1), ..., (Wg, ax), (Wk4+1,ag+1), Wet2), and then

OL(Y) = api1.

(2): Let () and 6'(z) be the objective histories up to nodes z in I" and 2’ in I". By Pla,
O(I') = O(I”). Additionally, since I and I are both rooted trees, € is a bijection from X
to O(I") and ¢’ is a bijection from X’ to O(T"). Hence, we can define ¢(z) = 0! 0 §(x)
for any node z in T'. Thus, ¢(x) is well defined and is a bijection from X to X’. This
bijection satisfies (a) to (f). W

The specific i.d.view (I, m?) given in the proof of Theorem 5.1.(1) is constructed
directly from the memory kit Tp, treating each memory thread in T, as a node. For
this reason, we call this i.d.view the memory-thread representation.

We can construct another i.d.view from D; simply using D; as the set of nodes in
the personal view. We call this view the original-node representation. While this latter
view is more convenient in the subsequent analysis, it is not natural from the viewpoint
of player 7 since he observes only the information pieces, rather than the nodes in D;.
This view is obtained simply by restricting the objective extensive game (I'°, m?) to D;.
All the components of (I, m%), except {(¢%, AL)},cxi, are obtained from (I'°, m°) by
restricting attention to X¢ = D;.

Formally, those components are defined as follows: <'= (<°) N (D; x D;), \* is the
restriction of A° to D;, Wi = M? = {\{(z) : x € D;}, n'(x) = N* = {i} for all 2 € D;
and hi(x) = h(z) for all z € D;NX°F. The tree (X¢, <¥) may not inherit the immediate
successorship in (X°, <°). Let z € X be the immediate successor y € X* with respect
to <'. When it inherits the immediate successorship from I'°, we define ¢ (y) = ©2(y).
If not, we find a node y° in X so that it is the immediate successor of x and also a
predecessor of y with respect of <° . Then, we define ¢ (y) = ¢%(x). Now, we have the
original node representation (I'", m?). We can verify that this is an i.d.view, too.
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Theorem 5.1.(2) states that this original-node representation is isomorphic to the
memory-thread representation given in the proof of Theorem 5.1.(1).

Coordination Game (I'},, m°) with Precision (3): Recall that we specified a regular
pair of (information-independent) strategies in (4.5) and (4.6). These strategies give
payoffs (0.1017,0.1017) to the players. Incidentally, the Nash equilibrium payoffs in the
objective game I'> = T'g, are (1.1121,1.1121).

First, consider the size of the i.d.view when M? is the full set W° and ¥ is the
set of all information independent strategies in Fg. In this case, as calculated in (4.9),
the memory kit Tp, has 9331 memory threads. Since any i.d.view is isomorphic to
the memory-thread representation, any i.d.view has also 9331 nodes. In fact, we will
argue in Section 8 that the number of endnodes is more convenient to consider. In this
example, the number of endnodes of any i.d.view I'' is 6° = 7,776. This number is
already much smaller than the number of endnodes (6°)? = 60, 466, 176 of the objective
situation (I'°, m?).

Second, let us go to the case (p,r) = (2,2) considered in Sectiond and the introduc-
tion. In that case, the memory kit T, is given as (4.8), which consists of 3 memory
threads. The inductively derived view (I'',m!) is constructed from those 3 memory
threads. It is extremely simple having only 2 branches and 2 endnodes, depicted in Fig.
1.2. In this view, one endnode gives the payoff 0.1017 and the other gives 1.1017.

The point of this example is to show that player 1 obtains a very small partial i.d.view
from marking only a few seemingly important parts of the game and restricting possible
actions. If marking is adequate, it gives almost the best payoff, i.e., 1.1017 relative to
the Nash payoff 1.1121. However, it depends upon a choice of marking and possible
actions. Maybe, some player only marks unimportant pieces, and he does not improve
his payoff by making more trials. Additionally, testing the wrong actions might not
help either. In this sense, we can regard the set of tested actions as a type of marking,
where a player marks the actions to be tested that he regards as important.

6. Strategic Use of an Inductively Derived View

After player i derives his view (I'!, m?) from the memory kit Tp,, he may think about
an optimal strategy in that view, and he may also think about how to use it in the
objective situation. The scenario is described in Fig.6.1, where the steps of finding an
optimal strategy and bringing it back correspond to the lower part of the figure.

Let (I, m?) be an i.d.view from the memory kit Tp, in the objective game (I'°, m°)
with the regular behavior patterns 0° = (09, ...,0%). To define a subjectively optimal
behavior strategy, we consider a strategy 7; in the view (I'Y,m). Each strategy 7; in
(I'*, m?) determines a unique path to an endnode x in (I, m?), and defines the endpiece
Mi(z), which we denote by \é(7;).
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Figure 6.1:

Now, player i looks for a strategy 7} in (I'Y, m?) that optimizes his subjective payoff
hﬁ, ie.,

RUN (7)) > Wi (N (7)) for all strategies 7; in (I, m?). (6.1)

Since (', m) is a finite 1-person game, he has an optimal strategy Tzl. Now, we meet
four questions:

Q61: how does player ¢ bring 7'} back to the objective situation (I'°, m®)?

Q62: what relationships does the optimal strategy have to the regular behavior o¢?
Q63: what is the conceptual status of the optimal strategy relative to Nash equilibrium?
Q64: what is the size of the above optimization problem (6.1)?

We will discuss these questions in the remainder of this paper. In this section, we
consider only Q61 and Q62. The question Q63 will be discussed in Section 7 and Q64
will be discussed in Section 8.

Let us start with Q61. Observe that player ¢ first looks for an optimal plan 7'} in
the i.d.view (I'!, m?). After he finds one, his next problem is how to bring 7} back to the
objective situation (I'°, m®). The strategy 77} is a plan in (I'Y, m%), but the player would
like to use it to modify his regular behavior ¢¢ by 3.

Since (I'!, m*) may have different nodes to those in (I'°, m°), it may appear that the
player would not be able to apply his strategy 7'21 easily to (I'°, m?). However, strategies
are effectively defined over the set of memories by (3.6), so this is not a problem. All
memory threads in (I'!, m%) are those in Tp,, which are memory threads for player i in
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(I'°, m?). This fact enables us to make the following definition: for all x € X?,

H(y) if m2(z) = m¥(y) and y € XY

oi(z) = (6.2)

of(x) otherwise.

Note that for each x € X?, the node y in the above if-clause is uniquely determined by
Pla and m* = mM£_ This definition states that player ¢ follows 7'} in (I'°, m°) whenever
a local memory described in his personal view (I'!, m?) occurs, and otherwise he resorts
to 0. This is the answer to Q61.

Now, we suppose that only player ¢ adjusts his behavior in the above manner. The
profile of regular behavior patterns o = (09, ...,0%) changes into (¢°,, o}) and we have
the following observation, which is stated as a theorem for a purpose of comparisons
with later theorems. This is our answer to Q62.

Theorem 6.1 (Optimality brought back). Let (I'Y, m’) be an i.d.view from the kit
Tp, with the trial strategy set 3;. Then, a strategy 7} in (I'Y, m%) is optimal in the sense
of (6.1) if and only if o} is optimal in ¥; relative to 0 in the objective game (I'°, m®),
ie.,

ho(X(o},0°%;)) > h2(\°(04,0°;)) for all o € %;. (6.3)

Proof. By Theorem 5.1, all i.d.views are game theoretically isomorphic. Hence, we can
assume that (I, m?) is the original node representation defined in the end of Section 5.1.
Also, player i’s regular behavior is fixed for the unmarked nodes, and the other players’
regular behaviors 02 ; are entirely fixed. Hence, the set of nodes reachable by some o; €
¥; are relevant in (6.3) and are the same as D; = DY(0°,%;) = Us,ex, DMe(0° ., a;).
Now, consider any o; € ;. We denote the restriction of o; to D; by 7;. Then, the
endnode defined by (0;,0°;) in (I'°,m°) is the same as the endnode defined by 7; in

(T%, m?). Hence, we have h¢(\°(0y,0°,)) = h*(X(;)). Thus, (6.3) is equivalent to (6.1). B

This theorem states that an i.d.view helps player ¢ to choose an optimal behavior in
the objective situation. This objective optimality is relative only to the trial strategy
set 2;. This theorem is not the end of inductive game theory. Once player ¢ brings back
his optimal strategy 011 to the objective situation, he starts playing a} as his regular
behavior. Here we see that the regular behavior can now be regarded as optimal in
a restricted sense. The situation has returned to the top row of Fig.6.1, and his new
regular behavior may generate new experiences for other players.

1

'—>UO—>(UZ‘,UZ¢)—>(Ujl'aazl>0(iz‘j)—>"' (6.4)

If some other player j constructs a new i.d.view and finds an optimal strategy 77, then
the process continues. When he brings ajl back to the objective situation, the regular
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behavior is changed again. In this case, the behavior o} of player i may no longer
be optimal objectively in the sense of (6.3). We presume that this process of analysis
does not proceed period to period, but each step needs several periods. In this way,
the i.d.views and behavior of the players are emerging. In the next section we look at
stationary outcomes of this process.

7. Partial Nash Equilibrium and the Restricted Objective Game

As the players are moving through the steps in the diagram of Fig.6.1, the i.d.views
and regular behavior patterns might be changing. This process may continue for a
long time. Once the behavior patterns become “stationary”, the state can be regarded
as a Nash equilibrium. By the word “stationary” we mean that each player reaches
an i.d.view from his test set where he does not modify his behavior anymore. This
stationary regular behavior patterns a Nash equilibrium, which is seen from Theorem
6.1 in the game having the restricted domain experienced by the players. This result
is stated as the first theorem of this section. We then rewrite this theorem as Theorem
7.2, which is tailored to suit our exploration into the complexity of an i.d.view as well
as of a Nash equilibrium. This will be the subject of Section 8.

Theorem 7.1 (Decomposition of Nash Equilibrium). Let (I, m%) be an i.d.view
from the kit Tp, with the trial strategy set 3; for all ¢ € N°. Then, the profile 0° =
(09, ...,02) of regular behaviors is a Nash equilibrium in the strategy sets X1 x---x X, in
(I, m?), i.e., it satisfies (6.3) for each i € N, if and only if for all i € N°, the restricted
strategy 71 in (I, m’) defined by

i (@) = of(y) if m'(x) = m{(y) (7.1)

T

is optimal in the sense of (6.1) in (T'¢, m?).

We do not give a proof of this result since it is a direct consequence of Theorem 6.1.

Observe that the restricted strategy 7+ is well-defined by the conditions for (I'!, m?).
This theorem is a variant of the characterization concept of Nash equilibrium in Kaneko-
Kline [9], except that it takes a trial strategy set ¥; into account. The present point is
the equivalence result in the restricted sense.

It would be easier to restate Theorem 7.1 from the viewpoint of the objective-
node representation of an i.d.view. Recall that the node representation (I', m) is ob-
tained by restricting the objective game (I'°, m®) to the partial UT-domain DY (¢°,%;) =
Us,es,; DM¢(g°, a;). Consider the union of those DY (02, %;)’s:

DY = |J DY(0°,%). (7.2)
ieEN©°
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Now, we have the restriction of (I'°, m°) to the union DY, which we will denote by
(T°", m°"). This game (I"°",m°") is an extensive game with partial actions. We have the
restriction 0" of the profile 0° to DY. Then Theorem 7.1 is restated as follows:

Theorem 7.2 (Nash Equilibrium in the Restricted Game). Let (I',m‘) be
an i.d.view from the kit T, with the trial strategy set ¥; for all ¢ € N°. Then, the
restriction 0°" of 6° = (09¢,...,02) to DV is a Nash equilibrium in the game (", m°")
if and only if for all i € N°, the restricted strategy 71 defined by (7.1) is optimal in the
sense of (6.3) in (I'!, m?).

Proof. The domain DY is simply the union of DY (¢°,%;)’s. Each DY (¢°,%;) is the set
of marked nodes obtained by trials in 3; for player ¢ from ¢°". The utility maximization
in the sense of (6.3) in (I'Y,m%) is equivalent to the utility maximization of player i in
the definition of Nash equilibrium for player i. Hence, when we require the optimality
in sense of (6.3) in (I'!, m?) for all players i, 0°" = (0", ...,0%") is a Nash equilibrium in
the restricted game (I'", m°"), and vice versa. B

By this theorem, we can reduce the problem of evaluating a partial Nash equilibrium
into the size of (I'",m°"). We will discuss the size of this game and other games in
Section 8.

8. Sizes of Inductively derived Views and Restricted Games

In Section 5.2, we saw how an i.d.view is typically very small relative to the objective
game. There, we employed the definition of the size of the view as the number of
endnodes - - the width of the tree. In fact, this definition reflects the complexity of
the optimization problem for a player with a given i.d.view. On the other hand, since
the number of all nodes in the i.d.view is exactly the same as the number of memory
threads in the memory kit Tp,, an alternative definition of the size of the i.d.view is the
number of all nodes in the view. In what follows, we argue that the number of endnodes
is an effective measure of the size of a view.

8.1. Sizes of Trees

Since we are interested in measuring the “complexity” of an i.d.view and/or decision
making, the reader might recall the computational complexity in logic and computer
science. The concept is to measure the size of a Turing machine to compute a given
mathematical problem (of instances) (see Garey-Johnson [4] for general discussions of
this issue, and see McLennan-Tourky [15] and its references for game theoretical ap-
plications). This notion of computational complexity does not distinguish between two
problem instances in a meaningful manner. Our target, on the other hand, is to con-
sider the “size” of an instance of an i.d.view or the game. An idea similar to ours was
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discussed in Kaneko-Suzuki [11] to measure the necessary size of inferences in epistemic
logic.

First, we show the following lemma, which was given in a context of epistemic logic
in Kaneko-Suzuki [11].

Lemma 8.1 (Kaneko-Suzuki [11]). Let T be a finite tree with the nonterminal nodes
1,..., k with m; branches at each nonterminal node ¢.

(1): The total number of nodes is given as

k
Smy+ 1. (8.1)
i=1
(2): Let nq,...,ny be the non-end nodes with m,, > 1 for all ¢ = 1,...,¢. Then the
number of endnodes of T is given as

Zé: My, — (€ —1). (8.2)
=1

Under the assumption that each decision node has at least two branches, the follow-
ing theorem gives the precise lower and upper bounds of the total number of nodes in
a tree, which are characterized by the number of endnodes. This result is interpreted
as meaning that the number of endnodes n(T") reflects well the total number of nodes
T(T).

Theorem 8.2 (Lower and Upper Bounds for the Total Number of Nodes).

Let T be a finite tree where each decision node has at least 2 branches. Let n(T") be the
number of endnodes in 7', and let 7(7") be the number of all nodes in 7. Then we have

n(T)+1<7(T) <2n(T) - 1. (8.3)

Furthermore, these bounds are taken by some trees T7 and T, with at least 2 branches
such that 7(T1) = 7(T3) = 7(T).

Proof. Consider an arbitrary tree 7" having the number of endnodes 1(7T'). Then, n(7")
is given as the formula of (8.3), i.e., Zle m¢ + 1 — k. Now, keeping Zle my +1—k
as constant n(7T), we change k, i.e., T’ is changed by k. Observe that Zle my + 1 is
minimized at £ = 1. We can find a tree with k£ = 1, and denote this tree by T7. Then it
holds that:

n(T)+1=n(T1)+1=7(T1).

Again, keeping Zle my+1—Fk as constant (T"), we change k. Observe that Zle my+1
is maximized, when my’s are all 2. We find a tree T so that n(T2) = n(T) and k =
n(T) — 1. Then, 7(T5) = S0y +1 = 2(p(T) — 1) + 1 = 29(T) — 1. In Fig.8.1,
examples of 17 and T3 are given for the number of endnodes 4.
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n(T)=4 and «(T)=5 nT,)=4 and o(T,)=7

Figure 8.1:

The point of Theorem 8.2 is that the total number of endnodes 7n(T) is not very
different from the total number of nodes 7(T"). As a measure to captured rough magni-
tudes of trees, we can employ either 7(T") or 7(T'). Hence, even the number of memory
threads in T, is reflected by the number of endnodes of an i.d.view I'". For calculation
convenience, we have used the total number of endnodes n(T).

The above theorem is stated under the assumption that each decision node of those
trees has at least two actions. When a tree T' has s nodes with single actions, (8.3) is
modified into

NT)+14+s<7(T)<2n(T)—1+s, (8.4)

since an addition of such a node increases the total number 7(7") of nodes by one. It
is natural to assume that at each marked piece, a player makes a new trial. Then, s
becomes zero. In general, s would be a small number in our context.

8.2. Sizes of the Optimization Problem using an I.D.View

Here we consider the question Q64 of Section 6 which is about the size of the optimization
problem of a player. Since (I'Y, m?) is a 1-person game with a tree structure, a strategy
is a complete plan of contingent actions and is already quite complicated. Looking at
the optimization problem (6.1) carefully, however, we find that a relevant variable in the
optimization problem is an endpiece. Under the assumption that the pieces attached to
the endnodes are all distinct, we can focus on endnodes rather than endpieces. Suppose
also that an optimal endpiece is chosen while player ¢ himself does not yet know its
optimality. The verification of its optimality requires the player to compare its payoff
with the payoffs from the other endnodes. The number of these verifications is n(I'*) — 1.
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Of course, this is the most fortunate case for finding an optimal endnode. Thus, the
number of endnodes is one measure of the size of the optimization problem (6.1).

We can think about this argument more formally using a certain game theoretical
concept. We denote the realization equivalence relation over the set of strategies in
(T%, m?) by ~, i.e., 7h ~ 77 iff X(7h) = A(7). Recall that \*(7;) is the endpiece induced
by 7; in (I'Y,m%). Each strategy 7 defined an equivalence class [1}] = {77 : 7} ~ 7/}
Since each strategy is characterized by the induced endpiece, the number of equivalence
classes is the same as the number of endpieces in I'. Thus, one possible measure of the
size of the optimization problem (6.1) is the number of pieces of I'* minus 1. Under the
assumption that all endpieces are distinct, it becomes n(I'*) — 1.

Although the number of endnodes in the i.d.view can be regarded as representing the

size of the optimization problem, this optimization process may not be easily separated
from the inductive processes. Thus, it is not a good idea to take the number n(I'*) — 1
as the exact number for optimization. Rather, we should take the number of endnodes
as a rough measure representing the size of the entire inductive processes including op-
timization. When the value of this measure is large, we have the implication that the
inductive derivation as well as its use for optimization could be difficult. Small sizes
are required for individual player to be able to make a successful induction and use the
result effectively.
Coordination Game (T, m°) with Precision (4): Now, let us return to the co-
ordination game I‘5C with precision, Consider the size of the i.d.view when M° = W°
and ¥; = X?. In this case, the number of nodes is 9331, and the number of endnodes
is 65 = 7,776. Literally speaking, the optimization problem (6.1) needs at least 65 — 1
comparisons to choose an optimal strategy. In our ordinary life, this number of compar-
isons is enormously large and, perhaps, exceeds our individual capacities. Nevertheless,
the situation we are considering is a rather common one that we may face often, and
that we manage to deal with somehow.

One way we manage to deal with such situations is to simplify them by marking and
limiting our tests. As we saw, the number of endnodes to consider becomes suddenly
very small when we give restrictions on marked pieces and tested actions.

8.3. Relative Sizes of I.D.Views to the Restricted Games and Original Game

Using the measure 7, let us consider the relative sizes of an i.d.view to the original game
I'* and/or to the restricted game I'" defined in Section 7. First, we show that the
restricted game I'°" is obtained by summing up individual i.d.views {(I'!, m%)};cno.

Theorem 8.3 (Size of the Restricted Game). The number of endnodes n(I'"") of

the restricted game I'°" is given as

nT7) = 3 @) - +1= 3 (DY) —1)+ 1. (8:5)
ieEN° 1eEN°
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Proof. Since I'°" is obtained by restricting I'° to DYV = |, yo DY, it suffices to evaluate
the size of DV = Uiene DZU . Since each I'* is isomorphic to DZU , we have the second
equality. Hence, we should show that the number of endnodes DV = Uiene Dl-U is
given as in Y, yo(n(DY) — 1) + 1. The endnode induced by the regular behavior ¢ =
(09, ...,09) is commonly included in DY and DJU (i # 7). Any other endnode in DY is
specific to a deviation by player ¢. Hence, the unique endpoint is commonly included in
DY, ...,DY. Thus, we have n(DY) =¥, no(n(DY) — 1) +1. W

Theorem 8.3 holds for any marked set M° and trial strategy set 3J;, and states that
n(T°") is almost the sum of the sizes of n(I'*)’s. On the other hand, n(I'°) is fixed
and independent of M and the trial strategy set ;. Typically, n(I'°) is much greater
than 7n(I'°"). The maximum number for n(I"°") is obtained by the fully marked case
M?° = W? where ¥; is the maximum set ¢ for all 4. Even in this case, n(I'°") may be
far smaller than 7(I'°). One example was discussed in Section 5.2, where n(I'°) = 65%2
and n(I'") = 2 x 65 — 1. We extend this calculation result in the following theorem.

Theorem 8.4 (Sizes of the Objective Game). Assume that I'° = I'°(¢) is a layered
game with ¢ decision layers (¢ > 1), i.e., in every path to an endnode, the players
move in the same ordering (i1, ...,7), and the action set of player iy at the k-th layer
(k=1,...,¢0) is independent of the history. Let I'°(¢) be fully marked and fully tested,
ie., W°= M°and ¥; = X for all i € N°. Then number of endnodes n(I'°) is given as

n(Te) = II o). (8.6)
1EN°
Proof. We prove the assertion by induction over £.

In the induction base case of £ = 1, we have n(I'°(1)) = n(I'"*). Also, any player
i # i1 experiences only the regular endnode, and so view consists of only one node.
Hence, (I°(1)) = [Teo n(T'(1).

Now, suppose the induction hypothesis that (8.6) holds up to a natural number ¢.
Then, we consider the case of ¢ + 1. This game is denoted by I'°(¢ + 1). We ignore
payoffs since we consider the sizes of trees only. Then, by the inductive hypothesis,
n(IT2(0)) = Ty (T (0). |

First, consider the case where iy, differs from any of i1, ...,4,. Then, n(I'*+1 ({4 1))
is the number of actions for player igy1. Also, n(T%(¢)) = n(T(£+1)) for all i # ipyq, and
n(T%+1(¢)) = 1. Since the number n(T°(¢ + 1)) is obtained by n(I'°(¢)) x n(T%+1 (4 1)),
we have, using the induction hypothesis for ¢,

n(To(C+1) = () x n(I*+1(+ 1))

= [In(T'(0) x n(r (£ +1)) = EIZIVOH(F"(E +1)).
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Second, consider the case where 4911 = i;. Then, the above argument should be
modified slightly for player iyy1. We denote the number actions at decision £ + 1 by
[ Aps] - Them, I+ (€ +1)) = (T (€)) x | Agga |, and n(T(£ + 1)) = p(I¥(6)) for all
i # ig11. Hence, we have, using the induction hypothesis for ¢,

n(Co(C+1)) = () x [Agra] = TTn(T(€)) x |Agr1]

=TI 0T(©) x (T (0) x |Agga]) = TT n(I"(€+1)).

i#igy iEN©

9. Conclusions

We have focussed on the small and partial views that players with limited cognitive
abilities might derive from playing large and complicated games. This analysis follows
the scenario of inductive game theory spelled out in Kaneko-Kline [9]. That scenario
gave experiential foundations for noncooperative game theory, particularly, extensive
game theory, but in [9], potential difficulties and obstacles are analyzed. In this paper,
we avoided obstacles by focusing on the (marked) exact perfect recall memory function
mM% and on the (marked) unilateral domain for trial and error. The introduction of
“marked pieces” and “tested actions” was essential for making further progress in large
and complicated games. We have found a path to allow players to apply the standard
tools of game theory to their small and partial views.

The introduction of “marked” and “tested actions” has removed some theoretical
difficulties, particularly, when an extensive game theory is used in inductive game the-
ory. Without these new notions, the number of necessary trials might become quickly
unmanageable as the objective game situation gets larger, which was shown by using
the example in Section 5.2. In such a large game, the required periods for accumulating
a sufficient number of experiences would be too long. Another difficulty is that even
if a player has accumulated sufficient experiences, the number of ingredients (memory
threads) could be too large to cook (construct) a subjective view. Finally, even if such a
complicated view is successfully derived, it might be unmanageable from the viewpoint
of decision making as there would be too many alternatives to check.

In Section 8, we introduced a measure for evaluating the sizes of i.d.views, the
restricted game and the objective game. According to this measure, we could show
how i.d.views may increase in size quite quickly and become unmanageable even in
situations that are regarded as simple and straightforward in standard game theory.
We argued in favour of the reduction of the objective situation into a small view by
the introduction of marked pieces and tested actions from a player’s viewpoint. In
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Section 7, we considered this type of reduction from the objective point of view. In
fact, this procedure has some similarity to practices by game theorists and economists
who construct small models by choosing seemingly important players, information and
actions from a large socioeconomic situation. If one treats the original large situation
directly, it would be impossible to analyze.

It may be asked how marked pieces and tested actions are chosen as important
variables for a player. So far, the choice of those variables is still exogenous in our
theory. Recall that it is our starting assumption that a player has no a priori knowledge
of the structure of the objective situation. Under this assumption, the player has no
a priori criteria for the choices of marked pieces and tested actions. This is similar to
a scientist in the beginning of his research. An accumulation of experiences will help,
and communication with other researchers may help more. Thus, some criteria for the
choice of marked pieces and tested actions may be emerging by continuing trial and
error, and by communicating with other players.

In this paper, we have focused on a personal view which is a 1-person game. We
could extend this to a many player game where each player observes the behavior of
other players and treat them as following only their regular behavior patterns. Then we
would get essentially the same results given in the present paper. However, an interesting
development happens when a player starts to think about the decision making of other
players. Then, he sees the game as a social situation and might ask why the other
players behave the way they do and how he and they might improve on their present
social outcomes.

For this extension, there are several ways to proceed. One way for a player to
learn about the motivations and behavior of other players is for him to step into the
shoes of the other players by taking on their “roles”. Then, he uses this extended set
of memories to extend his i.d.view. This would give him a larger and more accurate
view of the social situation. Another way to proceed is for the players to communicate
their personal experiences to each other. For this to be successful, “marking” and small
views become important as the objects for communication must be abstract enough to
be understood by others. We believe that an analysis of communication and experience
by “role-playing” has a great potential to extend the scope of our inductive game theory
and we plan to undertake this analysis in a separate paper.

For those issues, the sociological notions of “social roles and expectations” (see
Collins [3], Chap.7) may become important. In a social situation, a “player” is of-
ten identified to be a social role rather than a specific individual. For example, the
department head is a social role in a university, which is taken by one person at a time,
and that person is expected to behave in a certain manner. In this case, different people
could take the same role in the same or similar situations. They may collect different
experiences, a fortiori, different views of the situation. A former department head can
also instruct the present head on how to behave.
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In sum, we have used inductive game theory to show how players with limited
cognitive abilities might successfully construct simplified views in the face of complicated
social situations. This has been one step in the direction of tailoring game theory to
address social and economic problems in a better way. We believe that this paper may
open vast new fields for studying social interactions.
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