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Abstract

We consider a two-stage public good provision game: In the first
stage, players simultaneously decide if they join a contribution group
or not. In the second stage, players in the contribution group simulta-
neously offer contribution schemes in order to influence a third party
agent’s policy choice (say, the government chooses a level of public
good provision). We use a communication-based self-enforcing equilib-
rium concept in a noncooperative two stage game, perfectly coalition-
proof Nash equilibrium (Bernheim, Peleg and Whinston, 1987 JET).
We show that, in public good economy, the outcome set of this equilib-
rium concept is equivalent to an "intuitive" hybrid solution concept
free-riding-proof core, which always exists but does not necessarily
achieve global efficiency. It is not necessarily true that the formed
lobby group is the highest willingness-to-pay players, nor is a consec-
utive group with respect to their willingnesses-to-pay.
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1 Introduction

In their seminar paper, Grossman and Helpman (1994) consider an en-
dogenous trade policy formation problem when industries can influence the
government’s trade policy through lobbying activities by applying common
agency game defined by Bernheim and Whinston (1986). A common agency
game is a menu auction game in which there are multiple players/principals
and an agent who can choose an action that affects all players’ payoffs. Each
player offers a contribution scheme to the agent promising how much money
she will pay for each action. Observing contribution schemes, the agent
chooses her action in order to maximize the total benefit she can obtain.
Bernheim and Whinston (1986) analyze a communication-based equilibrium
concept, coalition-proof Nash equilibrium (CPNE), in order to analyze com-
mon agency games. In Grossman and Helpman (1994), players/principals
are lobbies who represents industries, and an agent is the government. The
government cares about social welfare, while it also cares about flexible con-
tribution money provided by lobby groups. Each lobby contributes money
to the government in order to influence the government’s trade policy for
its favor. Each lobby represents one industry, and it prefers a high price for
a commodity that is produced by the industry, while prefers low prices for
all other commodities.1 That is, in Grossman and Helpman (1994), there
are conflicts of interests among lobbies. One of their main results is that in
equilibrium lobby powers are cancelled out and that the government chooses
a free trade (no tariff) policy, it can collect a big amount of contributions
from conflicting industries.
Although the free trade outcome is an interesting result, it is based on

special assumptions.2 They assume that industry lobbies are preorganized,
and that each lobby act as a single player. This implies that if there are
multiple firms in an industry, each industry lobby has power to allocate con-
tribution shares efficiently and forcefully among the member firms. However,
in the real world, it is not necessarily the case that all firms in the same in-
dustry participate in a lobbying group. Since trade policies affect all firms

1This is because lobbies representing industries are ultimately consumers.
2Actually, their clean result is crucially based on their assumption that all lobbies are

ultimately consumers who have identical utility functions. Bernheim andWhinston (1986)
show that in equilibrium the agent chooses an action that maximizes the total surplus of
the game. The result by Grossman and Helpman (1994) is a direct corollary of this under
the representative consumer assumption.
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in an industry in the same way, there are free-riding motives for firms.
Motivated by this, we consider a common agency game with players’ en-

dogenous participation decisions. In the first stage, players choose if they
participate in lobbying or not.3 In the second stage, among players who
chose to participate in lobbying activities, a common agency game is played:
contribution schemes are offered simultaneously, and the agent chooses an
action. We use a dynamic extension of coalition-proof Nash equilibrium
(CPNE), perfectly coalition-proof Nash equilibrium (PCPNE), as the solu-
tion concept. The reason that we need a solution concept other than Nash
(or subgame perfect Nash) equilibrium is that we do not fix utility allocation
rule for each possible lobby. Lobby formation and utility allocation within it
are jointly determined. Unlike prefixed utility allocation rule, a coalitional
deviation to form a new lobby needs to decide a utility allocation (or lobby
cost sharing) that is available for the lobby. Thus, it is natural for us to use
a communication based refinement of Nash equilibrium. This equilibrium
concept also has a solid theoretical ground in a certain sense,4 but character-
istics of equilibria are not immediately clear due to its recursive definition.
We use "guess and verify" method in order to characterize PCPNE: we de-
fine intuitive hybrid solution concepts for special classes of common agency
games, and verify them with the PCPNE.5

We ask who participate in lobbying (and who free-ride others) in a special
environment.6 One is an environment without conflict of interests such as
public good economies, in which all players have comonotonic preferences.7

3This is called open membership game (Yi, 1996).
4If only nested coalitional deviations are allowed, CPNE (and credible core in Ray, 1989)

is a consistent solution concept in the sense that the original strategy profile and strategy
profiles that are generated from deviations are treated in the same manner. However,
it does not mean that CPNE is the only satisfactory solution concept. There can be
many formulation of describing coalition formation process in noncooperative games. For
example, Konishi and Ray (2003) and Gomes and Jehiel (2005) allow non-nested future
deviations in defining consistent solutions.

5In various games, it is sometimes possible to show the equivalence between CPNE and
intuitive solution concepts. See Bernheim and Whinston (1986), Thoron (1999), Conley
and Konishi (2002) and Konishi and Ünver (2006).

6It is hard to characterize payoff structure of CPNEs in common agency games under
general setup (see Laussel and Le Breton, 2001). Characterization of PCPNE is even
harder. In fact, PCPNE may not exist in common agency games with endogenous partic-
ipation decision.

7Preferences are comonotonic if for all pair of players i and j, and all pair of actions
a and a0, if i prefers a to a0, then j also prefers a to a0.
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This environment mimics an import competing industry case in which many
firms decide lobbying or free-riding (Bombardini, 2005, and Paltseva, 2006),
and pure public good provision problem. Although Bombardini (2005) pro-
vides some empirical evidence of free-rider firms in industries. Assuming
symmetric firms and focusing on symmetric outcome among lobby partici-
pants in a common agency game, Paltseva (2006) consider Nash equilibrium
to analyze free-riding incentives. The other is an environment in which there
are two groups with pure conflicts of interests. This environment mimics the
situation in which there are firms in import competing industries and export-
ing firms, and the government is deciding if it signs a free trade agreement
with a foreign country.8

In such an environment, there is no rent for the government in PCPNE,
while free-riding incentive is strong (equilibrium lobby participation is small).
The equilibrium outcome is highly nonconvex, and the equilibrium lobby
group may not be consecutive: i.e., weak firms may join the lobby together
with strong firms, yet some medium firms may not. In contrast, if conflicts
are present (export lobby and import lobby), the government gets a big rent,
while lobby participation is strong.
This paper is organized as follows. In the next subsection, some related

literature is discussed briefly. In Section 2, the common agency game is
reviewed, then our game and the equilibrium concept, PCPNE, is introduced.
In Section 3, we consider the environment without conflict of interests. We
define an intuitive hybrid solution concept, free-riding-proof core, and prove
the equivalence between PCPNE and the free-riding-proof core (Theorem).
In Section 4, we provide an example that describes how free-riding-proof core
looks like. Section 5 proves the key proposition for the proof of Theorem.
Section 6 concludes.

1.1 Related Literature

Le Breton and Salaniè (2003) analyze a common agency problem with asym-
metric information on agent’s preferences. They show that equilibria can
be inefficient even in the case that there is only one player in each interest
group.9 If there are multiple players in each interest group, then the failure

8A free trade agreement abandons trade barriers of the two countries. Exporting firms
prefer a free trade agreement, while import competing firms prefer a protection policy.

9Laussel and Le Breton (1998) analyze public good case when the agent must sign
a contract of participation when all contribution schemes are proposed before knowing
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in internalizing the benefits of contributions within the group makes con-
tributions even less. In this sense, Le Breton and Salaniè (2003) generate
free-riding incentives under compulsory lobby participation. In contrast, we
generate “free-riding” is a more obvious way by introducing participation
decisions.
The environment without conflict of interests can be regarded as a public

good provision problem. Groves and Ledyard (1977), Hurwicz (1979), and
Walker (1981) showed that efficient public good provision can be achieved
despite of Samuelson’s pessimism (1954). However, they all assume that
players must participate in the game. Saijo and Yamato (1999) considered
voluntary participation game of public good provision by constructing a two
stage game (participation, and public good provision). Negative results for
efficiency due to free-riding incentives. Shinohara (2003) considers coalition-
proof Nash equilibrium in the voluntary participation game by Saijo and
Yamato (1999) with the Lindahl mechanism in the second stage. He shows
that there can be multiple coalition-proof Nash equilibria with different sets
of players participating in the mechanism in heterogenous player case. One
of our results exhibits the same result but with a common agency game in the
second stage (thus, payoffs are not fixed unlike in Shinohara, 2003). Such a
voluntary public good provision problem can idealize the case of no conflict of
interests. Maruta and Okada (2005) analyze a similar sort of heterogeneous
agent binary public good provision game with evolutionary stability (see also
Palfrey and Rosenthal, 1984).10

her cost type (then Nature plays and the agent chooses an agenda). They show that all
equilibria are efficient, and there is no free-riding incentive.
10In contrast, Nishimura and Shinohara (2007) consider a multi-stage voluntary partic-

ipation game in a discrete multi-unit public good problem, and show that Pareto-efficient
allocations in subgame perfect Nash equilibrium through a mechanism that determines
public good provision unit-by-unit. Their efficiency result crucially depends on the fol-
lowing assumption: a player who did not participate in the mechanism in early stages
can participate in public good provision later on. This forgiving attitude allows a player
not contributing at all until the time that all other players are no longer interested in
contributing without her participation, and then contribute money just to bring one more
unit of public good. Thus, we may say that their mechanism achieves Pareto efficiency by
accommodating players’ free-riding incentives.
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2 A Noncooperative Game

We will consider a two stage game: in the first stage, each player decides if
she join the lobby (contribution) group, or she stay outside (free-riding).11

In the second stage, among the lobby group members, a common agency
game by Bernheim and Whinston (1986). If a player choose to free-ride
in the first stage, she cannot participate in the contribution game. Without
free-riding incentive (S = N), Laussel and Le Breton (1998, 2001) extensively
studied the equilibrium payoff structures of common agency games on general
versions of this public good problem, and obtained many interesting and
useful results. Our analysis will be built on theirs, but we consider possible
free-riding: our focus is the conflict between contributing and free-riding.
We will focus on players’ lobbying activities over government policies.

We will consider a two stage game. In stage 1, players decide if they join a
lobbying process or not (lobby formation stage).12 In stage 2, the lobbying
group lobby over government policies. In the next section, we analyze the
second stage game.

2.1 Common Agency Game (the Second Stage)

There is a set of players, N = {1, ..., n} and the government G. Suppose
that S ⊆ N is the contribution group, and N\S are passive free-riders. The
governmentG can choose an agenda a from the set of agendas A. Each player
i has utility function vi : A → R+, and similarly the government has utility
function vG : A → R+. In public good provision problem, vG(a) = −C(a).
Each player i offers a contribution scheme τ i : A → R+. If the government
chooses a ∈ A, then the government gets the payoff

uG(a; (τ i(a))i∈S) =
X
i∈S

τ i(a) + vG(a),

11Note that in our game, there can be only one lobby that contributes to provision of
public good. This does not seem a bad assumption given the nature of common agency
game played in the second period. In contrast, Ray and Vohra (2001) assume that the
second stage is a voluntary contribution game, thus it makes sense to assume that many
groups can be formed in the first stage and they all provide public good simultaneously
(see Ray and Vohra, 2001).
12This is called open membership game (no exclusion is possible). See d’Aspremont et

al. (1983), Yi (1996) and Thoron (1998). For excludable coalitions, see Hart and Kurz
(1983), Yi (1996), and Ray and Vohra (2001). Bloch (1997) has a nice survey on the rules
of coalition formation games.
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and player i gets payoff

ui(a; τ i(a)) = vi(a)− τ i(a).

The government chooses a policy a ∈ A that maximizes uG:

a∗(S, τS) ∈ argmax
a∈A

uG(a; (τ i(a))i∈S).

In the game, the government is not a player: it is just a machine that maxi-
mizes its payoff given the contribution schemes.13 A second-stage common
agency game Γ is a list Γ = (S, (Ti, ui)i∈S), where Ti is collection of all
contribution schemes for i. Note that N\S are simply free-riders, and they
do not affect game Γ. Thus, N\S can be regarded as irrelevant players in
game Γ.
First consider joint payoff that can be achieved by each subgroup T ⊆ S.

For each T ⊆ S, let

WΓ(T ) ≡ max
a∈A

"X
i∈T

vi(a) + vG(a)

#
,

and
WΓ(∅) ≡ max

a∈A
vG(a),

The efficient public good provision for S (and G) is

a∗(S) ∈ argmax
a∈A

ÃX
i∈N

vi(a) + vG(a)

!
.

Let

ZΓ ≡
½

u ∈ RN
+ :
P

i∈T ui ≤WΓ(S)−WΓ(S\T ) for all T ⊂ S
and uj = vj(a

∗(S)) for all j /∈ S

¾
.

The inequality that ZΓ satisfies can be interpreted as what T can get since
the complement set S\T can achieve total payoffWΓ(S\T ) by themselves (T
13Strictly speaking, since the government may have multiple optimal policy, we need to

introduce a tie-breaking rule. However, it is easy to check the set of truthful equilibria
(see below) would not depend on the choice of tie-breaking rules.
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cannot ask more than WΓ(S) −WΓ(S\T )). We take the Pareto-frontier of
ZΓ:14

Z̄Γ ≡ {u ∈ ZΓ : @u0 ∈ ZΓ such that u0 > u} .
Now, let us state the results in the literature. Bernheim and Whinston

(1986) introduced a concept of truthful strategies, where τ i is truthful rel-
ative to ā if and only if for all a ∈ A either vi(a)− τ i(a) = vi(ā)− τ i(ā), or
vi(a)− τ i(a) < vi(ā)− τ i(ā) and τ i(a) = 0. A truthful Nash equilibrium
(τ ∗S, a

∗) is a Nash equilibrium such that τ ∗i is truthful relative to a
∗ ∈ A for

all i ∈ S. The first result by Bernheim and Whinston (1986) is the following:

Fact 1. (Bernheim and Whinston, 1986) Consider a common agency game
Γ. In all truthful Nash equilibria G chooses an efficient action a∗(S), and the
vector of players’ payoffs belongs to the Pareto frontier Z̄Γ. Moreover, every
vector u ∈ Z̄Γ can be supported by a truthful Nash equilibrium.

Bernheim and Whinston (1986) defined (strictly) coalition-proof Nash
equilibrium. First define a reduced game. A reduced game of Γ is Γ(T, τ−T )
that is a game with players in T by letting players in S\T passive players in
Γ, who always play τ−T . A (strictly) coalition-proof Nash equilibrium
(CPNE) of common agency game Γ is defined as follows (Bernheim and
Whinston, 1986; Bernheim, Peleg and Whinston, 1987):15

1. In a single player game Γ, (τ ∗1, a
∗) is a CPNE of reduced game Γ({i},Ti, τ̄−i)

if and only if it is a Nash equilibrium.

2. Let n be the number of players of the game. In a game Γ(S, TS, τ̄−S)
where |S| = n, (τ ∗S, a

∗) = ((τ ∗i )i∈S, a
∗) is a (strictly) self-enforcing

strategy profile if for all T $ S, (τ ∗i )i∈T is a CPNE of the reduced game
Γ(T,TT , τ ∗S\T , τ̄−S).

3. Let n be the number of players of the game. In a game Γ(S, TS, τ̄−S)
where |S| = n, (τ∗S, a

∗) = ((τ ∗i )i∈S, a
∗) is a CPNE if it is self-enforcing

and there is no other self-enforcing strategy profile τ 0S that yields at

14We follow the standard notational convention: u0 > u means (i) for all i ∈ N , u0i ≥ ui,
and (ii) u0 6= u.
15The definitions of CPNE in Bernheim and Whinston (1986) and Bernheim, Peleg and

Whinston (1987) are different in defining coalitional deviations. The former uses weakly
improving deviations, while the latter uses strictly improving deviations. On this issue,
see Konishi, Le Breton and Weber (1999).
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least as high a payoff to each player and a strictly higher payoff to at
least one player in S.

The second result in Bernheim and Whinston (1986) is as follows:

Fact 2. (Bernheim andWhinston, 1986) Consider a common agency game Γ.
In all CPNEs G chooses an efficient action a∗(S), and the vector of players’
payoffs belongs to the Pareto frontier Z̄Γ. Moreover, every truthful Nash
equilibrium is coalition-proof, thus every vector u ∈ Z̄Γ can be supported by
a CPNE.

That is, there is essentially a one-to-one relationship between truthful
Nash equilibria and CPNEs. Note that a truthful Nash equilibrium is a
CPNE (this property will be used in the proof of Theorem 1). One of many
results in Laussel and Le Breton (2001) provided a useful property, convex-
game property, which applies to an interesting class of games. Consider a
characteristic function (WΓ(T ))T⊆S generated from a common agency game
Γ. We say that Γ has convex-game property if for all T ⊂ T 0 ⊂ S with
i ∈ S\T 0, WΓ(T ∪{i})−WΓ(T ) ≤WΓ(T

0∪{i})−WΓ(T
0) holds. Laussel and

Le Breton (2001) shows the following:

Fact 3. (Laussel and Le Breton, 2001) Consider a common agency game Γ
with convex-game property. Then, in all CPNEs G obtains uG =WΓ(∅) (no
rent property), and the set of CPNE payoff vectors is equivalent to the core
of characteristic function game (WΓ(T ))T⊆S.16

This fact will be useful in analyzing public good case below, since public
good economy satisfies the convex game property.17

2.2 Lobby Formation Game

In this section, we analyze an equilibrium lobby group and its allocation.
Note that we are not only talking about coalition-proof Nash equilibrium
16Here, we normalize WΓ(∅) = 0 in order to make (WΓ(T ))T⊆S a characteristic function

game. A payoff vector uS = (ui)i∈S is in the core iff
P

i∈S ui = WΓ(S), and
P

i∈T ui ≥
WΓ(T ) for all T ⊂ S.
17Actually, with the no-rent property (in all CPNE, uG = WΓ(∅) holds), the set of

CPNEs is eqivalent to the set of strong equilibria (see Aumann, 1959, for the definition) in
common agency games (see Konishi, Le Breton and Weber, 1999). Thus, with the convex-
game property, the set of CPNE, the set of strong equilibria, and the core of (WΓ(T ))T⊆S
are all equivalent. However, with participation stage, strong equilibrium tends to be empty.
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allocation in the menu auction stage. We also require that the lobby group
formation itself is coalition-proof as well. In order to do so, we first need
to define the first stage lobby formation game in an appropriate manner,
assuming that the outcome of each possible lobby S is a coalition-proof Nash
equilibrium of a common agency game played by S. As an extension of
CPNE in strategic form games to extensive form games, Bernheim, Peleg and
Whinston (1987) provide a definition of coalition-proof Nash equilibrium for
multi-stage games, perfectly coalition-proof Nash equilibrium (PCPNE). The
first stage lobby formation game is such that N is the set of players, and
player i’s action set is a listAi = {0, 1}: i.e., player i announces if she wants to
participate in the lobby. Once action profile σ1 = (σ11, ..., σ

1
n) ∈ A = Πj∈NAj

is determined, then in the second stage, lobbying game takes place with the
set of active players S(σ1) = {i ∈ N : σ1i = 1}.
Next we extend the definition of CPNE for multi-stage games by following

the definition by Bernheim, Peleg and Whinston (1987). In our game, there
are only two stages t = 1, 2. Player i’s strategy σi = (σ1i , σ

2
i ) ∈ Σi = Σ1i ×Σ2i

is such that σ1i ∈ Σ1i denotes i’s lobby participation choice, and σ2i ∈ Σ2i
is a function σ2i : S(i) → Ti if σ1i = 1, where S(i) = {S ∈ 2N : i ∈ S}
and Ti is the space of bid functions in the common agency game (if σ1i = 0,
then σ2i is a trivial strategy).

18 When σ1i = 0 (no participation in lobbying),
the second stage strategy σ2i is irrelevant. Each player’s payoff function
is ui : Σ → R that is the same payoff function of lobbying game when
lobby group S is determined by S(σ1). For T ⊆ N , consider a reduced
game Γ(T, σ−T ) that is a game with players in T by letting players in N\T
passive players in Γ, who always play σ−T . We also consider subgames
for all σ1 ∈ Σ1, and reduced subgames Γ(T, σ1, σ2−T ) in similar ways.
A perfectly coalition-proof Nash equilibrium (PCPNE) (σ∗, a∗) =
((σ1∗i , σ

2∗
i )i∈N , a

∗) is recursively defined as follows:19

(a) In a single player, single stage subgame Γ({i},Σ2i , σ1, σ2−{i}), strategy
σ2∗i ∈ Σ2i and the agenda chosen by the agent a

∗ is a PCPNE if σ2∗i
maximizes ui via a∗.

18Thus, σ2i (S) ∈ Ti is Ti : A→ R+ in the last section.
19Note that in Bernheim, Peleg and Whinston (1987), the definition of PCPNE is based

on strictly improving coalitional deviations. However, we adopt a definition based on
weakly improving coalitional deviations, since the theorem on menu auction in Bernheim
and Whinston (1986) uses CPNE based on weakly improving deviation. For details on
these two definitions, see Konishi, Le Breton and Weber (1999).
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(b-1) Let (n, 2) be the numbers of players and stages of games. Pick any
positive pair of integers (m, r) ≤ (n, 2) with (m, r) 6= (n, 2).20 For any
T ⊆ N with |T | ≤ m, assume that PCPNE has been defined for all
reduced games Γ(T, σ−T ) and their subgames Γ(T, σ1, σ2−T ) (if r = 1,
then only for all reduced subgames Γ(T, σ1, σ2−T )). Then,

(i) for all reduced games Γ(S, σ−S) and their subgames Γ(S, σ1, σ2−S)
with |S| = n, (σ∗, a∗) ∈ Σ × A is perfectly self-enforcing if
for all T ⊂ S we have (σ∗T , a

∗) is a PCPNE of reduced game
Γ(T, σ∗S\T , σ−S), and σ

2∗
T is a PCPNE of reduced subgame Γ(T, σ

1, σ2∗S\T , σ
2
−S),

and

(ii) for all S ⊆ N with |S| = n, (σ∗S, a
∗) is a PCPNE of reduced

game Γ(S, σ−S) if (σ∗S, a
∗) is perfectly self-enforcing in reduced

game Γ(S, σ−S), and there is no other perfectly self-enforcing σ0S
such that ui (σ0S, σ−S) ≥ ui (σ

∗
S, σ−S) for every i ∈ S with at least

one strict inequality.

(b-2) Let (n, 1) be the numbers of players and stages of games. Pick any
positive integer m < n. For any T ⊆ N with |T | ≤ m, assume that
PCPNE has been defined for all reduced subgames Γ(T, σ1, σ2−T ). Then,

(i) for all reduced subgame Γ(S, σ1, σ2−S) with |S| = n, (σ∗, a∗) ∈
Σ × A is perfectly self-enforcing if for all T ⊂ S we have
(σ2∗T , a

∗) is a PCPNE of reduced subgame Γ(T, σ1, σ2∗S\T , σ
2
−S), and

(ii) for all S ⊆ N with |S| = n, (σ2∗S , a
∗) is aPCPNE of reduced game

Γ(S, σ1, σ−S) if (σ2∗S , a
∗) is perfectly self-enforcing in reduced sub-

game Γ(S, σ1, σ−S), and there is no other perfectly self-enforcing
σ20S such that ui

¡
σ1, σ20S , σ

2
−S
¢
≥ ui

¡
σ1, σ2∗S , σ

2
−S
¢
for every i ∈ S

with at least one strict inequality.

For any T ⊆ N and any strategy profile σ, let PCPNE(Γ(T, σ−T )) denote
the set of PCPNE strategy profiles on T for the game Γ(T, σ−T ). For any
strategy profile (σ, a), a strategic coalitional deviation (T, σ0T , a

0) from (σ, a)
is credible if (σ0T , a

0) ∈ PCPNE(Γ(T, σ−T )). A PCPNE is a strategy profile
that is immune to any credible coalitional deviation.

20The numbers n and t represent the numbers of players and stages of a reduced (sub)
game, respectively.
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First note that PCPNE coincides with CPNE in the second stage. Thus,
a CPNE needs to be assigned to each subgame. Second, if a coalition T
wants to deviate in the first stage, within the reduced game Γ(T, σ−T ), it can
orchestrate the whole plan of the deviation by assigning a new CPNE to each
subgame so that the target allocation (by the deviation) would be attained
as PCPNE of the reduced game Γ(T, σ−T ).
In general, it is hard to see the properties of PCPNE of lobby formation

game with common agency including its existence of equilibrium. However,
in public good provision problem, we can assure existence of equilibrium
and provide a characterization of PCPNE in its equilibrium outcome set.
Consider a PCPNE (σ∗, a∗). An outcome allocation for (σ∗, a∗) is a list
(S, a∗, u) ∈ 2N ×A×RN ×R, where S = {i ∈ N : σ1∗i = 1} and (u, uG) is the
resulting utility allocation for players and the agent such that for all i /∈ S,
ui = vi(a

∗). From the facts obtained in common agency game, (S, a∗, u)
satisfies a∗ = a∗(S), and for any T ⊆ S,

P
i∈T ui ≤WΓ(S)−WΓ(S\T ). The

agent’s payoff uG is implicitly determined by
P

i∈S ui + uG =WΓ(S).

3 A Public Good Provision Problem

In this section, we consider a case in which all players’ interests are in the
same direction, while the intensity of their interests can be heterogeneous.
We will describe the game, and then propose a hybrid solution concept: free-
riding-proof core.
A stylized public good model can be viewed as a special class of the above

game. Agenda is a public good provision level, and is one-dimensional: A =
R+, and the provision cost of public good is described by a C2 cost function
C : A → R+ with C(0) = 0, C 0(a) > 0 and C 00(a) > 0 (for uniqueness:
for simplicity). Player i’s utility function is quasi linear in private good net
consumption x and is written as vi(a)− x, where vi : A → R+ is vi(0) = 0,
v0i(a) > 0 and v00i (a) ≤ 0. In order to guarantee the existence of solution,
we assume the Inada condition on the cost function: lima→0C

0(a) = 0 and
lima→∞C 0(a) =∞.
We will analyze PCPNE of our two stage game in this problem. First, we

will define an intuitive but not well-grounded hybrid solution concept, free-
riding-proof core (FRP-core), which is the set of Foley-core allocations21 that

21The Foley core of our public good economy is the standard core concept assuming
that deviating coalitions have to provide public good by themselves. That is, it assumes
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are immune to free-riding incentives and is Pareto-optimal in a constrained
sense. The free-riding-proof core is always nonempty in the public good
provision problem. Second, by an example, we investigate how the free-
riding-proof core looks like. Finally, we prove that the set of outcomes of
PCPNE is equivalent to the free-riding-proof core.
A public good provision problem determines two things: (i) which group

provides public good and how much, and (ii) how to allocate the benefits
from providing public good among the members of the group (or how to
share the cost). Let S ⊆ N with S 6= ∅. For T ⊆ S, let

V (S) ≡ max
a∈A

"X
i∈S

vi(a)− C(a)

#
,

and

a∗(S) ≡ argmax
a∈A

"X
i∈S

vi(a)− C(a)

#
.

An allocation for S is (S, a∗(S), u) such that u ∈ RN
+ ,
P

i∈S ui ≤ V (S),22

and uj = vj(a) for all j /∈ S (utility allocation). That is, N\S are passive
free-riders, and they do not contribute at all. Given that S is the lobby
group, a natural way to allocate utility among the members is to use the
core (Foley, 1970). A core allocation for S, (S, a∗(S), u), is an allocation
for S such that

P
i∈T ui ≥ V (T ) holds for all T ⊆ S.

However, a core allocation for S may not be immune to free-riding incen-
tives by its members of S. So, we will define a hybrid solution concept of
cooperative and noncooperative games. A free-riding-proof core alloca-
tion for S is a core allocation (S, a∗(S), u) for S such that

ui ≥ vi(a
∗(S\{i})) for all i ∈ S.

A free-riding-proof core allocation is immune to unilateral deviations of the
members of S. Note that, given the nature of public good provision problem,
we can allow a coalitional deviation from S at no cost (since one person
deviation is the most profitable). Let CoreFRP (S) be the set of all free-
riding-proof core allocations for S. Note that CoreFRP (S) may be empty for
large group S, while for small groups it is nonempty (especially, for singleton

that there is no spillover of public good across the groups.
22Note that we have V (S) =WΓ(S)−WΓ(∅) in our public good provision problem.

13



groups it is always nonempty). We collect free-riding-proof core allocations
for all S, and take their Pareto frontiers: the set of free-riding-proof core
is defined as

CoreFRP =
©
(S, a∗(S), u) ∈ ∪S0∈2NCoreFRP (S0) :
∀T ∈ 2N , ∀u0 ∈ CoreFRP (T ), ∃i ∈ N with ui > u0i

ª
.

That is, an element of CoreFRP is a free-riding-proof core allocation for some
S that is not weakly dominated by any other free-riding-proof core allocation
for any T . Note that CoreFRP is not a subsolution of Core(N): it only
achieves constrained efficiency due to free-riding incentives, since we often
have CoreFRP (N) = ∅. Note that there always exists a free-riding-proof core
allocation. since for all singleton set S = {i}, CoreFRP (S) is nonempty.

Proposition 1. CoreFRP 6= ∅.

Now, we will characterize PCPNE with free-riding-proof core. In the
public good provision problem, Fact 3 (Laussel and Le Breton, 2001) is useful.
Note that the core of (WΓ(T ))T⊆S is equivalent to Core(S) in our game. It
can be seen as follows. Since in a public good provision problem preferences
are comonotonic, i.e., vi(a) ≥ vi(a

0) if and only if vj(a) ≥ vj(a
0) for all

i, j ∈ S and all a, a0 ∈ A, (WΓ(T ))T⊆S is a convex game (Laussel and Le
Breton, 2001). Thus, no rent property uG =WΓ(∅) holds, and WΓ(∅) = 0 in
public good game. This impliesX

i∈S
ui =WΓ(S)−WΓ(∅) =WΓ(S).

This further implies, X
i∈T

ui ≥WΓ(T ),

holds for all T ⊂ S, since for S\T , the complement of T , we haveX
i∈S\T

ui ≤ WΓ(S)−WΓ(T )

=
X
i∈S

ui −WΓ(T ).
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Since WΓ(T ) = V (T ) in the public good economy, the second stage CPNE
outcomes coincide Core(S) of a characteristic function form game (V (T ))T⊆S
with V (S) = maxa∈A

¡P
i∈T vi(a)− C(a)

¢
.23 This is nothing but Foley’s core

in a public good economy (Foley, 1970). This gives us some insight in our
two-stage noncooperative game. Given the setup of our lobby formation
game in the first stage, if a CPNE outcome u in a subgame S can realize
as the equilibrium outcome (on-equilibrium path), it is necessary to have
u ∈ CoreFRP (S), since otherwise, some member of S would deviate in the
first stage and obtain a secured free-riding payoff. This observation is useful
in our analysis in the equivalence theorem. With some constructions, we can
show the following:

Proposition 2. In public good provision problem, if an allocation (S, a∗(S), u)
is in the FRP-core, then there is a PCPNE σ of which outcome is (S, a∗(S), u).

We postpone the proof of this proposition to Section 5, since it is some-
what involved. Once this direction is proved then the other direction is triv-
ial. Notice that being PCPNE requires free-riding-proofness. Every PCPNE
must be a free-riding-proof core allocation for some S. Since CoreFRP is
the Pareto-frontier of ∪S⊆NCore(S), Proposition 2 actually proves that all
Pareto-dominated free-riding-proof core allocation for S can be defeated by
a free-riding-proof core allocation.

Theorem. In public good provision problem, an allocation (S, a∗(S), u) is
in the FRP-core, if and only if there is a PCPNE σ of which outcome is
(S, a∗(S), u).

Proof of Theorem. We will show the other direction of Proposition 2:
every PCPNE σ generates a free-riding-proof core allocation as its outcome.
It is easy to see that the outcome (S, a∗(S), u) of a PCPNE σ is a free-riding-
proof core allocation for S, since otherwise the resulting allocation will not
be a subgame perfect Nash equilibrium: the resulting allocation must be in
the core, and needs to be free-riding-proof: if not, a player who has free-riding
incentive certainly unilaterally (so credibly) deviates in the first stage. Thus,

23Actually, with no rent property, CPNE and strong Nash equilibrium (Aumann, 1959,
but with weakly improving deviations) are equivalent in common agency game. See Kon-
ishi, Le Breton and Weber (1999).
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(S, a∗(S), u) ∈ CoreFRP (S). Suppose to the contrary that u /∈ CoreFRP .
Then, there is an free-riding-proof core allocation (S0, a∗(S0), u0) ∈ CoreFRP

with u0 > u. Consider a coalitional deviation with a grand coalition N by
preparing a PCPNE σ0 that achieves u0. There is such a σ0 by Proposition
2. This implies that there is a credible coalitional deviation from σ. This
is a contradiction. Thus, every PCPNE achieves a free-riding-proof core
allocation.¤

This Theorem together with Proposition 1 guarantees nonemptiness of
PCPNE. However, it may still not clear how free-riding-proof core looks like.
In the next section, we will use a simple example to illustrate the properties
of free-riding-proof core allocations, thus the outcome of PCPNE.

4 A Linear-Utility and Quadratic-Cost Pub-
lic Good Example

Let vi(a) = θia for all i ∈ N and C(a) = 1
2
a2, where θi > 0 is a parameter.24

With this setup, for group S, the optimal public good provision is determined
by the first order condition,

P
i∈S θi − a = 0: i.e.,

a∗(S) =
X
i∈S

θi.

Thus, the value of S is written as

V (S) =
X
i∈S

θi

ÃX
i∈S

θi

!
− 1
2

ÃX
i∈S

θi

!2

=

¡P
i∈S θi

¢2
2

.

For an outsider j ∈ N\S, the payoff is

vj(a
∗(S)) = θj

ÃX
i∈S

θi

!
.

24Coefficient 1/2 of C(a) function is just matter of normalization. For any k > 0 with
C(a) = ka2, we get isomorphic results.
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Consider the following example.

Example 1. Let N = {1, 3, 5, 11} with θi = i for each i ∈ N .

Suppose first that a simultaneous voluntary contribution of public goods
are done, instead of our two stage public good provision process. Then, only
i = 11 contributes, and all others free-ride. The public good provision level
is a = 11.
Now, let us move to our problem. First suppose that S = N . Then, we

have a∗(N) =
P

i∈N i = 20, and V (N) = 202

2
= 200. However, in order to

have free-riding-proofness, we need to give each player the following payoff
at the very least:

v11(a
∗(N\{11})) = (20− 11)× 11 = 99,

v5(a
∗(N\{5})) = (20− 5)× 5 = 75,

v3(a
∗(N\{3})) = (20− 3)× 3 = 51,

v1(a
∗(N\{1})) = (20− 1)× 1 = 19.

The sum of all the above values exceeds the value of the grand coalition V (N).
As a result, we can conclude CoreFRP (N) = ∅. Next, consider S = {11, 5}.
Then, a∗(S) = 16, and V (S) = 128. In order to check if the free-riding-proof
core for S is nonempty, first again check the free-riding-incentives.

v(a∗(S\{11})) = (16− 11)× 11 = 55,
v(a∗(S\{5})) = (16− 5)× 5 = 55.

Thus, if there is a free-riding-proof core allocation u = (u11, u5) for S, u must
satisfy

u11 + u5 = 128,

u11 ≥ 55,

u5 ≥ 55,

u11 ≥
11× 11
2

= 60.5,

u5 ≥
5× 5
2

= 12.5.
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The last two conditions are obtained by the core requirement. Thus, we
have25

Core({11, 5}) =
½

ũ ∈ R5+ : u11 + u5 = 128, u11 ≥ 60.5, u5 ≥ 12.5,
ũ3 = 48, ũ2 = 32, ũ1 = 16

¾
,

and

CoreFRP ({11, 5}) =
½

ũ ∈ R5+ : u11 + u5 = 128, u11 ≥ 60.5, u5 ≥ 55,
ũ3 = 48, ũ2 = 32, ũ1 = 16

¾
.

As is easily seen, CoreFRP ({11, 5}) 6= ∅, but it is a smaller set thanCore({11, 5}).
That is, the first observation is obvious:

• "Free-riding-proof constraints may narrow the set of attainable core
allocations."

Now, let us consider a simultaneous move voluntary public good provision
game by Bergstrom, Blume and Varian (1986). Each player i chooses her
monetary contribution mi ≥ 0 to provide public good. The public good
provision level is determined by a(m) =

p
2
P

i∈N mi reflecting the cost
function of public good production. Consider player i. Given that others are
contributingM−i together, player i maximizes θi

p
2 (mi +M−i)−mi. Thus,

the best response for player i is m∗
i = max

n
i2

2
−M−i, 0

o
. This implies that

only player 11 contributes, and the public good provision level is 11. Thus,
by forming a contribution group in the first stage, it is possible to increase
the public good provision level in equilibrium.26

Now, let us characterize the free-riding-proof core, the FRP-core. Since
the FRP-core requires Pareto-efficiency on the union of free-riding-proof cores

25For notational simplicity, without confusion, we abuse notations by dropping irrelevant
arguments of allocations. Thus, in this subsection, allocations are utility allocations.
26In relation to this, the readers may wonder about the Lindahl equilibrium allocation

for S = {11, 5}. Unfortunately, this example is not very useful since utility function is
quasi-linear. The result would totally dependent on how the profits are distributed as is
seen below. The Lindahl prices are p11 = 11 and p5 = 5 given θ11 = 11 and θ5 = 5,
since a∗({11, 5}) = 16 means marginal cost is 16(= 11 + 5). Since there are pure profits
in producing public goods (cost function is strictly convex), we need to specify the way
to allocate the profits 128. If they are distributed equally, then both get 64 each as profit
share, and this is the only source of their utilities. If they are distributed according to
players’ willingnesses-to-pay, then players get 88 and 40. In the former case, the free-
riding-proof conditions are satisfied, but in the latter case, they are not satisfied.
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for all subsets of the players, we need to find free-riding-proof core for each
S, in order to find the set of free-riding-proof core. The following lemma
helps us to do the task.

Lemma 1. In the linear-utility-quadratic-cost public good problem, the
free-riding-proof core for S is nonempty if and only if S satisfies Φ(S) ≡P

i∈S θia
∗(S)− 1

2
(a∗(S))2−

P
i∈S θia

∗(S\{i}) ≥ 0 (aggregated "no free riding
condition").

Even in this simple setup, we can make a few interesting observations.

Example 1. (continued) The free-riding-proof core allocations are at-
tained by groups {11, 5, 1}, {11, 3, 1}, {11, 5}, {11, 3}, and {5, 3}.

First by Lemma1, we can easily check for which S, CoreFRP (S) 6= ∅ holds.
There are 12 such contribution groups: {11, 5, 1}, {11, 3, 1}, {11, 5}, {11, 3},
{11, 1}, {5, 3}, {5, 1}, {3, 1}, {11}, {5}, {3}, and {1}.
Note that S = {11, 5, 3} does not have nonempty free-riding-proof core

for S. Let S = {11, 5, 3}. Then, a∗(S) = 19 and W (S) = 180.5. Now,
11v(a∗(S\{11})) = 88, 5v(a∗(S\{5}) = 70 and 3v(a∗(S\{3})) = 48. Since
88 + 70 + 48 > 180.5, there is no free-riding-proof core allocation for S =
{11, 5, 3}. Thus, {11, 5, 1} is the group that achieves the highest level of pub-
lic good provision, and has nonempty free-riding-proof core.27 This analysis
gives an interesting observation:28

• (Even the largest) group that achieves a free-riding-proof core allocation
may not be consecutive.

The intuition of this result is simple. Suppose Φ(S) is positive (say,
S = {11, 5}). Then by Lemma 1, there is an internally stable allocation for
S. Now, we may try to find S0 ⊃ S that still keeps Φ(S0) ≥ 0. If the value
of Φ(S) is positive yet the value is not so large, then adding high θ player
(say, player 3) may make Φ(S0) < 0, since adding such a player may increase
a∗(S0) a lot, making free-riding problem severer. However, if low θ player

27As is seen below, group {11, 5, 1} supports some allocations in CoreFRP .
28Although the context and approach are very different, in political science and sociology,

formation of such non-consecutive coalitions is of a tremendous interest. For a game
theoretical treatment of this line of literature (known and "Gamson’s law"), see Le Breton
et al. (2007).
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(say, player 1) is added, the free-rider problem does not become too severe,
and Φ(S0) ≥ 0 may be satisfied relatively easily.
Among the above 12 groups, it is easy to see that groups {5, 1}, {3, 1},

{11}, {5}, {3}, and {1} do not survive the test of Pareto-domination by
free-riding-proof core allocations for other groups. For example, consider
S = {11, 5} and u0 = (73, 55, 48, 32, 16) ∈ CoreFRP ({11, 5}).29 Since the
payoff of 11 by free-riding is v11(a) = 11a, every allocation for the above
groups are dominated by the above u0. On the other hand, {5, 3} is not
dominated, since player 11 gets 88 by free-riding, respectively. Thus, player
11 would not join a deviation (11 can obtain maximum 73 in a free-riding-
proof core allocation for S 3 11). Without player 11’s cooperation, there is
no free-riding core allocation that dominates those of {5, 3}.
By the same reasons, free-riding-proof core allocations for S = {11, 1} are

dominated by the one for S0 = {11, 5}. Under S = {11, 1}, player 5 gets 60,
but S0 can attain u0 = (63, 65, 48, 32, 16).30 However, free-riding-proof core
allocations for S = {11, 3, 1} and {11, 3} cannot be beaten by the ones for
S0 = {11, 5}, since player 5 gets 70 even under {11, 3}.31
Finally, S = {11, 5}, {11, 3}. The free-riding-proof core allocations for

S = {11, 5} is characterized by u11+ u5 = 128, u11 ≥ 60.5 and u5 ≥ 55, with
u3 = 48, u2 = 32 and u1 = 16. Now, consider S0 = {11, 5, 1}. The free-
riding-proof core allocations for S0 is characterized by u011+ u05+ u01 = 144.5,
u01 ≥ 66, u05 ≥ 60 and u01 ≥ 16, with u03 ≥ 51 and u02 ≥ 34. Thus, S0 can
attain u011+ u05 = 144.5− 16 = 128.5 as long as u011 ≥ 66 and u05 ≥ 60. Thus,
if u ∈ CoreFRP ({11, 5}) satisfies u11+u5 = 128, 60.5 ≤ u11 ≤ 68.5, and 55 ≤
u5 ≤ 62.5, then u is improved upon by an allocation in CoreFRP ({11, 5, 1}).
However, if u ∈ CoreFRP ({11, 5}) satisfies u11 + u5 = 128, u11 > 68.5, or
u5 > 62.5, then u cannot be improved upon by forming group {11, 5, 1}.
Free-riding-proof core allocations for S = {11, 3} has a similar property with
possible deviations by group S0 = {11, 3, 1}. This phenomenon illustrates
another interesting observation:

• An expansion of group definitely increases the total value of the group,
29The best allocation for player 11 in CoreFRP ({11, 5}). See the characterization of

CoreFRP ({11, 5}) in Example 1. Other players are free-riders, and their payoffs are di-
rectly generated from a∗({11, 5}) = 16.
30Under S = {11, 2}, player 11 can get at most 62.5 in order to satisfy the free-riding-

proofness for player 2 (v2({11}) = 22).
31Since V ({11, 5}) = 128, and player 5 demands at least 70, player 11 can get at most

58. However, V ({11}) = 60.5. Thus, involving player 5 is not feasible.
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while it gives less flexibility in allocating it since free-riding incentives
are strengthened by having more public good. As a result, some un-
equal free-riding-proof core allocations for the original group may not
be improved upon by expanding the group.

In summary, the free-riding-proof core is union of the following sets of
allocations attained by five different groups.

1. S = {11, 5, 1}, then a∗(S) = 17 and all free-riding-proof core allocations
for S are attained:

CoreFRP ({11, 5, 1}) =
½

ũ ∈ R5+ : ũ11 + ũ5 + ũ1 = 144.5, ũ3 = 51, ũ2 = 34,
66 ≤ ũ11, 60 ≤ ũ5, 16 ≤ ũ1

¾
2. S = {11, 3, 1}, then a∗(S) = 15 and all free-riding-proof core allocations
for S are attained:

CoreFRP ({11, 3, 1}) =
½

ũ ∈ R5+ : ũ11 + ũ3 + ũ1 = 112.5, ũ5 = 75, ũ2 = 30,
60.5 ≤ ũ11, 36 ≤ ũ3, 14 ≤ ũ1

¾
3. S = {11, 5}, then a∗(S) = 16 and only subset of free-riding-proof core
allocations for S can be attained:©

ũ ∈ CoreFRP ({11, 5}) : ũ11 > 68.5, or ũ5 > 62.5
ª

=

⎧⎨⎩ ũ ∈ R5+ : ũ11 + ũ5 = 128, ũ3 = 48, ũ2 = 32, ũ1 = 16,
[68.5 < ũ11 ≤ 73 and 55 ≤ ũ5 < 59.5]

or [62.5 < ũ5 ≤ 67.5 and 60.5 ≤ ũ11 < 65.5]

⎫⎬⎭
4. S = {11, 3}, then a∗(S) = 14 and only subset of free-riding-proof core
allocations for S can be attained:©

ũ ∈ CoreFRP ({11, 3}) : ũ11 > 62.5
ª

=

½
ũ ∈ R5+ : ũ11 + ũ3 = 98, ũ5 = 70, ũ2 = 28, ũ1 = 14,

[62.5 < ũ11 ≤ 65 and 33 ≤ ũ3 < 35.5]

¾
5. S = {5, 3}, then a∗(S) = 8 and all free-riding-proof core allocations for

S are attained:

CoreFRP ({5, 3}) =
½

ũ ∈ R5+ : ũ5 + ũ3 = 32, ũ11 = 88, ũ2 = 16, ũ1 = 8,
15 ≤ ũ5, 15 ≤ ũ3

¾
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We can observe that in the last two groups, the levels of public good
provision are less than the Nash equilibrium provision level of the standard
voluntary contribution game (recall that a = 11 by player 11’s contribution
only is the unique Nash equilibrium.):

• There may be free-riding-proof core allocations that achieve less public
good provision than Nash equilibrium one of a simple voluntary contri-
bution game by Bergstrom, Blume and Varian (1986).

This occurs since in our setup, player 11 can commit to being an outsider
in the first stage. In a simultaneous move voluntary contribution game, this
cannot happen. Finally, needless to say, we have:

• The free-riding-proof core may be a highly nonconvex set.

5 Summary

This paper added players’ participation decisions to common agency games.
The solution concept we used is a natural extension of coalition-proof Nash
equilibrium to a dynamic game, perfectly coalition-proof Nash equilibrium
(PCPNE). We considered a special class of common agency games: an en-
vironment without conflict of interests (comonotonic proferences) such as
public good economies. In this case, we show that PCPNE is equivalent to
an intuitive hybrid solution in transferrable utility case, the free-riding-proof
core, which is the Pareto-frontier of a union of all core allocations for subset
of players that are immune to unilateral free-riding incentives. With a simple
example, we found that the equilibrium lobby group may not be consecutive
(with respect to willingness-to-pay), and public good can be underprovided.

6 Proof of Proposition 2.

First, we construct a strategy profile σ below, which will be shown to support
(S∗, a∗(S∗), u∗) as a PCPNE. By definition, we have u∗ ∈ CoreFRP (S∗). In
defining σ, we need to assign a CPNE utility profile to every subgame S0

(although this does not happen in the equilibrium, it matters when deviations
are considered). Then, we show that there is no credible and profitable
deviation from σ by way of contradiction.
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The second stage strategy profile is described by utility allocations as-
signed in each subgame (we utilize truthful strategies). Steps 1 and 4 are
trivial, and step 2’s allocation can be anything as long as it is a core alloca-
tion. Step 3 is the key, since we need to consider coalitional deviations from
σ later. A credible deviation requires both free-riding-proofness and prof-
itability. Thus, for player i to join a coalitional deviation that achieves S0,
utility level ūi = max{u∗i , vi(S0\{i})} plays important roles. We construct a
core allocation (CPNE) for subgame S0 by utilizing utility vector ū in step
3.

1. We assign (S∗, a∗(S∗), u∗) ∈ CoreFRP to the on-equilibrium subgame
S∗.

2. For any S0 with S0∩S∗ = ∅, we assign a CPNE that achieves an extreme
point of the core for S0 of a convex game (just to assign a concrete
core allocation). For an arbitrarily selected order ω over S0, we assign
payoff vector uω(1) = V ({ω(1)}) − V (∅), uω(2) = V ({ω(1), ω(2)}) −
V ({ω(1)}),... etc. following Shapley (1971). Call the allocation ûS0 ∈
Core(S0).32

3. For any S0 with S0 ∩ S∗ 6= ∅, we will assign a CPNE (or a core al-
location). It requires a few steps. First, we deal with the outsiders.
Let ω : |S0\S∗| → S0\S∗ be an arbitrary bijection, and let uω(1) =
V ({ω(1)}), uω(2) = V ({ω(1), ω(2)}) − V ({ω(1)}),..., and uω(|S0\S∗|) =
V (S0\S∗)− V (S0\S∗\{ω(|S0\S∗|)}). Such a core allocation suppresses
the total payoffs of S0\S∗ the most (Shapley, 1971). The rest V (S0)−
V (S0\S∗) goes to S0 ∩ S∗. Consider a characteristic function form
game (Ṽ (Q;S0\S∗))Q⊆S0∩S∗ such that Ṽ (Q;S0\S∗) = V (Q∪ (S0\S∗))−
V (S0\S∗). For each i ∈ S0 ∩ S∗, let ūi = max{u∗i , vi(S0\{i})}. With a
vector ūS0∩S∗ = (ūi)i∈S0∩S∗ and a game Ṽ = (Ṽ (Q;S0\S∗))Q⊆S0∩S∗, we
will construct a core allocation from ū in the following manner. Pick

32Let the ordering be a bijection ω : {1, 2, ..., |S0|}→ S0. Let uω(i) =W ({ω(1), ..., ω(i))−
W ({1, ..., ω(i − 1)}). The allocation (uω(i))

|S0|
i=1 is in the core for S

0, since the game W is
convex.
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u = (ui)i∈S0∩S∗ . Let

Q+(uS0∩S∗) = {Q ∈ 2S0∩S∗ :
X
j∈Q

uj > Ṽ (Q;S0\S∗)},

Q0(uS0∩S∗) = {Q ∈ 2S0∩S∗ :
X
j∈Q

uj = Ṽ (Q;S0\S∗)},

Q−(uS0∩S∗) = {Q ∈ 2S0∩S∗ :
X
j∈Q

uj < Ṽ (Q;S0\S∗)}.

Since the game Ṽ satisfies the convex game property, for allQ ⊆ S0∩S∗,
all Q0 $ Q, if we have Q0 ∈ Q0(uS0∩S∗) ∪ Q+(uS0∩S∗) with at least
one Q0 ∈ Q0(uS0∩S∗), then Q ∈ Q0(uS0∩S∗) ∪ Q−(uS0∩S∗) holds.33 To
achieve a core allocation ûS0∩S∗ , we need both Q−(ûS0∩S∗) = ∅ andP

i∈S0∩S∗ ûi = Ṽ (S0 ∩ S∗;S0\S∗).

(a) Suppose Q−(ūS0∩S∗) = ∅. Starting with uS0∩S∗(0) = ūS0∩S∗ , we
modify utility vector uS0∩S∗(t) continuously until it reaches at a
core allocation, where t represents a stage of the modification
process. Then, 2S

0∩S∗ = Q0(ūS0∩S∗) ∪ Q+(ūS0∩S∗). Reduce uis
by the same amount simultaneously and continuously for i ∈
(S0∩S∗)\(∪Q∈Q0(uS0∩S∗)Q).34 Since all elements in Q0(uS0∩S∗) stay
in Q0(uS0∩S∗) as the process continues, while some of elements
of Q+(uS0∩S∗(t)) start switching to Q0(uS0∩S∗(t)), Q0(uS0∩S∗(t))
monotonically expands in the process. At some stage t = t̂,
S0 ∩ S∗ ∈ Q0(uS0∩S∗(t̂)) occurs. Then we immediately stop the
process. This terminates the process, and the final outcome is
ûS0∩S∗ = uS0∩S∗(t̂).

(b) Suppose Q−(ūS0∩S∗) 6= ∅. Start with uS0∩S∗(0) = ūS0∩S∗ . Let

Q−min(uS0∩S∗) = {Q ∈ Q−(uS0∩S∗) : @Q0 ∈ Q−(uS0∩S∗) with Q % Q0}.

In phase 1 (t ∈ [0, t̃]), increase uis by the same amount continu-
ously and simultaneously for all i ∈ ∪Q∈Q−min(uS0∩S∗(t))Q. All other

33Here, we are assigning a core allocation to each subgame, since otherwise, a CPNE is
not played in an off-equilibrium subgame, and the equilibrium cannot be a PCPNE. We
propose an algorithm that achives a core allocation from a convex game and an arbitrary
utility vector (here it is ūS0∩S∗).
34This means that if S0 ∩ S∗ ∈ Q0(u), then the process terminates.
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players’ utilities are kept intact. If some Q ∈ Q−min(uS0∩S∗(t)) falls
into Q0(uS0∩S∗(t)) at some stage, then the utility levels are kept
constant afterwards for the members of such Q. Continue this
process untilQ−min(uS0∩S∗(t)) (thusQ−(uS0∩S∗(t))) becomes empty.
Call the end stage of phase 1 t = t̃.35 In phase 2 (t ∈ (t̃, t̂]),
there are only Q0(uS0∩S∗(t)) and Q+(uS0∩S∗(t)). Now, we can
repeat the procedure in (a), and we reach at a final outcome
ûS0∩S∗ = uS0∩S∗(t̂) when S0 ∩ S∗ ∈ Q0(uS0∩S∗(t̂)) occurs.

4. Let σ1i = 1 for i ∈ S∗, and σ1i = 0 for j /∈ S∗. Let σ2i (S
∗) be a truthful

strategy relative to a∗(S∗) with τ i(a
∗(S∗)) = vi(a

∗(S∗)) − u∗i for all
i ∈ S∗. And let σ2i (S

0) be a truthful strategy relative to a∗(S0) with
τ i(a

∗(S0)) = vi(a
∗(S0))− ûi(S

0) for all i ∈ S0.

Here, for step 3, we provide a useful observation for the later purpose.

Lemma 2. Suppose that game V is convex. Then, in cases (a) and (b) of
step 3, we have the following results, respectively:

(a) We have ûS0∩S∗ ∈ Core(S0 ∩ S∗, Ṽ ), and

û(S0) = ((ûi)i∈S0∩S∗, (uω(k))k∈S0\S∗) ∈ Core(S0).

For all i ∈ S0 ∩ S∗, ûi ≤ ūi holds with equalities only for i ∈ Q ∈
Q0(ūS0∩S∗). In particular, we have ûi = ūi for all i ∈ S0∩S∗ only when
phase 1 does not start (S0 ∩ S∗ ∈ Q0(ūS0∩S∗)).

(b) We have ûS0∩S∗ ∈ Core(S0 ∩ S∗, Ṽ ), and

û(S0) = ((ûi)i∈S0∩S∗ , (uω(k))k∈S0\S∗, (vj(a
∗(S0)))j∈N\S0) ∈ Core(S0).

For all i ∈ W , ûi > ūi holds and there is Q 3 i such that
P

j∈Q ûj =

Ṽ (Q) and Q ⊆ W . While, for all j ∈ L, ûj ≤ ūj holds with equalities
only for i ∈ Q ∈ {Q0 ∈ Q0(uS0∩S∗(t̃)) : Q0 ⊆ L}, where

W = (S0 ∩ S∗) ∩
³
∪t∈[0,t̃]

³
∪Q∈Q−min(uS0∩S∗(t))Q

´´
,

35This process guarantees that a player i who belonged to some Q ∈ Q−min(uS0∩S∗(t))
(at some moment t ∈ [0, t̃]) must belongs to some Q0 ∈ Q0(uS0∩S∗(t̃)) at the end of phase
1.
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and
L = (S0 ∩ S∗)\W.

In particular,

(α) when L = ∅, phase 2 does not take place (t̂ = t̃), and ûi ≥ ūi
holds for all i ∈ S0 ∩ S∗.

(β) when L 6= ∅, for all i ∈ W , there is Q ∈ Q0(uS0∩S∗(t̃)) such thatP
i∈Q ûi = V̂ (Q), and for all j ∈ L, ûj ≤ ūj holds with at least

one strict inequality.

Proof of Lemma 2. First, we show that algorithm in case (a) terminates
with

P
i∈S0∩S∗ ui(t̂) = Ṽ (S0∩S∗). This is shown if (S0∩S∗)\(∪Q∈Q0(uS0∩S∗)Q) 6=

∅ holds whenever
P

i∈S0∩S∗ ui > Ṽ (S0 ∩ S∗) is the case (otherwise, uS0∩S∗ is
infeasible while the algorithm stops). Suppose that

P
i∈S0∩S∗ ui > Ṽ (S0∩S∗),

while (S0 ∩ S∗)\(∪Q∈Q0(uS0∩S∗ )Q) = ∅ in case (a). Then, for all i ∈ S0 ∩ S∗,
there exists Q ∈ Q0(uS0∩S∗) with i ∈ Q. Then, we can construct a balanced
family B by collecting theseQs (see, say, Ichiishi, 1986). Then, with balanced
weight {λQ}Q∈B such that

P
Q3i,Q∈B λQ = 1 for all i ∈ S0 ∩ S∗. This impliesX
Q3i,Q∈B

λQui = ui.

Since for all Q ∈ B,
P

j∈Q uj = Ṽ (Q) by definition, we haveX
Q∈B

λQṼ (Q) =
X

i∈S0∩S∗
ui.

By assumption, have
P

i∈S0∩S∗ ui > Ṽ (S0 ∩ S∗), and we can concludeX
Q∈B

λQṼ (Q) > Ṽ (S0 ∩ S∗).

This means that the game Ṽ is not balanced. However, convex games are
balanced. This is a contradiction. Thus, in case (a), the algorithm terminates
at a feasible allocation. The same argument applies to phase 2 of case (b).
Once the above is shown, it is easy to see the final outcome of the al-

gorithm is in the core. By definition, uS0∩S∗ ∈ Core(S0 ∩ S∗, Ṽ ) if and
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only if S0 ∩ S∗ ∈ Q0(uS0∩S∗) and Q ∈ S0 ∩ S∗ ∈ Q+(uS0∩S∗) ∩ Q0(uS0∩S∗)
for all Q ∈ 2S0∩S∗. Thus, ûS0∩S∗ ∈ Core(S0 ∩ S∗, Ṽ ) is obvious for both
cases. By the properties of convex games (Shapley, 1971), it is also easy
to see û(S0) ∈ Core(S0) for both cases. We start with case (a). If Q ∈
Q0(ūS0∩S∗) = Q0(uS0∩S∗(0)), then utility is not adjusted for its members in
the entire process. Thus, for all i who belong to someQ ∈ Q0(ūS0∩S∗), ûi = ūi
holds. For all others, it is obvious from the algorithm that ûi < ūi holds. It
is easy to see that we have ûi = ūi for all i ∈ S0 ∩S∗ only when phase 1 does
not start (S0 ∩ S∗ ∈ Q0(ūS0∩S∗)).
Now, we check case (b). In phase 1, if player i belonged to some Q ∈

Q−min(uS0∩S∗(t)) at some moment t ∈ [0, t̃], ui(t̃) > ūi holds, since nobody
gets utility reduction in phase 1. Moreover, such a player i belongs to some
Q ∈ Q0(uS0∩S∗(t̃)) at the end of phase 1. This implies two things:

P
j∈Q ûi =

Ṽ (Q) for some Q ∈ Q0(uS0∩S∗(t̃)), and by the algorithm in case (a), such i’s
utility is intact in phase 2 (thus, Q ⊆W ). This implies that ûi > ūi holds for
all i ∈W . All j ∈ L was not affected in phase 1, and j belongs to either Q ∈
Q0(uS0∩S∗(t̃)) ∩ L or Q ∈ Q+(uS0∩S∗(t̃)) ∩ L. The rest is a repetition of case
(a). Convex game property (phase 1) assures that ûS0∩S∗ ∈ Core(S0 ∩S∗, Ṽ )
holds, thus we have û(S0) ∈ Core(S0) (again, convex game). Statements of
(α) and (β) are easy to show.¤

Since every subgame has a core allocation with truthful strategies, it is a
CPNE. Thus, if there is a deviation from σ, then it must happen in the first
stage. The rest of the proof of σ being a PCPNE is by way of a contradiction.
Suppose to the contrary that coalition T profitably and credibly deviates
from the equilibrium σ. Note that in the reduced game by T , it must be
a PCPNE deviation given σ−T fixed. In the original equilibrium, S∗ is the
lobby group. This implies that all i ∈ (N\S∗)\T play σ1i = 0 in the first
stage and they free-ride, while all i ∈ S∗\T play σ1i = 1 in the first stage and
they play the same strategies (σ2i (S

0) a menu contingent to formed lobby S0)
in the second stage. Note that all i ∈ T\S∗ play σ10i = 1 in the first period
after the deviation (by definition), while i ∈ T ∩ S∗ may or may not play
σ10i = 1. Some may choose to free-ride by switching to 0, while others stay
in the lobby with adjustment of their strategies in the second stage.
Let S0 be the lobby formed by T ’s deviation: S0 = S(σ1−T , σ

10
T ). Then,

there are five groups of players (see Figure 1):

(i) the members of S∗\S0 ⊂ T free-ride after the deviation,
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(ii) the members of S0\S∗ ⊂ T join the lobby,

(iii) the members of (S∗ ∩ S0)\T ⊂ S0 do not change their strategies in any
stage (participate in lobbying, while keep the same menu in the second
stage),

(iv) the members of (S∗∩S0)∩T ⊂ S0 change strategies in the second stage,

(v) the members of N\(S0∪S∗) are outsiders before or after the deviation.

Let the resulting allocation be (S0, a∗(S0), u0). Since T is a profitable and
credible deviation, the members in (i), (ii) and (iv) are better-off after T
deviates. That is,

vi(a
∗(S0)) ≥ u∗i for all i ∈ S∗\S0,

u0i ≥ ūi for all i ∈ S0\S∗,
u0i ≥ ūi for all i ∈ (S∗ ∩ S0) ∩ T ,

must hold, where ūi = max{u∗i , v∗i (a∗(S0\{i})}.
Given our supposition, we will provide a sequence of claims below.
First note that since members of (ii) are better off, we have a∗(S0) >

a∗(S∗). It is because (ii) is nonempty, since otherwise, S0 ⊂ S∗ holds, and a
coalitional deviation cannot be profitable.

Claim 1. a∗(S0) > a∗(S∗).

Since in σ, all players use truthful strategies, even after T ’s deviation, the
members in (iii) (outsiders of T ) get the same payoff vector û(S∗∩S0)∩T (S0) as
in the original subgame CPNE for S0. It is because in subgame S0 (even after
deviation), a∗(S0) must be provided since CPNE (core) must be assigned to
the subgame. Thus, we have the following for group (iii).

Claim 2. After deviation by T , all i ∈ (S∗ ∩ S0)\T ⊂ S0 receives exactly
u0i = ûi(S

0).

Note that, since u0 needs to be is a CPNE in the second stage of the
reduced game by T , we have

P
i∈S0\S∗ u

0
i ≥ V (S0\S∗), (to be in Core(S0)).

By construction of û(S0), we have
P

i∈S0\S∗ ûi = V (S0\S∗). Thus, we have
the following for group (ii).

Claim 3.
P

i∈S0\S∗ u
0
i ≥

P
i∈S0\S∗ ûi = V (S0\S∗).
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Now, we consider group (iv). By Claims 2 and 3, the members of (iv)
together can get at most X

i∈S0∩S∗∩T
u0i ≤

X
i∈S0∩S∗∩T

ûi,

since group (iv) cannot get transfers from groups (ii). Since group (iv) is
better off and free-riding-proofness is satisfied for them after the deviation
(PCPNE deviation), u0i ≥ ūi = max{u∗i , vi(a∗(S0\{i}))} must be satisfied for
all i ∈ S0 ∩ S∗ ∩ T .
Claim 4. Suppose that for group S0 ∩ S∗ ∩ T , either case (a) or case (b)
with L 6= ∅ holds. Then, u0i = ûi for all i ∈ S0 ∩ S∗ ∩ T .
Proof of Claim 4. In case (a), Lemma 1 says that for all i ∈ S0 ∩ S∗,
we have ûi ≤ ūi. Claims 2 and 3 requires

P
i∈S0∩S∗∩T u

0
i ≤

P
i∈S0∩S∗∩T ûi.

However, we need u0i ≥ ūi for all i ∈ S0 ∩ S∗ ∩ T . Thus, we have u0i = ûi for
all i ∈ S0 ∩ S∗ ∩ T .
In case (b) with L 6= ∅, by Lemma 1, some of the members of W

must belong to (iv). However, for all i ∈ W , the winner group, there
is Q ∈ Q0(ûS0∩S∗) with i ∈ Q, thus Ṽ (Q) =

P
j∈Q0 ûj(S

0). Now con-
sider a reduced characteristic function form game played by S0 ∩ S∗ ∩ T ,
after group (iii) takes ûjs (Claim 2). A reduced characteristic function
form game (V̂ (Q))Q⊆S0∩S∗∩T , where for all Q ⊆ T ∩ (S0 ∩ S∗), V̂ (Q) =
Ṽ (Q ∪ ((S0 ∩ S∗)\T )) −

P
j∈(S0∩S∗)\T ûj. That is, we have V̂ (Q ∩ T ) =

Ṽ (Q) −
P

j∈Q\T ûj =
P

i∈Q∩T ûi for Q ∈ Q0(ûS0∩S∗). Therefore, we con-
clude that for all i ∈ W , there is Q ∈ Q0(ûS0∩S∗) with i ∈ Q such that
V̂ (Q ∩ T ) =

P
j∈Q∩T ûj(S

0). Since Claims 2 and 3 requires
P

i∈S0∩S∗∩T u
0
i ≤P

i∈S0∩S∗∩T ûi, for u
0
S0∩S∗∩T to be in the core of V̂ (so, CPNE of the reduced

game), we need u0S0∩S∗∩T = ûS0∩S∗∩T .¤

Claims 2, 3 and 4 immediately imply the following for group (ii).

Claim 5. Suppose that for group S0 ∩ S∗ ∩ T , either case (a) or case (b)
with L 6= ∅ holds. Then, we haveX

i∈S0\S∗
u0i = V (S0\S∗) =

X
i∈S0\S∗

vi(a
∗(S0\S∗))− C(a∗(S0\S∗)).
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Thus, we have shown that if L 6= ∅, then group (ii) can deviate profitably
and credibly (together with group (iv)) achieve u0S0∩S∗ with a limited resource
V (S0\S∗). Due to profitability, V (S0\S∗) ≥

P
i∈S0\S∗ vi(a

∗(S∗)), we have
a∗(S0\S∗) > a∗(S∗). We consider a new allocation that is achieved only by
group (ii).

Claim 6. Suppose that for group S0∩S∗∩T , either case (a) or case (b) with
L 6= ∅ holds. Then, an allocation (S0\S∗, a∗(S0\S∗), (u0i)i∈S0\S∗, (vj(a∗(S0\S∗))j /∈S0\S∗)
can be achieved only by S0\S∗ (u0T is the deviators’ allocation by T ), and
this allocation Pareto-dominates (S∗, a∗(S∗), u∗).

Proof of Claim 6. First, groups (i) and (v) are better off, since a∗(S0\S∗) >
a∗(S∗). By assumption, group (ii) are better off and have no free-riding
incentives. Thus, the only groups which need investigation are groups (iii)
and (iv). We check if there can be i ∈ S0 ∩ S∗ with u∗i > vi(a

∗(S0\S∗))
despite of a∗(S0\S∗) > a∗(S∗). Since u∗i ∈ Core(S∗), and the game V is
convex, u∗i ≤ V (S∗)− V (S∗\{i}) (Shapley, 1971). Since

V (S∗)− V (S∗\{i})

=
X
j∈S∗

vj(a
∗(S∗))− C(a∗(S∗))−

⎛⎝ X
j∈S∗\{i}

vj(a
∗(S∗\{i}))− C(a∗(S∗\{i}))

⎞⎠
< vi(a

∗(S0\S∗))

+
X

j∈S∗\{i}

vj(a
∗(S∗))− C(a∗(S∗))−

⎛⎝ X
j∈S∗\{i}

vj(a
∗(S∗\{i}))− C(a∗(S∗\{i}))

⎞⎠
< vi(a

∗(S0\S∗)).

The last inequality holds since
P

j∈S∗\{i} vj(a) − C(a) is maximized at a =
a∗(S∗\{i}). This proves that all members of (iii) and (iv) are better off
in (S0\S∗, a∗(S0\S∗), (u0i)i∈S0\S∗, (vj(a∗(S0\S∗))j /∈S0\S∗). Hence, we conclude
that (S∗, a∗(S∗), u∗) ∈ CoreFRP is Pareto-dominated by
(S0\S∗, a∗(S0\S∗), (u0i)i∈S0\S∗, (vj(a∗(S0\S∗))j /∈S0\S∗) ∈ CoreFRP (S0\S∗), since
the members of (ii), S0\S∗, have no free-riding incentive.¤
The last part of proof of Proposition 2. The statement of Claim
6 is an apparent contradiction to (S∗, a∗(S∗), u∗) ∈ CoreFRP , since u0i ≥
vi(a

∗(S0\{i})) for all i ∈ S0\S∗ implies u0i ≥ vi(a
∗((S0\S∗)\{i})) for all

i ∈ S0\S∗ (pure public good). Thus, we conclude that case (b) occurs and
L = ∅ holds.
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However, under case (b) with L = ∅, we have ûi > ūi = max{u∗i , vi(a∗(S0\{i}))}
for all i ∈ S0 ∩ S∗. Thus, members of group (iii) are better off and have no
free-riding incentive. Players in groups (i), (ii) and (iv) deviate credibly
and profitably by T , they are better-off and have no free-riding incentive
for groups (ii) and (iv). Group (v) is better-off by Claim 1. This means
that (S0, a∗(S0), (u0i)i∈S0∩T , (ûi)i∈(S0∩S∗)\T , (vj(a

∗(S0)))j∈N\S0) ∈ CoreFRP (S0),
and Pareto-dominates (S∗, a∗(S∗), u∗) ∈ CoreFRP . This is a contradiction.
Hence, (S∗, a∗(S∗), u∗) is supportable with a PCPNE σ.¤

Appendix
Lemma 1. In the linear utility- quadratic cost public good problem, the free-
riding-proof core for S is nonempty if and only if S satisfies

P
i∈S θia

∗(S)−
1
2
(a∗(S))2 ≥

P
i∈S θia

∗(S\{i}) (aggregated "no free riding conditions").

Proof. If the above condition is violated, there is no allocation that satisfies
no free riding for S. Thus, we only need to show that if the above condition
is satisfied then we can find a core allocation that satisfies

P
i∈T ui ≥ V (T ) =P

i∈T θia
∗(T )− 1

2
(a∗(T ))2. To be instructive, we will not explicitly solve a∗(T )

for a while. The strategy we take is to construct an allocation, and verify
that it is in the core. Let uS ∈ RS

+ be such that for all i ∈ S

ui = θia
∗(S\{i}) + θiP

j∈S θj

ÃX
i∈S

θia
∗(S)− k(a∗(S))2 −

X
j∈S

θja
∗(S\{j})

!
.

Notice that the contents of the parenthesis is the aggregated "no free riding"
surplus: given the no free riding conditions, the most surplus the lobby group
S can distribute for their members. The above formula distribute this surplus
proportionally according to members’ willingnesses-to-pay θs. Obviously, we
have

P
i∈S ui = V (S) =

P
i∈S θia

∗(S) − k(a∗(S))2, and ui ≥ θia
∗(S\{i}).
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Thus, we only need to check condition 2. For a coalition T $ S, we haveX
i∈T

ui − V (T )

=
X
i∈T

θia
∗(S\{i}) +

P
i∈T θiP
j∈S θj

ÃX
j∈S

θja
∗(S)− 1

2
(a∗(S))2 −

X
j∈S

θja
∗(S\{j})

!

−
ÃX

i∈T
θia

∗(T )− 1
2
(a∗(T ))2

!

=

P
i∈T θiP
j∈S θj

ÃX
j∈S

θja
∗(S)− 1

2
(a∗(S))2

!
−
ÃX

i∈T
θia

∗(T )− 1
2
(a∗(T ))2

!

+
X
i∈T

θia
∗(S\{i})−

P
i∈T θiP
j∈S θj

X
j∈S

θja
∗(S\{j}).

We want this to be nonnegative for all T ⊂ S. Now, we use quadratic cost
and linear utility. The first order condition for optimal public good provision
is

a∗(S) =
X
i∈S

θi.

Thus, we have X
i∈S

θia
∗(S)− k(a∗(S))2 =

¡P
i∈S θi

¢2
2

,

and

θia
∗(S\{i}) = θi

ÃX
j∈S

θj − θi

!
.
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Thus, we haveX
i∈T

ui − V (T )

=

P
i∈T θi

2
P

j∈S θj

ÃX
j∈S

θj

!2
− 1
2

ÃX
i∈T

θi

!2
+
X
i∈T

θi
X

j 6=i,j∈S
θj −

P
i∈T θiP
i∈S θi

X
i∈S

θi
X

j 6=i,j∈S
θj

=
1

2

ÃX
i∈T

θi

!ÃX
j∈S

θj

!
+
X
i∈T

θi

ÃX
j∈S

θj − θi

!
−
P

i∈T θiP
i∈S θi

X
i∈S

θi

ÃX
j∈S

θj − θi

!

=
1

2

ÃX
i∈T

θi

!ÃX
j∈S

θj

!
+
X
i∈T

θi

ÃX
j∈S

θj

!
−
X
i∈T

θ2i −
X
i∈T

θi

ÃX
j∈S

θj

!
+

P
i∈T θiP
i∈S θi

X
i∈S

θ2i

=
1

2

ÃX
i∈T

θi

!ÃX
j∈S

θj

!
−
X
i∈T

θ2i +

P
i∈T θiP
i∈S θi

X
i∈S

θ2i

=

ÃX
i∈T

θi

!"P
j∈S θj

2
−
P

i∈T θ
2
iP

i∈T θi
+

P
i∈S θ

2
iP

i∈S θi

#

=

ÃX
i∈T

θi

!"P
j∈S θj

2
−
X
j∈T

θjP
i∈T θi

× θj +
X
j∈S

θjP
i∈S θi

× θj

#
.

The second term is the only negative term, and it takes maximum absolute
value when T is composed by the players with the highest values of θj. Let
us call such value θmax. Suppose that

P
i∈S ui−V (T ) < 0. Then, by focusing

the first two terms, we know θmax >
1
2

P
i∈S θi. However, if it is the case, we

have P
j∈S θj

2
−
X
j∈T

θjP
i∈T θi

× θj +
X
j∈S

θjP
i∈S θi

× θj

≥
P

j∈S θj

2
− θmax +

X
j∈S

θjP
i∈S θi

× θj

≥ θmax
2
− θmax +

θmaxP
i∈S θi

× θmax

>
θmax
2
− θmax +

1

2
× θmax = 0.

This is a contradiction. Therefore, u is in CoreFRP (S).¥
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