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Abstract

This paper constructs an e�cient, budget-balanced, Bayesian incentive-compatible mech-

anism for a general dynamic environment with private information. As an intermediate re-

sult, we construct an e�cient, ex post incentive-compatible mechanism, which is not budget

balanced. We also provide conditions under which participation constraints can be satis�ed

in each period, so that the mechanism can be made self-enforcing if the horizon is in�nite

and players are su�ciently patient.

In our dynamic environment, agents observe a sequence of private signals over a number

of periods (either �nite or countable). In each period, the agents report their private signals,

and make public (contractible) and private decisions based on the reports. The probability

distribution over future signals may depend on both past signals and past decisions. The

construction of an e�cient mechanism hinges on the assumption of \private values" (each

agent's payo� is determined by his own observations). Balancing the budget relies on the

assumption of \independent types" (the distribution of each agent's private signals does not

depend on the other agents' private information, except through public decisions).
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1. Introduction

Multi-agent mechanism design has been used to model many important economic settings.

However, most of the existing literature on multi-agent mechanism design studies a one-time

decision. In reality, a sequence of decisions often needs to be made, but a static mechanism

cannot be employed if the parties receive information over time that should a�ect the decisions,

and the agents' preferences and/or technology are not time-separable. For example, parties

in a long-term relationship may need to make a sequence of trading and investment decisions

in a changing environment. A procurement authority may wish to conduct a sequence of

auctions, where bidders have serially correlated values or capacity constraints or learning-by-

doing. Ongoing utilization decisions may have to be made for a renewable resource that confers

private bene�ts to individuals. An electricity production schedule may need to be allocated

among generating plants with privately known costs that include start-up and shut-down costs.

Computational capacity or bandwidth may need to be allocated in a network whose users

have private values for various time blocks. When di�erent decisions could be made either

simultaneously or sequentially, sequential timing is typically more e�cient since later decisions

can be made contingent on the information revealed over time. Even in settings in which the

resource allocation decision is a one-time decision, the agents' costs of computation (which

may be viewed as information acquisition) or communication may be reduced by making the

computation and communication decisions sequentially, which helps explain the prevalence of

dynamic allocation mechanisms such as iterative auctions.

This paper considers the problem of sustaining incentives, balancing the budget, and sat-

isfying participation constraints in an e�cient dynamic mechanism. The additional problem

arising in a dynamic mechanism is that it faces more stringent incentive constraints. In a static

mechanism, it su�ces to prevent deviations in which an agent pretends that he has a di�erent

type. In a dynamic mechanism, however, an agent can make his reporting strategy at a point

in time contingent on the information he has gleaned about the other agents' types from past

interaction, and so each possible contingency has associated incentive constraints.

We construct incentive-compatible dynamic mechanisms for a general in�nite-horizon dy-

namic model in which each agent observes a sequence of private signals over time, and public

and private decisions are made over time. The distribution of signals at any point in time

may depend on the previously observed signals (e.g., allowing serial correlation) and/or pre-

viously made decisions (e.g., allowing investments that stochastically a�ect payo�s or a�ect

information about payo�s). We assume that agents' payo�s depend on the signals and deci-

sions and are quasilinear in monetary transfers. Also, we make use of two assumptions, that

extend \standard" assumptions in static mechanism design to the general dynamic setting: (1)

\Private Values," which means that each agent's payo� does not depend on the other agents'

private information, and (2) \Independent Values," which means that the distribution of each
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agent's private signals is independent of the other agents' private information, conditional on

past public decisions.

The main result of this paper is that under these two assumptions, the additional incentive

constraints do not rule out the implementation of e�cient decision plans using budget-balanced

transfers. To show this, we construct budget-balanced mechanisms that induce \truthfulness

and obedience": they provide agents with the incentives to report private signals truthfully and

to obey the mechanism's prescriptions for private decisions at all times and for all possible

histories. Budget balance is desirable because there may not be an external source of funds,

and burning money is ine�cient for the agents. Thus, our result extends to the dynamic setting

the static results of Arrow (1979) and d'Aspremont and Gerard-Varet (1979) (AGV), as well

as Rogerson's (1992) results incorporating private actions. Under more restrictive conditions,

we show that participation constraints can be satis�ed as well.

We begin by ignoring both participation constraints and budget balance. We observe that

with private values, it is possible to induce truthfulness and obedience throughout the dynamic

mechanism using a \Team Mechanism," where transfers give each agent the sum of the other

agents' utilities in each period. Such transfers make each agent the residual claimant for total

surplus and provide him with the incentive to be truthful and obedient as long as the mechanism

prescribes an e�cient decision rule. This mechanism could be viewed as an extension of the

famous Vickrey-Groves-Clarke mechanism to a fully dynamic setting.1

The problem with the Team Mechanism is that it is not budget-balanced. As we illustrate

using a simple example in Section 2, a naive attempt to balance the budget using the idea of

the AGV mechanism runs into the following di�culty. In a static setting, the AGV mechanism

supports truthtelling in a Bayesian-Nash equilibrium: an agent has an incentive to report

truthfully given his beliefs about opponents' types, because the expected value of his transfer

is equal to the \expected externality" his report imposes on the other agents through its e�ect

on decisions. Thus, an agent's current beliefs about opponent types play an important role

in determining his transfer. However, in a dynamic setting these beliefs evolve over time as

a function of opponent reports and the decisions those reports induce. If the transfers are

constructed using the agents' prior beliefs at the beginning of the game, the transfers will no

longer induce truthful reporting after agents have gleaned some information about each other's

types. If, instead, the transfer to one agent is conditioned on information that is revealed by a

second agent earlier in the game, the second agent's own incentives to report truthfully will be

undermined at that earlier stage.

Despite these di�culties, we show that dynamic e�ciency can be implemented with balanced

budget in the case of independent private values. We demonstrate a mechanism that achieves

1For some special dynamic settings, similar non-budget-balanced e�cient mechanisms are proposed by Fried-

man and Parkes (2003), and subsequently to the present paper, by Bapna and Weber (2005) and Bergemann

and Valimaki (2006).
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this, a mechanism that we call \the Balanced Mechanism." We construct transfers that sustain

an equilibrium in truthful and obedient strategies by giving each agent in each period an

incentive payment equal to the change in the present value of the expected utilities of the other

agents that is induced by his current report. We show that on the one hand, these incentive

payments give incentives for truthful reporting and obedience, by letting each agent internalize

the expected externality imposed on the other agents by his reports. On the other hand, these

incentive payments have the property that the expected incentive payment to opposing agents

is zero when he is truthful and obedient, no matter what the others report. Hence, the expected

incentive payment to one agent cannot be manipulated by the other agents. This allows us to

balance the budget by letting the incentive payment of a given agent be paid by the other

agents without a�ecting those agents' reporting incentives.

A well-known shortcoming of the AGV mechanism is that it need not satisfy the agents'

participation constraints. In fact, in some some well-known static cases, there exists no e�cient

balanced-budget mechanism satisfying participation constraints (e.g., Myerson and Satther-

waite (1983), Mailath and Postlewaite (1990)). The same will obviously remain true for dynamic

settings with a �nite horizon or low patience. For this reason, we focus on an in�nite-horizon

model, and provide conditions under which participation constraints in each period can be sat-

is�ed when agents are su�ciently patient. Intuitively, the conditions ensure that agents' private

information in a given period is not \too" persistent and so has relatively little e�ect on the

continuation payo�s of patient agents. Under these conditions, the payments in the Balanced

Mechanism are bounded even as the continuation payo�s grow with the agents' patience, hence

the mechanism can be made self-enforcing, with agents implementing all decisions and pay-

ments without an external enforcer, and punishing any detected deviation with a breakdown

in cooperation.

Most of the existing literature on dynamic mechanism design has avoided dealing with the

problem of contingent deviations, by focusing on one of the following simple cases: (i) a single

agent with private information (e.g., Courty and Li (2000), Battaglini (2005)), (ii) a continuum

of agents with i.i.d. private information whose aggregate is predictable (e.g., Atkeson and Lucas

(1993)), or (iii) information is independent across periods and preferences and technology are

time-separable (Wang (1995), Athey and Bagwell (2001), Athey, Bagwell, and Sanchirico (2004),

Levin (2003), Rayo (2003), Miller (2004), Athey and Miller (2004), but see Athey and Bagwell

(2004) for an exception).2 In each of these cases, an individual agent learns nothing in the

course of the mechanism about the others' types that is relevant for the future, hence there

is no need to consider contingent deviations. In more general settings, however, even if the

mechanism hides the agents' reports from each other, an agent would typically be able to infer

2Part of the literature on dynamic contracting considers the case of imperfect commitment (e.g. Bester and

Strausz (2001), Battaglini (2003), and Krishna and Morgan (2004)). We sidestep this issue by allowing the agents

to commit to the mechanism in advance.
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something about the other agents' types from the prescribed decisions, and try to exploit this

information in contingent deviations. Thus, a dynamic mechanism has to satisfy more incentive

constraints than a corresponding static one, in which no information leaks out. Satisfying these

additional incentive constraints constitutes the main contribution of this paper.

2. Some motivating examples

We consider a series of examples with alternative assumptions.

Example 1. (Two-Period Trading Game) A seller (agent 1) and a buyer (agent 2) engage

in a two-period relationship. In each period t = 1; 2, they can trade a contractible quantity

xt 2 [0; 1]. Before the �rst period, the seller observes a signal �1 2 [0; 1], which determines his
cost function 1

2�1
(xt)

2 in each period t = 1; 2. The buyer's value per unit of the good in period

1 is equal to 1, and in period 2 it is given by a signal �2 2 [0; 2] that she observes between the
periods.

An e�cient (surplus-maximizing) mechanism must have trading decisions x1 and x2 deter-

mined by the allocation rules �1 (�1) = �1, �2 (�1; �2) = �1�2; respectively. Note in particular

that the �rst-period trade will reveal the seller's type �1 to the buyer.

The problem of designing an e�cient mechanism comes down to designing transfers to each

agent as a function of their reports. In this simple setting, each agent makes only one report.

Let us �rst consider the AGV mechanism for this problem, for the case where the buyer does

not learn the seller's type before making his announcement. To give the buyer an incentive for

truthful revelation, she is charged an \incentive payment" equal to the expected externality he

imposes on the seller, i.e., the seller's expected cost:


2 (�2) = �E~�1

�
1

2~�1

�
�1

�
~�1

��2
+

1

2~�1

�
�2

�
~�1; �2

��2�
= �1

2
E~�1

h
~�1

i
�
�
1 + (�2)

2
�
:

Similarly, the seller's incentives are provided by paying him an \incentive payment" equal to

the expectation of the buyer's utility:


1(�1) = E~�2
h
�1(�1) + ~�2 � �2

�
�1; ~�2

�i
= �1

�
1 + E~�2 [(

~�2)
2]
�
:

Now, since each party's incentive payment does not depend on the other's report, we can

balance the budget simply by charging each party's incentive payment to the other party, i.e.,

letting the total transfer to each agent i be  i (�i; ��i) = 
i(�i)� 
�i(��i).
Now we turn to the case of interest, where the buyer makes his announcement after the

seller's type �1 is revealed. If we use the AGV transfers described above, the buyer anticipates

that the second-period trade will be determined by �2 (�1; �). However, the buyer must pay
(through 
2 (�2)) the expectation (over ~�1) of the cost of the seller. Then, if the seller's cost �1

is known to be higher than average, the buyer \over-reports" his value to induce ine�ciently
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high trade, since the buyer will not have to pay the actual cost of this trade. Similarly, the buyer

does not internalize the bene�t of an unexpectedly low cost, and in that case he \under-reports"

his value to induce less-than-e�cient trade.

To �x this problem, we could instead give the buyer an incentive transfer based on the actual

externality he imposes given the seller's report: ~
2 (�1; �2) = �1
2�1 �

�
1 + (�2)

2
�
. This will give

the buyer the incentive to report �2 truthfully, no matter what �1 the seller reports. However,

this transfer depends on the seller's report �1. Thus, if we attempted to balance the budget by

having it be paid by the seller, making his total transfer ~ 1 (�1; �2) = 
1(�1) � ~
2(�1; �2), the
seller would want to reduce ~
2 (�1; �2) by overreporting his cost �1 in period 1, thus exaggerating

the externality imposed on him by the buyer.

The problem of contingent deviations illustrated here arises not only when types are per-

sistent as in the above example, but in any dynamic setting in which the agents' preferences

and/or technology are not separable across periods.

In this paper we propose a di�erent way to construct transfers that resolves the problem.

Similarly to the AGV mechanism, our construction proceeds in two steps: (1) Construct incen-

tive transfers 
1 (�), 
2 (�) to make each agent report truthfully if he expects the other to do

so, and (2) charge each agent's incentive transfer to the other agent, making the total transfer

to agent i equal  i (�) = 
i(�) � 
�i(�). However, in contrast to AGV transfers, the incentive

transfer 
i (�) to agent i will now depend not just on agent i's announcements �i but on those

of the other agents. How then do we then ensure that step 2 does not destroy incentives? For

this purpose, we ensure that even though agent �i can a�ect the other's incentive payment

i (�i; ��i), he cannot manipulate the expectation of that payment given that agent �i reports
truthfully. We achieve this by letting 
i (�i; ��i) be the change in the expectation of agent �i's
�nal utility conditional on all the previous announcements that is brought about by the report

of agent i. (In the general model in which an agent reports in many periods, these incentive

transfers would be calculated in each period for the latest report). No matter what announce-

ment strategy agent �i adopts, if agent i announces truthfully, the expectation of agent �i's
utility follows a martingale with respect to agent i's announcements | that is, the changes have

zero expectation. Hence agent �i can be charged 
i (�i; ��i) without a�ecting his incentives.
In Example 1, our construction entails giving the buyer an incentive transfer of


2 (�1; �2) = �
1

2
�1 �

�
(�2)

2 � E
h
(~�2)

2
i�
;

which on the one hand gives him correct incentives by letting him internalize the seller's expected

cost (since E~�1
h

2

�
~�1; �2

�i
= �1

2E~�1
h
~�1

i
� (�2)2 + const), and on the other hand ensures that

the expectation of this transfer cannot be manipulated by seller: E~�2
h

2

�
�1; ~�2

�i
= 0 for any

�1. Therefore, we can now charge this incentive transfer to the seller | i.e., let  1 (�1; �2) =


1(�1) � 
2(�1; �2) |without undermining the seller's incentives for truthful reporting. Also,

letting then  2 (�1; �2) = � 1 (�1; �2) = 
2(�1; �2) � 
1(�1) balances the budget and provides
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incentives for the buyer to report truthfully.

In the rest of this paper, we show that the idea of charging an agent for the change in

opponent utilities induced by his report can be applied to yield an e�cient mechanism in a

general dynamic setting. The idea that agent i's incentive payments cannot be manipulated by

others remains the same in the more general model, but it becomes more subtle to show that

the anticipation by agent i of his own future incentive payments provides the correct incentives.

The general setting we study includes, for example, the following variations of Example 1.

Example 2. (Serially Correlated Valuations) Suppose that the buyer privately observes his

�rst-period valuation (�2;1) before the �rst period, and his second-period valuation (�2;2) before

the second period; and that these two valuations are correlated.3

Example 3. (Decisions a�ect Valuations) In addition to \exogenous" correlation between the

buyer's �rst and second period valuations, the buyer's consumption level in the �rst period (x1)

a�ects the probability distribution over his second-period valuation. This might arise due to

the buyer's \habit formation."

Example 4. (Decisions A�ect Information) The buyer never observes his valuation �2, but

after the �rst period, she observes a signal s that is correlated with �2 and whose probability

distribution (e.g., informativeness) depends on her �rst-period consumption x1. This could

describe the buyer's learning about the product by consuming it.

Example 5. (Hidden Actions a�ect Valuations) The buyer makes a private investment a in

the �rst period that a�ects the probability distribution over her second-period valuation. This

investment is not observable by the other agents and is not veri�able.

Example 6. (Hidden Actions a�ect Information) The buyer never observes his valuation �2,

but after the �rst period, she observes a signal s that is correlated with �2 and whose probability

distribution (e.g., informativeness) depends on a private investment a she makes in the �rst

period. For example, the investment could model the buyer's gathering of information about

or computation of his preferences.

3. The Setup

3.1. Technology and Payo�s

We consider a model with I agents and a countable number of periods, indexed by t = 1; 2; :::. (A

�nite-horizon model with T periods is a special case.) In each period t, each agent i 2 f1; ::; Ig
3A model of dynamic procurement auctions with serially correlated values has been considered by Athey and

Bagwell (2004).
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observes a private signal �i;t 2 �i;t, where �i;t is a measurable space.4 We use �ti =
Q

t
�=1�i;�

to denote the space of possible signal histories of agent i at time t, and let �t =
QI
i=0�i;t and

�t =
QI
i=0�

t
i. We interpret �i = �

1
i as the agent's type space, even though the agent only

observes his type over time, and � =
QI
i=0�i as the state space. All these sets will be treated

as measurable spaces with the product sigma-algebra.

In each period t = 1; ::, after this period's signals are observed, each agent i 2 f1; ::; Ig
makes a private decision xi;t 2 Xi;t, and there is a public (contractible) decision x0;t 2 X0;t,

where X0;t and Xi;t for each i are measurable spaces. We let Xt =
Q

I
i=0Xi;t, X

t =
Q

t
�=1X� ,

and X = X1.

The distribution of signals at any moment may depend both on the history of observed

information �t�1 2 �t�1 and the history of decisions xt�1 2 Xt�1. Thus, the evolution of

uncertainty at time t is described by history-contingent probability measures over the period-t

signal space �t; denoted �tjxt�1; �t�1. For any measurable set F � �t; �t(F)j�; � is a measurable
function of the history on Xt�1 ��t�1.5;6 (Note that �1 is a constant since there is no history
in period 1.)

A decision plan is a measurable function � : � ! X, where each �t(�) represents the

decision made at time t. We say that decision plan � is observationally measurable if it is

measurable and for each t, �t(�) depends only on �
t { the information observed by time t. We

will sometimes write �t(�
t) rather than �t(�) to emphasize observational measurability. The

sequence of decisions up to time t given type vector � is denoted �t(�) = (�1(�); ::; �t(�)).

Any decision plan � uniquely determines a probability measure over �; which we denote

�[�]. The existence and uniqueness of this measure follow from the Tulcea product theorem.7

4We could also allow for publicly observed (contractible) signals. Formally, they could be incorporated, e.g.,

by introducing an additional \agent 0" who observes signals �0;t in each period t and always reports them

truthfully.
5We can view these history-contingent distributions as describing Nature's behavioral strategy in the dynamic

game in which Nature chooses types and the mechanism chooses decisions. Alternatively, Nature's mixed strategy

could be described in a di�erent way: e.g., in Example 4, we could be given a distribution of the buyer's value �2

and a distribution of the second-period signal s conditional on �2 for any given �rst-period decision x1. From this

description, we could deduce an equivalent behavioral strategy, which gives a distribution of the current signal

conditional on the history (e.g., of sjx1 and of �jx1; s). However, we prefer to start directly with behavioral
strategies: The problem with alternative approaches is that conditional distributions are not well-de�ned on

zero-probability events (e.g., when signal spaces are continuous, almost all points would have zero probabilities),

while it will be important for our analysis to have well-de�ned forward expectations at all times and events.
6One may want to allow the set Xt of possible decisions at time t and the set �t of possible observations at

time t to depend on the history
�
�t�1; xt�1

�
. (The latter dependence, for example, may occur in situations in

which decisions determine which signal is observed, as in Example 4 above). However, these situations could be

incorporated in our model simply by letting Xt describe the set of all potential decisions that could be made at

time t at all histories, and similarly letting �t be the set of all signals that could be potentially observed at time

t at all histories. The actual history then determines which observations from �t and which decisions from Xt

are relevant for the agents' payo�s.
7Formally, the distributions �tj�t�1

�
�t�1

�
; �t�1 are probability kernels that de�ne a consistent family
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Our results on the existence of a budget-balanced mechanism rely on the following assump-

tion

De�nition 1. We have independent types if for each t, xt�1;and �t�1, the probability measure

�tjxt�1; �t�1 over �t can be written in the form

�tjxt�1; �t�1 =
IY
i=0

�i;tjxt�10 ; xt�1i ; �t�1i ;

for some probability measures �i;t over �i;t that depend only on the public decision history x
t�1
0

and on agent i's private history
�
�t�1i ; xt�1i

�
.

This de�nition means that an agent's private information does not have any stochastic

e�ects on the other agents' private signals, conditional on the public decisions. Note that this

assumption still allows one agent's private signals or decisions to a�ect another agent's future

private signals through the implemented public decisions. Thus, the probability measure �[�]

over � induced by a given decision rule � need not be independent across agents.

Now we describe the agents' payo�s. The payo� of each agent i is given as a function of the

stream x of decisions, state �, and stream of monetary transfers yi = (yi;t)
1
t=1; where yi;t 2 R:

1X
t=1

�t
�
ui;t(x

t; �t) + yi;t
�
;

where � 2 (0; 1) is a discount factor, and the functions ui;t : Xt � �t ! R are assumed to be
uniformly bounded and measurable.

Since each function ui;t in each period t can depend on the entire history of signals and

decisions, writing the payo� as a present discounted value is not too restrictive. For example,

in a setting with a �nite horizon T , any utility functional Ui (x; �) can be represented as

Ui (x; �) =
1X
t=1

�tui;t(x
t; �t); (3.1)

simply by letting ui;t � 0 for t 6= T and ui;t
�
xT ; �T

�
� ��TUi (x; �). As for the general in�nite-

horizon case, in the Appendix we show that a functional Ui : X � � ! R can be written in
the form (3.1) for some uniformly bounded sequence (ui;t)

1
t=1 if and only if Ui has the following

property, which ensures that decisions and observations in the distant future have a vanishing

e�ect on the payo�s, and which will be important for our analysis:8�
�T
	1
T=1

of probability measures on �T for all �nite horizons T . The Tulcea product theorem (see, e.g.,

Pollard (2002), Chapter 4, Theorem 49) establishes that there exists a unique stochastic process on � whose

marginals for any �nite horizon T coincide with �T .
8This is a mild strengthening of the usual \continuity at in�nity" assumption in in�nite-horizon games (e.g.,

Fudenberg and Tirole (1991a), p. 110).
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De�nition 2. A functional F :
Y1

t=1
Zt ! R is Lipshitz Continuous at In�nity with discount

factor � 2 (0; 1) (denoted LCI�) if it is Lipshitz continuous in the metric �� (z; z0) = �infft:zt 6=z
0
tg,

that is, there exists C > 0 such that jF (z)� F (z0)j � C�� (z; z
0) for all z; z0 2 Z:

Our main results will depend on the following property of payo�s:

De�nition 3. We have private values if each agent i's utility Ui(x; �) depends only on the

public decisions x0 and the agent's private history (xi; �i)

This de�nition simply means that each agent observes his payo�, i.e., can calculate it as

a function of his own information. It is less restrictive than appears at �rst because it allows

an agent's expected utility conditional on time-t history
�
�t; xt

�
to depend on the other agents'

information, as long his �nal utility is fully determined by his observations (as, e.g., in Mezzetti

(2004)).9 We could also allow some cases in which agent i may not observe his �nal utility

(as, e.g., in Example 4), by letting Ui(x; �) represent the agent's expectation of his utility

conditional on the state �, provided that this expectation does not depend on the other agents'

private signals or decisions.

3.2. Mechanisms and Strategies

We consider mechanisms in which in each period, agents report their private information,

and based on the reports, decisions are implemented, and transfers are made.10 Formally, a

mechanism is described with two observationally measurable functions: a decision plan � : �!
X and a uniformly bounded transfer plan  : �!

�
RI
�1
, which prescribe the current decisions

and transfers to the agents as a function of the reporting history. The public decisions �0 (�)

prescribed by the plan are implemented directly, while the prescribed private decisions �i (�)

for agents i � 1 are nonbinding recommendations that the agents are free to disobey. The

transfer plan is implemented directly. Its observational measurability means that the transfer

 i;t (�) made to agent i in period t depends only on the current history �
t. The total discounted

payments in the mechanism with a discount factor � 2 (0; 1) can be calculated as

	i (�) =
1X
t=0

�t i;t(�
t); (3.2)

9The property of Private Values is violated in some well-known settings, such as auctions for mineral rights,

For such settings, however, it is known that e�ciency is in general not implementable even in a static problem,

as in Akerlof's (1970) classic example of trading with adverse selection. See also Jehiel and Moldavanu (2001).
10Thus, we focus on direct revelation mechanisms in which agents report truthfully in equilibrium. This

focus is innocuous since our goal is to propose particular mechanisms rather than characterize everything that

is implementable. However, if we were interested in such characterization, we could restrict attention to direct

revelation mechanisms with truthful reporting by making use of a revelation principle proposed by Myerson

(1986) for general dynamic games.
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where uniform convergence of the series is ensured by the uniform boundedness of the transfer

plan. Note that the agents' reporting incentives in a mechanism depend on the transfer plan  

only through the total discounted payments 	 (�) and not on how they are spread over time.

(However, if agents have opportunities to exit the mechanism during the course of the game,

the satisfaction of their participation constraints will depend on the spread of payments - see

Section 6 below.)

We say that the mechanism is budget balanced if
P
i  i;t (�) � 0 for all t.

In principle, the mechanism also determines what information agents observe about the

history of reports. In general, the less information is revealed to an agent, the smaller is the set

of contingent deviations available to him, and the easier it is to satisfy his incentive constraints

(this idea underlies Myerson's (1986) \communication equilibrium"). In the extreme, if nothing

is revealed to the agent, the problem is essentially static. In practice, the agent will observe

at least some components of the decisions|e.g., the history of his own consumption|and so

he will have access to at least some contingent deviations. We will propose mechanisms in

which truthful-obedient play is incentive-compatible even if the agents observe the complete

reporting history, and therefore will remain incentive-compatible no matter what the agents

observe about the history (so long as agents observe enough information to implement their

private decision plans).

The mechanism induces a multiperiod game, in which each period t consists of three stages:

Stage t:0: Each agent i privately observes his private signal �i;t.

Stage t:1: Each agent i makes a public report �̂i;t.

Stage t:2: Each agent i makes a private decision xi;t. The mechanism implements the public

decision x0;t = �0;t

�
�̂t
�
and the payments yi;t =  i;t

�
�̂t
�
to each agent i.

Now we turn to describing the agents' strategies in the mechanism. By stage t:1 each

agent i observes the reporting history �̂t�1 2 �t�1 and the history of own private signals

�ti 2 �ti and private decisions x
t�1
i 2 Xt�1

i . Thus, the agent's reporting strategy can be

represented by a function �i : � � �i � Xi ! �i, where the report of agent i in period t,

�i;t

�
�̂; �i; xi

�
=
�
�i

�
�̂; �i; xi

��
t
, is \observationally measurable" in that it depends only on

the history of reports �̂t�1 and the agent's private history �ti ; x
t�1
i . (For our results about the

\Team Mechanism" below, we will allow deviations to more general strategies �i in which �i;t

can depend on the reporting history �̂ti that includes the concurrent reports of the other agents,

which we call \measurable with respect to current observations.")

In stage t:2, each agent i observes in addition the reports from stage t:1. Thus, his private

decision strategy can be represented by �i : � � �i � Xi ! Xi, where in each period t,

�i;t

�
�̂; �i; xi

�
=
�
�i

�
�̂; �i; xi

��
t
, is \observationally measurable" in that it depends only on

10



the reporting history �̂t and the agent's private history �ti ; x
t�1
i . The complete strategy of agent

i is given by (�i; �i).

A given observationally measurable strategy (�i; �i) of agent i induces a strategic plan�
��i; ��i

�
, where ��i (�) denotes the agent's reports and �i (�) his decisions from following the

strategy given that his type is �i and the opponents report ��i. This plan is constructed

recursively, by letting for each t = 1; ::, ��i;t (�) = �i;t
��
��t�1i

�
�t�1i

�
; �t�1�i

�
; �ti ; �

t�1
i

�
�t�1i

��
, and

�i;t (�) = �i;t
��
��ti
�
�ti
�
; �t�i

�
; �ti ; �

t�1
i

�
�t�1i

��
. Observational measurability means that ��i;t (�)

depends only on
�
�ti ; �

t�1
�i
�
and ��i;t (�) depends only on �

t. Observe that agent i's expected

payo� in the mechanism from using strategy (�i; �i) depends only on the induced strategic

plan
�
��i; ��i

�
, for any strategies chosen by the other agents. Thus, all the strategies giving rise

to the same strategic plan are strategically equivalent in the normal-form representation of the

mechanism. (However, they may have di�erent implications for extensive-form re�nements, as

discussed in Section 3.3 below).

De�nition 4. For a given decision plan �, agent i's strategy (�i; �i) is a truthful-obedient

strategy if the corresponding strategic plan has ��i(�) = �i and �i(�) = �i(�) for all � 2 �:

This de�nition means that if an agent has been truthful and obedient so far he will continue

to be truthful and obedient. It does not specify anything about reporting after a lie (i.e.,

�̂t�1i 6= �t�1i ) or a disobedience (i.e., xt�1i 6= �t�1i

�
�̂t�1

�
), and so there are many truthful-

obedient strategies.

Our proofs will make use of the following simple observation: given a decision plan � and

transfer function  ; when opposing agents use truthful-obedient strategies, any strategy (�i; �i)

for agent i induces the same decisions and transfers in every state as those that arise when agent

i uses a truthful-obedient strategy but the decision plan and transfers are de�ned as follows:

�̂(�) �
�
��i( ��i(�); ��i); ��i(�)

�
(3.3)

 ̂(�) �  
�
��i(�); ��i

�
; and 	̂(�) �

1X
t=0

�t ̂i;t(�): (3.4)

Note that if decision plan � and payment plan  are observationally measurable, then the

decision plan �̂ and payment plan  ̂ given by (3.3-3.4) are also observationally measurable.

When agent i uses reporting strategy �i with the associated ��i, �̂; and 	̂; while the other

agents are truthful, agent i's payo� in the mechanism is

E�[�̂]~�

h
Ui

�
�̂
�
~�
�
; ~�
�
+ 	̂i

�
~�
�i
: (3.5)

We use E�~� to denote the expectation of random variable ~� whose probability distribution is �.

Note that di�erent reporting strategies by the agent induce di�erent distributions over types,

and this is captured by the fact that we take expectations using probability distribution � [�̂]

where �̂ varies with the reporting strategy.
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3.3. Solution Concept

In this paper, we focus on the solution concept of Bayesian Nash Equilibrium (BNE), so that

each agent's ex ante choice of a history-contingent reporting strategy must be a best response

to the history-contingent reporting strategies of opponents. Thus, the existence of a truthful-

obedient Bayesian-Nash equilibrium means that expression (3.5) is maximized when agent i

uses a truthful reporting strategy, and so �̂ = � and 	̂i = 	i.

In the dynamic setting, one may be interested in dynamic equilibrium re�nements. Here we

focus on Perfect Bayesian Equilibrium (PBE) as de�ned in Fudenberg and Tirole (1991) and

modi�ed to �t our model (which has types learned over time rather than at the beginning of

the game, as in their model). We argue that under some conditions, if a truthful-obedient BNE

exists, we can also construct a truthful-obedient PBE.

To simplify the discussion, we focus on the special case where the following hold: inde-

pendent types; decisions and signals are drawn from �nite sets in each period; and all signals

have positive probabilities for any history. Then, the requirements of PBE are: (i) Player i's

belief about the types of other agents is the product of agent i's beliefs about the types of

individual agents. These beliefs do not depend upon agent i's type. (ii) Players i and j always

have the same beliefs about the type of any third agent k, and agent i's belief about agent j's

type is consistent with the understanding that the behavior of any other agent cannot signal

this information. (iii) Beliefs are determined by Bayes' rule whenever possible. This includes

circumstances in which observed play in a previous period is incompatible with the beliefs and

equilibrium strategies for that period. That is, after a zero-probability event, agents form be-

liefs, but then they continue to use Bayes' rule when possible from there. (iv) Given any history

and beliefs, the agents' strategies from that point forward are a Bayesian-Nash equilibrium of

the continuation game.

Note that when all signals have positive probabilities, opponents cannot report anything

\unexpected," and so all zero-probability information sets of an agent arise following his own

deviations. Since the agent cannot signal something to himself that he does not know, his

beliefs about the others are unchanged following such a deviation. Then, since the de�nition

of a truthful-obedient strategy does not restrict the agent's behavior following own deviations,

we can modify his strategy to be a best-response to such beliefs at this information set, while

still being truthful-obedient.11 Doing this for all information sets and for all agents, we obtain

a truthtful-obedient PBE.

11To see that a best response is guaranteed to exist, note that since Ui is LCI�, the agent's objective is

continuous in his strategy �i = (�i; �i) in the metric �� (�i; �
0
i) = �infft:�i;t 6=�

0
i;tg, and his strategy space is

compact in the metric when the action set is �nite in each period. To establish compactness, take any sequence

of strategies, �nd a set of �rst-period strategies that occurs in�nitely often, then �nd a strategy with the same

�rst-period strategy and that has a second-period strategy that is used in�nitely often, etc., and this will be a

converging subsequence in the metric.
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4. The Team Mechanism

We want to implement an e�cient decision plan ��, that is, one that maximizes the total

expected surplus

E�[�]~�

"X
i

Ui

�
�
�
~�
�
; ~�
�#

; (4.1)

among all observationally measurable decision plans. The problem of calculating �� is a sto-

chastic dynamic programming problem, but for the purpose of this paper we simply assume

that a solution exists.12

The Team Mechanism consists of the e�cient decision plan �� together with the transfer

functions

 Mi;t (�) =
X
j 6=i

uj;t (�
�(�); �) ;

which give each agent the sum of other agents' utilities. (Note that the per-period transfers

are uniformly bounded since per-period utilities are uniformly bounded.) The resulting total

discounted transfers are

	Mi (�) =
X
j 6=i

Uj (�
�(�); �) :

We say that a strategy pro�le is a within-period ex post equilibrium if each agent's reporting

strategy is a best response even among strategies that are measurable with respect to current

observations (recall that in general, we restrict reporting strategies to be measurable only

with respect to past opponents' reports). This is a re�nement of Bayesian-Nash equilibrium,

which does not consider deviations based on the opponents' current types. Note that the usual

concept of ex post equilibrium considered in the static mechanism design literature allows

deviations based on all the information eventually obtained. This would be too strong for the

dynamic setting, where, even with one agent, this agent might want to report di�erently and

make di�erent decisions if he could foresee the future signals.13 A notable exception is given by

settings in which there exists an e�cient decision rule that is \distribution-free," i.e., maximizes

the total surplus for all states of the world, rather than just its expectation. An example is a case

where ui;t
�
xt; �ti

�
and �tjxt�1; �t�1 do not depend on the past decisions xt�1, and the e�cient

12For example, it is guaranteed to exist when all the signal spaces and decision spaces are �nite, by the same

argument as in footnote 11 above.
13The re�nement of ex post Nash equilibrium has been considered mainly in static mechanism design, where it

requires that an agent's announcement must be a best response to the realized values of opponent announcements,

when opponents follow the proposed equilibrium strategies. In a static setting, private-values context ex post

equilibrium implementation is equivalent to implementation in dominant strategies, but this equivalence breaks

down in a dynamic model where strategies might specify that a player responds to an opponent's announcement

in pathological ways. See Miller (2004), who motivates and applies \within-period" ex post equilibrium to

dynamic games.
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policy ��t
�
�t
�
maximizes period-by-period surplus

P
i ui;t

�
��t
�
�t
�
; �ti
�
. In such settings, the

Team Mechanism we propose sustains truthful reporting as a \true" ex post equilibrium.

Proposition 1. Suppose that we have private values. Then for any mechanism with an e�cient

decision plan �� and total discounted transfers 	 that equal the total discounted transfers

	Mi (�) in the Team Mechanism, any truthful-obedient strategy pro�le is a Bayesian-Nash

equilibrium and a within-period ex post equilibrium.

Proof. Consider a mechanism satisfying the conditions of the proposition. Suppose that agent

i deviates to induce a strategic plan
�
��i; ��i

�
that is measurable with respect to current observa-

tions, while the other agents use truthful-obedient strategies. The decision and transfer plans

following the deviation are given by �̂ and 	̂ from (3.3) and (3.4), with �̂ being observationally

measurable. Note that

	̂i (�) =
X
j 6=i

Uj
�
���i

�
��i(�); ��i

�
; ��i

�
��i(�); ��i

�
; ��i(�); ��i

�
=

X
j 6=i

Uj
�
�̂�i(�); �

�
i

�
��i(�); ��i

�
; ��i(�); ��i

�
=

X
j 6=i

Uj (�̂(�); �) ;

where the �rst equality is by construction of the transfers, the second by de�nition of �̂ , and

the third by the assumption of private values, which means that Uj does not depend directly

on �i or xi: Thus, agent i's expected payo� from the deviation (3.5) is given by

E�[�̂]~�

24Ui ��̂�~�� ; ~��+X
j 6=i

Uj

�
�̂
�
~�
�
; ~�
�35 :

Since �̂ (�) = �� (�) when (��i; ��i) is a truthful-obedient strategy, and since by construction
�� maximizes expected total surplus among all observationally measurable decision plans, the

deviation cannot raise agent i's expected payo�.

The intuition for the proof is that the transfers make each agent into a claimant for the total

expected surplus, which is maximized when all agents adhere to truthful reporting strategies.

Hence, no agent has an incentive to deviate. This is a straightforward extension of the Vickrey-

Groves-Clarke mechanism to our dynamic model.

A simple way to implement the Team Mechanism is by asking the agents to report their

realized payo�s (i.e., viewing these payo�s as signals) and giving each agent a transfer equal to

the sum of the other agents' reports. One advantage of this implementation is that constructing

the transfers does not require knowing any more details about the environment than what is

needed to calculate the decision plan. Furthermore, if the designer wants to calculate the

decision plan but does not know the agents' utility functions, he can ask each agent to report
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his own utility function (which could be modeled as a \rich" signal available in period 1), and

by Proposition 1 the agents can be relied upon to report truthfully. Recall, however, that

in general the e�cient decision rule depends on the agents' beliefs as well as the their utility

functions. If agents' beliefs are subjective and di�erent agents may hold di�erent beliefs, there

is no \detail-free" e�cient decision rule, let alone a detail-free mechanism.

5. Balancing

A major problem with the Team Mechanism is that its transfers are not budget balanced.

However, we now show that they can be balanced, provided that the types are independent (as

de�ned in Subsection 3.1).

Our construction of the balanced mechanism relies on the following notation: For any period

t and history �t�1, a given decision plan � induces a probability measure over �, which assigns

probability 1 to ~�t�1 = �t�1, and which we denote by �t[�]j �t�1: This measure exists and is
unique by the Tulcea Product Theorem (see footnote 7). Also, for each agent i, and each �i;t,

let

�it[�]
�� �ti ; �t�1�i = E

�tj�t�1(�t�1);�t�1
~!t

[�t[�]j �ti ;
�
�t�1�i ; ~!�i;t

�
]:

This is the measure probability measure over � when agent i's private signals are given through

period t and all the other signals are given through period t� 1.14

Using this notation, for any mechanism that implements decision plan � using transfers

 , we construct a new mechanism with the same decision plan and the following \Balanced

Transfers."

 Bi;t(�
t) = 
i;t

�
�ti ; �

t�1
�i
�
� 1

I � 1
X
j 6=i


j;t(�
t
j ; �

t�1
�j ); where (5.1)


j;t(�
t
j ; �

t�1
�j ) = ��t

�
E
�jt [�]j�tj ;�

t�1
�j

~�

h
	j

�
~�
�i
� E�t[�]j�

t�1

~�

h
	j

�
~�
�i�

(5.2)

(where conditioning on ~�ti = �ti with t = 0 is interpreted as vacuous, i.e., no conditioning at all).

By construction, the Balanced Transfers are budget-balanced. Also, note that if the transfers

in the original mechanism are uniformly bounded, then by Lemma 2 (in the Appendix) 	j is

LCI� with some constant C, which implies that, for all t,
���
j;t(�tj ; �t�1�j )

��� � 2C, and therefore

the balanced transfers are uniformly bounded by 2C:

To understand the Balanced Transfers, note 
j;t, interpreted as agent j's \incentive pay-

ment" in period t, gives the change in the expectation of agent j's present discounted transfers

��t	j
�
~�
�
in the original mechanism that results from his report �j;t in period t, given the

14We could interpret measures �t[�]j �t�1 and �it[�]
�� �ti ; �t�1�i as conditional measures given �t�1 and

�
�ti ; �

t�1
�i
�
,

respectively. However, conditional probability measures are not well-de�ned at any given zero-probability point

(this is the source of the famous Borel-Kolmogorov paradox { see, e.g., Proschan and Presnell (1998)), while

these concepts are uniquely de�ned.
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signal history �t�1.15 As in the standard AGV mechanism, all the other agents pitch in the

same amount 1
I�1
j;t to pay agent j's incentive payment. Subtracting all these payments that

a given agent i has to make from his own incentive payment yields the balanced transfers (5.1).

Proposition 2. Consider any mechanism (�;  ) in which there is a truthful-obedient BNE. If

the agents' types are independent, then this is also a truthful-obedient BNE in the balanced

mechanism
�
�;  B

�
.

Remark 1. Recall that all that is important for truthful reporting to be a BNE is the present

value of the transfers, which is given by

	Bi (�) =
1X
t=1

�t

24
i;t(�ti ; �t�1�i )�
1

I � 1
X
j 6=i


j;t

�
�tj ; �

t�1
�j

�35 :
There are many ways other than (5.1) to spread 	Bi (�) over time while ensuring budget balance

in each period, and all these ways will preserve incentive compatibility.

Remark 2. If decisions are made only up to period T , then the balanced team mechanism

depends only on �T , and agents need not report �t for t > T (they need not be observed).

We de�ne the Balanced Team Mechanism to be a mechanism with an e�cient decision plan,

together with balanced team transfers  MB constructed from  M using (5.1).

Corollary 1. With independent types and private values, there is a truthtelling BNE of the

Balanced Team Mechanism.

Before proceeding with a formal proof of Proposition 2, we provide a sketch of the main

ideas. We can write each agent j"s incentive payment in period t as


j;t(�
t
j ; �

t�1
�j ) = ��t

h

+j;t(�j;t; �

t�1)� 
�j;t(�
t�1)

i
; where


+j;t(�j;t; �
t�1) = E

�jt [�]j�tj ;�
t�1
�j

~�

h
	j

�
~�
�i
; 
�j;t(�

t�1) = E�t[�]j�
t�1

~�

h
	j

�
~�
�i
: (5.3)

The two terms are expectations of the same function 	j

�
~�
�
, and di�er only in the history used

to construct beliefs, where 
�j;t(�
t�1) uses only period t�1 information while 
+j;t(�j;t; �t�1) uses,

in addition, agent j's period t information.

15In the case where all types in � have positive probability, so that the conditional expectations are uniquely

de�ned everywhere, and also using (3.2), agent j's incentive payment can be written as


j;t(�
t
j ; �

t�1
�j ) =

1X
�=t

���t
�
E�[�]~�

h
 j;�

�
~�
�
j
�
~�tj ; ~�

t�1
�j

�
=
�
�tj ; �

t�1
�j
�i
� E�[�]~�

h
 j;�

�
~�
�
j~�t�1 = �t�1

i�
:
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Suppose that agent i deviates to a di�erent strategy, while the other agents are truthful and

obedient. The proof shows that, for any such deviation, the present expected value of agent

i's incentive payments 
i;t in the balanced mechanism equals, up to a constant, to that in the

original mechanism (Claim 1). Also, the proof shows that the present expected value of the

other agents' incentive payments 
j;t (for j 6= i) is zero regardless of agent i's deviation (Claim

2). Thus, if the agent had no pro�table deviation in the original mechanism, he will have none

in the balanced mechanism.

The proofs of both Claim 1 and Claim 2 hinge on the assumption of independent types,

which implies that for any agent j 6= i, the mechanism designer forms correct beliefs over

the type ~�j;t of agent j in period t based on the public history in that period, �̂t�1, even

when agent i has deviated from truthful-obedient behavior. Thus, for any public history �̂t�1

and private history �ti , agent i's expectation of 

+
j;t(
~�j;t; �̂

t�1) equals 
�j;t(�̂
t�1). By the Law of

Iterated Expectations, this implies that the ex ante expectation of all the other agents' incentive

payments equals zero for any possible deviation of agent i, which establishes Claim 2.

To show Claim 1, we examine the present expected value of agent i's own incentive pay-

ments following his deviation (which need not be zero, since the mechanism designer may have

incorrect beliefs over agent i's future signals following his deviation). For this purpose, we

compare the terms 
+i;t(�̂i;t; �̂
t�1) and 
�i;t+1(�̂

t), which di�er only in that 
�i;t+1 incorporates

period t reports from i's opponents, �̂�i;t: Recall again that by independence of types, that the

mechanism designer has correct beliefs over the opponents' reports ~��i;t in period t based on the

public history �̂t�1, despite agent i's deviation. Then, the expectation of 
�i;t+1(�̂i;t;
~��i;t; �̂t�1)

in period t is equal to 
+i;t(�̂i;t; �̂
t�1), irrespective of agent i's private history. By the Law of It-

erated Expectations, the same two terms have the same ex ante expectations as well, regardless

of agent i's deviation. Using this, and for simplicity considering a �nite horizon T , the present

expected incentive payment of agent i is equal to the expectation of

TX
t=1

�

�i;t+1

�ê
�
t
�
� 
�i;t

�ê
�
t�1��

= 
�i;T+1

�ê
�
T
�
� 
�i;1 = 	i

�ê
�
T
�
� E�~�

h
	i

�
~�T
�i
;

where
ê
� =

�
��i

�
~�
�
; ~��i

�
represents the agents' random reports following the deviation (with

~� distributed according to � [�̂], with �̂ de�ned in (3.3)). Thus, for any possible deviation of

agent i, the present expected value of the agent's incentive payments in the balanced mechanism

equals, up to a constant, the present expected payment in the original mechanism, which

establishes Claim 1. The formal proof makes these arguments more precise and extends them

to the general in�nite-horizon case.

Proof of Proposition 2: First note that by the construction of the induced stochastic

process �t[�]
�� �t�1 and by independence, the probability distribution of ~�i;t given history �t�1

can be written as �i;tj�t�10 (�t�1); �t�1i (�t�1); �t�1i . Similarly, by independence of types the
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probability distribution of ~��i;t given history �t�1 can be written as ��i;tj�t�1�i (�
t�1); �t�1�i �Y

j 6=i
�j;tj

�
�t�10 (�t�1); �t�1j (�t�1); �t�1j

�
. To clarify observational measurability, we sometimes

write �
t
i

�
�i;t; �

t�1� rather than �ti (�) :
Suppose that agent i deviates to induce an observationally measurable strategic plan

�
��i; ��i

�
,

while the other agents use truthful-obedient strategies. The decision and transfer plans following

the deviation are given by �̂ and 	̂ from (3.3) and (3.4), respectively.

Claim 1: Agent i's expected discounted sum of incentive payments 
i;t in the Balanced Mech-

anism equals his present expected transfer in the original mechanism from the same deviation

plus a constant:
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Proof of Claim 1: First, applying LIE, it follows that
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where the second inequality follows by the de�nition of �̂:

Now, taking expectations over ~�i;t with respect to probability distribution induced by

�t [�̂]j �t�1, we can write
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Thus,
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Taking expectations over ~�t�1 with respect to the probability distribution � [�̂] and using

LIE yields
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Thus, we can write
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where the �rst equality obtains from the previous derivation using the Lebesgue Dominated

Convergence Theorem and the LCI� of 	i, the second by canceling intermediate terms in the

partial sum, and the third by the Dominated Convergence Theorem, the LCI� of 	i, and the

fact that distribution �T+1 [�]j
�
�
T
i

�
�iT ; �

T�1
�i

�
; �T�i

�
puts probability 1 on the event

e~�T =�
�
T
i

�
�iT ; �

T�1
�i

�
; �T�i

�
.

Now consider a second claim:

Claim 2: The present expected value of agent j 's incentive payments (
j;t) is equal to zero when

agent j follows a truthtelling strategy no matter what reporting strategies the other agents use:
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Proof of Claim 2: For any j 6= i; let ��j (�) =
�
�i (�) ; ��i�j

�
denote the reporting strategy of

agents other than j. We write �
t
�j
�
�t
�
for the reporting strategy up to period t. Using (5.2),

we can write for any t, and any �t�1,
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The �rst equality involves substitutions and de�nitions, and the LIE. The second is by de�nition

of �t [�̂]j �t�1 and �̂ and independence of types (which implies that the distribution of ~�j;t in
�t [�̂]j �t�1 depends only on the public decision history and on the private history of agent j).
The third follows by de�nition of �t [�]j �t�1, LIE and independent types. The fourth uses LIE
and de�nitions, and the �fth uses de�nitions. By LIE and the fact that 
j;t = ��t

�

+j;t � 
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Then, the Lebesgue Dominated Convergence Theorem and LCI of 	j imply that
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completing the proof of Claim 2.

So, adding up, we have
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Since the second term does not depend on agent i's strategy (�i; �i), the expected transfer to

agent i for any strategy i chosen by him is equal, up to a constant, to the expected transfer under

the original mechanism, assuming that other agents use truthful-obedient strategies. Thus, if

the original mechanism has a truthtelling BNE, it remains a BNE in the balanced mechanism.

6. E�cient Equlibria in Markov Games with Private States

In this section, we apply the results to show a Folk-Theorem like result for Markov games with

private states | namely, that e�ciency can be sustained in equilibrium when the discount

factor is close enough to 1. In the games, there is no external enforcer, and so the decisions and

payments must be self-enforcing. For simplicity we restrict attention to games with transfers

so that our results can be applied directly.16 The requirement of decisions and transfers to be

self-enforcing means that we need to consider deviations in which they not only misreport, but

also choose o�-equilibrium decisions and transfers. Such deviations can trigger a permanent

\punishment phase" of the game. Making sure that such deviations are unpro�table is similar

to ensuring participation constraints in the mechanism where agents can choose to exit in each

period. In a static context or in a model with very impatient agents, it is well known that

whether or not participation constraints can be satis�ed depends on the structure of the game.

Here, we focus instead on the case where agents are patient and the horizon is in�nite, and

identify conditions under which participation constraints could be satis�ed in this model. In

a follow-on paper (Athey and Segal (2007)), we explore a special case of our model in greater

depth, providing weaker su�cient conditions for participation constraints to hold.

To see the problem with guaranteeing participation constraints even with patient agents,

note that the balanced transfers in each period are a function of discounted sums of future

payo�s, and so they could potentially grow with the discount factor at a rate proportional to

future surplus. Thus, in general the future surplus may not be enough to guarantee that all

agents will wish to make the necessary transfers. In this section, we provide conditions under

which the balanced transfers remain bounded as patience increases, and so the growing surplus

from future cooperation can be used to make these transfers self-enforcing.

Formally, we consider an in�nite-horizon game where each period t consists of three stages:

Stage t:0 : Each agent i simultaneously observes a private signal �i;t 2 �i;t,

Stage t:1 : Each agent i sends a report �̂i;t 2 �i;t.
16In games without transfers, one could in principle extend the approach of Fudenberg, Levine, and Maskin

(1994), using small changes in continuation play mimic the role of transfers.
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Stage t:2 : Each agent i chooses a publicly observable action x0;i;t 2 X0;i;t; a privately observed
action xi;t 2 Ai;t, and a publicly observable payment zi;j;t � 0 to each agent j. (Note

that the payments are not wasted by construction).

Letting x0;t = (x0;i;t; ::; x0;I;t), the collective decision at time t is xt � (x0;t; x1;t; :::; xI;t) 2
IY
i=0

Xi;t � Xt, and the total payment received by agent i in period t is yi;t =
IX
j=1

(zj;i;t � zi;j;t).

The payo� of agent i in this game takes the same form as before,

1X
t=1

�t
�
ui;t(x

t; �t) + yi;t
�
:

We want to construct an e�cient equilibrium for this game, i.e., one that implements an

observationally measurable decision plan � maximizing the expected joint surplus (4.1). We

construct an equilibrium in which agents use truthful-obedient reporting strategies. Let  

denote the transfer plan sustained in the equilibrium.

One class of deviations is that an agent uses a di�erent reporting strategy and/or private

decision policy, but uses the same public decision and payment strategies. These deviations

are unpro�table as long as the reporting strategies and private decision strategies form a BNE

of the mechanism with enforcement. However, with self-enforcement, we also need to deter

\o�-schedule deviations," which involve, in addition to possible misreporting and deviation in

private decisions, choosing public decisions or payments di�erent from those required by the

equilibrium strategies given past reports. O�-schedule deviations are publicly observable as

deviations, and as soon as they are observed they can be punished by the agents switching to

a \punishment" decision plan.

To deter o�-schedule deviations, we need to make sure that the bene�ts of changing a

decision or withholding a payment in one period are outweighed by the future gain from co-

operation. As mentioned above, the balanced transfers could potentially grow large as the

discount factor increases, since they depend on the expected discounted value of future utility,

and so in general the payments are not guaranteed to be smaller than the future gains from

cooperation. However, the balanced transfers are de�ned as functions of the change in future

expected discounted utility for a particular agent induced by the arrival of a single agent's signal

in a particular period. We now specialize the model in a way that guarantees that a particular

period's signal and decisions have vanishing e�ect on the continuation expected utility. This

will guarantee that the transfers stay within a �xed bound even as the discount factor grows,

while the present value of cooperation grows without a bound, hence o�-schedule deviations

are deterred.

Assumptions

(i) �t = � and Xt = X for all t, and all the sets are �nite.
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(ii) Per-period utilities ui;t
�
xt; �t

�
depend only on period-t variables and do not depend on t

directly, and so can be written as ui (xt; �t).

(iii) The contingent probability measures �tjxt�1; �t�1 depend only on period t � 1 variables
and do not depend on t directly, and so can be written as �jxt�1; �t�1 (where for t = 1

we take some �xed x0; �0).

(iv) Types are independent (De�nition 1) and values are private (De�nition 3).

(v) There exists x̂t 2 Xt such that ui (xi;t; x̂�i;t; �t) = 0 for all i, all xi;t 2 �X, and all �t 2 ��.

Assumptions (i)-(iii) imply that we have a Markov Decision Process (MDP), as studied, e.g.,

in Puterman (1994).17 In such problems, it is natural to focus on Markov policies. Furthermore,

it turns out that there exists a single Markov policy that is optimal for � close enough to 1:

De�nition 5. Decision policy � is a Markov policy if each �t
�
�t
�
depends only on the last

state �t and does not depend directly on t, and so can be written as � (�t). Decision policy �
�

is a Blackwell policy if it is a Markov policy and there exists �� < 1 such that for any � 2
�
��; 1
�
,

�� achieves a weakly greater present expected total surplus starting at any state than any other

observationally measurable decision policy �.

Puterman (1994) shows that a Blackwell policy exists (Theorem 10.1.4) and describes an

algorithm that constructs it with a �nite number of steps (Corollary 10.3.7, p.518).

Assumption (v) can be understood by interpreting decision x̂i;t 2 Xi;t as \non-participation"
by agent i and saying that an agent's utility is �xed when no other agent participates. For

simplicity, the �xed utility is normalized to zero. This ensures that all agents choosing non-

participation and making zero payments is a BNE of the stage game regardless of agents' types

and beliefs about others' types. This allows us to use such BNE as a punishment for the

observed o�-schedule deviations.18

Observe that in the Markov game, the team transfers can be written as  i;t (�t) =
P
j 6=i uj (�

�(�t); �t),

and the balanced team transfers can be written as functions of the current and most recent

17Note that dependence on k > 1 periods of history could be incorporated by expanding the sets �i and X to

remember k periods of past types and decisions.
18More generally, in particular games without a natural nonparticipation option, there may be punishment

equilibria that can be used in place of nonparticipation; however, if the equilibria depend on the initial state of the

game, one must guarantee the existence of an equilibrium for each possible state of the game. Equilibria where

decisions do not depend on the state (such as the pooling equilibria constructed by Athey and Bagwell (2004)

in their study of dynamic collusion with persistent private information) are especially convenient to analyze in

this context.
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states as follows:

 Bi (�t�1; �t) = 
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1

I � 1
X
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Thus, in the Markov environment, period t transfers have the attractive feature that they

depend only on the announcements in periods t and t � 1; since these announcements fully
determine beliefs.

Any Markov decision policy induces a Markov chain on states with transition probabilities

described by �j�� (�t�1) ; �t�1. We assume that the process induced by the Blackwell policy

has limited history dependence, in the sense of having a single ergodic set:

De�nition 6. Given a Markov process, a set of states S � �� is called ergodic if, starting in S,

the system remains there with probability one, and this is not true for any proper subset of S.

Proposition 3. Consider a dynamic game satisfying assumptions (i)-(v) above. Let �� be a

Blackwell decision policy for the game, and suppose that the Markov process induced by ��

has a single ergodic set (plus a possibly empty transient set), and that its invariant distribution

yields a positive expected total surplus. Then there exists �� < 1 such that, for all � 2 (��; 1);
the game has an e�cient PBE that sustains decision plan ��.

Proof. We focus on those � close enough to 1 for which �� is a Blackwell policy. De�ne \on-

schedule" public histories as those in which all agents in all period have made public decisions

and payments consistent with the equilibrium strategies given the public histories, and call any

other public histories \o�-schedule" histories. We construct an equilibrium in which strategies

satisfy the following for each period t and each agent i :

� For an o�-schedule history, in Stage t:1, the agent reports his true type. In Stage t:2, he
chooses the nonparticipation action x̂i;t, and makes zero payments to all other agents.

� For an on-schedule history, in Stage t:1, the agent reports his true signal �i;t. In Stage
t:2, given the current reports �̂t, he chooses his public action x0;i;t = ��0;i

�
�̂t

�
; he chooses

his private action xi;t = ��i

�
�̂t

�
if in Stage t:1 he reported truthfully �̂i;t = �i;t , otherwise

he chooses a private action xi;t that maximizes the present expected value of his utility

given the belief that in the future all agents are truthful and obedient. Also, the agent

makes payments determined from the reports in periods t� 1 and t as follows:

zi;j;t

�
�̂i;t; �̂t�1

�
=

1

I � 1

h

Bj

�
�̂j;t; �̂t�1

�i
+Ai to all agents j 6= i;
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where the constants Ai � 1
I�1 maxi;(�t�1;�i;t)

��
Bi (�i;t; �t�1)�� are speci�ed below.
Observe that if all agents follow these strategies, we will only have on-schedule histories,

and the agents will always be truthful and obedient, which implements the Blackwell decision

plan ��. Now we show that these strategies are part of a PBE, for some appropriately chosen

constants Ai, when � is close enough to 1. The accompanying PBE beliefs of each agent i in

each period t about the other agents' current types if there has been no o�-schedule deviation

are described by �j 6=i�j j��
�
�̂t�1

�
; �̂j;t�1 (i.e., the agent believes that the other agents were

truthful and obedient in the previous period). The beliefs following an o�-schedule deviation

are described by �j 6=i�j jx0;j;t�1; x̂j;t�1; �̂j;t�1. It is easy to see that these beliefs satisfy PBE
conditions (i)-(iii) of Subsection 3.3. It remains to show that the strategies described above

form a best response to each other given these beliefs at any information set.

First, it is easy to see that the strategies form a best response to each other for any o�-

schedule public history, since at this point any possible strategy of agent i will give him a

nonpositive expected continuation payo� regardless of his beliefs. Now consider the informa-

tion sets with on-schedule public histories. First we argue that at such information sets, there

is no pro�table \on-schedule" deviation for each agent i, i.e., one in which he makes the public

decisions and payments prescribed by the equilibrium strategies given the reports. For infor-

mation sets in the beginning of a period t, this holds because the Blackwell policy by de�nition

must be e�cient starting in period t given any initial beliefs, and so together with the total

prescribed paymentsX
j 6=i

h
zj;i;t

�
�̂j;t; �̂t�1

�
� zi;j;t

�
�̂i;t; �̂t�1

�i
=  Bi

�
�̂t�1; �̂t

�
� (I � 1)Ai +

X
j 6=i

Aj

the agent faces a Balanced Team Mechanism, in which truthfulness and obedience are optimal

for him within the class of on-schedule strategies according to Proposition 2. In the middle

of a period t after reports are made but before decisions are chosen, agent i has no pro�table

on-schedule deviation by the Principle of Dynamic Programming, since we already know that

truthfulness and obedience will be optimal for him starting in period t + 1 no matter what

private action xi;t he chooses now, and his choice of xi;t is optimal given truthfulness and

obedience in the future.

Now we need to show that, for some appropriately chosen constants Ai, each agent has

no pro�table \o�-schedule" deviations, i.e., those in which he plans a public decision and/or

payment that di�er from the equilibrium ones prescribed given the reporting histories, at any

on-schedule information set. We do this by showing that if at any future information set

the agent plans a �rst o�-schedule public action and/or payment, we can modify his strategy

to be truthful and obedient starting from this information set without reducing his expected

continuation payo�. By doing it for any information set at which a �rst o�-schedule deviation

is planned, we would obtain an on-schedule deviation that is at least as pro�table as the

original o�-schedule deviation. Since we already know that there are no pro�table on-schedule
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deviations, this will complete the proof.

We choose the constants Ai so that the expected surplus in the game is shared equally

among the agents, and since the surplus is positive and very large from any starting state when

the agents are very patient, this ensures that the agents will want not to \quit" the game by

resorting to an o�-schedule deviation. For this purpose, recall that since by assumption the

Markov process induced by �� has a single ergodic set, it induces a unique invariant distribution

over ~�t (Stokey and Lucas, 1989), which we denote by �. Let ui denote the expected per-period

utility of agent i in this distribution:

ui � E�~�t
h
ui

�
��
�
~�t

�
; ~�t

�i
:

Since the expectation of 
Bj is zero for all j 6= i, we let Ai = ui=I + K, where the constant

K should be large enough to ensure that zi;j;t (�) � 0 for all �. We show that such K can be

found independently of �, for which purpose we demonstrate that the transfers 
Bj (�j;t; �t�1)

are bounded uniformly in �. We do it by making use of the following lemma, whose proof (in

the Appendix) relies on the structure of Markov chains with a single ergodic subset - see, e.g.,

Behrends (2000, Chapter 7) and Stokey and Lucas (1989):

Lemma 1. Take a �nite Markov chain with a single ergodic set, let p
(t)
�;�0 = Prf~�t = �0j~�0 = �g

(the t-step transition probabilities), and let � denote the invariant distribution. The expression�����
1X
t=0

�t
�
p
(t)
�;�0 � ��0

������ is bounded uniformly across all � 2 (0; 1) and all �; �0 2 ��.
The Lemma implies that there exists C <1 such that for all �0 2 ��, � 2 (0; 1) ;�����E�[��]j�0~�
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In particular, (6.2) implies that the transfers are bounded:
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where the second inequality uses the Law of Iterated Expectations and the fact that jEg (X)j �
sup jg(X)j. Therefore, letting K = 2C= (I � 1) + M=I, where M = maxi;xt;�i;t jui (xt; �t)j,
ensures that 0 � zi;j;t (�i;t; �t�1) � 2K for any � 2 (0; 1) and any (�j;t; �t�1).

Now, given these constants, compare the expected continuation payo� in period t from

making a �rst o�-schedule deviation in period t with that from reverting to truthfulness and

25



obedience in period t. An o�-schedule deviation will bring nonpositive payo�s starting in period

t + 1, while the expected continuation payo� from truthfulness and obedience in period t + 1

conditional on any starting state �t can be bounded below as follows:

1X
�=t+1

��E�t+1[�
�]j�t

~�

24ui ��� �~��� ; ~���+  Bi �~���1; ~���+ 1IX
j

uj � ui

35
=

1X
�=t+1

��E�t+1[�
�]j�t

~�

24ui ��� �~��� ; ~���+ 1
I

X
j

uj � ui

35
� �t+1

1� �
1

I

X
j

uj �
�����

1X
�=t+1

��
n
E�[�

�]j�t
~�

h
ui

�
��
�
~��

�
; ~��

�i
� ui

o�����
� �t+1

"
1

I (1� �)
X
i

ui � C
#
: (6.3)

where the equality obtains since

E�[�
�]j�t

~�

h
 Bi

�
~���1; ~��

�i
= 0

for � � t + 1 by the Law of Iterated Expectations, and the last inequality is by (6.2). This

should be weighed against the possible gain in period t from the o�-schedule deviation rather

than being truthful and obedient in this period, which is at most

�t

 
I sup
i;j;t;�t�1;�i;t

zi;j;t (�i;t; �t�1) + 2 max
i;�t;xt

jui (xt; �t)j
!
= �t (I � 2K + 2M) :

Thus, we see that for �= (1� �) > I (C + 2IK + 2M) =

 X
i

ui

!
, the o�-schedule deviation

is dominated by becoming truthful and obedient. Together with the previous argument, this

shows that the proposed strategies and beliefs form a PBE for � close enough to 1.

We conclude this section with a couple of observations about how the results can be gener-

alized. First, we restricted attention to e�cient allocation rules. We could also consider other

decision rules that could be implemented using transfers (not necessarily budget-balanced) that

are uniformly bounded in � and that have a Markov structure. Then, our proof can be modi�ed

to establish that the balanced transfers satisfy satisfy participation constraints for su�ciently

patient agents.

Second, the Markov structure is more restrictive than necessary. The important feature

of the Markov structure is that today's signals and reports have a vanishing impact on the

expected value of future payo�s and transfers. This feature could be preserved in models that

are nonstationary and have dependence on longer and possibly in�nite histories, provided that

this dependence is bounded.
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7. Conclusions

This paper generalizes to a dynamic setting the results of Arrow (1979) and d'Aspremont

and Gerard-Varet (1979) that, given an allocation rule and incentive-compatible transfers, it

is possible to construct budget-balanced and incentive-compatible transfers. The result holds

for a very general class of dynamic games, with arbitrary intertemporal dependence of agents'

signals, arbitrary e�ects of the public decision on the distribution of signals and their informa-

tiveness, and privately observed decisions (moral hazard problems) so long as the decisions do

not have direct externalities on other agents. The main substantive restrictions are additive

separability of payo�s in money, and independence of types across agents (conditional on past

public decisions). Although the analysis of participation constraints depends on the structure

of the speci�c game, for agents in an in�nite-horizon game with a Markov structure and a single

ergodic set, participation constraints can be satis�ed when agents are su�ciently patient.

In future work we plan to consider models of costly computation and communication. Some

problems of computation costs can be considered as special cases of our model, by modeling an

agent's computation of her type as information gathering.19 We plan to extend our model to

include the case where agents send reports from a restricted message space and so cannot fully

reveal their information (e.g., because communication is costly), as in Fadel and Segal (2006).

We also intend to study the case of correlated values more closely. In static mechanism

design, the case of independent types is viewed as the \hardest" case for mechanism design;

with correlated types, e�ciency with budget balance is achievable under generic conditions,

as shown by d'Aspremont, Cremer, and Gerard-Varet (2003a,b). We expect that these results

could be extended to dynamic mechanism design, but this would require di�erent techniques

than the ones we have used, and so we leave this extension for future research.20
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8. Appendix

Lemma 2. A functional F :
Y1

t=1
Zt ! R is LCI� with some � 2 (0; 1) if and only if F (z) =P1

t=0 �
tft(z

t) for some uniformly bounded sequence of functions
�
ft : Z

t ! R
	1
t=0
.

Proof of Lemma 2: \If": Letting M = supi;t;zt2Zt
��f �zt��� <1, we can write

jF (z)� F (y)j �
1X

t=inff� :z� 6=y�g
�t
��ft(zt)� ft(yt)�� � 1X

t=inff� :z� 6=u�g
�t � 2M

=
2M

1� � �
inff� :z� 6=y�g =

2M

1� � �� (z; y) :

\Only if": �x z 2 Z and take f0 = F (z) and ft
�
zt
�
= ��t

�
F
�
zt; z�t

�
� F

�
zt�1; z�(t�1)

��
for

t � 1. Then we have
��ft �zt��� � ��tC ���

��
zt; z�t

�
;
�
zt�1; z�(t�1)

��
� C for t � 1. Furthermore,�����

TX
t=0

�tft(z
t)� F (z)

����� = ��F �zT ; z�T �� F (z)�� � C��
��
zT ; z�T

�
; z
�
� C�T ! 0 as T !1.

Proof of Lemma 1: It su�ces to establish a bound for any given pair �; �0 2 ��, since the

state space �� is �nite. For the \transient" states �0 2 ��nS, the expression is bounded since by

de�nition
1X
t=0

�tp
(t)
�;�0 <1 and ��0 = 0. For the \ergodic" states �

0 2 S, note that all such states
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have the same period n � 1, and let G � S denote the cyclically moving subset containing �0.

Let t0 < n be the �rst t � 0 s.t. p(t)�;�0 > 0. Then p
(t)
�;�0 > 0 only for t = t0 + rd, for r = 0; 1; :::.

Furthermore, the n-step transition process with the transition matrix p
(n)
�;�0 behaves like an

irreducible aperiodic chain on G, with the invariant probabilities described by d��0 on �
0 2 G.

Applying Lucas-Stokey (1989, Theorem 11.4), the n-step process converges geometrically to its

invariant distribution, i.e., there exists � < 1 such that
���p(t0+rd)�;�0 � d��0

��� � �r. Therefore,�����
1X
t=0

�t
�
p
(t)
�;�0 � ��0

������ �
1X
t=0

�t0+rd
���p(t0+rd)�;�0 � d��0

���+ ��0
�����n

1X
t=0

�t0+rd �
1X
t=0

�t

�����
�

1X
r=0

�r +
1X
r=0

�rd

�����d�k0 �
n�1X
t=0

�t

�����
� 1

1� �
�+

1

1� �nn
�
1� �n�1

�
� 1
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�+n:

31


