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Abstract

We provide a class of prior beliefs that (almost surely) lead to playing approximate Nash

equilibrium, combined with bounded rationality, i.e., smooth approximate optimal be-

haviors, in any infinitely repeated game with perfect monitoring: converging to ε−Nash

equilibrium for any (finite normal form) stage game, any discount factors (less than one),

and any ε > 0. Furthermore, the class of prior beliefs is smart in the sense that, for any

learnable set of opponents strategies, a prior belief in the class ε−weakly merges with

all opponents strategies in the learnable set. We also argue the implications of our posi-

tive result to impossibility results (Nachbar (1997, 2005) and Foster and Young (2001)).

Specifically, we point out that the impossibility in Nachbar (1997, 2005) is obtained be-

cause the learnability condition in Nachbar (1997, 2005) requires uniform learning such

that each player’s prior belief weakly merges with opponents true strategies uniformly in

his own various strategies, including his true one, and that the impossibility in Foster

and Young (2001) crucially depends on perfect rationality, i.e., exact optimal behaviors.



1 Introduction

We provide a class of prior beliefs that (almost surely) lead to playing approximate Nash

equilibrium, combined with bounded rationality, i.e., smooth approximate optimal be-

haviors, in any infinitely repeated game with perfect monitoring: converging to ε−Nash

equilibrium for any (finite normal form) stage game, any discount factors (less than one),

and any ε > 0. Furthermore, the class of prior beliefs is smart in the sense that, for any

learnable set of opponents strategies, a prior belief in the class ε−weakly merges with

all opponents strategies in the learnable set. We also argue the implications of our posi-

tive result to impossibility results (Nachbar (1997, 2005) and Foster and Young (2001)).

Specifically, we point out that the impossibility in Nachbar (1997, 2005) is obtained be-

cause the learnability condition in Nachbar (1997, 2005) requires uniform learning such

that each player’s prior belief weakly merges with opponents various strategies, including

opponents true ones, uniformly in his own various strategies, including his true one, and

that the impossibility in Foster and Young (2001) crucially depends on perfect rationality,

i.e., exact optimal behaviors.

Convergence problem has been in trouble for Bayesian learning in repeated games

since its study started. Kalai and Lehrer (1993, 1994) and others have contributed to

foundations of Bayesian learning in repeated games: formulating basic concepts (e.g.,

merging, etc.) that are appropriate to Bayesian learning in repeated games and providing

characterization conditions (e.g., absolute continuity, etc.) for converging to Nash equi-

librium. However, in general, any of those characterization conditions is not practically

easy to check; indeed, there has been given no nontrivial example in which a characteri-

zation condition plays an important role in showing convergence. Therefore, it has been

unknown whether convergence to Nash equilibrium is regular or exceptional in repeated
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games. Sandroni (2000) provides a positive result in a specific example. But its purpose

is to show emergence of coorperation (in the 2 × 2 coordination stage game) through

Bayesian learning rather than to provide a general result of convergence. On the other

hand, Nahchbar (1997, 2005) proposes a rather general result of impossibility for Bayesian

learning in repeated games. Nachbar shows that in any repeated game under a certain

weak condition, if players are able to learn to predict sufficiently various opponents strate-

gies and their learning abilities are symmetric, then at least one of players cannot learn

to predict his opponents true strategies (i.e., opponents (approximate) optimal ones to

their prior beliefs) uniformly with any of his own various strategies, including his own

true one. As Nachbar (2005) admits, this negative result does not immediately imply the

impossibility of convergence, but it certainly shows that in general, it is not easy to ob-

tain convergence to even approximate Nash equilibrium. Furthermore, Foster and Young

(2001) show that under perfect rationality (i.e., exact optimal behaviors), any given prior

beliefs cannot converge to Nash equilibrium for almost all stage games near the matching

pennies one: there exist no prior beliefs such that the prior beliefs learn to play Nash

equilibrium in any stage game. In other words, (at least under perfect rationality) it is

impossible to obtain a general result of learning to play Nash equilibrium.

This paper gives a general positive result of learning to play approximate Nash equi-

librium, provided that players are boundedly rational in the sense that they take smooth

approximate optimal behaviors. That is, we construct a class of prior beliefs that converge

to approximate Nash equilibrium in any infinitely repeated game (with perfect monitor-

ing). Furthermore, our class of prior beliefs are smart in the sense that for any prior belief,

there exists our prior belief in the class such that our prior belief (apporoximately) learns

to predict all opponents strategies that the given prior belief learns to predict. This result
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implies that we do not have to give up learnability at least in any approximate sense in

order to obtain convergence to approximate Nash equilibrium.

The point of this paper is how to construct prior beliefs for our purpose. The con-

struction of our prior beliefs are based on two different research lines. The first research

line is Foster and Young (2003)’s random search and testing. Foster and Young apply

the method to a non-Bayesian learning model, but as will be shown, the method is also

applied to Bayesian learning by introducing bounded rationality; more originally, Arthur

(1994) proposes a similar but more intuitive mode of learning, which he calls inductive

learning. The second research line is Noguchi (2005), which provides a characterization of

learnable set of strategies. Making use of the concepts and technique in Noguchi (2005),

we generalize the method of random search and testing so fully that our prior beliefs not

only learn to predict as many strategies as possible but also converge to approximate

Nash equilibrium in any repeated game.

Our positive result has the implications to the impossibilit results in Nachbar (1997,

2005) and Foster and Young (2001). We obtain that under bounded rationality (i.e.,

smooth approximate optimal behavior), it is fairly possible to learn to play approximate

Nash equilibrium for any stage game and any discount factors. From this we conclude

that Foster and Young’s impossibility crucially depends on perfect rationality, so that

their impossibility result is not robust to bounded rationality (i.e., approximate optimal

behavior). In contrast to this, Nachbar’s impossibility is quite robust in the sense that

it holds even in the case of bounded rationality and “approximate learning,” as will be

explained. However, our positive result implies that for any learnable sets there exist

prior beliefs such that each of the prior beliefs approximately learn to predict all oppo-

nents strategies in the learnable set and those prior beliefs converge to approximate Nash
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equilibrium. It means that Nachbar impossibility is different from the impossibility of

learning to play approximate Nash equilibrium in a general sense and that the diver-

sity (and symmetry) of players’ learnable sets does not prevent Bayesian learning from

converging to approximate Nash equilibrium.

This paper is organized as follows. Section 2 describes the basic model and concepts.

Section 3 explains main results in this paper. In Section 4, we construct prior beliefs. In

Section 5, conditions for convergence are given. In Sections 6 and 7, we show that our

prior beliefs converge to approximate Nash equilibrium. In Section 8, we prove that each

of prior beliefs approximately learns to predict all opponents strategies in any learnable

set. In Section 9, we discuss the implication of our results to the existing impossibility

results.

2 The Model and Concepts

2.1 Basic model and notations

A group of players i = 1, · · · , I repeatedly play a stage game over infinite time horizon

t = 1, 2, · · · . Each player i takes a (pure) action ai in a finite set Ai at each time,

and let A denote the set of all action profiles: A := ΠI
i=1Ai. Given an action profile

a := (ai)i, the stage game payoff for player i is denoted by ui(a). Let Δ(Ai) denote the

set of all mixed actions over Ai and Δ(A) denote the set of all mixed action profiles,

i.e., Δ(A) := ΠI
i=1Δ(Ai). If a mixed action profile π := (πi)i is played, then the stage

game expected payoff for player i is defined by ui(π) :=
∑

a π1[a1] · · ·πI [aI ]ui(a1, · · · , aI).

A history of the repeated game is a sequence of all players’ actions. A finite history is

denoted by h. When the length of a finite history is emphasized, we write hT for a finite
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history up to time T : hT := (a1, · · · , aT ). Let HT denote the set of all finite histories with

time length T . Let H designate the set of all finite histories, including the null history

h0 := ∅: H :=
⋃∞

T=0 HT , where H0 := {h0}. An infinite history is denoted by h∞, and let

H∞ designate the set of all infinite histories. If a finite history h is an initial segment of

a history h′, then it is denoted by h ≤ h′. When h ≤ h′ and h �= h′, it is designated by

h < h′.

2.2 Behavior strategies

We assume perfect monitoring, i.e., every player observes the past history of realized

actions of all players at each time. Therefore, the behavior of player i in the repeated

game is represented by a behavior strategy, denoted by σi : H → Δ(Ai). Let μσ designate

the probability measure over H∞ induced by playing a strategy profile σ := (σ1, · · · , σI).

2.3 Bayesian learning

All players are Bayesian learners in the sense that each player has his prior belief about

the other players’ behavior strategies; every player knows that all players play (mixed)

actions independently at each time. Then, as Kalai and Lehrer (1993) show, a prior belief

of player i is formally represented by a profile of the other players’ behavior strategies,

denoted by ρ̃i := (ρ̃i
j)j �=i.

1

2.4 Payoffs and bounded rationality

Given a strategy profile σ, the payoff for player i in the repeated game is the (averaged)

expected discounted payoff sum Vi(σ) := (1−δi)
∑∞

T=1 δT−1
i

∑
h∈HT−1

ui(σ(h))μσ(h), where

1ρ̃i
j is a behavior strategy of player j(�= i), i.e., ρ̃i

j : H → Δ(Aj).
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δi is the discount factor of player i (0 ≤ δi < 1), σ(h) := (σ1(h), · · · , σI(h)), and μσ(h) is

the probability of playing h. In the continuation game following a realized past history

h, a continuation behavior strategy for player i is denoted by σi,h: σi,h(h
′) := σi(h · h′)

for all h′ ∈ H , where h · h′ is the concatenation of h and h′. The continuation payoff for

player i following h is Vi(σ | h) := Vi(σh), where σh := (σ1,h, · · · , σI,h).

The key assumption in this paper is that all players are “boundedly rational” in the

sense that they take smooth approximate optimal behaviors against their prior beliefs.

Specifically, we assume that each player i takes his strategy σi to maximize the following

(averaged) expected discounted “perturbed” payoff sum against his prior belief ρ̃i:

V vi
i (σi, ρ̃

i) := (1 − δi)

∞∑
T=1

δT−1
i

∑
h∈HT−1

[ui(σi(h), ρ̃i(h)) + vi(σi(h))]μ(σi,ρ̃
i)(h),

where vi is the payoff perturbation for player i. Payoff perturbation vi is a smooth

and strictly concave function from Int(Δ(Ai)) to R, and vi also satisfies the boundary

condition that ‖Dvi(πi)‖ → ∞ as πi approaches the boundary of Δ(Ai).
2 Furthermore,

letting | vi |:= supπi
vi(πi), if | vi | is small, we say that player i’s payoff perturbation is

small. For simplicity, in the remaining of this paper we assume that payoff perturbations

are symmetric.3

2Int(Δ(Ai)) denotes the interior of Δ(Ai). ‖Dvi(πi)‖ is the standard norm of the derivative Dvi(πi)

of vi at πi.
3Payoff perturbation v is symmetric if, for any mixed action π := (π1, · · · , πn) and any permutation

ϕ : {1, · · · , n} → {1, · · · , n}, v(π1, · · · , πn) = v(πϕ(1), · · · , πϕ(n)). For example, the logistic function

− 1
κ

∑
k πk log πk is symmetric.
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2.5 Smooth approximate optimal strategy

For any opponents strategy profile ρ−i := (ρj)j �=i, there exists a unique smooth approxi-

mate optimal strategy to ρ−i, denoted by σρ
i : σρ

i := arg maxσi
V vi

i (σi, ρ−i).
4 Essentially,

all that is necessary for our argument is that, for each player i, there is a uniform lower

bound on the probability of playing any action after any finite history. In fact, because

of the boundary condition on vi, σρ
i has a uniform lower bound li: for all i, there exists

li > 0 such that, for any ρ−i, σρ
i (h)[ai] ≥ li for all ai ∈ Ai and all h ∈ H .

2.6 ε−Nash equilibrium

We introduce approximate Nash equilibrium: for any ε ≥ 0, we define ε−Nash equilibrium

as follows.

Definition 1 A strategy profile σ̄ is called an ε−Nash equilibrium if, for all i and all σi,

Vi(σ̄i, σ̄−i) + ε ≥ Vi(σi, σ̄−i).

Especially, when ε = 0, σ̄ is called a Nash equilibrium.

2.7 Conditioning rules and classes

We introduce a key concept to model the learning abilitiy of each player: conditioning

rules. A conditioning rule represents an (approximate) regularity of opponents behavior

strategies. Formally, a conditioning rule is a finite partition of H , denoted by P. An

element of P is called a class in P, denoted by α. Note that a class is considered as a

subset of H because it is an element of a partition of H . Also, we will often define a subset

of H and call it a class by the abuse of language. When a realized history ht−1 ∈ α, we

4For any h such that μ(σi,ρ−i)
(h) = 0 (for all σi), σρ

i,h := arg maxσi
V vi

i (σi, ρ−i,h).
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say that time t is an α−active period or that α is active at time t. For any player i’s

opponents strategy profile σ−i := (σj)j �=i, we define its ε−approximate conditioning rule.

Definition 2 A finite partition Pσ−i
ε is called an ε−approximate conditioning rule of σ−i

if, for all α ∈ Pσ−i
ε , all h, h′ ∈ α, and all j �= i, ‖σj(h) − σj(h

′)‖ ≤ ε.5 Especially, when

ε = 0, Pσ−i
ε is called a conditioning rule of σ−i.

The definition says that mixed actions in active periods of each class α are almost the

same. Note that, for all ε > 0, any opponents strategy profile σ−i has its ε−approximate

conditioning rule. In the remainder of this paper, we use the maximum norm on any set

of mixed actions: ‖x‖ := maxa | x[a] |.

Conversely, we may generate strategies from given conditioning rules.

Definition 3 We say that σ−i is generated by a set P of conditioning rules if, for all

ε > 0, there exists P ∈ P such that P is an ε−approximate conditioning rule of σ−i.

The definition says that, for all ε > 0, the regularity of σ−i is ε−approximated by some

conditioning rule in P. Let G(P) denote the set of all opponents strategies generated by P.

Note that any opponents strategy profile σ−i is generated by any countable set {Pσ−i
εn }n

of its approximate conditioning rules, i.e., σ−i ∈ G({Pσ−i
εn }n), where εn → 0 as n → ∞.

Furthermore, σ−i is generated by a conditioning rule P, i.e., σ−i ∈ G(P) if and only if P

is a conditioning rule of σ−i: for all α ∈ P and all h, h′ ∈ α, σ−i(h) = σ−i(h
′).

Finally, since conditioning rules are (finite) partitions (of H), they are ordered with

respect to fineness : if, for all α ∈ P there exists β ∈ Q such that α ⊂ β, we say that

P is finer than Q, denoted by Q ≤ P. Clearly, ≤ is an order relation over the set of all

conditioning rules. It is important to note that a finer conditioning rule generates more

5‖ · ‖ is the maximum norm: ‖x‖ := maxa | x[a] |.
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opponents strategy profiles. Furthermore, when σ−i is generated by P or equivalently P

is a conditioning rule of σ−i, σ−i(α)(= (σj(α))j �=i) is well-defined for all α ∈ P: for all

j �= i, σj(α) := σj(h) for h ∈ α. In addition, if Q ≤ P and σ−i is generated by Q, then

σ−i is also generated by P; thus, for any β ∈ Q, σ−i(β) = σ−i(α) for all α ∈ P such that

α ⊂ β. We will make use of these ordering properties to a full extent for constructing

smart prior beliefs.

3 Main Result

The main purpose of this paper is to provide a class of prior beliefs that almost surely

lead to playing approximate Nash equilibrium in any infinitely repeated game with perfect

monitoring. Furthermore, we show the result that our constructing prior beliefs are smart

enough to approximately learn to predict as many opponents strategies as possible. To

formalize our results, we introduce several concepts of learning: ε−weak merging and

learnable set (correspondence).

Definition 4 We say that μ(σi,ρ̃
i) ε−weakly merges with μ(σi,σ−i) or that ρ̃i ε−learns to

predict σ−i with σi if, for all j �= i, lim supT→∞ ‖ρ̃i
j(hT ) − σj(hT )‖ ≤ ε, μ(σi,σ−i)

− a.s.

Especially, when ε = 0, we say that μ(σi,ρ̃
i) weakly merges with μ(σi,σ−i)

or that ρ̃i learns

to predict σ−i with σi.

Note that although the definition of ε−weak merging only requires eventually making

ε−accurate predictions on one period ahead opponents actions, it implies eventually mak-

ing ε−accurate predictions on any finite period future opponents (mixed) actions. Next,

learnable sets of strategies are defined as follows.
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Definition 5 Let M−i(ρ̃
i, σi) denote the set of all opponents strategies that ρ̃ilearns to

predict with σi. M−i(ρ̃
i, σi) is called the ρ̃i−learnable set with σi.

Note that set correspondence M−i(ρ̃
i, ·) : Σi → 2Σ−i completely represents the learning

ability of prior belief ρ̃i, where Σi is the set of all player i’s strategies and 2Σ−i is the

power set of all other players’ strategy profiles. Conversely, we may define the concept of

learnable set correspondence.

Definition 6 Set correspondence M−i : Σi → 2Σ−i is said to be learnable if there exists a

prior belief ρ̃i such that, for all σi, M−i(σi) ⊂ M−i(ρ̃
i, σi).

Let us describe our main results. The first result is that, given any ε > 0 and any

prior beliefs (ρ̃i)i, we obtain prior beliefs (ρ̃i
∗)i such that each ρ̃i

∗ not only ε−learns to

predict all opponents strategies in M−i(ρ̃
i, σi) with all σi but also ε−weakly merges with

opponents’ true strategies (σ∗
j )j �=i (i.e., the smooth approximate optimal strategies to

(ρ̃j
∗)j �=i): σ∗

i := arg maxσi
V vi

i (σi, ρ̃
i
∗) for all i.

Theorem 1 For any ε > 0 and any prior beliefs (ρ̃i)i, there exist prior beliefs (ρ̃i
∗)i such

that

(1) for all i and all player i’s strategies σi, ρ̃i
∗ ε−learns to predict σ−i with σi for all

σ−i ∈ M−i(ρ̃
i, σi),

(2) for any stage game payoffs (ui)i and any discount factors (δi)i, there exists v̂ > 0

such that, for any (symmetric) payoff perturbations (vi)i with | vi |≤ v̂ for all i, prior

beliefs (ρ̃i
∗)i ε−learn to predict players’ true strategies σ∗ := (σ∗

i )i: with μσ∗−probability

one, there exists T̂ such that, for all T ≥ T̂ , all i, and all j �= i,

‖ρ̃i
∗,j(hT ) − σ∗

j (hT )‖ ≤ ε.
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Theorem 1 insists that even if Bayesian learners are (almost) as smart as possible,

they can always (approximately) learn to predict each other true strategies as far as they

are boundedly rational.

Remark 1 Theorem 1 (1) implies that, for any learnable set correspondence M−i, ρ̃i
∗

ε−learns to predict σ−i with σi for all σi and all σ−i ∈ M−i(σi).

The second result, i.e., convergence to approximate Nash equilibrium, is immediately

obtained from Theorem 1 (2) by taking into considerations the variations of (maxi-

mum) payoffs by belief changes. Indeed, there is some bound on the variation rates

of (maximum) payoffs by belief changes. Let U := maxi maxa | ui(a) | and V̄ vi
i (σ−i) :=

maxσi
V vi

i (σi, σ−i). Furthermore, let #A denote the number of all (pure) action profiles.

Lemma 1 (1) For any i and any σ−i, σ
′
−i,

| V̄ vi
i (σ−i) − V̄ vi

i (σ′
−i) |≤ U#A

∞∑
T=0

δT
i max

h∈HT

max
j �=i

‖σj(h) − σ′
j(h)‖,

(2) For any i and any σi and any σ−i, σ
′
−i,

| V vi
i (σi, σ−i) − V vi

i (σi, σ
′
−i) |≤ U#A

∞∑
T=0

δT
i sup

h∈HT

max
j �=i

‖σj(h) − σ′
j(h)‖.

Proof. It is easily obtained from the intermediate value theorem and the recursive

structure.

Furthermore, it is obvious that | V vi
i (σ)− Vi(σ) |≤| vi | for all σ and all i. Then, take

any ε > 0 and any δ̄ < 1. Letting ε := ε(1 − δ)�5U#A, v̄ := min[#A, ε
4
, v̂], and | vi |≤ v̄

for all i, we obtain ε−weak merging from Theorem 1 (2). From these it follows that, for
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all T ≥ T̂ and for all i and all σi,

Vi(σi, σ
∗
hT ,−i) ≤ V vi

i (σi, σ
∗
hT ,−i)+ | vi |

≤ V̄ vi
i (σ∗

hT ,−i)+ | vi |

< V̄ vi
i (ρ̃i

∗,hT
) +

ε

4
+ | vi |

= V vi
i (σ∗

hT ,i, ρ̃
i
∗,hT

) +
ε

4
+ | vi |

< V vi
i (σ∗

hT ,i, σ
∗
hT ,−i) +

ε

4
+

ε

4
+ | vi |

≤ Vi(σ
∗
hT ,i, σ

∗
hT ,−i) +

ε

2
+ 2 | vi |≤ Vi(σ

∗
hT ,i, σ

∗
hT ,−i) + ε.

The third and fifth inequalities are obtained from Theorem 1 (2) and Lemma 1. The

fourth equality holds because σ∗
i = arg maxσi

V vi
i (σi, ρ̃

i
∗). The other inequalities are obvi-

ous. Therefore, we have obtained Theorem 2 as a corollary of Theorem 1 (2).

Theorem 2 For any ε > 0 and any 0 ≤ δ < 1, there exist prior beliefs (ρ̃i
∗)i such that,

for any stage game payoffs (ui)i and any discount factors (δi)i with δi ≤ δ for all i, there

exists v̄ > 0 such that, for any (symmetric) payoff perturbations (vi)i with | vi |≤ v̄ for

all i, the smooth approximate optimal strategy profile σ∗ to prior beliefs ρ̃∗ := (ρ̃i
∗)i almost

surely converges to ε−Nash equilibrium: with μσ∗−probability one, there exists T̂ such

that, for all T ≥ T̂ , σ∗
hT

is an ε−Nash equilibrium.

Note that each player does not need to know opponents payoff structures and discount

factors. In other words, all any player has to do is to choose an appropriate prior belief

and take a smooth approximate optimal behavior to his prior belief based on his own

payoff structure and discount factor. Then, whatever stage game is repeatedly played,

they learn to play approximate Nash equilibrium in the corresponding repeated game.

Finally, we remark how to construct smart prior beliefs, i.e., prior beliefs that ε−learn

to predict any learnable set correspondence. Noguchi (2005) shows that any learnable
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set (correspondence) is completely characterized by a countable set of conditioning rules.

Precisely, a set correspondence M−i is learnable if and only if there exists a countable

set {P i
s}s of conditioning rules such that for all σi, any σ−i in M−i(σi) is eventually

generated by {P i
s}s with playing σi (see Section 8 and Noguchi (2005) for details). The

point is that we can make use of {P i
s}s to obtain Theorem 1. Precisely, for each i, we

use a countable set {Qi
s}s of conditioning rules which are easily obtained from {P i

s}s such

that (3.0) P i
s ≤ Qi

s for all s, (3.1) Qi
s ≤ Qi

s+1 for all s, and (3.2) for all j �= i, all s, and

all T , there exists s′ such that FTQj
s ≤ Qi

s′.
6 Property (3.0) allows us to replace {P i

s}s

by {Qi
s}s; for all i and all σi, any σ−i in M−i(σi) is eventually generated by {Qi

s}s with

playing σi. Properties (3.1) and (3.2) ensure that player i is able to learn any other player

j’s (smooth approximate) optimal strategy to any belief eventually generated by {Qj
s}s,

as will be shown. Therefore, in the remaining of this paper, without loss of generality, we

may assume that {P i
s}s,i has Properties (3.1) and (3.2). We will construct prior beliefs

(in Theorem 1) based on {P i
s}s,i in the next section and prove Theorem 1 in Sections 7

and 8.

6A finite partition FTQi
s of H is defined by the following equivalence relation on H :

h ∼FTQi
s

h′ if and only if h · h̃ ∼Qi
s

h′ · h̃ for all h̃ ∈
T⋃

t=0

Ht.

Note that, if opponents take behavior strategies generated by Qi
s, then just after any finite history

in the same class of FTQi
s, player i faces the same strategic situation up to the next T periods. Thus,

taking a sufficiently large T , player i, who discounts future payoffs, plays almost the same optimal (mixed)

actions just after any finite history belonging to the same class of FTQi
s.
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4 Prior Belief Formation

4.1 Phases in prior belief formation process

Each player i infinitely repeats four phases in a given repeated game. The first phase

is that player i simply keeps his current temporary belief f i,7 which we call a stationary

phase. The second one is called a test phase in which player i not only starts to perform

new statistical tests against his belief f i but also checks f i. The third one is a formation

phase in which, if player i’s belief f i is rejected in the previous test phase, player i

observes realized opponents actions and forms a new temporary belief gi; otherwise,

player i continues employing his current belief f i. The fourth one is a transition phase in

which if player i’s new belief has been formed in the previous formation phase, player i

gradually switches from a rejected belief to a new belief. Then, the process proceeds to

a new stationary phase. A time interval consisting of three subsequent phases, i.e., test,

formation, and transition ones, is called an active interval. Furthermore, a time interval

consisting of all four phases is called a cycle.

4.2 Test procedure

Given a conditioning rule P, a toleration level ξ, and a least sample size m̂, we define

the statistical test procedure with (P, ξ, m̂) (in player i’s prior belief formation process)

as follows: suppose that player i has a temporary belief f i (which is generated by P)

and employs (P, ξ, m̂) at the beginning of a given test phase. Then, player i collects

realized actions in active periods of each α ∈ P during the given test phase and obtains

7A temporary belief f i of player i is formally a profile of opponents behavior strategies, i.e., f i :=

(f i
j)j �=i, where f i

j : H → Δ(Aj).
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the empirical distribution Di
j(α) of each player j(�= i)’s realized actions in active periods

of each α. Let m̃α designate the number of times that α has been active during the test

phase: m̃α =
∑

aj
Di

j(α)[aj ] for all j �= i. Furthermore, for all α ∈ P and all j �= i, define

f i
j(α) := f i

j(h) for h ∈ α.8 Then, if ‖Di
j(α)− f i

j(α)‖ > ξ for some j �= i and some α

with m̃α ≥ m̂, we say that f i is rejected (at the end of the given test phase). If a current

belief f i is rejected, player i gives up f i and forms a new (temporary) belief gi in the next

formation phase. On the other hand, if ‖Di
j(α)− f i

j(α)‖ ≤ ξ for all j(�= i) and all α ∈ P

with m̃α ≥ m̂, we say that f i is not rejected. In that case, player i continues employing

f i until the next test phase. We remark that player i will keep collecting samples (in any

phases) for any class whose samples are not enough, i.e., any α ∈ P̃ with m̃α < m̂, until

either at least m̂ samples are obtained, or f i is rejected. In relation to this, f i is also

rejected at the end of the given test phase if, for some class α′ that did not obtain enough

samples in a past test phase of checking f i, enough samples have been collected (up to

the given test phase) and ‖Di
j(α

′)− f i
j(α

′)‖ > ξ for some j �= i.

4.3 Temporary belief formation

In each formation phase, if player i’s temporary belief f i was rejected in the previous

test phase, player i forms a new (temporary) belief gi. Specifically, player i employs a

correspondence based on a conditioning rule P̃ and an accuracy level n. First of all,

let Δn(Aj) := {πj ∈ Δ(Aj) |for all aj , πj[aj ] =
nj

n
for some nonnegative integer nj}

and let Δn
−i :=

∏
j �=i Δ

n(Aj); note that for any πj ∈ Δ(Aj), there exists π′
j ∈ Δn(Aj)

such that ‖πj − π′
j‖ ≤ 1

n
.9 Then, define a set of opponents strategies generated by

8Since f i is generated by P , for all α ∈ P and all h, h′ ∈ α, f i(h) = f i(h′); see Section 2.7. Therefore,

f i(α) is well-defined for all α ∈ P .
9We use the maximum norm on Δ(Aj): ‖πj‖ := maxaj | πj [aj ] |.

15



P̃, denoted by Σ−i(P̃ , n), as follows: Σ−i(P̃, n) := {σ−i ∈ G(P̃) |for all j �= i and all

α ∈ P̃ , σj(α) ∈ Δn(Aj)}, where σj(α) := σj(h) for h ∈ α.10 It is the set of opponents

strategies which are generated by P̃ and whose (mixed) actions all belong to Δn
−i; for

any σ−i generated by P̃ , there exists σ′
−i in Σ−i(P̃, n) such that ‖σj(h) − σ′

j(h)‖ ≤ 1
n

for all h and all j �= i. Note also that Σ−i(P̃ , n) is identified with Δ
n
−i × · · · × Δ

n
−i︸ ︷︷ ︸

#P̃

. Let

N i denote the time length of the formation phase, and the set of all possible histories

of opponents actions in the formation phase is denoted by H−i,N i.11 Then, taking a

sufficiently large N i, consider any function from H−i,N i to Σ−i(P̃ , n) which is surjective,

denoted by B : H−i,N i → Σ−i(P̃, n); B is surjective if for any σ−i ∈ Σ−i(P̃, n), there

exists h−i ∈ H−i,N i such that σ−i = B(h−i). We call it player i’s belief correspondence.

Therefore, player i observes a history h−i of opponents actions in the current formation

phase and then forms a new belief gi = B(h−i) at the end of the current formation phase.12

4.4 Belief transition

In each transition phase, if his belief was rejected in the previous test phase, each player

i gradually switches from a rejected belief f i to a new belief gi (which has been formed in

the previous formation phase). Specifically, let Ki denote the time length of the current

transition phase, and let time T + 1 be the first period of the current transition phase.

Given a realized past history hT , player i has the following transition belief during the

10Since σ−i is generated by P̃ , σj(α) is well-defined for all α ∈ P̃ and all j �= i.
11H−i,N := {(a1

−i, · · · , aN
−i) | at

−i ∈ Πj �=iAj for all t = 1, · · · , N}.
12Note that player i ignores not only the past history before the formation phase but also his own

actions in the formation phase to form his temporary belief.
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transition phase: for all 1 ≤ k ≤ Ki and all h′
k−1 ∈ Hk−1,

(1 − k

Ki
)f i(hT · h′

k−1) +
k

Ki
gi(hT · h′

k−1),

where hT · h′
k−1 is the concatenation of hT and h′

k−1.
13

4.5 Epochs

In order to complete the process, we determine (P, ξ, m̂) for each test phase and (P̃, n,B)

for each formation phase. Furthermore, we specify the lengths of all phases. For that

purpose, we introduce a concept of time interval: epochs. An epoch (of player i) consists

of subsequent cycles (of player i). Player i uses the same toleration level in all test

phases during each epoch (of player i); thus, let ξi
s denote the player i’s toleration level

during the s−th epoch. Moreover, the same conditioning rule, accuracy level and belief

correspondence are used in all formation phases during each epoch; let P i
s, ni

s and Bi
s

denote the conditioning rule, the accuracy level and the belief correspondence during the

s−th epoch. Each epoch switches to the next epoch according to the number of rejections,

denoted by Ri
s. Precisely, the s−th epoch (of player i) switches to the (s + 1)−th epoch

(of player i) if player i’s rejections occur Ri
s−times in the s−th epoch. We assume that

Ri
s ≤ Ri

s+1 for all i and all s. Let us describe conditioning rules and parameters in each

epoch.

• Test phases

(i) Toleration levels: Player i keeps using the same toleration level ξi
s in all test phases

during each epoch s. We assume the decrease of {ξi
s}s: 0 < ξi

s+1 ≤ ξi
s for all s.

(ii) Conditioning rules: The switching rule of conditioning rules is a little more com-

13(1 − k
K )f i(h) + k

K gi(h) := ((1 − k
K )f i

j(h) + k
K gi

j(h))j �=i.
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plicated. When the process proceeds to the s−th epoch, player i starts to employ P i
s in

the first test phase (in the s−th epoch), and keeps switching to finer rules (than P i
s) until

the first rejection occurs (in the s−th epoch): employing P i
s+1 in the second test phase

(in the s−th epoch), employing P i
s+2 in the third test phase, and so on. Just after the

first rejection has occurred, player i switches back to P i
s in the next test phase and then,

he again keeps switching to finer rules until the next rejection occurs; if the next rejec-

tion occurs, then he again switches back to P i
s. Player i repeats this switching behavior

through the s−th epoch.

(iii) Sample sizes: For each P i
s, we define the canonical (least) sample size mi

s; we

assume the increase of {mi
s}s: mi

s ≤ mi
s+1 for all s. Then, when player i employs P i

s+q in

a test phase during the s−th epoch, he uses (mi
s+q + d − 1) as the (least) sample size in

the test phase, where (d − 1) is the number of times that player i has employed P i
s+q in

past test phases (during the s−th epoch).

(iv) Lengths: Take a sufficiently large length for a test phase according to P i
s+q and

(mi
s+q + d− 1) that are used in the test phase. For example, if player i employs P i

s+q and

(mi
s+q + d − 1) in a test phase, let the length of the test phase be 6(2T̄ i

s + 1)(mi
s+q + d −

1)(#P i
s+q)

2 periods; see Appendix D for details including T̄ i
s .

• Formation phases

(i) Conditioning rules: Player i keeps employing P i
s in all formation phases during the

s−th epoch.

(ii) Accuracy levels: Player i keeps employing a positive integer ni
s in all formation

phases during the s−th epoch. We assume the increase of {ni
s}s: ni

s ≤ ni
s+1 for all s.

(iii) Lengths: We suppose that the lengths of all formation phases in each epoch are the
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same. Thus, let N i
s denote the length of any formation phase during the s−th epoch. We

assume the increase of {N i
s}s: N i

s ≤ N i
s+1 for all s. Furthermore, take a large N i

s such

that (#Δ
ni

s
−i)

#Pi
s ≤ (#A−i)

N i
s, where A−i := Πj �=iAj.

(iv) Belief correspondences: Player i keeps employing a belief correspondence Bi
s :

H−i,N i
s
→ Σ−i(P i

s, n
i
s) in all formation phases during the s−th epoch.

• Transition phases

(i) Lengths: The lengths of transition phases are increasing in time: letting Ki(n) be

the length of the n−th transition phase of player i (from the beginning of the repeated

game), Ki(n) ≤ Ki(n + 1) for all n, and limn→∞ Ki(n) = ∞.

More conditions will be imposed on {ξi
s}, {mi

s}, {ni
s}, {N i

s}, {Ki(n)}, and {Ri
s} to

obtain convergence to ε−Nash equilibrium.

Remark 2 We do not explicitly argue the lengths of stationary phases. However, we

implicitly assume that the lengths of stationary phases grow much more rapidly than the

lengths of the other three phases so that the lengths of active intervals become almost

negligible compared with those of stationary phases.

4.6 Constructing prior belief

Finally, we define the prior belief ρ̃i
∗ of each player i. According to player i’s prior belief

formation process, he keeps employing a temporary belief in the first three phases (i.e.,

stationary, test, and formation ones) of each cycle, and he may have a transition belief

in each transition phase. Given a realized past history hT , suppose that time T + 1 is

in one of the first three phases, and let f i be the temporary belief of player i at time

T + 1. Then, define ρ̃i
∗(hT ) := f i(hT ). On the other hand, suppose that time T + 1 is
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in the k−th period of a transition phase. Let Ki be the length of the transition phase.

Furthermore, let f i denote the temporary belief that was employed until the previous

formation phase and gi denote the temporary belief that will be employed from the next

stationary phase.14 Then, let ρ̃i
∗(hT ) := (1 − k

Ki )f
i(hT ) + k

Ki g
i(hT ).

4.7 Optimal strategies to prior and temporary beliefs

Finally, we evaluate the difference between the smooth approximate optimal strategies

to prior and temporary beliefs. We first provide the following lemma. Recall that

σρ
i := arg maxσi

V vi
i (σi, ρ−i) for opponents strategies ρ−i. Let D2vi(πi) denote the sec-

ond derivative of vi at πi and ‖(D2vi(πi))
−1‖ denote the standard norm of the inverse

(D2vi(πi))
−1. Furthermore, define ‖(D2vi)

−1‖ := sup{‖(D2vi(πi))
−1‖ | πi ∈ Δ(Ai; li)},

where Δ(Ai; li) := {πi | πi[ai] ≥ li for all ai}. Then, we obtain the following lemma.

Lemma 2 For any opponents strategies ρ−i, ρ
′
−i,

‖σρ
i (h0) − σρ′

i (h0)‖ ≤ U#A‖(D2vi)
−1‖

1 − δi

∞∑
T=0

δT
i max

h∈HT

max
j �=i

‖ρj(h) − ρ′
j(h)‖.

Proof. It is easily obtained by applying the implicit function theorem to the first

order condition.

Especially, from Lemma 2 it is derived that the difference between the smooth ap-

proximate optimal strategies to prior and temporary beliefs is inversely proportional

to the length of the next transition phase. Indeed, let σ∗
i denote player i’s true strat-

egy, i.e., the smooth approximate optimal strategy against player i’s prior belief ρ̃i
∗:

σ∗
i := arg maxσi

V vi
i (σi, ρ̃

i
∗). Similarly, for player i’s temporary belief f i, let σf

i :=

arg maxσi
V vi

i (σi, f
i). Define a subset of finite histories Hf i as follows: hT ∈ Hf i if and

14Of course, f i and gi may be the same.
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only if player i employs f i as his temporary belief (at time T + 1) after hT is realized.

Then, the difference between σ∗
i and σf

i is inversely proportional to the length of the next

transition phase as follows.

Lemma 3 For all hT ∈ Hf i,

‖σf
i (hT ) − σ∗

i (hT )‖ ≤ δiU#A‖(D2vi)
−1‖

(1 − δi)2

1

Ki
,

where Ki is the length of the next transition phase (of player i).

Proof. It is immediate from Lemma 2 and the definition of transition belief.

5 Conditions for Convergence

We impose conditions on players’ prior belief formation processes to obtain convergence

to approximate Nash equilibrium. Conditions 1-5 ensure that the probability of reach-

ing an approximate equilibrium after a belief rejection within a certain time interval is

bounded away from zero, which is discussed in Section 6. Then, Conditions 6 and 7 ensure

convergence to approximate equilibrium, which is argued in Section 7.

The first condition requires that active intervals between players be completely asyn-

cronized.

Condition 1. Any active interval of any player does not overlap any active interval

of any other player. In other words, any active interval of any player is included in an

intersection of stationary phases of all other players.

The second one is a bound condition which demands that two main parameters be-

tween players be not extremely different as time proceeds. Let C̄i
T+ denote the maximum

among the lengths of past and present cycles of player i at time T : time T is in the player
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i’s present cycle. Let Ci
T designate the length of the most recent past cycle of player i at

time T .

Condition 2. There exists c̄ ≥ 1 such that, for all i, all j �= i and all T , C̄i
T+�C̄j

T ≤ c̄.

Furthermore, there exists n̄ ≥ 1 such that, for all i, all j �= i and all s, N i
s�N j

s ≤ n̄.

The third condition requires rapid decrease of toleration levels {ξi
s}s compared with

∑
j #Pj

s , and the fourth one demands sufficiently high accuracy levels {ni
s}s so that players

are able to detect wrong beliefs and form accurate beliefs. Furthermore, combining Lemma

3, the fifth condition demands that the lengths of transition phases be sufficiently large

that the (smooth approximate) optimal strategy σf
i against a current temporary belief f i

is eventually (statistically) the same as player i’s true strategy σ∗
i .

Condition 3. For all s and all i, ξi
s ≤ min[ε�3, 1�8(I − 1)(#A + 1)s

∑
j #Pj

s ].

Condition 4. For all i, j and all s, s ≤ ni
sξ

j
s.

Condition 5. For all i, j and all s, s ≤ Ki
sξ

j
s, where Ki

s is the minimum among the

lengths of transition phases in the s−th epoch (of player i).

The sixth condition demands sufficiently many rejections, i.e., a sufficiently large Ri
s,

for switching epochs to obtain that approximate equilibrium is played a certain number of

times in each epoch. Finally, the seventh condition requires sufficiently large (canonical

least) sample sizes {mi
s} to assure that our statistical tests rapidly become so powerful

that those tests reject approximate equilibrium (i.e., almost correct beliefs) at most finite

times (with probability one).

Condition 6. For all i and s,
∑

m≥wi
sRi

s
exp(−1

2
m(pi

s)
2s) ≤ exp(−s), where pi

s := (1
s
)sN i

s

and wi
s := 1

s
(1

2
(pi

s)
s)I .

Condition 7. For all i and all s, Ri
s(#P i

s)
∑

m≥mi
s
exp(−1

8
m(ξi

s)
2) ≤ exp(−s).
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In the remaining of this paper, we assume that our constructing prior beliefs (ρ̃i
∗)i

satisfy Conditions 1-7.

Remark 3 Although Condition 1 is rather restrictive, it is used through this paper only

because it makes our argument simple. We remark that Condition 1 can be much weaken:

it suffices to impose a regular condition which only demands that active intervals between

players be not synchronized most of the time, that is, they be asynchronized in some

proportion of the time.

Remark 4 Strictly speaking, Condition 1 is not needed for the case of two players.

Remark 5 The bound on {N i
s} in Condition 2 can be replaced by the bound on {Ri

s}:

there exists r̄ ≥ 1 such that, for all i, all j �= i, and all s, Ri
s�Rj

s ≤ r̄.

6 Equilibrium Reachable Interval

6.1 Approximate equilibrium state

First of all, we define an approximate equilibrium state. Let σ̂ := (σ̂i)i be an equilibrium

of the repeated game with payoff perturbations: σ̂i := arg maxσi
V vi

i (σi, σ̂−i) for all i.15

Then, we say that time T is in an approximate equilibrium state (abbreviated to AES)

if players have temporary beliefs (f i)i at time T for which there exists an equilibrium σ̂

such that, for all i,

‖f i
j(h) − σf

j (h)‖ ≤ ξi
si

4
for all j �= i and all h,

‖f i
j(h) − σ̂j(h)‖ ≤ ξi

si

4
for all j �= i and all h,

15Clearly, σ̂ is 2 | v | −(subgame perfect) Nash equilibrium of the original repeated game, where

| v |:= maxi | vi |.
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where si denotes the stage of player i’s epoch at time T .

6.2 Equilibrium reachable interval

First of all, we introduce a concept of time interval: equilibrium reachable intervals. Let

si
T denote the stage of player i’s epoch (at time T ), and sT denote the maximum stage

of epoch (at time T ), i.e., sT := maxi s
i
T : we call sT the maximum epoch (at time T ). If

player i is in the same stage as the maximum epoch, i.e., si
T = sT , (at time T ), we say that

player i is a maximum epoch player (at time T ). Furthermore, if sT = s, we say that time

T is in maximum epoch s. Suppose that in maximum epoch s, rejection by maximum

epoch player has occurred for the first time; let player i be the first maximum epoch

player who has made the rejection in maximum epoch s. Then, consider the shortest

time interval such that (1) it starts from the next period to the rejection, that is, the

first period of the next formation phase of player i, say, time T , (2) it includes at least

one active interval of each of all other players, and (3) it ends with the last period of

a transition phase of player i, and (4) all players’ epochs are always no more than s

through the interval, i.e., whatever history happens from time T on, all players’ epochs

are no more than s through the interval. The time interval is called the first equilibrium

reachable interval in maximum epoch s; it is abbreviated to the first ER(s)−interval.

Inductively, suppose that rejection by maximum epoch player has occurred for the first

time after the the n−th ER(s)−interval. Then, the shortest interval satisfying (1), (2),

(3), and (4) is called the (n + 1)−st ER(s)−interval. Otherwise, i.e., there is no interval

satisfying (1), (2), (3), and (4), then the procedure proceeds to ER(s + 1)−intervals.
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6.3 Reaching AES

We give a brief explanation about how AES is reached in an ER(s)−interval with some

positive probability; the detailed argument is given in Appendices A and B. Consider any

ER(s)−interval; let all players epoch stages (sk)k be sufficiently large at the beginning

of the ER(s)−interval. Then, under Conditions 1 and 2, there is a positive probability

that the learning procedure reaches an AES within the ER(s)−interval. Precisely, the

probability of reaching an AES within the ER(s)−interval is at least

(
1

2
)I [(Πklk)

�
k Nk

s ]2c̄.

Indeed, suppose that (maximum epoch) player i’s rejection initiates the ER(s)−interval;

thus, si = s. In the formation phase of player i (whose length is N i
s) just after the player

i’s rejection, a finite history hR with length N i
s can always happen such that hR, together

with player i’s belief correspondence Bi
s, generates a temporary belief f i

R(= Bi
s(h

R
−i)) whose

(smooth approximate) optimal strategy σfR
i leads all other players’ tests to reject their

current beliefs in their first test phases in the ER(s)−interval because σfR
i is statistically

different from their beliefs and player i’s true strategy σ∗
i is (almost) the same as σfR

i

(by Lemma 3 and Condition 5); see Appendix B for how to construct f i
R. The proba-

bility of forming f i
R, i.e., the probability of hR, is clearly (at least) (Πklk)

N i
s . Note that

player i can keep f i
R until the final test phase (of player i) in the ER(s)−interval: even

if f i
R is rejected, it is possible to form f i

R again in the next formation phase. Then, in

the first test phase of any other player j, player j’s powerful test rejects his belief with

almost probability one (i.e., at least more than 1
2
) for the above reason. Then, player j

forms a new belief in the next formation phase (whose length is N j
sj): that is, a finite

history ĥ with length N j
sj can happen (in the next formation phase) such that ĥ, together

with player j’s belief correspondence Bj
sj , generates player j’s new belief ĝj(= Bj

sj (ĥ−j))
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that corresponds to an AES and whose optimal strategy σĝ
j is statistically different from

f i
R; see Appendix B for details. The probability of ĝj, i.e., the probability of ĥ, is at

least (Πklk)
Nj

sj . Thus, player j starts to take a behavior which is almost the same as

an (approximate) equilibrium strategy σĝ
j . As in the case of f i

R, player j also can keep

ĝj in the remainder of the ER(s)−interval. Since it follows from Condition 2 that there

are at most 2c̄ active intervals of each player in the ER(s)−interval,16 the probability of

keeping f i
R and (ĝj)j �=i until the last test phase (of player i) in the ER(s)−interval is at

least (1
2
)I−1Πj �=i((Πklk)

Nj
s )2c̄((Πklk)

N i
s)2c̄−1. Finally, in the last test phase (of player i),

the equilibrium strategies (σĝ
j )j �=i played by all other players make player i’s belief f i

R

rejected with almost probability one (i.e., more than 1
2
) because (σĝ

j )j �=i is statistically

different from f i
R and all other players’ true strategies (σ∗

j)j �=i is (almost) the same as

(σĝ
j )j �=i. Then, player i also can form a new belief ĝi which corresponds to the AES played

by all other players and its probability is at least (Πklk)
N i

s; therefore, the AES is realized

at the end of the ER(s)−interval. Thus, the learning procedure reaches AES within the

ER(s)−interval with at least probability (1
2
)I [(Πklk)

�
k Nk

s ]2c̄.

7 Convergence to ε−Nash Equilibrium

7.1 Exponential inequality on conditional large deviation

A simple conditional extension of a basic fact of large deviations enables us to determine

the (least) sample sizes for players’ statistical tests in their prior belief formation processes

and then obtain all results in this paper. Given a class α, let Sα
m be the event that state

16Precisely, by Condition 2, there are at most (c̄ + 1) active intervals of player i during each

ER(s)−interval (initiated by player i) and there are at most 2c̄ active intervals of any other player

during each ER(s)−interval.
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S occurs between the m−th α−active period and the next α−active period. We show

that, if the probability that S occurs between an α−active period and the next α−active

period has common upper and lower bounds, then the probability that the frequency of

S after the first m α−active periods is not between the bounds decreases exponentially in

the sample size m. Let T α
m (h∞) denote the calendar time of the m−th α−active period

in h∞; T α
m (h∞) < ∞ means that α is active at least m times in h∞. Let dα

m[S](h∞)

designate the number of times that S has occurred between two (subsequent) α−active

periods after the first m α−active periods in h∞.

Lemma 4 Take any history hT ∈ H and any class α such that, for all h < hT , h /∈ α.

Suppose that strategy profile σ and events {Sα
m}m satisfy the following condition: for all m

and all ht ∈ α such that hT ≤ ht, μσ(ht) > 0, and α has been active exactly (m−1)−times

in ht, l ≤ μσ(Sα
m | ht) ≤ L, where l and L are nonnegative numbers. Then, for all ε > 0

and all m = 1, 2, · · · ,

μσ(T α
m < ∞,

dα
m[S]

m
≤ l − ε or

dα
m[S]

m
≥ L + ε | hT ) ≤ 2 exp(−2mε2).

Proof. This lemma is a straightforward generalization of Lemma 1 in Noguchi (2005).

The proof is just the same as that of Lemma 1 in Noguchi (2005).

7.2 AES occurs infinitely many times

The initial step to obtain convergence to approximate Nash equilibrium is to show that

with probability one, if rejection occurs infinitely many times, AES occurs at least some

fixed number of times in each maximum epoch. First of all, combining Conditions 3 to

7 with Lemma 4, we show that if rejection occurs infinitely many times, then all players

make infinite rejections.

27



Lemma 5 With μσ∗−probability one, if rejection occurs infinitely many times, then all

players make infinite rejections.

Proof. See Appendix A.

Lemma 5 implies that every player’s epoch stage goes to infinity as time proceeds:

for all i, si
T → ∞ as T → ∞. Note also that, by Condition 2, there are at most 2c̄ test

phases of any player in any ER(s)−interval so that, for each s, there are at least (Rs�2c̄)

ER(s)−intervals in maximum epoch s, where Rs := mini R
i
s. As discussed in the previous

section, the probability of reaching AES in any ER(s)−interval in which all players’ epoch

stages are sufficiently large is at least (1
2
)I [(Πklk)

�
k Nk

s ]2c̄. From Condition 6, recall that

pi
s = (1

s
)sN i

s. Let p
s

:= mini p
i
s and N̄s := maxi N

i
s; thus, p

s
= (1

s
)sN̄s. Therefore, there

exists s̄ such that, for all s ≥ s̄, (1
2
)I [(Πklk)

�
k Nk

s ]2c̄ ≥ p
s
. Then, combining this lower

bound p
s

with Lemmas 4 and 5, we obtain the result that AES is reached (at least) in

proportion 1
2
p

s
of ER(s)−intervals.

Lemma 6 With μσ∗−probability one, if rejection occurs infinitely many times, then there

exists s′ such that, for each s ≥ s′, AES is reached at least 1
2
p

s
(Rs�2c̄) times in the first

(Rs�2c̄) ER(s)−intervals.

Proof. See Appendix B.

From Lemmas 5 and 6 it follows that, for each s ≥ s′, AES is reached in (at least) one

of ER(s)−intervals. Therefore, we obtain the following corollary.

Corollary 1 With μσ∗−probability one, if there are infinitely many rejections, then AES

occurs infinitely many times.
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7.3 No rejection from some period on

The second step is to prove that from some period on, no rejection occurs. For that

purpose, it is convenient to introduce several concepts about test procedure. Suppose

that in a current test phase of player i (in epoch s of player i), he employs (P i
s+q, (m

i
s+q +

d − 1)): player i has used P i
s+q (d − 1)−times in past test phases (during epoch s of

player i). Then, as described in Section 4, for each class α ∈ P i
s+q, player i starts to

collect samples (i.e., opponents realized actions) in α−active periods from the beginning

of the current test phase, and keeps doing so until obtaining enough samples, i.e., (at

least) (mi
s+q + d − 1) samples, and then checks whether the empirical distribution Di(α)

of the collected (enough) samples is within ξi
s of current belief f i(α) (at the end of the

nearest test phase);17 or if f i is rejected (by another test), then player i stops collecting

samples in α−active periods and terminates the test. For convenience, the test procedure

in α−active periods will be called the ( d−th) α−test (in epoch s of player i); thus, by

the definition of player i’s prior belief formation process, for all α ∈ P i
s+q, the (d−th)

α−test (with the least sample size (mi
s+q + d− 1)) begins from the first period of the test

phase onward. Furthermore, we say that the (d−th) α−test is effective at time T if the

(d−th) α−test is collecting samples at time T .18 Especially, letting mα(h∞) denote the

number of samples that the α−test obtains in h∞, we say that current belief f i is rejected

by the (d−th) α−test (at the end of a test phase of player i) if, for the (d−th) α−test,

enough samples just have been obtained (up to the last period of the test phase), i.e.,

17Since P i
s ≤ P i

s+1 for all s and f i is generated by P i
s, f i(α) is well-defined for each α ∈ P i

s+q:

f i(α) := f i(h) for h ∈ α.
18We assume that even if player i has obtained enough samples, i.e., (mi

s + d − 1) samples for the

α−test, he still keeps collecting samples in α−active periods until reaching the last period of the nearest

test phase.
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mα ≥ mi
s + d − 1,19 but20

‖Di
j(α) − f i

j(α)‖ > ξi
s for some j �= i.

Furthermore, we say that f i is rejected with type I error if f i is rejected by some α−test

but f i is statistically accurate in α−active periods, i.e., ‖f i
j(h) − σ∗

j(h)‖ ≤ ξi
s�4 for all

j �= i in all α−active periods (since the α−test started) in which (enough) samples have

been collected. In addition, if f i is rejected with type I error, we say that the rejection is

of type I error.

Condition 7 implies that players’ tests rapidly become powerful as time proceeds so

that their tests make type I error at most finite times. Indeed, we obtains the following

result.

Lemma 7 With μσ∗−probability one, there are at most finite rejections of type I error.

Proof. See Appendix B.

Note that even if rejection occurs in an AES, the probability of forming the same

belief again (in the next formation phase) as one that corresponds to the AES is at least

minj(Πklk)
Nj

s ; for any sufficiently large s, minj(Πklk)
Nj

s = (Πklk)
N̄s ≥ (1

s
)sN̄s = p

s
. Thus,

even when rejection occurs in an AES, the AES survives with at least probability p
s
.

Therefore, we obtain the following lemma.

Lemma 8 With μσ∗−probability one, if rejection occurs infinitely many times, then there

exists s̄ such that, for each s ≥ s̄, the following event happens at least (1
2
p

s
)I(Rs�2c̄)−times

in maximum epoch s: an AES, which has been reached in an ER(s)−interval, survives

through the first (I − 1) rejections after the ER(s)−interval.
19Let mα denote the number of samples that have been obtained until the last period of the test phase.
20Since f i is generated by P i

s, f i(β) is well-defined for all β ∈ P i
s: f i(β) := f i(h) for h ∈ β. Note that

for all α ∈ P i
s+q there exists a unique β ∈ P i

s such that β ⊃ α; thus, f i(α) = f i(β).
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Proof. See Appendix B.

We say that player i’s (temporary) belief in an AES is under correct testing at time

T if any effective test of player i at time T has started after reaching the AES. If all

players’ beliefs in an AES are under correct testing, we say that the AES is under correct

testing. Note that if a player’s belief under correct testing is rejected, then the rejection

is of typer I error. Therefore, Lemmas 7 and 8 induce the following lemma.

Lemma 9 With μσ∗−probability one, if rejection occurs infinitely many times, AES un-

der correct testing occurs infinitely many times.

Proof. Suppose that there are infinitely many rejections. Then, from Lemmas 7

and 8, there exists s̄ such that (1) for all s ≥ s̄, there is no rejection of type I error

during the s−th epoch of any player, (2) for each s ≥ s̄, AES, which is realized in an

ER(s)−interval, survives through the first (I −1) test rejections after the ER(s)−interval

at least (1
2
p

s
)I(Rs�2c̄)−times in maximum epoch s. However, then, from (1) it follows

that any rejection (from some period on) is not of type I error. Recall the way of reach-

ing an AES in an ER(s)−interval: letting player i be the maximum epoch player who

initiates the ER(s)−interval, in the final test and formation phases (of player i) in the

ER(s)−interval, player i rejects his wrong belief and forms a belief that corresponds to

an AES played by all other players, so that the process reaches the AES: the player i’s

rejection terminates all player i’s tests (that have started before the rejection). Thus,

player i’s belief is under correct testing (just after the AES has been reached) so that if

player i makes the first rejection, then it must be of type I error. Since any rejection is

not of type I error, the first rejection is done by some other player, say, j1. Note that

after the first rejection, player j1’s belief is under correct testing because he rejected his

previous belief, but formed the same belief as the previous one so that any effective test
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of player j1 has started after the first rejection. Therefore, the second rejection is done

by a player other than i and j1. We repeat this argument so that all players’ beliefs are

under correct testing after the (I − 1)−st rejection: the AES is under correct testing.

From this and (2) it follows that, for each s ≥ s̄, AES under correct testing occurs at

least (1
2
p

s
)I(Rs�2c̄)−times in maximum epoch s. Thus, the desired result easily follows.

No rejection from some period immediately follows from Lemmas 7 and 9.

Lemma 10 With μσ∗−probability one, there are at most finite rejections: no rejection

occurs from some period on.

Proof. By Lemma 9, with μσ∗−probability one, if rejection occurs infinitely many

times, AES under correct testing occurs infinitely many times. It means that AES under

correct testing is rejected infinitely many times. However, then, it, in turn, implies that

there are infinitely many rejections of type I error. This contradicts Lemma 7. Thus,

there are at most finite rejections.

7.4 ε−Learning to predict true strategies

Finally, we show that no rejection from some period implies convergence to approximate

Nash equilibrium: the learning procedure has a kind of type II error free property. For

that purpose, as shown in Section 3, it suffices to obtain that no rejection from some period

implies that each player i’s prior belief ρ̃i
∗ ε−learns to predict his opponents true strategies

σ∗
−i. The basic argument for obtaining the merging is as follows: note that all players

keep some beliefs (f i)i forever from some period, say, time T0, because of no rejection

from some period; thus, each player i also keeps being in some epoch, say, the si−th
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epoch, forever from time T0. Furthermore, from this, Condition 5, and Lemma 3, (f i)i

and (σf
i )i can be identified with (ρi

∗)i and (σ∗
i )i respectively. Therefore, if some player’s

prior belief does not ε−learn to predict his opponents true strategies, then, for some i0

and some j0 �= i, ‖f i0
j0

(htk) − σf
j0

(htk)‖ > ε for infinitely many tk. Then, for all q, there

exists αq ∈ P i0
si0+q

such that htkn
∈ αq for all n; {tkn}n is an infinite subsequence of {tk}k;

this means that the αq−test obtains enough samples. Furthermore, from Properties (3.1)

and (3.2) of {P i
s}s,i (see Section 3) it follows that P i0

si0+q
is a conditioning rule of f i0

j0
for

all q, and for any δ > 0, there exists q̄ such that, for all q ≥ q̄, P i0
si0+q

is a δ−approximate

conditioning rule of σf
j0

. From these it follows that, for any sufficiently large q, σf
j0

(h)’s

are almost the same in all αq−active periods while ‖f i0
j0

(αq)−σf
j0

(h)‖ > ε in all αq−active

periods. Since the αq−test obtains enough samples, it, together with Lemma 4, implies

that the empirical distribution Di0
j0

(αq) of the collected (enough) samples is also far from

f i0
j0

, i.e., ‖Di0
j0

(αq) − f i0
j0

(αq)‖ > ε�2 ≥ 3ξi0
si0

�2 with almost probability one. Thus, the

αq−test rejects f i0 with almost probability one. Therefore, for any sufficiently large q,

there exists αq ∈ P i0
si0+q

such that the αq−test (which starts after time T0) rejects f i0

with almost probability one: there are infinitely many α−tests (which start after time T0)

that reject f i0 with almost probability one. It, together with the Borel-Cantelli argument,

implies that f i is rejected in some test phase (after time T0). It contradicts no rejection

from time T0. Therefore, we obtain the following proposition, which is exactly the second

statement of Theorem1.

Proposition 1 With μσ∗−probability one, for all i, player i’s prior belief ρi
∗ ε−learns to

predict opponents true strategies σ∗
−i: there exists T̂ such that, for all T ≥ T̂ , all i, and

all j �= i, ‖ρ̃i
∗,j(hT ) − σ∗

j (hT )‖ ≤ ε.

Proof. See Appendix B.
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8 ε−Merging with Any Learnable Set

Although each player’s prior belief constructed in the previous section ε−learns to predict

most of strategies in any learnable set, it is still not sufficient for ε−learning to predict

all strategies in any learnable set. There are two reasons: one reason is that each player

possibly takes a strategy whose mixed actions put all weight on some pure actions so that

multiple such strategies may always generate the same history in any formation phase.

It implies that some of those strategies may not be chosen as a temporary belief even if

it is actually played. The second reason is that the (rapid) decrease of toleration levels

{ξi
s}s may cause infinitely repeated rejection against some strategies in some learnable set.

Accordingly, we need to modify each player’s prior belief formation process. Specifically,

each player i slightly changes the way of testing in each test phase and belief formation

in each formation phase: in each test phase, player i chooses between some constant

toleration level ξ̄
i
and the toleration level ξi

s in the current epoch s (of player i) to employ

for all α−tests that start from (the beginning of) the test phase. Furthermore, in each

formation phase, player chooses between “singular” beliefs and other ones.

Precisely, suppose that player i uses (P i
s+q, (ms+q + d − 1)) for the test phase: player

i has used P i
s+q (d − 1)−times in past test phases during epoch s. Player i first collects

samples during the test phase, and then obtains empirical distributions for those classes

(in P i
s+q) which have obtained enough samples during the test phase. Let C denote the

set of classess (in P i
s+q) which have obtained enough samples (i.e., m̃α ≥ ms+q + d − 1)

during the test phase and (Di(α))α∈C denote the family of emprical distributions for C.

Then, at the end of the test phase, player i performs a preliminary test to choose a

toleration level, i.e., ξ̄
i

or ξi
s by checking the differences between (Di(α))α∈C. Precisely,

if there exist α, α′ ∈ C and β ∈ P i
s−1 such that α, α′ ⊂ β and ‖Di(α) − Di(α′)‖ > ξ̄

i
,
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then player i recognizes that opponents strategies are complicated, as he predicted, and

employs ξi
s for all α−tests (that have started from the test phase). Otherwise, player i

recognizes opponents strategies as simpler than he predicted, and employs ξ̄
i
. Then, the

remaining test procedure is quite the same as in the previous sections: when ξ̄
i

(resp.

ξi
s) is employed at the end of the test phase, it is used for any α−test that has started

from the test phase: once enough samples have been obtained for some α−test, player

i uses ξ̄
i

(resp. ξi
s) to determine whether f i is statistically different from the empirical

distribution Di(α) of those samples (at the end of the nearest test phase). In other words,

if ‖f i
j(α) − Di

j(α)‖ > ξ̄
i
(resp. ‖f i

j(α) − Di
j(α)‖ > ξi

s), player i rejects f i (at the end of

the test phase).21

To modify belief formation, let us first define singular beliefs in each epoch s. Define

∂Σ−i(P i
s, n

i
s) := {σ−i ∈ Σ−i(P i

s, n
i
s) | ∃j �= i, ∃α ∈ P i

s, ∃aj(σj(α)[aj] < 1
s
)}.22 Then, any

opponents strategies in ∂Σ−i(P i
s, n

i
s) is called a singular belief of player i (in epoch s):

∂Σ−i(P i
s, n

i
s) is the set of all singular beliefs (in epoch s). Since Z i

s := #∂Σ−i(P i
s, n

i
s) < ∞,

we arbitrarily number strategy profiles in ∂Σ−i(P i
s, n

i
s): ∂Σ−i(P i

s, n
i
s) = {σ1

−i, · · · , σ
Zi

s
−i}.

Let σz
−i(hT−1)[a−i] := Πj �=iσ

z
j(hT−1)[aj]. Furthermore, let az

−i(hT−1) := arg mina−i
σz
−i(hT−1)[a−i]

for 1 ≤ z ≤ Z i
s − 1, and a0

−i(hT−1) := arg mina−i
σ

Zi
s

−i(hT−1)[a−i]. Then, we slightly change

temporary belief formation as follows: let the length of each formation phase in epoch s

(of player i) be one period longer for each s: (N i
s + 1) periods. Then,

(1) suppose that time T is the next period to the first rejection by player i in epoch

s (of player i): it is the first period of a formation phase. Letting hT−1 be a realized

past history, if a1
−i(hT−1) is played at time T , player i employs his belief correspondence

21Since P i
s ≤ P i

s+q and f i is generated by P i
s, for each α ∈ P i

s+q, f i(α) is well-defined: f i(α) := f i(h)

for h ∈ α.
22Since σj is generated by P i

s, σj(α) is well-defined for each α ∈ P i
s: σj(σ) := σj(h) for h ∈ α.
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Bi
s : H−i,N i

s
→ Σ−i(P i

s, n
i
s): then player i obtains a realized history h−i (of opponents

actions with length N i
s) in the remaining periods of the formation phase and then forms a

new belief gi = Bi
s(h−i) at the end of the formation phase, as before. Otherwise, i.e., any

other opponents action profile is played at time T , player i chooses σ1
−i as a new belief at

the end of the formation phase.

(2) In general, suppose that time T is the next period to the (nZi
s + z)−th rejection by

player i in epoch s of player i, where n is a nonnegative integer and z is a nonnegative

integer less than Z i
s. Then, if az

−i(hT−1) is played at time T , then player i employs Bi
s,

obtains a realized history h−i (of opponents actions) in the remaining periods of the

formation phase and forms a new belief gi = Bi
s(h−i). Otherwise, player i chooses σz

−i as

a new belief.

The following condition is imposed on {ξ̄i}i to obtain the property of merging with

any learnable set. It demands that constant toleration levels have certain upper bounds.

Condition 8. For all i and all s, ξi
s ≤ ξ̄

i ≤ min[ε�3, 1�8(I − 1)(#A + 1)].

We show the second result, i.e., Proposition 2, which implies the first statement of

Theorem 1. First of all, in order to characterize a learnable set correspondence, we need to

slightly extend the generation of strategies by conditioning rules. The following definition

simply says that, for any ε > 0, the regularity of σ−i is (almost surely) ε−approximated

by one of conditioning rules {P i
s}s from some period on.

Definition 7 We say that opponents strategies σ−i are eventually generated by a (count-

able) set of conditioning rules {P i
s}s with a player’s strategy σi if, for all ε > 0, there exist

an index s0, a μ(σi,σ−i)
−probability one set Z0, and a time function T0 : Z0 → N such

that, for all α ∈ P i
s0

and all hT , h′
T ′ ∈ α, if there exist h∞, h′

∞ ∈ Z0 such that hT < h∞
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and T ≥ T0(h∞) and h′
T ′ < h′

∞ and T ′ ≥ T0(h
′
∞), then ‖σj(hT ) − σj(h

′
T ′)‖ < ε for all

j �= i.

Let EG({P i
s}s, σi) denote the set of all opponents strategies eventually generated by

{P i
s}s with σi. Then, Noguchi (2005) characterizes a learnable set correspondence by

using the following result:

Proposition (Noguchi (2005)) For any prior belief ρ̃i (of player i), there exists a count-

able set {P i
s}s of conditioning rules such that, for all σi, M−i(ρ̃

i, σi) ⊂ EG({P i
s}s, σi).

From this characterization result and the conditioning rule argument in Section 3 it

suffices to show that, for all σi, prior belief ρ̃i
∗ ε−learns to predict all opponents strategies

in EG({P i
s}s; σi). The proof is almost similar to that of convergence in the previous

section. Thus, we obtain the following proposition.

Proposition 2 For all i, player i’s prior belief ρ̃i
∗ ε−learns to predict σ−i with σi for all

σ−i ∈ EG({P i
s}s; σi) and all σi.

Proof. See Appendix C.

Finally, we remark that the modification on (ρ̃i
∗)i in this section does not change the

convergence result in the previous section: the modified prior beliefs (ρ̃i
∗)i also (almost

surely) converges to ε−Nash equilibrium; the proof is quite the same as in the previous

sections except the argument about time interval in which approximate equilibrium is

reached with some positive probability; see Appendix D for details.

9 Implication to Impossibility Results

We argue the implication of our positive result to impossibility results in Foster and

Young (2001) and Nachbar ((1997), (2005)). Foster and Young (2001) show that under
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perfect rationality (i.e., exact optimal behavior), given any prior beliefs, it is impossible

to learn to play Nash equilibrium in almost all (stage) games near the matching pennies

one. On the other hand, our positive result shows that under bounded rationality (i.e.,

smooth approximate optimal behavior), it is fairly possible to learn to play approximate

Nash equilibrium for any stage game and any discount factors. From these we conclude

that Foster and Young’s impossibility crucially depends on perfect rationality. In other

words, their impossibility is not robust to bounded rationality (i.e., approximate optimal

behavior).

Our positive result also has the implication to Nachbar’s impossibility. Following

Nachbar ((1997), (2005)), let us consider any infinitely repeated game of two players

with a certain weak condition.23 First of all, we slightly extend the evil twin property in

Nachbar (2005) for our purpose: we say that a (player j’s) pure strategy sj is an (ε, ε)−evil

twin of a (player i’s) pure strategy si if si is not ε−uniformly optimal against any prior

belief ρ̃i which ε−learns to predict sj with si;
24 note that the original definition in Nachbar

(2005) corresponds to the case that ε = 0. Accordingly, it is easy to see that Nachbar’s

impossibility result still holds for any sufficiently small ε, ε > 0: letting Σ̂i denote a set of

player i’s strategies, for the given infinitely repeated game, there exists η > 0 such that, for

all 0 ≤ ε, ε ≤ η, if any prior beliefs ρ̃1 and ρ̃2 have the property of ε−learnability25 on any

23Nachbar (1997) and (2005) requires that a stage game of each player satisfy the NWD condition or

the MM condition.
24σi is ε−uniformly optimal against ρ̃i if for any finite history h, Vi(σi, ρ̃

i | h) + ε ≥ Vi(σ′
i, ρ̃

i | h) for

all σ′
i.

25We say that prior beliefs (ρ̃1, ρ̃2) satisfy ε−learnability on Σ̂1 × Σ̂2 if, for all i = 1, 2 and all j �= i, ρ̃i

ε−learns to predict all opponent strategies in Σ̂j with all player i’s own strategies in Σ̂i.
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product Σ̂1×Σ̂2 of strategy sets that26 satisfies Condition CSP,27 then they cannot satisfy

ε−consistency on Σ̂1×Σ̂2, i.e., (σ1, σ2) /∈ Σ̂1×Σ̂2 for any ε−uniformly optimal strategies σ1

and σ2 to ρ̃1 and ρ̃2; Nachbar original result corresponds to the case that ε = 0. Therefore,

as opposed to Foster and Young’s impossibility, Nachbar’s impossibility result is robust

to bounded rationality (i.e., ε−optimal behavior) and approximate learning (i.e., ε−weak

merging). On the other hand, according to the argument on learnable set in Noguchi

(2005) and the previous argument in this paper, we can easily see that, for any ε > 0 and

any Σ̂1 × Σ̂2 that satisfies 0−learnability28 (and Condition CSP), there exist (ρ̃1
∗, ρ̃

2
∗) in

our constructing class of prior beliefs such that (ρ̃1
∗, ρ̃

2
∗) satisfy ε−learnability on Σ̂1 × Σ̂2.

Therefore, Nachbar’s impossibility result applies to (ρ̃1
∗, ρ̃

2
∗), i.e., (σ∗

1, σ
∗
2) /∈ Σ̂1 × Σ̂2 for

any smooth ε−optimal strategies (σ∗
1, σ

∗
2) against (ρ̃1

∗, ρ̃
2
∗). Roughly speaking, this means

that some player j’s true strategy σ∗
j cannot be learnable uniformly in Σ̂i in the sense

that ρ̃i
∗ cannot ε−learn to predict σ∗

j with all player i’s strategies in Σ̂i. The point is that

this negative fact does not exclude the possibility that ρ̃i
∗ ε−learns to predict σ∗

j with σ∗
i ,

that is, (σ∗
1, σ

∗
2) converges to (approximate) Nash equilibrium. Indeed, as we have shown

in Theorem 1, (σ∗
1, σ

∗
2) (almost surely) converges to ε−Nash equilibrium. Therefore, we

have obtained the following possibility result.

Theorem 3 For any ε, ε > 0 and any product Σ̂1 × Σ̂2 of strategy sets that satisfies

26Strictly speaking, Nachbar (2005) only requires the learnability on pure strategies in Σ̂1 × Σ̂2, which

is called weak learnability.
27Roughly speaking, Condition CS requires the diversity of strategies in Σ̂1 and those in Σ̂2 and the

symmetry between strategies in Σ̂1 and those in Σ̂2. Condition P demands that for each i = 1, 2, any

(mixed) behavior strategy in Σ̂i can be approximated by some pure behavior strategy in Σ̂i in some sense.

See Nachbar (2005) for details.
28Σ̂1 × Σ̂2 is said to satisfy ε−learnability if there exist prior beliefs (ρ̃1, ρ̃2) such that (ρ̃1, ρ̃2) satisfy

ε−learnability on Σ̂1 × Σ̂2.
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0−learnability and Condition CSP, there exist prior beliefs (ρ̃1
∗, ρ̃

2
∗) and those smooth

ε−optimal strategies (σ∗
1, σ

∗
2) such that although (ρ̃1

∗, ρ̃
2
∗) satisfy ε−learnability on Σ̂1 × Σ̂2

and Nachbar’s impossibility holds for (σ∗
1, σ

∗
2) on Σ̂1 × Σ̂2, (σ∗

1, σ
∗
2) (almost surely) con-

verges to ε−Nash equilibrium.

Theorem 3 insists that under bounded rationality (i.e., ε−optimal behavior) and ap-

proximate learning (i.e., ε−weak merging), although Nachbar’s impossibility still holds,

it is fairly possible for players to learn to play approximate Nash equilibrium. In other

words, our positive result clarifies that Nachbar’s impossibility is different from the impos-

sibility of learning to play approximate Nash equilibrium in a general sense, and that the

richness (and symmetry) of players’ learnable sets does not necessarily prevent Bayesian

learning from converging to approximate Nash equilibrium.

10 Appendix A

10.1 Belief leading to opponents rejections

First of all, we have to show that player i can always form a new belief that leads opponents

to reject their current beliefs. In this subsection, we provide several classes of beliefs and

strategies that can lead to such opponents rejections, according to players’ payoffs and

discount factors. Let v∗
i denote the player i’s maximun payoff, i.e., v∗

i := maxa ui(a),

and vi denote the player i’s minimax payoff, that is, vi := minπ−i
maxai

ui(ai, π−i); let

a∗ ∈ arg maxa ui(a), π−i ∈ arg minπ−i
maxai

ui(ai, π−i), and ai ∈ arg maxai
u(ai, π−i).

• The case in which there is no weakly dominant action

Take ã−i such that maxai
ui(ai, ã−i) > ui(a

∗
i , ã−i) and let ãi ∈ arg maxai

ui(ai, ã−i).

Furthermore, given opponents actions a−i := (aj)j �=i, let πa
j denote the mixed action of
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player j such that πa
j [aj] = 1, and let πa

−i := (πa
j )j �=i. Then, define π−i[t] := tπa∗

−i +

(1 − t)πã
−i. Consider the following player i’s belief ρ̃i

t: for all j �= i, player j always plays

πj[t]. The smooth approximate optimal strategy σt
i to ρ̃i

t is to always play BRvi
i (π−i[t]) :=

arg maxπi
ui(πi, π−i[t])+vi(πi): σt

i(h) := BRvi
i (π−i[t]) for all h. Therefore, given any small

(symmetric) payoff perturbation, for all h ∈ H , σ0
i (h)[a∗

i ] ≈ 0 and σ1
i (h)[a∗

i ] > 1
#Ai+1

.

Since σt
i(h) is Lipschitz continuous in t, for any 0 < c ≤ 1

#Ai+1
, there exists 0 ≤ tc ≤ 1

such that σtc
i (h)[a∗

i ] = c for all h ∈ H .

• The case in which weakly dominant action exists

Let A∗
i denote the set of weakly dominant actions, and fix any a∗

i ∈ A∗
i and ā−i ∈

arg mina−i
[ui(a

∗
i , a−i)−maxai /∈A∗

i
ui(ai, a−i)]. Furthermore, define ūi := maxai /∈A∗

i
ui(ai, ā−i)

and u∗
i := maxai

ui(ai, ā−i)(= ui(a
∗
i , ā−i)); set āi ∈ arg maxai /∈A∗

i
ui(ai, ā−i).

(1) δi = 0, or δi > 0 and v∗
i = vi

We consider two subcases according to the values of u∗
i and ūi.

(1.1) u∗
i > ūi

It means that weakly dominant actions always give player i more payoffs than any

other actions in a stage game. Thus, given any sufficiently small payoff perturbation,

player i always play an (almost) fixed mixed action (which puts almost all weight on

weakly dominant actions) through a repeated game, which enables us to ignore player i

through our argument.

(1.2) u∗
i = ūi

Since āi /∈ A∗
i , there exists ã−i such that ui(āi, ã−i) < ui(a

∗
i , ã−i); clearly, ã−i �= ā−i

because u∗
i = ūi. Let π−i[t] := tπā

−i + (1 − t)πã
−i. The remaining is the same as the case

of no weakly dominant action: given any small (symmetric) payoff perturbation, for all
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h ∈ H , σ0
i (h)[āi] ≈ 0 and σ1

i (h)[āi] > 1
#Ai+1

. Since σt
i(h) is Lipschitz continuous in t (for

all h), for any 0 < c ≤ 1
#Ai+1

, there exists 0 ≤ tc ≤ 1 such that σtc
i (h)[a∗

i ] = c for all

h ∈ H .

(2) δi > 0 and v∗
i > vi

(2.1) Multiple weakly dominant actions

Fix any two weakly dominant actions, denoted by a∗
i and b∗i , and take a sufficiently

large integer T̄ such that (1 − δi)vi + (δi − δT̄
i )v∗

i > (1 − δi)vi + (δi − δT̄
i )vi: for example,

T̄ = 2. Then, letting m(T ) be the largest integer such that m(T )T̄ + 1 ≤ T , consider the

following player i’s belief ρ̃i
x: for all j �= i, player j takes a minimax action πj (against

player i) at time mT̄ + 1 for all m = 0, 1, 2, · · · , and player j takes a maximum action

a∗
j at any other time T (�= mT̄ + 1 for all m) if player i plays a (pure) action x at time

m(T )T̄ + 1, and he takes πj at any other time T if player i plays any other action than

x at time m(T )T̄ + 1. Given any sufficiently small payoff perturbation, if x is a weakly

dominant action, player i’s smooth approximate optimal strategy to ρ̃i
x is to play a fixed

mixed action (which puts almost probability one on x) at time mT̄ +1 for all m and play a

fixed (mixed) action (that puts almost all weight on weakly dominant actions) at all other

times. Thus, the smooth approximate optimal strategy σt
i to ρ̃i

t := tρ̃i
a∗

i
+(1−t)ρ̃i

b∗i
has the

following properties: σ0
i (h)[a∗

i ] ≈ 0 and σ1
i (h)[a∗

i ] ≈ 1 for all h ∈
⋃

m HmT̄ . Furthermore,

since σt
i(h) is Lipschitz continuous in t, for any 0 < c < 1, there exists 0 ≤ tc ≤ 1 such

that σtc
i (h)[a∗

i ] = c for all h ∈
⋃

m HmT̄ .

(2.2) Unique weakly dominant action

Let a∗
i denote the unique weakly dominant action. We consider three subcases accord-

ing to the relation between the player i’s discount factor and stage game payoffs.
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(2.2.1) (1 − δi)ūi + δiv
∗
i > (1 − δi)u

∗
i + δivi

Take a sufficiently large integer T̄ such that (1−δi)ūi +(δi−δT̄
i )v∗

i > (1−δi)u
∗
i +(δi−

δT̄
i )vi. Then, consider the following player i’s belief ρ̃i

x: for all j �= i, player j plays ā−i at

time mT̄ + 1 for all m = 0, 1, 2, · · · , and player j plays a∗
j at any other time T (�= mT̄ + 1

for all m) if player i takes x at time m(T )T̄ + 1, and player j plays πj at any other time

T (�= mT̄ +1 for all m) if player i takes any other action than x at time m(T )T̄ +1. Given

any sufficiently small payoff perturbation, the smooth approximate optimal strategy σt
i

to ρ̃i
t := tρ̃i

a∗
i
+ (1− t)ρ̃i

āi
has the following properties: σ0

i (h)[a∗
i ] ≈ 0 and σ1

i (h)[a∗
i ] ≈ 1 for

all h ∈
⋃

m HmT̄ . Since σt
i(h) is Lipschitz continuous in t, for any 0 < c < 1, there exists

0 ≤ tc ≤ 1 such that σtc
i (h)[a∗

i ] = c for all h ∈
⋃

m HmT̄ .

(2.2.2) (1 − δi)ūi + δiv
∗
i = (1 − δi)u

∗
i + δivi

In this case, the order of taking the limits is reverse. We first take a sufficiently small

(symmetric) payoff perturbation, and then, take a sufficiently large integer T̄ . Consider

the following player i’s belief ρ̃i
x: for all j �= i, player j takes āj at time mT̄ + 1 for all

m = 0, 1, 2, · · · , and he takes a∗
j at any other time T (�= mT̄ + 1 for all m) if player i plays

x at time m(T )T̄ + 1, and takes πj at any other time T (�= mT̄ + 1 for all m) if player i

takes any other action than x at time m(T )T̄ +1. Then, letting ρ̃i
t := tρ̃i

a∗
i
+(1− t)ρ̃i

āi
, the

smooth approximate optimal strategy σt
i to ρ̃i

t has the following properties: σ0
i (h)[a∗

i ] ≈ 1
2

and σ1
i (h)[a∗

i ] ≈ 1 for all h ∈
⋃

m HmT̄ . Since σt
i(h) is Lipschitz continuous in t, for any

1
2

< c < 1, there exists 0 ≤ tc ≤ 1 such that σtc
i (h)[a∗

i ] = c for all h ∈
⋃

m HmT̄ .

(2.2.3) (1 − δi)ūi + δiv
∗
i < (1 − δi)u

∗
i + δivi

In this case, given any sufficiently small payoff perturbation, player i always plays an

(almost) fixed mixed action (that puts almost all weight on a∗
i ) through a repeated game,

which allows us to ignore player i through our argument.
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Finally, let us consider the conditioning rules of the above beliefs. For all i, all ai, a
′
i ∈

Ai, and all T̄ = 1, 2, · · · , define a partition P(T̄ , ai, a
′
i) := {αT̄ , αai

, αa′
i
, α−}, where αT̄ :=

⋃
m HmT̄ , αx := {hT | T �= mT̄ for all m, x is realized at time m(T )T̄ + 1 in hT} for

x = ai, a
′
i, and α− := {h∞ | T �= mT̄ for all m, any other action than ai and a′

i is realized

at time m(T )T̄ + 1 in hT}. As shown above, P(T̄ , ai, a
′
i) is the conditioning rule of a

belief ρ̃i
T (that leads to opponents rejections): Pρ̃i

T
= P(T̄ , ai, a

′
i). Then, in additon to

(3.1) and (3.2), we assume through the remainder of this paper that (3.3) for all i, i′, all

ai, a
′
i ∈ Ai, and all T̄ = 1, 2, · · · , there exists s′ such that P(T̄ , ai, a

′
i) ≤ P i′

s′. It means that

each player’s belief that leads to his opponents rejections are eventually learnable for all

players including his opponents.

10.2 All players make infinite rejections

10.2.1 Rejecting opponents beliefs in their initial epochs

In the remainder of Appendix A, we argue how opponents beliefs are rejected in their

first test phases in a given ER(s)−interval (initiated by maximum epoch player i); it is

important to assume that (maximum epoch) player i’s epoch stage s is sufficiently large

and any other player (i.e., opponent)’s index sj + qj of her conditioning rule Pj
sj+qj in the

(first) test phase is also sufficiently large at the beginning of the ER(s)−interval. Note

that player j(�= i) may be in a very early epoch stage: sj may be quite small. Suppose

that (maximum epoch) player i’s belief was rejected in the previous test phase. Then,

player i forms a temporary belief such that it makes his opponents reject their beliefs.

Since s and sj + qj are sufficiently large, by Properties (3.1), (3.2), and (3.3), without

loss of generality we may assume that Pρ̃i
t
≤ P i

s and Pρ̃i
t
≤ Pj

sj+qj for all j �= i. Note also

that each player j(�= i) temporary belief gj
0 (at the beginning of the ER(s)−interval) is
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generated by Pj
sj .

In the remainder of this paper we only consider the case of multiple weakly dominant

actions in which δi > 0 and v∗
i > vi; all other cases are quite similar and we omit them.

• The case of multiple weakly dominant actions: δi > 0 and v∗
i > vi

In the previous argument we have shown that in this case, σt
i has the following prop-

erties: there exist a∗
i ∈ Ai and T̄ such that, for any 0 < c < 1, there exists 0 ≤ tc ≤ 1

such that σtc
i (h)[a∗

i ] = c for all h ∈
⋃

m HmT̄ . Furthermore, notice that the condition-

ing rule Pρ̃i
t

of ρ̃i
t is the following partition: Pρ̃i

t
= P(T̄ , ai, bi) = {αT̄ , αai

, αbi
, α−};

especially, recall that αT̄ =
⋃

m HmT̄ and αa∗
i

= {hT | T �= mT̄ for all m, and a∗
i is

realized at time m(T )T̄ + 1 in hT}. Since player j’s current belief gj
0 is generated by

Pj
sj for all j �= i, #{gj

0,i(h) ∈ Δ(Ai) | h ∈ H, j �= i} ≤
∑

j �=i #Pj
sj . Then, since

σt
i(h)[a∗

i ] is Lipschitz continuous in t, from Condition 3 it is not difficult to show that

(for any sufficiently large s, (sj)j �=i,) there exist 0 ≤ t0 ≤ 1 and 0 < c0 < 1
#Ai+1

such

that (for any sufficiently large s, (sj + qj)j �=i,) for all h ∈ αT̄ and all j �= i, (A.1)

c0 − 1
6
ξj

s ≤ σt0
i (h)[a∗

i ] ≤ c0 + 1
6
ξj

s and (A.2) | σt0
i (h)[a∗

i ] − gj
0,i(h)[a∗

i ] |> 2ξj
sj . Indeed,

by Condition 3, 4ξj
sj#Pj

sj ≤ 4#Pj

sj

8(I−1)(#A+1)sj
�

k #Pk
sj

≤ 1
2(I−1)(#Ai+1)

for all j �= i. Thus,

∑
j �=i 4ξ

j
sj#Pj

sj ≤ 1
2(#Ai+1)

. Then, letting Jg(α, 2ξj
sj) := {x | gj

0,i(α)[a∗
i ] − 2ξj

sj ≤ x ≤

gj
0,i(α)[a∗

i ] + 2ξj
sj},

μL(
⋃
j �=i

⋃

α∈Pj

sj

Jg(α, 2ξj
sj )) ≤

∑
j �=i

4ξj
sj#Pj

sj ≤
1

2(#Ai + 1)
,

where μL is the Lebesgue measure on the real line. Note that
⋃

j �=i

⋃
α∈Pj

sj
Jg(α, 2ξj

sj ) con-

sists of (at most)
∑

j �=i #Pj
sj intervals. Therefore, [0, 1

#Ai+1
]�

⋃
j �=i

⋃
α∈Pj

sj
Jg(α, 2ξj

sj ) con-

sists of (at most) (
∑

j �=i #Pj
sj +1) intervals. Especially, the length of one of them must be

at least 1

2(#Ai+1)(
�

j �=i #Pj

sj +1)
. However, then, by Condition 3, 4ξj

s ≤ 4
8(I−1)(#A+1)s

�
k #Pk

s
≤
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1

2(#Ai+1)(
�

j �=i #Pj

sj +1)
for all j. Then, define I(c, 2ξj

s) := {x | c − 2ξj
s ≤ x ≤ c + 2ξj

s}.

From these and Condition 3, it is easily derived that there exists c0 such that (for any

sufficiently large s,) (1) for all j �= i, I(c0, 2ξ
j
s)

⋂⋃
j �=i

⋃
α∈Pj

sj
Jg(α, 2ξj

sj) = ∅ and (2)

I(c0, 2ξ
j
s) ⊂ [0, 1

#Ai+1
]. Then, it is easy to see that there exists 0 ≤ t0 ≤ 1 such that, for

all h ∈ αT̄ , σt0
i (h)[a∗

i ] = c0. We have shown (A.1). From this and (1), it follows that, for

all h ∈ αT̄ and all j �= i, | σt0
i (h)[a∗

i ] − gj
0,i(h)[a∗

i ] |≥ 2ξj
sj + (2ξj

s − 1
6
ξj

s) > 2ξj
sj . We have

show (A.2).

On the other hand, since ρ̃i
t0 is generated by P i

s, there always exists a finite history

hR
−i in any formation phase (in epoch s) such that ‖f i

R,j(h) − ρ̃i
t0,j(h)‖ ≤ 1

ni
s

for all h

and all j �= i, where f i
R := Bi

s(h
R
−i). Therefore, from Condition 4 it follows that (for

any sufficiently large s,) for all h, all j �= i, and all k, ‖f i
R,j(h) − ρ̃i

t0,j(h)‖ ≤ 1
12Bi

ξk
s ,

where Bi := max[1, U#A‖(D2vi)
−1‖�(1 − δi)]. From this and Lemma 2 we obtain that,

for all h and all j(�= i), ‖σfR
i (h) − σt0

i (h)‖ ≤ 1
12

ξj
s(≤ 1

12
ξj

sj). Furthermore, as for player

i’s true strategy σ∗
i , Condition 5 and Lemma 3 imply that (for any sufficiently large

s,) ‖σ∗
i (h) − σfR

i (h)‖ ≤ 1
12

ξj
s(≤ 1

12
ξj

sj) for all h ∈ Hf i
R

and all j �= i. Therefore, it,

together with the above argument, induces that c0 − 1
3
ξj

s ≤ σ∗
i (h)[a∗

i ] ≤ c0 + 1
3
ξj

s for all

h ∈ Hf i
R

⋂
αT̄ and all j �= i. Furthermore, recall that Pρ̃i

t
≤ Pj

sj for all j �= i, and

αT̄ ∈ Pρ̃i
t
. Since each test phase is sufficiently long (see Section 4.5), (for all j �= i,) in

the first test phase of player j, there exists α′ ∈ Pj
sj+qj such that (3) α′ ⊂ αT̄ and (4)

α′ has obtained enough samples during the first test phase, i.e., m̃α′ ≥ mj
sj+qj + d − 1.

From these, Condition 7 and Lemma 4, it follows that for all h ∈ αT̄ , σt0
i (h)[a∗

i ] − 1
6
ξj

s −
1
3
ξj

sj − 1
2
ξj

sj ≤ Dj
i (α

′)[a∗
i ] ≤ σt0

i (h)[a∗
i ] + 1

6
ξj

s + 1
3
ξj

sj + 1
2
ξj

sj with almost probability one.

From this and (A.2), for any h ∈ α′, ‖Dj
i (α

′) − gj
0,i(α

′)‖ ≥| Dj
i (α

′)[a∗
i ] − gj

0,i(α
′)[a∗

i ] |≥|

σt0
i (h)[a∗

i ] − gj
0,i(h)[a∗

i ] | −ξj
sj > 2ξj

sj − ξj
sj = ξj

sj with almost probability one (i.e., at
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least probability 1
2
): for all j �= i, player j’s belief gj

0 is rejected in the first test phase

of player j with almost probability one. Therefore, the probability that all opponents

reject their beliefs in their first test phases is at least (
∏

k lk)
(c̄+1)N̄s(1

2
)I−1. Indeed, the

probability of forming f i
R in the first formation phase is at least (

∏
k lk)

N i
s . Furthermore,

player i can continue to employ f i
R until a given ER(s)−interval, whose probability is

at least (
∏

k lk)
c̄N i

s because there are at most c̄ active intervals of player i during the

ER(s)−interval. Finally, if f i
R keeps employed, then it makes any other player j(�= i) reject

her belief in her first test phase with almost probability one (i.e., at least 1
2
), as argued

above. Therefore, the probability that all opponents reject their beliefs in their first test

phases is at least (
∏

k lk)
N i

s(
∏

k lk)
c̄N i

s(1
2
)I−1 = (

∏
k lk)

(c̄+1)N i
s(1

2
)I−1 ≥ (

∏
k lk)

(c̄+1)N̄s(1
2
)I−1,

where N̄s := maxk Nk
s .

10.2.2 All players make infinite rejections

We first define class γs as follows: hT ∈ γs if and only if (1) time T + 1 is the first period

of an ER(s)−interval, (2) maximum epoch s is no less than s̄0: s ≥ s̄0, and (3) the index

sj + qj of each opponent’s conditioning rule employed in her first test phase during the

ER(s)−interval is no less than s̄0: sj + qj ≥ s̄0. Let d
γs
m denote the number of times that

all opponents reject their beliefs during an ER(s)−interval that satisfies (2) and (3) after

the first m ER(s)−intervals that satisfy (2) and (3). As shown in the previous subsection,

taking a sufficiently large s̄0, the probability that all opponents reject their beliefs in their

first test phases is at least p̂s := (1
2
)I−1(

∏
k lk)

(c̄+1)N̄s . Then, define

As
m := {h∞ | T γs

m < ∞,
d

γs
m

m
< p̂s −

1

2
p

s
}.

Applying Lemma 4, we obtain that μσ∗(As
m) ≤ exp(−1

2
m(p

s
)2). Recall that there are

at least Rs�2c̄ ER(s)−intervals in each maximum epoch s. From this and Condition
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2 it follows that p
s

= (1
s
)sN̄s ≥ (1

s
)sn̄Nk

s = (pk
s)

n ≥ (pk
s)

s for any sufficiently large s.

Furthermore, p̂s ≥ p
s

for any sufficiently large s. Note also that, for any sufficiently large

s, there exists ks such that

Rs

2c̄
=

Rks
s

2c̄
≥ Rks

s

s
.

From these and Condition 6, it follows that, for any sufficiently large s′,

μσ∗(
⋂
s′≥1

⋃
s≥s′

⋃

m≥Rs
2c̄

As
m) ≤ μσ∗(

⋃
s≥s′

⋃

m≥Rs
2c̄

As
m)

≤
∑
s≥s′

∑

m≥Rs
2c̄

exp(−1

2
m(p

s
)2)

≤
∑
s≥s′

∑

m≥wks
s Rks

s

exp(−1

2
m((pks

s )2s)

≤
∑
s≥s′

exp(−s) = (1 − exp(−1))−1 exp(−s′).

Therefore, μσ∗(
⋂

s′≥1

⋃
s≥s′

⋃
m≥Rs

2c̄

As
m) = 0. Let A :=

⋃
s′≥1

⋂
s≥s′

⋂
m≥Rs

2c̄

(As
m)c,

where (As
m)c is the complement of As

m. Then, μσ∗(A) = 1. From this we obtain Lemma

5.

Proof of Lemma 5: Suppose that there are infinitely many rejections in h∞ ∈ A. Then,

maximum epoch goes to infinity as time proceeds: sT → ∞ as T → ∞. Furthermore, by

the definition of player’s prior belief formation process, even if some player j only makes

finite rejections, the index sj+qj of her conditioning rule employed in her test phase goes to

infinity. From these it follows that there exists s̄1(≥ s̄0) such that, for all s ≥ s̄1, the index

of any player’s conditioning rule employed in any test phase is no less than s̄0 in maximum

epoch s. Therefore, for all s ≥ s̄1, d
γs
m =the number of times that all opponents reject

their beliefs during an ER(s)−interval after the first m ER(s)−intervals. Furthermore,

since h∞ ∈ A, there exists s̄2(≥ s̄1) such that, for all s ≥ s̄2, d
γs
m ≥ (p̂s − 1

2
p

s
)m for all
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m ≥ Rs�2c̄. Note also that, for any sufficiently large s, p̂s ≥ p
s
. Therefore, since there

are at least Rs�2c̄ ER(s)−intervals for all s, for any sufficiently large s, all opponents

reject their beliefs at least 1
2
p

s
(Rs�2c̄) times in maximum epoch s; in addition, any

(maximum epoch) player who initiates an ER(s)−interval has rejected his belief just

before the ER(s)−interval. Therefore, all players reject their beliefs at least 1
2
p

s
(Rs�2c̄)

times in maximum epoch s. Notice that p
s
Rs → ∞ as s → ∞ by Condition 6. Therefore,

it means that all players make infinite rejections. �

11 Appendix B

11.1 Rejecting belief and forming equilibrium

11.1.1 Rejecting opponents beliefs

In this subsetion, we provide the detailed arguement of how the procedure reaches an

AES in a given ER(s)−interval (initiated by maximum epoch player i); we assume that

(maximum epoch) player i’s epoch stage s and all other players’ epoch stages (sj)j �=i are

sufficiently large at the beginning of the ER(s)−interval. Suppose that (maximum epoch)

player i’s belief was rejected in the previous test phase. Fix any Nash equilibrium σ̂ of

the repeated game with payoff perturbations: σ̂ is a 2 | v | −(subgame perfect) Nash

equilibrium of the original repeated game. Without loss of generaity we may asssume

that σ̂ has its conditioning rule, denoted by Pσ̂: #Pσ̂ < ∞.29 First of all, player i forms

a temporary belief such that the temporary belief not only makes the opponents reject

their beliefs but also will be rejected (with almost probability one) when the opponents

29Clearly, we may define a conditioning rule for a strategy profile in the same way as we did for a belief

(i.e., an opponents strategy profile) in Section 2.7.
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play an AES near σ̂. Since s, sj are sufficiently large, from Properties (3.1), (3.2), and

(3.3), without loss of generality we may assume that Pσ̂ ≤ P i
s,P

j
sj for all j(�= i), and

that Pρ̃i
t
≤ P i

s,P
j
sj for all j �= i. Note also that each player j(�= i) temporary belief gj

0 is

generated by Pj
sj .

• The case of multiple weakly dominant actions: δi > 0 and v∗
i > vi

From the previous argument, in this case, ρ̃i
t := tρ̃i

a∗
i
+ (1 − t)ρ̃i

b∗i
: for all j �= i, player

j takes a minimax action πj (against player i) at time mT̄ + 1 for all m = 0, 1, 2, · · · , and

player j takes tπa∗
j + (1− t)πj at any other time T (�= mT̄ +1 for all m) if player i plays a

dominant action a∗
i at time m(T )T̄ +1, and player j takes tπj +(1−t)πa∗

j at any other time

T (�= mT̄+1 for all m) if player i plays a dominant action b∗i at time m(T )T̄+1, and player j

takes πj at any other time T if player i plays any other action than a∗
i , b

∗
i at time m(T )T̄+1.

Thus, the conditioning rule Pρ̃i
t

of ρ̃i
t is the following partition: Pρ̃i

t
= P(T̄ , a∗

i , b
∗
i ) =

{αT̄ , αa∗
i
, αb∗i , α−}; especially, recall that αT̄ =

⋃
m HmT̄ and αa∗

i
= αa∗

i
= {hT | T �= mT̄

for all m, and a∗
i is realized at time m(T )T̄ +1 in hT}. In other words, ρ̃i

t(h) = π−i for all

h ∈ αT̄ , ρ̃i
t(h) = tπa∗

−i + (1− t)π−i for all h ∈ αa∗
i
, ρ̃i

t(h) = tπ−i + (1− t)πa∗
−i for all h ∈ αb∗i ,

and ρ̃i
t(h) = π−i for all h ∈ α−. Given any sufficiently small payoff perturbation, the

smooth approximate optimal strategy σt
i to ρ̃i

t has the following properties: there exists

T̄ such that, for any 0 < c < 1, there exists 0 ≤ tc ≤ 1 such that σtc
i (h)[a∗

i ] = c for all

h ∈ αT̄ . Also, for any h /∈ αT̄ , σt
i(h) = BRvi(ρ̃i

t(h)) = arg maxπi
ui(πi, ρ̃

i
t(h)) + vi(πi).

Furthermore, since σt
i(h) is Lipschitz continuous in t, for any 0 < c < 1, there exists

0 ≤ tc ≤ 1 such that σtc
i (h)[a∗

i ] = c for all h ∈ αT̄ .

Since player j’s current belief gj
0 is generated by Pj

sj for all j �= i, #{gj
0,i(h) ∈ Δ(Ai) |

h ∈ H, j �= i} ≤
∑

j �=i #Pj
s . Also, it is obvious that #{σ̂j(h) ∈ Δ(Aj) | h ∈ H} ≤ #Pσ̂

for all j �= i. Then, since σt
i(h)[a∗

i ] is Lipschitz continuous in t, from Condition 3 it is
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not difficult to show that (for any sufficiently large s, (sj)j �=i,) there exist 0 ≤ t0 ≤ 1 and

1
2

< c0 < 1 such that (B.1) there exists j0 �= i such that, for all h ∈ αa∗
i
, ‖ρ̃i

t0,j0(h) −

σ̂j0(h)‖ > 2ξi
sj0 , (B.2) c0 − 1

6
ξj

s ≤ σt0
i (h)[a∗

i ] ≤ c0 + 1
6
ξj

s for all j �= i and all h ∈ αT̄ , and

(B.3) | σt0
i (h)[a∗

i ] − gj
0,i(h)[a∗

i ] |> 2ξj
sj

for all j �= i and all h ∈ αT̄ . Indeed, since v∗
i > vi,

πa∗
−i �= π−i. It means that there exists j0(�= i) such that πj0 [a

∗
j0] < 1 = πa∗

j0 [a∗
j0 ]. Then,

define a (closed) interval J0
σ̂(α, 2ξi

sj0 ) := {x | σ̂j0(α)[a∗
j0

] + 2ξi
sj0 ≤ x ≤ σ̂j0(α)[a∗

j0
] + 2ξi

sj0}.

Furthermore, define Iσ
i (α, 2ξi

sj0 ) := {σt
i(h)[a∗

i ] | t+(1−t)πj0[a
∗
j0

] ∈ Jσ̂(α, 2ξi
sj0 )} for h ∈ αT̄ ;

notice that for h ∈ αa∗
i
, ρ̃i

t,j0(h)[a∗
j0] = tπa∗

j0 [a∗
j0]+(1−t)πj0[a

∗
j0 ] = t+(1−t)πj0 [a

∗
j0]. Clearly,

Iσ
i (α, 2ξi

sj0 ) is either a (closed) interval, or an empty set. Also, since μL(J0
σ̂(α, 2ξi

sj0 )) → 0

as sj0 → ∞, from Lemma 2 it follows that μL(Iσ
i (α, 2ξi

sj0 )) → 0 as sj0 → ∞. From this

and #Pσ̂ < ∞, it follows that μL(
⋃

α∈Pσ̂
Iσ
i (α, 2ξi

sj0 )) ≤
∑

α∈Pσ̂
μL(Iσ

i (α, 2ξi
sj0 )) → 0 as

sj0 → ∞.

Next, by Condition 3, 4ξj
sj#Pj

sj ≤
4#Pj

sj

8(I−1)(#A+1)sj
�

k #Pk
sj

≤ 1
2(I−1)(#Ai+1)sj for all j �= i.

Then, letting Jg(α, 2ξj
sj ) := {x | gj

0,i(α)[a∗
i ] − 2ξj

sj ≤ x ≤ gj
0,i(α)[a∗

i ] + 2ξj
sj},

μL(
⋃
j �=i

⋃

α∈Pj

sj

Jg(α, 2ξj
sj)) ≤

∑
j �=i

4ξj
sj#Pj

sj

≤
∑
j �=i

4#Pj
sj

8(I − 1)(#A + 1)sj
∑

k #Pk
sj

≤
∑
j �=i

1

2(I − 1)(#A + 1)sj
→ 0 as sj → ∞ for all j �= i.

Consider the union of
⋃

α∈Pσ̂
Iσ
i (α, 2ξi

sj0 ) and
⋃

j �=i

⋃
α∈Pj

sj
Jg(α, 2ξj

sj), denoted by U(2ξi
sj0 , (2ξ

j
sj)j �=i):

U(2ξi
sj0 , (2ξ

j
sj)j �=i) := (

⋃
α∈Pσ̂

Iσ
i (α, 2ξi

sj0 ))
⋃

(
⋃

j �=i

⋃
α∈Pj

sj
Jg(α, 2ξj

sj )). Clearly, U(2ξi
sj0 , (2ξ

j
sj)j �=i)

consists of at most (
∑

j �=i #Pj
sj +#Pσ̂) intervals. Therefore, [1

2
, 1]�U(2ξi

sj0 , (2ξ
j
sj)j �=i) con-

sists of at most (
∑

j �=i #Pj
sj + #Pσ̂ + 1) intervals; μL([1

2
, 1]�U(2ξi

sj0 , (2ξ
j
sj)j �=i)) → 1

2
, as

sj → ∞ for all j �= i. Then, the length of one of them must be at least 1

3(
�

j �=i #Pj

sj +#Pσ̂+1)

(for sufficiently large sj’s). However, then, from Condition 3 it follows that (for any suf-
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ficiently large s,) 4ξj
s ≤ 4

8(I−1)(#A+1)s
�

k #Pk
s

< 1

3(
�

j �=i #Pj

sj +#Pσ̂+1)
for all j �= i. Then,

define I(c, 2ξj
s) := {x | c − 2ξj

s ≤ x ≤ c + 2ξj
s}. From these, it is easily derived that

there exists 1
2

< c0 < 1 such that (1) for all j �= i, I(c0, 2ξ
j
s)

⋂
U(2ξi

sj0 , (2ξ
j
sj )j �=i) = ∅

and (2) for all j �= i, I(c0, 2ξ
j
s) ⊂ [0, 1]. Then, it is easy to see that there exists

0 ≤ t0 ≤ 1 such that (3) for all h ∈ αT̄ , σt0
i (h)[a∗

i ] = c0 and (4) for all h ∈ αT̄ ,

σt0
i (h)[a∗

i ] /∈
⋃

α∈Pσ̂
Iσ
i (α, 2ξi

sj0 ). Then, from (4) and the definition of ρ̃i
t0,j0

it follows

that, for all h ∈ αa∗
i
, ρ̃i

t0,j0
(h)[a∗

j0
] = t0 + (1 − t0)πj0[a

∗
j0

] /∈
⋃

α∈Pσ̂
Jσ̂(α, 2ξi

sj0 ). It implies

(B.1). (B.2) is immediate from (2) and (3). From (1) and (3), it follows that, for all

h ∈ αT̄ and all j �= i, | σt0
i (h)[a∗

i ] − gj
0,i(h)[a∗

i ] |≥ 2ξj
sj + 2ξj

s > 2ξj
sj . We have show (B.3).

On the other hand, since ρ̃i
t0

is generated by P i
s, there always exists a finite history hR

−i

in any formation phase (in epoch s) such that ‖f i
R,j(h) − ρ̃i

t0,j(h)‖ ≤ 1
ni

s
for all h and all

j �= i, where f i
R := Bi

s(h
R
−i). Therefore, from Condition 4 it follows that (for any sufficiently

large s,) for all h, all j �= i, and all k, ‖f i
R,j(h)−ρ̃i

t0,j(h)‖ ≤ 1
12Bi

ξk
s . From this and Lemma 2

we obtain that, for all h and all j(�= i), ‖σfR
i (h)−σt0

i (h)‖ ≤ 1
12

ξj
s(≤ 1

12
ξj

sj
). Furthermore, as

for player i’s true strategy σ∗
i , Condition 5 and Lemma 3 imply that (for any sufficiently

large s,) ‖σ∗
i (h) − σfR

i (h)‖ ≤ 1
12

ξj
s(≤ 1

12
ξj

sj
) for all h ∈ Hf i

R
and all j �= i. Therefore,

it, together with the above argument, induces that c0 − 1
3
ξj

s ≤ σ∗
i (h)[a∗

i ] ≤ c0 + 1
3
ξj

s

for all h ∈ Hf i
R

⋂
αT̄ and all j �= i. This, together with Condition 7 and Lemma 4,

implies that in the first test phase of player j, player j’s test rejects gj
0 with almost

probability one (for all j �= i). Indeed, since Pρ̃i
t
≤ Pj

sj
for all j �= i and αT̄ ∈ Pρ̃i

t
and

the first test phase of player j is sufficiently long (see Section 4.5), there exists a class

α′ ∈ Pj
sj+qj such that α′ ⊂ αT̄ and α′ has obtained enough samples during the first test

phase, i.e., m̃α′ ≥ mj
sj+qj + d − 1. Furthermore, from these, (B.2), Condition 7, and

Lemma 4, σt0
i (h)[a∗

i ] − 1
6
ξj

s − 1
3
ξj

s − 1
2
ξj

sj ≤ Dj
i (α

′)[a∗
i ] ≤ σt0

i (h)[a∗
i ] + 1

6
ξj

s + 1
3
ξj

s + 1
2
ξj

sj
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for all h ∈ αT̄ with almost probability one. From this and (B.3) it follows that, for all

h ∈ α′, ‖Dj
i (α

′) − gj
0,i(α

′)‖ ≥| Dj
i (α

′)[a∗
i ] − gj

0,i(α
′)[a∗

i ] |≥| σt0
i (h)[a∗

i ] − gj
0,i(h)[a∗

i ] | −ξj
sj >

2ξj
sj − ξj

sj = ξj
sj with almost probability one (i.e., at least probability 1

2
).

11.1.2 Forming equilibrium beliefs

We have shown that maximum epoch player j forms a belief f i
R (in the first formation

phase) with at least probability (
∏

k lk)
N i

s and then it makes all other players reject their

beliefs in their first test phases with almost probability one (i.e., at least probability 1
2
)

(during the given ER(s)−interval). In this subsection we argue that after the rejections,

all other players form approximate equilibrium beliefs as new ones in their next formation

phases and those beliefs, in turn, make player i reject f i
R in the final test phase (of player

i) during the given ER(s)−interval.

• The case of multiple weakly dominant actions: δi > 0 and v∗
i > vi

Since Pσ̂ ≤ Pj
sj , there always exists a finite history ĥ−j (in the next formation phase)

which, together with player j’s belief correspondence Bj
sj , generates a new belief ĝj =

Bj
sj (ĥ−j) such that ‖ĝj

k(h) − σ̂k(h)‖ ≤ 1

nj

sj

for all h and all k �= j. Thus, it follows from

Condition 4 that (for any sufficiently large sj,) ‖ĝj
k(h) − σ̂k(h)‖ ≤ 1

12Bj
ξl

sj for all h, all

j �= i, all k �= j, and all l, where Bj := max[1, U#A‖(D2vj)
−1‖�(1 − δj)]. From this and

Lemma 2 we obtain that, for each j �= i, the smooth approximate optimal strategy σĝ
j to

ĝj satisfies that ‖σĝ
j (h)− σ̂j(h)‖ ≤ 1

12
ξl

sj for all h and all l. Thus, ‖σĝ
j (h)− ĝk

j (h)‖ ≤ 1
6
ξl

sj

for all h, all k �= i, all j �= k, i, and all l. Also, Condition 5 and Lemma 3 imply that (for

any sufficiently large sj,) ‖σ∗
j (h)−σĝ

j (h)‖ ≤ 1
12

ξl
sj for all j �= i, all l, and all h ∈

⋂
j �=i Hĝj .

Therefore, all players other than i have (approximate) equilibrium beliefs (ĝj)j �=i. Note

that even if player j (�= i) faces another test phase and rejects ĝj before the final test phase
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of player i (in the given ER(s)−interval), ĝj can be formed again in the next formation

phase (combined with player j’s belief correspondence); by Condition 2, the number of test

phases of player j during any given ER(s)−interval is at most 2c̄. Therefore, maximum

epoch player i forms a rejecting belief f i
R, which makes all players other than i reject his

current beliefs (gj
0)j �=i and then they form new beliefs (ĝj)j �=i and keep employing them

until the last test phase of player i (in the given ER(s)−interval) with at least probability

(1
2
)I−1(

∏
k lk)

N i
s+2c̄

�
j �=i Nj

s .

Finally, consider player i. After player i has had a belief f i
R which leads to oppo-

nent rejections, he keeps employing f i
R (until the last test phase of player i in the given

ER(s)−interval) in the sense that even when player i has an interim test phase and

rejects f i
R, f i

R can be formed again (combined with player i’s belief correspondence)

in the next formation phase; the number of player i’s test phases during any given

ER(s)−interval is at most c̄. Thus, player i can keep employing f i
R until the last test

phase (of player i) in the given ER(s)−interval with at least probability (
∏

k lk)
c̄N i

s. Re-

call (A.4) in the previous section: for all h ∈ αa∗
i
, ‖ρ̃i

t0,j0(h) − σ̂j0(h)‖ > 2ξi
sj0 . Recall

also that, for all h and all j �= i ‖f i
R,j(h) − ρ̃i

t0,j(h)‖ ≤ 1
12Bi

ξi
s(≤ 1

12
ξi

sj ). Therefore, f i
R

is different from approximate equilibrium σ̂: ‖f i
R,j0

(h) − σ̂j0(h)‖ > 23
12

ξi
sj0 (≥ 23

12
ξi

s) for all

h ∈ αa∗
i
. However, then, from Condition 5 and Lemma 3 it follows that (for any suffi-

ciently large sj ,) ‖σ∗
j(h) − σĝ

j (h)‖ ≤ 1
12

ξi
sj for all j �= i and all h ∈

⋂
j �=i Hĝj . From this

and the above argument, it is derived that ‖σ∗
j(h) − σ̂j(h)‖ ≤ 1

6
ξi

sj
for all j �= i and all

h ∈
⋂

j �=i Hĝj . Thus, ‖f i
R,j0

(h) − σ∗
j0(h)‖ > 21

12
ξi

sj0 (≥ 21
12

ξi
s) for all h ∈ (

⋂
j �=i Hĝj)

⋂
αa∗

i
.

Note that Pρ̃i
t
≤ P i

s+q and that σ∗
i (h)[a∗

i ] ≥ 1
2
− 1

3
ξj

s for all j �= i and all h ∈ αT̄

⋂
Hf i

R
.

Then, since the last test phase of player i is sufficiently long, in the last test phase of

player i, there exists α′′ ∈ P i
s+q such that α′′ ⊂ αa∗

i
and α′′ has obtained enough sam-
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ples during the last test phase, i.e., m̃α′′ ≥ mi
s+q + d − 1 with almost probability one.

Furthermore, since Pσ̂ ≤ P i
s+q, σj0(h) is constant in α′′−active periods; note also that

‖σ∗
j0

(h)− σ̂j0(h)‖ ≤ 1
6
ξi

sj0 for all h ∈ Hĝj0 . From these, Condition 7, and Lemma 4, it fol-

lows that σ̂j0(α
′′)[a∗

j0
]− 1

6
ξi

sj0 − 1
4
ξi

s ≤ Di
j0

(α′′)[a∗
j0

] ≤ σ̂j0(α
′′)[a∗

j0
]+ 1

6
ξi

sj0 + 1
4
ξi

s with almost

probability one. It, together with (A.3), implies that for h ∈ α′′, ‖Di
j0(α

′′)− f i
R,j0

(α′′)‖ ≥

‖f i
R,j0

(h)−σ̂j0(h)‖− 1
6
ξi

sj0− 1
4
ξi

sj0 ≥ 23
12

ξi
sj0− 5

12
ξi

sj0 = 3
2
ξi

sj0 > ξi
s with almost probability one:

with almost probability one (i.e., at least probability 1
2
), player i rejects f i

R. Then, player

i forms a new belief in the last formation phase: since Pσ̂ ≤ P i
s, there always exists a finite

history ĥ−i (in the formation phase) which, together with Bi
s, generates a temporary belief

ĝi = Bi
s(ĥ−i) such that, for all h, all j �= i and all l, ‖ĝi

j(h) − σ̂j(h)‖ ≤ 1
12Bi

ξl
s. Further-

more, it, together with Lemma 2, implies that, for all h and all l, ‖σĝ
i (h)− σ̂i(h)‖ ≤ 1

12
ξl

s.

Finally, the probability of ĝi, i.e., the probability of ĥ−i, is at least (
∏

k lk)
N i

s. From

this and the above argument about (ĝj)j �=i, it follows that, for all i, j with i �= j and

all h, ‖ĝi
j(h) − σĝ

j (h)‖ ≤ 1
4
ξi

s and ‖ĝi
j(h) − σ̂j(h)‖ ≤ 1

6
ξi

s. Therefore, all players have

(approximate equilibrium) beliefs (ĝk)k at the end of the given ER(s)−interval. In other

words, an AES (σĝ
k)k is reached in the given ER(s)−interval with at least probability

(1
2
)I(

∏
k lk)

(c̄+1)N i
s+2c̄

�
j �=i Nj

s ≥ (1
2
)I(

∏
k lk)

2c̄
�

k Nk
s ≥ (1

2
)I(

∏
k lk)

2c̄IN̄s.

11.2 AES is reached infinitely many times

For all s, define class αs such that hT ∈ αs if and only if (1) time T + 1 is the first

period of an ER(s)−interval and (2) all players’ epoch stages are no less than s̃0 at the

beginning of the ER(s)−interval: s, sj ≥ s̃0 for all j �= i. From the previous argument

in Appendix A, it follows that, taking a sufficiently large s̃0, the probability that AES

is reached in an ER(s)−interval is at least (1
2
)I(

∏
k lk)

2c̄
�

k Nk
s ≥ (1

2
)I(Πklk)

2c̄IN̄s). Then,
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define p̃s := (1
2
)I(Πklk)

2c̄IN̄s. Let dαs
m (h∞) denote the number of times that AES has been

reached in the first m ER(s)−intervals in which all players’ epoch stages are no less than

s̃0. LetT αs
m (h∞) denote the calendar time when αs is active the m−th time in h∞. Define

Bs
m := {h∞ | T αs

m < ∞,
dαs

m

m
< p̃s −

1

2
p

s
}.

Applying Lemma 4, we obtain that μσ∗(Bs
m) ≤ exp(−2m(1

2
p

s
)2) = exp(−1

2
m(p

s
)2).

Recall that there are at least (Rs�2c̄) ER(s)−intervals in each maximum epoch s. From

this and Condition 2 it follows that for all k, p
s

= (1
s
)sN̄s ≥ (1

s
)sn̄Nk

s = (pk
s)

n ≥ (pk
s)

s for

any sufficiently large s. Furthermore, p̃s ≥ p
s

for any sufficiently large s. Note also that,

for any sufficiently large s, there exists ks such that

Rs

2c̄
=

Rks
s

2c̄
≥ Rks

s

s
.

From these and Condition 6, it follows that, for any sufficiently large s′,

μσ∗(
⋂
s′≥1

⋃
s≥s′

⋃

m≥Rs
2c̄

Bs
m) ≤ μσ∗(

⋃
s≥s′

⋃

m≥Rs
2c̄

Bs
m)

≤
∑
s≥s′

∑

m≥Rs
2c̄

exp(−1

2
m(p

s
)2)

≤
∑
s≥s′

∑

m≥wks
s Rks

s

exp(−1

2
m((pks

s )2s)

≤
∑
s≥s′

exp(−s) = (1 − exp(−1))−1 exp(−s′).

Therefore, μσ∗(
⋂

s′≥1

⋃
s≥s′

⋃
m≥Rs

2c̄

Bs
m) = 0. Let B :=

⋃
s′≥1

⋂
s≥s′

⋂
m≥Rs

2c̄

(Bs
m)c,

where (Bs
m)c is the complement of Bs

m. Then, μσ∗(B) = 1. From this we obtain Lemma

6.

Proof of Lemma 6: Consider A
⋂

B; μσ∗(A
⋂

B) = 1. Suppose that there are infinitely

many rejections in h∞ ∈ A
⋂

B. Since h∞ ∈ A, from Lemma 5 it follows that all players
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make infinite rejections. It means that there exists s̃1(≥ s̃0) such that for all s ≥ s̃1,

all players’ epoch stages are no less than s̃0 through maximum epoch s. Therefore,

for all s ≥ s̃1, dαs
m =the number of times that AES has been reached in the first m

ER(s)−intervals. In addition, since h∞ ∈ B, there exists s̃2(≥ s̃1) such that, for all

s ≥ s̃2, dαs
m ≥ (p̃s − 1

2
p

s
)m for all m ≥ Rs

2c̄
. Since p̃s ≥ p

s
for any sufficiently large s and

there are at least
Rs

2c̄
ER(s)−intervals (in maximum epoch) for all s, it implies that there

exists s′(≥ s̃2) such that for all s ≥ s′, dαs
m ≥ 1

2
p

s
m for m =

Rs

2c̄
. It means that AES

is reached at least 1
2
p

s
(Rs�2c̄) times in the first Rs�2c̄ ER(s)−intervals (in maximum

epoch s). This completes the proof. �

11.3 No rejection from some period

• Let hT−1 be a realized past history such that (1) time T is the first period of a cycle (of

player i) and (2) the n−th rejection (of player i from the beginning of the repeated game)

occurred in the previous test phase. Note that player i has formed a new belief denoted

by f i in the previous formation phase. Furthermore, player i keeps being in the same

epoch, say, the s−th epoch, at least until the (n + 1)−st rejection occurs; f i is generated

by P i
s. Then, {P i

s+q}∞q=0 will be employed in test phases until the (n + 1)−st rejection

occurs: for each q = 0, 1, 2, · · · and each α ∈ P i
s+q, the α−test starts from the (q + 1)−st

test phase after hT−1 (unless the (n + 1)−st rejection occurs). Recall that the α−test is

said to be effective at time T if the α−test is collecting samples at time T . Then, for

each q = 0, 1, 2, · · · and each α ∈ P i
s+q, define the corresponding class α(s, q) such that

hT̄ ∈ α(s, q) if and only if (1) hT−1 ≤ hT̄ , (2) hT̄ ∈ α, (3) the α−test is effective at time

T̄ +1, and (4) for all hT−1 ≤ ht ≤ hT̄ such that ht ∈ α and the α−test is effective at time

57



t + 1,

‖f i
j(ht) − σ∗

j (ht)‖ ≤ ξi
s

4
for all j �= i.

Then, let d
α(s,q)
j,m [aj ] denote the number of times that aj has been realized in the first

m α(s, q)−active periods in which the α−test is effective and let d
α(s,q)
j,m := (d

α(s,q)
j,m [aj ])aj

.

Define C
α(s,q)
m := {h∞ | T α(s,q)

m < ∞, ∃j �= i(‖dα(s,q)
j,m �m− f i

j(α)‖ > ξi
s)}. Furthermore, let

f̄ i
j(α)[aj] := f i

j(α)[aj ] + ξi
s

4
and f i

j
(α)[aj ] := f i

j(α)[aj ] − ξi
s

4
. Let

Dα(s,q)
m (j, aj) := {h∞ | T α(s,q)

m < ∞,
d

α(s,q)
j,m [aj]

m
> f̄ i

j(α)[aj ] +
ξi

s

2
or

d
α(s,q)
j,m [aj ]

m
< f i

j
(α)[aj ] −

ξi
s

2
}.

Then, we easily obtain that C
α(s,q)
m ⊂

⋃
j �=i

⋃
aj

D
α(s,q)
m (j, aj). From this and Lemma 4 it

follows that μσ∗(C
α(s,q)
m | hT−1) ≤ μσ∗(

⋃
j �=i

⋃
aj

D
α(s,q)
m (j, aj) | hT−1) ≤ (

∑
j �=i #Aj)2 exp(−1

2
m(ξi

s)
2).

For each i, we define a stochastic process {X i
n}n and a filtration {Hi

n}n as follows:

X i
n := 1 if the n−th rejection (of player i) is of type I error, and X i

n = 0 otherwise;

see Section 7.2 for type I error. Moreover, let Hi
n := σ(X i

1, · · · , X i
n), i.e., the σ−algebra

generated by (X i
1, · · · , X i

n). By the definition, E[X i
n+1 | Hi

n] ≤the probability that the

(n + 1)−st rejection is of type I error conditional on Hi
n. Notice that, for all h∞ > hT−1,

if X i
n+1(h∞) = 1, then h∞ ∈

⋃∞
q=0

⋃
α∈Pi

s+q

⋃∞
m=mi

s+q
C

α(s,q)
m . Therefore,

E[X i
n+1 | hT−1] ≤ μσ∗(

∞⋃
q=0

⋃

α∈Pi
s+q

∞⋃

m=mi
s+q

Cα(s,q)
m | hT−1)

≤
∞∑

q=0

(#P i
s+q)

∑

m≥mi
s+q

μσ∗(Cα(s,q)
m | hT−1)

≤ (
∑
j �=i

#Aj)
∞∑

q=0

(#P i
s+q)

∑

m≥mi
s+q

2 exp(−1

2
m(ξi

s)
2).

This inequality holds for any realized history hT−1 satisfying (1) and (2). Note also

that by the definition of epochs, the (n + 1)−th rejection (of player i) must always occur
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in the same epoch, say, the s−th epoch (of player i), since the number of rejections

completely determines the switching of epochs for each player. From these it follows that,

for all h∞,

E[X i
n+1 | Hi

n] ≤ (
∑
j �=i

#Aj)

∞∑
q=0

(#P i
s+q)

∑

m≥mi
s+q

2 exp(−1

2
m(ξi

s)
2).

Therefore, letting J i
0 := 0 and J i

s :=
∑s

v=1 Ri
v for s ≥ 1, for all h∞,

∞∑
n=1

E[X i
n+1 | Hi

n] =
∞∑

s=1

Ji
s−1∑

n=J i
s−1

E[X i
n+1 | Hi

n]

≤
∞∑

s=1

Ji
s−1∑

n=J i
s−1

(
∑
j �=i

#Aj)
∞∑

q=0

(#P i
s+q)

∑

m≥mi
s+q

2 exp(−1

2
m(ξi

s)
2)

≤ 2
∞∑

s=1

Ri
s(

∑
j �=i

#Aj)
∞∑

q=0

(#P i
s+q)

∑

m≥mi
s+q

exp(−1

2
m(ξi

s)
2)

≤ 2(
∑
j �=i

#Aj)

∞∑
s=1

∞∑
q=0

Ri
s(#P i

s+q)
∑

m≥mi
s+q

exp(−1

2
m(ξi

s+q)
2)

≤ 2(
∑
j �=i

#Aj)

∞∑
s=1

∞∑
q=0

Ri
s+q(#P i

s+q)
∑

m≥mi
s+q

exp(−1

2
m(ξi

s+q)
2)

= 2(
∑
j �=i

#Aj)

∞∑
s=1

exp(−s)(1 − exp(−1))−1

= 2(
∑
j �=i

#Aj) exp(−1)(1 − exp(−1))−2 < ∞.

The fifth inequality obtains because Ri
s ≤ Ri

s+1 for all s, and the sixth equality holds

because of Condition 7. The other inequalities are obvious. Therefore,
∑∞

n=1 E[X i
n+1 |

Hi
n] < ∞ for all h∞. This result leads us to obtain Lemma 7.

Proof of Lemma 7: Let Ei := {h∞ |there are infinitely many player i’s test rejections

of type I error}. Notice that, by the definition of {X i
n}n, Ei = {h∞ |

∑∞
n=1 X i

n = ∞}.

Furthermore, by a generalized argument of the Borel-Cantelli Lemma (see Section 5 in
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Chapter 7 of Shiryaev (1984)),30

{h∞ |
∞∑

n=1

X i
n = ∞} = {h∞ |

∞∑
n=1

E[X i
n | Hi

n] = ∞}, μσ∗ − a.s.

However, then, μσ∗({h∞ |
∑∞

n=1 E[X i
n | Hi

n] = ∞}) = μσ∗(∅) = 0. Therefore,

μσ∗(Di) = μσ∗({h∞ |
∞∑

n=1

E[X i
n | Hi

n] = ∞}) = 0.

Thus, μσ∗(
⋃

i Ei) = 0. From this the desired result immediately follows. �

• Define a class γ1
s such that hT ∈ γ1

s if and only if at time T , rejection occurs for

the first time after an ER(s)−interval in which AES has been reached. Define a class

γ2
s(⊂ γ1

s) such that hT ∈ γ2
s if and only if (1) the player who made the first rejection, say,

player j, has formed the same belief as the previous one, i.e., an approximate equilibrium

belief and (2) at time T , rejection occurs the second time after the ER(s)−interval; thus,

the AES survives (at least) until time T . For 3 ≤ y ≤ I − 1, define γy
s inductively as

follows: hT ∈ γy
s if and only if (1) the same belief as theprevious one, i.e., an approximate

equilibrium belief, has been formed after any of the last (y − 1) rejections and (2) at

time T , rejection occurs the y−th time after the ER(s)−interval; thus, the AES survives

(through the (y−1) rejections) until time T . Note also that γy+1
s ⊂ γy

s for all 1 ≤ y ≤ I−2

and all s.

As in the case of reaching an AES, the probability of forming the same belief again

just after the y−th rejection is (at least) minj(Πklk)
Nj

s = (Πklk)
N̄s . Let p̌s := (Πklk)

N̄s.

Let dγy
s

m (h∞) denote the number of times that the same beliefs as approximate equilibrium

beliefs have been formed after the first m γy
s−active periods; in other words, dγy

s
m (h∞) is the

number of times that AES has survived after the first m γy
s−active periods. Then, define

Fs,y
m := {h∞ | T γy

s
m < ∞,dγy

s
m �m < p̌s − 1

2
p

s
}. By Lemma 4, μσ∗(Fs,y

m ) ≤ exp(−1
2
m(p

s
)2).

30For any measurable sets X and Y, X = Y, μσ∗ − a.s. if and only if μσ∗((X�Y) ∪ (Y�X)) = 0.
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From Condition 2 it follows that for all k, p
s

= (1
s
)sN̄s ≥ (1

s
)sn̄Nk

s = (pk
s)

n ≥ (pk
s)

s for any

sufficiently large s. Thus, for all 1 ≤ y ≤ I − 1 and all k, 1
2c̄

(1
2
p

s
)y ≥ 1

s
(1

2
(pk

s)
s)I = wk

s for

any sufficiently large s. Furthermore, p̌s ≥ p
s

for any sufficiently large s. Note also that,

for any sufficiently large s, there exists ks such that

Rs

2c̄
=

Rks
s

2c̄
≥ Rks

s

s
.

From these we obtain that (1
2
p

s
)y(Rs�2c̄) ≥ wks

s Rks
s . From this and Condition 6 it

follows that, for any sufficiently large s′,

μσ∗(
⋂
s′≥1

⋃
s≥s′

⋃

m≥( 1
2
p

s
)y(Rs�2c̄)

Fs,y
m ) ≤ μσ∗(

⋃
s≥s′

⋃

m≥( 1
2
p

s
)y(Rs�2c̄)

Fs,y
m )

≤
∑
s≥s′

∑

m≥( 1
2
p

s
)y(Rs�2c̄)

μσ∗(Fs,y
m )

≤
∑
s≥s′

∑

m≥( 1
2
p

s
)y(Rs�2c̄)

exp(−1

2
m(p

s
)2)

≤
∑
s≥s′

∑

m≥wks
s Rks

s

exp(−1

2
m((pks

s )s)2)

≤
∑
s≥s′

exp(−s) = (1 − exp(−1))−1 exp(−s′).

Therefore, μσ∗(
⋂

s′≥1

⋃
s≥s′

⋃
m≥( 1

2
p

s
)y(Rs�2c̄) F

s,y
m ) = 0 for all 1 ≤ y ≤ I − 1. Define

F :=
I−1⋂
y=1

⋃
s′≥1

⋂
s≥s′

⋂

m≥( 1
2
p

s
)y(Rs�2c̄)

(Fs,y
m )c.

Then, μσ∗(F) = 1. From this we obtain Lemma 8.

Proof of Lemma 8: Let E :=
⋂

i(Ei)
c; by the proof of Lemma 7, μσ∗(E) = 1. Then,

μσ∗(A
⋂

B
⋂

E
⋂

F) = 1. Suppose that there are infinitely many rejections in h∞ ∈

A
⋂

B
⋂

E
⋂

F. Then, there exists s′′ such that, for each s ≥ s′′, for all 1 ≤ y ≤ I − 1,

dγy
s

m ≥ (p̌s − 1
2
p

s
)m ≥ 1

2
p

s
m for all m ≥ (1

2
p

s
)y(Rs�2c̄). However, then, from Lemma
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6 it follows that, for all s ≥ s′′, AES is reached at least 1
2
p

s
(Rs�2c̄) times in the first

(Rs�2c̄) ER(s)−intervals. It means that γ1
s is active at least 1

2
p

s
(Rs�2c̄) times. Then,

the corresponding player forms the same belief as the previous one and then AES survives

at least 1
2
p

s
(1

2
p

s
Rs�2c̄) times after 1

2
p

s
(Rs�2c̄) γ1

s−active periods. It means that γ2
s is

active at least (1
2
p

s
)2(Rs�2c̄) times. Again, AES survives at least 1

2
p

s
(1

2
p

s
)2(Rs�2c̄)

times after (1
2
p

s
)2(Rs�2c̄) γ2

s−active periods. We can repeat this argument so that AES

survives through the first (I − 1) rejections after an ER(s)−interval (in which AES has

been reached) at least (1
2
p

s
)I(Rs�2c̄) times. �

Remark 6 From Condition 6 it follows that (1
2
p

s
)IRs → ∞ as s → ∞.

11.4 Proof of Proposition 1

For any positive integer L, let Δi
L := {πi |for all ai ∈ Ai, there exists a nonnegative integer

l such that πi[ai] = l
L
} and Si

L(πi) := {π′
i | ‖π′

i − πi‖ ≤ 2
L
}. Notice that

⋃
πi∈Δi

L
Si

L(πi) =

Δ(Ai), and that for any subset Δ of Δ(Ai) with its diameter no more than 1
2L

, i.e.,

diam(Δ) ≤ 1
2L

,31 there exists πi ∈ Δi
L such that Δ ⊂ Si

L(πi). Next, let Lε := min{L |
2
L
≤ ε

6
} and Si(Lε) := {Si

Lε
(πj) | πi ∈ Δi

Lε
}. Then, for all i, all j �= i, all s, all q, all

α ∈ P i
s+q, and all Sj ∈ Sj(Lε), we define a class α(Sj) as follows: hT ∈ α(Sj) if and only

if (1) hT ∈ α, (2) the α−test has started from the first test phase of employing P i
s+q (in

epoch s of player i) in hT , i.e., the first α−test (with the least sample size mi
s) has started

in hT , (3) the first α−test is effective at time T + 1, and (4) for all ht ≤ hT such that

ht ∈ α and the first α−test was effective at time t+1, πj [aj]− ε
6
≤ σ∗

j (ht)[aj ] ≤ πj[aj ]+
ε
6

for all aj ∈ Aj , where πj is the center of Sj(= Sj
Lε

(πj)). Let d
α(Sj)
j,m [aj ] denote the number

of times that aj has been realized in the first m α(Sj)−active periods. Then, for all i, all

31The diameter of Δ is defined by diam(Δ) := sup{‖πj − π′
j‖ | πj , π

′
j ∈ Δ}.
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j �= i, all s, all q, all α ∈ P i
s+q, all Sj ∈ Sj(Lε), and all m, define

Pi
j(s, q, α, Sj, m) := {h∞ | T α(Sj)

m < ∞, ∃aj(
d

α(Sj)
j,m [aj ]

m
> πj [aj ] +

ε

3
or

d
α(Sj)
j,m [aj ]

m
< πj [aj] −

ε

3
)}.

Let U := {h∞ |there are at most finite rejections in h∞}. We say that players’

(temporary) beliefs are significantly different from players’ true strategies infinitely many

times in h∞ if, for infinitely many h(< h∞), there exists i and j(�= i) such that player i’s

belief f i and player j’s true strategy σ∗
j are significantly different, i.e., ‖f i

j(h)−σ∗
j(h)‖ > ε.

Let V := {h∞ |players’ beliefs are significantly different from players’ true strategies

infinitely many times in h∞}. Then, we obtain that

U
⋂

V ⊂
I⋃

i=1

⋃
j �=i

∞⋃
s=1

⋃
q̄=1

⋂
q≥q̄

⋃

α∈Pi
s+q

⋃

Sj∈Sj(Lε)

⋃

m≥mi
s+q

Pi
j(s, q, α, Sj, m)

⊂
I⋃

i=1

⋃
j �=i

∞⋃
s=1

∞⋂
q̄=1

∞⋃
q=q̄

⋃

α∈Pi
s+q

⋃

Sj∈Sj(Lε)

⋃

m≥mi
s+q

Pi
j(s, q, α, Sj, m).

The second inclusion is obvious. We show the first inclusion. Suppose that h∞ ∈

U
⋂

V. Since h∞ ∈ U, there exists a (temporary) belief profile (f i)i such that each

player i keeps f i forever from some period, say, time T̃ ; each player i also keeps being

in some epoch, say, the si−th epoch, forever from time T̃ . On the other hand, since

h∞ ∈ V, there exist i0 and j0(�= i0) such that ‖f i0
j0

(htk)−σ∗
j0

(htk)‖ > ε for infinitely many

htk < h∞. However, then, from Properties (3.1) and (3.2) of {P i
s}s it follows that, for

all i, all j(�= i) and all s, there exists q̂(i, j, s) such that, for all q ≥ q̂(i, j, s), P i
s+q is a

conditioning rule of f i and P i
s+q is also a ε

96
−approximate conditioning rule of σf

j : for all

α ∈ P i
s+q and all h, h′ ∈ α, f i

j(h) = f i
j(h

′) and ‖σf
j (h)−σf

j (h
′)‖ ≤ ε

96
. Moreover, it follows

from Condition 5 and Lemma 3 that, for all i, ‖σf
i (hT )− σ∗

i (hT )‖ → 0 as T → ∞. Thus,

there exists T̂ ≥ T̃ such that, for all i, all j �= i, all s and all q ≥ q̂(i, j, s), if ht, ht′ ∈ α
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for some α ∈ P i
s+q and t, t′ ≥ T̂ , then ‖σ∗

j(ht) − σ∗
j(ht′)‖ ≤ ε

48
: that is, for all i, all j �= i,

all s, all q ≥ q̂(i, j, s) and all α ∈ P i
s+q, diam({σ∗

j(ht) | t ≥ T̂ , ht ∈ α, ht < h∞}) ≤
ε
48

≤ 1
2Lε

. Then, for all i, all j �= i, all s, all q ≥ q̂(i, j, s) and all α ∈ P i
s+q, there exists

Sj ∈ Sj(Lε) such that {σ∗
j(ht) | t ≥ T̂ , ht ∈ α, ht < h∞} ⊂ Sj, as noted above. Also,

since ‖f i0
j0

(htk)−σ∗
j0(htk)‖ > ε for infinitely many htk < h∞, it is obvious that there exists

q̄ ≥ q̂(i0, j0, s
i0) such that, for all q ≥ q̄, there exists ᾱ ∈ P i0

si0+q
such that (I) the first

ᾱ−test starts after time T̂ (in epoch si0) and (II) htkn
∈ ᾱ for an infinite subsequence

{htkn
}n of {htk}k. Therefore, it follows from (II) that ‖f i0

j0
(ht) − σ∗

j0(ht)‖ > ε − ε
48

= 47
48

ε

for all ht ∈ ᾱ such that ht < h∞ and t ≥ T̂ . Thus, from these it is derived that,

for all q ≥ q̄, there exist ᾱ ∈ P i0
si0+q

and S̄j0 ∈ Sj0(Lε) such that (i) the first ᾱ−test

starts after time T̂ (in epoch si0), (ii) {σ∗
j0(ht) | t ≥ T̂ , ht ∈ ᾱ, ht < h∞} ⊂ S̄j0, (iii)

‖f i0
j0

(h) − σ∗
j0(h)‖ > 47

48
ε for all h < h∞ such that h ∈ ᾱ(S̄j0), and (iv) #{ht | t ≥ T̂ , ht ∈

ᾱ, ht < h∞} = ∞. From (i), (ii), (iv) and the definition of the learning procedure we

obtain that #{h | h ∈ ᾱ(S̄j0), h < h∞} = mᾱ ≥ mi0
si0+q

, which implies that the first

ᾱ−test obtains enough samples but does not reject f i in h∞. In addition, it implies that,

in any ᾱ−effective period in which the first ᾱ−test is effective, π̄j0 [aj0]− ε
6
≤ σ∗

j0
(ht)[aj0] ≤

π̄j0[aj0 ]+
ε
6

for all aj0 ∈ Aj0 , where π̄j0(∈ Δj0
Lε

) is the center of S̄j0(= Sj0
Lε

(π̄j0)). Therefore,

h∞ ∈ Pi0
j0

(si0 , q, ᾱ, S̄j0, mᾱ). Otherwise, ‖dᾱ(S̄j0 )
j0,mᾱ �mᾱ − πj0‖ ≤ ε

3
. However, then, since

there is no rejection from time T̃ , the first ᾱ−test must be passed, which means that

‖f i0
j0

(h) − d
ᾱ(S̄j0 )
j0,mᾱ �mᾱ‖ ≤ ξi0

si0
≤ ε

3
(or ≤ ξ̄

i0 ≤ ε
3
) for all h ∈ ᾱ. Furthermore, recall

that πj0[aj0 ] − ε
6
≤ σ∗

j0(h)[aj0] ≤ πj0[aj0 ] + ε
6

for all aj0 ∈ Aj0 and all h < h∞ such that

h ∈ ᾱ(S̄j0). Therefore, ‖f i0
j0

(h)−σ∗
j0

(h)‖ ≤ ‖f i0
j0

(h)−d
ᾱ(S̄j0 )
j0,mᾱ �mᾱ‖+‖dᾱ(S̄j0 )

j0,mᾱ �mᾱ−πj0‖+

‖πj0 − σ∗
j0

(h)‖ ≤ ε
3

+ ε
3

+ ε
6

= 5
6
ε = 40

48
ε for all h < h∞ such that h ∈ ᾱ(S̄j0). This is a

contradiction to (iii), i.e., ‖f i0
j0

(h) − σ∗
j0(h)‖ > 47

48
ε for all h < h∞ such that h ∈ ᾱ(S̄j0).
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Therefore, h∞ ∈
⋃I

i=1

⋃
j �=i

⋃∞
s=1

⋃
q̄≥1

⋂
q≥q̄

⋃
α∈Pi

s+q

⋃
Sj∈Sj(Lε)

⋃
m≥mi

s+q
Pi

j(s, q, α, Sj, m).

Finally, from Lemma 4 and Conditions 3 and 8 it follows that, for all i, all j �= i, all

s, and all q̄,

μσ∗(

∞⋃
q=q̄

⋃

α∈Pi
s+q

⋃

Sj∈Sj(Lε)

⋃

m≥mi
s+q

Pi
j(s, q, α, Sj, m))

≤
∑
q≥q̄

(#P i
s+q)(#Sj(Lε))

∑

m≥mi
s+q

(#Aj)2 exp(−1

2
m(

ε

3
)2)

= 2(#Sj(Lε))(#Aj)(1 − exp(−1

2
(
ε

3
)2))−1

∑
q≥q̄

(#P i
s+q) exp(−1

2
mi

s+q(
ε

3
)2)

≤ 2(#Sj(Lε))(#Aj)(1 − exp(−1

2
(
ε

3
)2))−1

∑
q≥q̄

(#P i
s+q) exp(−1

2
mi

s+q(ξ
i
s+q)

2)

≤ 2(#Sj(Lε))(#Aj)(1 − exp(−1))−1
∑
q≥q̄

exp(−s− q)

≤ 2(#Sj(Lε))(#Aj)(1 − exp(−1))−2 exp(−s − q̄).

Thus, for all q̄,

μσ∗(

∞⋂
q̄=1

∞⋃
q=q̄

⋃

α∈Pi
s+q

⋃

Sj∈Sj(Lε)

⋃

m≥mi
s+q

Pi
j(s, q, α, Sj, m))

≤ 2(#Sj(Lε))(#Aj)(1 − exp(−1))−2 exp(−s− q̄)).

Therefore, letting q̄ → ∞, μσ∗(
⋂∞

q̄=1

⋃∞
q=q̄

⋃
α∈Pi

s+q

⋃
Sj∈Sj(Lε)

⋃
m≥mi

s+q
Pi

j(s, q, α, Sj, m)) =

0 for all i, all j(�= i) and all s. Thus,

μσ∗(

I⋃
i=1

⋃
j �=i

∞⋃
s=1

∞⋂
q̄=1

∞⋃
q=q̄

⋃

α∈Pi
s+q

⋃

Sj∈Sj(Lε)

⋃

m≥mi
s+q

Pi
j(s, q, α, Sj, m)) = 0.

Therefore, μσ∗(U
⋂

V) = 0. Since μσ∗(U) = 1, μσ∗(U
⋂

(V)c) = 1. Finally, for all

h∞ ∈ U, some temporary beliefs (f i)i keep employed forever from some time, say, T̃ ,

which means that, for all i, f i(hT ) = ρ̃i
∗(hT ) for all T ≥ T̃ . In addition, for all h∞ ∈ Vc,

from some period on, say, time Ť , players’ beliefs (f i)i are not significantly different

from players’ true strategies (σ∗
i )i: for all i and all j �= i, ‖f i

j(hT ) − σ∗
j (hT )‖ ≤ ε for all
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T ≥ Ť . From these it is easily derived that, for all h∞ ∈ U
⋂

Vc, for all i and all j(�= i),

lim supT→∞ ‖ρ̃i
∗,j(hT ) − σ∗

j (hT )‖ ≤ ε. �

12 Appendix C

12.1 Proof of Proposition 2

Take any σi and any σ−i ∈ EG({P i
s}s; σi); let σ := (σi, σ−i). Then, there exist an index

s0, a μσ−probability one set Z0, and a time function T0 : Z0 → N such that, for all α ∈ P i
s0

and all hT , h′
T ′ ∈ α, if there exist h∞, h′

∞ ∈ Z0 such that hT < h∞ and T ≥ T0(h∞) and

h′
T ′ < h′

∞ and T ′ ≥ T0(h
′
∞), then ‖σj(hT ) − σj(h

′
T ′)‖ < 1

4
ξ̄

i
for all j �= i. Accordingly,

we provide several definitions. For any α ∈ P i
s0

, class α̃ is defined as follows: hT ∈ α̃ if

and only if (1) hT ∈ α and (2) there exists h∞ ∈ Z0 such that hT < h∞ and T ≥ T0(h∞).

Next, for all j �= i, let Lα
j [aj] := suph∈α̃ σj(h)[aj ] and lαj [aj ] := infh∈α̃ σj(h)[aj ]; obviously,

for all j �= i, Lα
j [aj ]− lαj [aj ] ≤ 1

4
ξ̄

i
for all α ∈ P i

s0
and all aj . Furthermore, for all j �= i, all

s ≥ s0, all β ∈ P i
s, and all aj , let Lβ

j [aj ] := Lα
j [aj ] and lβj [aj ] := lαj [aj ], where α ⊃ β and

α ∈ P i
s0

.32 We say that a temporary belief f i is 1
4
ξ̄

i−close to opponents strategies σ−i or

that f i is 1
4
ξ̄

i−accurate against σ−i if for all α ∈ P i
s0

and all h ∈ α̃, ‖f i
j(h)−σj(h)‖ ≤ 1

4
ξ̄

i

for all j �= i. Then, we obtain the following lemma.

Lemma C.1 With μσ−probability one, if rejection occurs infinitely many times, then

there exists s̄(≥ s0 + 1) such that, for all s ≥ s̄, player i chooses a temporary belief that

is 1
4
ξ̄

i−close to σ−i (at least) 1
2
pi

s(R
i
s�Z i

s) times in epoch s (of player i): for all α ∈ P i
s0

and all h ∈ α̃, ‖f i
j(h) − σj(h)‖ ≤ 1

4
ξ̄

i
for all j �= i.

Proof. From Conditions 4 and 8 and the modification of player i’s prior belief forma-

32Since P i
s0

≤ P i
s, for all β ∈ P i

s there exists a unique α ∈ P i
s0

such that β ⊂ α.
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tion process in Section 8, it follows that after the process has proceeded to some epoch

s1(≥ s0 + 1), there exists an integer 0 ≤ z0 ≤ Z i
s − 1 such that the probability of choos-

ing histories that correspond to 1
4
ξ̄

i−accurate beliefs (in any formation phase after the

(nZi
s + z0)−th rejection for all n ∈ N) is always at least p̌i

s := (
∏

k lk)
(Ni

s+1)(≥ pi
s) in each

epoch s(≥ s1).
33 Let TRi

s
denote the calendar time in which the Ri

s−th rejection in epoch s

occurs and d(Ri
s�Zi

s)
denote the number of times that 1

4
ξ̄

i−accurate belief has been chosen

after every Z i
s rejections (in epoch s). Define Gs := {h∞ | TRi

s
< ∞,d(Ri

s�Zi
s)

�(Ri
s�Z i

s) <

p̌i
s − 1

2
pi

s}. Then, from Lemma 4 it follows that μσ(Fs) ≤ exp(−1
2
(Ri

s�Z i
s)(p

i
s)

2). From

this and Condition 6 it is easily derived that for any sufficiently large s′,

μσ(
⋃
s≥s′

Gs) ≤
∑
s≥s′

exp(−1

2
(Ri

s�Z i
s)(p

i
s)

2)

≤
∑
s≥s′

∑

m≥wi
sRi

s

exp(−1

2
m(pi

s)
2)

≤
∑
s≥s′

exp(−s) = (1 − exp(−1))−1 exp(−s′).

See Remark 7 for the second inequality. Thus, for any sufficiently large s′, μ(
⋂

s′≥1

⋃
s≥s′ Gs) ≤

μ(
⋃

s≥s′ Gs) ≤ (1 − exp(−1))−1 exp(−s′). Therefore, μ(
⋂

s′≥1

⋃
s≥s′ Gs) = 0. Finally, let-

ting G :=
⋃

s′≥1

⋂
s≥s′(Gs)

c, μ(G
⋂

Z0) = 1. Furthermore, from the definitions of G and

Z0, it is obvious that if there are infinitely many rejections along any h∞ ∈ G
⋂

Z0, then

there exists s̄(≥ s1) such that, for all s ≥ s̄, d(Ri
s�Zi

s)
≥ (p̌i

s − 1
2
pi

s)m ≥ 1
2
pi

sm for all

m ≥ Ri
s�Z i

s. It means that player i chooses a 1
4
ξ̄

i−accurate belief (against σ−i) at least

1
2
pi

s(R
i
s�Z i

s) times in each epoch s(≥ s̄). This completes the proof.

Remark 7 By the definitions in Sections 4.5 and 8, Z i
s = #∂Σ−i(P i

s, n
i
s) ≤ #Σ−i(P i

s, n
i
s) =

(#Δ
ni

s
−i)

#Pi
s. Recall that (#Δ

ni
s

−i)
#Pi

s ≤ (#A−i)
N i

s. Thus, Z i
s ≤ sN i

s for any sufficiently

33Let N denote the set of all natural numbers.
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large s. Then, from wi
s := 1

s
(1

2
(pi

s)
s)I and pi

s := (1
s
)sN i

s, and Condition 6 it is derived that

wi
sR

i
s ≤ (1

2
(pi

s)
s)IRi

s ≤ (1
2
pi

s)(
1
s
)sN i

sRi
s ≤ 1

2
(pi

s)(R
i
s�Z i

s). However, then, by Condition 6,

wi
sR

i
s → ∞ as s → ∞. Therefore, 1

2
(pi

s)(R
i
s�Z i

s) → ∞ as s → ∞.

• For all s = s0 +1, s0 +2, · · · , all q = 0, 1, 2, · · · , all α ∈ P i
s+q and all d = 1, 2, · · · , define

the corresponding class α(s, q, d) such that hT ∈ α(s, q, d) if and only if (1) time T + 1 is

in epoch s (of player i), (2) hT ∈ α, (3) the d−th α−test (in epoch s) is effective at time

T + 1, (4) for some h∞ > hT , T0(h∞) ≤ T and the d−th α−test (in epoch s) obtains the

first sample between time T0(h∞) + 1 and time T + 1 in hT . Let d
α(s,q,d)
j,m [aj ] denote the

number of times that aj has been realized in the first m α(s, q, d)−active periods, i.e., the

number of aj in the first m samples obtained for the d−th α−test. Then, define

Iα(s,q,d)
m (j, aj) := {h∞ | T α(s,q,d)

m < ∞,
d

α(s,q,d)
j,m [aj ]

m
> Lα

j [aj ] +
ξ̄

i

4
or

d
α(s,q,d)
j,m [aj ]

m
< lαj [aj ] −

ξ̄
i

4
}

and I
α(s,q,d)
m :=

⋃
j �=i

⋃
aj

I
α(s,q,d)
m (j, aj). Note that, for all h ∈ α(s, q, d), all j �= i, and all

aj , lαj [aj ] ≤ σj(h)[aj] ≤ Lα
j [aj ]; Lα

j [aj ]− lαj [aj ] ≤ ξ̄
i
�4. From this and Lemma 4 it follows

that μσ(I
α(s,q,d)
m ) ≤ (

∑
j �=i #Aj)2 exp(−1

8
m(ξ̄

i
)2). Furthermore, for all s′ ≥ s0 + 1,

μσ(
⋂
s′≥1

⋃
s≥s′

∞⋃
q=0

⋃

α∈Pi
s+q

∞⋃
d=1

⋃

m≥mi
s+q+d−1

Iα(s,q,d)
m )

≤ μσ(
⋃
s≥s′

∞⋃
q=0

⋃

α∈Pi
s+q

∞⋃
d=1

⋃

m≥mi
s+q+d−1

Iα(s,q,d)
m ).
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However, then, for all s′ ≥ s0 + 1,

μσ(
⋃
s≥s′

∞⋃
q=0

⋃

α∈Pi
s+q

∞⋃
d=1

⋃

m≥mi
s+q+d−1

Iα(s,q,d)
m )

≤
∑
s≥s′

∑
q≥0

∑

α∈Pi
s+q

∑
d≥1

∑

m≥mi
s+q+d−1

μσ(Iα(s,q,d)
m )

≤
∑
s≥s′

∑
q≥0

∑

α∈Pi
s+q

∑
d≥1

∑

m≥mi
s+q+d−1

(
∑
j �=i

#Aj)2 exp(−1

8
m(ξ̄

i
)2)

≤ 2(
∑
j �=i

#Aj)
∑
s≥s′

∑
q≥0

∑

α∈Pi
s+q

∑
d≥1

∑

m≥mi
s+q+d−1

exp(−1

8
m(ξ̄

i
)2)

= 2(
∑
j �=i

#Aj)
∑
s≥s′

∑
q≥0

∑

α∈Pi
s+q

∑
d≥1

(1 − exp(−1

8
(ξ̄

i
)2))−1 exp(−1

8
(mi

s+q + d − 1)(ξ̄
i
)2)

= 2(
∑
j �=i

#Aj)
∑
s≥s′

∑
q≥0

∑

α∈Pi
s+q

(1 − exp(−1

8
(ξ̄

i
)2))−2 exp(−1

8
mi

s+q(ξ̄
i
)2)

= 2(
∑
j �=i

#Aj)(1 − exp(−1

8
(ξ̄

i
)2))−1

∑
s≥s′

∑
q≥0

(#P i
s+q)

∑

m≥mi
s+q

exp(−1

8
mi

s+q(ξ̄
i
)2)

≤ 2(
∑
j �=i

#Aj)(1 − exp(−1

8
(ξ̄

i
)2))−1

∑
s≥s′

∑
q≥0

Ri
s+q(#P i

s+q)
∑

m≥mi
s+q

exp(−1

8
m(ξi

s+q)
2)

≤ 2(
∑
j �=i

#Aj)(1 − exp(−1

8
(ξ̄

i
)2))−1

∑
s≥s′

∑
q≥0

exp(−s − q)

= 2(
∑
j �=i

#Aj)(1 − exp(−1

8
(ξ̄

i
)2))−1(1 − exp(−1))−2 exp(−s′).

The seventh inequality holds by Condition 7. The other inequalities are obvious.

Therefore, μσ(
⋂

s′≥1

⋃
s≥s′

⋃∞
q=0

⋃
α∈Pi

s+q

⋃∞
d=1

⋃
m≥mi

s+q+d−1 G
α(s,q,d)
m ) = 0. Define

I :=
⋃
s′≥1

⋂
s≥s′

∞⋂
q=0

⋂

α∈Pi
s+q

∞⋂
d=1

⋂

m≥mi
s+q+d−1

(Iα(s,q,d)
m )c.

Then, μσ(I) = 1.

• We say that f i is rejected with type I error if f i is rejected by some α−test but f i

is statistically accurate in α−active periods, i.e., ‖f i
j(h) − σj(h)‖ ≤ ξ̄

i
�4 for all j �= i

in all α−active periods (since the α−test started) in which (enough) samples have been
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collected. In addition, if f i is rejected with type I error, we say that the rejection is of

type I error. Then, for all s = s0 + 1, s0 + 2, · · · , all q = 0, 1, 2, · · · , all α ∈ P i
s+q and all

d = 1, 2, · · · , define the corresponding class α̃(s, q, d) such that hT ∈ α̃(s, q, d) if and only

if (1) time T + 1 is in epoch s (of player i), (2) hT ∈ α, (3) the d−th α−test (in epoch s)

is effective at time T + 1, (4) for some h∞ > hT , T0(h∞) ≤ T and the d−th α−test (in

epoch s) obtains the first sample between time T0(h∞) + 1 and time T + 1 in hT , and (5)

for all hT0(h∞) ≤ ht ≤ hT such that ht ∈ α and the d−th α−test is effective at time t + 1,

‖f i
j(ht) − σj(ht)‖ ≤ ξ̄

i

4
for all j �= i,

where temporary belief f i has been formed just after the most recent rejection (of player

i) in hT .

Let d
α̃(s,q,d)
j,m [aj ] denote the number of times that aj has been realized in the first m

α̃(s, q, d)−active periods, i.e., the number of aj in the first m samples obtained for the

d−th α−test against accurate belief f i. Note that for all h ∈ α̃(s, q, d), all j �= i, and all

aj , lαj [aj ] ≤ σj(h)[aj ] ≤ Lα
j [aj ]; Lα

j [aj ] − lαj [aj ] ≤ ξ̄
i
�4. Then, define

Jα̃(s,q,d)
m (j, aj) := {h∞ | T α̃(s,q,d)

m < ∞,
d

α̃(s,q,d)
j,m [aj ]

m
> Lα

j [aj ] +
ξ̄

i

4
or

d
α̃(s,q,d)
j,m [aj ]

m
< lαj [aj ] −

ξ̄
i

4
}

and J
α̃(s,q,d)
m :=

⋃
j �=i

⋃
aj

J
α̃(s,q,d)
m (j, aj). Then, from Lemma 4 it follows that μσ(J

α̃(s,q,d)
m ) ≤

(
∑

j �=i #Aj)2 exp(−1
8
m(ξ̄

i
)2).

On the other hand, define W := {h∞ |there are infinitely many rejections of type I er-

ror in h∞}. Let Xn denote the event that the n−th rejection (of player i) occurs such that

a preliminary test chooses epoch-dependent toleraton level ξi
s and then ξ̄

i
�4−accurate

belief f i is rejected with ξi
s, and let Yn denote the event that the n−th rejection (of
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player i) occurs such that a preliminary test chooses constant toleration level ξ̄
i
and then

ξ̄
i
�4−accurate belief f i is rejected with ξ̄

i
. By the definition, W =

⋂
n′≥1

⋃
n≥n′(Xn

⋃
Yn).

We first show that I
⋂

W
⋂

Z0⊂
⋂

s′≥1

⋃
s≥s′

⋃∞
q=0

⋃
α∈Pi

s+q

⋃∞
d=1

⋃
m≥mi

s+q+d−1 J
α̃(s,q,d)
m .

Indeed, suppose that h∞ ∈ I
⋂

W
⋂

Z0. Then, since h∞ ∈ W
⋂

Z0, it is obvious that after

time T0(h∞) + 1, there are infinitely many rejections of type I error in h∞. Furthermore,

since h∞ ∈ I, there exists s̄(≥ s0 +1) such that for all s ≥ s̄, all q, all α ∈ P i
s+q, all d, and

all m ≥ mi
s+q +d−1, if T α̃(s,q,d)

m < ∞, then lαj [aj ]− ξ̄
i
�4 ≤ d

α̃(s,q,d)
j,m [aj ]�m ≤ Lα

j [aj ]+ ξ̄
i
�4

for all j �= i and all aj. Then, for any s̃ ≥ s̄, there exists s ≥ s̃ such that (1) epoch s

starts after time T0(h∞) + 1 and (2) type I error rejection occurs in epoch s: let the

rejection be the n−th one. This implies that for some q, some α ∈ P i
s+q and some d,

the d−th α−test (in epoch s) rejects a ξ̄
i
�4−accurate belief, say, f i; f i is generated by

P i
s. Clearly, there are two possible cases of rejecting f i. One case is that a preliminary

test chooses epoch-dependent toleration level ξi
s and then f i is rejected with toleration

level ξi
s. In this case, there exist α′, α′′ ∈ P i

s+q and β ∈ P i
s−1 such that α′, α′′ ⊂ β, and

m̃α′
, m̃α′′ ≥ mi

s+q + d − 1, and ‖Di
j(α

′) − Di
j(α

′′)‖ > ξ̄
i

for some j �= i. Since epoch

s starts after time T0(h∞) + 1, Di
j(α

′) = dα′
j,m̃α′�m̃α′

= d
α′(s,q,d)

j,m̃α′ �m̃α′
and Di

j(α
′′) =

dα′′
j,m̃α′′�m̃α′′

= d
α′′(s,q,d)

j,m̃α′′ �m̃α′′
. However, then, σ−i takes almost same (mixed) actions in

all β−active periods after time T0(h∞) + 1 because s − 1 ≥ s0. From this and h∞ ∈ I,

it easily derived that ‖Di
j(α

′) − Di
j(α

′′)‖ = ‖dα′(s,q,d)

j,m̃α′ �m̃α′ − d
α′′(s,q,d)

j,m̃α′′ �m̃α′′‖ ≤ ξ̄
i
�2 for

all j �= i. Thus, this case never happens in h∞. The other case is that a preliminary test

chooses constant toleration level ξ̄
i

and then the d−th α−test rejects f i with ξ̄
i
, which

is of type I error. This implies that mα ≥ mi
s+q + d − 1 and ‖Di

j(α) − f i
j(α)‖ > ξ̄

i
for

some j �= i.34 However, then, because f i is statistically accurate in the d−th α−test,

34For each α ∈ P i
s+q, f i(α) := f i(h) for h ∈ α. Since f i is generated by P i

s, f i(α) is well-defined.
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‖f i
j(h) − σj(h)‖ ≤ ξ̄

i
�4 for all j �= i in any α−active period (during the d−th α−test

is effective), so that Di
j(α) = dα

j,mα�mα = d
α̃(s,q,d)
j,mα �mα for all j �= i. These imply

that, for some j �= i and some aj , either d
α̃(s,q,d)
j,mα [aj ]�mα = Di

j(α)[aj ] > Lα
j [aj ] + ξ̄

i
�2,

or d
α̃(s,q,d)
j,mα [aj ]�mα = Di

j(α)[aj ] < lαj [aj] − ξ̄
i
�2. Thus, h∞ ∈ J

α̃(s,q,d)
mα . Hence, h∞ ∈

⋂
s′≥1

⋃
s≥s′

⋃∞
q=0

⋃
α∈Pi

s+q

⋃∞
d=1

⋃
m≥mi

s+q+d−1 J
α̃(s,q,d)
m .

Next, we need to show that μσ(
⋂

s′≥1

⋃
s≥s′

⋃∞
q=0

⋃
α∈Pi

s+q

⋃∞
d=1

⋃
m≥mi

s+q+d−1 J
α̃(s,q,d)
m ) =

0. However, the proof is quite the same as in the case of I
α(s,q,d)
m . Therefore, μσ(I

⋂
W

⋂
Z0) =

0. Since μσ(I
⋂

Z0) = 1, it means that μσ(W) = 0. Thus, we have shown the following

lemma.

Lemma C.2 With μσ−probability one, there are at most finite test rejections of type I

error.

Lemma C.1 shows that with probability one, if there are infinitely many rejections,

then a 1
4
ξ̄

i−accurate belief is chosen infinitely many times. This implies that if there are

infinitely many rejections, there are infinitely many rejections of type I error. However,

then, Lemma C.2 shows that with probability one, there are at most finite rejections of

type I error. Therefore, these imply that with probability one, there are at most finite

rejections. In other words, we have obtained the following lemma.

Lemma C.3 With μσ−probability one, there is no rejection from some period on.

• Finally, we prove Proposition 2. Let S := {h∞ | ρ̃i
∗ does not 2ξ̄

i−learns to predict σ−i

with σi in h∞}. It suffices to show that μσ(S) = 0 because ε > 2ξ̄
i
by Condition 8. Let

U := {h∞ |there are at most finite rejections along h∞}; by Lemma C.3, μσ(U) = 1.

Furthermore, for all s, q such that s + q ≥ s0, all α ∈ P i
s+q, and all d = 1, 2, · · · , consider

class α(s, q, d) as defined above. Let d
α(s,q,d)
j,m [aj ] be as defined above, i.e., the number of
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times that aj has been realized in the first m α(s, q, d)−active periods. Then, define

Kα(s,q,d)
m (j, aj) := {h∞ | T α(s,q,d)

m < ∞,
d

α(s,q,d)
j,m [aj ]

m
> Lα

j [aj ] +
ξ̄

i

2
or

d
α(s,q,d)
j,m [aj ]

m
< lαj [aj ] −

ξ̄
i

2
}

and K
α(s,q,d)
m :=

⋃
j �=i

⋃
aj

K
α(s,q,d)
m (j, aj). Letting q0(s) := max[0, s0−s], we first show that

S
⋂

U
⋂

Z0 ⊂
⋃
s≥1

⋃

q̄≥q0(s)

⋂
q≥q̄

⋃

α∈Pi
s+q

⋃
d≥1

⋃

m≥mi
s+q+d−1

Kα(s,q,d)
m .

Suppose that h∞ ∈ S
⋂

U
⋂

Z0. Then, since h∞ ∈ U, there exists a (temporary)

belief f i such that player i keeps f i forever from some period, say, time T̃ ; he also keeps

being in the same epoch, say, epoch si, forever from time T̃ . Then, player i uses either

toleration level ξi
si, or ξ̄

i
for all tests after the last rejection (in h∞). On the other hand,

since h∞ ∈ S
⋂

Z0, if si ≥ s0, then there exist η > 0, β ∈ P i
si , j �= i , and T̂ ≥ T̃

such that ‖f i
j(β) − σj(hT )‖ ≥ 2ξ̄

i
+ η for infinitely many T ≥ T̂ such that hT ∈ β (and

hT < h∞); otherwise, i.e., s0 > si, replace β ∈ P i
si by β ∈ P i

s0
in the previous sentence.

It implies that letting Ť := max[T̂ , T0(h∞)], ‖f i
j(β) − σj(hT )‖ ≥ 7

4
ξ̄

i
+ η for all T ≥ Ť

such that hT ∈ β and hT < h∞. However, then, since f i is employed forever in h∞,

there exists q̄ ≥ q0(s
i) = max[0, s0 − si] such that, for all q ≥ q̄, there exist α ∈ P i

si+q

and d ≥ 1 with α ⊂ β such that the d−th α−test is passed against f i(α)(= f i(β)).35

That is, ‖f i
j(α) − Di

j(α)‖ ≤ (ξi
s ≤)ξ̄

i
, where Di

j(α)(= d
α(si,q,d)
j,mα �mα) is based on enough

samples, i.e., mα ≥ mi
si+q + d− 1. From these it follows that ‖dα(si,q,d)

j,mα �mα − σj(hT )‖ ≥
3
4
ξ̄

i
+ η for all T ≥ Ť such that hT ∈ β and hT < h∞. Recall that, for all T ≥ Ť

such that hT ∈ β and hT < h∞, lβj [aj ] ≤ σj(hT )[aj ] ≤ Lβ
j [aj ] for all aj and that, for

35Since P i
si ≤ P i

si+q and f i is generated by P i
si , for all α ∈ P i

si+q, f i(α) is well-defined: f i(α) := f i(h)

for h ∈ α. Note also that, for all α ∈ P i
si+q there exists a unique β ∈ P i

si such that β ⊃ α, so that

f i(α) = f i(β).
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all aj , Lβ
j [aj ] − lβj [aj ] ≤ 1

4
ξ̄

i
, Lβ

j [aj ] = Lα
j [aj ], and lβj [aj] = lαj [aj ]. These imply that,

for some aj , either d
α(si,q,d)
j,mα [aj ]�mα ≥ Lα

j [aj] + 1
2
ξ̄

i
+ η, or d

α(si,q,d)
j,mα [aj ]�mα ≤ lαj [aj ] −

1
2
ξ̄

i − η. Therefore, h∞ ∈
⋃

s≥1

⋃
q̄≥q0(s)

⋂
q≥q̄

⋃
α∈Pi

s+q

⋃
d≥1

⋃
m≥mi

s+q+d−1 K
α(s,q,d)
m . Thus,

S
⋂

U
⋂

Z0 ⊂
⋃

s≥1

⋃
q̄≥q0(s)

⋂
q≥q̄

⋃
α∈Pi

s+q

⋃
d≥1

⋃
m≥mi

s+q+d−1 K
α(s,q,d)
m .

Finally, from Lemma 4 and Conditions 7 and 8 it follows that, for all s, q such that

s + q ≥ s0,

μσ(
⋃

α∈Pi
s+q

⋃
d≥1

⋃

m≥mi
s+q+d−1

Kα(s,q,d)
m )

≤ #P i
s+q

∞∑
d=1

∑

m≥mi
s+q+d−1

2 exp(−1

2
m(ξ̄

i
)2)

= 2#P i
s+q

∞∑
d=1

(1 − exp(−1

2
(ξ̄

i
)2))−1 exp(−1

2
(mi

s+q + d − 1)(ξ̄
i
)2)

= 2#P i
s+q(1 − exp(−1

2
(ξ̄

i
)2))−2 exp(−1

2
(mi

s+q)(ξ̄
i
)2)

= 2#P i
s+q(1 − exp(−1

2
(ξ̄

i
)2))−1

∑

m≥mi
s+q

exp(−1

2
m(ξ̄

i
)2)

≤ 2#P i
s+q(1 − exp(−1

2
(ξ̄

i
)2))−1

∑

m≥mi
s+q

exp(−1

2
m(ξi

s+q)
2)

≤ 2(1 − exp(−1

2
(ξ̄

i
)2))−1Ri

s+q(#P i
s+q)

∑

m≥mi
s+q

exp(−1

8
m(ξi

s+q)
2)

≤ 2(1 − exp(−1

2
(ξ̄

i
)2))−1 exp(−s − q).

Therefore, for all s ≥ 1 and all q̄ ≥ q0(s) = max[0, s0 − s],

μσ(
⋂
q≥q̄

⋃

α∈Pi
s+q

⋃
d≥1

⋃

m≥mi
s+d−1

Kα(s,q,d)
m ) ≤ μσ(

⋃

α∈Pi
s+q

⋃
d≥1

⋃

m≥mi
s+d−1

Kα(s,q,d)
m )

≤ 2(1 − exp(−1

2
(ξ̄

i
)2))−1 exp(−s) exp(−q) for all q ≥ q̄.

Thus, μσ(
⋂

q≥q̄

⋃
α∈Pi

s+q

⋃
d≥1

⋃
m≥mi

s+d−1 K
α(s,q,d)
m ) = 0 for all s ≥ 1 and all q̄ ≥ q0(s),
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so that μσ(
⋃

s≥1

⋃
q̄≥q0(s)

⋂
q≥q̄

⋃
α∈Pi

s+q

⋃
d≥1

⋃
m≥mi

s+d−1 K
α(s,q,d)
m ) = 0. Therefore,

μσ(S
⋂

U
⋂

Z0) ≤ μσ(
⋃
s≥1

⋃

q̄≥q0(s)

⋂
q≥q̄

⋃

α∈Pi
s+q

⋃
d≥1

⋃

m≥mi
s+d−1

Kα(s,q,d)
m ) = 0.

Since μσ(U
⋂

Z0) = 1, it implies that μσ(S) = 0. This completes the proof. �

13 Appendix D

In preparation.
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