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Abstract

We provide a class of prior beliefs that (almost surely) lead to playing approximate Nash
equilibrium, combined with bounded rationality, i.e., smooth approximate optimal be-
haviors, in any infinitely repeated game with perfect monitoring: converging to e—Nash
equilibrium for any (finite normal form) stage game, any discount factors (less than one),
and any € > 0. Furthermore, the class of prior beliefs is smart in the sense that, for any
learnable set of opponents strategies, a prior belief in the class e—weakly merges with
all opponents strategies in the learnable set. We also argue the implications of our posi-
tive result to impossibility results (Nachbar (1997, 2005) and Foster and Young (2001)).
Specifically, we point out that the impossibility in Nachbar (1997, 2005) is obtained be-
cause the learnability condition in Nachbar (1997, 2005) requires uniform learning such
that each player’s prior belief weakly merges with opponents true strategies uniformly in
his own wvarious strategies, including his true one, and that the impossibility in Foster

and Young (2001) crucially depends on perfect rationality, i.e., exact optimal behaviors.



1 Introduction

We provide a class of prior beliefs that (almost surely) lead to playing approzimate Nash
equilibrium, combined with bounded rationality, i.e., smooth approximate optimal be-
haviors, in any infinitely repeated game with perfect monitoring: converging to e—Nash
equilibrium for any (finite normal form) stage game, any discount factors (less than one),
and any € > 0. Furthermore, the class of prior beliefs is smart in the sense that, for any
learnable set of opponents strategies, a prior belief in the class e—weakly merges with
all opponents strategies in the learnable set. We also argue the implications of our posi-
tive result to impossibility results (Nachbar (1997, 2005) and Foster and Young (2001)).
Specifically, we point out that the impossibility in Nachbar (1997, 2005) is obtained be-
cause the learnability condition in Nachbar (1997, 2005) requires uniform learning such
that each player’s prior belief weakly merges with opponents various strategies, including
opponents true ones, uniformly in his own various strategies, including his true one, and
that the impossibility in Foster and Young (2001) crucially depends on perfect rationality,
i.e., exact optimal behaviors.

Convergence problem has been in trouble for Bayesian learning in repeated games
since its study started. Kalai and Lehrer (1993, 1994) and others have contributed to
foundations of Bayesian learning in repeated games: formulating basic concepts (e.g.,
merging, etc.) that are appropriate to Bayesian learning in repeated games and providing
characterization conditions (e.g., absolute continuity, etc.) for converging to Nash equi-
librium. However, in general, any of those characterization conditions is not practically
easy to check; indeed, there has been given no nontrivial example in which a characteri-
zation condition plays an important role in showing convergence. Therefore, it has been

unknown whether convergence to Nash equilibrium is regular or exceptional in repeated



games. Sandroni (2000) provides a positive result in a specific example. But its purpose
is to show emergence of coorperation (in the 2 x 2 coordination stage game) through
Bayesian learning rather than to provide a general result of convergence. On the other
hand, Nahchbar (1997, 2005) proposes a rather general result of impossibility for Bayesian
learning in repeated games. Nachbar shows that in any repeated game under a certain
weak condition, if players are able to learn to predict sufficiently various opponents strate-
gies and their learning abilities are symmetric, then at least one of players cannot learn
to predict his opponents true strategies (i.e., opponents (approximate) optimal ones to
their prior beliefs) uniformly with any of his own wvarious strategies, including his own
true one. As Nachbar (2005) admits, this negative result does not immediately imply the
impossibility of convergence, but it certainly shows that in general, it is not easy to ob-
tain convergence to even approximate Nash equilibrium. Furthermore, Foster and Young
(2001) show that under perfect rationality (i.e., exact optimal behaviors), any given prior
beliefs cannot converge to Nash equilibrium for almost all stage games near the matching
pennies one: there exist no prior beliefs such that the prior beliefs learn to play Nash
equilibrium in any stage game. In other words, (at least under perfect rationality) it is
impossible to obtain a general result of learning to play Nash equilibrium.

This paper gives a general positive result of learning to play approximate Nash equi-
librium, provided that players are boundedly rational in the sense that they take smooth
approximate optimal behaviors. That is, we construct a class of prior beliefs that converge
to approximate Nash equilibrium in any infinitely repeated game (with perfect monitor-
ing). Furthermore, our class of prior beliefs are smart in the sense that for any prior belief,
there exists our prior belief in the class such that our prior belief (apporoximately) learns

to predict all opponents strategies that the given prior belief learns to predict. This result



implies that we do not have to give up learnability at least in any approximate sense in
order to obtain convergence to approximate Nash equilibrium.

The point of this paper is how to construct prior beliefs for our purpose. The con-
struction of our prior beliefs are based on two different research lines. The first research
line is Foster and Young (2003)’s random search and testing. Foster and Young apply
the method to a non-Bayesian learning model, but as will be shown, the method is also
applied to Bayesian learning by introducing bounded rationality; more originally, Arthur
(1994) proposes a similar but more intuitive mode of learning, which he calls inductive
learning. The second research line is Noguchi (2005), which provides a characterization of
learnable set of strategies. Making use of the concepts and technique in Noguchi (2005),
we generalize the method of random search and testing so fully that our prior beliefs not
only learn to predict as many strategies as possible but also converge to approximate
Nash equilibrium in any repeated game.

Our positive result has the implications to the impossibilit results in Nachbar (1997,
2005) and Foster and Young (2001). We obtain that under bounded rationality (i.e.,
smooth approximate optimal behavior), it is fairly possible to learn to play approximate
Nash equilibrium for any stage game and any discount factors. From this we conclude
that Foster and Young’s impossibility crucially depends on perfect rationality, so that
their impossibility result is not robust to bounded rationality (i.e., approximate optimal
behavior). In contrast to this, Nachbar’s impossibility is quite robust in the sense that
it holds even in the case of bounded rationality and “approximate learning,” as will be
explained. However, our positive result implies that for any learnable sets there exist
prior beliefs such that each of the prior beliefs approximately learn to predict all oppo-

nents strategies in the learnable set and those prior beliefs converge to approximate Nash



equilibrium. It means that Nachbar impossibility is different from the impossibility of
learning to play approximate Nash equilibrium in a general sense and that the diver-
sity (and symmetry) of players’ learnable sets does not prevent Bayesian learning from
converging to approximate Nash equilibrium.

This paper is organized as follows. Section 2 describes the basic model and concepts.
Section 3 explains main results in this paper. In Section 4, we construct prior beliefs. In
Section 5, conditions for convergence are given. In Sections 6 and 7, we show that our
prior beliefs converge to approximate Nash equilibrium. In Section 8, we prove that each
of prior beliefs approximately learns to predict all opponents strategies in any learnable
set. In Section 9, we discuss the implication of our results to the existing impossibility

results.

2 The Model and Concepts

2.1 Basic model and notations

A group of players ¢ = 1,--- , [ repeatedly play a stage game over infinite time horizon
t = 1,2,---. Each player i takes a (pure) action a; in a finite set A; at each time,
and let A denote the set of all action profiles: A := II/_; A;. Given an action profile
a := (a;);, the stage game payoff for player i is denoted by wu;(a). Let A(A;) denote the
set of all mixed actions over A; and A(A) denote the set of all mixed action profiles,
ie., A(A) :=II_;A(A;). If a mixed action profile 7 := (7;); is played, then the stage
game expected payoff for player i is defined by w;(7) := Y, mi[ai1] - - - wrlar]ui(ar, - - -, ar).
A history of the repeated game is a sequence of all players’ actions. A finite history is

denoted by h. When the length of a finite history is emphasized, we write hr for a finite



history up to time T: hy := (a', -+ ,a”). Let Hr denote the set of all finite histories with
time length 7. Let H designate the set of all finite histories, including the null history
ho :=0: H :=J;_, Hr, where Hy := {ho}. An infinite history is denoted by h, and let
H,, designate the set of all infinite histories. If a finite history h is an initial segment of
a history A/, then it is denoted by h < h’. When h < b’ and h # I/, it is designated by

h<h.

2.2 Behavior strategies

We assume perfect monitoring, i.e., every player observes the past history of realized
actions of all players at each time. Therefore, the behavior of player i in the repeated
game is represented by a behavior strategy, denoted by o; : H — A(A;). Let u, designate

the probability measure over H, induced by playing a strategy profile o := (o1, -+ ,07).

2.3 Bayesian learning

All players are Bayesian learners in the sense that each player has his prior belief about
the other players’ behavior strategies; every player knows that all players play (mixed)
actions independently at each time. Then, as Kalai and Lehrer (1993) show, a prior belief
of player ¢ is formally represented by a profile of the other players’ behavior strategies,

denoted by p' := (ﬁ;)#i.l

2.4 Payoffs and bounded rationality

Given a strategy profile o, the payoff for player i in the repeated game is the (averaged)

expected discounted payoff sum V(o) := (1—6;) S 5v_, 67 > nemy, Wilo(h))p,(h), where

1b§» is a behavior strategy of player j(# i), i.e., ﬁ; cH — A(4;).

5



J; is the discount factor of player i (0 < §; < 1), o(h) := (o1(h),--- ,07(h)), and p,(h) is
the probability of playing h. In the continuation game following a realized past history
h, a continuation behavior strategy for player i is denoted by o;: o;,(R') == o;(h- ')
for all h' € H, where h - h' is the concatenation of h and h'. The continuation payoff for
player i following h is V(o | h) := Vi(0}), where op, == (014, ,011)-

The key assumption in this paper is that all players are “boundedly rational” in the
sense that they take smooth approrimate optimal behaviors against their prior beliefs.
Specifically, we assume that each player ¢ takes his strategy o; to maximize the following

(averaged) expected discounted “perturbed” payoff sum against his prior belief p':

[e.o]

Vo) = (1= 00 017 D7 o). 7 () + o (), oy 1),

T=1 heHr_ 4

where v; is the payoff perturbation for player i. Payoff perturbation v; is a smooth
and strictly concave function from Int(A(A;)) to R, and v; also satisfies the boundary
condition that ||Dv;(m;)|| — oo as m; approaches the boundary of A(A;).?2 Furthermore,
letting | v; |:= sup,, vi(m;), if | v; | is small, we say that player i’s payoff perturbation is
small. For simplicity, in the remaining of this paper we assume that payoff perturbations

are symmetric.>

2Int(A(A;)) denotes the interior of A(A;). ||Dv;(w;)|| is the standard norm of the derivative Dv;(7;)

of v; at ;.
3Payoff perturbation v is symmetric if, for any mixed action 7 := (71, ,7,) and any permutation
o {1l ,n} — {1,---,n}, v(m,- ,Tn) = v(Tpa), - Teny). For example, the logistic function

_% Ek T log 7k is symmetric.



2.5 Smooth approximate optimal strategy

For any opponents strategy profile p_, := (pj)#i, there exists a unique smooth approxi-

;= argmax,, V" (0, p_;)." Essentially,

mate optimal strategy to p_;, denoted by of: of
all that is necessary for our argument is that, for each player i, there is a uniform lower
bound on the probability of playing any action after any finite history. In fact, because

of the boundary condition on v;, ¢f has a uniform lower bound [;: for all 4, there exists

l; > 0 such that, for any p_;, 0?(h)[a;] > [, for all a; € A; and all h € H.

2.6 e¢—Nash equilibrium

We introduce approzimate Nash equilibrium: for any € > 0, we define e—Nash equilibrium

as follows.
Definition 1 A strategy profile & is called an e— Nash equilibrium if, for all i and all o;,
Vi(Gi,0-) + e > Vi(oi,0-4).

Especially, when € = 0, ¢ s called a Nash equilibrium.

2.7 Conditioning rules and classes

We introduce a key concept to model the learning abilitiy of each player: conditioning
rules. A conditioning rule represents an (approximate) regularity of opponents behavior
strategies. Formally, a conditioning rule is a finite partition of H, denoted by P. An
element of P is called a class in P, denoted by a. Note that a class is considered as a
subset of H because it is an element of a partition of H. Also, we will often define a subset

of H and call it a class by the abuse of language. When a realized history h;_; € a, we

*For any h such that i, , y(h) =0 (for all 0;), 0f, = argmax,, V;" (7i,p_; 1,)-
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say that time ¢ is an a—active period or that « is active at time t. For any player i’s

opponents strategy profile o_; := (0;),.;, we define its e—approzimate conditioning rule.

Definition 2 A finite partition P2 " is called an e—approzimate conditioning rule of o_;
if, for all« € P27, all hy W € «, and all j # i, |lo;(h) — o;(R)|| < e.5 Especially, when

e =0, P/ is called a conditioning rule of o_;.

The definition says that mixed actions in active periods of each class « are almost the
same. Note that, for all € > 0, any opponents strategy profile o_; has its e—approximate
conditioning rule. In the remainder of this paper, we use the maximum norm on any set
of mixed actions: ||z|| := max, | z[a] |.

Conversely, we may generate strategies from given conditioning rules.

Definition 3 We say that o_; is generated by a set PP of conditioning rules if, for all

e > 0, there exists P € P such that P is an e—approximate conditioning rule of o_;.

The definition says that, for all e > 0, the regularity of o_; is e—approximated by some
conditioning rule in P. Let G(P) denote the set of all opponents strategies generated by P.
Note that any opponents strategy profile o_; is generated by any countable set {P: "},
of its approximate conditioning rules, i.e., o_; € G({PZ*},), where g, — 0 as n — oco.
Furthermore, o_; is generated by a conditioning rule P, i.e., 0_; € G(P) if and only if P
is a conditioning rule of o_;: for all @« € P and all h, ' € a, o_;(h) = o_;(F').

Finally, since conditioning rules are (finite) partitions (of H), they are ordered with
respect to fineness: if, for all a € P there exists § € Q such that o C 3, we say that
P is finer than Q, denoted by Q < P. Clearly, < is an order relation over the set of all

conditioning rules. It is important to note that a finer conditioning rule generates more

| - || is the maximum norm: ||z|| := max, | z[a] |.



opponents strategy profiles. Furthermore, when o_; is generated by P or equivalently P
is a conditioning rule of o_;, 0_;(a)(= (0j());») is well-defined for all & € P: for all
Jj # i, 0j(a) == 0j(h) for h € a. In addition, if @ < P and o_; is generated by Q, then
o_; is also generated by P; thus, for any 5 € Q, 0_;(5) = 0_;(«) for all & € P such that
a C 3. We will make use of these ordering properties to a full extent for constructing

smart prior beliefs.

3 Main Result

The main purpose of this paper is to provide a class of prior beliefs that almost surely
lead to playing approximate Nash equilibrium in any infinitely repeated game with perfect
monitoring. Furthermore, we show the result that our constructing prior beliefs are smart
enough to approximately learn to predict as many opponents strategies as possible. To
formalize our results, we introduce several concepts of learning: e—weak merging and

learnable set (correspondence).

Definition 4 We say that p,, + eé—weakly merges with ,, , ) or that p' e—learns to

predict o_; with o; if, for all j # i, limsupy_  [|p5(hr) — o(ho)|l < €, p,, a.s.

o_i)

Especially, when € = 0, we say that ju,, 5y weakly merges with p,, , .y or that p' learns

to predict o_; with o;.

Note that although the definition of e—weak merging only requires eventually making
e—accurate predictions on one period ahead opponents actions, it implies eventually mak-
ing e—accurate predictions on any finite period future opponents (mixed) actions. Next,

learnable sets of strategies are defined as follows.



Definition 5 Let M_;(p’, 0;) denote the set of all opponents strategies that p'learns to

predict with o;. M_i(ﬁi, 0;) is called the p'—learnable set with o;.

Note that set correspondence M_;(p',-) : ¥; — 2¥—i completely represents the learning
ability of prior belief p?, where ¥; is the set of all player i’s strategies and 2%~ is the
power set of all other players’ strategy profiles. Conversely, we may define the concept of

learnable set correspondence.

Definition 6 Set correspondence M_; : ¥; — 2%~ is said to be learnable if there exists a

prior belief p' such that, for all o;, M_;(0;) C M_;i(p',04).

Let us describe our main results. The first result is that, given any ¢ > 0 and any
prior beliefs (p');, we obtain prior beliefs (p%); such that each p’ not only e—learns to
predict all opponents strategies in M_;(p", ;) with all o; but also e—weakly merges with
opponents’ true strategies (a;f)#i (i.e., the smooth approximate optimal strategies to

(p)j2i): of == argmax,, V;" (s, pL) for all i.

K3 K

Theorem 1 For any € > 0 and any prior beliefs (p');, there exist prior beliefs (pL); such
that

(1) for all i and all player i’s strategies o;, p'. e—learns to predict o_; with o; for all
o_i € M_i(p', o),

(2) for any stage game payoffs (u;); and any discount factors (0;);, there exists v > 0
such that, for any (symmetric) payoff perturbations (v;); with | v; |< © for all i, prior

beliefs (pL); e—learn to predict players’ true strategies o* := (0F);: with p,.—probability

one, there exists T such that, for all T > T, all i, and all j # 1,
7% ;(hr) — o (hr)|| < e.
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Theorem 1 insists that even if Bayesian learners are (almost) as smart as possible,
they can always (approximately) learn to predict each other true strategies as far as they

are boundedly rational.

Remark 1 Theorem 1 (1) implies that, for any learnable set correspondence M_;, p.

e—learns to predict o_; with o; for all o; and all 0_; € M_;(0;).

The second result, i.e., convergence to approximate Nash equilibrium, is immediately
obtained from Theorem 1 (2) by taking into considerations the variations of (maxi-
mum) payoffs by belief changes. Indeed, there is some bound on the variation rates
of (maximum) payoffs by belief changes. Let U := max; max, | u;(a) | and V" (o_;) =

max,, V;" (0;,0_;). Furthermore, let #A denote the number of all (pure) action profiles.

Lemma 1 (1) For anyi and any o_;,0"_,

hEHy j#i

| V(o) = V2 (0l,) |S U#AY 67 max max o (h) — o(h)])
T=0

/
—1

(2) For any i and any o; and any o_;, 0

o0
Vit o) = V(o) S UA T sup ma o) = )
Proof. It is easily obtained from the intermediate value theorem and the recursive
structure. m
Furthermore, it is obvious that | V" (o) — V;(0) |<| v; | for all o and all i. Then, take

any £ > 0 and any 6 < 1. Letting € := (1 — 6) /5U#A, v := min[#4, £, 0], and | v; |[< D

for all 7, we obtain e—weak merging from Theorem 1 (2). From these it follows that, for

11



all T > T and for all i and all O,

‘/i(o"“ O';kLT,fi)

IN

Vi (i, 0, i)+ | vi |

IN

VI (Ohymi)+ | i |
{ Vi (=1 €
< V; (p*,hT) + Z—i_ ‘ Ui ‘
Vg * ~ €
=V (UhT,mP*,hT) + Z"‘ | v |
£
4

9
S ‘/;'(O'ZT,’L'? O';kLT,fi) + 5 + 2 ’ Uj ’S ‘/;'(O'ZT,’L" O':LT,fi) + €.

) €
< VPO Ol )+ 2 4 01

The third and fifth inequalities are obtained from Theorem 1 (2) and Lemma 1. The
fourth equality holds because o} = argmax,, V" (7;, p). The other inequalities are obvi-

)

ous. Therefore, we have obtained Theorem 2 as a corollary of Theorem 1 (2).

Theorem 2 For any ¢ > 0 and any 0 < 6 < 1, there exist prior beliefs (pL): such that,
for any stage game payoffs (u;); and any discount factors (8;); with 6; < & for all i, there
exists v > 0 such that, for any (symmetric) payoff perturbations (v;); with | v; |[< v for
all i, the smooth approzimate optimal strategy profile o* to prior beliefs p, = (pL); almost
surely converges to e—Nash equilibrium: with p.—probability one, there exists T such

that, for all T > T, 0}, 18 an e—Nash equilibrium.

Note that each player does not need to know opponents payoff structures and discount
factors. In other words, all any player has to do is to choose an appropriate prior belief
and take a smooth approximate optimal behavior to his prior belief based on his own
payoff structure and discount factor. Then, whatever stage game is repeatedly played,
they learn to play approximate Nash equilibrium in the corresponding repeated game.

Finally, we remark how to construct smart prior beliefs, i.e., prior beliefs that e—learn

to predict any learnable set correspondence. Noguchi (2005) shows that any learnable
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set (correspondence) is completely characterized by a countable set of conditioning rules.
Precisely, a set correspondence M_; is learnable if and only if there exists a countable
set {P!}, of conditioning rules such that for all o;, any o_; in M_;(0;) is eventually
generated by {P!}, with playing o; (see Section 8 and Noguchi (2005) for details). The
point is that we can make use of {P'}, to obtain Theorem 1. Precisely, for each i, we
use a countable set {Q'}, of conditioning rules which are easily obtained from {P'}, such
that (3.0) P! < Q! for all s, (3.1) Q) < Q! for all s, and (3.2) for all j # i, all s, and
all T', there exists s’ such that FrQJ < Q.5 Property (3.0) allows us to replace {P'}
by {Q}s; for all ¢ and all oy, any o_; in M_;(0;) is eventually generated by {Q"}, with
playing ;. Properties (3.1) and (3.2) ensure that player 7 is able to learn any other player
J’s (smooth approximate) optimal strategy to any belief eventually generated by {Q7},,
as will be shown. Therefore, in the remaining of this paper, without loss of generality, we
may assume that {P'},; has Properties (3.1) and (3.2). We will construct prior beliefs
(in Theorem 1) based on {P!},; in the next section and prove Theorem 1 in Sections 7

and 8.

6A finite partition Fr Q% of H is defined by the following equivalence relation on H:
T
h~gpq: b if and only if h-h ~gi I’ -} for all h € | ] H..
t=0
Note that, if opponents take behavior strategies generated by QF, then just after any finite history
in the same class of FrQt, player i faces the same strategic situation up to the next T periods. Thus,

taking a sufficiently large T', player i, who discounts future payoffs, plays almost the same optimal (mixed)

actions just after any finite history belonging to the same class of Fr Q.
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4 Prior Belief Formation

4.1 Phases in prior belief formation process

Each player ¢ infinitely repeats four phases in a given repeated game. The first phase
is that player 7 simply keeps his current temporary belief 7 which we call a stationary
phase. The second one is called a test phase in which player ¢ not only starts to perform
new statistical tests against his belief f* but also checks f*. The third one is a formation
phase in which, if player i’s belief f* is rejected in the previous test phase, player i
observes realized opponents actions and forms a new temporary belief ¢%; otherwise,
player i continues employing his current belief f?. The fourth one is a transition phase in
which if player ¢’s new belief has been formed in the previous formation phase, player ¢
gradually switches from a rejected belief to a new belief. Then, the process proceeds to
a new stationary phase. A time interval consisting of three subsequent phases, i.e., test,
formation, and transition ones, is called an active interval. Furthermore, a time interval

consisting of all four phases is called a cycle.

4.2 Test procedure

Given a conditioning rule P, a toleration level &, and a least sample size m, we define
the statistical test procedure with (P, £, m) (in player i’s prior belief formation process)
as follows: suppose that player i has a temporary belief f* (which is generated by P)
and employs (P,&,m) at the beginning of a given test phase. Then, player i collects

realized actions in active periods of each o € P during the given test phase and obtains

7A temporary belief f? of player i is formally a profile of opponents behavior strategies, i.e., f? :=

(f})ji» where fi: H — A(Ay).
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the empirical distribution D;- () of each player j(# i)’s realized actions in active periods
of each a.. Let m® designate the number of times that « has been active during the test
phase: m® =3 D (a)[ay] for all j # i. Furthermore, for all a € P and all j # i, define
fi(a) == fi(h) for h € a.® Then, if | Di(a)— fj(a)|| > £ for some j # i and some a
with m® > 7, we say that fis rejected (at the end of the given test phase). If a current
belief f?is rejected, player i gives up f* and forms a new (temporary) belief ¢° in the next
formation phase. On the other hand, if || D}(a)— fi(a)|| < & for all j(# i) and all @ € P
with m® > 1, we say that f?is not rejected. In that case, player i continues employing
f% until the next test phase. We remark that player ¢ will keep collecting samples (in any
phases) for any class whose samples are not enough, i.e., any o € P with m® < m, until
either at least 7 samples are obtained, or f* is rejected. In relation to this, f* is also
rejected at the end of the given test phase if, for some class o’ that did not obtain enough
samples in a past test phase of checking f*, enough samples have been collected (up to

the given test phase) and || D}(a/)— fi(a/)| > & for some j # i.

4.3 Temporary belief formation

In each formation phase, if player i’s temporary belief f! was rejected in the previous
test phase, player i forms a new (temporary) belief g. Specifically, player i employs a
correspondence based on a conditioning rule P and an accuracy level n. First of all,
let A%(A;) == {m; € A(4;) [for all a;, m;[a;] = 7 for some nonnegative integer n;}
and let A%, := [[,,; A%(A;); note that for any m; € A(A;), there exists 7 € A%(A;)

9

such that |m; — 7} < Then, define a set of opponents strategies generated by

1
n

8Since f?is generated by P, for all @ € P and all h, ' € «, fi(h) = f*(h'); see Section 2.7. Therefore,

fi(a) is well-defined for all o € P.

9We use the maximum norm on A(A;): ||7;|| := max,, | mja;] |-
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P, denoted by ¥_;(P,n), as follows: ¥_;(P,n) := {o_; € G(P) |for all j # i and all
a € P, 0;(a) € AMA;)}, where 0,(a) := o;(h) for h € . Tt is the set of opponents
strategies which are generated by P and whose (mixed) actions all belong to A" ; for

in ¥ _;(P,n) such that ||o;(h) — o(h)|| <

any o_; generated by P, there exists o’ ; i

1
n

for all h and all j # i. Note also that ¥_;(P,n) is identified with A™; x --- x A™,. Let

#P
N? denote the time length of the formation phase, and the set of all possible histories

1 Then, taking a

of opponents actions in the formation phase is denoted by H_; yi.
sufficiently large N, consider any function from H_; yi to Z_i(ﬁ, n) which is surjective,
denoted by B : H_; xi — %_;(P,n); B is surjective if for any o_; € ¥_;(P,n), there
exists h_; € H_; yi such that o_; = B(h_;). We call it player i’s belief correspondence.

Therefore, player ¢ observes a history h_; of opponents actions in the current formation

phase and then forms a new belief g' = B(h_;) at the end of the current formation phase.?

4.4 Belief transition

In each transition phase, if his belief was rejected in the previous test phase, each player
i gradually switches from a rejected belief f* to a new belief g° (which has been formed in
the previous formation phase). Specifically, let K* denote the time length of the current
transition phase, and let time 7'+ 1 be the first period of the current transition phase.

Given a realized past history hr, player ¢ has the following transition belief during the

0Since o_; is generated by P, o;(a) is well-defined for all o € P and all j # i.
UH y={(al,, - ,al,) | a’, € ,A; forallt=1,--- N}

12Note that player i ignores not only the past history before the formation phase but also his own

actions in the formation phase to form his temporary belief.

16



transition phase: for all 1 < k < K" and all h}_, € Hy_1,

(1— ﬁ)f (ho - hy_y) + 7Y (hr - hi_1),

where hr - h)_, is the concatenation of hy and hj_,.'?

4.5 Epochs

In order to complete the process, we determine (P, &, ) for each test phase and (75, n, B)
for each formation phase. Furthermore, we specify the lengths of all phases. For that
purpose, we introduce a concept of time interval: epochs. An epoch (of player i) consists
of subsequent cycles (of player i). Player i uses the same toleration level in all test
phases during each epoch (of player 7); thus, let §i denote the player i’s toleration level
during the s—th epoch. Moreover, the same conditioning rule, accuracy level and belief
correspondence are used in all formation phases during each epoch; let P!, n' and B
denote the conditioning rule, the accuracy level and the belief correspondence during the
s—th epoch. Each epoch switches to the next epoch according to the number of rejections,
denoted by R!. Precisely, the s—th epoch (of player i) switches to the (s + 1)—th epoch
(of player 4) if player i’s rejections occur R’—times in the s—th epoch. We assume that
R < R, for all ¢ and all s. Let us describe conditioning rules and parameters in each

epoch.

e Test phases
(i) Toleration levels: Player i keeps using the same toleration level £ in all test phases

during each epoch s. We assume the decrease of {£'},: 0 < 5i+1 < & for all s.

(ii) Conditioning rules: The switching rule of conditioning rules is a little more com-

B~ £)fi(h) + £gi(h) = (1 — £)fi(h) + £gi(h)); .

17



plicated. When the process proceeds to the s—th epoch, player i starts to employ P! in
the first test phase (in the s—th epoch), and keeps switching to finer rules (than P?) until
the first rejection occurs (in the s—th epoch): employing P!, in the second test phase
(in the s—th epoch), employing P!, in the third test phase, and so on. Just after the
first rejection has occurred, player i switches back to P! in the next test phase and then,
he again keeps switching to finer rules until the next rejection occurs; if the next rejec-
tion occurs, then he again switches back to P!. Player i repeats this switching behavior

through the s—th epoch.

(iii) Sample sizes: For each P!

ER

we define the canonical (least) sample size m’; we
assume the increase of {m},: mi <m! , for all s. Then, when player i employs PZ,  in
a test phase during the s—th epoch, he uses (m.,, +d — 1) as the (least) sample size in
the test phase, where (d — 1) is the number of times that player ¢ has employed P! 4 0

past test phases (during the s—th epoch).

(iv) Lengths: Take a sufficiently large length for a test phase according to P.,, and
(m, g td— 1) that are used in the test phase. For example, if player i employs P! +q and
(ml,,+d—1) in a test phase, let the length of the test phase be 6(277 4 1)(mi, +d —

1)(#Pl,,)? periods; see Appendix D for details including T7.

e Formation phases
(i) Conditioning rules: Player i keeps employing P! in all formation phases during the

s—th epoch.

ii) Accuracy levels: Player i keeps employing a positive integer n’ in all formation
y Y ying g s

phases during the s—th epoch. We assume the increase of {n’}s: n! <n’,, for all s.

(iii) Lengths: We suppose that the lengths of all formation phases in each epoch are the
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same. Thus, let N? denote the length of any formation phase during the s—th epoch. We
assume the increase of {N!};: N! < N, for all s. Furthermore, take a large N} such

that (#A%%)#P; < (#A_Z‘)N;, where A—i = Hj#iAj‘
(iv) Belief correspondences: Player i keeps employing a belief correspondence B :

S S

H_; ni — S_;(P., nt) in all formation phases during the s—th epoch.
e Transition phases
(i) Lengths: The lengths of transition phases are increasing in time: letting K*(n) be

the length of the n—th transition phase of player i (from the beginning of the repeated

game), K'(n) < K'(n+ 1) for all n, and lim,,_., K’(n) = co.

More conditions will be imposed on {£'}, {m’}, {n'}, {N}, {K'(n)}, and {R'} to

obtain convergence to e—Nash equilibrium.

Remark 2 We do not explicitly argue the lengths of stationary phases. However, we
implicitly assume that the lengths of stationary phases grow much more rapidly than the
lengths of the other three phases so that the lengths of active intervals become almost

negligible compared with those of stationary phases.

4.6 Constructing prior belief

Finally, we define the prior belief p° of each player i. According to player i’s prior belief
formation process, he keeps employing a temporary belief in the first three phases (i.e.,
stationary, test, and formation ones) of each cycle, and he may have a transition belief
in each transition phase. Given a realized past history Az, suppose that time T + 1 is
in one of the first three phases, and let f* be the temporary belief of player i at time

T + 1. Then, define pi(hr) := fi(hr). On the other hand, suppose that time T + 1 is
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in the k—th period of a transition phase. Let K’ be the length of the transition phase.
Furthermore, let f! denote the temporary belief that was employed until the previous
formation phase and ¢° denote the temporary belief that will be employed from the next

stationary phase.'* Then, let p.(hr) := (1 — %) fi(hr) + Zg'(hr).

4.7 Optimal strategies to prior and temporary beliefs

Finally, we evaluate the difference between the smooth approximate optimal strategies

to prior and temporary beliefs. We first provide the following lemma. Recall that

o?

? .= argmax,, V" (0;, p_;) for opponents strategies p_;. Let D%v;(m;) denote the sec-

ond derivative of v; at m; and ||(D%v;(m;)) || denote the standard norm of the inverse
(D?v;(m;))~t. Furthermore, define ||(D?v;)7|| := sup{||(D%v;(m;)) || | m: € A(A;1)},

where A(A;; L) := {m; | mi[a;] > ; for all a;}. Then, we obtain the following lemma.

Lemma 2 For any opponents strategies p_;, p’

—1

/ U#A D2/UZ -1 ’
ot (ha) — ot (ko) < AN g > gm0 — )]

heHr j#i

Proof. It is easily obtained by applying the implicit function theorem to the first

order condition. m
Especially, from Lemma 2 it is derived that the difference between the smooth ap-
proximate optimal strategies to prior and temporary beliefs is inversely proportional
to the length of the next transition phase. Indeed, let o} denote player i’s true strat-
egy, i.e., the smooth approximate optimal strategy against player i’s prior belief p':
fo_

of = argmax,, V" (0;,pL). Similarly, for player i’s temporary belief f% let o] :=

arg max,, V;" (0;, f*). Define a subset of finite histories H;: as follows: hy € Hy: if and

2

140f course, f* and g° may be the same.
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only if player i employs f* as his temporary belief (at time T + 1) after hy is realized.
Then, the difference between o} and azf is inversely proportional to the length of the next

transition phase as follows.

Lemma 3 For all hy € Hyi,

O U#H#A|(D?vy) | 1
i—-67 K

lo! (hr) = o7 (hr)|| <
where K is the length of the nexat transition phase (of player i).

Proof. It is immediate from Lemma 2 and the definition of transition belief. =

5 Conditions for Convergence

We impose conditions on players’ prior belief formation processes to obtain convergence
to approximate Nash equilibrium. Conditions 1-5 ensure that the probability of reach-
ing an approximate equilibrium after a belief rejection within a certain time interval is
bounded away from zero, which is discussed in Section 6. Then, Conditions 6 and 7 ensure
convergence to approximate equilibrium, which is argued in Section 7.

The first condition requires that active intervals between players be completely asyn-

cronized.

Condition 1. Any active interval of any player does not overlap any active interval
of any other player. In other words, any active interval of any player is included in an

intersection of stationary phases of all other players.

The second one is a bound condition which demands that two main parameters be-
tween players be not extremely different as time proceeds. Let C%. + denote the maximum

among the lengths of past and present cycles of player i at time T: time T is in the player
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i’s present cycle. Let C% designate the length of the most recent past cycle of player i at

time 7.

Condition 2. There exists ¢ > 1 such that, for all i, all j # i and all T, C%Jr/é% <e.

Furthermore, there exists n > 1 such that, for all i, all j #i and all s, N! /NI < n.

The third condition requires rapid decrease of toleration levels {fi}s compared with
> i #P7 and the fourth one demands sufficiently high accuracy levels {n’}, so that players
are able to detect wrong beliefs and form accurate beliefs. Furthermore, combining Lemma
3, the fifth condition demands that the lengths of transition phases be sufficiently large
that the (smooth approximate) optimal strategy a{ against a current temporary belief f°

is eventually (statistically) the same as player i’s true strategy o?.
Condition 3. For all s and all i, £, < min[e,/3,1,/8(1 — 1)(#A+1)s Zj #P7].
Condition 4. For all i,7 and all s, s < stfi

Condition 5. For all 7,7 and all s, s < Ki Z, where KZS 15 the minimum among the

lengths of transition phases in the s—th epoch (of player i).

The sixth condition demands sufficiently many rejections, i.e., a sufficiently large R!,
for switching epochs to obtain that approximate equilibrium is played a certain number of
times in each epoch. Finally, the seventh condition requires sufficiently large (canonical
least) sample sizes {m’} to assure that our statistical tests rapidly become so powerful
that those tests reject approximate equilibrium (i.e., almost correct beliefs) at most finite
times (with probability one).

Condition 6. For all i and s, 3,5 p exp(—3m(pl)*) < exp(—s), where p = (1)*N*

ond wi = L3

Condition 7. For all i and all s, RL(#PL) Y, exp(—3m(€1)?) < exp(—s).

22



In the remaining of this paper, we assume that our constructing prior beliefs (p.);

satisfy Conditions 1-7.

Remark 3 Although Condition 1 is rather restrictive, it is used through this paper only
because it makes our argument simple. We remark that Condition 1 can be much weaken:
it suffices to impose a reqular condition which only demands that active intervals between
players be not synchronized most of the time, that is, they be asynchronized in some

proportion of the time.

Remark 4 Strictly speaking, Condition 1 is not needed for the case of two players.

Remark 5 The bound on {N!} in Condition 2 can be replaced by the bound on {R'}:

there exists ¥ > 1 such that, for alli, all j # i, and all s, R. /RS < T.

6 Equilibrium Reachable Interval

6.1 Approximate equilibrium state

First of all, we define an approzimate equilibrium state. Let 6 := (5;); be an equilibrium
of the repeated game with payoff perturbations: &; := argmax,, V;"(c;,6_;) for all 7.1
Then, we say that time 7" is in an approzimate equilibrium state (abbreviated to AES)
if players have temporary beliefs (f); at time T for which there exists an equilibrium &
such that, for all 7,

4
||f;(h) —a;(h)| < % for all j # ¢ and all h,

i f AN
1fj(h) —aj(h)] < for all j # 4 and all h,

5Clearly, 6 is 2 | v | —(subgame perfect) Nash equilibrium of the original repeated game, where

| v |:= max; | v; |
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where s’ denotes the stage of player i’s epoch at time 7.

6.2 Equilibrium reachable interval

First of all, we introduce a concept of time interval: equilibrium reachable intervals. Let
st denote the stage of player i’s epoch (at time T'), and sy denote the maximum stage
of epoch (at time T'), i.e., sy := max; sb: we call sp the mazimum epoch (at time T). If
player 4 is in the same stage as the maximum epoch, i.e., s%. = sr, (at time T'), we say that
player 7 is a maximum epoch player (at time 7"). Furthermore, if s7 = s, we say that time
T is in maximum epoch s. Suppose that in maximum epoch s, rejection by maximum
epoch player has occurred for the first time; let player ¢ be the first maximum epoch
player who has made the rejection in maximum epoch s. Then, consider the shortest
time interval such that (1) it starts from the next period to the rejection, that is, the
first period of the next formation phase of player i, say, time 7', (2) it includes at least
one active interval of each of all other players, and (3) it ends with the last period of
a transition phase of player i, and (4) all players’ epochs are always no more than s
through the interval, i.e., whatever history happens from time 7T on, all players’ epochs
are no more than s through the interval. The time interval is called the first equilibrium
reachable interval in maximum epoch s; it is abbreviated to the first ER(s)—interval.
Inductively, suppose that rejection by maximum epoch player has occurred for the first
time after the the n—th ER(s)—interval. Then, the shortest interval satisfying (1), (2),
(3), and (4) is called the (n + 1)—st ER(s)—interval. Otherwise, i.e., there is no interval

satisfying (1), (2), (3), and (4), then the procedure proceeds to ER(s 4 1)—intervals.
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6.3 Reaching AES

We give a brief explanation about how AES is reached in an ER(s)—interval with some
positive probability; the detailed argument is given in Appendices A and B. Consider any
ER(s)—interval; let all players epoch stages (s*); be sufficiently large at the beginning
of the ER(s)—interval. Then, under Conditions 1 and 2, there is a positive probability
that the learning procedure reaches an AES within the ER(s)—interval. Precisely, the

probability of reaching an AES within the ER(s)—interval is at least
CUGARES

Indeed, suppose that (maximum epoch) player i’s rejection initiates the ER(s)—interval;
thus, s’ = s. In the formation phase of player 7 (whose length is N!) just after the player
i’s rejection, a finite history At with length N? can always happen such that A, together
with player i’s belief correspondence B., generates a temporary belief f&(= B (h,)) whose
(smooth approximate) optimal strategy azf % leads all other players’ tests to reject their
Ir

current beliefs in their first test phases in the ER(s)—interval because o]" is statistically

different from their beliefs and player i’s true strategy o is (almost) the same as J{R
(by Lemma 3 and Condition 5); see Appendix B for how to construct f%. The proba-
bility of forming f%, i.e., the probability of hff is clearly (at least) (Hkik)Ni. Note that
player i can keep f& until the final test phase (of player i) in the ER(s)—interval: even
if fi is rejected, it is possible to form fj again in the next formation phase. Then, in
the first test phase of any other player j, player j’s powerful test rejects his belief with
almost probability one (i.e., at least more than %) for the above reason. Then, player j
forms a new belief in the next formation phase (whose length is Ngj): that is, a finite

history h with length V. gj can happen (in the next formation phase) such that iz, together

with player j’s belief correspondence B‘g i, generates player j’s new belief §7(= B‘g j(ﬁ,j))
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that corresponds to an AES and whose optimal strategy a? is statistically different from
fi: see Appendix B for details. The probability of ¢/, i.e., the probability of &, is at
least (Hklk)NZj. Thus, player j starts to take a behavior which is almost the same as

g

7. As in the case of f&, player j also can keep

an (approximate) equilibrium strategy o
¢’ in the remainder of the ER(s)—interval. Since it follows from Condition 2 that there
are at most 2¢ active intervals of each player in the ER(s)—interval,'¢ the probability of
keeping [ and (§7);.; until the last test phase (of player ¢) in the ER(s)—interval is at
least (%)Flﬂj#((ﬂklk)]vg)25((Hk£k)N§)25*1. Finally, in the last test phase (of player i),
the equilibrium strategies (of)j# played by all other players make player i’s belief f5
rejected with almost probability one (i.e., more than ) because (af-’)#i is statistically
different from fj and all other players’ true strategies (07);x is (almost) the same as
(o? );j2i- Then, player i also can form a new belief §* which corresponds to the AES played
by all other players and its probability is at least (IIxl k)Nsi; therefore, the AES is realized

at the end of the ER(s)—interval. Thus, the learning procedure reaches AES within the

ER(s)—interval with at least probability (2)7[(IT;L,)%r ¥+]%.

7 Convergence to e¢—Nash Equilibrium

7.1 Exponential inequality on conditional large deviation

A simple conditional extension of a basic fact of large deviations enables us to determine
the (least) sample sizes for players’ statistical tests in their prior belief formation processes

and then obtain all results in this paper. Given a class «, let S%, be the event that state

6Precisely, by Condition 2, there are at most (¢ + 1) active intervals of player i during each
ER(s)—interval (initiated by player i) and there are at most 2¢ active intervals of any other player

during each ER(s)—interval.
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S occurs between the m—th a—active period and the next a—active period. We show
that, if the probability that S occurs between an a—active period and the next a—active
period has common upper and lower bounds, then the probability that the frequency of
S after the first m a—active periods is not between the bounds decreases exponentially in
the sample size m. Let 7,%(hs) denote the calendar time of the m—th a—active period
in heo; 7,%(heo) < 00 means that « is active at least m times in he. Let d%[S](hs)
designate the number of times that S has occurred between two (subsequent) a—active

periods after the first m a—active periods in h...

Lemma 4 Take any history hy € H and any class o such that, for all h < hy, h ¢ «.
Suppose that strategy profile o and events {S% },, satisfy the following condition: for all m
and all hy € o such that hr < hy, py(he) > 0, and o has been active exactly (m—1)—times
in he, 1< pu,(S% | he) < L, where |l and L are nonnegative numbers. Then, for all e > 0

and allm=1,2,---,

o (T < 00, <l—¢cor—"=>L+c¢e|hr) <2exp(—2me?).

d.[5] dy,[5]

m

Proof. This lemma is a straightforward generalization of Lemma 1 in Noguchi (2005).

The proof is just the same as that of Lemma 1 in Noguchi (2005). =

7.2 AES occurs infinitely many times

The initial step to obtain convergence to approximate Nash equilibrium is to show that
with probability one, if rejection occurs infinitely many times, AES occurs at least some
fixed number of times in each maximum epoch. First of all, combining Conditions 3 to
7 with Lemma 4, we show that if rejection occurs infinitely many times, then all players

make infinite rejections.
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Lemma 5 With p .—probability one, if rejection occurs infinitely many times, then all

players make infinite rejections.

Proof. See Appendix A. m

Lemma 5 implies that every player’s epoch stage goes to infinity as time proceeds:
for all 4, s — oo as T — oo. Note also that, by Condition 2, there are at most 2¢ test
phases of any player in any ER(s)—interval so that, for each s, there are at least (R, 2¢)
ER(s)—intervals in maximum epoch s, where R, := min; R.. As discussed in the previous
section, the probability of reaching AES in any ER(s)—interval in which all players’ epoch
stages are sufficiently large is at least (1)[(ITxl,)=+™¢]?. From Condition 6, recall that

1

pl = (%)SN; Let p_:= min,; p} and N, = max; N!; thus, p, = (;)SNS. Therefore, there

s

exists § such that, for all s > 5, (2)/[(IT,L, )2+ N4]% > p,. Then, combining this lower

1
2
bound p with Lemmas 4 and 5, we obtain the result that AES is reached (at least) in

proportion %Bs of ER(s)—intervals.

Lemma 6 With u .—probability one, if rejection occurs infinitely many times, then there
exists s’ such that, for each s > s', AES is reached at least %]_DS(ES/ZE) times in the first
(R, 2¢) ER(s)—intervals.

Proof. See Appendix B. m

From Lemmas 5 and 6 it follows that, for each s > &', AES is reached in (at least) one

of ER(s)—intervals. Therefore, we obtain the following corollary.

Corollary 1 With u,.—probability one, if there are infinitely many rejections, then AES

occurs infinitely many times.
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7.3 No rejection from some period on

The second step is to prove that from some period on, no rejection occurs. For that
purpose, it is convenient to introduce several concepts about test procedure. Suppose
that in a current test phase of player i (in epoch s of player 7), he employs (P! g (m! 4q T
d —1)): player i has used P.,, (d — 1)—times in past test phases (during epoch s of
player 7). Then, as described in Section 4, for each class a € P! +q» Dlayer ¢ starts to
collect samples (i.e., opponents realized actions) in a—active periods from the beginning
of the current test phase, and keeps doing so until obtaining enough samples, i.e., (at
least) (ml,, + d — 1) samples, and then checks whether the empirical distribution D*(«)
of the collected (enough) samples is within £, of current belief f*(a) (at the end of the
nearest test phase);!” or if f is rejected (by another test), then player i stops collecting
samples in a—active periods and terminates the test. For convenience, the test procedure
in a—active periods will be called the (d—th) a—test (in epoch s of player i); thus, by

the definition of player ¢’s prior belief formation process, for all o € P! o

the (d—th)
a—test (with the least sample size (m’,, +d — 1)) begins from the first period of the test
phase onward. Furthermore, we say that the (d—th) a—test is effective at time T if the
(d—th) a—test is collecting samples at time T.'® Especially, letting m®(hs,) denote the
number of samples that the a—test obtains in he, we say that current belief f? is rejected

by the (d—th) a—test (at the end of a test phase of player i) if, for the (d—th) a—test,

enough samples just have been obtained (up to the last period of the test phase), i.e.,

1"Since Pi < Pi., for all s and f is generated by P!, fi(a) is well-defined for each a € 77§+q:

fi(a) := fi(h) for h € a.

18We assume that even if player i has obtained enough samples, i.e., (m% + d — 1) samples for the
a—test, he still keeps collecting samples in a—active periods until reaching the last period of the nearest

test phase.
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m® > m! +d— 1, but?

[Di(a) — fi(@)]| > € for some j #4.

Furthermore, we say that f? is rejected with type I error if f is rejected by some a—test
but f* is statistically accurate in a—active periods, i.e., ||fj(h) — o3(h)| < ¢ /4 for all
J # 1 in all a—active periods (since the a—test started) in which (enough) samples have
been collected. In addition, if f¢ is rejected with type I error, we say that the rejection is
of type I error.

Condition 7 implies that players’ tests rapidly become powerful as time proceeds so
that their tests make type I error at most finite times. Indeed, we obtains the following

result.
Lemma 7 With u .—probability one, there are at most finite rejections of type I error.

Proof. See Appendix B. m

Note that even if rejection occurs in an AES, the probability of forming the same
belief again (in the next formation phase) as one that corresponds to the AES is at least
minj(HkLk)Ng; for any sufficiently large s, minj(Hkék)NSj = (I, )N > (%)SNS = p,. Thus,
even when rejection occurs in an AES, the AES survives with at least probability p,

Therefore, we obtain the following lemma.

Lemma 8 With u,.—probability one, if rejection occurs infinitely many times, then there
exists § such that, for each s > 5, the following event happens at least (%]_JS)I(ES/QE)—timeS
in maximum epoch s: an AES, which has been reached in an ER(s)—interval, survives

through the first (I — 1) rejections after the ER(s)—interval.

Let m® denote the number of samples that have been obtained until the last period of the test phase.
20Gince f!is generated by P, fi(3) is well-defined for all 3 € PL: fi(3) := fi(h) for h € 3. Note that

for all o € P§+q there exists a unique 3 € P¢ such that 8 D a; thus, fi(a) = f(3).
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Proof. See Appendix B. m

We say that player i’s (temporary) belief in an AES is under correct testing at time
T if any effective test of player ¢ at time T has started after reaching the AES. If all
players’ beliefs in an AES are under correct testing, we say that the AES is under correct
testing. Note that if a player’s belief under correct testing is rejected, then the rejection

is of typer I error. Therefore, Lemmas 7 and 8 induce the following lemma.

Lemma 9 With u_.—probability one, if rejection occurs infinitely many times, AES un-

der correct testing occurs infinitely many times.

Proof. Suppose that there are infinitely many rejections. Then, from Lemmas 7
and 8, there exists § such that (1) for all s > 5, there is no rejection of type I error
during the s—th epoch of any player, (2) for each s > 5, AES, which is realized in an
ER(s)—interval, survives through the first (I — 1) test rejections after the ER(s)—interval
at least (%QS)I (R, 2¢)—times in maximum epoch s. However, then, from (1) it follows
that any rejection (from some period on) is not of type I error. Recall the way of reach-
ing an AES in an ER(s)—interval: letting player ¢ be the maximum epoch player who
initiates the ER(s)—interval, in the final test and formation phases (of player ¢) in the
ER(s)—interval, player i rejects his wrong belief and forms a belief that corresponds to
an AES played by all other players, so that the process reaches the AES: the player i’s
rejection terminates all player i’s tests (that have started before the rejection). Thus,
player ¢’s belief is under correct testing (just after the AES has been reached) so that if
player ¢« makes the first rejection, then it must be of type I error. Since any rejection is
not of type I error, the first rejection is done by some other player, say, 7;. Note that
after the first rejection, player j;’s belief is under correct testing because he rejected his

previous belief, but formed the same belief as the previous one so that any effective test
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of player j; has started after the first rejection. Therefore, the second rejection is done
by a player other than ¢ and j;. We repeat this argument so that all players’ beliefs are
under correct testing after the (I — 1)—st rejection: the AES is under correct testing.
From this and (2) it follows that, for each s > 5, AES under correct testing occurs at
least (%QS)I (R, 2¢)—times in maximum epoch s. Thus, the desired result easily follows.
|

No rejection from some period immediately follows from Lemmas 7 and 9.

Lemma 10 With p,.—probability one, there are at most finite rejections: no rejection

occurs from some period on.

Proof. By Lemma 9, with p_.—probability one, if rejection occurs infinitely many
times, AES under correct testing occurs infinitely many times. It means that AES under
correct testing is rejected infinitely many times. However, then, it, in turn, implies that
there are infinitely many rejections of type I error. This contradicts Lemma 7. Thus,

there are at most finite rejections. m

7.4 e¢—Learning to predict true strategies

Finally, we show that no rejection from some period implies convergence to approximate
Nash equilibrium: the learning procedure has a kind of type II error free property. For
that purpose, as shown in Section 3, it suffices to obtain that no rejection from some period
implies that each player 4’s prior belief p° e—learns to predict his opponents true strategies

o* .. The basic argument for obtaining the merging is as follows: note that all players

(2

keep some beliefs (f*); forever from some period, say, time Tp, because of no rejection

from some period; thus, each player i also keeps being in some epoch, say, the s‘—th
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epoch, forever from time Tj. Furthermore, from this, Condition 5, and Lemma 3, (f);
and (o7); can be identified with (pi); and (oF); respectively. Therefore, if some player’s
prior belief does not e—learn to predict his opponents true strategies, then, for some 7
and some jy # i, Hf;g(htk) - afo(htk)H > ¢ for infinitely many t;. Then, for all ¢, there
exists o, € P;?OH such that hy, € ay for all n; {t4,}, is an infinite subsequence of {}4;
this means that the o, —test obtains enough samples. Furthermore, from Properties (3.1)
and (3.2) of {P!},; (see Section 3) it follows that P9 ., is a conditioning rule of f]’g for

all ¢, and for any ¢ > 0, there exists ¢q such that, for all ¢ > ¢, 73;?0 e is a —approximate

conditioning rule of aj-co. From these it follows that, for any sufficiently large ¢, afo(h)’s
are almost the same in all a,,—active periods while || f;g (ag) — afo (h)|| > €in all ay—active
periods. Since the o,—test obtains enough samples, it, together with Lemma 4, implies
that the empirical distribution D;g (cyg) of the collected (enough) samples is also far from
f;g, ie., HD;g(aq) — f;g(aq)H >¢e/2 > 35220/2 with almost probability one. Thus, the
a,—test rejects f with almost probability one. Therefore, for any sufficiently large g,
there exists o, € 73;?0 4, Such that the o, —test (which starts after time Tp) rejects f%
with almost probability one: there are infinitely many a—tests (which start after time 7j)
that reject f® with almost probability one. It, together with the Borel-Cantelli argument,
implies that f* is rejected in some test phase (after time Tp). It contradicts no rejection

from time 7. Therefore, we obtain the following proposition, which is exactly the second

statement of Theoreml.

Proposition 1 With p,.—probability one, for all i, player i’s prior belief p. e—learns to
predict opponents true strategies o* ,;: there exists T such that, for all T > T, all 7, and
all j # i, ||p% ;(hr) — o5 (hy)|| < e

Proof. See Appendix B. =
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8 ¢e¢—Merging with Any Learnable Set

Although each player’s prior belief constructed in the previous section e—learns to predict
most of strategies in any learnable set, it is still not sufficient for e—learning to predict
all strategies in any learnable set. There are two reasons: one reason is that each player
possibly takes a strategy whose mixed actions put all weight on some pure actions so that
multiple such strategies may always generate the same history in any formation phase.
It implies that some of those strategies may not be chosen as a temporary belief even if
it is actually played. The second reason is that the (rapid) decrease of toleration levels
{fi}s may cause infinitely repeated rejection against some strategies in some learnable set.
Accordingly, we need to modify each player’s prior belief formation process. Specifically,
each player ¢ slightly changes the way of testing in each test phase and belief formation
in each formation phase: in each test phase, player i chooses between some constant
toleration level EZ and the toleration level ¢! in the current epoch s (of player i) to employ
for all a—tests that start from (the beginning of) the test phase. Furthermore, in each
formation phase, player chooses between “singular” beliefs and other ones.

Precisely, suppose that player i uses (P?

S

+q» (Mg, +d—1)) for the test phase: player
i has used P! e (d — 1)—times in past test phases during epoch s. Player i first collects
samples during the test phase, and then obtains empirical distributions for those classes
(in P! +4) Which have obtained enough samples during the test phase. Let C denote the
set of classess (in PZ,,) which have obtained enough samples (i.e., m* > m,, +d —1)
during the test phase and (D(a))aec denote the family of emprical distributions for C.
Then, at the end of the test phase, player ¢ performs a preliminary test to choose a
toleration level, i.e., E’Z or ¢ by checking the differences between (D?(a))aec. Precisely,

if there exist o,/ € C and 3 € Pi_, such that o,/ C 8 and | Di(a) — Di(d)|| > &,
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then player ¢ recognizes that opponents strategies are complicated, as he predicted, and
employs §i for all a—tests (that have started from the test phase). Otherwise, player i
recognizes opponents strategies as simpler than he predicted, and employs EZ Then, the
remaining test procedure is quite the same as in the previous sections: when EZ (resp.
¢') is employed at the end of the test phase, it is used for any a—test that has started
from the test phase: once enough samples have been obtained for some a—test, player
1 uses EZ (resp. £') to determine whether f? is statistically different from the empirical
distribution D’(«) of those samples (at the end of the nearest test phase). In other words,
if || fi(o) — Di(a)|| > & (resp. I fi(er) = Di(a)|| > &), player i rejects f* (at the end of
the test phase).?!

To modify belief formation, let us first define singular beliefs in each epoch s. Define

OX_;(Pint) :={o_; € Z_;(Pi,n') | 3j # i,3a € P, Fa;(0;(a)]a;] < %)}.22 Then, any

S

i

') is called a singular belief of player i (in epoch s):

opponents strategies in 324(772;,@
0% _;(Pi nt) is the set of all singular beliefs (in epoch s). Since Z! := #9%_;(P!,n’) < oo,
we arbitrarily number strategy profiles in 9X_; (P!, nl): 0X_;(PL,nt) = {ol,, - ,af% :
Let 0% ,(hr—1)la—i] := Ijz0% (hr_1)[a;]. Furthermore, let a®;(hy_1) 1= argmin,_, 0% ,(hr_1)[a_;]
for 1 <z<Z'—1,and a®,(hr_,) := argmin,_, afé(hT_l)[a_i]. Then, we slightly change

temporary belief formation as follows: let the length of each formation phase in epoch s

(of player i) be one period longer for each s: (N! + 1) periods. Then,

(1) suppose that time T is the next period to the first rejection by player i in epoch
s (of player 7): it is the first period of a formation phase. Letting hr_; be a realized

past history, if a';(hp_;) is played at time T', player 7 employs his belief correspondence

#Since P} < Pi,, and fis generated by PI, for each a € PL,,, f'(«) is well-defined: fi(a) := f'(h)

for h € a.

2Since o, is generated by P!, 0;(«) is well-defined for each o € Pi: 0(0) := o(h) for h € a.
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B.: H_;ni — X_;(P.,nl): then player ¢ obtains a realized history h_; (of opponents
actions with length N?) in the remaining periods of the formation phase and then forms a
new belief g* = B'(h_;) at the end of the formation phase, as before. Otherwise, i.e., any

other opponents action profile is played at time 7', player i chooses o' as a new belief at

the end of the formation phase.

(2) In general, suppose that time T is the next period to the (nZ! + z)—th rejection by
player ¢ in epoch s of player ¢, where n is a nonnegative integer and z is a nonnegative
integer less than Z!. Then, if a*,(hy_,) is played at time 7', then player i employs B,
obtains a realized history h_; (of opponents actions) in the remaining periods of the
formation phase and forms a new belief g* = B:(h_;). Otherwise, player i chooses 07, as

a new belief.

The following condition is imposed on {El}z to obtain the property of merging with

any learnable set. It demands that constant toleration levels have certain upper bounds.
Condition 8. For all i and all s, & < g < minfe,/3,1,/8(1 —1)(#A+1)].

We show the second result, i.e., Proposition 2, which implies the first statement of
Theorem 1. First of all, in order to characterize a learnable set correspondence, we need to
slightly extend the generation of strategies by conditioning rules. The following definition
simply says that, for any € > 0, the regularity of o_; is (almost surely) e—approximated

by one of conditioning rules {P'}, from some period on.

Definition 7 We say that opponents strategies o_; are eventually generated by a (count-
able) set of conditioning rules {P'}, with a player’s strategy o; if, for alle > 0, there exist
an index sg, a ,u(gi,aii)—pmbability one set Ly, and a time function Ty : Zg — N such

that, for all o € 73;0 and all hp, Wy, € «, if there exist hoo, hl, € Zo such that hy < heo
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and T > Ty(he) and by < bl and T' > Ty(hl,), then |o;(hr) — o;(bp)|| < € for all
J# i
Let EG({P!}, 0;) denote the set of all opponents strategies eventually generated by

{P?}, with ;. Then, Noguchi (2005) characterizes a learnable set correspondence by

using the following result:

Proposition (Noguchi (2005)) For any prior belief p° (of player i), there exists a count-
able set {P'}s of conditioning rules such that, for all o;, M_i(p',0;) C EG({P}s, 04).
From this characterization result and the conditioning rule argument in Section 3 it
suffices to show that, for all o;, prior belief p. e—learns to predict all opponents strategies
in EG({P:},;0;). The proof is almost similar to that of convergence in the previous

section. Thus, we obtain the following proposition.
Proposition 2 For all i, player i’s prior belief p'. e—learns to predict o_; with o; for all
o_; € EG{P'}s;0:) and all o;.

Proof. See Appendix C. m

Finally, we remark that the modification on (p%); in this section does not change the
convergence result in the previous section: the modified prior beliefs (5.); also (almost
surely) converges to e—Nash equilibrium; the proof is quite the same as in the previous
sections except the argument about time interval in which approximate equilibrium is

reached with some positive probability; see Appendix D for details.

9 Implication to Impossibility Results

We argue the implication of our positive result to impossibility results in Foster and

Young (2001) and Nachbar ((1997), (2005)). Foster and Young (2001) show that under
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perfect rationality (i.e., exact optimal behavior), given any prior beliefs, it is impossible
to learn to play Nash equilibrium in almost all (stage) games near the matching pennies
one. On the other hand, our positive result shows that under bounded rationality (i.e.,
smooth approximate optimal behavior), it is fairly possible to learn to play approximate
Nash equilibrium for any stage game and any discount factors. From these we conclude
that Foster and Young’s impossibility crucially depends on perfect rationality. In other
words, their impossibility is not robust to bounded rationality (i.e., approximate optimal
behavior).

Our positive result also has the implication to Nachbar’s impossibility. Following
Nachbar ((1997), (2005)), let us consider any infinitely repeated game of two players
with a certain weak condition.?? First of all, we slightly extend the evil twin property in
Nachbar (2005) for our purpose: we say that a (player j’s) pure strategy s; is an (e, €)—evil
twin of a (player i’s) pure strategy s; if s; is not e—uniformly optimal against any prior
belief p* which e—learns to predict s; with s;;?* note that the original definition in Nachbar
(2005) corresponds to the case that e = 0. Accordingly, it is easy to see that Nachbar’s
impossibility result still holds for any sufficiently small €, ¢ > 0: letting 33; denote a set of
player i’s strategies, for the given infinitely repeated game, there exists n > 0 such that, for

all 0 < €, e < n, if any prior beliefs p' and p? have the property of e—learnability?® on any

ZNachbar (1997) and (2005) requires that a stage game of each player satisfy the NWD condition or

the MM condition.
245, is e—uniformly optimal against p’ if for any finite history h, V;(oy,p" | h) +¢ > Vi(o’, p* | h) for
all o7.
25We say that prior beliefs (p*, p?) satisfy e—learnability on 31 x 8y if, for all i = 1,2 and all j £, pt

e—learns to predict all opponent strategies in f]j with all player i’'s own strategies in 3.
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product 3; x 3, of strategy sets that26 satisfies Condition CSP,27 then they cannot satisfy
g—consistency on N xiQ, ie., (01,09) ¢ 3, X3, for any e—uniformly optimal strategies o
and oy to p' and p?; Nachbar original result corresponds to the case that e = 0. Therefore,
as opposed to Foster and Young’s impossibility, Nachbar’s impossibility result is robust
to bounded rationality (i.e., e—optimal behavior) and approximate learning (i.e., e—weak
merging). On the other hand, according to the argument on learnable set in Noguchi
(2005) and the previous argument in this paper, we can easily see that, for any € > 0 and
any 3 x 3, that satisfies O—learnability?® (and Condition CSP), there exist (p, 72) in
our constructing class of prior beliefs such that (p!, p?) satisfy e—learnability on 31 X s
Therefore, Nachbar’s impossibility result applies to (., p?), i.e., (0%, 0%) ¢ 3 x 3, for
any smooth e—optimal strategies (o7, 03) against (p., p2). Roughly speaking, this means
that some player j’s true strategy o cannot be learnable uniformly in Y, in the sense
that p’ cannot e—learn to predict o; with all player i’s strategies in 3. The point is that
this negative fact does not exclude the possibility that p’ e—learns to predict o with o7,
that is, (o7, 03) converges to (approximate) Nash equilibrium. Indeed, as we have shown
in Theorem 1, (o}, 03) (almost surely) converges to e—Nash equilibrium. Therefore, we

have obtained the following possibility result.

Theorem 3 For any €,¢ > 0 and any product Y1 X 3y of strateqy sets that satisfies

26Strictly speaking, Nachbar (2005) only requires the learnability on pure strategies in 1 x f]g, which

is called weak learnability.

27Roughly speaking, Condition CS requires the diversity of strategies in 1 and those in 3y and the
symmetry between strategies in 31 and those in 5. Condition P demands that for each i = 1,2, any
(mixed) behavior strategy in 33, can be approximated by some pure behavior strategy in 33, in some sense.

See Nachbar (2005) for details.
2%, x 3, is said to satisfy e—learnability if there exist prior beliefs (p', p?) such that (p', p?) satisfy

e—learnability on 31 X 3.
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0—learnability and Condition CSP, there exist prior beliefs (pl,p?) and those smooth
e—optimal strategies (o7, 0%) such that although (pL, p?) satisfy e—learnability on IS I
and Nachbar’s impossibility holds for (o%,0%) on 31 X 39, (0%, 03) (almost surely) con-

verges to e— Nash equilibrium.

Theorem 3 insists that under bounded rationality (i.e., e—optimal behavior) and ap-
prozimate learning (i.e., e—weak merging), although Nachbar’s impossibility still holds,
it is fairly possible for players to learn to play approximate Nash equilibrium. In other
words, our positive result clarifies that Nachbar’s impossibility is different from the impos-
sibility of learning to play approximate Nash equilibrium in a general sense, and that the
richness (and symmetry) of players’ learnable sets does not necessarily prevent Bayesian

learning from converging to approximate Nash equilibrium.

10 Appendix A

10.1 Belief leading to opponents rejections

First of all, we have to show that player ¢ can always form a new belief that leads opponents
to reject their current beliefs. In this subsection, we provide several classes of beliefs and
strategies that can lead to such opponents rejections, according to players’ payoffs and

discount factors. Let v denote the player i’s maximun payoff, i.e., v} := max, u;(a),

2

and v, denote the player i’s minimax payoff, that is, v, := min,_, max,, u;(a;, 7_;); let
a* € argmax, u;(a), m_, € argmin,_, max,, u;(a;, 7_;), and a; € argmax,, u(a;, w_;).
e The case in which there is no weakly dominant action

Take a_; such that max,, u;(a;,a—;) > u;(al,a—;) and let a; € argmax,, u;(a;, a_;).

Furthermore, given opponents actions a_; := (a;),, let 7§ denote the mixed action of
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*

player j such that 7[a;] = 1, and let 7?; := (7%);%. Then, define 7_,[t] = t72, +
(1 —t)7%,. Consider the following player i’s belief pi: for all j # 4, player j always plays
7;[t]. The smooth approximate optimal strategy o! to pi is to always play BR*(7_;[t]) :=

arg max,, u;(m;, m_;[t]) +v;(m;): ob(h) := BR]*(7_;[t]) for all h. Therefore, given any small

2

1

(symmetric) payoft perturbation, for all h € H, of(h)[a;] = 0 and o}(h)[a;] > Z3-

K3 3

Since ot(h) is Lipschitz continuous in ¢, for any 0 < ¢ < there exists 0 < ¢, <1

1
#A+1?

such that oi°(h)[a}] = c for all h € H.

e The case in which weakly dominant action exists
Let A? denote the set of weakly dominant actions, and fix any af € Af and a_; €
argmin,_, [u;(a;, a_;)—maxg¢ax ui(a;, a_;)]. Furthermore, define #; := max,, ¢4+ u;(a;, a—;)

and u} 1= maxg,, u;(a;, a—;)(= wi(aj,a—;)); set a; € argmax,,¢a- ui(a;, a_;).
(1) 6; =0, or §; > 0 and v} = v,
We consider two subcases according to the values of u; and ;.

(1.1) uf > 1,

It means that weakly dominant actions always give player ¢ more payoffs than any
other actions in a stage game. Thus, given any sufficiently small payoff perturbation,
player ¢ always play an (almost) fized mixed action (which puts almost all weight on
weakly dominant actions) through a repeated game, which enables us to ignore player i

through our argument.
Since a; ¢ Af, there exists a_; such that w;(a;,a_;) < u;(al,a_;); clearly, a_; # a_;
because u} = u;. Let m_[t] := t7®, + (1 — t)7%,. The remaining is the same as the case

of no weakly dominant action: given any small (symmetric) payoff perturbation, for all
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h € H, d%(h)[a;] ~ 0 and o} (h)[a,] Since ot(h) is Lipschitz continuous in ¢ (for

1

there exists 0 < t. < 1 such that o°(h)[a}] = ¢ for all

1

all h), for any 0 < ¢ < m,

h e H.

(2) 0; > 0 and v} > v,

(2.1) Multiple weakly dominant actions

Fix any two weakly dominant actions, denoted by a; and b}, and take a sufficiently
large integer T such that (1 — 8;)v; + (8; — 67)vf > (1 — 6;)v; + (8; — 67 )w;: for example,
T = 2. Then, letting m(T) be the largest integer such that m(T)T +1 < T, consider the
following player i’s belief p.: for all j # i, player j takes a minimax action T; (against
player 7) at time m7 + 1 for all m = 0,1,2,---, and player j takes a maximum action
a; at any other time T'(# mT + 1 for all m) if player i plays a (pure) action z at time
m(T)T + 1, and he takes m; at any other time T if player ¢ plays any other action than
x at time m(T)T + 1. Given any sufficiently small payoff perturbation, if z is a weakly
dominant action, player i’s smooth approximate optimal strategy to p’, is to play a fixed
mixed action (which puts almost probability one on ) at time mT +1 for all m and play a
fixed (mixed) action (that puts almost all weight on weakly dominant actions) at all other
times. Thus, the smooth approximate optimal strategy o to pi := tﬁéz +(1—1) [),i]: has the
following properties: of(h)[af] = 0 and o} (h)[a}] ~ 1 for all h € |J,, H,,7. Furthermore,
since of(h) is Lipschitz continuous in ¢, for any 0 < ¢ < 1, there exists 0 < ¢, < 1 such

that o} (h)[a;] = ¢ for all h € J,, H,..

(2.2) Unique weakly dominant action
Let a; denote the unique weakly dominant action. We consider three subcases accord-

ing to the relation between the player i’s discount factor and stage game payoffs.
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(2.2.1) (1 —0;)u; + 0,07 > (1 — §;)uf + 4,

Take a sufficiently large integer 7" such that (1—8;)a; + (6; — 67 )v; > (1—8;)ul + (8; —
5;‘?)%. Then, consider the following player i’s belief p.: for all j # i, player j plays a_; at
time mT + 1 for all m =0, 1,2, - - -, and player j plays a; at any other time T(#mT +1
for all m) if player i takes = at time m(T)T + 1, and player j plays m; at any other time
T(# mT +1 for all m) if player i takes any other action than z at time m(T)T + 1. Given
any sufficiently small payoff perturbation, the smooth approximate optimal strategy o
to py 1= tpg: + (1 —t)pj, has the following properties: of(h)[a;] ~ 0 and o} (h)[a;] ~ 1 for
all h € |J,, H,,7. Since of(h) is Lipschitz continuous in ¢, for any 0 < ¢ < 1, there exists

0 < t. < 1 such that o*(h)[a;] = c for all h € |J,, H,p.

(2.2.2) (1 —0;)u; + 00 = (1 — §;)uf + d;v;

In this case, the order of taking the limits is reverse. We first take a sufficiently small
(symmetric) payoff perturbation, and then, take a sufficiently large integer T. Consider
the following player ’s belief p.: for all j # i, player j takes a@; at time mT + 1 for all
m = 0,1,2,---, and he takes a} at any other time T'(# mT + 1 for all m) if player i plays
 at time m(T)T + 1, and takes ; at any other time T'(# mT + 1 for all m) if player i
takes any other action than z at time m(7T)T + 1. Then, letting p! := tﬁéz +(1—1t)p%, , the

smooth approximate optimal strategy ot to p! has the following properties: ?(h)[a}] ~ %

% %

and o} (h)[a;] ~ 1 for all h € |J,, H,,7. Since oi(h) is Lipschitz continuous in ¢, for any
5 < c <1, there exists 0 < t, < 1 such that o*(h)[a;] = c for all h € ,,, H,.7
In this case, given any sufficiently small payoff perturbation, player i always plays an

(almost) fixed mixed action (that puts almost all weight on a}) through a repeated game,

which allows us to ignore player ¢ through our argument.
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Finally, let us consider the conditioning rules of the above beliefs. For all 4, all a;, a; €
A;;and all T = 1,2, - - - define a partition P(T, a;, a}) := {az, aq,, Qqr, ), where ag :=
U,, Huis @ := {hr | T # mT for all m, z is realized at time m(T)T + 1 in hr} for
r = a;,a;, and a_ = {hy | T # mT for all m, any other action than a; and a} is realized
at time m(T)T + 1 in hy}. As shown above, P(T,a;, a}) is the conditioning rule of a
belief pi. (that leads to opponents rejections): Py = P(T,a;,a;). Then, in additon to
(3.1) and (3.2), we assume through the remainder of this paper that (3.3) for all 7,7, all
a;,a, € A;,and all T = 1,2, - - -, there exists s’ such that P(T', a;,a}) < P?. It means that
each player’s belief that leads to his opponents rejections are eventually learnable for all

players including his opponents.

10.2 All players make infinite rejections
10.2.1 Rejecting opponents beliefs in their initial epochs

In the remainder of Appendix A, we argue how opponents beliefs are rejected in their
first test phases in a given ER(s)—interval (initiated by maximum epoch player 7); it is
important to assume that (maximum epoch) player i’s epoch stage s is sufficiently large
and any other player (i.e., opponent)’s index s + ¢’ of her conditioning rule ng v in the
(first) test phase is also sufficiently large at the beginning of the ER(s)—interval. Note
that player j(# i) may be in a very early epoch stage: s’ may be quite small. Suppose
that (maximum epoch) player i’s belief was rejected in the previous test phase. Then,
player ¢ forms a temporary belief such that it makes his opponents reject their beliefs.
Since s and s/ + ¢’ are sufficiently large, by Properties (3.1), (3.2), and (3.3), without
loss of generality we may assume that Py < P! and Py < ng ot for all j # i. Note also

that each player j(# i) temporary belief g) (at the beginning of the ER(s)—interval) is
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generated by P7,.
In the remainder of this paper we only consider the case of multiple weakly dominant

actions in which d; > 0 and v} > v,; all other cases are quite similar and we omit them.

e The case of multiple weakly dominant actions: §; > 0 and v} > v,

In the previous argument we have shown that in this case, o has the following prop-
erties: there exist af € A; and T such that, for any 0 < ¢ < 1, there exists 0 < ¢, < 1

such that oic(h)[a] = ¢ for all h € |J,, H,,p. Furthermore, notice that the condition-

ing rule P of pi is the following partition: Py = P(T,a;,b;) = {ap, aq,,ap,a_};
especially, recall that ag = (U, H,p and ag: = {hr | T # mT for all m, and a} is
realized at time m(T)T + 1 in hy}. Since player j’s current belief gg is generated by

ng for all j # i, #{gé7i(h) € A(4) | h € Hyj # i} < Y. #ng. Then, since

t

ot(h)[af] is Lipschitz continuous in ¢, from Condition 3 it is not difficult to show that

(for any sufficiently large s, (s7);4,) there exist 0 < 5 < 1 and 0 < ¢g < m such

that (for any sufficiently large s, (s’ 4+ ¢’);z;,) for all h € ap and all j # i, (A1)

— & < o (W)af] < co + g€l and (A.2) | o (h)[af] — g5(h)]af] |> 2¢);. Indeed,

by Condition 3, 4¢, 4P’ P for all j # 4. Thus,

¥ S STDFATDS S Y, = A= AT
2#1-45;#73; < 2(#/1#1)' Then, letting Jg(a, 251;’) = {z | 90z( )ai] — 255a >

go(a)[as] +2€,},

1
U U Jela2€) <> 4 #P, < m

J#i aG'ij J#i
where 1, is the Lebesgue measure on the real line. Note that U#i Upepi Jo(a, 25;.) con-
sJ
sists of (at most) > _;_; #P7; intervals. Therefore, [0, ﬁ]\ Ujzi Uaepjj Jg(a,267;) con-

sists of (at most) (3_,; #P’, +1) intervals. Especially, the length of one of them must be

at least 1 . . However, then, by Condition 3, 4,51' <3

2(H A (s #P+1) )(#AH) s> #PE <
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! : . o= —20 <z < Ay
AT 5 #7011 for all j. Then, define I(c,2&) {x | ec—2¢8 <o < c+28}

From these and Condition 3, it is easily derived that there exists ¢y such that (for any
sufficiently large s,) (1) for all j # i, I(cO,ZEg)ﬂU#i Upepi. Jy(a,2¢))) = 0 and (2)
I(co,2¢7) C [0, m] Then, it is easy to see that there exists 0 < t; < 1 such that, for

all h € ap, 0°(h)[a] = co. We have shown (A.1). From this and (1), it follows that, for

all b € ap and all j # i, | o (h)[a;] — g ,()[a]] [> 267, + (2¢] — §&2) > 2¢],. We have
show (A.2).

On the other hand, since p;’o is generated by P!, there always exists a finite history

h®, in any formation phase (in epoch s) such that ||} (k) — pj, ;(h)|| < - for all h

and all j # i, where fh := Bi(h%,). Therefore, from Condition 4 it follows that (for
any sufficiently large s,) for all h, all j # i, and all k, || ff;(h) — pj, ;(h)]] < %BZ{];,
where B; := max[1, U#A|(D?*v;)7 ||,/ (1 — 6;)]. From this and Lemma 2 we obtain that,
for all h and all j(# i), ||o/%(R) — o (h)|| < Le(< %Eij) Furthermore, as for player
i’s true strategy o}, Condition 5 and Lemma 3 imply that (for any sufficiently large
s,) llot(h) — ol (h)]| < HE(L 5€)) for all b € Hyi and all j # i. Therefore, it,
together with the above argument, induces that ¢y — £&/ < o7(h)[a}] < ¢o + &/ for all
h € Hy Moz and all j # i. Furthermore, recall that Py < P, for all j # 4, and
ar € Pj. Since each test phase is sufficiently long (see Section 4.5), (for all j # i) in

the first test phase of player j, there exists o € ng Lo Such that (3) o/ C ar and (4)

. . . ~ A ]
o' has obtained enough samples during the first test phase, i.e., m® > m/; o T d—1.

From these, Condition 7 and Lemma 4, it follows that for all h € ap, 0}°(h)[a;] — 21 —

1, =L, < DI)[a;] < ol°(h)[af] + 2¢ + 2€7, + 1¢/, with almost probability one.

sl —

From this and (A.2), for any h € o/, HD?(O/) — gg’i(a’)H >| Dg(o/)[a;‘] — gg’i(a’)[a’-‘] |>

7 -

ol (h)[at] — gé’i(h)[a;*] | =&, > 26, — ¢, = ¢, with almost probability one (i.e., at

(3 sJ
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least probability %) for all j # 4, player j’s belief gé is rejected in the first test phase
of player 5 with almost probability one. Therefore, the probability that all opponents

reject their beliefs in their first test phases is at least ([, L,) V()1 Indeed, the

%
probability of forming f§ in the first formation phase is at least ([, 1,)"*. Furthermore,
player i can continue to employ f until a given ER(s)—interval, whose probability is
at least (], 1,)®: because there are at most ¢ active intervals of player i during the
ER(s)—interval. Finally, if f% keeps employed, then it makes any other player j(# i) reject
her belief in her first test phase with almost probability one (i.e., at least %), as argued
above. Therefore, the probability that all opponents reject their beliefs in their first test

phases is at least ([T, )™ (IT, L)™ (3)"" = ([T, L)@V (5)" " = ([T L) @™ ()"

where N, := max; NE,

10.2.2 All players make infinite rejections

We first define class v, as follows: hr € v, if and only if (1) time 7"+ 1 is the first period
of an ER(s)—interval, (2) maximum epoch s is no less than Sp: s > S, and (3) the index
s) + ¢’ of each opponent’s conditioning rule employed in her first test phase during the
ER(s)—interval is no less than 5o: s/ + ¢’ > 3. Let dy; denote the number of times that
all opponents reject their beliefs during an ER(s)—interval that satisfies (2) and (3) after
the first m ER(s)—intervals that satisfy (2) and (3). As shown in the previous subsection,
taking a sufficiently large sy, the probability that all opponents reject their beliefs in their
first test phases is at least p, := (1)"~(T[, )V, Then, define

Ad ={hy | T < d%s<A ! }
= 1Moo s < 00, — s — =D |
m m m Ps = 5P,

Applying Lemma 4, we obtain that j,.(AS,) < exp(—im(p )?). Recall that there are

—S

at least R, 2¢ ER(s)—intervals in each maximum epoch s. From this and Condition
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2 it follows that p_ = (5)* > (L) = (pFyn > (ph)® for any sufficiently large s.
Furthermore, p, > p, for any sufficiently large s. Note also that, for any sufficiently large

s, there exists k, such that

R _ RS R
= _ 5 >
2c 2c T s

From these and Condition 6, it follows that, for any sufficiently large s,

ﬂUUAS < (U U An)

s'>1s>s' 73 s>s/ Ry
— 2c *2c
SPIPIE —mlp,P)
s>s’ mZ 2c
1
< > Y exp(—§m((p'§5)23)
s>s’ m>wks Rks
< Zexp (1 —exp(—1)) " exp(—5).

s>s’

Therefore, f1,((Ny=1 Usse U,, . As) = 0. Let A = UysiNisy ﬂm> ( s e,

where (A?))¢ is the complement of A? . Then, y,.(A) = 1. From this we obtain Lemma

d.

Proof of Lemma 5: Suppose that there are infinitely many rejections in h, € A. Then,
maximum epoch goes to infinity as time proceeds: sy — oo as T' — oo. Furthermore, by
the definition of player’s prior belief formation process, even if some player j only makes
finite rejections, the index s?+¢’ of her conditioning rule employed in her test phase goes to
infinity. From these it follows that there exists 5, (> Sp) such that, for all s > 5;, the index
of any player’s conditioning rule employed in any test phase is no less than sy in maximum
epoch s. Therefore, for all s > 5;, d; =the number of times that all opponents reject
their beliefs during an ER(s)—interval after the first m ER(s)—intervals. Furthermore,

since ho, € A, there exists 55(> 5;) such that, for all s > 5, dj; > (ps — %Qs)m for all
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m > R, 2c. Note also that, for any sufficiently large s, p, > p, Therefore, since there
are at least R,,2¢ ER(s)—intervals for all s, for any sufficiently large s, all opponents
reject their beliefs at least %]_DS(BS ,/2¢) times in maximum epoch s; in addition, any
(maximum epoch) player who initiates an ER(s)—interval has rejected his belief just
before the ER(s)—interval. Therefore, all players reject their beliefs at least %QS(ES ,/2¢)
times in maximum epoch s. Notice that ]_QSES — 00 as s — oo by Condition 6. Therefore,

it means that all players make infinite rejections. W

11 Appendix B

11.1 Rejecting belief and forming equilibrium
11.1.1 Rejecting opponents beliefs

In this subsetion, we provide the detailed arguement of how the procedure reaches an
AES in a given ER(s)—interval (initiated by maximum epoch player ¢); we assume that
(maximum epoch) player i’s epoch stage s and all other players’ epoch stages (s7);; are
sufficiently large at the beginning of the ER(s)—interval. Suppose that (maximum epoch)
player i’s belief was rejected in the previous test phase. Fix any Nash equilibrium ¢ of
the repeated game with payoff perturbations: & is a 2 | v | —(subgame perfect) Nash
equilibrium of the original repeated game. Without loss of generaity we may asssume
that & has its conditioning rule, denoted by Ps: #P; < 00.2 First of all, player i forms
a temporary belief such that the temporary belief not only makes the opponents reject

their beliefs but also will be rejected (with almost probability one) when the opponents

29Clearly, we may define a conditioning rule for a strategy profile in the same way as we did for a belief

(i.e., an opponents strategy profile) in Section 2.7.
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play an AES near 6. Since s, s’ are sufficiently large, from Properties (3.1), (3.2), and
(3.3), without loss of generality we may assume that P; < Pﬁ,ng for all j(# i), and
that Py < P;,ng for all j # i. Note also that each player j(# i) temporary belief gé is

generated by Pg i

e The case of multiple weakly dominant actions: J; > 0 and v} > v,

From the previous argument, in this case, p! := tﬁfﬁ +(1- t)ﬁ,i]:: for all j # i, player
J takes a minimax action mr; (against player i) at time m7T +1 for all m = 0,1,2,-- -, and
player j takes tﬂ'?* + (1 —1t)x; at any other time T'(# mT +1 for all m) if player i plays a
dominant action a} at time m(T')T+1, and player j takes tz;+(1—¢)7%" at any other time
T(# mT+1 for all m) if player i plays a dominant action b} at time m(7T)T+1, and player j
takes m; at any other time 7" if player ¢ plays any other action than a;, b} at time m(T)T+1.
Thus, the conditioning rule Psi of pl is the following partition: P = P(T,a;,b;) =
{ag, ag:, aps, a_}; especially, recall that ag = U, H,r and o = agr = {hy | T # mT
for all m, and a is realized at time m(T)T +1 in hy}. In other words, pi(h) = 7_; for all
h € ap, pj(h) = tn®;+ (1 —t)z_, for all h € agr, py(h) = tz_;+ (1 —t)x®; for all h € ayy,
and pi(h) = m_, for all h € a_. Given any sufficiently small payoff perturbation, the
smooth approximate optimal strategy o! to p: has the following properties: there exists
T such that, for any 0 < ¢ < 1, there exists 0 < t. < 1 such that o'“(h)[a}] = ¢ for all
h € agp. Also, for any h ¢ agp, oi(h) = BRY(pi(h)) = argmax,, u;(m;, pi(h)) + vi(m;).
Furthermore, since of(h) is Lipschitz continuous in ¢, for any 0 < ¢ < 1, there exists
0 < t, < 1 such that ol*(h)[a;] = c for all h € ap.

Since player j’s current belief gj is generated by P?; for all j # i, #{ggﬂ-(h) € A(A) |
heHj#i} <3, #P]. Also, it is obvious that #{5,(h) € A(4;) | h € H} < #P>

for all j # 4. Then, since of(h)[a}] is Lipschitz continuous in ¢, from Condition 3 it is
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not difficult to show that (for any sufficiently large s, (s;);»;,) there exist 0 <, < 1 and

5 < ¢o < 1 such that (B.1) there exists jo # ¢ such that, for all b € ag:, ||}, ;,(h) —

G(R)|| > 2L, (B.2) co — £& < ol (h)[a}] < co + £& for all j # i and all h € agp, and
(B.3) | oy (h)]a;] — gb..(h)[a;] |> 2¢%, for all j # i and all h € ag. Indeed, since v} > v,

m%, # m_;. It means that there exists jo(# ) such that m; [a%] < 1 = 7% [a}]. Then,

aj,] Jo %o

define a (closed) interval JO(a, 2¢",,) == {z | o ()[a,] +265, <z < o ()[ar,] +265,}
Furthermore, define I7 (a, 26%;,) := {ol(h)[a}] | t+(1—t)z; [a}] € Js(ev, 26L5)} for b € arg;
notice that for h € ag:, py j, (h)[a}] = tn4 [af |+ (1—t)m; [a5 ] = t+(1—t)x; [a} ]. Clearly,
If (@, 2€%5,) is either a (closed) interval, or an empty set. Also, since pu; (J9(a, 28%5,)) — 0

as 87 — oo, from Lemma 2 it follows that pu; (I7(a, 2€%,)) — 0 as s — oco. From this

and #P; < oo, it follows that u(U,ep, I7 (@, 26%5,)) < > aep, b (L7 (o, 2¢'5,)) — 0 as

§70 — 0.
Next, by Condition 3, 4¢ #P7 < Py < for all § #
ext, by Lo O 9 8T si = BU-D)HATDsI 3o #PE, = 2(1— 1)(#A T torall j 7.
Then, letting Jy(a, 25;) = {z | 9(%71‘(@) la;] — ijsj <z < 9071‘(04)[‘%] + 2§Sj},
LU U Tla2el)) < D 4el 4P
i#i aep, i#i
4
<Y e
8 = D)(#A+ 1)l 3o #Py,
1 .
i o,
< ;2(1—1)(#%1—1—1)& — 0 as s’ — oo for all j # .

Consider the union of {J,,¢p, I7 (@, 2¢'5,) and Ujzi UaeP] Jy(a, 25 ;), denoted by U(2¢",, (25;)#2-):
U (2850, (265)521) = (Uaer, 17 (0 26550) UWUs s Uaeps. ol 26,). Clearly, U (26 o, (2€1,)j4)
consists of at most (Y, ; #ij +#7P;) intervals. Therefore, [3, 1]\ U (2¢.,,, (2 )]752) con-
)

sists of at most (3, #79; + #Ps + 1) intervals; o, ([1, 1N\U(2E,,, (258J )jzi)) —

1
3(3 s #P +#Ps+1)

s7 — oo for all j # i. Then, the length of one of them must be at least

(for sufficiently large s7’s). However, then, from Condition 3 it follows that (for any suf-
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ficiently large s,) 4Eg < 8(171)(#Af1)32k 7mF < o #éﬁ#%“) for all j # 4. Then,
define I(c,2¢7) == {x | ¢ — 2¢) < z < ¢+ 2¢2}. From these, it is easily derived that
there exists 1 < ¢y < 1 such that (1) for all j # 4, I(co,262) U265, (2€))21) = 0
and (2) for all j # i, I(co,2¢6) C [0,1]. Then, it is easy to see that there exists
0 < tp < 1 such that (3) for all h € ag, 0'°(h)[a}] = co and (4) for all h € ay,
oo (h)[a;] ¢ Uaer, I (a,2€%,). Then, from (4) and the definition of Piy o it follows
that, for all h € ag:, pj, ;,(h)[as] = to+ (1 —to)m;, [a},] ¢ Uaep, J5(a, 2¢%5,). Tt implies
(B.1). (B.2) is immediate from (2) and (3). From (1) and (3), it follows that, for all
h € arpand all j # i, | 0'°(h)[a}] — gg’i(h)[af] |> 252 +2¢7 > 25;. We have show (B.3).

On the other hand, since ﬁio is generated by P!, there always exists a finite history h%,
in any formation phase (in epoch s) such that || f% (h) — pj, ;(h)|| < ﬂ%s for all A and all
j # i, where fi := Bi(h',). Therefore, from Condition 4 it follows that (for any sufficiently
large s,) for all b, all j # i, and all k, || £ ;(h)—py, ;(h)|| < #Biff. From this and Lemma 2
we obtain that, for all h and all j(# 4), [|o{"(h) ol (k)| < H&(< 5€2). Furthermore, as
for player i’s true strategy o}, Condition 5 and Lemma 3 imply that (for any sufficiently
large s,) [lot(h) — ol (h)|| < £€(< €1 for all h € Hy and all j # i. Therefore,
it, together with the above argument, induces that ¢y — 3¢/ < o7 (h)[a}] < co + 2€
for all h € H fi (Nas and all j # i. This, together with Condition 7 and Lemma 4,
implies that in the first test phase of player j, player j’s test rejects gé with almost
probability one (for all j # ). Indeed, since P < ng for all j # i and ap € P and
the first test phase of player j is sufficiently long (see Section 4.5), there exists a class
o € ng g Such that o/ C o and o' has obtained enough samples during the first test

a/

phase, ie., m® > m’. . +d— 1. Furthermore, from these, (B.2), Condition 7, and

Lemma 4, o}°(h)[a}] — 26 — &) — %fj < Di(a)[aj] < o (h)a7] + g€+ 3€L + %E;

Y — 7 —
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for all h € ap with almost probability one. From this and (B.3) it follows that, for all
h e o, ||D() = gy ()l 2| DI (a)laf] = gps(e)a5) 12| o (R)[a}] = gb,(h)laf] | =€, >

2§i = fi L= fi ; with almost probability one (i.e., at least probability 1).

11.1.2 Forming equilibrium beliefs

We have shown that maximum epoch player j forms a belief f4 (in the first formation
phase) with at least probability (T, 1)+ and then it makes all other players reject their
beliefs in their first test phases with almost probability one (i.e., at least probability %)
(during the given ER(s)—interval). In this subsection we argue that after the rejections,
all other players form approximate equilibrium beliefs as new ones in their next formation
phases and those beliefs, in turn, make player i reject f% in the final test phase (of player

i) during the given ER(s)—interval.

e The case of multiple weakly dominant actions: §; > 0 and v > v,

Since P < Pg]-, there always exists a finite history iz_j (in the next formation phase)
which, together with player j’s belief correspondence Bij, generates a new belief §/ =
B/,(h_;) such that ||gi(h) — 64(h)|| < = for all h and all k # j. Thus, it follows from
Condition 4 that (for any sufficiently lasrge s;,) G2(h) — Gr(h)| < #ijlsj for all h, all
j #i,all k# j, and all [, where B; := max[1, U#A||(D?*v;)7'|/(1 — §;)]. From this and
Lemma 2 we obtain that, for each j # i, the smooth approximate optimal strategy 0‘? to
¢’ satisfies that [|o%(h) — 6;(h)|| < &€, for all h and all I. Thus, [|o?(h) — gE(h)|| < 2.,
for all h, all k # i, all j # k,i, and all [. Also, Condition 5 and Lemma 3 imply that (for
any sufficiently large s;,) ||o7(h) —0?(/1)” < L& forall j#i, alll, and all h € (i Hao-
Therefore, all players other than i have (approximate) equilibrium beliefs (§7);;. Note

that even if player j (# 4) faces another test phase and rejects 7 before the final test phase
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of player i (in the given ER(s)—interval), ¢/ can be formed again in the next formation
phase (combined with player j’s belief correspondence); by Condition 2, the number of test
phases of player j during any given ER(s)—interval is at most 2¢. Therefore, maximum
epoch player i forms a rejecting belief f%, which makes all players other than i reject his
current beliefs (g3);.; and then they form new beliefs (§7),.; and keep employing them
until the last test phase of player i (in the given ER(s)—interval) with at least probability
(3 ([T, ) N2 N

Finally, consider player i. After player i has had a belief fj which leads to oppo-
nent rejections, he keeps employing f% (until the last test phase of player i in the given
ER(s)—interval) in the sense that even when player i has an interim test phase and
rejects fr, fh can be formed again (combined with player i’s belief correspondence)
in the next formation phase; the number of player i’s test phases during any given
ER(s)—interval is at most & Thus, player i can keep employing f% until the last test
phase (of player i) in the given ER(s)—interval with at least probability (I, Z,)*™*. Re-

call (A.4) in the previous section: for all h € aqr, |75, ,(h) — 65, (h)|| > 2&%5,. Recall

also that, for all h and all j # i ||ff;(h) = pj (W) < H5E(< 5&4). Therefore, fi

is different from approximate equilibrium 6: ||}, ; (k) — 6;,(h)|| > 32 Lo (> BE) for all

h € ag:. However, then, from Condition 5 and Lemma 3 it follows that (for any suffi-

ciently large s;,) [|o(h) — ol (h)| < L&l forall j #iandall h € (i Hgi- From this

i <
and the above argument, it is derived that [|o}(h) — G;(h)|| < %ﬁij for all j # i and all
h € Nz Hyio Thus, |[ff,(h) — o3 ()] > 3L, (> HE) for all h € (N4 Hy) N

Note that Py < Pi,, and that o} (h)[a;] >

1

5 — & forall j #dand all h € ap(Hy;.
Then, since the last test phase of player ¢ is sufficiently long, in the last test phase of

player i, there exists o’/ € P! +q Such that o’ C a,» and o” has obtained enough sam-
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ples during the last test phase, i.e., m® > miﬂ + d — 1 with almost probability one.
Furthermore, since P; < PL,,, 0j,(h) is constant in o”—active periods; note also that

|05, (h) — 65, ()] < 1¢t, for all h € Hyj,. From these, Condition 7, and Lemma 4, it fol-

lows that ¢, (a”)[a}

jo] o % ijo - igz < Déo (Oé”)[&;fo] < &jo (0//)[@;0] + %gijo + if; with almost

probability one. It, together with (A.3), implies that for h € o”, || D} () — ff;,(”)|| >
1 f5jo (h) =6 (W) —3&—3EL, = BE, -2, =3¢, > & with almost probability one:
with almost probability one (i.e., at least probability %), player i rejects f%. Then, player
i forms a new belief in the last formation phase: since P; < P!, there always exists a finite
history h_; (in the formation phase) which, together with B!, generates a temporary belief
§' = Bi(h_;) such that, for all h, all j # i and all I, [|gi(h) — 6,(h)| < 5-¢,- Further-
more, it, together with Lemma 2, implies that, for all & and all I, ||o?(h) — 6,(h)|| < Ll
Finally, the probability of §', i.e., the probability of h_;, is at least qn ék)Ni. From
this and the above argument about (§7);.;, it follows that, for all ¢,j with ¢ # j and
all h, [|gi(h) — o?(h)|| < 1€ and ||gi(h) — 6;(h)|| < .. Therefore, all players have
(approximate equilibrium) beliefs (§*); at the end of the given ER(s)—interval. In other

words, an AES (ai)k is reached in the given ER(s)—interval with at least probability

(%)I(sz ék)(é—s-l)N;'—i-%Ej#Ng > (%)I(Hk lk)%zk NE > (%)I(sz ék)ZEI]\_fS'

11.2 AES is reached infinitely many times

For all s, define class oy such that hr € «g if and only if (1) time 7 + 1 is the first
period of an ER(s)—interval and (2) all players’ epoch stages are no less than 5, at the
beginning of the ER(s)—interval: s,s’ > 5, for all j # i. From the previous argument
in Appendix A, it follows that, taking a sufficiently large Sy, the probability that AES

is reached in an ER(s)—interval is at least (3)!(TT, L;)*¢ >+ NE > (%)I(Hklk)%INS). Then,
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define py := (1)1 (T1;1,)?"™s. Let d% (hao) denote the number of times that AES has been
reached in the first m ER(s)—intervals in which all players’ epoch stages are no less than

So. Let7,%(hs) denote the calendar time when ay is active the m—th time in h.,. Define

d‘
B = {ho | T < 00,— < ps— =p_}.
m p

Applying Lemma 4, we obtain that p,.(BS,) < exp(—2m(3p
Recall that there are at least (R,,2¢) ER(s)—intervals in each maximum epoch s. From
this and Condition 2 it follows that for all k, p_ = (LysNe > (LysnNe = (pF)n > (pk)* for
any sufficiently large s. Furthermore, p, > p, for any sufficiently large s. Note also that,

for any sufficiently large s, there exists ks such that

R _RE RS
= — > )
2c 2c T s

From these and Condition 6, it follows that, for any sufficiently large &',

U UBw < n-(U U B

§'>1 s>’ 225 s>s’ >25
1
< T ¥ el
s>s’ m>

—2(‘

> Y exnlgm(h))

/
828" m>wl® RS

< Zexp(—s) = (1 —exp(—1)) 'exp(—5).

s>s!

Therefore, fi,«((Ny=1 Usss Umz% B;) = 0. Let B :== U2 Nysw ﬂm> ( 55

where (B?)¢ is the complement of B?,. Then, yu,.(B) = 1. From this we obtain Lemma

IN

6.

Proof of Lemma 6: Consider A (B; 1,-(A[1B) = 1. Suppose that there are infinitely

many rejections in hy, € A B. Since hy, € A, from Lemma 5 it follows that all players
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make infinite rejections. It means that there exists §;(> §g) such that for all s > 3y,
all players’ epoch stages are no less than §; through maximum epoch s. Therefore,
for all s > 51, d% =the number of times that AES has been reached in the first m

ER(s)—intervals. In addition, since ho, € B, there exists 52(> §;) such that, for all

i

§ > 89, A% > (ps — %]_Ds)m for all m > 3=

. Since pg > p, for any sufficiently large s and
there are at least %—g ER(s)—intervals (in maximum epoch) for all s, it implies that there
exists §'(> $§2) such that for all s > ¢, d% > %Qsm for m = %—Cf. It means that AES
is reached at least %QS(ES ,/2¢) times in the first R, /2¢ ER(s)—intervals (in maximum

epoch s). This completes the proof. B

11.3 No rejection from some period

e Let hr_; be a realized past history such that (1) time T is the first period of a cycle (of
player i) and (2) the n—th rejection (of player ¢ from the beginning of the repeated game)
occurred in the previous test phase. Note that player ¢ has formed a new belief denoted
by f* in the previous formation phase. Furthermore, player i keeps being in the same
epoch, say, the s—th epoch, at least until the (n + 1)—st rejection occurs; f* is generated
by Pi. Then, {P! +qtoZo will be employed in test phases until the (n + 1)—st rejection

occurs: for each ¢ =0,1,2,--- and each o € P!

©+ 4> the a—test starts from the (g + 1)—st

test phase after hpy_; (unless the (n + 1)—st rejection occurs). Recall that the a—test is
said to be effective at time T if the a—test is collecting samples at time 7. Then, for

each ¢ = 0,1,2,--- and each o € P!

<+q» define the corresponding class a(s, q) such that

hi € a(s,q) if and only if (1) hr—y < hg, (2) hy € a, (3) the a—test is effective at time

T+1, and (4) for all hy_; < hy < hy such that hy € o and the a—test is effective at time
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t+1,

1£5(he) = o5 (he) | < % for all j # .

Then, let d?ﬁfflm la;] denote the number of times that a; has been realized in the first
m «(s, q)—active periods in which the a—test is effective and let d;ff;j’q’ = (4259 [a;])a,-

]’m

Define Coi™® = {ho, | To®? < 00, 3j # Z(dewslq /m — f (a)]| > €')}. Furthermore, let

fi(e)la;]) = fia)[a;] + & and fi()ag] = fie)las] — 5. Let

da(s q) [ ] éz da(s q) [a ] ‘ fz
als,0) (5 4\ — a(s,q) M i 428 gm_ 7 i 1 >s
D, 05) = (o | T < 00, Do o fa,] 4 & or B2 < fia)fa,] - S,

Then, we easily obtain that an(sm C U#i Ua]- D?,L(S’Q) (4,a;). From this and Lemma 4 it
follows that ft,. (Col™™ | hr 1) < i (U Uy, DG a5) | hra) < (3 #45)2 exp(—3m(€0)2).
For each i, we define a stochastic process {X!}, and a filtration {H'}, as follows:
X' := 1 if the n—th rejection (of player 7) is of type I error, and X! = 0 otherwise;
see Section 7.2 for type I error. Moreover, let H! := o(Xi,---, X"), i.e., the o—algebra
generated by (X7i,---,X}). By the definition, E[X} , | H}] <the probability that the
(n + 1)—st rejection is of type I error conditional on H!. Notice that, for all ho, > hr_1,

if X}11(hoo) =1, then ho, € Uqzo Uaefpz’+ U, Co=9  Therefore,

m=m

EXi e <u-(J U U €2 hr)

X2
q= 0a€73+ m= mg+q

< Z(#P;+q) Z MU*(C?rL(&q) ’ hTfl)

9=0 mmi
= i 1 i
<Q_#A) Y #PL) D 2exp(—5m(€)?).
e q=0 m>ms+q

This inequality holds for any realized history hp_; satisfying (1) and (2). Note also

that by the definition of epochs, the (n + 1)—th rejection (of player i) must always occur
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in the same epoch, say, the s—th epoch (of player ), since the number of rejections

completely determines the switching of epochs for each player. From these it follows that,

for all h.,

. . > . 1 4
ElXo [T < Q_#4) Y (#PL,) Y 2exp(—gm(€)?)
J#i q=0 m2ms+q

Therefore, letting J§ := 0 and J! :=>"_ R for s > 1, for all he,

co Ji-1

SEEHEGES S SRS
s=l p=Ji_,
oo Ji-1 oo 1 ]
<Y O #A)DY #PL,) D 2€XP(—§m(5§)2)
=L n—yi_, i 4=0 m>mi
<23 R #4)) Z HPL) D exp(—%m(fi)Q)
s=1 JF 9= mzmg
A #A) S RH#PL,) S esp(—gm(E,)?)
i s=1 ¢=0 m2m5+q
23" #4,) }j}jRHq#P;q S exp(—gmiels,)?)
B s=1 q=0 m>ms+q
ZQ(Z#A iexp )(1 —exp(—1))~"
i s=1

= 20> #4;) exp(—1)(1 — exp(—1)) > < o0,
J#

The fifth inequality obtains because R! < R! 41 for all s, and the sixth equality holds
because of Condition 7. The other inequalities are obvious. Therefore, | E[X} ; |

H!] < oo for all hy,. This result leads us to obtain Lemma 7.

Proof of Lemma 7: Let E; := {hy |there are infinitely many player i’s test rejections
of type I error}. Notice that, by the definition of {X}},, E; = {he | Do) X = o0}

Furthermore, by a generalized argument of the Borel-Cantelli Lemma (see Section 5 in
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Chapter 7 of Shiryaev (1984)),%°

{hso | Z:XfI =00} ={h | ZE[X:Z | H!] = oo}, pye — a.s.
n=1 n=1

However, then, 1. ({ho | 307, E[X} | Hi] = 00}) = jt,.(8) = 0. Therefore,

o+ (D) = pip-({hoo | Y BIX,, | H;] = 00}) = 0.

n=1

Thus, p,-(U; E;) = 0. From this the desired result immediately follows. H

e Define a class 7! such that hy € ~! if and only if at time T, rejection occurs for
the first time after an ER(s)—interval in which AES has been reached. Define a class
v2(C ~1) such that hr € 4% if and only if (1) the player who made the first rejection, say,
player j, has formed the same belief as the previous one, i.e., an approximate equilibrium
belief and (2) at time 7', rejection occurs the second time after the ER(s)—interval; thus,
the AES survives (at least) until time 7. For 3 < y < I — 1, define 7¥ inductively as
follows: hp € 7Y if and only if (1) the same belief as theprevious one, i.e., an approximate
equilibrium belief, has been formed after any of the last (y — 1) rejections and (2) at
time 7', rejection occurs the y—th time after the ER(s)—interval; thus, the AES survives
(through the (y—1) rejections) until time 7. Note also that 4¥™ C 4% forall1 <y < [—2
and all s.

As in the case of reaching an AES, the probability of forming the same belief again
just after the y—th rejection is (at least) minj(HkLk)Ng = (ILkl,)™o. Let p, = (ILgL, )N
Let A7 (hso) denote the number of times that the same beliefs as approximate equilibrium
beliefs have been formed after the first m ¥ —active periods; in other words, d;*f (heo) is the
number of times that AES has survived after the first m 7¥—active periods. Then, define

y y .
Fib = {he | T, < 00, dy; /m < ps — 3p }. By Lemma 4, pu,.(F5Y) < exp(—gm(p,)?).
30For any measurable sets X and Y, X =Y, y . — a.s. if and only if p . (X\Y) U (Y\ X)) = 0.
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From Condition 2 it follows that for all &, p = = (L)sNe > (LN = (pk)n > (pb)* for any

sufficiently large s. Thus, for all 1 <y < I —1 and all k, 5-(3p JY > 1(3(p5)) = wk for

N[

any sufficiently large s. Furthermore, p, > p, for any sufficiently large s. Note also that,

for any sufficiently large s, there exists ks such that

i

RF _ Rl
— s > s
2 2 s

From these we obtain that (p V(R 2¢) > wk R* . From this and Condition 6 it

follows that, for any sufficiently large &',

pe () U U B < - U =y

§'>1 528" m>(3p )V(R,, 2¢) s> m>(3p )V(R,,/ 2¢)

S Z Z /’LJ*(Fiyly)

s>s' m>(% )Y (R, 2¢)

1

< _ 2
<>, 2. ep(—gmp)’)

s28' m>(4p )V(R,/ 2¢)
<Y T el am@h)))

SZS/ mzwgs R’;s
< > exp(—s) = (1 — exp(—1)) " exp(—+).

s>s’

Therefore, 1« (51 Usss Ums(2 1p (R, /%) F¥) =0 for all 1 <y < I — 1. Define
= 2

Then, p,.(F) = 1. From this we obtain Lemma 8.

Proof of Lemma 8: Let E := (.(E;)%; by the proof of Lemma 7, p,.(E) = 1. Then,
t«(ANBNOENF) = 1. Suppose that there are infinitely many rejections in he, €
ANBNENF. Then, there exists s” such that, for each s > ", forall 1 <y < I —1,

dr > (p, — p ym > 2p m for all m > (3p Y (R,,/2¢). However, then, from Lemma
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6 it follows that, for all s > s”, AES is reached at least %BS(ES ,/2¢) times in the first
(R, 2¢) ER(s)—intervals. It means that v} is active at least %]_DS(ES/ZE) times. Then,
the corresponding player forms the same belief as the previous one and then AES survives
at least %Qs(%gsﬁs/%) times after —p (R, 2¢) yl—active periods. Tt means that ~? is
active at least (3p J2(R,/2¢) times. Again, AES survives at least %]_9 (3p AR, 20)
times after (3p 2(R,/2¢) vi—active periods. We can repeat this argument so that AES
survives through the first (I — 1) rejections after an ER(s)—interval (in which AES has

been reached) at least (3p ) (R, 2¢) times. W

Remark 6 From Condition 6 it follows that (% )IR — 00 as s — 00.

11.4 Proof of Proposition 1

For any positive integer L, let AL := {7, |for all a; € A;, there exists a nonnegative integer
[ such that m;[a;] = L} and S} (m;) == {x} | |7} — m;]| < }. Notice that U, eai St (m;) =

A(4;), and that for any subset A of A(A;) with its diameter no more than 5-, ie.,

diam(A) < 573" there exists m; € A} such that A C S (m;). Next, let L, := min{L |

2 < £} and S'(Le) = {5} (m;) | m € A% }. Then, for all 4, all j # i, all s, all g, all
o€ P, and all $7 € §7(L), we define a class a(S7) as follows: hy € a(S?) if and only
if (1) hy € a, (2) the a—test has started from the first test phase of employing P., , (in
epoch s of player i) in hr, i.e., the first a—test (with the least sample size m’,) has started
in hp, (3) the first a—test is effective at time 7'+ 1, and (4) for all Ay < hy such that
h € o and the first a—test was effective at time ¢ + 1, 7 [a;] — & < 075 (he)[a;] < 7j]a] +§
for all a; € A;, where 7; is the center of S7(= Si( j))- Let d; En la;] denote the number

of times that a; has been realized in the first m «(S?)—active periods. Then, for all i, all

#The diameter of A is defined by diam(A) := sup{||lm; — 7)|| | 7;, 7 € A}.
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j#i,alls algalaecPi,,

all S7 € S/(L,), and all m, define

o 0]
J

. : da(SJ')
) j (S ,m
Pi(s,q,a,5,m) := {he | 729 < 00, Ja,; (-2 -

im [aj]

€
> m;la;] + P —

Let U := {hy [there are at most finite rejections in h..}. We say that players’
(temporary) beliefs are significantly different from players’ true strategies infinitely many
times in hy, if, for infinitely many h(< hy), there exists i and j(# i) such that player i’s
belief f* and player j’s true strategy o} are significantly different, i.e., Hf;(h) —aj(h)]| > e.
Let V := {h. |players’ beliefs are significantly different from players’ true strategies
infinitely many times in h.}. Then, we obtain that

unv <« UUUUN U U U Pesasim)

i=1j#is=1q=1 QZ‘?QGP§+Q SIeSI(Le) mzmi_m

[e.Sle olNe o)

cUUUAU U U U Peaesm

i=1j#is=1q=19=qacpi, SI€SI(L) m>m!,,

The second inclusion is obvious. We show the first inclusion. Suppose that h,, €
UNV. Since h,, € U, there exists a (temporary) belief profile (f?); such that each
player i keeps f* forever from some period, say, time T each player i also keeps being
in some epoch, say, the s‘—th epoch, forever from time 7. On the other hand, since
hoo € V, there exist iy and jo(# i) such that Hf;g (ht,) — 07, (he,)|| > € for infinitely many
hi, < hs. However, then, from Properties (3.1) and (3.2) of {P!}, it follows that, for
all 4, all j(# i) and all s, there exists ¢(i, j,s) such that, for all ¢ > (i, j, s), 77§+q is a
conditioning rule of f* and P, is also a & —approximate conditioning rule of af . for all
a€ Pl andall h, i € a, fi(h) = fi(h') and Haj-c(h) —af(h’)H < 55~ Moreover, it follows
from Condition 5 and Lemma 3 that, for all i, |of (hy) — 0% (hr)|| — 0 as T — oo. Thus,

there exists T > T such that, for all 7, all j # 4, all s and all ¢ > ¢(i, j, s), if hy, hy € «
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for some a € Pl and t,t' > T, then |05 (he) — o (he)|| < 55 that is, for all 4, all j # 4,

all s, all ¢ > ¢(7,7,s) and all « € Psﬂ,

diam({os(hy) | t > T, by € by < hoo}) <

£ < i Then, for all 4, all j # 1, all s, all ¢ > 4(4,4,s) and all a € P!, there exists

48 s+q?

§7 € §7(L) such that {o%(h) | t > T, hy € a,hy < heo} C 57, as noted above. Also,
since || f;g (ht,) — 0%, (he,)|| > € for infinitely many hy, < he, it is obvious that there exists

q > q(io, Jo, s°) such that, for all ¢ > g, there exists @ € P’ ?0+ such that (I) the first

a—test starts after time 7' (in epoch s%) and (II) hy,, € & for an infinite subsequence

h of {h . Therefore, it follows from (II) that || f(h,) — 0 h)ll > € — < = 4Z¢
{hty, tn of {hy, bi : (IT) 1 fjo (he) — o7, (ha) ]

48 48

for all h; € @ such that h; < hy and t > T. Thus, from these it is derived that,

for all ¢ > @, there exist @ € P, and S € S(L,) such that (i) the first a—test

7,0+

starts after time 7' (in epoch s), (ii) {o5,(he) |t > T,hy € @, hy < hoot C 5%, (iii)
1£2(h) — o, (R)|| > 4Le for all h < ho such that h € a(S%), and (iv) #{h; | t > T, h; €
a,h; < he} = 00. From (i), (ii), (iv) and the definition of the learning procedure we

obtain that #{h | h € a(5%),h < hy} = m® > miﬁoﬂ, which implies that the first

a—test obtains enough samples but does not reject f* in ho. In addition, it implies that,

in any a—effective period in which the first a—test is effective, 7, [a;,] — § < o7, (he)[az,] <

4
6

Tjolaj,) + £ for all a;, € Aj, where 7, (€ AP ) is the center of 5% (= SP° (7;,)). Therefore,

heo € P;g( s q, &, S% m®). Otherwise, HdJ L:ZZ /m® —mj | < 5. However, then, since
there is no rejection from time T, the first @—test must be passed, which means that

Hf;g(h) ]Of,ji’/ ol < 5 < 5 (or < & < ) for all h € a. Furthermore, recall

that mj[aj] — § < 03, (h)]aj] < 7mjlaj] + § for all a;, € Aj, and all h < hy, such that
— Qi i * % &(S70) a &(S90) a

h € a(S7). Therefore, || f2(h) =7, ()| < [l f2(h) —d5e /ma||+ 5o /m® =y +

7, — o5 (M) < £+ 5+ & = 2e = e for all h < hy such that h € a(S%). This is a

contradiction to (iii), i.e., Hf;g(h) o’ (h)|| > 4ge for all h < hy such that h € a(S%).
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1 o]
Therefore, hoo € U;—; Uj;éi Us qul ﬂqzq UaePf

st+q

USJ'GSJ'(LE) Umzmi+q P;(S’ q, &, Sj’ m)
Finally, from Lemma 4 and Conditions 3 and 8 it follows that, for all 7, all j # 4, all
s, and all g,

NU*(U U U U Pl(s,q,a, 57, m))

q=q aGPi_m SIe€SI(Le) m>m!

< SGPLIES L) 3 (#47)2 xp(—gm(5)?)

= 2 LA - (5 (51 T HPL,) el ()
< S LA o5 (5 TP o€
< 2L AN~ expl 1) el s )

9>q

< 2(#8(Le))(##A;)(1 — exp(—1)) " exp(—s — q).

Thus, for all g,

(YU U U U Piga s m)

q=1q=q a€P§+q SIe8I(Le) m2m§+q

< 2(#87(Le))(#A;)(1 — exp(—1))~ exp(—s — q)).

Therefore, letting § — 00, fi - (ﬂ;il U;iq Uaepg+q Ugjesj(Le) Um2m2+q Pé(s, g, a,57,m)) =
0 for all 4, all j(# i) and all s. Thus,

oo 00 o0

»UUUAU U U U Pleaasm=o

i=1ji s=1=1 = aeP!,, S1€5 (L) m>mi ,,

Therefore, p,.(UNV) = 0. Since pu,.(U) =1, u,.(UN(V)) = 1. Finally, for all
heo € U, some temporary beliefs (f?); keep employed forever from some time, say, T,
which means that, for all i, fi(hr) = pi(hy) for all T > T. In addition, for all he, € V¢,

from some period on, say, time T, players’ beliefs (f); are not significantly different

from players’ true strategies (o7);: for all ¢ and all j # 4, || fi(hr) — o} (hp)|| < € for all

)
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T > T. From these it is easily derived that, for all ho, € U V¢, for all i and all j(# i),

limsupy_o, || ;(he) = o5 (hr)[| < e. W

12 Appendix C

12.1 Proof of Proposition 2

Take any o; and any o_; € EG({P'}s;0;); let 0 := (0;,0_;). Then, there exist an index
S0, & i, —probability one set Zy, and a time function 7j : Zg — N such that, for all a € P’
and all hy, bl € «, if there exist hy, hly, € Zg such that hy < hy, and T' > Ty(hs) and

Wy < b, and T' > Ty(RL), then |lo;(he) — oj(h)|| < 1€ for all j # i. Accordingly,

we provide several definitions. For any a € P! | class & is defined as follows: hy € a if

S0
and only if (1) hr € « and (2) there exists ho, € Zg such that hy < ho and T > Ty(hoo).
Next, for all j # i, let L$|a;] := supjcs 05(h)[a;] and I§[a;] == infrea 05(h)[as]; obviously,
for all j # 4, L¥[a;] —I$]a;] < ié for all v € P! and all a;. Furthermore, for all j # i, all
s > s, all B € P and all a;, let Lf[aj] = L¢[a;] and lf[aj] = [$]a;], where a D 3 and
o € P! 3 We say that a temporary belief f* is igi—close to opponents strategies o_; or

that f*is igi—accurate against o_; if for all o € P and all h € &, [|f}(h) —o;(h)| < ié

for all 5 # . Then, we obtain the following lemma.

Lemma C.1 With p,—probability one, if rejection occurs infinitely many times, then
there exists 5(> so + 1) such that, for all s > 3, player i chooses a temporary belief that
is ¢’ '—close to o_; (at least) Ii(RL/Z1) times in epoch s (of player i): for all a € Pl
and all h € &, ||fi(h) — o;(R)|| < L€' for all j # 1.

Proof. From Conditions 4 and 8 and the modification of player i’s prior belief forma-

#8ince P, < PL, for all 3 € P! there exists a unique o € PL such that 3 C .

So —
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tion process in Section 8, it follows that after the process has proceeded to some epoch
s1(> so + 1), there exists an integer 0 < 2y < Z! — 1 such that the probability of choos-
ing histories that correspond to igi—accurate beliefs (in any formation phase after the
(nZ! + 2)—th rejection for all n € N) is always at least § := ([, L) ™9 (> pi) in each
epoch s(> s1).% Let Tg: denote the calendar time in which the R’ —th rejection in epoch s
occurs and d(g: ,z:) denote the number of times that igi—accurate belief has been chosen
after every Z! rejections (in epoch s). Define Gy := {ho | Tri < 00,d(gi »zi),/(RL/Z!) <
pi — $pi}. Then, from Lemma 4 it follows that p,(F,) < exp(—%(R./Zi)(pi)?). From
this and Condition 6 it is easily derived that for any sufficiently large s,

n(J G < Y esp(—5 (L Z)0))

s>s’ s>s’
1 %
; m%]{g eXp(_§m(ps)2)

< Zexp(—s) = (1 —exp(—1)) " exp(—5).

s>s/

IN

See Remark 7 for the second inequality. Thus, for any sufficiently large ', u((y5, Uz Gs) <
(U,se Gs) < (1 —exp(=1)) " exp(—5'). Therefore, (5, U,sy Gs) = 0. Finally, let-
ting G == U,>1 Nyse(Gs) (G Zo) = 1. Furthermore, from the definitions of G and
Zy, it is obvious that if there are infinitely many rejections along any ho, € G () Zg, then
there exists §(> s1) such that, for all s > 8, dgizi) > (B, — 3pL)m > ipim for all
m > R./Z!. It means that player i chooses a igi—accurate belief (against o_;) at least

sPi(RE/Z?) times in each epoch s(> 5). This completes the proof. m

Remark 7 By the definitions in Sections 4.5 and 8, Z' = #0%_; (P!, n') < #3_;(Pi,nl) =

(#A%)#pé. Recall that (#A%)#Pg < (#A_Z-)Nsi. Thus, Z! < sNe for any sufficiently

33Let N denote the set of all natural numbers.
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large s. Then, from wi == L(3(p%)*)! and pi := (1)*N:, and Condition 6 it is derived that
wiR: < (3(pl)*)' Rl < (%pi)(%)SNgRi < 3(p))(R./ZY). However, then, by Condition 6,

wiR: — 00 as s — oo. Therefore, 3(p')(R:,/Z!) — 00 as s — 0.

eForalls=so+1,5+42,--- ,allg=0,1,2,---,alla € P, andalld = 1,2, -, define
the corresponding class (s, ¢, d) such that hy € a(s, q,d) if and only if (1) time T+ 1 is
in epoch s (of player i), (2) hy € a, (3) the d—th a—test (in epoch s) is effective at time
T+ 1, (4) for some ho, > hy, To(heo) < T and the d—th a—test (in epoch s) obtains the
first sample between time Ty(hoo) + 1 and time 7'+ 1 in hp. Let dj a(sad);] denote the
number of times that a; has been realized in the first m a(s, ¢, d)—active periods, i.e., the

number of a; in the first m samples obtained for the d—th a—test. Then, define

)

<o) - 3}

Al

) g dinlay)
00, a) 1= oo | TR < 00, =02 > Lilag] 4+ or =0

and 12029 .= = Ujzi Uy, T e (j,a;). Note that, for all h € a(s,q,d), all j # i, and all
aj, I$a;] < oj(h)[a;] < L§[as]; LS as] — (§]a;] < ¢ /4. From this and Lemma 4 it follows
that uU(I%(S’q’d)) < (D2 #A))2 exp(—%m(gi)2). Furthermore, for all 8" > sy + 1,

WAUUUU U e

s'>1s>s" q=0 aEPg+q d=1 m2mi+q+d71

WUUUU U me

s>s' q=0 aEP;_HI d=1 m2m§+q+d71
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However, then, for all s’ > sg + 1,

wUU U U U

s>s’' q=0 a€73§+q d=1 m2m§+q+d—1

154)

=550 S oD DR ERE
s>s' ¢20 O‘€Pi+q d>1 m2mi+q+d71
YT Y (S #aRen(- @)
s>s’ q>0 a€73§+q d>1 mZméJrq-‘rd—l J#i
<A #ET T Y T el gm@)
JF#i 528" 420 aePl,  d>1 m>m!, +d—1
= AT #AY Y Y S - en(—5EP) e, +d— DEP)
i#i 525 420 aepi,, d>1
=20 _#4)> > > (0 —exp(—é@")?)w exp(— gl (€)°)
j#i 5>s' ¢=0 aGP;W
= 2(2 #A;)(1 —exp(—= ZZ #,P;-&-q Z GXP(_%mi+q(gi)2)
j#i s>s' q>0 m2m5+q
< Z #A 1 — eXp —= Z Z Rs+q #,P;Jrq Z eXp(_%m(fi’+q>2>
i s>s' q20 mzmi_m
< Q(Z#Aj) —exp(—= ZZexp —s—q)
j#i s>s’ q>0

J#i

23 #A)(1 - exp<—g<zi>2>>l<1 ~ exp(~1)) Z exp(~+).

The seventh inequality holds by Condition 7. The other inequalities are obvious.

[e) 00 a(s,q,d
Therefore, 1,((y51 Ussy Uq:O Ua€P§+q Uiz Umzmé+q+d_1 G )) = 0. Define

—UNN NN N

s'>1 s>s' q=0 a€Pg, d=1 m2mg . +d—

Then, p,(I) = 1.

1

(Ia(s,q,d))c'

e We say that f* is rejected with type I error if f* is rejected by some a—test but f°

is statistically accurate in a—active periods, i.e.,

1£5(h) =

oi(h)| < €4 for all j # i

in all a—active periods (since the a—test started) in which (enough) samples have been
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collected. In addition, if f* is rejected with type I error, we say that the rejection is of
type I error. Then, for all s =sg+ 1,50+ 2,--- ,allg=0,1,2,---, all a € P§+q and all
d=1,2,---, define the corresponding class a(s, q,d) such that hy € a(s, ¢, d) if and only
if (1) time 7'+ 1 is in epoch s (of player i), (2) hy € «, (3) the d—th a—test (in epoch s)
is effective at time T'+ 1, (4) for some ho, > hr, To(he) < T and the d—th a—test (in
epoch s) obtains the first sample between time Ty(heo) + 1 and time 7'+ 1 in Ay, and (5)

for all hp,(n..) < he < by such that h; € a and the d—th a—test is effective at time ¢ + 1,

175 — o, (k)| < & for all j #1,
where temporary belief f? has been formed just after the most recent rejection (of player
i) in hp.

Let d?jgfl’q’d) [a;] denote the number of times that a; has been realized in the first m
a(s, g, d)—active periods, i.e., the number of a; in the first m samples obtained for the
d—th a—test against accurate belief f*. Note that for all h € a(s, q,d), all j # i, and all
a;, 19]a;] < oj(h)a;] < L¢lag); Le[a;] — 19]ay] < € /4. Then, define

) ~ dé(s,q,d) o P do?(s,q,d) . P
Jgn(s,q,d)(j7 CL]) - {hoo | Trg(s,qd) < 00, WT[J] 5 L[]] < l;‘[a]] — %}

and Jo0d U#i Ua]- Jolsad) (4,a;). Then, from Lemma 4 it follows that MU(J%S’q’d)) <
(31 # A2 exp(—gm(€')?).

On the other hand, define W := {h, |there are infinitely many rejections of type I er-
ror in hy }. Let X,, denote the event that the n—th rejection (of player i) occurs such that
a preliminary test chooses epoch-dependent toleraton level fi and then EZ /4—accurate

belief f7 is rejected with ¢!, and let Y, denote the event that the n—th rejection (of
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player i) occurs such that a preliminary test chooses constant toleration level EZ and then
€' /4—accurate belief f is rejected with £'. By the definition, W = Mot Unsw (Xn U Y0).

We first show that TMW (N ZoC sy Uy Ugo UaePg+q Uz, Umzmg+q+d71 Jilsad)
Indeed, suppose that he, € I[ YW [ Zo. Then, since hy, € W [ Zy, it is obvious that after
time To(hs) + 1, there are infinitely many rejections of type I error in h.,. Furthermore,

since ho € I, there exists (> so+ 1) such that for all s > 5, all ¢, all a € P§+q,

all d, and
allm > mi, +d—1,if 75" < oo, then 19[a;] —€ /4 < A3\ "[a;]/m < L3[a]+E /4
for all j # ¢ and all a;. Then, for any § > 5, there exists s > § such that (1) epoch s
starts after time Ty(he) + 1 and (2) type I error rejection occurs in epoch s: let the
rejection be the n—th one. This implies that for some ¢, some a € P° +q and some d,
the d—th a—test (in epoch s) rejects a & /4—accurate belief, say, f; f' is generated by
Pi. Clearly, there are two possible cases of rejecting f’. One case is that a preliminary
test chooses epoch-dependent toleration level & and then f? is rejected with toleration
level €. In this case, there exist o/, o € 73;+q and § € P'_, such that o/,a” C 3, and
m®,m® > ml,  +d—1, and |Di(a’) — Di(a”)]| > ¢ for some j # i. Since epoch
s starts after time To(heo) + 1, Dj(a’) = dz/ma’/ma/ — dz/ﬁ(j;g,d)/ma’ and D’ (o) =
dz;;na” S = dj.iﬂﬁfi’,?’d) /m®" . However, then, o_; takes almost same (mixed) actions in
all f—active periods after time Ty(ho) + 1 because s — 1 > sg. From this and hy € I,
it easily derived that || Di(a/) — Di(a”)|| = Hdz/gj’d)/ﬁla’ - dzgj;?’d)/ma”y| <& /2 for
all 7 # 4. Thus, this case never happens in h.,. The other case is that a preliminary test
chooses constant toleration level EZ and then the d—th a—test rejects f* with Ei, which
is of type I error. This implies that m® > m{, +d — 1 and ||Di(a) — fj(a)|| > ¢ for

some j # i.>* However, then, because f is statistically accurate in the d—th a—test,

#For each v € Pl ,, f'() := f'(h) for h € a. Since f* is generated by P!, f*(a) is well-defined.
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1f3(h) — oj(h)|| < € /4 for all j # i in any a—active period (during the d—th a—test
is effective), so that Di(a) = df,,./ m* = d?CeD sipa for all j # 4. These imply

]’ma

that, for some j # i and some a;, cither d**7%[q,] /m® = Di(a)laj] > Lf[a;] + &2,

J,m«
a(s,q,d « % [e} Pl a(s,q.d

r dj;nc? )[aj]/m = Dj(a)la;] < [$[aj] — & ,72. Thus, hy € JoGo9 - Hence, ho €
00 % a(s,q,d)
ﬂs’Zl Uszs/ Uq:0 UaEP§+q Uiz Um2m§+q+d—1 T

[e'e] [e'e] a(s,q,d
Next, we need to show that ,u[,(ﬂs/21 Uszs' quo Uaepg+q U, Umzmg+q+d71 Jalsa )) —
0. However, the proof is quite the same as in the case of I-"*® . Therefore, 11, (I[\W (] Zo) =
0. Since u, (I Zy) = 1, it means that pu, (W) = 0. Thus, we have shown the following

lemma.

Lemma C.2 With p,—probability one, there are at most finite test rejections of type 1

error.

Lemma C.1 shows that with probability one, if there are infinitely many rejections,
then a igi—accurate belief is chosen infinitely many times. This implies that if there are
infinitely many rejections, there are infinitely many rejections of type I error. However,
then, Lemma C.2 shows that with probability one, there are at most finite rejections of
type I error. Therefore, these imply that with probability one, there are at most finite

rejections. In other words, we have obtained the following lemma.
Lemma C.3 With p,—probability one, there is no rejection from some period on.

e Finally, we prove Proposition 2. Let S := {h, | p’ does not QEi—learns to predict o_;
with o; in h}. It suffices to show that p,(S) = 0 because € > 2¢' by Condition 8. Let
U := {h |there are at most finite rejections along h}; by Lemma C.3, p, (U) = 1.
Furthermore, for all s, q such that s + ¢ > sg, all a € P§+q, and all d = 1,2, - -, consider

class a(s, q,d) as defined above. Let dszl’q’d) [a;] be as defined above, i.e., the number of
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times that a; has been realized in the first m «(s, ¢, d)—active periods. Then, define

dotsed) [a;] gz desed) [a;]
a(s,q,d) ( : o a(s,q,d ,m J a ,m J «a
and Ko #9? =U; Uy, K alsad)(; a;). Letting go(s) := max|0, so — s|, we first show that

sAvNzcU U N UU U xee

5212q0(s) 427 aePl,, 421 m>m? ,  +d—1

Suppose that he € S(\U()Zo. Then, since ho, € U, there exists a (temporary)
belief f? such that player i keeps f? forever from some period, say, time T he also keeps
being in the same epoch, say, epoch s’, forever from time T. Then, player i uses either

toleration level &, or EZ for all tests after the last rejection (in h.). On the other hand,

since hoo € S()Zo, if 8" > sg, then there exist n > 0, 8 € P, j # i, and T>T
such that || f1(3) — o;(he)|| > 28" + 1 for infinitely many T > T such that hy € 3 (and

hr < hs); otherwise, i.e., sg > s, replace 3 € P!, by 3 € P. in the previous sentence.

S0

It implies that letting 7" := max[T’, Ty (o )], 1£(8) = oj(ho)| > %Ez +nforall T>T
such that hy € 3 and hy < ho. However, then, since f? is employed forever in A,

there exists ¢ > qo(s') = max[0, so — s] such that, for all ¢ > ¢, there exist a € qurq

and d > 1 with a C 8 such that the d—th a—test is passed against fi(a)(= f1(3)).%

That is, || fi(a) — Di(a)| < (& <)E', where Di(a)(=d A9 /ey is based on enough

J,m®

samples, i.e., m* >m(;, +d— 1. From these it follows that ||d; ma’qd /m* —o;(hr)| >

%Ei + 1 for all T > T such that hy € 3 and hy < he. Recall that, for all T > T

such that hy € B and hy < heo, I[aj] < 0;(hr)[a;] < L[a;] for all a; and that, for

¥5Since P!, < P;.Ll»q and f? is generated by P?,, for all @ € ’PgiJrq, fi(a) is well-defined: fi(a) := fi(h)
for h € a. Note also that, for all o € P;‘,.,Jrq there exists a unique 0 € P; such that f D «, so that

fila) = f1(B).
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all aj, Lf[aj] — lf[aj] < i?, Lf[aj] = Lfa;], and lf[aj] = [$[a;]. These imply that,

for some a;, either d?fffli;qyd) la;],/m® > L¥[a;] + %gz + 7, or d?fff;zq’d) la;/m® < 1%[a;] —
36" — 1. Therefore, hoo € U, Uszgo() Naza Uneri,, Uizt Unzmi, +a1 K. Thus,
SAUNZo € Uzt Ugsgo) Nazg Uaerr,, Uizt Uzt 41 Koo,

Finally, from Lemma 4 and Conditions 7 and 8 it follows that, for all s,q such that
s+q 2 S0,

WUU U K

aE'P;_HI d>1 m2m§+q+d—1

< #PLY X 2em(-pmE))
d=1m>m’, +d—1
= 24P, ) (1- eXP(—%(?)Q))l eXp(—%(miﬂ Fd—1D)EDP)
d=1
= 2#PL(1 (€ (5 k) )
- 2#P§+q(1—exp(_%(gi)2))l > eXp(_%m(gi)Q)
L Zivoy -1 L 1
< 2(1—€Xp(_§(€ )2)) 1R;+q(#7);+q) Z eXp(_gm(£;+q>2)

< 21— exp(~5(€)) exp(—s — 0).

Therefore, for all s > 1 and all ¢ > ¢o(s) = max|0, so — $],

LU U U K <uwcUU U K&

424 acPi,  d>1 m>mi+d-1 a€Pi,  d>1m>mi+d—1
1 =i
< 2(1- exp(—§(§ )2))_1 exp(—s) exp(—q) for all ¢ > q.

Thus, p15(y2g Uaeri,, Uizt Unsmi a1 K5*) = 0 for all s > 1 and all ¢ > go(s),
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a(s,q,d
50 that 11, (U1 Ugsgors) Nezg Ua€P§+q Uz Umzmé+d_1 Ko™ )) = 0. Therefore,

wsNvNz < U N U U U s =

521 q>qo(s) 42 aePl,  d>1 m>mi+d—1

Since u, (U Zo) = 1, it implies that p,(S) = 0. This completes the proof. B

13 Appendix D

In preparation.
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