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• Finding effects of sequential treatments on response y measured at the end of
a trial when some treatments are affected by interim responses; e.g., effects of

spanking on behavior when spanking is adjusted depending on interim behaviors.

• A headway, ‘G estimation (or G computation algorithm) ’, has been made in

1980’s by Robins in (bio-) statistics generalizing the usual static treatment effect

analysis under ‘selection on observables’. But hard to implement.

• Amuch simpler econometric alternative to G estimation is proposed–IVE’s for a
linear structural model. Also relation between this approach and Granger causal-

ity is explored.

• Our approach and G estimation are applied to find the effects of spanking on

behavior. Mild spanking at early years reduces a child’s behavior problems later.
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1 Failure of Dynamic Panel Data Model

Two Period Model. Suppose

(x0, y0), (d1,

µ
x1
y1

¶
), (d2,

µ
x2
y2

¶
)

where x0 and y0 are the baseline covariate and response, and treatment dt at period t

temporally precedes (x0t, yt), t = 1, 2.

Total Effect. Interested in the total effect of the treatment profile d ≡ (d1, d2)0
on the last response y2. Graphically, omitting y0, x0, x1, x2,

Total Effects

d2 −→ −→ −→ y2

- % ↑
y1 ↑

% ↑
d1 −→ −→ −→ ↑

d2 has only a direct effect on y2, but d1 has direct and indirect (through y1) effects.

Main Dilemma. If y1 is controlled, then the indirect effect of d1 on y2 is not

identified. If y1 is not controlled, then the effect of d2 on y2 gets distorted as y1 becomes

a ‘common factor’ (confounder) for d2 and y2: even if there is no effect of d2 on y2, a

spurious effect may be found due to not controlling y1.

y1 controlled:

Direct Effects Only

d2 −→ −→ −→ y2

↑
↑
↑

d1 −→ −→ −→ ↑

y1 not controlled:

Confounded Effect

d2 y2

- % ↑
y1 ↑

% ↑
d1 −→ −→ −→ ↑
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Non-Lagged-Response Confounder. The total (direct+indirect) effect com-

position with a confounder can occur also with a covariate w1 6= y1. For instance, y2

can be death and w1 is a ‘death-predictor’.

d2 −→ −→ −→ y2

- % ↑
w1 ↑

% ↑
d1 −→ −→ −→ ↑

Inadequate Dynamic Model. A typical ‘first-lag’ dynamic model

yi2 = β1 + βyyi1 + βd1di1 + βd2di2 + x0x2xi2 + vi2

is misleading, because the indirect effect of d1 on y2 through y1 is missed by controlling

y1. Intuitively, if the effect of d1 on y1 is γy, then the indirect effect of d1 on y2 through

y1 is βyγy. This dynamic model identifies only the direct effects βd1 and βd2 of d1 and

d2 on y2. The desired total effect of the treatment profile is βd1 + βyγy (from d1) plus

βd2 (from d2).

Total Mean Marginal Effect. A common goal across different approaches is to

find E(yjk2 − y002 ) where

yjk2 : potential response when d1 = j and d2 = k

(yj1 : potential response when d1 = j)

With d1 and d2 observed, y1 = yd11 and y2 = yd1d22 .
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2 IVE’s for Linear Structural Models

Two-Step IVE for First-Lag Model. Consider

yi1 = γ1 + γyyi0 + γddi1 + γ0xxi1 + vi1,

yi2 = β1 + βyyi1 + βd1di1 + βd2di2 + β0x2xi2 + vi2. (First-lag)

Estimate the two equations separately with IVE to find

direct and indirect effects of d1 on y2 : βd1 + βyγd,

direct effect of d2 on y2 : βd2.

This is a two-step IVE. The source for the instruments in the y1 equation is x0, and

the source for the instruments in the y2 equation is x0 and x1–owing to the exclusion

restriction of lagged covariates.

One-Step IVE under “Stationarity”. Suppose

equal contemporaneous effects : γd = βd2

that the effect of d1 on y1 is the same as the effect of d2 on y2. This is a stationarity-type

assumption, under which

d1 effect is βd1 + βyβd2 and d2 effect is βd2.

These are identified with the y2-equation only. Useful if not enough instruments for

the y1 equation.

One-Step IVE for Last-Lag Model. Instead of doing IVE twice or only once

under γd = βd2, another alternative is substituting the y1-equation into y1 to get

y2 = (β1 + βyγ1) + βyγyy0 + (βd1 + βyγd)d1 + βd2d2 + βyγ
0
xx1 + β0x2x2 + (βyv1 + v2).

(Last-lag)
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Unusual in that the last-lag response y0 is included. Apply IVE only once to find the

total effect of d1 and d2 as the sum of the coefficients of d1 and d2. This last-lag IVE is

simpler, but there are two disadvantages: decomposition of the total effect of d1 cannot

be done, and there is in general less instrument source because x1 and x2 are included

in the right-hand side and the error term consists of v1 and v2.

Mean Effect from Linear-Model Parameters. Equation Last-lag is in fact

derived from its counter-factual version–this makes our approach ‘structural’:

yjk2 = (β1 + βyγ1) + βyγyy0 + (βd1 + βyγd)j + βd2k + βyγ
0
xx1 + β0x2x2 + (βyv1 + v2).

This connects the structural linear-model parameters to E(yjk2 − y002 ):

yjk2 − y002 = (βd1 + βyγd)j + βd2k

=⇒ E(yjk2 − y002 ) = (βd1 + βyγd) + βd2 when j = k = 1.

Nonlinear Effects. Even if spanking is beneficial, too much spanking is likely to

be harmful: nonlinear effects. Suppose that the effects of d1 and d2 are quadratic:

y1 = γ1 + γdd1 + γdqd
2
1 + γyy0 + γ0xx1 + v1,

y2 = β1 + βd1d1 + βd1qd
2
1 + βd2d2 + βd2qd

2
2 + βyy1 + β0xx2 + v2.

With the first derivatives, the three key effects are

direct and indirect effects of d1 = j : βd1 + 2βd1qj, βy(γd + 2γdqj)

direct effect of d2 = k : βd2 + 2βd2qk.

Estimable with a two-step IVE. Alternatively, estimate the last-lag model with a single

IVE:

y2 = (β1 + βyγ1) + (βd1 + βyγd)d1 + (βd1q + βyγdq)d
2
1 + βd2d2 + βd2qd

2
2

+βyγyy0 + βyγ
0
xx1 + β0xx2 + (βyv1 + v2).

An extension to three-periods is also available.
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3 Comparison to Granger Causality

Granger Causality. Granger non-causality of dt on yt is often tested by H0 :

βd1 = βd2 = 0 in

y2 = β1+βy1y1+βy0y0+βd1d1+βd2d2+β0x2x2+β0x1x1+β0x0x0+v2 (Granger-Cause)

where all lagged d and y appear on the right-hand side. But this is only for the direct

effect of d, because y1 and y0 are included in the model.

Resolution under Stationarity. The deficiency disappears under the station-

arity assumption of equal contemporaneous effects γd = βd2, because the indirect effect

βyγd becomes zero when the two direct effects βd1 and βd2 are zero. This solution, how-

ever, works only for the test of non-causality. For the effect magnitude, the equation

‘Granger-Cause’ still misses the indirect effect.

Differently from the preceding equations, both y1 and y0 appear in the equation

‘Granger-Cause’. But this is not a distinguishing character of the Granger causality,

because both may be included in the preceding equations as well. It is the lack of

awareness that the confounding by y1 affecting both d2 and y2 is avoided by controlling

for y1, which then unfortunately misses the indirect effect of d1 on y2 through y1.
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4 G estimation by Robins

Define

X2 ≡ (x00, x01, x02)0,

and ‘aq b|c’ as the conditional independence of a and b given c.

G estimation. Assume ‘no unobserved confounder’ (NUC) or ‘selection-on-

observables (y0,X2)’:

NUC (a): yjk2 q d1 |(y0,X2) NUC (b): yjk2 q d2 |(d1, y1, y0,X2).

G-estimation under NUC is

E(yjk2 |y0, X2) =

Z
E(y2|d1 = j, d2 = k, y1, y0, X2)f(y1|d1 = j, y0, X2)∂y1.

(G-Estimation)

The right-hand side is identified, and so is the conditional effect E(yjk2 |y0, X2). Then

E(yjk2 − y002 ) =

Z
{E(yjk2 |y0, X2)−E(y002 |y0,X2)}∂F (y0,X2).

How It Works. The G estimation works because the right-hand side isZ
E(yjk2 |d1 = j, d2 = k, y1, y0, X2)f(y1|d1 = j, y0,X2)∂y1

=

Z
E(yjk2 |d1 = j, y1, y0,X2)f(y1|d1 = j, y0,X2)∂y1 (due to NUC (b))

= E(yjk2 |d1 = j, y0,X2) (for y1 is integrated out)

= E(yjk2 |y0,X2) (due to NUC (a)).

One-Period Case. Without the first period, the dynamic effect diagram becomes
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d2 −→ y2

- %
y1

This is the static ‘common factor’ model with y1 as a confounder. NUC becomes

yk2 q d2|(y1, X2), which is the usual selection-on-observables (y2,X 0
2) for the one-shot

treatment d2. The G estimation becomesZ
E(yk2 |d2 = k, y1,X2)f(y1|X2)∂y1 =

Z
E(yk2 |y1,X2)f(y1|X2)∂y1 = E(yk2 |X2).

But as X2 gets integrated out eventually for the total (marginal) effect, instead of G

estimation, we can just useZ
E(yk2 |d2 = k, y1,X2)∂F (y1,X2) =

Z
E(yk2 |y1,X2)∂F (y1,X2) = E(yk2).

When a linear structural model holds, one can estimate the dynamic treatment

effect using IVE, and the same effect gets estimated with G estimation. Lee (2005)

shows this in a simpler setting without covariates.

Binary-Response G estimation. With a binary y, the G estimation becomes

E(yjk2 |y0,X2) = P (y2 = 1|d1 = j, d2 = k, y1 = 0, y0,X2) · P (y1 = 0|d1 = j, y0,X2)

+P (y2 = 1|d1 = j, d2 = k, y1 = 1, y0, X2)P (y1 = 1|d1 = j, y0,X2).(G-Binary)

Apply probit to y2 on d1, d2, y1, y0,X2 to obtain the two probit probabilities for y2 = 1:

Φ(ψ1 + ψd1d1 + ψd2d2 + ψy1y1 + ψy0y0 + ψ0xX2).

Also apply probit to y1 on d1, y0, X2 to get the probit probabilities for y1 = 0, 1:

Φ(η1 + ηd1d1 + ηy0y0 + η0xX2).

Substituting these into G-Binary will do. This binary version used for our data.
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5 Structural Nested Model

Instead of G estimation, there are other estimation methods available for dynamic

causal inference (Robins, 1998,1999). A simple version of ‘Structural Nested Model’

used for our data; see, e.g., Witteman et al. (1998) for an epidemiological application.

Relating Treated Response to Untreated Response. Suppose

y002 = yjk2
exp(ψoj) + exp(ψok)

2
⇐⇒ yjk2 = y002

2

exp(ψoj) + exp(ψok)
.

The treatments multiplicatively alter the no-treatment response y002 . The mean effect

E(yjk2 − y002 ) is

E[y002 · {
2

exp(ψoj) + exp(ψok)
− 1}].

Structural Nested Model. If yjk2 qd2|observables as in NUC(b), then the above
display implies y002 q d2|observables as well. Defining

Si(ψ) ≡ yi2
exp(ψdi1) + exp(ψdi2)

2
,

we get Si(ψo) = y00i2 . Transforming the treatments into binary, the true value of θ in

the following logit should be zero if ψ = ψo:

P (d2 = 1|y1, y0, d1, X2) =
exp{β02(y1, y0, d1, X 0

2) + θS(ψ)}
1 + exp{β02(y1, y0, d1, X 0

2) + θS(ψ)} .

Getting CI’s. Depending on ψ, we get different t-ratios tN(ψ) for θ. Following

the duality between a test and the confidence interval (CI), a 95% CI for ψ is {ψ :

|tN(ψ)| < 1.96}. The middle point of the CI, or ψ for θ̂ = 0 may be used as a point
estimator ψ̂ of ψ.
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(Dis-) Advantages. The main disadvantage of this simple approach is the same-

effect restriction for d1 and d2 and the arbitrary functional form assumption linking all

counter-factuals yjk2 to y002 , but the main advantage–computational ease–is simply

incomparable with other dynamic causal effect estimators.

Relaxing the Same Effect. The same-effect assumption can be relaxed: adopt,

instead of S(ψ),

S2(ψ0, ψ1) ≡ y2
exp(ψ0d1) + exp(ψ1d2)

2
and

P (d2 = 1|y1, y0, d1, X2) =
exp{β02(y1, y0, d1, X 0

2) + θ1S2(ψ0, ψ1) + θ2S2(ψ0, ψ1)
2}

1 + exp{β02(y1, y0, d1, X 0
2) + θ1S2(ψ0, ψ1) + θ2S2(ψ0, ψ1)

2}
We set ψ1 = cψ0 in our empirical analysis to estimate ψ0 from each fixed level of c. As

c changes around one, the estimate for ψ0 will change, showing how robust the results

are to the same-effect assumption.
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6 Data Description

Data. The NLSY79 child sample contains information on children born to the

women respondents of the NLSY79, surveyed three times over 1986-1998. Information

when children are 2-3, 4-5, and 6-7 years old (N ' 1000). Since severe spanking is

likely to harm children and since most children are spanked modestly, we focus on the

effects of moderate spanking.

BPI (bad behavior). For children 4 years old and above, behavior is measured

by the Behavior Problems Index (BPI). A higher BPI represents more behavior prob-

lems. BPI has mean 105.3 and SD 14.7 around age 6-7, and mean 104.8 with SD 14.8

around age 4-5. Two binary variables were also constructed for BPI (1 if a child’s BPI

is higher than the mean and 0 otherwise).

MSD (good behavior). Since there is no BPI for age below 4, we use Motors

and Social Development Scale (MSD) which measures development in motor, cognitive,

communication, and social skills. Differently from BPI, a higher MSD means better

development. MSD has mean 102.7 with SD 14.1.

Spanking Question. The survey asks “About how many times, if any, have

you had to spank your child in the past week?” Over 90% were spanked at least once

before age 5. As children grew, spanking dropped: 87% spanked their toddlers at least

once, but only 68% spanked their five year olds. The reported spanking may not be

the regular spanking frequency. The binary variable for ‘ever spanking’ might be more

reliable.
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7 Empirical Results

Moderate Spanking Good. Let y2 and y1 be BPI at age 6-7 and 4-5; d2 and

d1 are the spanking frequencies at age 4-5 and 2-3 (or their binary versions). We have

effect of d1 : direct + indirect : bβd1 + bβybγd = −4.03 + 0.52× (−4.07) = −6.15
which is 42% of SD(BPI). The bootstrap bias-corrected 95% CI is (−59.3, 6.5). The
total effect of d = (d1, d2)0 and its 95% CI are

−6.15 (d1 effect) + 1.42 (d2 effect) = −4.73 and (−37.7, 13.6).

While d1 has an intended effect, d2 does not.

Severe Spanking Bad. When models quadratic in d1 and d2 are used,

effect of d1 = −7.33 + 3.46d1 and effect of d2 = −1.6 + 1.56d2.

Moderate spanking reduces BPI as the negative ‘intercepts’ indicate, but too much

spanking is harmful as the positive ‘slopes’ show. The harmful effect is greater at

earlier ages.

G estimation with Binary Response. With binary y and G-estimation, we

get

total effect : E(y112 )−E(y002 ) = 0.047; 95% CI (−0.4, 0.48).

This can be decomposed into two parts: the effect of spanking at age 4-5 (conditional on

spanking at age 2-3) and the effect of spanking at age 2-3 (conditional on no spanking

at age 4-5), which are, respectively,

E(y112 )−E(y102 ) = 0.16; 95% CI (−0.14, 0.30)
E(y102 )−E(y002 ) = −0.12; 95% CI (−0.64, 0.35).

Moderate spanking at age 2-3 followed by no spanking at age 4-5 reduces behavior

problems at age 6-7 relative to no spanking at all, whereas continued spanking at age
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2-3 and 4-5 tends to increase them relative to spanking only at age 2-3. This opposite

pattern was noted also in the above IVE.

Structural Nested Model. cψ0 = 0.04 corresponding to 4.3 points BPI reduction
effect (about 30% of one SD). This is similar to the IVE finding. When the same-effect

assumption was relaxed with cψ1 = ccψ0, where cψ0 is for the spanking effect at age 2-3
and cψ1 is for the spanking effect at age 4-5, and c is a positive number, cψ0 varied from
0.20 to 0.01 as c changes from 1/4 to 4. This corresponds to BPI reduction of 12.64 to

2.11 at age 6-7.

Granger Causality. With all lagged responses controlled, still the lagged spank-

ings were significant, rejecting the Granger non-causality. As noted already, the coeffi-

cients of d1 and d2 show only the direct effects. The coefficient of spanking at age 2-3

was always negative and significant across most model specifications; the coefficient of

spanking at age 4-5 was also negative, but often insignificant.
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8 Conclusions

Main Contribution. When a treatment is repeated over time and the final

response is measured at the end, we showed how to estimate the total treatment effects

with IVE applied to linear structural models. Early treatments are allowed to have

an immediate (direct) effect as well as a lingering (indirect) effect through interim

responses. Also, interim treatments are allowed to be affected by interim responses.

Our IVE approach identifies the same total-effect of the entire treatment ‘profile’ as

‘G estimation’ in (bio-) statistics does.

Indirect Effect and Granger Causality. Regarding controlling interim (i.e.,

lagged) responses, there is a dilemma: if not controlled, they become a confounder,

because the treatment and control groups differ systematically in the interim responses;

if controlled, the indirect effects are missed. The latter happens in the usual Granger

causality model where all interim responses are controlled, missing all indirect effects.

Nonetheless, when the hypothesis of no causality is not rejected, the Granger non-

causality inference is valid under a stationarity assumption.

Empirical Finding. The IVE approach and two versions of G estimation were

applied to the spanking effect on child behavior. Moderate spanking seems to work,

and spanking at age 2-3 has a stronger effect on reducing behavior problems at age 6-7

than spanking at age 4-5 does. Spanking at age 2-3 reduces Behavior Problems Index

at age 6-7 by 42% of one SD. In comparison, the effects of spanking at age 4-5 are small

and ambiguous in sign. These results seem at odds with findings in the psychology

literature where no proper dynamic causal framework has been used.

Our approach takes ‘one empirically feasible step’ from the usual Granger causality

toward the full causal analysis allowing for feedbacks from interim responses.
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Appendix: Three-Period Extension

The treatment profile is d = (d1, d2, d3)0 and the observation sequence is

(x0, y0), (d1,

µ
x1
y1

¶
), (d2,

µ
x2
y2

¶
), (d3,

µ
x3
y3

¶
).

The desired effect is E(yjkl3 − y0003 ). The direct and indirect effects are:

←− ←−
. -

y2 −→ d3 ↑
% & ↓ ↑

d2 −→ −→ −→ y3 ↑
- ↑ %

y1 ←− d1

The linear contemporaneous-covariate models are

yj1 = γ11 + γ1d1j + γ1yy0 + γ01xx1 + v1,

yjk2 = γ21 + γ2d1j + γ2d2k + γ2yy
j
1 + γ02xx2 + v2,

yjkl3 = β1 + βd1j + βd2k + βd3l + βyy
jk
2 + β0xx3 + v3.

The yjkl3 RF with both yjki2 and yji1 removed is

yjkl3 = {β1 + βy(γ21 + γ2yγ11)}+ {βd1 + βy(γ2d1 + γ2yγ1d1)}j + (βd2 + βyγ2d2)k + βd3l

+βyγ2yγ1yy0 + βyγ2yγ
0
1xx1 + βyγ

0
2xx2 + β0xx3 + (βyγ2yv1 + βyv2 + v3).

This shows five effects to be identified:

direct and indirect (through y1, y2) effects of d1 : βd1, βy(γ2d1 + γ2yγ1d1)

direct and indirect (through y2) effects of d2 : βd2, βyγ2d2

direct effect of d3 : βd3.
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The first-lag model IVE for these effects are

• Step 1: estimate γ1d1 in the y1 equation with regressors (d1, y0, x1); x0 provides
the instrument source for d1 and y0.

• Step 2: estimate γ2d1, γ2d2, and γ2y in the y2 equation with regressors (d1, d2, y1, x2);
x0 and x1 are the instrument source for d1, d2, and y1.

• Step 3: estimate βd1, βd2, βd3, and βy in the y3 equation with regressors (d1, d2, d3, y2, x3);
x0, x1, and x2 are the instrument source for d1, d2, d3, and y2.

Imposing the equal contemporaneous effect assumption

γ1d1 = γ2d2

that the effect of d1 on y1 is the same as the effect of d2 on y2, there is no need to

estimate the y1 equation. Further impose

βd3 = γ1d1 = γ2d2, γ2y = βy, γ2d1 = βd2.

Under these, estimate only the y3 equation, and

d1 effect βd1 + βy(βd2 + βyβd3), d2 effect βd2 + βyβd3, d3 effect βd3.

The Granger non-causality test becomes equivalent to our approach under the strength-

ened stationarity-type assumption, because all indirect effects are zero when βd1 =

βd2 = βd3 = 0.

Turning to the last-lag model IVE, consider the observed version of the above yjkl3

RF with yjki2 and y
j
i1 removed; only y0 is left as a lagged response on the right-hand side.

The observed version has regressors (d1, d2, d3, y0, x1, x2, x3). The instrument source for

d1, d2, d3, y0 is x0. This last-lag model IVE is a single step method as in the two-period

case.
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