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ABSTRACT

Finding the effects of multiple sequential treatments on a response variable measured at the

end of a trial is difficult, if some treatments are affected by interim responses; e.g., assessing

the effects of spanking on behavior when parents adjust their spanking level depending on

interim behaviors. A headway, ‘G estimation’, has been made in 1980’s generalizing the usual

static treatment effect analysis under ‘selection on observables’. But G estimation is hard to

implement. In this paper, firstly, we propose a much simpler alternative to G estimation–

a single or multiple IVE’s for a linear structural model–and show that our proposal and

G estimation identify the same effect under some assumptions. Secondly, we explore the

relation between our proposal and Granger causality to show that our approach is more

general, although the two become equivalent for testing non-causality under a stationarity

assumption. Thirdly, our approach and G estimation are applied to find the effects of spanking

on behavior. We find that mild spanking at early years reduces a child’s behavior problems

later, which seems to differ from most findings in the psychology literature.
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1 Introduction

Non-cognitive skills including personal traits such as discipline, conscientiousness, or

motivation seem to be important determinants of earnings; see, e.g., Heckman (1999), Bowles

et al. (2001), and Persico et al. (2004). The important role of these non-cognitive skills in

worker performance has been recognized for a long time (Kandel and Lazear (1992) and Kreps

(1997)). There is also some evidence that the non-cognitive skill formation in early childhood

is crucial since “success or failure at this stage feeds into success or failure in school which

in turn leads to success or failure in post-school learning” (Heckman (1999)). Keane and

Wolpin (1997) show that the skill heterogeneity at age 16 may account for as much as 90%

of the total variance of lifetime earnings.

Childhood non-cognitive skills are closely related to their behavioral problems. It is thus

interesting to know whether spanking corrects or worsens the behavioral problems. Provided

that a causal effect of childhood good behavior on adulthood earnings exists, if a causal link

from spanking to childhood behavior is found, spanking could have lingering economic–as

well as psychological–consequences. The empirical goal of this paper is to find the effect of

spanking on child behavior.

Whether mild to moderate spanking works has been hotly debated in psychology and

education as well as among the public. In a meta analysis comparing many studies over 60

years, Gershoff (2002) concludes that there are strong negative associations between corporal

punishment and a range of child behaviors. This is a non-causal statement only to suggest

that corporal punishment may worsen behavioral problems. The difficulty in establishing the

causal link is the endogeneity of spanking arising from various sources. First, children and the

parents may share predisposition (e.g., genes for violence) to misbehave and spank, respec-

tively; here, the source of endogeneity is time-constant. Second, inappropriate home inputs

(e.g., economically depressed environment) may foster poor behavior of children and violent

behavior of the parents; here, the source of endogeneity is time-variant. Third, spanking can

affect behavior which can in turn affect spanking. For example, effective spanking may stop

a child’s bad behaviors and hence prevent bad habits from forming in the beginning. So

spanking at early ages may reduce the need to spank later (Larzelere 1996).

The first two sources of endogeneity–unobserved common factors–arise in static treatment-

response framework as well, and the third forms the core of the dynamic feature that will
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be the focal point of this paper. Our analytic goal is to set up a dynamic treatment effect

framework with linear structural equations and estimate the effects with instrumental variable

estimator (IVE) and ‘G estimation (or G computation algorithm)’ that has been developed

in the epidemiological/medical literature. Our dynamic treatment effect analysis extends

the usual static treatment effect analysis as in Angrist and Krueger (1999), Heckman et al.

(1999), Rosenbaum (2002), and Lee (2005).

The rest of this paper is organized as follows. Section 2 shows that the usual dynamic

panel data approach fails to identify the desired dynamic treatment effects by missing ‘indi-

rect effects’ through interim responses. Section 3 presents simple modifications to the usual

approach to find the desired effects; those modifications are our main proposals. This section

also compares our approaches to Granger causality and motivates ‘G estimation’ as another

alternative. Section 4 reviews G estimation and show how it is related to our approaches.

Section 5 explains our data and presents the empirical findings; a coherent finding emerging

from various specifications is that moderate spanking at early ages reduces child behavior

problems several years later. Finally, Section 6 concludes.

Throughout the main text of this paper, we examine only two period/treatment cases

to simplify our presentation. In the appendix, three period/treatment generalizations are

illustrated for our main results, which shows that a further generalization to four or more

periods/treatments is straightforward.

2 Failure of Dynamic Panel Data Model

Suppose we have

(x0, y0), (d1,

µ
x1
y1

¶
), (d2,

µ
x2
y2

¶
)

where x0 and y0 are the baseline covariate and response, and treatment dt at period t tem-

porally precedes xt and yt (no temporal ordering yet between xt and yt), t = 1, 2. We are

interested in the total effect of the treatment ‘profile’ d ≡ (d1, d2)0 on the last response y2,
while (i) allowing for d1 to affect both y1 and y2, and (ii) allowing for d2 to depend on the

interim response y1. If d2 depends on y1, then it is also natural for d1 to depend on y0.

In the spanking-behavior question, (i) means that spanking in period 1 may affect be-

havior in period 1 and 2, and (ii) means that spanking in period 2 may depend on behavior
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in period 1. It will be ill-advised to rule out either. Particularly, ruling out (ii) implies con-

tinued spanking despite improved behavior, which is nonsensical unless ‘preventive spanking’

is practiced. But allowing for both creates a conflict: the lagged response y1 should be con-

trolled in view of (ii), but then the indirect effect of d1 on y2 through y1 in (i) is missed. We

elaborate on this key point in the following.

The usual approach in econometrics would be setting up a dynamic panel data model

yi2 = β1+βyyi1+βd1di1+βd2di2+β
0
x0xi0+β

0
x1xi1+β

0
x2xi2+vi2, iid across i = 1, ..., N (2.1)

where the β parameters are to be estimated, and some regressors are possibly correlated with

the error term vi2 (an endogeneity problem). Besides the above motivation of controlling yi1

in the preceding paragraph, another often-invoked motivation to control for yi1 in (2.1) is

that yi1 captures the unobserved variables relevant for yi2 to lessen the endogeneity problem

of the other regressors. In view of the iid assumption, often we will drop the subscript i in

the remainder of this paper.

In (2.1), the indirect effect of d1 on y2 through y1 is missed because y1 is controlled.

Specifically, if the effect of d1 on y1 is γy, then the indirect effect of d1 on y2 through y1 is

βyγy, whereas (2.1) identifies only the direct effects βd1 and βd2 of d1 and d2 on y2. The

desired total effect of the treatment profile is then βd1 + βyγy (from d1) plus βd2 (from d2).

As shown in detail in the next section, if y1 is substituted out of (2.1) to leave the last-lagged

y0 on the right-hand side, then the sum of the coefficients of d1 and d2 is the total effect. This

solution, however, not just gives an odd-looking model because y0 instead of y1 appears for the

y2 equation, but also makes it more difficult to find instruments for the endogeneity problem.

Of course, if there are extra sources for instruments as the list of ingenious instruments in

Angrist and Krueger (2001) illustrates, then this would not be much of a worry. But typically

such extra variables are hard to find, and one then has to find instruments from within the

model, namely, the past (or future) variables. In the rest of this section, we briefly discuss

sources of instruments, because this issue is unavoidable for our empirical model later lacking

any extra instrument source.

Instruments typically come from exclusion restrictions such as βx0 = βx1 = 0–i.e., only

the contemporaneous covariates appear–combined with assumptions on the error term; e.g.,

vit = δi + uit, COR(δi, xit) 6= 0 ∀t, (2.2)

COR(xis, uit) = 0 for ∀s < t. (2.3)
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Condition (2.3) with ∀s ≤ t would be called the ‘predeterminedness’ of xt; the equality s = t

is removed in (2.3) because xt may be simultaneously related to yt (i.e., to vt). Conditions

(2.2) and (2.3) imply, e.g., COR(v2 − v1, x0) = 0: IVE with instruments x0 can be applied

to the ∆y2 ≡ y2 − y1 equation. Alternatively, if we assume

xit = ζi + eit and COR(ζi, δi) 6= 0, COR(eis, vit) = 0 for ∀s < t, (2.4)

then we can use the condition COR(v2, x1 − x0) = 0 for the y2 equation; here, xt is first-

differenced, not the y2 equation.

The conditions (2.2) to (2.4) reflect three main concerns about the endogeneity of xt in

the yt equation:

(i) xt related to the ‘unit-specific effect’ δ;

(ii) xt related to vt due to a simultaneous relation with yt; (2.5)

(iii) future xt affected by the past vt (or yt).

As to be seen later, these concerns are germane to our data. But these endogeneities may

not occur in all components of xt. We can then classify the components of xt so that each

component can be used to its fullest extent as an instrument when ‘purified’ (i.e., the endo-

geneity removed) properly. See Lee (2002) for more on assumptions on the error terms and

regressors, and the ensuing moment conditions for panel data IVE.

3 IVE for Linear Structural Models

Define the ‘potential responses’ for the observed responses y1 and y2:

yj1 : potential response when d1 = j is exogenously set,

yjk2 : potential response when d1 = j and d2 = k are exogenously set, j, k ∈ [0,∞).

Suppose the goal is to find the mean treatment effect E(yjk2 − y002 ) for treatment levels j and

k versus no treatment at all. Our interest is in the ‘intervention effect’ of setting d1 and d2

exogenously, not in the ‘self-selection’ effect of allowing the subjects to choose d1 and d2.

The observed responses y1 and y2 are y
j
1 and yjk2 when d1 = j and d2 = k; i.e., only the

potential responses corresponding to the realized treatment levels are observed, and all the

other potential responses–‘counter-factuals’–are not. With d1 and d2 observed, we have
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thus y1 = yd11 and y2 = yd1d22 . Since we will be modeling yj1 and yjk2 , not y1 and y2 directly,

we need to express y1 and y2 in terms of y
j
1 and y

jk
2 . For this, rewrite the observed y1 and y2

as

y1 =

Z
yj1 · ∂1[d1 ≤ j] and y2 =

Z
yjk2 · ∂1[d1 ≤ j, d2 ≤ k],

where ∂ is used instead of d for integration to prevent confusion, the first integral is with

respect to (wrt) to the distribution 1[d1 ≤ j] for j that is degenerate at d1, and the second

integral is wrt to the distribution 1[d1 ≤ j, d2 ≤ k] for (j, k) that is degenerate at (d1, d2).

Observe the following figure that omits y0, x0, x1, x2:

Two Period Effects

d2 −→ −→ −→ y2

- % ↑
y1 ↑

% ↑
d1 −→ −→ −→ ↑

d2 has only a direct effect on y2, but d1 has both direct and indirect (through y1) effects on

y2. If y1 is controlled as in the dynamic panel model, then the indirect effect of d1 on y2 is

not identified. If y1 is not controlled, however, then the effect of d2 on y2 can be distorted

because y1 becomes a ‘common factor’ for d2 and y2. That is, even if there is no effect of

d2 on y2, we may find a spurious effect of d2 due to not controlling y1. In the following, we

will find the total effect of d using IVE for a linear structural model, and then compare our

approach to Granger causality in Granger (1969,1980).

3.1 First- and Last-Lag Response IVE

Consider a ‘contemporaneous covariate’ model’ (βx0 = βx1 = 0 in (2.1)):

yji1 = γ1 + γyyi0 + γdj + γ0xxi1 + vi1,

yjki2 = β1 + βyy
j
i1 + βd1j + βd2k + β0x2xi2 + vi2
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where γ’s and β’s are parameters. The coefficients of the yj1 and y
jk
2 equations differ to allow

for nonstationarity. Observe

yi1 =

Z
yji1∂1[d1 ≤ j] =

Z
(γ1 + γyyi0 + γdj + γ0xxi1 + vi1)∂1[d1 ≤ j]

= γ1 + γyyi0 + γdd1 + γ0xxi1 + vi1;

yi2 =

Z
(β1 + βyy

j
i1 + βd1j + βd2k + β0x2xi2 + vi2)∂1[d1 ≤ j, d2 ≤ k]

= β1 + βyy
d1
i1 + βd1d1 + βd2d2 + β0x2xi2 + vi2

= β1 + βyyi1 + βd1d1 + βd2d2 + β0x2xi2 + vi2. (3.1)

We can estimate the two equations separately with IVE to find

direct and indirect effects of d1 on y2 : βd1 + βyγd,

direct effect of d2 on y2 : βd2;

the total effect of d is then the sum of these two lines. The source for the instruments in the

y1 equation is x0, and the source for the instruments in the y2 equation is x0 and x1. This is

a two-step IVE method, for IVE is applied twice.

As often done in the panel data literature, first-differencing the yt equation to get rid of

the unit-specific effect δi under (2.2) yields

yi2 − yi1 = β1 − γ1 + βyyi1 − γyyi0 + (βd1 − γd)d1 + βd2d2 + β0x2xi2 − γ0xxi1 + ui2 − ui1

where βd1 and γd are not separated. One may estimate this and the y1 equation with IVE

to find the desired parameters. But this procedure does not seem coherent, because the

y1 − y0, not y1, equation ought to be estimated along with the y2 − y1 equation. A more

coherent procedure would be keeping the y2 and y1 equations intact and using IVE with first-

differenced (or transformed) xt. In this case, if we are concerned about all three endogeneity

sources in (2.5), then COR(v2, x1 − x0) = 0 may be used for the y2 equation. But, this does

not work for the y1 equation, for there is no x0 − x−1.

One way to overcome the lack of instruments for the y1 equation is, instead of applying

condition (2.5) to all components of xt, classifying the regressors to get enough moment

conditions. To see this point, let wt denote a component of xt (if wt is time-constant, only (a)

is applicable in the following classifications that are not necessarily exhaustive) and consider

• (a) wt is uncorrelated to vs at all leads and lags: COR(vs, wt) = 0 ∀s, t.
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• (b) wt may be correlated to vs only through its time-constant component: COR(vs, wt−
wt−1) = 0 ∀s, t; alternatively, COR(vs, wt − w̄) = 0 where w̄i ≡ T−1

P
iwit.

• (c) wt may be only simultaneously related to vs: COR(vs, wt) = 0 ∀s 6= t.

• (d) wt may be related only to the past vs: COR(vt, ws) = 0 ∀s ≤ t.

Once this kind of classification is done, we get two sets of instruments for v1 and v2, respec-

tively, and IVE can be applied to each equation separately.

Another way to overcome the problem of insufficient instruments for the y1 equation is

assuming

equal contemporaneous effects : γd = βd2

that the effect of d1 on y1 is the same as the effect of d2 on y2. This is a stationarity

assumption, under which we get

d1 effect βd1 + βyβd2 and d2 effect βd2.

These are estimable with the y2 equation only.

Instead of doing IVE twice or only once under γd = βd2, substitute out y
j
1 in the y

jk
2

equation. Then replace yjk2 , j, k with y2, d1, d2, respectively, to get

yi2 = (β1+βyγ1)+βyγyyi0+(βd1+βyγd)di1+βd2di2+βyγ
0
xxi1+β

0
x2xi2+(βyvi1+vi2). (3.2)

IVE can be applied only once to this equation to find the total effect of d1 and d2 as the sum

of the coefficients of d1 and d2. This equation looks unusual in that the last-lag response

y0 is included, but not the first lag response y1. This last-lag response IVE for (3.2) is

simpler, being one-step IVE than the above first-lag response IVE for (3.1), but there are

two disadvantages: decomposition of the total effect of d1 cannot be done with (3.2) alone,

and there is in general less instrument source because x1 and x2 are included in the right-

hand side and the error term consists of v1 and v2. The main source for the instruments for

(3.2) is x0, but since x0− x−1 is not available, conditions such as COR(βyv1+ v2, x0− x−1)

cannot be used. Classification of covariates as in (a) to (d) above is thus called for.

It should be noted that the our IVE so far are based on the contemporaneous covariate

model. Despite criticism as in Todd and Wolpin (2004),1 given our data, it is impossible

1When using a current summary indicator for home environment, they find earlier indicators significantly
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to include all current and past covariates in the y2 equation, which essentially eliminates all

sources for instruments. It is possible, however, to relax the assumption of contemporaneous

covariate model selectively only for some covariates, which again requires classifying covariates

as in (a) to (d) above. Even when we use the contemporaneous model, there still occur issues

such as ‘whether to control or not the regressors affected by the treatments’ and ‘what

happens to the various effects when nonlinear functions of d1 and d2 are used’. These issues

are addressed in the appendix.

Going one step further from (3.2), we may assume y0i = γ10+γ0x0xi0+vi0 and substitute

this into the y2 equation (3.2) to get

yi2 = (β1 + βyγ1 + βyγyγ10) + (βyγd + βd1)di1 + βd2di2

+βyγyγ
0
x0xi0 + βyγ

0
xxi1 + β0x2xi2 + (βyγyvi0 + βyvi1 + vi2)

which has only d1, d2, x0, x1, x2 as the regressors, and the coefficients for d1 and d2 are still the

same as in (3.2). But the problem is that it is hard to think of any instrument source, because

all of x0, x1, x2 appear on the right-hand side. If we apply the Least Squared Estimator

(LSE) of y2 on d1, d2, x0, x1, x2 for this equation, is it possible to assume that the regressors

are orthogonal to the error term? Unfortunately, even if xt is unrelated to vt at all leads and

lags, this cannot hold due to the dependence of d2 on y1 and d1 on y0, because the error term

βyγyv0+βyv1+ v2 includes the errors v1 and v0 for y1 and y0, respectively. Hence, both IVE

and LSE fail. Surprisingly, however, G estimation of Robins (see Robins (1998,1999) and the

references therein) is applicable in this case, as explained in the next section.

3.2 Comparison to Granger Causality

Granger non-causality of dt on yt is often tested by doing LSE and testing for H0 : βd1 =

βd2 = 0 in

yi2 = β1 + βy1yi1 + βy0yi0 + βd1d1 + βd2d2 + β0x2xi2 + β0x1xi1 + β0x0xi0 + vi2 (3.3)

where no components of x2 that are related to y2 simultaneously should be included.

different from zero in child cognitive achievement regressions. Since some detailed current home inputs are

missing there, it is not clear whether the earlier inputs merely capture the influence of the missing current

inputs. Our regressions, using 25 current home inputs in addition to family and maternal variables, should

mitigate the problems, if any, caused by excluding earlier inputs.
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Granger causality is a probabilistic causality and it does not need the potential response

concept; there are fundamental differences between probabilistic causality and potential-

response-based ‘counter-factual causality’ as noted, e.g., in Holland (1986) among many oth-

ers. In the former, the main interest is on testing for whether or not dt causes yt, and in the

latter, the main interest is on finding the magnitude of the causal effect for a known cause

(i.e., treatment). But if one tries to test for whether the effect magnitude is zero or not, then

the two approaches become similar, as noted in Robins et al. (1999). Granger causality has

been applied mostly to macro-economic data, but its application to micro-panel data can be

seen in Holtz-Eakin et al. (1988,1989).

The similarity notwithstanding, a number of remarks are in order, comparing (3.1), (3.2),

and (3.3). First, some of x0, x1, x2 are excluded from (3.1) and (3.2), which is simply owing

to our assumption of the contemporaneous covariate model, not due to anything intrinsic to

the dynamic treatment effect framework. Second, the endogeneity issue of y1, y0, d1, d2 are

ignored in (3.3), whereas this is tackled in (3.1) and (3.2). Third, even if the LSE is valid for

(3.3), one can test only for the direct effect of d in Granger causality, because y1 and y0 are

included in the model. This is the most important distinction between our approaches and

the Granger causality as implemented by the LSE for (3.3).

The important distinction disappears, however, under the stationarity assumption γd =

βd2, with which the indirect effect βyγd is zero as well when the two direct effects βd1 and βd2

are zero. It is important to be aware that, under the stationarity of equal contemporaneous

effects, the equivalence between the counter-factual and Granger causalities holds only for the

test of non-causality. For the effect magnitude, (3.3) still misses the indirect effect. Inclusion

of both y1 and y0 is not a distinguishing character of the Granger causality, for both may be

included in (3.1) as well. It is the lack of awareness that the confounding by y1 affecting both

d2 and y2 is avoided by controlling for y1, which then unfortunately misses the indirect effect

of d1 on y2 through y1. The appendix shows that, for three periods, the equivalence holds

under an analogous–yet stronger for more periods are involved–stationarity condition.
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4 G Algorithm

4.1 No Unmeasured Confounder Assumption

Define

X2 ≡ (x00, x01, x02)0.

Before we introduce G estimation and its requisite assumptions, we present structural form

(SF) models for the treatments:

di1 = α11 + α01xxi0 + α1yyi0 + εi1 and dji2 = α21 + α02xxi1 + α2yy
j
i1 + εi2; (4.1)

dj2 is the potential version of d2 because d2 depends on y
j
1. Also observe the y

jk
2 reduced form

(RF) obtained by removing yj1 in the y
jk
2 SF in the display preceding (3.1):

yjki2 = (β1+βyγ1)+ (βd1+βyγd)j+βd2k+βyγyyi0+βyγ
0
xxi1+β0x2xi2+(βyvi1+ vi2). (4.2)

Define ‘aqb|c’ as the conditional independence of a and b given c. G estimation assumes
‘no unobserved confounder’ (NUC):

NUC (a) : yjk2 q d1|(y0,X2) (⇐⇒ (βyv1 + v2)q ε1|(y0,X2) in view of y
jk
2 RF and d1 SF),

NUC (b) : yjk2 q dj2 |(d1 = j, yj1, y0,X2) (⇐= v2 q ε2|(ε1, v1, y0,X2) from yjk2 , yj1 SF and dj2 SF).

In NUC (b),

(d1 = j, yj1, y0,X2)⇐⇒ (ε1 = j − α11 − α01xx0 − α1yy0, v1, y0,X2).

Thus, conditioning on (ε1, v1, y0,X2) is stronger than conditioning on this display because ε1

is arbitrary in conditioning on (ε1, v1, y0,X2), which explains ‘⇐=’ in NUC (b).
NUC (a) holds if d1 is determined by (y0,X2) and some error term independent of yjk2

given (y0,X2). NUC (b) holds if d
j
2 is determined by (d1 = j, yj1, y0,X2) and some error term

independent of yjk2 given (d1 = j, yj1, y0,X2). NUC allows for dependence between (ε1, ε2)

and (v1, v2) through the conditioned variables; e.g., ε2 may be related to v2 through v1. NUC

(a) and (b) are nothing but ‘selection-on-observables’ where the observables are (y0,X2) and

(d1 = j, yj1, y0,X2), respectively.
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4.2 Main Integral for G Estimation

G estimation under NUC is

E(yjk2 |y0,X2) =
Z

E(y2|d1 = j, d2 = k, y1, y0,X2)f(y1|d1 = j, y0,X2)∂y1 (4.3)

where f(y1|d1 = j, y0,X2) denotes the conditional density. The important point is that the

right-hand side is identified, and so is the conditional effect E(yjk2 |y0,X2). The equality holds
because the right-hand side isZ

E(yjk2 |d1 = j, dj2 = k, yj1, y0,X2)f(y
j
1|d1 = j, y0,X2)∂y

j
1

=

Z
E(yjk2 |d1 = j, yj1, y0,X2)f(y

j
1|d1 = j, y0,X2)∂y

j
1 (due to NUC (b))

= E(yjk2 |d1 = j, y0,X2) (for yj1 is integrated out)

= E(yjk2 |y0,X2) (due to NUC (a)).

As to be discussed in the next section, for the IVE approaches, there occurs the issue

of which covariates to include in the model. For instance, consider a covariate m1 analogous

to y1 in its role that m1 is affected by d1 and affects d2 and y2. Then including m1 in the

y2 equation leads to exactly the same problem as including y1 does for (2.1): the indirect

effect of d1 through m1 is missed. For G estimation, m1 does not pose any problem in

principle, because we can redefine of y1 as (y1,m1) to apply (4.3). In practice, however,

a multi-dimensional integration is needed when m1 is included, which hence does pose a

problem.

If d1 were non-existent, then we would get

d2 −→ y2

↑ %
y1

This is nothing but the static ‘common factor’ model with y1 as an observed confounder.

Also, NUC becomes yk2 q d2|(y1,X2), which is the usual selection-on-observable condition for

the one-shot treatment d2. The G estimation gets reduced toZ
E(yk2 |d2 = k, y1,X2)f(y1|X2)∂y1 =

Z
E(yk2 |y1,X2)f(y1|X2)∂y1 = E(yk2 |X2),
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which is the usual static way of identifying E(yk2 |X2) under the selection on observables. As

X2 gets integrated out for the total (marginal) effect eventually, instead of the G estimation,

we can just useZ
E(yk2 |d2 = k, y1,X2)dF (y1,X2) =

Z
E(yk2 |y1,X2)dF (y1,X2) = E(yk2)

where F (y1,X2) is the distribution for (y1,X 0
2)
0. This shows that the G estimation is a

dynamic generalization of the usual static selection-on-observable approach. Pearl (2000) re-

views the graphical approach literature to causality and calls this–controlling the observables

first and then integrating them out–‘back door adjustment’.

When a linear structural model holds, one can estimate the dynamic treatment effect

using LSE or IVE, and the same effect can be estimated with G estimation. Lee (2005) shows

this in a simpler setting without covariates. With covariates, this is proven in the appendix

for our two period model, further assuming ‘NUC (c): yj1qd1|(y0,X2)’. For more on dynamic
treatment effects in general, refer to Gill and Robins (2001) and Van der Laan and Robins

(2003).

4.3 Simplification with Discrete Responses

Although the G estimation can be implemented nonparametrically in principle, esti-

mating the conditional mean E(y2|d1 = j, d2 = k, y1, y0,X2) and the conditional density

f(y1|d1 = j, y0,X2) nonparametrically and then integrating out y1 is difficult in practice

if the dimension of X2 is large as in our data. Also in our data, the response variable is

an ordinal behavior index, although it takes almost continuously many values. The linear

models require cardinality of the variable. Hence, it may be sensible to turn the response

variable into a binary or ordered response. Suppose we turn the original response into a

binary response. In this case, the G estimation becomes

E(yjk2 |y0,X2) = P (y2 = 1|d1 = j, d2 = k, y1 = 0, y0,X2) · P (y1 = 0|d1 = j, y0,X2)

+P (y2 = 1|d1 = j, d2 = k, y1 = 1, y0,X2) · P (y1 = 1|d1 = j, y0,X2). (4.4)

For our empirical analysis later, we will use this instead of (4.3).

Implementation of this G estimation is much easier. For instance, apply probit (or logit)

to y2 on d1, d2, y1, y0,X2 to obtain the two probit probabilities in (4.4) for y2 = 1:

Φ(ψ1 + ψd1d1 + ψd2d2 + ψy1y1 + ψy0y0 + ψ0xX2)
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where the ψ-parameters are to be estimated. Also apply probit (or logit) to y1 on d1, y0,X2

to get the probit probabilities for y1 = 1 (and y1 = 0):

Φ(η1 + ηd1d1 + ηy0y0 + η0xX2)

where the η-parameters are to be estimated. Substituting these into (4.4) will do. A caution

is warranted, however, as explained in the following.

When it holds that

E(yj1|y0,X2) = Φ(η1 + ηd1j + ηy0y0 + η0xX2),

can we have

E(y1|d1, y0,X2) = Φ(η1 + ηd1d1 + ηy0y0 + η0xX2) ?

In a similar context, Lee and Kobayashi (2001) show that such a replacement is equivalent

to a selection-on-observable assumption. In the current context, what holds is, as proven in

the appendix,

E(y1|d1, y0,X2) = Φ(η1 + ηd1d1 + ηy0y0 + η0xX2) ⇐⇒ E(yj1|d1 = j, y0,X2) = E(yj1|y0,X2)

which is a selection-on-observables of d1 for y
j
1. If d1 is determined by (y0,X2) and some

error term that is independent of yj1 given (y0,X2), then this selection-on-observables holds.

An analogous question is, when it holds that

E(yjk2 |yj1, y0,X2) = Φ(ψ1 + ψd1j + ψd2k + ψy1y
j
1 + ψy0y0 + ψ0xX2),

can we have

E(y2|d1, d2, y1, y0,X2) = Φ(ψ1 + ψd1d1 + ψd2d2 + ψy1y1 + ψy0y0 + ψ0xX2) ?

This display can be shown to be equivalent to the selection-on-observables

E(yjk2 |d1 = j, dj2 = k, yj1, y0,X2) = E(yjk2 |yj1, y0,X2).

4.4 G Estimation with a Structural Nested Model

Instead of G estimation, there are other estimation methods available for dynamic causal

inference as can be seen in Robins (1998,1999). But they are weighting-based estimators that

deal with dynamic selection-on-observables by weighting; see Imbens (2004) or Lee (2005)
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for exposition on the weighting idea. As shown in Frölich (2003) and Lee (2005), weighting

estimators tend to be unstable, because some weights can be close to zero. A simple version

in Robins (1992) of ‘Structural Nested Model’ that does not require weighting is available,

and this will be applied to our data. An epidemiological application can be seen in Witteman

et al. (1998) among others.

Suppose, for given covariates and some unknown parameter ψo, we have

y002 = yjk2
exp(ψoj) + exp(ψok)

2
⇐⇒ yjk2 = y002

2

exp(ψoj) + exp(ψok)
. (4.5)

Here the treatments multiplicatively alter the no-treatment response y002 . For the spanking-

behavior case with y being Behavior Problem Index (BPI; the lower the better), ψo > 0

means a good effect of spanking.

Recall NUC (b) that, conditional on the past spanking and input history, d2 is indepen-

dent of yjk2 . Due to (4.5), d2 should be independent of y
00
2 as well. Defining

Si(ψ) ≡ yi2
exp(ψdi1) + exp(ψdi2)

2
,

we get Si(ψo) = y00i2 . Thus, transforming the treatments into binary, the true value of θ in

the following logit model should be zero if ψ = ψo:

P (d2 = 1|y1, y0, d1,X2) =
exp{β02(y1, y0, d1,X 0

2) + θS2(ψ)}
1 + exp{β02(y1, y0, d1,X 0

2) + θS2(ψ)} . (4.6)

Depending on ψ, we get different t-ratio tN(ψ) for θ. Following the well known duality

between a test and the confidence interval (CI), a 95% CI for ψ is {ψ : |tN (ψ)| < 1.96}. The
middle point of the CI may be used as a point estimator ψ̂ of ψ; alternatively, the ψ for zero

θ estimate may be taken as a point estimate for ψ.

The main disadvantage of this simple structural nested model approach is the same

effect restriction for d1 and d2 in (4.5) and the arbitrary functional form assumption link-

ing all counter-factuals yjk2 to y002 , but the main advantage–computational ease–is simply

incomparable with the other dynamic causal effect estimators.

If desired, the same effect assumption in (4.5) can be relaxed: adopt, instead of S2(ψ)

and (4.6)

S2(ψ0, ψ1) ≡ y2
exp(ψ0d1) + exp(ψ1d2)

2
and (4.7)

P (d2 = 1|y1, y0, d1,X2) = exp{β02(y1, y0, d1,X 0
2) + θ1S2(ψ0, ψ1) + θ2S2(ψ0, ψ1)

2}
1 + exp{β02(y1, y0, d1,X 0

2) + θ1S2(ψ0, ψ1) + θ2S2(ψ0, ψ1)
2}
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A 95% confidence region is {(ψ0, ψ1) : TN < 5.99} where TN is an asymptotic χ22 test. A

point estimator for ψ0 and ψ1 may be obtained from the “center” of the region, but the

concept of the center is ambiguous differently from the preceding single parameter case. To

avoid this problem, we will set ψ1 = cψ0 in our empirical analysis and then estimate ψ0 from

each fixed level of c. As c changes around one, the estimate for ψ0 will change, showing how

robust the result for (4.6) is as the assumption ψ1 = ψ0 gets relaxed.

5 Empirical Findings

5.1 Data Description

The NLSY79 child sample contains rich information on children born to the women re-

spondents of the NLSY79. Starting from 1986, a separate set of questionnaires was developed

to collect information about the cognitive, social, and behavioral development of the children

of the NLSY79 respondents. The sets of child development results and inputs from birth up

to age 10 were grouped in three: 0-2 years, 3-5 years, and 6-9 years. The variables include

detailed home inputs as well as family backgrounds and some child care information.

Based on children surveyed from 1986 to 1998, we constructed a longitudinal sample

of about 4700 children. In this full sample, there are 1329 children who have no missing

values in the main variables of interest; this is our basic sample. We track these children for

three survey rounds and get detailed information when they were at 2-3, 4-5, and 6-7 years

old. Since severe spanking is likely to harm children and since most children are spanked

modestly in frequency, our study will focus on the effects of mild to moderate spanking.2

This motivates us to further restrict the sample to 961 children spanked up to three times a

week before age three (73% of the whole sample) and up to five times a week before age five

(94% of the whole sample); this is our main working sample on which most of our empirical

analyses are based.

For children four years old and above, social and behavioral development is measured

by the Behavior Problems Index Total Scores (BPI). BPI is one of the most frequently used

variable in the NLSY79 child assessments for a wide range of child attitude and behavior. It

is based on 28 questions in the Mother Supplement about specific behaviors that children of
2 Indeed, the most hotly debated issue was and still is whether modest spanking works or not (Baumrind,

Larzelere, and Cowan 2002).
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age four and above may have exhibited in the previous three months. Mothers’ responses to

the individual items are then dichotomized and summed to produce an index for each child.

In this recording process, each item answered “often true” or “sometimes true” is given a

score of one, and “not true” zero. Thus, a higher BPI represents more behavior problems.

In a fully representative sample of children, the mean standard score is expected to be 100.

The BPI in our sample has mean 105.3 and standard deviation (SD) 14.7 around age 6-7,

and mean 104.8 with SD 14.8 around age 4-5. Two binary variables are also constructed for

BPI (1 if a child’s BPI is higher than the sample mean and 0 otherwise).

Since there is no BPI for age below four, we use Motors and Social Development Scale

(MSD) which measures developmental milestones in the areas of motor, cognitive, commu-

nication, and social development. The items were derived from standard measures of child

development that are known to have high reliability and validity. Differently from BPI, how-

ever, a higher MSD means better development. MSD for children in our sample has mean

102.7 with SD 14.1, and MSD by age 2 will be used as a ‘negative’ proxy for BPI.

The frequency of spanking has been recorded when a child was around 2-3, 4-5, and 6-7

years old respectively. The survey question asks the mother “About how many times, if any,

have you had to spank your child in the past week?” Spanking is quite common for young

kids. In our data, over 90% were spanked by their mothers at least once before they reached

age five. As children grew, the probability of being spanked dropped: 87% mothers spanked

their toddlers at least once in the past week, but only 68% spanked their five year olds.

We also use a binary variable for spanking (1 if ever spanked and 0 otherwise). Since

all children in the main working sample were not spanked more than several times a week,

the most important difference among them may be not the exact spanking frequency, but

whether or not ever spanked. Also, the construction of spanking variables is based on the

reported spanking number in the past week when the mother was surveyed. So the reported

values may not be the regular spanking frequency, and the binary variable indicating whether

parents ever-spanked could be more reliable in reflecting a mother’s disciplinary behavior. In

most cases, the estimation results using both discrete and continuous versions of spanking

are presented. The summary statistics of all variables in our basic sample are listed in Table

A in the appendix, while some are listed in Table 1.

The link between spanking and behavior problems seems to be a complicated one, as

it is still hotly debated after many years of investigation (Gershoff 2002, Deater-Deckard
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and Dodge 1997). Children are heterogeneous in the first place, and there could be many

unobserved heterogenous variables. Table 1 shows that white children are less likely to be

spanked, and they have higher earlier development results and fewer behavioral problems.

Boys are spanked slightly more often, having lower MSD and more behavior problems than

girls. Firstborns are more likely to be spanked than others at age 2-3 but spanked slightly

less at age 4-5; they have much higher MSD, more behavior problems at age 4-5, but almost

the same BPI at age 6-7.

Detailed home inputs may matter much. Mothers who often read to their children at

age 2-3 were less likely to spank them than those that did not; their children had better early

development results and fewer behavior problems later. Similar patterns hold for children

who have more books and less TV hours at home, who were breast-fed, and who have better

home inputs in general. Mother’s education does not seem to make much difference. Mothers

with more than 12 years schooling in 1988 spanked their children only slightly more than those

with less schooling.

Harmful effects of spanking may be over-estimated if detailed home inputs are not prop-

erly controlled, given that (already suggested by our data) a child spanked more may also

lack other home inputs. The strength of our data is that a rich set of home inputs from birth

up to age seven as well as key family background variables are available. This would reduce

potential omitted variable biases. The age-specific Home Observation Measurement of the

Environment variables (HOME), which is a simple summation of the dichotomized individual

input item scores, is often used in child development research as an aggregate quality indica-

tor of home environment. The completion rates of HOME, however, are in general very low

for children under age four, which causes many missing values. Whenever possible, HOME

is included as a control in addition to the detailed home inputs.

Most home input variables are categorical with multiple levels, which are then converted

to dummy variables. The home environment variables are age-specific, where there are 25

home inputs at age 6-7, 18 inputs at age 4-5, and 10 inputs at age 2-3. These inputs include

how many books a child has, how often the mother reads to the child, how often the father

plays with the child outdoors, whether there are musical instruments and newspapers at

home, whether the parents encourage hobbies and bring the child to enriching activities

such as visiting museums, how often the child gets together with relatives and friends, how

often the child watches TV, and how the mother responds to tantrums. When the sample
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size allows (given missing values), child care attendance at age 0-3, mother prenatal care

variables and her working hours before child birth are controlled as well.

5.2 Empirical Results

5.2.1 IVE for the Structural Linear Models

We first estimate the structural linear models as in (3.1), where y2 and y1 are BPI at

age 6-7 and 4-5; d2 and d1 are the spanking frequencies at age 4-5 and 2-3, or their binary

versions (ever spanking or not). Under the assumption that only the current inputs are

related to current behavior problems, we use past inputs as instrumental variables. Note

the current home inputs include disciplinary and parenting variables such as the number of

times mother grounded child, took away TV or allowance, sent child to room, praised child,

showed physical affection, and said positive things are controlled unless otherwise noted. The

empirical results are in Table 2.

The first column ‘IV’ presents results with detailed current inputs at age 6-7 as controls,

and detailed inputs at age 2-3 and 4-5 as instrumental variables. The second column ‘IV(B)’

adds family background variables. The same set of inputs is included in the third column

‘IV(B’)’, where the exact numbers of spanking and their squared terms are used. The effects of

spanking at age 2-3 are negative across the three specifications, though none is statistically

significant. Similar, though weaker, results apply to spanking at age 4-5. This pattern is

robust to changes in the detailed inputs used as controls.

Wald tests show that these IV results are not significantly different from their LSE

counterparts. For this reason, the two columns ‘LSE (B,D)’ and ‘LSE(D)’ are presented for

LSE. Both include two HOME scores at age 2-3 and 4-5, which have many missing values

(hence smaller sample sizes). In the model where the exact numbers of spankings are used,

the sample size is increased by including kids spanked up to five times a week at age 2-3.

The effects of spanking at age 2-3 are negative and significant in the LSE results, and their

magnitudes are similar to the IV estimates. In comparison, the effects of spanking at age 4-5

are never significant, again similar to the IV results.

The next four columns show the regression results for BPI at age 4-5. The first two

IV results (‘IV’ and ‘IV”) use the same sample including HOME at age 2-3 but no family

background variables; the third IV model ‘IV(B)’ replaces HOME with family backgrounds
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variables. The coefficients of spanking at age 2-3 are negative and have similar magnitudes

across the different samples and specifications. In the final column ‘LSE (B,T)’, LSE is done

using three measures of child temperament instead of MSD, because these three variables

may make a better proxy than MSD for BPI. Due to missing values in these measures, the

sample size drops so much so that no sensible IV regressions can be done. The coefficient of

spanking is negative and significant with a much higher magnitude. This result is robust to

including family backgrounds and using the exact spanking frequencies.

Based on the pair of IV regressions with family backgrounds and binary spanking vari-

ables (IV(B) at age 6-7 and 4-5), we calculate the total effect of spanking. Modest spanking

at age 2-3 reduces BPI at age 6-7 by 4.03 points, while modest spanking at age 4-5 increases

it by 1.42 points. These are the direct effects, because BPI score at age 4-5 is controlled. As

the regression results of IV(B) for age 4-5 BPI show, modest spanking at age 2-3 reduces BPI

at age 4-5 by 4.07 points, while the effect of BPI at age 4-5 is 0.52 on BPI at age 6-7. So the

indirect effect of spanking at age 2-3 on the child’s age 6-7 BPI is 0.52 × (−4.07) = −2.12,
which is about half the direct effect (−4.03) in magnitude. Taken together, the effect of d1 is

direct effect + indirect effect through y1 : bβd1 + bβybγd = −4.03 + 0.52× (−4.07) = −6.15,
which is 42% of SD(BPI). The bootstrap bias-corrected 95% CI is [−59.3, 6.5]. Since this
includes zero, ‘H0 : no d1 effect’ is not rejected, but the interval is nine times longer to the

negative side. Although the indirect effect may look small being only one half the direct

effect, it can accumulate over time in the long run, leading to a substantial magnitude. The

total effect of d = (d1, d2)0 and its bootstrap bias-corrected 95% CI are

−6.15 + 1.42 = −4.73 and [−37.7, 13.6].

Based on results using the exact spanking frequencies, another set of estimates can be

calculated. For example, in IV(B’), the quadratic function of d2 (for y2) is −1.6d2 + .78d2
2,

which is negative for d2 ≤ 2 and positive otherwise. The quadratic function of d1 (for y2) is
−3.11d1 + .62d1

2, which is negative for d1 ≤ 3. In IV’, the quadratic function of d1 (for y1)
−8.79d1+2.31d21, also negative for d1 ≤ 3. Now using the first derivatives, the total effect of
spanking at age 2-3 on BPI at age 6-7 is

−3.11 + 2× 0.62d1 + 0.48(−8.79 + 2× 2.31d1) = −7.33 + 3.46d1.
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This is clearly greater in magnitude than the effect of d2 on y2 that is −1.6+1.56d2. Modest
spanking seems to reduce a child’s behavior problems as the negative ‘intercepts’ indicate,

but too much spanking is harmful as the positive ‘slopes’ show.

5.2.2 G Estimation with Discrete Responses

In order to apply the simplified G estimation with discrete responses, we convert the

two BPIs to dummy variables (higher than the sample mean or not). The binary spanking

variables (ever spanked or not) are used as well to obtain the total effects with ease. The

probit results are shown in Table 3, where the entries are the estimated marginal effects

calculated at the sample means of the control variables ( i.e., the derivatives of P (y2 = 1| · · · )
evaluated at the variable sample averages). The probit is the discrete analog of the dynamic

panel data model (but no unit-specific effect is considered in the probit), and as such, it

misses the indirect effects. The estimates for the covariates are omitted as in Table 2. We

also tried logit instead of probit, but the logit results are omitted, for they differ little from

the probit results.

The first column includes as controls detailed home inputs from birth up to age 6-7 as

well as family background variables. Modest spanking at age 2-3 reduces the probability of

higher-than-average BPI at age 6-7 by 0.35, which is significant at a 10% level; spanking

at age 4-5 increases the same probability by 0.07, but this is not significant. Higher-than-

average BPI at age 4-5 increases the probability of higher-than-average BPI at age 6-7 by

0.46. The sample size is small due to missing values especially in early inputs at age 2-3 and

family background variables. The second column reports results excluding these variables.

The coefficient of spanking at age 2-3 is still negative and significant at a p-value 5.6%, but

its level is reduced to -0.23. The explanatory power is also reduced, while the other results

are very similar. The same trend continues in column three where the sample size increases

further by taking out the disciplinary inputs at age 6-7, which are likely to be affected by

BPI. Overall, the general pattern is that modest spanking at age 2-3 reduces BPI at age 6-7,

while spanking at age 4-5 tends to increase BPI. The latter effect, however, is not significant.

The effects of BPI at age 4-5 are always positive and significant.

The probit results for BPI at age 4-5 are presented in the second part of the table. In

these results, child temperament measures as well as MSD are used to control for a child’s

initial characteristics. The results in the three columns vary with different controls: the

21



first column includes detailed inputs from birth up to age 4-5, the second column adds family

background variables, and the third column uses variables on whether a child attended regular

child care in the first, second, and third year after birth. The coefficients of spanking are

very similar across these specifications: modest spanking reduces the probability of higher

than average BPI at age 4-5 by 0.44, which is negative and significant at a 10% level. The

results (not reported) are also similar when disciplinary inputs at age 4-5 are excluded.

The desired total effect using (4.4) can be obtained with estimates in columns ‘Probit’

and ‘Probit (T)’ in Table 2: the total effect of spanking at both age 2-3 and 4-5 is

E(y112 )−E(y002 ) = 0.047

with the bootstrap bias-corrected 95% CI [−0.4, 0.48]. It can be decomposed into two parts:
the effect of spanking at age 4-5 (conditional on spanking at age 2-3) E(y112 ) − E(y102 ) =

0.16, with the bootstrap CI [−0.14, 0.30]; and the effect of spanking at age 2-3 (conditional
on no spanking at age 4-5) E(y102 ) − E(y002 ) = −0.12, with the bootstrap CI [−0.64, 0.35].
Unfortunately, all CI’s include zero. A possible reason for this is that the subgroup with no

spanking at age 2-3 is very small when relevant inputs are controlled. This suggests that

modest spanking at age 2-3 reduces a child’s behavior problems at age 6-7, while spanking at

age 4-5 tends to slightly increase the problems measured at age 6-7. This opposite pattern

was noted also in the IVE results.

5.2.3 Simple Structural Nested Model

Another set of estimates obtained using the structural nested model is in Table 4. The

regressors in the logit for (4.6) include detailed home inputs at age 4-5 and 2-3. In the

second row, measures of child temperament are also included, and in the third row family

backgrounds variables are further added. The point estimate cψ0 increases from 0 to 0.04

across the specifications as more controls are added. The number cψ0 = 0.04 corresponds to
4.3 points reduction on average (about 30% reduction of a standard deviation) of BPI at age

6-7. This level is similar to those obtained using the IV methods above.

Since our earlier results suggest that the effects of spanking vary at different ages, we

allow cψ1 = ccψ0 and explore the corresponding effects using the third row logit model men-
tioned just above, where cψ0 still indicates the effect of spanking at age 2-3, cψ1 indicates the
effect of spanking at age 4-5, and c is a positive number. The estimated ψ0 varies from 0.20
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to 0.01 as c changes from 1/4 to 4, corresponding to a range of average points reduced from

12.64 to 2.11 on BPI at age 6-7.

5.2.4 Granger Causality

Table 5 presents the results for the Granger causality model (3.3). The binary version

of spanking variables is used to ease comparison with earlier results, while the third column

also presents results using the exact numbers of spanking. The various specifications differ

mainly in the set of control variables used. In the first column, all inputs from birth up to

age seven are controlled, whereas the current disciplinary inputs are excluded in the other

columns since they may be affected by the current BPI. With lagged BPI controlled for, still

the lagged spanking is significant, and thus Granger non-causality is rejected. In this case,

as noted already, the coefficients of d1 and d2 show only their direct effects at best, which

should be borne in mind in the following interpretation.

The coefficients of spanking at age 2-3 are always negative and significant in these spec-

ifications; the effects of spanking at age 4-5 are also negative, though not often significant.

Their magnitudes are similar to the IV estimators in table 2. In the third column where the

exact spanking frequencies are used, the effects of spanking are concave with significant esti-

mates. When family background variables are included in the fourth column, the coefficients

of spanking become slightly larger than those in column two. The last column has the most

comprehensive controls, including child temperament measures at age 2-3 as well as family

background variables. The coefficients of the two spanking variables are both negative and

significant at p value 0.05, with the highest levels among the specifications listed in the table.

6 Conclusions

In this paper, when a treatment is repeated over time and the final response is measured

at the end, we showed how to estimate dynamic treatment effects with IVE applied to linear

structural models. In our approach, early treatments are allowed to have an immediate

(direct) effect as well as a lingering (indirect) effect through interim responses; also, interim

treatments are allowed to be affected by interim responses. These two facts pose a dilemma

to the usual dynamic model approach: if the interim responses are not controlled, then they

become a confounder, because the treatment and control groups differ systematically in the
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interim responses; otherwise, the indirect effects are missed. An extreme form of this can

be seen in the usual Granger causality model where all interim responses are controlled and

consequently all indirect effects are missed. Nonetheless, we showed that, when the hypothesis

of no causality is not rejected, the Granger non-causality inference is valid under a stationary

effect assumption. We also showed that our approach of IVE for linear structural models

identifies the same total effect of the entire treatment ‘profile’ as ‘G estimation’ does; G

estimation has been proposed as an innovative way of estimating dynamic treatment effects

in epidemiology and biostatistics.

The IVE approach and two practical versions of G estimation were applied to an impor-

tant issue: the effect of spanking on child behavior problems. The empirical results, though

varying across different estimation methods, consistently indicate that moderate spanking

works, and spanking at an early age 2-3 has a stronger effect on reducing later behavior

problems at age 6-7 than spanking at age 4-5, which is a surprising finding. Our preferred es-

timate suggests the overall effect (including direct and indirect effects) of spanking at age 2-3

on average reduces 42% of one standard deviation of Behavior Problems Index Total Scores

(BPI) at age 6-7. The direct effect of spanking at age 2-3 estimated by Granger causality

models ranges from 31% to 46% of one standard deviation in reduction of BPI at age 6-7

as more controls are added. In comparison, the estimated effects of spanking at age 4-5 are

small and often ambiguous in sign. These results seem at odds with prevailing findings in

the psychology literature where the empirical findings are not backed by a proper causal

framework. We hope our approach to be applied to other dynamic causal relations which

are widely seen in economics, micro or macro. This will be taking one step further from the

simple Granger causality analysis toward the full causal analysis allowing for feedbacks from

interim responses.
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APPENDIX

Extension of Structural IVE to Three Periods/Treatments

Extending two periods to three, the observation sequence is now

(x0, y0), (d1,

µ
x1
y1

¶
), (d2,

µ
x2
y2

¶
), (d3,

µ
x3
y3

¶
),

and the treatment profile becomes d = (d1, d2, d3)0. The last response y3 is the response of

interest with its potential version yjkl3 . The desired effect is E(yjkl3 − y0003 ). The following

figure shows the three-period direct and indirect effects:

←− ←−
. -

y2 −→ d3 ↑
% & ↓ ↑

d2 −→ −→ −→ y3 ↑
- ↑ %

y1 ←− d1

Consider linear contemporaneous-covariate models:

yji1 = γ11 + γ1d1j + γ1yyi0 + γ01xxi1 + vi1,

yjki2 = γ21 + γ2d1j + γ2d2k + γ2yy
j
i1 + γ02xxi2 + vi2,

yjkli3 = β1 + βd1j + βd2k + βd3l + βyy
jk
i2 + β0xxi3 + vi3.

The notations differ somewhat from the two period case, for y3 is the final response.

The yjk2 RF with yj1 removed is

yjki2 = (γ21 + γ2yγ11) + (γ2d1 + γ2yγ1d1)j + γ2d2k

+γ2yγ1yyi0 + γ2yγ
0
1xxi1 + γ02xxi2 + (γ2yvi1 + vi2).

The yjkl3 ‘semi-RF’ with only yjk2 removed (‘semi-RF’ because yjki1 appears) is

yjkli3 = (β1 + βyγ21) + (βd1 + βyγ2d1)j + (βd2 + βyγ2d2)k + βd3l

+βyγ2yy
j
i1 + βyγ

0
2xxi2 + β0xxi3 + (βyvi2 + vi3).
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Also, the yjkl3 RF with both yjki2 and yji1 removed is

yjkli3 = {β1 + βy(γ21 + γ2yγ11)}+ {βd1 + βy(γ2d1 + γ2yγ1d1)}j + (βd2 + βyγ2d2)k + βd3l

+βyγ2yγ1yyi0 + βyγ2yγ
0
1xxi1 + βyγ

0
2xxi2 + β0xxi3 + (βyγ2yvi1 + βyvi2 + vi3).

This shows five effects to be identified:

direct and indirect (through y1, y2) effects of d1 : βd1, βy(γ2d1 + γ2yγ1d1)

direct and indirect (through y2) effects of d2 : βd2, βyγ2d2

direct effect of d3 : βd3.

The first-lag response model IVE for these effects are

• Step 1: estimate γ1d1 in the y1 equation with regressors (d1, y0, x1); x0 provides the
instrument source for d1 and y0.

• Step 2: estimate γ2d1, γ2d2, and γ2y in the y2 equation with regressors (d1, d2, y1, x2);

x0 and x1 are the instrument source for d1, d2, and y1.

• Step 3: estimate βd1, βd2, βd3, and βy in the y3 equation with regressors (d1, d2, d3, y2, x3);
x0, x1, and x2 the instrument source for d1, d2, d3, and y2.

Imposing the equal contemporaneous effect assumption

γ1d1 = γ2d2

that the effect of d1 on y1 is the same as the effect of d2 on y2, there is no need to estimate

the y1 equation and two IVE’s will do, instead of three in the first-lag response model IVE.

There is no more problem of finding instruments for the y1 equation.

Going further, strengthen γ1d1 = γ2d2 to

βd3 = γ1d1 = γ2d2, γ2y = βy, γ2d1 = βd2.

Under this, we just have to estimate the y3 equation, and it holds that

d1 effect βd1 + βy(βd2 + βyβd3), d2 effect βd2 + βyβd3, d3 effect βd3.

Since only the y3 equation is estimated, finding instruments becomes even more easier. This

display shows that the Granger non-causality test becomes equivalent to our approach under
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the strengthened set of stationarity assumptions, because all indirect effects are zero when

βd1 = βd2 = βd3 = 0.

Turning to the last-lag response IVE, consider the observed version of the above yjkl3 RF

with yjki2 and y
j
i1 removed; only y0 is left as a lagged response on the right-hand side. The ob-

served version has regressors (d1, d2, d3, y0, x1, x2, x3). The instrument source for d1, d2, d3, y0

is x0. This last-lag response IVE is a single step method as in the two period case.

Covariate Choice and Nonlinear Functions of Treatments

Recall (x0, y0), (d1, x1, y1), (d2, x2, y2). In our data, there is no known time order be-

tween xt and yt; with temporal aggregation, xt and yt can be simultaneously related in the

data. This raises the issue of which covariates to include in the y1 and y2 equations. A

component w1 of x1 may be affected by y1 or d1. In such a case, should w1 be still included

in x1? We examine this issue here, assuming that w1 affects y1; if w1 affects y2 but not y1, w1

should be put into x2 in our contemporaneous-covariate model; if w1 does affect neither y1

nor y2, then w1 can be simply ignored. Related to the covariate choice problem is including

nonlinear functions of treatments, which is also discussed here. Allowing nonlinearity mat-

ters, because excessive spanking can be devastating, even if a moderate spanking is good; at

least a quadratic functional form of spanking is called for.

First, suppose that w1 is affected by d1, but not by y1. If w1 is included in x1, then

the indirect effect d1 → w1 → y1 is missed because w1 is controlled; if interested only in the

direct effect, however, then including w1 in x1 is all right. If we choose not to include w1 in x1

to avoid this problem, then we may incur another problem as w1 may become a confounder,

e.g., by affecting d2 and y2 as in the two-period effect diagram. To rule out such possibility,

we control w1. For instance, suppose that w1 is ‘reading (books) to children’. A parent

may do this because of a guilty feeling after spanking (hence w1 is affected by d1), which

then influences y1, and possibly y2 and d2 as well. Controlling for reading-to-children entails

missing this indirect effect. But not controlling for it may entail confounding. If we are to err,

it is safer to err to fall on the conservative side of omitting the indirect effect but still getting

the direct effect right, rather than falling on not getting any effect right by not controlling

for w1. In our empirical analysis, we thus include variables such as reading-to-children in the

y1 equation, taking one of the two following positions: either there is no w1 affected by d1, or

if there is such a w1, then we are not interested in the indirect effect. When spanking effects
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under these assumptions are announced to the public, one can imagine the ‘official caveat’

that the spanking effect estimates are those without any subsequent spanking-mitigating

behaviors such as reading to children (or taking children to a theme-park).

Second, suppose that w1 is affected by y1. In this case, w1 gets simultaneously related

to y1 and becomes an endogenous regressor in the y1 equation. For instance, various dis-

ciplinary measures (e.g., grounding or taking away allowances) other than spanking can be

simultaneously related to y1 (due to the temporal aggregation). Recall that this simultaneity

problem does not occur with d1, as we constructed our data such that d1 precedes w1 and

y1. The best way to handle such a w1 is setting up a bivariate response model where (w1, y1)

becomes a bivariate response vector. In the y1 SF, the coefficient of d1 shows only the direct

effects (as if an intervention on d1 is accompanied by an intervention on w1). In the y1 RF

with w1 substituted out, the coefficient of d1 shows the total effect. For instance, suppose

y1 = αww1 + αdd1 + u, w1 = βy1 + ε =⇒ y1 =
αd

1− αwβ
d1 +

u+ αwε

1− αwβ
where |αwβ| < 1.

In words, an initial change in d1 causes a change in y1 of magnitude αd, but the change in

y1 leads to a change in w1 of magnitude β, which in turn changes y1 and so on. The y1 RF

includes this exchange between y1 and w1.

In our empirical analysis, we try both including and excluding the disciplinary measures.

Including those variables and estimating the y1 SF with IVE means that the estimated effect

of d1 is only the direct effect without any other disciplinary measures taken to complement

or substitute d1–of course, if desired, the indirect effect can be recovered using the w1-SF.

Excluding those variables means that we are estimating the y1 RF from the bivariate response

model where the total effect of d1 gets estimated.

The same issue of covariate choice arises for the y2 equation. In principle, one just have

to follow the same model as used for the y1 equation but augmented by d2 now, although

this could not be done exactly with our data as different sets of variables were available for

the y1 and y2 equations.

Even if spanking is beneficial, too much spanking is likely to be harmful. That is,

nonlinear effects of spanking ought to be taken into account. For this, suppose that the effect
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of d1 and d2 are quadratic (the subscript q in the following stands for ‘quadratic’):

yji1 = γ1 + γdj + γdqj
2 + γyyi0 + γ0xxi1 + vi1,

yjki2 = β1 + βd1j + βd1qj
2 + βd2k + βd2qk

2 + βyy
j
i1 + β0xxi2 + vi2

= β1 + βd1j + βd1qj
2 + βd2k + βd2qk

2

+βy(γ1 + γdj + γdqj
2 + γyyi0 + γ0xxi1 + vi1) + β0xxi2 + vi2

= (β1 + βyγ1) + {βd1j + βd1qj
2 + βy(γdj + γdqj

2)}+ (βd2k + βd2qk
2)

+βyγyyi0 + βyγ
0
xxi1 + β0xxi2 + (βyvi1 + vi2).

With the first derivatives, the three key effects are

direct and indirect effects of d1 = j : βd1 + 2βd1qj, βy(γd + 2γdqj)

direct effect of d2 = k : βd2 + 2βd2qk.

These can be identified in two steps with the first-lag response IVE:

• Step 1: estimate γd, γdq in the y1 equation with regressors d1, d21, y0, x1.

• Step 2: estimate βd1, βd1q, βd2, βd2q, and βy in the y2 equation with regressors d1, d21, d2, d22, y1, x2.

Alternatively, we may estimate the following last-lag response model (from the above yjk2

equation) with a single IVE:

y2 = (β1 + βyγ1) + (βd1 + βyγd)d1 + (βd1q + βyγdq)d
2
1 + βd2d2 + βd2qd

2
2

+βyγyyi0 + βyγ
0
xxi1 + β0xxi2 + (βyvi1 + vi2).

Going one step further, we can expand the nonlinearity to cubic terms. For instance,

with the subscript c standing for ‘cubic’

yji1 = γ1 + γdj + γdqj
2 + γdcj

3 + γyyi0 + γ0xxi1 + vi1,

yjki2 = β1 + βd1j + βd1qj
2 + βd1cj

3 + βd2k + βd2qk
2 + βd2ck

3 + βyy
j
i1 + β0xxi2 + vi2.

This yields

direct and indirect effects of d1 = j : βd1 + 2βd1qj + 3βd1cj
2, βy(γd + 2γdqj + 3γdcj

2)

direct effect of d2 = k : βd2 + 2βd2qk + 3βd2ck
2.
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Having seen nonlinear treatment effects, one may consider a nonlinear function of yj1 in

the yjk2 equation, but we will not accommodate this possibility. One reason is that nonlinear

lagged response variables are rarely used in economic models. Another reason is that even

a quadratic function of yj1 in the y
jk
2 equation combined with a quadratic treatment effect

results in fourth order polynomials of d1 and such a function will not be identified easily in

practice.

Proof for G estimation Identifying Total Effect in Two Periods

G estimation does not require any functional form specification. But it is instructive

to verify that G estimation identifies the same total effect as the SF linear model (the yjk2

equation before (3.1)) identifies. Observe, in the yjk2 equation,

E(yjk2 |d1 = j, dj2 = k, yj1, y0,X2) = E(yjk2 |d1 = j, yj1, y0,X2)

= β1 + βd1j + βd2k + βyy
j
1 + β0xx2 +E(v2|d1 = j, yj1, y0,X2) owing to NUC (b).

Substitute this into the display following (4.3) to get

β1 + βd1j + βd2k + βyE(y
j
1|d1 = j, y0,X2) + β0xx2 +E(v2|d1 = j, y0,X2)

= β1 + βd1j + βd2k + βyE(y
j
1|y0,X2) + β0xx2 +E(v2|y0,X2),

owing to NUC (a) E(yjk2 |d1 = j, y0,X2) = E(yjk2 |y0,X2). Substitute E(yj1|y0,X2) = γ1 +

γdj + γyy0 + γ0xx1 +E(v1|y0,X2) to have (4.3) become

β1 + βd1j + βd2k + βy{γ1 + γdj + γyy0 + γ0xx1 +E(v1|y0,X2)}+ β0xx2 +E(v2|y0,X2)

= (β1 + βyγ1) + (βd1 + βyγd)j + βd2k + βyγyy0 + βyγ
0
xx1 + β0xx2 +E(βyv1 + v2|y0,X2).

From this,

E(yjk2 |y0,X2)−E(y002 |y0,X2) = (βd1 + βyγd)j + βd2k.

Therefore, the G estimation identifies the same total effect as the SF linear model does.

Proof for Replacing Fixed Treatment with Random Treatment in Two Periods

For yj1, under E(y
j
1|y0,X2) = Φ(η1 + ηd1j + ηy0y0 + η0xX2), we will prove

E(y1|d1, y0,X2) = Φ(η1 + ηd1d1 + ηy0y0 + η0xX2) ⇐⇒ E(yj1|d1 = j, y0,X2) = E(yj1|y0,X2).
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First, suppose that the left-hand side holds. Then

E(yj1|d1 = j, y0,X2) = E(y1|d1 = j, y0,X2) because y1 = yj1 given d1 = j

= Φ(η1 + ηd1j + ηy0y0 + η0xX2) = E(yj1|y0,X2).

Hence the right-hand side holds. Second, to prove the reverse, suppose E(yj1|d1 = j, y0,X2) =

E(yj1|y0,X2). Observe

E(y1|d1, y0,X2) =

Z
E(y1|j, y0,X2)∂1[d1 ≤ j] =

Z
E(yj1|j, y0,X2)∂1[d1 ≤ j]

=

Z
E(yj1|y0,X2)∂1[d1 ≤ j] =

Z
Φ(η1 + ηd1j + ηy0y0 + η0xX2)∂1[d1 ≤ j]

= Φ(η1 + ηd1d1 + ηy0y0 + η0xX2).
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Table 1: Spanking and Behavior Scores across Groups 
Mean (SD) 

 
Whether a child was 
spanked in the past 
week when survey 
was conducted 

Probability of having 
higher than average 
BPI 

Motors and 
Social 
Development 
Scale 

 

at age 2-3 at age 4-5 at age 6-7 at age 4-5 at age 0-2 

Group  
Size 

The Basic Sample .86 (.35) .64 (.48) .48 (.50)      .49 (.50)      102.7 (14.1)   1329   
The Main Sample .81 (.39) .56 (.50) .43 (.50)      .44 (.50)      103.2 (14.1)   961   
 
Race 
White .79 (.41) .50 (.50) .38 (.49) .40 (.49) 104.5 (13.3) 482 
Non-White .83 (.38) .62 (.49) .48 (.50) .49 (.50) 101.9 (14.8) 479 
 
Sex 
Boy .82 (.39) .56 (.50) .45 (.50) .45 (.50) 100.9 (13.6) 460 
Girl .80 (.40) .55 (.50) .41 (.49) .44 (.50) 105.3 (14.3) 501 
 
Birth order 
First-borns .84 (.36) .55 (.50) .43 (.50) .46 (.50) 106 (13.5) 385 
Others .78 (.40) .57 (.50) .43 (.50) .43 (.50) 101.3 (14.2) 576 
 
Mother reads to child at age 2-3 
Often .78 (.41) .50 (.50) .38 (.49) .38 (.49) 105.5 (13.3) 561 
Not often .84 (.36) .64 (.48) .51 (.50) .53 (.50) 100 (14.4) 391 
 
How many children books a child has at home at age 4-5 
> = 10 .79 (.40) .52 (.50) .41 (.49) .42 (.49) 104.2 (13.7) 789 
< 10 .85 (.36) .74 (.44) .53 (.50) .57 (.50) 98.2 (15.1) 169 
 
How long TV is on per day 
< 4 hours .80 (.38) .49 (.50) .38 (.49) .37 (.48) 104.5 (14.1) 330 
> = 4 hours .81 (.39) .60 (.49) .46 (.50) .48 (.50) 102.5 (14.1) 631 
 
Mother’s highest grade in 1988 
> 12 .81 (.39) .56 (.50) .44 (.50) .45 (.50) 103.2. (14) 521 
< = 12 .80 (.40) .55 (.50) .44 (.50) .45 (.50) 103.1 (14.1) 440 
 
Whether child was breastfed 
Breastfed .80 (.40) .54 (.50) .40 (.49) .41 (.49) 104 (14.8) 471 
Not breastfed .81 (.40) .59 (.49) .45 (.50) .47 (.50) 102.2 (13.3) 429 



Table 2: The Direct Effects of Spanking on BPI in Linear Structural Models 
  

 BPI at age 6-7 BPI at age 4-5 
 IV  IV  

(B) 
IV  
(B’) 

LSE 
(B, D) 

LSE 
(D) 

IV IV’ IV  
(B) 

LSE  
(B, T) 

Spanked at 
age 2-3 

-2.87  
(4.86) 

-4.03 
(7.20) 

 -4.55 
(2.67)* 

 -4.94 
(15.1) 

 -4.07 
(19.6) 

-14.88* 
(8.52) 

Spanking # at 
age 2-3 

  -3.11 
(7.85) 

 - 2.71*
(1.53) 

 -8.79 
(18.2) 

  

Spanking # at 
2-3 squared 

  .62 
(2.38) 

 .53* 
(.29) 

 2.31 
(3.81) 

  

Spanked at 
age 4-5 

-1.26 
(3.41) 

1.42 
(6.39) 

 -.68 
(1.88) 

    

Spanking # at 
age 4-5 

  -1.60 
(6.12) 

 .34 
(1.25) 

   

Spanking # at 
4-5 squared 

  .78 
(1.66) 

 -.09 
(.30) 

   

BPI at age 4-5 .56*** 
(.12) 

.52*** 
(.17) 

.48** 
(.19) 

.44*** 
(.07) 

.50*** 
(.05) 

   

Motors Score 
at age 0-2 

 -.06 
(.11) 

-.05 
(.13) 

-.02 
(.10) 

 

Sample Size 638 476 476 216 330 488 488 535 135 
R-squared -       -  .44   .48 -       -  - .20 

 
Note: *p<.1; ** p<.05; *** p<.01. Standard deviations are in the parentheses. 
The sample is composed of kids spanked 3 times or less in a week at age two to three and 
spanked 5 times or less at age four to five. The controlled inputs include a child’s race, sex, 
birth order, and current home inputs. The instrumental variables are earlier inputs. 
B – Family backgrounds variables included (mother’s AFQT score, her age at child birth, 
whether the child was breastfed, her marriage status, highest grade, and family income). 
D – Disciplinary inputs at age six to seven are excluded to avoid endogenity problem 
(excluded inputs are: # of times mother grounded child, took away TV or allowance, sent 
child to room, praised child, showed physical affection, and said positive things).  
T – Measures of child temperament are included. 
 
 



Table 3: The Marginal Effects of Spanking on BPI for G-Estimation 
  

BPI at age 6-7  
(higher than sample mean) 

BPI at age 4-5  
(higher than sample mean)

 

Probit 
(B) 

Probit 
 

Probit 
(D) 

Probit 
(T) 

Probit 
(T, B)  

Probit  
(T, C) 

Spanked at least 
once at age 2-3 

-.35* 
(.21) 

-.23* 
(.12)   

-.20* 
(.11) 

-.45* 
(.12) 

-.44* 
(.11)   

-.44*     
(.12)   

Spanked at least 
once at age 4-5 

.07 
(.11) 

.08 
(.08) 

.11 
(.07) 

   

BPI at age 4-5 is 
higher than mean 

.46*** 
(.09) 

.46*** 
(.06) 

.44*** 
(.06) 

   

Motors Score at 
age 0-2 

-.002 
(.003) 

-.003 
(.002) 

-.003 
(.002) 

-.0005 
(.003) 

.001 
(.003) 

.0002 
(.009) 

Sample Size 200 288 301  241 207 223 

Pseudo R-squared .48 .28 .22 .23 .24 .25 
 

Note: * p<.1; ** p<.05; *** p<.01. Standard deviations are in the parentheses.  
The sample is composed of kids spanked 3 times or less in a week at age two to three 
and spanked 5 times or less at age four to five. The controlled inputs include a child’s 
race, sex, birth order, current and earlier home inputs. 
B – Family backgrounds variables included (mother’s AFQT score, her age at child 
birth, whether the child was breastfed, her marriage status, highest grade, and family 
income). 
D – Disciplinary inputs at age six to seven are excluded to avoid endogenity problem 
(excluded inputs are: # of times mother grounded child, took away TV or allowance, 
sent child to room, praised child, showed physical affection, and said positive things).  
T – Measures of child temperament are included.   
C – Variables on whether child attended child care in the first three years are included. 

 



Table 4: The Effects of Spanking on BPI: Structural Nested Model 
 

 Point 
Estimate 
of ψ0 

95% Confidence 
Interval for ψ0 

Estimated effects evaluated at 
the sample mean (105.3)  
(in terms of point reduction in 
BPI at age 6-7) 

Logit 0 [-.05, .05] 0 
Logit (T) .01 [-.06, .08] 1.06 
Logit (T, B) .04 [-.06, .14] 4.3 
 
Logit (T, B), assuming ψ1=cψ0 where c is a constant: 

When ψ 1=ψ0/4 .20 [-.20, .60] 12.64 
When ψ1=ψ0/3 .135 [-.15, .42] 9.48 
When ψ1=ψ0/2 .075 [-.1, .25] 5.79 
When ψ1=ψ0 .04 [-.06, .14] 4.3 
When ψ1=2ψ0 .02 [-.02, .06] 3.16 
When ψ1=3ψ0 .015 [-.01, .04] 3.16 
When ψ1=4ψ0 .01 [-.01, .03] 2.11 
 
Note: The sample is composed of kids spanked 3 times or less in a week at age two to 
three and spanked 5 times or less at age four to five. The regressor in the logit models is 
whether a child was spanked at age four to five, while regressants in the basic 
specification include a child’s race, sex, birth order, and detailed home inputs at age four 
to five and two to three.  
T – Measures of child temperament are included.   
B – Family backgrounds variables included (mother’s AFQT score, her age at child birth, 
whether the child was breastfed, her marriage status, highest grade, and family income). 



Table 5: The Effects of Spanking on BPI: Granger Causality 
 

 BPI at age 6-7 
 LSE 

 
LSE 
(D) 

LSE 
(D,A) 

LSE 
(D,B) 

LSE 
(D,B,A,T) 

Spanked at 
least once at 
age 2-3 

-4.59* 
(2.67)       

-5.22** 
(2.69)                         -5.27* 

(3.13)         
-6.80** 
(3.2)            

Spanking # at 
age 2-3   -.57* 

(.33)       

Spanking # at 
2-3 squared   .03** 

(.01)       

Spanked at 
least once at 
age 4-5 

-.69 
(1.79) 

-1.19 
(1.76)  -1.55 

(2.08) 
-6.03** 
(2.50) 

Spanking # at 
age 4-5   -.68* 

(.41)       

Spanking # at 
4-5 squared   .04** 

(.02)       

BPI at age 4-5 .48*** 
(.06) 

.49*** 
(.05) 

.50*** 
(.05) 

.49*** 
(.07) 

.53*** 
(.09) 

Motors Score 
at age 0-2 

-.02 
(.05) 

-.006 
(.05) 

-.03 
(.05) 

.01 
(.06) 

.003 
(.08) 

Sample Size 263           271              394              224              182              
R-squared .53            .49               .50               .47               .56               

 
Note: * p<.1; ** p<.05; *** p<.01. Standard deviations are in the parentheses. 
The controlled inputs include a child’s race, sex, birth order, current and earlier home 
inputs. 
D – Disciplinary inputs at age six to seven are excluded to avoid endogenity problem 
(excluded inputs are: # of times mother grounded child, took away TV or allowance, 
sent child to room, praised child, showed physical affection, and said positive things).   
A – All kids with various spanking frequencies are included.  
B – Family backgrounds variables included (mother’s AFQT score, her age at child 
birth, her marriage status, her highest grade, and family income).  
T – Measures of child temperament are included. 

 



Table A: Summary Statistics of the Basic Sample (1329 children) 
 

Variable       Mean SD        
Behavior Problem Index (BPI) total standard score at age 6-7 105.3 14.7 
Behavior Problem Index (BPI) total standard score at age 4-5 104.8 14.8 
Motors and Social Development Scale by age two 102.7 14.1 
Spanked # last week at survey time at age 4-5 1.79 2.49 
Whether a child was spanked at least once at age 4-5 .64 .48 
Spanked # last week at survey time at age 2-3 3 3.77 
A child was spanked at least once at age 2-3 .86 .35 

(G1). Child Demographic and Health Information 
race of child: Black or Hispanic .50        .50 
sex of child: boy .50        .50 
birth order of child 1.94      1.01 
Whether a child has a low birth weight .06        .25 
Child is breastfed .52 .50 
(G2) Mother’s Background Information 
Mother’s AFQT score taken in 1981 42.79    28.7 
Mother’s highest grade at 1988 12.45    2.56 
Family salary in 1988 8360 9234 
Family incomes in 1988 27632 20286 
Mother was married in 1988 .76 .43 
Mother’s age at child birth 26         5.82 

(G3) Current home inputs for 6-7 years olds 
child has 10 or more books .84 .36 
how often mom reads to child: at least 3 times a week .76 .43 
is there musical instrument at home .39 .49 
family gets newspaper daily .47 .50 
how often child reads for enjoyment: everyday .76 .43 
family encourages hobbies .89 .32 
child get special lessons/activities .50 .50 
how often child taken to museum: at least several times a year .77 .42 
how often child taken to performance: at least several times a year .61 .49 
how often get together with relatives/friends: at least 2-3 times/month .60 .49 
# of hours/weekday child sees TV 4.65 6.53 
# hours/weekend day child sees TV 4.65 4.79 
child ever sees a father figure  .94 .24 
how often child w/ dad outdoors: at least once a week .51 .50 
how often child eats w/mom & dad: at least once a day .78 .41 
parents discuss TV programs w/child .82 .39 
#times past week grounded child .65 2.36 
#times past week took away TV .63 2.01 
#times past week praised child 8.05 11.66 
#times past week took away allowance .18 2.11 
#times mom showed child physical affection 19.45 22.4 



#times past week sent child to room 1.62 2.96 
#times past week said positive things 7 11.64 

(G4) Home inputs for 3-5 years olds 
how often mother read to child: at least 3 times a week .56 .50 
how many books does child have: 10 or more books .81 .39 
how many magazines does family get: 3 or more .59 .49 
Does child have record/tape player .77 .42 
amount of choice child has in food: a lot .68 .47 
# of hours TV is on per day 5.56 5.3 
how often child taken on outing: at least several times a week .55 .50 
how often child taken to museum: at least several times a year .69 .46 
how often child eats w/ mom & dad: at least once a day .75 .43 
child see father(-figure) daily .80 .40 
Mom helps child learn numbers  .94 .23 
Mom helps child learn alphabet  .93 .26 
Mom helps child learn colors  .94 .23 
Mom helps child learn shapes  .83 .37 
Mom responds to hit-hit child back  .16 .36 
Mom responds to hit-send to room  .51 .50 
Mom responds to hit-spank child  .49 .50 
Mom responds to hit-talk to child  .71 .45 
Mom responds to hit-ignore it  .03 .17 
Mom responds to hit-give chores  .05 .21 
Mom responds to hit-take allowance .04 .20 
Mom responds to hit-hold child hands  .13 .33 

(G5) Home Inputs for 0-2 years olds 
how often child gets out of the house: everyday .63 .48 
how many children’s books child has: 10 or more books .80 .40 
how often mother reads to child: at least 3 times a week .57 .49 
how often mother takes child to grocery: once a week or less .61 .49 
how many cuddly or role-playing toys 16.87 14 
how many push or pull toys child has 7.91 7.77 
mothers attitude how child learns best: parents should always teach .53 .50 
Does child see father (-figure) daily? .83 .37 
how often child eats with both mom and dad: at least once a day .69 .46 
how often mother talks to child while working: often .56 .50 

(G6). Mother Working, Prenatal Care, and Child Care  
hours worked per week on main job 4th quarter before birth child 35.82 11.3 
hours worked per week on main job 3rd quarter before birth child 35.58 11.4 
sonogram done during pregnancy .74 .44 
mother took vitamins during pregnancy .96 .20 
child in regular child care during 1st year .47 .50 
child in regular child care during 2nd year .51 .50 
child in regular child care during 3rd year .53 .50 
 


