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1. INTRODUCTION

Debt contracts are a key element in any modern economy. When entrepreneurs
hold informational and control advantages over their creditors, debt claims are a de-
vice to mitigate the entrepreneurs’ misbehavior under a loan contract. One crucial
characteristic of debt contracts is that a debtor provides a creditor with the right to
foreclose on the debtor’s assets when he misses principal or interest payments under
the borrowing agreements (i.e., in a default state). In many cases, a defaulting debtor
repudiates the debt when being foreclosed. However, occasionally, a debtor can re-
construct the contract in a default state and continue to maintain the relationship
with the same creditor. This default is not a terminal event, but rather is a restruc-
turing. When the debt structuring is a possible default event under a loan contract,
default is strategically undertaken in equilibrium, in some cases recurrently.1

In practice, debt restructuring is important in actual economies. Sovereign de-
faults are a typical example. Assets held in a defaulting country are usually difficult
to seize across its border. In addition, a sovereign debt is not covered directly by
a bankruptcy code.2 Accordingly, Western governments and commercial investors
often hold negotiations with defaulting sovereigns to partially exempt their liability
and restructure the debts without a termination (e.g., the Paris and London Club).
Also, in corporate finance, most defaulting firms first try to restructure their debt
either in or out of court.3 In particular, most large companies reorganize under Chap-
ter 11 (court-supervised debt restructuring), rather than liquidate under Chapter 7
(termination of contract), when filing for a bankruptcy in the United States. Hence,
the impact of the debt restructuring on actual economies is huge.

Despite such practical importance of debt restructuring, economists know sur-
prisingly little about it. In asset pricing literature, continuous-time defaultable bond
models have studied the dynamics of this type of default in a reduced form, in which
a default time arrives based on an exogenously given intensity probability distribu-
tion.4 These reduced-form models succeed in capturing empirically several features
of debt restructuring from actual financial data. However, due to lack of a game-
theoretic treatment of the default, they fail to detect strategic default incentives of
debtors. In fact, in the empirical work, there appears to be some instability of de-
fault intensity parameters as borrowers’ credit qualities change. Moreover, financial
contract literature often treats default as a terminal event, not as a restructuring

1In academic literature, default is sometimes used, in a narrow sense, only for a termination of a loan contract.
This paper regards debt restructuring as a default event.

2See Bulow and Rogoff [6, 7], Eaton and Gersovitz [11].
3See Gilson [16], Gilson et al. [17]
4Theoretically, see, for example, Duffie and Singleton [10], Jarrow and Turnbull [23]. As for empirical applications,

see Duffee [8], Duffie, Pedersen, and Singleton [9].
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one.5 Due to such an oversimplified default structure, this literature is unsuccessful
in empirical application. In short, there is a gap between contract theory on the one
hand, and asset pricing models and actual financial data on the other.

The purpose of this paper is to present a new approach for modeling an optimal
continuous-time defaultable debt contract by bridging this gap. More precisely, it
formalizes an optimal competitive design of a continuous-time communication game
in environments with Markov income shocks and asymmetric information. Con-
sequently, it shows that, under an optimal debt contract, a fully informed debtor
defaults strategically and recurrently. On the other hand, a less informed creditor
expects default to occur stochastically based on an exponential probability distribu-
tion under which the arrival rate of default is increasing in monitoring ability. This
model provides strategic insights into reduced-form defaultable bond models. Due
to mathematical tractability of the continuous-time, competitive structure, this pa-
per provides a better framework to study defaultable debts in actual firms’ complex
financial structure.

This paper presents a model that is a dynamic extension of a classical finite-period
costly monitoring model. In particular, the model uses a component game that is
similar to the finite-period costly state verification (CSV, hereafter) model presented
by Townsend [34]. Specifically, a borrower’s project produces single non-storable
goods by using one unit of capital that a lender invests. The income process from
the project is uncertain and its realization is privately observable to the borrower.
A deterministic state verification (or disclosure) technology is available and costly.6

Income is allocated at each grid according to the terms in the contract.
Previous finite-period CSV models have been successful in capturing a role of

default as a device to achieve a direct revelation principle. This paper uses a similar
approach. The lender has an incentive to exempt the borrower from his payment
liability and continues the contract after restructuring only when the borrower verifies
his bad shape via a costly disclosure. This equilibrium costly exemption that results
from restructuring is a specific definition of default in this paper.

This model extends Townsend’s model mainly in three points. First, the income
process is Markov in infinite horizon {0−} ∪ [0,∞).7 The Markovian technological

5For example, Anderson and Sundaresan [2], Hart and Moore [21, 22]. A model presented by Bulow and Rogoff [6]
is an exception. They study a repeated recontracting of sovereign debts in an infinite horizon model in which a credit
country can impose direct, finite sanctions on a defaulting debtor by costing him his ability to transact freely in
the financial and goods markets. A main difference of their model from mine is that their paper focuses on ex post
recontracting behavior in a given complete, competitive world debt market, not on any optimal long-term defaultable
debt contract. Their model does not study why such restructuring is permitted in a long-term contract from an ex
ante point of view.

6Deterministic disclosure means that if a player demands a disclosure, then the disclosure will be undertaken with
probability one. Note that, contrary to Townsend [34]’s model, the borrower has the right to demand the disclosure
by incurring the costs. This twist simplifies the outcome function form in the contract in that a less informed lender
designs a contract ex ante whereas the fully informed borrower undertakes all the ex post actions.

7Algebraically, t− := limu↑t u for u < t and t ≥ 0, i.e., t’s left-limit time.
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shocks are more realistic than either a one-shot shock or i.i.d. shocks.8 Second,
this model has a common agency structure like the one presented by Peters [29].
There are three infinitely-lived risk-averse players: one borrower and two identical
lenders. I elaborate equilibria in which each of the lenders maximizes his ex ante
lifetime utility by designing a contract non-cooperatively subject to the borrower’s
optimization with respect to ex post state verification actions under a contract.
This paper restricts attention to equilibria in stationary Markovian strategies. In
addition, it focuses only on symmetry of the contracts that the two lenders design in
equilibrium. This construction has competitive implications regarding the optimal
payout policy. Finally, this model has a continuous-time structure, which makes the
complex, dynamic Bayesian game tractable to achieve complete characterizations of
the equilibrium. In particular, this framework makes it possible to use a Markov
operator method, which is useful to provide observable implications of potentially
rich families of Markov processes.9 However, as Fudenberg and Tirole [14] show,
a continuous-time game has no natural notion of extensive-form stages in general.
My model is not an exception.10 To remedy this problem, this paper specifies an
appropriate topological, not algebraic, notion of left-limit time and formalizes the
dynamic game as a continuous limit of discrete-time games with fine grids {t−} ∪
[t, t +4) for time t.11

In addition to those departures from Townsend’s model, a solution method that
this paper uses is also new. Precisely, I solve for the optimal contract via an im-
pulse control method of Bensoussan and Lions [3]. Contrary to continuous control
problems, the state of the system is subject to jumps (i.e., “impulses”) in an im-
pulse control problem. The timing, number, jump size, and intensity of impulses
are decision variables in the control problem. The borrower’s default decision in this
dynamic CSV model is a typical impulse control. Based on this method, I show that,
under several assumptions, there is a stationary equilibrium in which defaults occur
recurrently. In particular, as a part of the solution method, I characterize the bor-
rower’s optimization program via a stochastic maximization principle of Bismut [5]
given some boundary conditions on a finite horizon [0, τ ] where τ denotes the first

8In the previous infinite-horizon CSV models, Wang [35] presumes i.i.d. income shocks. Because of the lack of
intertemporal links across stages, the equilibrium disclosure strategy is static in that only a current shock triggers a
disclosure that is history independent. In Nakamura [26], Wang’s model is extended to have Markov income shocks.
However, for mathematical convenience, Nakamura [26] restricts the shock process to follow a two-state Markov
chain. In contrast, this paper generalizes the process to have a continuum of states in continuous time.

9For example, Aı̈t-Sahalia, Hansen, and Scheinkman [1], Hansen and Scheinkman [19].
10Most recently, several versions of continuous-time contracting models have been intensively studied. (e.g., Biais

et al. [4], Sannikov [32], Williams [36]) Most models study an instantaneously repeated game in which information
does not flow strategically across infinitesimal stages. Accordingly, they do not have the difficulty mentioned by
Fudenberg and Tirole. In this paper, by contrast, the strategic disclosure action influences the lender’s information
set. Hence, this model needs some appropriate notion of stages in an infinitesimal extensive-form component game.

11The preceding draft of this paper, namely Nakamura [27], includes a mathematical appendix showing that
{t−} ∪ [t, t +4) is a relevant grid of an infinitesimal component game at time t. This draft is available on request
from the author.
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default time after instant 0. Using the results of Williams [36], two Hamiltonian ad-
joint processes (i.e., differentials of the Hamiltonian) associated with the income and
payment variables stand for the borrower’s endogenous reservation utility and the
shadow price of the hidden state. These adjoint processes encode history dependence
for the borrower’s interim individual rationality and truth revealing actions.

Such mathematical tractability expands the practical applicability of this optimal
contract model to analyze actual firms’ complex financial structure and dynamic au-
diting problems in labor and insurance contracts beyond standard costly monitoring
models. This paper provides two applications: (1) hidden entrepreneurial efforts and
(2) human capital investment in disclosure technology. The first application results
in a moral-hazard premium for the entrepreneur’s potential laziness in an optimal
payout policy. The second one shows that if the human capital of the disclosure
ability is endogenously accumulated, then a countercyclical payout policy is optimal.
These results seem consistent with empirical observations.

This paper is organized as follows. The next two sections define the physical
and institutional environments. Section 4 defines the strategies and the equilibrium
notion. Section 5 characterizes the optimal contract. Section 6 provides two practical
applications. The final section concludes.

2. ENVIRONMENT IN CONTINUOUS TIME

Consider an economy with single non-storable consumption goods under uncer-
tainty in infinite-horizon continuous time T = {t|t ∈ {0−} ∪ [0,∞)}.12 Note that
contrary to the control-theoretic convention, {0−} 6= {0}.

2.1. Uncertainty and dated commodity space

The stochastic basis is a filtered space R = (R,R, π): a compact real-valued
function space R = {ϕ : T 7→ R} with L2(π)-norm, a non-trivial right-continuous
Borel set R of subsets of R, and a uniquely common Lebesgue measure π. The space
R consists of a Cartesian product of two disjoint probability spaces: a finite initial
state space Θ with N elements (a finite integer N ≥ 2) and a driving state space
Ω = (Ω,F , P ) with a filtration F = {Ft}T with limt→∞Ft− = F∞− = F∞ = F .
The initial space Θ governs the set of possible initial states at 0−; the driving state
space Ω governs the evolution of the economy over time. Then, a Cartesian product
filtration R = {Rt}T with limt→∞Rt− = R∞− = R∞ = R is well-defined.

Further, there is a two-dimensional standard Brownian motion ω = {ω(t)}T where

ω(t) =
[

Ws(t) W0(t)
]>

,13 the elements of which are independent of each other and

12Nakamura [27] includes a mathematical appendix showing longer, technical descriptions.
13The superscript > represents a transpose of the matrix.
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form independent driving state space (Ωs,F s, P s), (Ω0,F0, P 0) for (Ω,F , P ). The
sample paths of ω specify all the distinguishable events after 0−. Therefore, a com-
plete filtration generated by ω is equivalent to F . Note that, as defined below,
W0 drives a sequence of income shocks while Ws drives a sequence of payment ran-
domization shocks. Also, the initial payment level is deterministic according to the
contract. Thus, there is no payment uncertainty at 0−.

Next, the commodity space, denoted by Φ, is a convex set of semimartingales φ
such that φ ∈ Φ is L2-reducible and that its cumulative return process Lnt(φ) is
special semimartingale for all φ ∈ Φ.14 Let L denote the set of the cumulative return
process in Φ. Let M denote the set of the local martingale parts n in the unique
canonical decomposition in L. For a filtration R, there exists a density process
M(t) := E

[
dπ̃
dπ
| Rt−

]
such that for each semimartingale φ ∈ Φ and for each t ≥ 0,

M(t)φ(t) is a martingale under an equivalent measure π̃. Let Mπ denote the space
of m such that M(t) = Et [m] and that E [supt∈T |m(t)|] < ∞. Define a bilinear
form (m,n) : Mπ ×M 7→ R := E [〈m,n〉∞].15 L is a Hilbert lattice under the inner
product 〈l1 | l2〉 := E

[∫∞
0

l1l2dt
]

for any l1, l2 ∈ L.

2.2. Players

The economy is populated with three infinitely-lived players: one borrower and
two identical lenders, indexed by i = 1, 2, 2′. Each of them consumes the consumption
goods at each instant: {γsi(t)}t∈T ∈ Φ for i = 1, 2, 2′. Player i has a time-separable
utility of consumption characterized by an instantaneous utility function fi : ΦT → R
and a common instantaneous discount rate δ. In particular, fi is of a CRRA type with
the coefficient of relative risk aversion 0 < ψi < 1 with ψ2 = ψ2′ . Given {γsi(t)}t∈T,

player i’s ex ante lifetime utility level is E
[∫
T e−δt γsi(t)

1−ψi

1−ψi
dt

]
. Also, player 1’s ex

ante autarky utility level U0 > 0; player 2, 2′’s are zero V0 = 0.

2.3. Technology

Each player 2, 2′ has one unit of indivisible physical input (or capital). Player 1
has a project that could produce a positive, predictable income process of the goods,
denoted by X ∈ Φ, when either player 2 or 2′ (not both) transfers one unit of his
capital to player 1. The capital transfer (or investment) may take place only at the
outset of the whole game, i.e., before 0−. If player 1 has no input, then the economy
has no income forever.

14For each t, Lnt(φ) has a unique canonical decomposition into a local martingale part and a predictable part with
finite variation where Ln denotes a stochastic logarithm operator Ln = E−1 and E denotes a (modified) Doléans-
Dade exponential. A semimartingale with bounded jumps is a special semimartingale (Protter ([30], Theorem 18-20,
p. 107).

15E denotes an expectation operator.
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Suppose that player 2’s capital is delivered to player 1. Then, player 1’s project
starts its production {X(t)}T. The initial state space Θ completely characterizes

the initial income X(0−): Θ =
(
Θ, Θ̃, η

)
where Θ = {θ1, θ2, ..., θN} is a finite set

with 0 < θ1 < θ2 < ... < θN < +∞. θ̂ :=
∑

Θ θη(θ). θ is randomly drawn from Θ
by nature before 0− and is revealed accurately to player 1 ex ante. Call θ ∈ Θ as
the type of the player. After 0−, the income process is driven by one-dimensional
standard P 0-Wiener process W0:

dX(t) = µ0X(t)dt + σ0X(t)dW0(t)

where µ0, σ0 ∈ R+ are constant. The pair (µ0, σ0) is public information. The real-
ization of income is privately observable to player 1.

A state verification (or disclosure) technology reveals player 1’s current income
level to player 2 (or 2′) with perfect accuracy. The technology is available to player 1.
A disclosure process d ∈ D = {0, 1}t∈T is predictable. A point of time t is said to be
a disclosure time if the disclosure occurs at t− (i.e., d(t−) = 1). When the disclosure
is undertaken, it requires resources from player 1 at the disclosure time and causes
the process of player 1’s state variable to decrease permanently relative to what it
would otherwise be. The resource loss is deadweight loss. Call the loss as disclosure
costs. Let X̂(t−) denote the disclosed income level at the disclosure time t.16 Let
S(t) denote the amount of the ex post observable payment to player 2 (or 2′) at t.17

The disclosure costs are represented by λ
[

S(τ−) X̂(τ−)
]>

with a non-negative

two-dimensional row vector λ =
[

λs λx

]
. The elements are constant and public

information. By using the costly disclosure technology, player 1 could control his
own income process downward impulsively. Therefore, X is an impulsively controlled
process.

3. INSTITUTIONAL STRUCTURE: CONTRACT AND DEFAULT

This section describes the institutional structure as a continuous-time game in
an extensive form. As Simon and Stinchcombe [33] discuss, a continuous-time game
often faces difficulty with defining extensive-form stages in an infinitesimal compo-
nent game. In particular, there is no natural notion of the previous stage before a
point of t. In fact, for a continuous-time game, there may not exist a sequence of the
discrete-time games in general that would converge to the the continuous-time game
(with some relevant topology) as the discrete-time grid goes to zero. By construc-
tion, player 1’s report and strategic actions at a stage might cause some information

16I will write the revealed income level simply as X(t−) (i.e., without a hat) below unless it causes any confusion.
17Obviously, γs2(t) = S(t) and γs1(t) = X(t)− S(t).
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flows across the following stages in an infinitesimal component game in this model.
Accordingly, this model is not an exception like several continuous-time contracting
models (e.g., Biais et al. [4], Sannikov [32], Williams [36]). By defining an appro-
priate topology, this continuous-time game is a continuous limit. For each t, I can
define the very fine time grid {t−} ∪ [t, t + dt) during which a component game is
played.18

To begin with, I describe the institutional structure informally. Before 0−, each
player 2, 2′ announces a contract, which prescribes (1) a goods transfer process to
his own, characterized by a function of player 1’s messages, the observed actions
and outcomes and the calendar time conditional on the participation, and (2) a
recommended participation probability that he sends to player 1. During the an-
nouncements, neither player 2 nor 2′ can observe the contract announced by the
other, while player 1 can observe the two announced contracts. Next, player 1 com-
municates with player 2, 2′. Specifically, he sends a message to player 2, 2′ regarding
the announced contracts. For simplicity, player 1 reports player 2 (or 2′)’s contract
itself to player 2′ (or 2).19 Player 1 does not necessarily tell the truth. In turn,
each player 2, 2′ reports his recommended participation probability to player 1 as
prescribed in the contract. Then, player 1 chooses which contract he participates
in or neither. He can use a mixed strategy regarding the participation decision,
although he will enter into only one contract. Once the choice is made, then it is
revealed to player 2, 2′. If player 1 chooses neither of them, then all must live in
autarky forever. If player 1 does not choose player 2, then player 2 must live in
autarky forever. If player 1 chooses player 2, then they make a bilateral contract by
signing an agreement. The contracting players can commit to the agreement except
for player 1’s costly disclosure. The process until the agreement is called an ex ante
negotiation stage (Figure 1). For notational convenience, let {−1} denote this stage.
By construction, the contracts are exclusive after the agreement. Still, there exists
contractual externality through the participation probability. After the agreement,
player 2 (or 2′) transfers his capital to the contracting player.

From the initial point 0−, a game starts according to the contract. Player 1’s pro-
duction process starts with the invested capital, and the output is allocated between
the bilaterally contracting players over time according to the contract. For notational
convenience, suppose that player 1 and 2 enter into a contract in an equilibrium. For
each t, a component game evolves for a very fine time duration {t−} ∪ [t, t + dt) (or
grid t). The component game consists of three stages. First, at a disclosure stage t−,
player 1 decides whether or not to disclose the true state. If disclosure occurs, then
disclosure cost is imposed on player 1, and player 2 observes the instant state X(t−)

18Nakamura [27] includes a mathematical appendix proving these results.
19The message could be general in the degree and nature of the communication. But the simplification does not

lose any generality.
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Lenders’ announcement of mechanisms 

Borrower’s message of the mechanisms 

Lender’s report of recommended participation 

Borrower observes both of them. 
One lender cannot observe the other 
mechanism. 

Borrower sends a message regarding the 
announced mechanisms to each lender. 

Borrower’s choice of a mechanism 

Making a contract by signing an agreement 

FIG. 1 Timing of events in the ex ante negotiation stage

at t−. Then, the instant-t restructured payment level is resolved deterministically in
a way that meets the contractual requirement based on the information set gener-
ated by the revealed true state. If player 1 does not disclose, then no restructuring
occurs. The output and payment processes evolve continuously from the left-limit
time t− to t. The second stage is a production stage. At this step, the grid-t output
is produced based on the driving force of the one-dimensional geometric Brownian
motion and reveals the true output amount (i.e., grid-t true state) only to player 1.
Third, the component game proceeds to a payment stage. At this stage, player 1
sends a message of his current state to player 2.20 The message is not necessarily
true. Then, player 1 sends a payment to player 2 according to the contract. At the
end of the grid, they consume the allocated goods. The dynamic game moves on
continuously (Figure 2).

Formally, at the ex ante negotiation stage {−1}, first, each player 2, 2′ proposes
a contract to player 1, which is characterized by a message space C and an outcome
function γ. The message space C := C1 ∪C2 in which C1 denotes player 1’s message
space regarding the announced contracts at the ex ante negotiation stage; C2 denotes
player 1’s dated message space regarding his own states over T. The message spaces
are measurable. Let {C(t)}{−1}∪T ∈ C denote the message process over {−1} ∪ T.

20The message could be general in the degree and nature of the communication. But the simplification does not
lose any generality.
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Disclosure stage 

Production stage 

Payment stage 

t-: 

t: 

dt 

Controlled by the borrower. 
Disclosure/Renegotiation or No disclosure. 

Controlled by Nature. 
Driven by a one-dimensional geometric 
Brownian motion. 

Message sent by the borrower. 
Payment according to the mechanism. 
Both consume the allocated goods. 

The dynamic game moves on continuously. 

FIG. 2 Timing of events in a component game

Based on the message space, define the outcome function as γ : C1 × C2 × D →
ΦP×4(P ) where Φ denotes the set of payment processes S from player 1 to player 2,
D = {0, 1}T denotes player 1’s dated disclosure space with d(t) (for t ∈ T, d(t) = 1
if a disclosure takes place; d(t) = 0 otherwise), P = {0, 1} (1 denotes participation;
0 no participation), and 4(P ) = [0, 1] (its element pγ given a contract γ) denotes
the space of the recommended participation probability that player 2 announcing γ
gives to player 1 before 0− after receiving player 1’s message C(−1) ∈ C1. Note that
ΦP denotes the set of the payment processes conditional on player 1’s participation.
Participation and disclosure actions are player 1’s incontractible efforts. I will call
the outcome function γ as well as a contract. Write γ = (γs, γp) where γs denotes a
payment rule and γp denotes a recommended participation probability.

A contract is said to be feasible if the sum of the allocated consumption is not
larger than the whole income for any state at each time, i.e., 0 ≤ γs(C(t), d(t)) ≤ X(t)
for any C(t) ∈ C , d(t) ∈ D, and t ≥ 0 almost everywhere (a.e., hereafter), almost
surely (a.s., hereafter) conditional on the participation. Notice that at initial point
t = 0−, S(0−) > X(0−) is possible instantaneously. Then, player 1 strategically
takes a disclosure action. So, the payment S(0−) is not realized in this case. Let Γ0

denote the set of the feasible contracts, endowed with some topology.
At the ex ante negotiation stage, the type of player 1 is his own private informa-

tion, although the type space is public information. The type determines the initial
level of his income process. Player 2 chooses γ to make player 1’s optimal choices
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as favorable as possible to player 2 unless he loses player 1’s participation. Player 1
sends a message C(−1) ∈ C1 after observing the two announced contracts before
0−, receives player 2’s recommended participation probability according to terms of
the contract, and chooses a contract γ or γ′ or neither. Importantly, since player 2’s
contract terms include his recommendation of player 1’s entering into his contract,
player 2’s contract may depend whether player 2′’s contract depends on whether
player 2’s contract depends... and so on. That is, the ex ante negotiation process
has a “nesting” structure. In equilibrium, player 1 is supposed to decide a state
verification episode d(t) ∈ D, makes a payment S(t) to player 2, and participation
p ∈ [0, 1] such that for some path (S̄, p̄), (S, p) coincides with (S̄, p̄) on [0, t].

From 0− onwards, a dynamic game begins under the chosen contract. There exist
two kinds of decision nodes: (1) a distinguished node {0−}, which is the root of the
game, and (2) regular nodes indexed by a point of left-limit time t−. The infor-
mation set is denoted by Ri,t− for each t− (t ≥ 0) and i – call it player i’s private
filtration – which is generated by the processes distinguishable to player i prior to
t (i.e., at or prior to the left-limit time t−). Because of the private information,
R2,t− is coarser than R1,t− for all t. In particular, for the distinguished point {0−},
R1,0− = σ {S (0−)}∪σ {θi} andR2,0− = σ {S (0−)}. For a regular node at t−, R1,t− =
σ {S (u−) , 0 ≤ u ≤ t} ∪ σ {X(u−), 0 ≤ u ≤ t} and R2,t− = σ {S (u−) , 0 ≤ u ≤ t} ∪
σ

{
X̂(u−), 0 ≤ u ≤ t

}
. Let R1 := {R1,t}T and R2 := {R2,t}T. In summary, a

decision node is characterized by a point of time and the two players’ private filtra-
tions: (0−,R1,0− ,R2,0−); for t > 0, (t−,R1,t− ,R2,t−). Let E

[·|Ri,t−
]

= Ei
t [·] denote

player i’s conditional expectation operator given Ri,t− . At each node, there is an
arbitrarily small time duration dt such that for a time interval {t−} ∪ [t, t + dt), an
instant-t component game is played – call this interval grid t as well.21

Under the contract, for each t ≥ 0, the timing of events during the grid {t−} ∪
[t, t + dt) given

(R1,t− ,R2,t−
)

is as follows. First, at the disclosure stage t−, player 1
decides whether or not to disclose his current income level via the costly disclosure
technology given the information set R1,t− . If player 1 does not disclose, then no re-
structuring occurs. The instant-t output and payment processes evolve continuously
from the left-limit time to t: X(t) = X(t−) and S(t) = S(t−). If player 1 discloses,
then the disclosure costs are imposed on player 1’s left-limit income X(t−). The
income process is lowered discontinuously by the amount of the disclosure costs: the

instant-t income level is X(t) = X(t−) − λ
[

S(t−) X(t−)
]>

. Then, the instant-t
payment is restructured in a “deterministic” way according to the terms in the ex
ante contract. That is, at the ex ante negotiation stage {−1}, player 2 provides
player 1 with a take-it-or-leave-it offer of the contract that prescribes not only the
payment level in the “normal” situation (i.e., in which no disclosure is undertaken)

21For details, see Nakamura [27].
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but also a restructuring plan. Player 2 intends to obtain as high payoffs as possible in
the restructuring plan unless the payoffs prevent player 1 from participating. At the
same time, because of the non-cooperative competition of such contract designing,
the restructured payment level is no lower than player 1’s willing-to-pay level. Note
that by construction, player 2 knows the current state in this situation. This model
assumes that the restructuring mechanism is deterministic in the sense that it has no
randomization. Therefore, I focus on an instantaneous restructured payment level
that is equivalent to player 1’s willing-to-pay level – denoted by Ŝ – which the contract
prescribes as a function of observed actions and disclosed true states. Second, at the
production stage, given the instantaneous state variable levels at t, the grid-t output
is produced based on the one-dimensional geometric Brownian motion and reveals
player 1’s true state only to himself accurately: dX(t) = µ0X(t)dt + σ0X(t)dW0(t).
Third, the component game proceeds to the payment stage. At this stage, player 1
sends a message C(t) ∈ C2 to player 2. Then, player 2 receives a payment according
to the contract. At the end of the infinitesimal component game, they consume the
goods allocated for the whole grid {t−} ∪ [t, t + dt). Then, the dynamic game moves
on continuously.

In the game, both the contracting players commit to the contract except for the
borrower’s “defaults.” The specific meaning of the default in this paper is as follows.
Player 2, 2′ as well as player 1 have an incentive to minimize the disclosure costs
in order to save as much income as possible. Accordingly, each player 2, 2′ draws
up a contract that seeks to balance two goals conditional on player 1’s participa-
tion: (1) to make player 1 reveal his true state as frequently as possible in order
to prevent player 1 from excessive exploitation of the informational rents and (2)
to make player 1 reveal his true state as infrequently as possible in order to reduce
the disclosure costs. Following the standard CSV discussions, we can conjecture
that in case player 1 discloses his bad state, each player 2, 2′ strategically provides
him with a partial payment exemption. That is, player 1 has an option to break
his payment promise by resorting to a costly verification of his current low-income
state. Player 1’s disclosure decision is not specifically anticipated as a response to
the terms of the contract, although it is averse to player 2, 2′. Since player 1’s under-
lying state evolves continuously in the CSV environment, a downward discontinuity
in the payment path, which immediately follows after the disclosure action, is a good
candidate to be treated as a default in this sense. So, henceforth, I define a default
to be player 1’s instantaneous choice to lower discontinuously his payment level.

In summary, player 2 designs a contract competitively to maximize his lifetime
utility; after choosing a contract, player 1 makes payment and, if necessary, demands
state verifications and restructures the payment profiles according to the terms of
the contract that he has chosen to maximize his lifetime utility. Hence, the contract
is modeled to be contingent and partially enforceable, i.e., player 1 cannot make a
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sequence of decisions incompatible with the payment rule except for defaults.

4. CONTINUOUS CONTRACTS, STRATEGIES, AND EQUILIBRIUM NOTION

4.1. Continuous contracts and strategies

This paper focuses on a particular form of contracts in the following five points.
First, the payment S(t) is predictable F s

t−-measurable. Second, the payment is sta-
tionary Markovian in the sense that it is dependent only on the current actions and
outcomes that player 2 can distinguish. Third,

Assumption 4.1. A payment process S ∈ Φ is continuous on a.e. sample path,
except for a countable, discrete set of discontinuities caused by costly disclosures,
adapted only to F s.

Since the initial payment level is deterministically decided according to the contract,
there is no payment uncertainty at 0−. For a payment process S ∈ Φ and a local
martingale M(t) = Et(m),

M(t)
S(t)

S(0)
= Et(m)Et(s0) = Et(m + s0 + [m, s0])

where s0(t) = Lnt(
S

S(0)
) denote the stochastic logarithm of the payment process

normalized by its own date-0 value. By those assumptions, we obtain two lemmas
as follows.

Lemma 4.1. ∀n ∈M, ln S(0) + d(t) + 〈m,n〉t = 0.

The proof is similar to Proposition 10.1.8 of Musiela and Rutkowski ([25], p. 246).
There exists a price-of-risk process ςu such that

∫
T ςud 〈m〉u = ln S(0) + d(t) and

P (
∫
T |ςu| d 〈m〉u < +∞) = 1. Hence, the Girsanov transformation parameters are

deterministic in the sense that they are independent of the state Ws. Next, the
continuity of the process means that jumps may occur endogenously only at disclo-
sure times. By Lemma 4.1 and the Martingale Representation Theorem for a local
martingale,

Lemma 4.2. There exist F s-predictable processes µ, σ such that for τm ≤ t <
τm+1 (m = 1, 2, ...), dS(t) = µS(t)dt + σS(t)dWs(t).

where τm denotes the mth state verification time.
Fourth, for some technical reasons, σ is independent of either player 1’s controls

or time. In addition, µ is independent of t except through player 1’s controls. Let
Σ := R+ ∪ {0}. Let A denote an equicontinuous family of real-valued functions on
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C2 × D that is uniformly bounded on any closed interval on C2 × D. By the Ascoli-
Arzelá Theorem, A is relatively compact in a set of all the continuous mappings
(Royden [31], theorems 40,41, p. 169).

Assumption 4.2. σ ∈ Σ and µ(C(t), d(t)) ∈ M .

The diffusion coefficient is a non-negative scalar. By Lemma 4.2, the continuous
payment profile is characterized by S(τm) ∈ R+ and its subsequent evolution by a
geometric Brownian motion between immediate state verifications: for τm ≤ t < τm+1

(m = 1, 2, ...),

dS(t) = µ(C(t), d(t))S(t)dt + σS(t)dWs(t).

In words, dWs(t) is a randomization to conceal a pure choice of the payment level
at each t. σS(t) is the amplitude of the randomization. In particular, σ = 0 would
mean no randomization in the contract.

Finally, I characterize the restructured payment function by Ŝ(S(t−), X(t−)) at
each t ≥ 0. Let B denote an equicontinuous family of real-valued functions on
Φ × Φ that are uniformly bounded on any closed interval on Φ × Φ. Again, by
the Ascoli-Arzelá Theorem, B is relatively compact in a set of all the continuous

mappings. In summary, γs is characterized by
(
S(0−), Ŝ, µ, σ

)
in R+ × B× A× Σ,

rather than designs S complexly. Write γs =
(
S(0−), Ŝ, µ, σ

)
as well. A contract is

said to be continuous if it satisfies those five specifications. Let Γ denote the set of
continuous contracts in Γ0. Assume that the set of continuous contracts Γ is non-
empty. Define Γs as the set of γs corresponding to each γ ∈ Γ. Assume that there is
no randomization across the elements of Γ.

Next, player 1’s strategies are stationary Markovian in the sense that player 1
chooses a fixed-dimensional function that maps his current information to the com-
munication, disclosure and participation actions. They are pure except for the par-
ticipation strategies. Precisely, the ex ante negotiation communication strategy is a
mapping C̃1 : Θ×Γ2 → C1, that is, a message is sent to player 2 under player 2’s con-
tract γ ∈ Γ when player 2′ is using γ′ ∈ Γ given his true type θ at −1. Since player 1
chooses a contract either γ or γ′ or neither after observing the two announced con-
tracts at −1, the participation strategy γ is a map p̃ : Θ× Γ2×C2

1×4(P )2 → [0, 1]
after player 1 sends a message to player 2, 2′ and receives the recommended partici-
pation probabilities from player 2, 2′ when the other contract is γ′ given his true type
θ. For consistency, for any θ ∈ Θ, γ, γ′ ∈ Γ, p̃(θ, γ, γ′, pγ, pγ′)+ p̃(θ, γ′, γ, pγ′ , pγ) ≤ 1.

Player 1’s predictable disclosure strategy conditional on the participation is d̃ :
Φ2 × Γ2 → D, that is, d(t) = d̃(S(t−), X(t−), γ, γ′). In particular, define player 1’s
pure-strategy control policy conditional on the participation as two increasing pre-
dictable processes of finite variation: ls : Φ2 × Γ2 → Φ and lx : Φ2 × Γ2 → Φ.
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ls(t) (resp. lx(t)) represents the cumulative amount of decrease in the logarithm
value of income process (payment process) controlled by player 1 up to t: ls(t) =

ls(0) +
∫ t

0
dls(s) and lx(t) = lx(0) +

∫ t

0
dlx(s). The two time-paths jump at the same

time. l(t) :=
[

ls(t) lx(t)
]>

. For the control process, a disclosure action d̃ is char-
acterized by R1-predictable stopping times. Let {τ} = {τ1, τ2, . . . , τm, ...} denote a
sequence of the stopping times. Suppose that player 1 requests a state verification
and pays the resource costs for the mth time at t− in state r ∈ R. Then, τm(r) = t
denotes a default time. Therefore, as a policy function representation, we can replace
d with τ . Mathematically, as Harrison [20] formulates, {τ} is generated implicitly
in the process l. Still, this paper represents a default time as an additional control.
For notational convenience, set τ0 = 0, τ(−1) denotes one default time before each
τ , and τm(t) denotes the latest state verification time up to t (including t).

The communication strategy over T conditional on the participation is a mapping
C̃2 : Φ2×D×Γ2 → C2, that is, for t ∈ T, a message C(t) = C̃2(S(t), X(t), d(t), γ, γ′)
is sent to player 2 under the contract γ ∈ Γ (given player 2′’s contract γ′ ∈ Γ) after
taking a disclosure action d(t) and observing S(t), X(t) given his own true type θ.

Write player 1’s control policy as c̃ =
{

C̃, d̃ (or τ), dl, p̃
}

in a well-defined policy set.

4.2. Equilibrium notion

For an arbitrary control policy of his own c̃, given the type θ, the contracts
γ, γ′ ∈ Γ, player 1’s ex ante utility is:

U(c̃; γ, γ′, θ) (4.1)

=





p̃(θ, γ, γ′, pγ, pγ′) lim
m→∞

τm∑
τ=τ1

τ∫
τ(−1)

e−δtE
[
f1(X(t)− S(t)) | R1,t−

]
dt

+p̃(θ, γ′, γ, pγ′ , pγ) lim
m→∞

τ ′m∑
τ=τ ′1

τ ′∫
τ ′(−1)

e−δtE
[
f1(X

′(t)− S ′(t)) | R′
1,t−

]
dt





subject to for any t,

dX(t) = µ0X(t)dt + σ0X(t)dW0(t)− dlx(t) given X(0) = θi

dS(t) = µ(C̃(t), d̃(t))S(t)dt + σS(t)dWs(t)− dls(t) given S(0−)

dlx(t) = X(t−)−X(t) = λxX(t−) + λsS(t−)

if t = τm for m = 1, 2, ... and dlx(t) = 0 otherwise.

dls(t) = S(t−)− S(t)

if t = τm for m = 1, 2, ... and dls(t) = 0 otherwise.

dX ′(t) = µ0X
′(t)dt + σ0X

′(t)dW0(t)− dl′x(t) given X(0) = θ′i
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dS ′(t) = µ′(C̃ ′(t), d̃′(t))S ′(t)du + σ′S ′(t)dWs(t)− dl′s(t) given S ′(0)

dl′x(t) = X ′(t−)−X ′(t) = λxX
′(t−) + λsS

′(t−)

if t = τ ′m for m = 1, 2, ... and dl′x(t) = 0 otherwise.

dl′s(t) = S ′(t−)− S ′(t)

if t = τ ′m for m = 1, 2, ... and dl′s(t) = 0 otherwise.

where X ′ (resp. S ′, R′
1) denotes player 1’s income process (or payment process,

information set) when he participates in the contract γ′, and χ{τm≤τm(t)} denotes an
indicator that, if τm ≤ τm(t), means 1, or else 0. Now, a control policy c̃ is said to
be a continuation equilibrium relative to Γ if player 1 has no incentive to deviate
from c̃ for any realization X ∈ Φ, any pair of announced contracts γ, γ′ ∈ Γ. Call
the optimization program Problem (4.1). Assume the existence of a continuation
equilibrium relative to Γ. Let c∗ denote the continuation equilibrium strategy.

Next, define the equilibrium notion in the contract design. Player 2’s preference
is: for an arbitrary γ ∈ Γ and given γ′ ∈ Γ, c∗,

V (γ; γ′, c∗) = E

[
pγ

∫

T
e−δtE

[
f2(S(t)) | R2,t−

]
dt

]
. (4.2)

A pair (γ∗, c∗) is said to be a (symmetric) equilibrium relative to Γ if

γ∗ ∈ arg max
γ∈Γ

V (γ; γ∗, c∗), S(τ ∗−) + l∗s = Ŝ∗, and pγ∗ = p̃∗

where S(τ ∗−) denotes the payment level just before each continuation equilibrium
disclosure time. Assume the unique existence of a symmetric equilibrium. I confine
attention to symmetry on the strategies that the players use in equilibrium.22 Call
the optimization program Problem (4.2).

To summarize, player 2 maximizes his expected discounted utility by designing
(S(0−),Ŝ, µ,σ,p,p′) ex ante; player 1 pays and, if necessary, executes state verification
strategies by controlling c̃. In particular, this paper focuses here only on the sym-
metric equilibrium. The homogeneity of the instantaneous utility (degree of 1− ψ1)
and technological constraints (degree of one) leads to the homogeneity of value func-
tions. By substituting p̃∗ and c̃′∗, define Ū(S,X) = maxc̃ U(c̃; γ, γ′) given γ, γ′. Write
Ū(t) = Ū(S(t), X(t)) as well.

22This paper does not investigate the multipilicity of equilibria including asymmetric ones and their Pareto ranks.
Rather, it focuses on the competitive implications of the symmetric equilibrium.
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5. OPTIMAL CONTRACT DESIGN

This section describes an optimal contract. In this common agency problem, the
principals’ contracts can depend on one another in complex ways: player 2’s contract
may depend whether player 2′’s contract depends on player 2 contract depends... and
so on. Therefore, the set of the agent’ true states that matter in the contract designs
must come from an infinite dimensional space even when the set of states are finite in
the conventional sense. As to player 1’s reports of the true states, the contract choice
process reveals private information beyond the reports of his own type. Therefore, a
standard direct-revelation principle does not hold for the communication games Γ.
Hence, instead of the communication games, this paper initially confines attention
to decentralized menus of payoff-relevant actions like Peters [29] does.

Especially in CSV environments, player 1’s messages are not necessarily able to
deliver credible information because of the disclosure costs. Player 1 has an incentive
to make a lie-telling report as low as a critical level when the true income level
is higher than the critical level. Player 2 also has an incentive to minimize the
disclosure costs. Importantly, as Townsend [34] shows, player 1’s welfare must be
indifferent with respect to whether or not to disclose at the critical point. This result
suggests that the original equilibrium outcome in the communication mechanisms
could remain an equilibrium in some decentralized menu game.

Therefore, this section, initially, focuses on the set of menu contracts of payoff-
relevant choices conditional on the participation and solves for the optimal contract
in a constrained strategy space, which is coarsened into the set of ex post verifiable
payoff-relevant variables. Then, I will show that the original equilibrium outcome in
the communication mechanisms remains an equilibrium in the optimal contract in
the constrained space.

This optimization program consists of two steps: first, player 1 optimizes his
continuation utility level with respect to c̃ given {S(0−), Ŝ, µ, σ} and, second, player 2

optimizes his lifetime utility with respect to {S(0−), Ŝ, µ, σ} given player 1’s optimal

control mappings c̃∗(S(0−), Ŝ, µ, σ). The process Ŝ is consistent with the payment
control process ls in equilibrium.

5.1. Player 1’s problem and implementability of contracts

This subsection studies player 1’s optimization with respect to {τ, dl(τ)} given{
S(0−), Ŝ, µ, σ

}
. Specifically, it (1) elaborates player 1’s problem as a stochastic

impulse control formulation on the infinite horizon conditional on his participation

in player 2’s contract γ given
{

S(0−), Ŝ, µ, σ
}

, given γ′ for the appropriate p̃, p̃′, and
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then (2) characterizes the implementability of the contracts.23

For some technical convenience, assume that the first default occurs at 0−. In the
model, since the initial shock is unobservable to the contract designer, this assump-
tion does not lose any generality. So, X(0) 6= X(0−). The construction is contrary
to the conventional stochastic-process discussions, but is convenient to achieve a re-
cursive structure from 0. In addition, assume that for an arbitrarily large finite time
T , there exists the second stopping time τ in [0, T ]. Then, I focus attention on [0, τ ].
I will revisit the economic implications of the restrictions in Subsection 5.3.

First, with some regularities, there exists a semigroup formulation associated with
the above problem (4.1):24 on the finite horizon, given {X(0), S(0), µ, σ} and appro-
priate Ū(τ),

Ū(0) = max
{τ,dl(τ)}

E

[∫ τ

0

e−δuf1 (X(u)− S(u)) du + e−δτ Ū(τ) | R1,0

]
(5.1)

subject to

dX(t) = µ0X(t)dt + σ0X(t)dW0(t) for 0 ≤ t < τ given X(0)

dS(t) = µS(t)dt + σS(t)dWs(t) for 0 ≤ t < τ given S(0)

X(τ) = (1− λx)X(τ−)− λsS(τ−) (5.2)

Ū(0) ≥ U0.

Call this program as Problem (5.1). This paper does not necessarily mean by “being
associated” an exact equivalence between Problems (4.1) and (5.1). In fact, under the
regularities, Problem (5.1) is a weak formulation of Problem (4.1).25 In the remaining
section, I focus on the semigroup formulation (5.1). That is, for an arbitrary γs ={

S(0−), Ŝ, µ, σ
}
∈ Γs, there exists a maximal element of the set of the stationary

value functions Ū . A key of this solution method is to treat a state verification
decision as an impulse control by player 1.

I use a stochastic maximization principle on a finite horizon [0, τ ]. Since W0 is
not observable to player 1, the contract cannot depend on W0. By construction of
the income process X, define a predictable process:

Π(t) = exp

(∫ t

0

σ−1
0 µ0dW̄0(u)− 1

2

∫ t

0

∣∣σ−1
0 µ0

∣∣2 dt

)

where W0(t) = W̄0(t) −
∫ t

0
σ−1

0 µ0du. By the above hypotheses, Novikov’s condition
is satisfied. Therefore, Π(t) is a martingale with E [Π(τ−)] = Π(0) = 1. By the

23As Fleming and Soner ([13], p. 153) point out, the solution method in the bilinear forms uses quasi-variational
inequalities, rather than the viscosity method, because of branch points on the paths.

24For details, see Nakamura [27].
25For more discussions, see Nakamura [27].

18



Girsanov theorem, I have a new measure P̄ 0:

dP 0

dP̄ 0
= Π(τ−).

Call the distribution process Π the relative density process. Also, define z = S
X

and
z̄ = zΠ. By the homogeneity structure of the objective function (degree 1 − ψ1)
and of the cost structure and state evolution equations (degree 1), the value function
is homogeneous of degree 1 − ψ1. Define Ū( S

X
, 1) = u(z). Then, I replace the

original state variable pair (S, X) with a new state variable pair (z̄, Π). The evolution
equations of the new state variables are rewritten as: for 0 ≤ t < τ , given Π(0), z̄(0),

dΠ(t) = Π(t)σ−1
0 µ0dW̄0(t)

dz̄(t) = z̄(t)
{
µ(t)dt + σ(t)dWs(t) +

(
σ−1

0 µ0 − σ0

)
dW̄0(t)

}
.

Hence, by the measure change, Problem (5.1) is rewritten into:

X(0)1−ψ1u(z(0)) (5.3)

= max
{τ,dl(τ)}

Ē1
0

[ ∫ τ

0
e−δtΠ(t)X(t)1−ψ1f1 (1− z(t)) dt

+e−δτΠ(τ) {X(τ−)κ}1−ψ1 u(z(τ))

]

subject to for 0 ≤ t < τ , given τ, Π(0), z̄(0),

dΠ(t) = Π(t)σ−1
0 µ0dW̄0(t)

dz̄(t) = z̄(t)
{
(µ(t)− µ0) dt + σ(t)dWs(t) +

(
σ−1

0 µ0 − σ0

)
dW̄0(t)

}

κ(τ) = (1− λx)− λsz(τ−)

Ū(0) ≥ U0

where κ(τ) = X(τ)
X(τ−)

and Ē1
0 denotes the expectation operator conditional on the

information set R1,0 under the changed measure. First, fix the first disclosure time
τ and deal with the maximization with respect to dl(τ). Hence, given τ, z̄(τ−),

max
dl(τ)

Ū(τ) = max
z(τ)

X(τ−)1−ψ1 {(1− λx)− λsz(τ−)}1−ψ1 u(z(τ)). (5.4)

Since the value function u is convex in the state variables,

Assumption 5.1. There exits a z(τ) satisfying uz(z(τ)) = 0 and uzz(z(τ)) < 0.

Denote the maximand by z∗(τ). By using the optimal control z∗(τ) (or dl∗(τ)), I
replace maxdl(τ) Ū(τ) with:

Ū∗(τ−) = X(τ−)1−ψ1 {(1− λx)− λsz(τ−)}1−ψ1 u(z∗(τ)). (5.5)

Move further to the maximization with respect to τ (or equivalently τ−). Following
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Williams [36], I use a stochastic maximization principle in continuous time for 0 ≤
t ≤ τ−. Rewrite the variables into stacked forms:

y(t) =

[
z̄(t)
Π(t)

]
, ω̄(t) =

[
Ws(t)
W̄0(t)

]
, A(t) = Π(t) ·

[
z(t) (µ(t)− µ0)

0

]
,

B(t) = Π(t) ·
[

z(t)σ(t) z(t)
(
σ−1

0 µ0 − σ0

)
0 σ−1

0 µ0

]
.

Let Ψ =

[
Ψ1

Ψ2

]
denote the adjoint processes associated with y. Also, let Λ(t) =

[
Λ11(t) Λ12(t)
Λ21(t) Λ22(t)

]
denote the 2× 2 target volatility matrix of the adjoint processes.

Given τ , for 0 ≤ t ≤ τ−, the Hamiltonian for this problem with the adjoint equations
is:

HΠ(τ) = Ψ>A + tr
(
Λ>B

)
+ Πf1 (5.6)

subject to for 0 ≤ t < τ ,

dy(t) = A(t)dt + B(t)dω̄(t)

dΨ(t) = −
[
∂HΠ

∂y
(t)

]
dt + Λ(t)dω̄(t) (5.7)

given y(0) and Ψ(τ−) =
∂

(
Π(τ−)Ū∗(τ−)

)

∂y(τ−)
.

For any variable, let a superscript ∗ denote the optimal value of the variable. By a
standard stochastic maximum principle,

Lemma 5.1. There exist R1,t-predictable adjoint processes {Ψ(t), Λ(t)}, which
satisfy the evolution equation (5.7). In addition, given dl∗(τ) induced by Equa-
tion (5.4), τ ∗ satisfies for almost every t ∈ [0, τ−] a.s., HΠ(τ ∗) = max{τ}HΠ(τ)
in the Hamiltonian (5.6).

From the boundary conditions with respect to the backward variables,

Ψ∗
2(τ−) = u(τ−) + z∗(τ−)Ψ∗

1(τ−),

Ψ∗
1(τ−) =

∂u(τ−)

∂z∗(τ−)
.

By the assumption that a default occurs at 0−,

u(0) = Ψ∗
2(0)− z∗(0)Ψ∗

1(0).

For 0 ≤ t ≤ τ−, Ψ∗
2(t)−z∗(t)Ψ∗

1(t) represents player 1’s reservation continuation util-
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ity level, which player 1 would accept without requesting a default at t. The other
adjoint process Ψ∗

1 represents the shadow price process of the hidden payment/income
ratio. Hence, they constitute additional state variables in this optimization program.
Specifically, in terms of the standard dynamic optimal contract literature (e.g., Fer-
nandes and Phelan [12]), the evolution of Ψ∗

2 − z∗Ψ∗
1 characterizes player 1’s interim

individual rationality condition (that is, a promise-keeping condition). On the other
hand, Ψ∗

1 characterizes player 1’s truth revelation condition via the disclosure (i.e.,
a threat-keeping condition). Now, rewrite the control policy {τ ∗, dl∗} as a function
of t, y, Ψ given γs. By substituting the control policy function {τ ∗, dl∗(τ ∗)} into a
function, rewrite the function with a tilde.

Finally, I characterize a class of the implementable contracts. Define player 1’s
target controls as {τ̂ , dl̂} from player 2’s viewpoint. Then, let the association be-

tween a contract γs and player 1’s target controls {τ̂ , dl̂} be denoted by a contract
correspondence Γ{τ̂ ,dl̂}, which is induced as a result of player 2’s optimal contract de-

signs for each target {τ̂ , dl̂}. Then, a contract is said to be implementable if {τ ∗, dl∗}
is an optimal control when player 1 faces the contract correspondence Γ{τ̂ ,dl̂}. By

Lemma 5.1 above and Theorem 4.1 of Williams [36]:

Proposition 5.1. A contract is implementable if and only if (1) the contract
satisfies Ū(0) ≥ U0, (2) the contract and its optimal control {τ ∗, dl∗} satisfies the
solutions of the Hamiltonian (5.6) for τ , and (3) for almost every t ∈ [0, τ−], a.s.
HΠ(τ ∗) = max{τ}HΠ(τ).

Let Γ∗ denote the set of implementable contract γ. Correspondingly, define Γ∗s
with elements γ∗s .

5.2. Player 2’s problem: Optimal contract design

Finally, this subsection addresses player 2’s optimization problem. Define Y γ :=[
z
X

]
. If there exists a unique, globally stable solution for player 2’s optimization

problem, then an equilibrium contract uniquely exists. By adding some relevant
parametric restrictions, this subsection solves for the optimal contract. In particular,
I focus on a case of Ū(0) ≥ U0 under a symmetric, competitive contract.

Formally, Problem (4.2) is solved in a form of forward-backward stochastic differ-
ential equations subject to the implementability of the contracts. For state variables

ỹγ =

[
Ỹ γ

Ψ̃

]
, let the corresponding adjoint variables be denoted by

[
Ψγ

1

Ψγ
2

]
. The
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Hamiltonian Hγ for player 2 is as follows:

Hγ =

[
Ψγ

1

Ψγ
2

]>
Aγ + tr

(
(Λγ)>Bγ

)
+ f2(S̃) (5.8)

subject to given Ψ̃(τ ∗−) =
∂Π(τ ∗−)Ū∗(τ ∗−)

∂y(τ ∗−)
, Ỹ γ(0),

dỹγ(t) = Aγdt + Bγdω(t),

given Ψγ
1(τ

∗
−) =

∂V (τ ∗−)

∂Ỹ γ(τ ∗−)
, Ψγ

2(0) =

[
0
0

]
,

d

[
Ψγ

1(t)
Ψγ

2(t)

]
dt = −

[
∂Hγ

∂ỹγ
(t)

]
dt + Λγdω(t) (5.9)

We can define Aγ, Bγ directly from the above representation. From the analogue

of Lemma 5.1, there exist R2,t-predictable adjoint processes

{[
Ψγ

1(t)
Ψγ

2(t)

]
, Λγ(t)

}
,

which satisfy the evolution equation (5.9). In particular, Ψγ
2 denotes the shadow

price of player 1’s interim individual rationality and truth revelation (i.e., Ψ). In
other words, the first (second) element in Ψγ

2 represents whether or not the individ-
ual rationality (truth revelation) condition is binding. More precisely, the individ-
ual rationality (truth revelation) condition is binding at instant t if Ψγ

2(t){1} > 0
(Ψγ

2(t){2} > 0) (otherwise 0) where Ψγ
2(t){i} (i = 1, 2) is the ith element of Ψγ

2(t).

Note that by the above assumption, Ψγ
2(0) =

[
0
0

]
. Based on our equilibrium no-

tion, in the optimal contract, for some t, Ψγ
2(t){1} > 0 if and only if Ψγ

2(t){2} > 0
a.s.. In other words, a default occurs when, and only when, a state verification is
undertaken.

Proposition 5.2. Suppose that player 2’s control space Γ∗s is convex. If γ∗ ∈ Γ∗

is an optimal contract design, ∂Hγ

∂γs
·(γs − γ∗s ) ≥ 0 ∀γs ∈ Γ∗s a.e., a.s.. In particular, the

optimal contract requires the first-order, value-matching, smooth-pasting conditions
when and only when default occurs in Problem (5.1).

For the optimal utility process Ψ2, the binding promise-keeping condition implies
a value matching at t = τ− in Problem (5.1) For the shadow price process Ψ1 with
respect to the true states, the binding threat-keeping condition implies a smooth
pasting at t = τ− in Problem (5.1). Most stochastic control problems treat value-
matching and smooth-pasting conditions as necessary conditions in their optimiza-
tion procedures from a technical perspective. In contrast, this model provides the
above game-theoretic interpretation to both the value-matching and smooth-pasting
conditions.
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5.3. Solutions

First, this section studies the diffusion coefficient σS(t) for the payment process.
Denote M∗

s (σ) is a subset of Γ∗s given σ ∈ Σ.

Lemma 5.2. Suppose that for each given σ, player 2’s control subspace M∗
s (σ) is

convex. If γ is an optimal contract, then σ = 0. In addition, there must be a constant
µm > 0 for each default interval m > 0 such that for every payment path S that is a
component of γ, there are τ0 < τ1 < ... < τm < ... and k0 > k1 > ... > km > ... such
that S(t) = km exp µm(t− τm) for τm ≤ t < τm+1.

The intuition for the first part is as follows. γ is constrained to be sample paths for
stochastic processes with either 0 or positive diffusion coefficient. Positive diffusion
coefficient would mean the borrower’s ex ante (i.e., instant-t−) ignorance of player 2’s
pure choice of payment levels. This game, however, is not of a pure conflict. Ex ante
uncertainty of the pure payment choice would make the borrower more anxious of a
bad case and choose defaults more often. It would lead to a smaller size of the whole
pie and less profit of the lender. Removing the uncertainty would be favorable to
the lender as well as to player 1. Therefore, any positive diffusion coefficient process
would be inefficient. Under the above assumptions, an optimal payment process
would be non-stochastic.

A rough sketch of the proof for the second part is as follows. Suppose that µm ≤ 0
for some m. These have payment paths on which the lender receives virtually nothing

a.e. since the system would be divergent if −(µ−µ0)
σ0

≥ 0 for each t. Obviously, the
lender would not permit the borrower to choose such path. Therefore, for s ∈ S,
s(t) = s(τm) + µm(t− τm) for each discontinuity interval τm ≤ t < τm+1 ∀m.

Next, I solve for player 1’s optimal default behavior given µ, S(0). This framework
is a typical impulse control problem. Due to the asymmetric information, the impulse
control problem has a one-sided boundary. Given Equation (5.4), because of the
players’ CRRA-type utility form, there exists an interval (0, b) ⊂ R and a point
z∗ ∈ (0, b) such that the process jumps to z∗ at instant 0 if z(0−) is in [b,∞), while it
also jumps to z∗ if for some t, z(t) is inside (0, b) and subsequently the process hits b
from below (Figure 3). For z ∈ (0, b), the evolution of player 1’s value function u(z)
follows the Hamiltonian-Jacobi-Bellman (or HJB) equation:

ρ1u(z) =
(1− z)1−ψ1

1− ψ1

+ (µ− µ0) zuz(z) +
1

2
σ2

0z
2uzz(z). (5.10)

where ρ1 = δ−(1−ψ1)
(
µ0 +

σ2
0

2

)
. Note that ρ1 is an adjusted instantaneous discount

rate. Given z ∈ (0, b), I can choose an appropriate particular solution up(z). Also,
due to the one-sided boundary, the homogeneous solution is represented by a one-
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sided convergent form:

uh(z) = azν1

where a < 0 and ν1 = (1
2

+ µ−µ0

σ2
0

) −
√

2ρ1

σ2
0

+ (1
2

+ µ−µ0

σ2
0

)2 < 0. Then, the general

solution u(z) is:

u(z) = up(z) + uh(z).

By Proposition 5.2, the following first-order, value-matching, and smooth-pasting
conditions are satisfied at default instant τ under the optimal contract:

uz(z
∗) = 0,

up(b) + abν1

= {(1− λx)− λsb}1−ψ1 u(z∗),

up
z(b) + aν1bν1−1 = −λs(1− ψ1) {(1− λx)− λsb}−ψ1 u(z∗).

Since we have three equations for unknown parameters (z∗, b, a), they are solvable.
Assume that there exists a solution triple (z∗, b, a). Since uzz(z

∗) < 0, by the implicit
function theorem, the solution (z∗, b, a) is locally stable. Note that it is independent
of the income level except through defaulting actions.

Finally, I solve for an optimal contract. This model does not have an appropri-
ate closed-form representation because the particular solution up(z) has no explicit
closed-form solution. Hence, assume that there is an optimal contract µ∗, although
the assumption is at a high level. A contract γ is said to take the form of a defaultable
debt (in an exponential sense) if the logarithm of payment level is constant between
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immediate defaults and if γ allows player 1 to default for a payment allowance. The
following two main theorems are obtained: the first one describes the form of the
optimal contract, and the second one characterizes equilibrium performance under
this contract. First,

Theorem 5.1. Suppose that there is an optimal contract µ∗. Then, an opti-
mal contract takes the form of a defaultable debt, which is characterized by three
factors: (1) a constant drift rate µ∗, (2) a constant non-default region (0, b) of pay-
ment/income ratio, and (3) a constant renewal payment/income ratio z∗ ∈ (0, b). In
particular, the original equilibrium outcome in the communication games remains an
equilibrium in the optimal contract.

A rough sketch of the proof is as follows. By definition, default is not specifically
predicted to occur. Since the drift rate control problem given S(0) has a convex
structure with respect to the state variable, the elements of Γ are non-redundant
with respect to the utilities of the players. By the relative compactness of the state
space, there exists a unique, locally stable optimal contract. In particular, because
of the homogeneity of instantaneous utility function and technological constraints,
the parameters µ∗, z∗, b are constant over time. Non-default region (0, b) of the
payment/income ratio is completely specified as a function of µ∗ ex ante. By the

recursive formulation, the initial payment level is set as S∗(0−) = z∗ exp θ̂. The
transition probability converges weakly to an invariant distribution.

Now, we move back to the original communication mechanisms. Player 1 makes
a lie-telling report as low as the critical level b when the true payment/income level
is higher than the critical level. Player 2 also has an incentive to minimize the
disclosure costs. Importantly, player 1’s welfare must be indifferent with respect
to whether or not to disclose at the critical point. Since the critical point and
the optimal restructured payment level depend only on ex post observable, payoff-
relevant variables, the original equilibrium outcome in the communication games
remains an equilibrium in the optimal contract. Hence, the optimality of the above-
described defaultable debt contract is established.

Until now, I have assumed that the first default occurs at 0−. The assumption
means that z(0−) is outside (0, b). But I can now generalize the results. The payment
profile imposed by player 1 is deterministic except at stochastic default times. When
the payment/income ratio z is inside [b,∞) at 0−, then the liability of the payment
is too high relative to the initial income level, and a default occurs immediately.
Then, the payment level is rescheduled, and the payment/income ratio z jumps to
z∗ instantaneously and then restarts from the level. If the payment/income ratio z
is inside (0, b) at 0−, then player 1 make payments as the contract prescribes. If z
subsequently hits a floor level b, then a default occurs. Then, the payment/income
ratio z is rescheduled into z∗ instantaneously (Figure 4).
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FIG. 4 Simulation: Controlled Payment/Income Process

With respect to the equilibrium default behavior, by the Markovian perfection
property, we derive the second theorem:

Theorem 5.2. Under the optimal contract in Theorem 5.1, with respect to the
equilibrium default performance, the following four results are obtained: (1) the con-
tract requires state verification when, and only when, a default occurs, (2) the equilib-
rium income involves paths with arbitrarily large finite numbers of defaults within any
time interval, (3) player 1 defaults infinitely many times a.e., and (4) from player 2’s
viewpoint, a default time is expected to arrive based on an exponential distribution
while from player 1’s viewpoint, a default occurs as a contingent claim.

Regardless of player 2’s nonlinear utility (0 < ψ2 < 1), the optimality of the
defaultable debt structure is kept because of the homogeneity of the instantaneous
utility functions and the technological structure. The optimal payout process is
piece-wise deterministic and its stochastic logarithm has jump of a constant size.

As a consequence, as a continuous-time analogue of the discrete-time model in
Nakamura [26], an optimal contract takes the form of a payoff-relevant, contingent
contact, although a costly default itself is incontractible. The debt restructuring
plays a positive role as a necessary evil: a costly default is a trigger into a payment
allowance while it gives the lender a tool to make the borrower reveal his true states at
intervals and to prevent the borrower from exploiting too much informational rents.
The borrower’s verification of his bad state works as a credible exemption clause for
a default and its resulting payment allowance. In contrast to Nakamura [26], a state-
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revealing episode degenerates to a singleton. Except for countable disclosure times,
the truth-concealing episode is true a.e.. In addition, from the lender’s viewpoint,
the equilibrium default probability follows an exponential distribution while from
the borrower’s viewpoint, a default jump occurs as a strategic impulse. By compar-
ative statics, under the optimal debt contract, the arrival rate (jump size, resp.) of
default is increasing (decreasing) in monitoring ability. Note that too high disclo-
sure costs would negate the contracting opportunity. As a result, this model provides
some strategic insights into Duffie and Singleton [10]’s continuous-time reduced-form
defaultable bond model.

6. EXTENSIONS BEYOND STANDARD CSV MODELS

The continuous-time structure is characterized by its high mathematical tractabil-
ity as compared with most of the previous discrete-time game-theoretic models. The
continuous-time construction is a powerful tool to analyze dynamic contracts under
informational asymmetry. In fact, this structure has many possibilities for practical
extensions to incorporate actual firms’ complex capital structure and other dynamic
auditing problems in labor and insurance markets beyond standard CSV models.
This section provides two examples: (1) hidden entrepreneurial efforts of borrower
and (2) human capital accumulation of disclosure ability.

6.1. Hidden entrepreneurial efforts of the borrower

So far, this paper has assumed that the income process is exogenous. So long as
actual default problems are concerned, however, one of the lenders’ considerations
is that a borrower’s lazy performance may cause a default when the lenders cannot
verify the borrower’s effort. In such circumstances, from an ex ante viewpoint, the
lender would try to make a contract that could prevent the borrower from being too
lazy. This is a typical moral hazard problem.

This subsection adds hidden entrepreneurial efforts of the borrower to the above
benchmark model. Player 1’s continuous effort can have influence on the aver-
age logarithmic income path: the drift rate of stochastic logarithm income process
µ0 depends continuously on player 1’s hidden entrepreneurial effort except for a
countable, discrete set of discontinuities. Specifically, we formulate the effort ef-
fect on his income process as a concavely increasing drift functional µ0(e1(t)) with

dµ0

de1(t)
> 0, d2µ0

de1(t)2
< 0, lime1(t)↑1

d2µ0

de1(t)2
= 0 for e1(t) ∈ [0, 1). In addition, assume that

µ0(e1(t)) is invertible for every e1(t) ∈ R+. For each t, the effort requires borrower’s
non-negative allocated goods e1(t)X(t)dt ≥ 0 with e1(t) ∈ [0, 1) ⊂ R+ at grid t. The
effort is made at the end of the disclosure stage at each fine grid. Informationally,
the borrower himself can privately observe his efforts.
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By construction, the moral hazard problem is independent of the CSV problem.
Because of the concavity of µ0, the equilibrium correspondence with respect to both
effort and disclosure is convex. By the stochastic maximization principle,

(Λ12S + Λ22) σ0
dµ0

de1

≤ {(1− e1)X − S}−ψ1

with inequality only if e1 = 0. Suppose that there exists an optimal level e∗1 ∈ (0, 1)
a.e., a.s.. Then, the moral hazard problem causes a premium in the payout paths
a.e..

6.2. Human capital accumulation of disclosure ability

The above benchmark model has assumed that the disclosure (or monitoring)
technology is unchanged throughout the dynamic games. In practice, the disclosure
ability is time-varying, especially dependent on human capital accumulation with
respect to disclosure ability. As a matter of fact, several empirical results show that
the disclosure costs are negatively correlated with the business cycles in the US:
disclosure procedures tend to be more costly in economic recessions than in booming
periods. Such countercyclical characteristic of disclosures implies that deteriorated
monitoring ability might delay an economic recovery in a recession phase.

To investigate the economic aspect, this subsection introduces human capital ac-
cumulation of disclosure ability. There exists disclosure capital Dt ∈ [0, 1] ⊂ R
owned by player 1. Any overstock of the disclosure capital over one unit would be
discarded instantaneously. Instead of the above cost structure (5.2), a new structure
of the disclosure costs is characterized by:

X(τ) = D(τ−) {(1− λx)X(τ−)− λsS(τ−)} .

In other words, when a disclosure occurs, the renewed income level is discounted
in proportion to the accumulated disclosure capital level at its left-limit time. The
disclosure capital is a communication infrastructure that makes it easier to disclose
player 1’s current state given the costly disclosure technology λ. Player 1 invests
a non-negative part of his allocated income (say, e2(t)X(t) with e2(t) ≥ 0) into his
own disclosure capital at the payment stage at each very fine grid {t−}∪ [t, t + dt).26

The transformation rate from goods to capital is D(t)
X(t)

. The capital depreciates at a

constant rate ϑ continuously. Because of the continuous control structure, there is
no serious problem of branch points with respect to the disclosure capital process.

26Instead, I can model monitoring ability owned and invested by financial sectors. For analytic convenience,
however, this paper assumes that player 1 possesses and invests the capital.
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Hence,

dD(t) = (−ϑ + e2(t)) D(t)dt

for continuous sample paths a.e. subject to D(t) ∈ [0, 1]. So, the disclosure costs
depend on history of player 1’s continuous investment efforts. The investment efforts
and disclosure capital levels are public information.

In player 1’s maximization program, D is added to the state variable set, and e2

is also added to the control set γs. By modifying Equation (5.5),

Ū∗(τ−) = {D(τ−)X(τ−)}1−ψ1 {(1− λx)− λsz(τ−)}1−ψ1 u(z∗(τ),
D

X
).

Assume that the equilibrium correspondence is convex-valued in state variables.
Then, by the analogue of Proposition 5.2, there exists an equilibrium satisfying:

∂Hγ

∂γs

· (γs − γ∗s ) ≥ 0∀γs ∈ Γ∗s

a.e., a.s.. For simplicity, assume that D < 1 in equilibrium. The HJB evolution (5.10)
is modified into:

0 ≥ max
e2




−
{

δ − (1− ψ1)
(
µ0 +

σ2
0

2
− ϑ + e2

)}
u(z, D

X
)

+ (1−z−e2)1−ψ1

1−ψ1
+ (µ− µ0) zuz(z,

D
X

)− (ϑ− e2 + µ0)
D
X

uD
X

(z, D
X

)

+
σ2
0

2
z2uzz(z,

D
X

) +
σ2
0

2

(
D
X

)2
uD

X
D
X

(z, D
X

)


 .

with inequality only if e = 0. The adjusted discount rate δ−(1−ψ1)(µ0+
σ2
0

2
−ϑ+e2)

is increased by the depreciation rate, net of the effort, of the disclosure capital. So,
the local optimal effort is characterized necessarily as:

(1− z − e2)
−ψ1 ≥ (1− ψ1)u(z,

D

X
) +

D

X
uD

X
(z,

D

X
).

with inequality only if e = 0. The second-order condition is satisfied. By the implicit
function theorem, with the mild assumption that the cross derivative uz D

X
< 0, the

optimal investment is decreasing in the payment/income ratio. Intuitively, when
player 1 is in good shape, he makes large investments (vice versa). As a result, a
default would boost the disclosure investment at its successive very fine grid, because
a default gives player 1 the payment allowance to lower the payment/income ratio
and makes some room for the investment (Figure 5).

From a business-cycle perspective, the implications are as follows. When the bor-
rower’s payment liability relative to his income level is increasing, the monitoring-
ability investment effort level is getting lower even in good economic conditions. So,
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the disclosure capital tends to depreciate when the payment liability increases suf-
ficiently in a while after a default. When a default occurs again in an economic
recession, the lowered disclosure capital is used for the disclosure. Right after the
default, the borrower increases investment efforts in his disclosure capital. In sum-
mary, the disclosure capital process tends to be countercyclical. In this situation,
the depreciated monitoring ability would increase the deadweight loss in a recession
and delay an economic recovery compared with the above benchmark case. From
an empirical perspective, these results show that the optimal price-of-risk is non-
linear in liquidity factors. In particular, the liquidity premium process tends to be
countercyclical. Also, it implies that the fixed-effect formulation of a liquidity effect,
as in Duffie and Singleton [10]’s reduced form model, could encounter a model mis-
specification problem. This intuition looks consistent with the empirical results of
Duffee [8].

7. CONCLUDING REMARKS

This paper studied dynamic CSV in continuous time in competitive environments
and established a continuous-time, competitive model of the Markov communication
game in costly information environments. This paper shows, first, that an optimal
contract takes the form of a defaultable debt in the sense that the payment profile
is deterministic almost everywhere except for a countable, discrete set of the down-
ward discontinuities at the default times and that the contract permits the borrower
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to default at any instant recurrently. The optimal contract is ex ante describable,
although the costly default itself is incontractible. Second, with respect to the equi-
librium default behavior, the contract requires a state verification when, and only
when, a default occurs. Moreover, the equilibrium income involves paths with arbi-
trarily large finite numbers of defaults within any time interval. The less informed
lender expects the equilibrium default time to arrive based on an exogenous exponen-
tial probability distribution, while the fully informed borrower defaults strategically.
As a consequence, this model provided a game-theoretic interpretation to Duffie and
Singleton [10]’s reduced-form defaultable bond model. Furthermore, beyond stan-
dard CSV models, this paper studied two applications: (1) hidden entrepreneurial
efforts of the borrower and (2) human capital accumulation of the disclosure ability.
This model provided a better framework than before to analyze actual financial data
regarding defaultable debts.

However, this model still faces limited applicability to actual defaultable debt con-
tracts. First, this model presumes deterministic monitoring. In practice, however,
stochastic monitoring is often undertaken in financial contracts in some industries
(See Krasa and Villamil [24]). The assumption of stochastic monitoring could result
in suboptimality of a debt-type contract. Second, and more importantly, this model
does not study any kind of debt markets. Most notably, the contract is ex post exclu-
sive in this common agency model. In practice, most debt defaults are observable to
non-contracting lenders without a cost in the markets. In such circumstances, if the
debts are tradable, then any potential lender might not have an incentive to enter
into a contract that permits costly disclosures. A contract presented in this above
model might not be sustainable in security markets.27 Future work should involve
such ex post contract non-exclusivity.28
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