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Abstract

This paper studies the impact of a small probability event for strate-
gic behavior in incomplete information games with non-common priors.
It is shown that the impact of a small probability event has an upper
bound that is an increasing function of the measure of discrepancy
from the common prior assumption. In particular, the impact can be
arbitrarily large under non-common priors, but is bounded from above
under common priors. This result quantifies the difference between
common prior and non-common prior models in terms of implications
on the infinite hierarchies of beliefs. Journal of Economic Literature
Classification Numbers: C72, D82.

Keywords: common prior assumption; higher order belief; ratio-
nalizability; contagion; belief potential.
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1 Introduction

While controversial, the common prior assumption (hereafter, CPA) is used
in most models of incomplete information in game theory and economics.
This assumption says that the beliefs of all players are generated from a
single prior, updated by Bayes’ rule, so that differences in their beliefs are
due solely to differences in information that they receive. It is well known
that the CPA is crucial for many results in incomplete information games
(e.g., Aumann’s (1976) result on agreeing to disagree and no trade theorems
by Milgrom and Stokey (1982)). The purpose of this paper is to clarify the
restrictions that we implicitly impose on strategic behavior in game theoretic
models when we accept the CPA. Specifically, we focus on “contagion” effects
that a small amount of payoff uncertainty has on strategic behavior and (ex
ante) payoffs through players beliefs about payoffs, their beliefs about others’
beliefs, and so on, i.e., the hierarchy of beliefs.

It has been known that once we depart from common knowledge of pay-
offs introducing a small amount of incomplete information, strategic behav-
ior may change dramatically through higher order beliefs. Rubinstein (1989),
Carlsson and van Damme (1993), and Morris, Rob, and Shin (1995), among
others, show how a small probability event can have a large impact on
strategic behavior (under common priors). To see the logic behind, sup-
pose that player 1 is known to take a certain action at some information set
which has a very small ex ante probability. If player 2 puts high conditional
probability on that event at his information sets where the first information
set is thought possible, this knowledge might imply a unique best response
by player 2 at these information sets. This, in turn, implies how player 1
responds to that knowledge at larger information sets, and so on. If this
iterative argument results in a unique action profile played anywhere on the
state space, then we have a contagion of this action profile. Then the ques-
tion is when it is the case that a certain action profile being chosen at some
event (which, again, may have a very small probability) implies that this
action profile is chosen everywhere on the state space: in other words, when
is an action profile contagious?

To answer this question, Morris, Rob, and Shin (1995) measure the im-
pact of an event by the notion of belief potential. First, say that an event
E has impact p at a state ω if the statement of the form “player 1 believes
with probability at least p that 2 believes with probability at least p that 1
believes . . . that the true state is in the original event E” is true at state ω.
Then, the belief potential of event E is the largest probability p such that E
has impact p at all states in the state space. Morris, Rob, and Shin (1995)
demonstrate that this notion has a close relation to p-dominance, which is
a way to measure the “strength” of a Nash equilibrium.

In Section 2, we first demonstrate with an example that under hetero-
geneous priors, there exists an information system where small probability
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events have an arbitrarily large impact. In the example, we show that for
any strict Nash equilibrium, there is a dominant solvable incomplete infor-
mation game with non-common priors in which the unique rationalizable
strategy profile is to play this equilibrium everywhere. This implies that
any strict Nash equilibrium can be contagious under heterogeneous prior
beliefs.

We then provide the upper bound on the impact of small probability
events by an increasing function of the degree of the discrepancy from the
CPA. Here, we measure the discrepancy in two ways: first, it is measured
by the supremum of the ratios between the players’ prior probabilities over
the states in the state space (whenever it is well defined); we also measure
discrepancy using the standard notion of distance between probability mea-
sures: the supremum of the (absolute value of the) difference between prior
probabilities over the events in the state space. This result implies, first,
that for a small probability event to have a maximum impact, not only het-
erogeneous priors are required, but also these priors must be very far from
each other. Second, it shows that the impact of small probability event is
bounded from above under the CPA. The latter result actually quantifies
the implications of the CPA on the infinite hierarchy of beliefs.

Lipman (2003, 2005) considers the implications of the CPA for finite or-
der of beliefs. He shows that given any state in a partition model where play-
ers may have heterogenous priors but with common support, there is a corre-
sponding state in another partition model with a common prior that is close
to the original model with respect to product topology in the universal type
space (Mertens and Zamir (1985) and Brandenburger and Dekel (1993)).
That is, the CPA does not have any significant implication on finite or-
der beliefs, if one is interested only in local properties of the beliefs (i.e.,
properties at a given state). Appealing to this result, Yildiz (2004) shows,
in particular, that for any strict Nash equilibrium a∗, there exist nearby
types (with respect to product topology) from models with common prior
such that a∗ is the unique rationalizable strategy outcome for these types.
However, Lipman’s (2003, 2005) results say nothing about the restrictions
imposed on global properties of the whole state space. Indeed, we show that
under the CPA, the set of states at which a small probability event has a
large impact has an arbitrarily small probability with respect to the common
prior distribution. In relation to Yildiz’ (2004) result, this implies that for
some games and for some strict Nash equilibria a∗ (e.g., the risk-dominated
equilibrium in a 2× 2 coordination game), the ex ante probability of the set
of types for which a∗ is not uniquely rationalizable vanishes, if we require
that perturbations be vanishingly small with respect to the common prior.
Thus, our results quantify the difference with respect to impacts to strategic
behavior on the whole state space between common and non-common prior
models.

Our example in Section 2 shows that in 2×2 coordination games, where
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there are two strict Nash equilibria, the risk-dominated equilibrium can
be contagious if the players are allowed to have heterogenous priors. On
the other hand, Kajii and Morris (1997) have shown that under the CPA,
this is not possible. In their terminology, the risk-dominant equilibrium
is robust to incomplete information. In a companion paper (Oyama and
Tercieux (2005)), we show that in generic games, a Nash equilibrium is
robust to incomplete information under heterogeneous priors if and only if
it is a unique action profile that survives iterative elimination of strictly
dominated actions.

The remainder of the paper is organized as follows. Section 2 provides
an example which illustrates why without the CPA, every strict Nash equi-
librium can be contagious and how it is related to the discrepancy from
the CPA. The analyses in the subsequent sections are summarized by us-
ing this example. Section 3 introduces the concept of belief potential and
states our results relating the distance between priors and the belief po-
tential of small probability events. Section 4 compares the local and the
global impacts of small probability events, relating our result to the results
by Lipman (2003, 2005) and Yildiz (2004). Section 5 considers an extension
to the many player case.

2 Example

In this section, we illustrate the analyses in the subsequent sections with
a simple example. Consider the following 2 × 2 coordination game with
complete information which we denote by g. There are two players, 1 and 2,
each of whom has two actions L and R. Throughout the paper, for i = 1, 2
we write −i for player j 6= i. The payoffs are given by

L R

L p, p 0, 0

R 0, 0 1− p, 1− p

where p ∈ (1/2, 1), so that (L,L) is (both Pareto-dominant and) risk-
dominant. We will say that (L,L) is a strict (1 − p)-dominant equilibrium
while (R,R) is a strict p-dominant equilibrium (see Definition 3.4). As p
becomes close to one, the strict Nash equilibrium (R,R) becomes “weaker”.

Now, we ask the following question: For each strict Nash equilibrium
a∗ = (L,L), (R,R) of g, are there “perturbations” arbitrarily “close” to g
in which a∗ is played as a unique rationalizable strategy outcome? The ques-
tion, of course, is not well defined unless what we mean by “perturbations”
being “close” to g is specified.
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2.1 Incomplete Information Game Perturbations

Here, as perturbations of g we consider incomplete information games with
an information partition structure as well as the same sets of players and
actions as g, where we allow the players to have different prior beliefs. The
complete information game g is considered as a degenerate incomplete in-
formation game. We regard a perturbed incomplete information game to
be close to g if the event that both players know that their payoffs are
given by g has probability close to one with respect to both players’ prior
distributions.

To address the question, we consider the following class of perturbations
of g. The state space Ω is given by {1, 2} × Z+. Player i = 1, 2 observes
information partition Qi which consists of (i) the event {(−i, 0)} and (ii)
all the events of the form {(i, k − 1), (−i, k)} for k ≥ 1. Observe that this
partition structure is of the same type as that in the electronic mail game
of Rubinstein (1989).

The players may have different prior beliefs. For r ∈ [1,∞) and ε ∈ (0, 1),
let player i’s prior Pi be defined by

Pi(i, k) =
r

r + 1
· ε(1− ε)k,

Pi(−i, k) =
1

r + 1
· ε(1− ε)k.

The players have a common prior if and only if r = 1. Observe that for
all ω ∈ Ω, Pi(ω)/P−i(ω) = r if ω = (i, k), while P−i(ω)/Pi(ω) = r if
ω = (−i, k). As r tends to be large, the priors become distant. Hence,
parameter r measures the degree of discrepancy from the CPA.

Finally, let Ei = {(−i, 0)} and E = E1 ∪ E2. The payoffs of each player
i are given by g at all states in Ω \Ei, while a∗i is a strictly dominant action
for player i on event Ei, where a∗ = (a∗1, a

∗
2) will be (L,L) or (R,R). Verify

that Pi(E) = ε for each i. Let us denote this incomplete information game
by U(r, ε; a∗).

(1) Common prior case (r = 1): As demonstrated by Morris, Rob, and
Shin (1995),1 if L is a dominant action for each player i at state (−i, 0), then
however small ε > 0 is, the incomplete information game U(1, ε; (L,L)) has
a unique rationalizable strategy profile, where (L,L) is played at all ω ∈ Ω:
that is, we have a “contagion” of the risk-dominant action. On the other
hand, as established by Kajii and Morris (1997), even if R is a dominant
action for each player i at state (−i, 0), the incomplete information game
U(1, ε; (R,R)) has a Bayesian Nash equilibrium in which (L,L) is played
with high (ex ante) probability whenever ε is sufficiently small. We may
say that under a common prior, the event E, however small its (ex ante)

1Kajii and Morris (1997) extend their argument to the countable state space case.
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probability is, has an impact large enough to make the risk-dominant action
contagious, but not large enough to make the risk-dominated one contagious.

(2) Non-common prior case (r > 1): We can show that for r sufficiently
large, each action is contagious: for each equilibrium a∗, if for each player
i, a∗i is a dominant action at state (−i, 0), then there exists r̄ such that for
all r > r̄ and all ε ∈ (0, 1), the incomplete information game U(r, ε; a∗) has
a unique rationalizable strategy profile, where a∗ is played at all ω ∈ Ω. To
see this, suppose that for each player i, R is a dominant action at (−i, 0).
Observe that

Pi({(i, k − 1)}|{(i, k − 1), (−i, k)}) =
r

r + 1− ε
(2.1)

for all k ≥ 1. Now, given p ∈ (1/2, 1), let r̄ = p/(1 − p) (> 1), and take
any r ≥ r̄ and ε ∈ (0, 1). Then, if player −i plays R at (i, k − 1) in any
rationalizable strategy, then it implies that player i plays R at (−i, k) in
any rationalizable strategy, since i assigns a probability r/(r + 1 − ε) > p
to the event −i plays R, which makes R the unique best response. We may
hence say that under non-common priors, the event E, however small its
(ex ante) probability is, may have an impact large enough that any strict
Nash equilibrium is contagious. The key to this result is that by increasing
the value of r, we can have the relevant conditional probabilities, Pi({(i, k−
1)}|{(i, k − 1), (−i, k)}), be as close to one as possible. The supremum of
such conditional probabilities relevant to the contagion argument will be
called the belief potential of the event E (see Definition 3.1 for the precise
definition). In this particular information system with given r and ε, the
belief potential of E is r/(r + 1 − ε), as given by (2.1). But it will turn
out that this is the “best case”, in which a small probability event has the
largest impact. We will show that given values of discrepancy measure, r,
and small probability, ε, the value r/(r + 1 − ε) is the maximum of the
belief potential of a small probability event over information systems (see
Theorem 3.4 for the precise statement). This implies that an event can have
a larger impact on higher order beliefs under non-common prior than under
common prior.

2.2 Belief Type Perturbations

Yildiz (2004) considers the same question from a different viewpoint. He
identifies the complete information game g with a point [g] in the universal
type space, i.e., the hierarchy of degenerate beliefs, and considers as “per-
turbations” being “close” to g types in the universal type space that are
convergent to [g] with respect to product topology. His results imply, in
particular, that for any strict Nash equilibrium a∗ of complete information
game g, there exists a sequence of types converging to [g] each of which
plays a∗ as a unique rationalizable strategy outcome. Moreover, by appeal-
ing to Lipman’s (2003) result, he shows that those converging types can be
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taken from models (i.e., belief-closed subspaces) with common prior. We
will discuss in Section 4 the relationship between Lipman’s (2003, 2005) and
Yildiz’ (2004) results and ours.

The latter result can be stated in our framework as follows: for any
strict Nash equilibrium a∗ of complete information game g, there exists a
sequence of perturbed incomplete information games Uk with common prior
and states ωk such that any rationalizable strategy profile of Uk plays a∗ at
ωk, where in each Uk, a∗i is a strictly dominant action for player i on an event
Ek

i , and at each ωk, players know up to kth order that the payoffs are given
by g. To see this in our example, let a∗ = (R,R). Modifying the incomplete
information game in the previous subsection with given p ∈ (1/2, 1), Uk can
be constructed as follows (common for all k). The state space Ω and the
information partitions Qi are the same as previously. Define the common
prior P by

P (1, k) = P (1, k) =
1
2
α

(
1− ε

r

)k

for k ≥ 0, where

α = 1− 1− ε

r
(≥ ε),

r is such that r ≥ p/(1 − p) as previously. The payoffs of each player i are
given by g at all states in Ω \ Ei, while a∗i is a strictly dominant action for
player i on event Ei. Finally, let ωk = (1, k) (or (2, k)). Then, observing
that the relevant posteriors are given by

P ({(i, k − 1)}|{(i, k − 1), (−i, k)}) =
r

r + 1− ε

for all k ≥ 1, the same argument in the previous subsection shows that any
rationalizable strategy plays R in every state in Ω.

Observe that in case where p is close to one, r must be large so that
the probability of the event where either player has a dominant action,
P (E1 ∪ E2) (= α), must be close to one accordingly. Thus let us consider
the following modification. Let the state space be Ω̄ = Ω ∪ {∞}, and the
information partition for each player i be Q̄i = Qi ∪ {{∞}}. Define the
common prior P̄ by

P̄ (1, k) = P̄ (2, k) =
1
2
ε

(
1− ε

r

)k

for k ≥ 0 and
P̄ (∞) = 1− r

r − (1− ε)
ε,

where r is such that r ≥ p/(1− p) as previously. Note that we need to add
a state, denoted ∞, in order for P̄ to sum up to one. The payoffs of each
player i are given by g at all states in Ω̄ \Ei, while a∗i is a strictly dominant
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action for player i on event Ei. Then again, the relevant posteriors are given
by

P̄ ({(i, k − 1)}|{(i, k − 1), (−i, k)}) =
r

r + 1− ε

for all k ≥ 1, so that any rationalizable strategy plays R in every state in
Ω̄ \ {∞}.

Now, if we require that P̄ (E1 ∪ E2) (= ε) vanish along the sequence,
then P̄ (Ω̄ \ {∞}) must vanish accordingly, which is the ex ante probability
of the event that R is played as a unique rationalizable strategy action.
In fact, as we will argue in Section 4, this is the case not only in this
particular construction of incomplete information games, but also in any
such construction. This is to be contrasted with the non-common prior
case in the previous subsection, where any strict Nash equilibrium can be
contagious over the state space. In this sense, if one is interested in strategic
behavior on the whole state space, rather than local behavior (i.e., behavior
at a particular state), then models with common priors may be significantly
different from those with non-common priors.

3 Belief Potential

3.1 Information Systems and Belief Potential

An information system is the structure (Ω, (Pi)i=1,2, (Qi)i=1,2), where Ω
is a countable set of states, Pi is the prior distribution on Ω for player
i = 1, 2, and Qi is the partition of Ω representing the information of player
i. We write Qi(ω) for the element of Qi containing ω. We assume that
Pi(Qi(ω)) > 0 for all i = 1, 2 and ω ∈ Ω. Under this assumption, the
conditional probability of ω′ given Qi(ω), Pi(ω′|Qi(ω)), is well-defined by
Pi(ω′|Qi(ω)) = Pi(ω′)/Pi(Qi(ω)). Given an information system, we define
the measure of discrepancy from the common prior case in two ways.

First, define ρ by

ρ
(
(Pi)i=1,2

)
= max

i6=j
sup
ω∈Ω

Pi(ω)
Pj(ω)

with a convention that q/0 = ∞ for q > 0, and 0/0 = 1. Note that
ρ
(
(Pi)i=1,2

)
< ∞ only if (Pi)i∈I have common support. The information

system satisfies the CPA if and only if ρ((Pi)i=1,2) = 1. Second, we will also
consider the usual distance d0,

d0

(
(Pi)i=1,2

)
= sup

E⊂Ω
|P1(E)− P2(E)|.

The information system satisfies the CPA if and only if d0((Pi)i=1,2) = 0.
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We use the notion of p-belief as defined by Monderer and Samet (1989).
For p ∈ (0, 1], the p-belief operator for player i = 1, 2, Bp

i : 2Ω → 2Ω, is
defined by

Bp
i (E) = {ω ∈ Ω | Pi(E|Qi(ω)) ≥ p}.

That is, Bp
i (E) is the set of states where player i believes E with proba-

bility at least p (with respect to his own prior Pi). We define the operator
Hp

i : 2Ω → 2Ω by
Hp

i (E) = Bp
i (Bp

−i(E)) ∪ E.

We denote (Hp
i )0(E) = E and for k ≥ 1, (Hp

i )k(E) = Hp
i ((Hp

i )k−1(E)).
Denote (Hp

i )∞(E) =
⋃∞

k=1(H
p
i )k(E). We follow Morris, Rob, and

Shin (1995) to measure the impact of an event by the notion of belief poten-
tial. The belief potential of an event E is the largest probability p such that
a statement of the form “player i believes with probability at least p that
player −i believes with probability at least p that i believes . . . that the true
state is in E” is true at every state in Ω.

Definition 3.1. The belief potential of event E, σ(E), is

σ(E) = max
i=1,2

σi(E),

where
σi(E) = sup{p ∈ [0, 1] | (Hp

i )∞(E) = Ω}.

Similarly, we measure the impact of an event at a given state in the
following way. Event E is said to have impact p on a state ω if a statement
of the form “player i believes with probability a least p that player −i
believes with probability at least p that i believes . . . that the true state is
in E” is true at ω.

Definition 3.2. Event E is said to have impact p at state ω if ω ∈
(Hp

1 )∞(E) ∪ (Hp
2 )∞(E).

The belief potential of event E at state ω, σ(ω|E), is

σ(ω|E) = sup{p ∈ [0, 1] | E has impact p at ω}.

To illustrate these concepts, consider the information system and the
event E = {(1, 0), (2, 0)} in Subsection 2.1. Note that this information sys-
tem satisfies ρ

(
(Pi)i=1,2

)
= r. Observe first that for each i = 1, 2, Bp

i (E) =
{(−i, 0)} ∪ {(i, 0), (−i, 0)} if p ≤ r/(r + 1 − ε), and Bp

i (E) = {(−i, 0)}
otherwise. Thus,

(Hp
i )K(E) = {(−i, 0)} ∪

K⋃
k=1

{(i, k − 1), (−i, k)}
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and therefore (Hp
i )∞(E) = Ω if p ≤ r/(r+1−ε), and (Hp

i )∞(E) = {(−i, 0)}
otherwise. This implies that for this information system,

σ(E) =
r

r + 1− ε
.

In Subsection 3.3, we will show that, given r ≥ 1 and ε > 0, this is the
maximum value of the belief potential of an event with probability ε over
the information systems such that ρ

(
(Pi)i=1,2

)
= r.

3.2 Incomplete Information Games and p-Dominance

To relate the impact of a small probability event to the contagion of Nash
equilibria played at that event (as demonstrated in Section 2), we consider
incomplete information games. An incomplete information game is repre-
sented by U = (IS , (Ai)i=1,2, (ui)i=1,2), where IS is an information system
as described above, Ai is the set of actions for player i, and ui : A×Ω → R
is the payoff function for player i, We denote A = A1×A2. We assume that
players know their own payoffs, i.e., for each i and every a ∈ A, ui(a, ·) is
measurable with respect to Qi. A (mixed) strategy for player i is a function
si : Ω → ∆(Ai) that is measurable with respect to Qi, where ∆(Ai) is the
set of probability distributions over Ai. Denote by Σi the set of player i’s
strategies. For player i = 1, 2 and action ai ∈ Ai, we write the expected
payoff against a conjecture νi ∈ ∆(Ω×A−i) as

Ui(ai, νi) =
∑
ω∈Ω

∑
a−i∈A−i

νi(ω, a−i) ui(ai, a−i, ω).

The set of i’s (pure) best responses against νi ∈ ∆(Ω×A−i) is denoted by

BRi(νi) = arg max
ai∈Ai

Ui(ai, νi).

As the solution concept, we employ correlated interim rationalizability.
For each i = 1, 2, let R0

i [Qi] = Ai for all Qi ∈ Qi. Then, for each i = 1, 2,
and for Qi ∈ Qi and for k = 1, 2, . . ., define Rk

i [Qi] recursively by

Rk
i [Qi] =

ai ∈ Ai

∣∣∣∣∣∣∣∣
∃ νi ∈ ∆(Ω×A−i) :
νi

({
(ω, a−i)

∣∣ a−i ∈ Rk−1
−i [Q−i(ω)]

})
= 1;

margΩ νi = Pi(·|Qi);
ai ∈ BRi(νi)

 .

Let R∞
i [Qi] =

⋂∞
k=1 Rk

i [Qi].

Definition 3.3. A strategy si ∈ Σi is a rationalizable strategy of player i in
U if

si(ω)(ai) > 0 ⇒ ai ∈ R∞
i [Qi(ω)]

for all ai ∈ Ai and ω ∈ Ω.
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We also restate the definition of strict p-dominant equilibrium as defined
in Morris, Rob, and Shin (1995).2

Definition 3.4. Let p ∈ [0, 1). Action profile a∗ ∈ A is a strict p-dominant
equilibrium at a state ω if for each i = 1, 2 and all ai 6= a∗i ,

ui(a∗i , πi, ω) > ui(ai, πi, ω)

holds for all πi ∈ ∆(A−i) with πi(a∗−i) > p.

The following proposition is a variant of the result by Morris, Rob, and
Shin (1995, Theorem 5.1). Roughly, it states that if E has a belief potential
equal to σ, then any p-dominant equilibrium with p < σ can be contagious.

Proposition 3.1. Consider an incomplete information game U and an
event E such that E = E1 ∪E2 for some Ei ∈ Fi for each i = 1, 2. Suppose
that (1) E has belief potential σ > 0, (2) (a∗1, a

∗
2) is a strict p-dominant

equilibrium at every state for some p < σ, and (3) for each player i, a∗i is a
strictly dominant action at each ω ∈ Ei. Then, playing (a∗1, a

∗
2) everywhere

is the unique rationalizable strategy profile of U .

Proof. See Appendix.

3.3 Upper Bound of Belief Potential

Now we want to characterize the upper bound of the belief potential of
small probability events over information systems with a given value of the
discrepancy from the CPA (i.e., ρ((Pi)i=1,2) or d0((Pi)i=1,2)). Given an
information system, write Fi for the sigma algebra generated by Qi, and
denote

F1 ⊕F2 = {E ⊂ Ω | E = E1 ∪ E2 for some Ei ∈ Fi for each i = 1, 2}.

For p ∈ (0, 1] and E ∈ F1 ⊕F2, we define

Hp
∗ (E) = Bp

1(E) ∪Bp
2(E).

We denote (Hp
∗ )k(E) = Hp

∗ ((H
p
∗ )k−1(E)) for k ≥ 1, where (Hp

∗ )0(E) = E,
and (Hp

∗ )∞(E) =
⋃∞

k=1(H
p
∗ )k(E). Verify that (Hp

1 )∞(E) ∪ (Hp
2 )∞(E) =

(Hp
∗ )∞(E), so that if (Hp

i )∞(E) = Ω, then (Hp
∗ )∞(E) = (Hp

i )∞(E). It
is thus sufficient to characterize the (ex ante) probability of (Hp

∗ )∞(E).
The following result is the “conjugate” of Proposition 5.2 in Oyama and
Tercieux (2005), where the upper bound for Pj([(H

p
∗ )∞(Ec)]c) is obtained

for the many-player case. For its proof, we thus report only crucial steps in
the Appendix.

2Here we follow the formulation of Kajii and Morris (1997, Definition 5.4).
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Lemma 3.2. For any r ≥ 1, if p > r/(1 + r), then in any information
system with ρ((Pi)i=1,2) = r, any event E ∈ F1 ⊕F2 satisfies

Pi((Hp
∗ )
∞(E)) ≤ p

(1 + r)p− r
max{P1(E), P2(E)}

for all i = 1, 2.

Proof. See Appendix.

The analogue of this result using the distance d0 is the following.

Lemma 3.3. Fix ξ ≥ 0 and ε > 0. If p > 1/2, then in any information
system with d0((Pi)i=1,2) ≤ ξ, any event E ∈ F1 ⊕ F2 such that Pi(E) ≤ ε
for each i = 1, 2 satisfies

Pi((Hp
∗ )
∞(E)) ≤ ξ

2p− 1
+

p

2p− 1
ε

for all i = 1, 2.

Proof. See Appendix.

The following two theorems are the main results of this section, which
show that the belief potential of small probability events has an upper bound
that is an increasing function of the discrepancy from the CPA.

Theorem 3.4. For any r ≥ 1 and any information system with
ρ((Pi)i=1,2) = r, if E ∈ F1 ⊕F2 and Pi(E) ≤ ε for each i = 1, 2, then

σ(E) ≤ r

1 + r − ε
.

Proof. Take any q > r/(1+ r− ε) (> r/(1+ r)). If max{P1(E), P2(E)} ≤ ε,
then by Lemma 3.2, for each i = 1, 2,

Pi((Hq
∗)
∞(E)) ≤ q

(1 + r)q − r
ε < 1,

meaning that (Hq
∗)∞(E) 6= Ω, and hence (Hq

i )∞(E) 6= Ω. This implies that
σ(E) ≤ r/(1 + r − ε), as claimed.

Note that the upper bound given above is tight: it is attained by the
event E in the information system considered in Subsection 2.1.

Theorem 3.5. Fix ξ ≥ 0, ε > 0 and any information system with
d0(P1, P2) ≤ ξ, if E ∈ F1 ⊕ F2 and Pi(E) ≤ ε for each i = 1, 2, then
σ(E) ≤ 1+ξ

2−ε .

11



Proof. Assume σ1(E) ≥ σ2(E) thus σ(E) = σ1(E). Take any p such that
(Hp

∗ )∞(E) = Ω. We want to show that p ≤ 1+ξ
2−ε . Assume that p > 1/2 (the

case p ≤ 1/2, is clear). By Lemma 3.3, we have: Pi((H
p
∗ )∞(E)) ≤

ξ
2p−1 + p

2p−1ε. Hence, if p > 1+ξ
2−ε , we obtain that Pi((H

p
∗ )∞(E)) < 1 and so

Pi((H
p
1 )∞(E)) < 1 which yields (Hp

1 )∞(E) 6= Ω, a contradiction.

One can show that the upper bound given above is asymptotically tight,
while we have not been able to prove or disprove whether this bound is
actually attained.

4 Common Prior vs. Non-Common Prior

Lipman (2003, 2005) shows that given any partition model with common
support (and tail consistency in the case of infinite state space) and any
state in the model, for any finite N > 0 there is a partition model with a
common prior and a state in that model at which all the same facts about
the world are true and all the same statements about beliefs and knowledge
of order less than N are true. That is, the common prior assumption does
not impose any significant restriction on finite order beliefs.

On the other hand, if one is interested in global properties of the whole
state space, models with non-common priors may be quite far from any
model with a common prior. In this section, we formalize this observation
with the notions of global and local impact as well as with the universal
type space setting.

4.1 Local vs. Global Impact of an Event

First, let us note the following lemma which is proved in a constructive way
using the example in Section 2.

Lemma 4.1. Fix a state space Ω, an event E ⊂ Ω such that |E| ≥ 2. Let
p ∈ [0, 1) and ε > 0. There exists an information system (Ω, (Q)i∈I , (Pi)i∈I)
that satisfies common support, ρ((Pi)i∈I) < ∞ and Pi(E) ≤ ε for all i ∈ I
such that
(1) for all ω ∈ Ω, σ(ω | E) ≥ p; and
(2) for all N > 0,

⋂N
n=1(K∗)n(Ec) 6= ∅.

Proof. (1) Since Ω is countable, there exists an injection, g : Ω → {1, 2}×Z+

such that g(E) ⊃ {(1, 0)∪(2, 0)} (use |E| ≥ 2). Denoting (Ω̂, (Q̂i∈I), (P̂i)i∈I)
the information system in Subsection 2.1 where r ≥ 1 is chosen so that
σ(({(1, 0)∪ (2, 0)}) = p, define (Ω, (Qi∈I), (Pi)i∈I) as follows: for all ω ∈ Ω,
Qi(ω) = Q̂i(g(ω)) and Pi(ω) = P̂i(g(ω)). Note that σ(E) ≥ σ(g−1({(1, 0) ∪
(2, 0)}) = σ̂({(1, 0) ∪ (2, 0)}) = p. This implies that for all ω ∈ Ω, σ(ω |
E) ≥ p.

(2) is easy to check.

12



This lemma implies the following weaker result.

Proposition 4.2. Fix a state space Ω, an event E ⊂ Ω such that |E| ≥
2 and ω ∈ Ω. Let p ∈ [0, 1) and ε > 0. For all N > 0, there exists
an information system (Ω, (Q)i∈I , (Pi)i∈I) that satisfies common support,
ρ((Pi)i∈I) < ∞ and Pi(E) ≤ ε for all i ∈ I such that
(1) σ(ω | E) ≥ p; and
(2) ω ∈

⋂N
n=0(K∗)n(Ec).

Roughly the above results show that, under heterogenous priors, given
any state space and any (small probability) event E, there are a partition
and priors so that E can have an arbitrarily large impact on all states in the
state space. Importantly, this is true even on states where it is known at an
arbitrarily large order that E did not occur. We say in this case that E has
a large global impact. It is clear that if an event has a large global impact,
then it must have a large local impact, i.e., a large impact on all states in
the state space. However, we will see that the converse is not true. More
specifically, under common priors, given any state space, any state of the
world, ω, in this state space, any (small probability) event E can have an
arbitrarily large impact on the given state even if we require that at ω it is
known at arbitrarily high order that E did not occur. But as we have seen,
the global impact of E cannot be arbitrarily large under a common prior.
The following results aim to clarify this point and the relationship between
local and global impact of an event.

Our point that under common prior, the local impact of any small prob-
ability event can be arbitrarily large draws on a result by Lipman (2003)
mentioned above. To discuss this point, let us first state a proposition on the
local impact of small probability events under the common prior assumption.

Proposition 4.3. Fix a state space Ω and an event E ⊂ Ω. Let p ∈ [0, 1)
and ε > 0. For all N > 0, there exist an information system (Ω, (Qi)i∈I , P )
that satisfies the CPA and P (E) ≤ ε, and ω ∈ Ω such that
(1) σ(ω | E) ≥ p; and
(2) ω ∈

⋂N
n=1(K∗)n(Ec).

Remark 4.1. Note that, we could have proved this result using Lipman’s
main theorem. However, while Lipman’s theorem would have been sufficient,
it is not necessary for our purpose. Let us briefly explain this point. Given
an information system without common prior, Lipman builds an information
system with a common prior where beliefs of players (at a finite order) about
any event are exactly the same as in the information system without common
prior. However, for our purpose we only need to match beliefs of players (at
a finite order) that rely on the small probability event E. In addition, we
do not need beliefs to be exactly matched (see the definition of the operator
(Hp

i )k(E)). These two differences allow us to provide a simple proof and
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to change only priors keeping the state space Ω contrary to what we would
have obtained using Lipman’s result.

However, the main point of this section is that under common prior, the
set of states on which a given small probability event has a “large” impact
is small with respect to prior probabilities. The following lemma formalizes
this point.

Lemma 4.4. Let r ≥ 1 and p > r/(r+1). For any δ > 0, there exists ε > 0
such that for any information system IS with ρ((Pi)i∈I) = r and any event
E ∈ F1 ⊕F2 such that Pi(E) ≤ ε for all i ∈ I, we have

Pi({ω ∈ Ω | σ(ω|E) ≥ p}) ≤ δ

for all i ∈ I.

Proof. Given p > r/(r + 1) and δ > 0, set ε = δ{(1 + r)p − r}/p. Then by
Lemma 3.2, we have for each i = 1, 2,

Pi((H
p
i )∞(E)) ≤ Pi((Hp

∗ )
∞(E)) ≤ p

(1 + r)p− r
ε ≤ δ,

as claimed.

Obtained as a corollary of the previous lemma, we have the following
main result of this subsection.

Proposition 4.5. For any p > 1/2 and any δ > 0, there exists ε > 0 such
that for any information system IS that satisfies the CPA and any event
Ē ∈ F̄1 ⊕ F̄2 such that P̄ (Ē) ≤ ε, we have

P̄ ({ω ∈ Ω̄ | σ(ω|Ē) ≥ p}) ≤ δ.

In terms of contagion of Nash equilibria, while any strict Nash equi-
librium at a small probability event can spread in some partition model
with non-common priors, it may not be the case for partition models with
a common prior. Indeed, in 2 × 2 coordination games, the risk-dominated
equilibrium cannot spread from a small probability event when we assume
the existence of a common prior, as shown by Kajii and Morris (1997).

However, our latter result on the local impact of small probability events
under the common prior assumption allows us to show the following. Assume
some strict Nash equilibrium is played at a small probability event E. Then,
given any arbitrarily large number N , we can find an information system
and a state of the world ω such that at ω, it is mutually known at order
N that E did not occur, but the strict Nash equilibrium is played at any
rationalizable strategy profile at ω.

To understand this point, let us state the following proposition.

14



Proposition 4.6. Fix a state space Ω, an event E ⊂ Ω, and p ∈ [0, 1). Let
(Ai)i=1,2 and (ui)i=1,2, ui : A × Ω → R, be such that (1) (a∗1, a

∗
2) ∈ A is a

p-dominant equilibrium at each state ω; (2) (a∗1, a
∗
2) is strictly dominant at

each state ω ∈ E. Then, for all N > 0 and ε > 0, there exists an information
system IS such that any rationalizable strategy profile σ of the incomplete
information game U = (IS , (Ai)i=1,2, (ui)i=1,2) satisfies σ(ω) = a∗ for all
ω ∈

⋂N ′

n=1 K∗(Ec) for any N ′ ≤ N .

To summarize, under heterogeneous priors, both the local and the global
impact of any small probability event can be arbitrarily large, whereas under
common prior, only the local impact can be arbitrarily large.

This distinction will allow us to shed light on a result of Yildiz (2004)
which shows that for any type in the universal type space, there exists
arbitrarily close types where rationalizability yields a unique action profile,
and moreover, such a type can always be taken from a model with a common
prior.

We will first see the connection between this point and the impact of an
event. Then, we will see that if one is interested in such a statement on a
whole model (and not only on a specific type) dropping the common prior
assumption is necessary (and sufficient).

4.2 Embedding our Results in the Universal Type Space

In this subsection, we embed our results in the universal type space. This
allows us to compare our results with those of Yildiz (2004). Yildiz (2004)
has shown that, under standard assumptions, for any type in the universal
type space, there exists nearby types where a unique rationalizable action
profile is played. This result is obtained irrespective of whether one assumes
that players share a common prior. We claim that if one is interested in
the behavior of players not only at a given type but on a whole model, then
dropping the common prior assumption is crucial to obtain Yildiz’ (2004)
type of statement.

4.2.1 The Universal Type Space Setting

Let Θ be a compact metric space of payoff-relevant parameters θ. To make
things simple, we assume that Θ = Θ1 × Θ2 where Θi = [0, 1]A. We write
∆(X) for the set of probability measures on the Borel field of any topological
space X. When X is a set of probability measures, it will be endowed with
the weak∗ topology.

Define recursively X0 = Θ, X1 = ∆(X0), X2 = ∆(X0 ×X1) . . . . Let us
now describe a type in the setting of the universal type space. A type of a
player i is an infinite hierarchy of beliefs ti = (t1i , t

2
i , . . .) where t1i ∈ X1 is a

probability distribution on Θ, representing the (first order) beliefs of player
i about Θ, t2i ∈ X2 is a probability distribution representing the (second
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order) beliefs of player i, i.e., his beliefs about Θ as well as his beliefs about
the other player’s beliefs over Θ, and so on. We also assume that it is
common knowledge that the beliefs are coherent.3 Denote the set of all such
types by T ∗

i , and let T ∗ = T ∗
1 × T ∗

2 .
For each type ti, let κti ∈ ∆(Θ×T ∗

−i) be the unique probability distribu-
tion that represents the beliefs of ti about (θ, t−i). Mertens and Zamir (1985)
have shown that the mapping ti 7→ κti is a homeomorphism. A set T ⊂ T ∗

is said to be model if for each ti ∈ Ti, κti(Θ× T−i) = 1.
We now describe the connection between the partition model setting

and the universal type space setting. In particular, we show how a partition
model together with a state of the world induces a type in the universal
type space. Since a parameter space (namely Θ) has been added to the
description of the basic uncertainty, we will now need to refer to it in the
definition of a partition model. Hence a partition model M is consists
of an information system [Ω, ((Qi)i∈I), (Pi)i∈I)] together with a function
f : Ω → Θ where f(ω) is the value of the unknown parameter at state ω.

Any partition model together with any state ω in that model uniquely
identifies a particular type in the universal type space denoted t[ω] by the
the so-called unravelling procedure.4 Let us briefly describe the procedure.
Given a world ω in a partition model, we can identify each player’s first order
beliefs at ω. Denote player i’s first order beliefs at world ω by t1i [ω] ∈ X1.
For each measurable set B ⊂ Θ, we define

t1i [ω](B) = Pi(f−1(B) | Qi(ω)).

In the same way, player i’s second order beliefs at ω, say, t2i [ω] ∈ X2 is
defined by

t2i [ω](B) = Pi({ω′ | (f(ω′), t1−i[ω
′]) ∈ B} | Qi(ω))

for each measurable set B ⊂ Θ × ∆(Θ). Continuing recursively, we can
define tni [ω] for every n. Let ti[ω] = (t1i [ω], t2i [ω], ...) and t[ω] = (t1[ω], t2[ω]).

4.2.2 Product Topology

The usual topology used in the universal type space, and in particular the
one used by Yildiz (2004), is the product topology. Let us review conver-
gence of a sequence of types in the universal type space with respect to
product topology. For our purpose, it is sufficient to restrict our attention
to convergence toward a complete information type. For a complete infor-
mation game g, we will write tg for the complete information type where g

3A type of player i, ti is coherent if for every n ≥ 2, margXn−2
tn
i = tn−1

i .
4The converse of this statement (i.e., that any type in the universal type space can be

constructed using the unravelling procedure from some partition model) is true as long as
we allow for a less restrictive class of partitions models from those we use in this paper.
See for instance Brandenburger and Dekel (1993).
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is common knowledge. Since complete information types, considered as sin-
gleton sets, can also be seen as complete information models, this will allow
us to compare convergence of a sequence of types toward tg and convergence
of sequences of models toward tg.

Definition 4.1. Let tg be a complete information type where g is common
knowledge. tm → tg as m →∞ if for each i and k, tki,m → tki,g as m →∞.

Product topology has a natural interpretation. Indeed, it captures the
idea that we cannot observe infinite hierarchy of beliefs. Suppose that we
consider a complete information type tg in the universal type space. Suppose
also that for some k we have made some noisy observation about the first k
order of beliefs, and for each k′ ≤ k, we find an open neighborhood N k of
tk

′
g (with respect to weak topology on probability distributions). Then, the

open neighborhoods of tg are those sets of types where for some k, first k
order of beliefs are in these N k′ for k′ ≤ k.

To relate the statements of the previous subsection to statements in the
universal type space as in Yildiz (2004), we will use the following simple
observation.

Observation 4.7. Consider a sequence (Mk, ωk) of partition models and
states in this model. If, for all N > 0, there exists K such that for all k ≥ K
(Mk, ωk) satisfies ωk ∈

⋂N
n=0(K∗)n(f−1(g)), then we have t[ωk] → tg.

We will also use a notion of convergence of models toward complete
information models. First, we provide a definition that will allow us to
extract a (set of) measure(s) from a given model.

Definition 4.2. Let T be a model. A profile of priors over T , (Pi)i∈I , is said
to be belief consistent with T if for all i and all type ti, κti = Pi(· | {ti}×T−i).

We only consider models that are irreducible.

Definition 4.3. Let {tg} be a complete information model where g is com-
mon knowledge. Tm → {tg} as m →∞ if for all δ > 0,

Pi,m({t ∈ Tm | |t1i,m − t1g| < δ}) → 1 as m →∞

for any sequence of profile of belief consistent priors (Pi,m)i∈I of Tm.

To discuss the relationship between our results and Yildiz’ result on
generic uniqueness, we first define the impact of an event in the universal
type space which is the natural corresponding definition of belief potential
in the universal type space.

Consider Θ̂ ⊂ Θ. Define recursively the sequence of set of distributions:

Πp
1(Θ̂) = {π ∈ X1 | π(Θ̂) ≥ p}
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Πp
2(Θ̂) = {π ∈ X2 | margX1

π(Πp
1(Θ̂)) ≥ p}

and for all k ≥ 2,

Πp
k(Θ̂) = {π ∈ Xk | margXk−1

π(Πp
k−1(Θ̂)) ≥ p}.

Definition 4.4. Θ̂ has impact p on type t if there exist i ∈ {1, 2} and K
such that

margXK−1
tKi (Πp

K−1(Θ̂)) ≥ p.

We say that Θ̂ has impact p on the model T if it has impact p on any t ∈ T .

Proposition 4.8. Fix any g ∈ Θ, p ∈ (0, 1) and Θ̂ ⊂ Θ. There exists a
sequence of couples {(T k, tk)}∞k=0 where for each k, T k is a model satisfying
the common prior assumption and tk is a type in T k such that tk → tg and
where for each k, Θ̂ has impact p on tk.

Proof. By Proposition 4.3 together with Observation 4.7.

Note that it is easy to show that T k can indeed be chosen to be finite.
This claim is equivalent to the following statement. Fix Θ̂ and any p < 1.
For any open neighborhood of any complete information type tg, there exists
a type t coming from a model with common prior so that Θ̂ has impact p
on t.

However as we have claimed earlier, in the model to which t belongs, the
set of types where Θ̂ has impact p > 1/2 is assigned probability close to zero
by the common prior as long as this prior assigns a small probability to Θ̂.

However allowing for heterogeneous priors enables us to obtain a result
that explicitly refers to models. We want to underline that when the ob-
ject of interest for a modeler is a model, then a statement of the type of
proposition 4.8 holds only when we allow for heterogeneous priors.

Proposition 4.9. Fix any g ∈ Θ, p ∈ (0, 1) and Θ̂ ⊂ Θ. There exists a
sequence of models {T k}∞k=0 where for each k: Tk → {tg} and Θ̂ has impact
p on Tk.

5 Many-Player Extension

In this section, we briefly discuss an extension of belief potential to the case
of many players. We denote by I = (1, 2, . . . , I) the finite set of players. As
previously, an information system (Ω, (Pi)i∈I , (Qi)i∈I) consists of a count-
able state space Ω, the prior distribution Pi and the information partition
Qi for each player i ∈ I. Denote by Fi the sigma algebra generated by Qi.

Let E be a profile (E1, . . . , EI) where Ei ∈ Fi. Define(
B̂p
)
i
(E) = Bp

i

(⋂
j 6=i Ej

)
,
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and B̂p(E) =
((

B̂p
)
i
(E)
)
i∈I .

Then, define
{(

Ĥp
)k(E)

}∞
k=0

recursively by
(
Ĥp
)0
i
(E) = Ei and for k ≥

1, (
Ĥp
)k
i
(E) = Bp

i

(⋂
j 6=i

(
Ĥp
)k−1

j
(E)
)
∪
(
Ĥp
)k−1

i
(E)

=
(
B̂p
)
i

(
(Ĥp

)k−1(E)
)
∪
(
Ĥp
)k−1

i
(E).

Definition 5.1. Let E = (E1, . . . , EI) where Ei ∈ Fi. The belief potential
of event profile E, σ(E), is

σ(E) = max
i∈I

min
j 6=i

σj(E),

where
σi(E) = sup

{
p ∈ [0, 1]

∣∣ ⋃∞
k=0

(
Ĥp
)k
i
(E) = Ω

}
.

We want to relate the belief potential to the p-dominance of Nash equi-
libria. Incomplete information games U = (IS , (Ai)i∈I , (ui)i∈I) are defined
analogously to the two player case, where IS is an information system as
described above. We denote A =

∏
i∈I Ai and A−i =

∏
j 6=i Aj .

Definition 5.2. Let p ∈ [0, 1). Action profile a∗ ∈ A is a strict p-dominant
equilibrium at a state ω if for each i ∈ I and all ai ∈ Ai,

ui(a∗i , πi, ω) > ui(ai, πi, ω)

holds for all πi ∈ ∆(A−i) with πi(a∗−i) > p.

We have the following.

Proposition 5.1. Let E = (E1, . . . , EI) where Ei ∈ Fi. Suppose that (1)
E has belief potential σ > 0, (2) a∗ is a strict p-dominant equilibrium at
every state for some p < σ, and (3) for each player i ∈ I, a∗i is a strictly
dominant action at every ω ∈ Ei. Then, playing a∗ everywhere is the unique
rationalizable strategy outcome.

Appendix

A.1 Proof of Proposition 3.1

Given (a∗1, a
∗
2), denote Ωi = {ω ∈ Ω | R∞[Qi(ω)] = {a∗}} for each i = 1, 2.

Lemma A.1.1. Consider an incomplete information game U and an event
E such that E = E1 ∪ E2 for some Ei ∈ Fi for each i = 1, 2. Suppose
that (i) (a∗1, a

∗
2) is a strict p-dominant equilibrium at every state, and (ii)

for each player i, a∗i is a strictly dominant action at each ω ∈ Ei. Then, for
any q > p, (Hq

i )∞(E) ⊂ Ωi ∪ E−i for each i.
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Proof. Fix q > p and i = 1, 2. We show by induction that (Hq
i )k(E) ⊂

Ωi ∪ E−i for all k. This is true for k = 0 since Ei ⊂ Ωi by assumption (ii).
Assume now that it is true for k− 1, that is, (Hq

i )k−1(E) ⊂ Ωi ∪E−i. Then
we have

Bp
−i((H

q
i )k−1(E)) ⊂ Bp

−i(Ωi ∪ E−i) = Bp
−i(Ωi) ∪ E−i,

where the equality follows from E−i ∈ F−i. Since Bp
−i(Ωi) ⊂ Ω−i

and E−i ⊂ Ω−i by assumptions (i) and (ii), respectively, it follows that
Bp
−i((H

q
i )k−1(E)) ⊂ Ω−i. Again by (i) and (ii) as well as the induction

hypothesis, we have

(Hq
i )k(E) = Bq

i (B
p
−i((H

q
i )k−1(E)))

⊂ Bp
−i((H

q
i )k−1(E)) ⊂ Ωi ∪ (Ωi ∪ E−i) = Ωi ∪ E−i,

as desired.

Proof of Proposition 3.1. Let σ(E) = σi(E). By Lemma A.1.1, assump-
tions (2) and (3) imply that (Hσ

i )∞(E) ⊂ Ωi ∪ E−i. But (1) implies that
(Hσ

i )∞(E) = Ω, so that Ωi ∪ E−i = Ω. But since Ω \ Ωi ∈ Fi, we have
Bσ

i (Ω \ Ωi) = Ω \ Ωi, and therefore using (2) together with Ω \ Ωi ⊂ E−i,
we have Ω \ Ωi ⊂ Ωi, which implies Ωi = Ω (and Ω \ Ωi = ∅). Also, by (2)
it must be that Ω−i = Ω.

A.2 Proof of Lemma 3.2

We first note the following, which is essentially equivalent to Lemma A in
Kajii and Morris (1997).

Lemma A.2.1. Let p > 0. For any event E and player i, if Fi ∈ Fi and
Fi ⊂ Bp

i (E), then Pi(Fi \ E) ≤ ((1− p)/p)Pi(Fi ∩ E).

Fix r ≥ 1, and consider any information system with ρ((Pi)i=1,2) = r
and any event E = E1 ∪ E2, each Ei ∈ Fi. In the following, we want to
obtain an upper bound for Pj((H

p
∗ )K(E)).

Let E0
i = Ei and E0 = E0

1 ∪ E0
2 . Given K ≥ 1 and p ∈ (0, 1], define

{Ek
1 , Ek

2 , Ek}K+1
k=1 recursively by

Ek
i = Bp

i (Ek−1), Ek = Ek
1 ∪ Ek

2 .

Then, (Hp
∗ )K(E) = EK . Let D0

i = E0
i and Dk

i = Ek
i \ Ek−1

i for k =
1, . . . ,K + 1. Observe that {Dk

i }
K+1
k=0 is a partition of Ω, which is coarser

than Qi.
For i, j = 1, 2, let xi(j, 0) = 0 and

xi(j, k) =
k∑

`=1

Pi(D`
j \ E`−1)
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for k = 1, . . . ,K. Note that

Pi((Hp
∗ )

K(E)) ≤ Pi(E) + xi(1,K) + xi(2,K).

By using Lemma A.2.1, we have the following.

Lemma A.2.2. For all k = 1, . . . ,K and i = 1, 2,

xi(i, k) ≤ 1− p

p
xi(−i, k − 1) +

1− p

p
Pi(E0

−i \ E0
i ).

Now, ρ((Pi)i=1,2) = r implies that xj(i, k) ≤ rx−j(i, k). Thus by
Lemma A.2.2, we have the following. Let xi(k) = xi(1, k) + xi(2, k).

Lemma A.2.3. For all k = 1, . . . ,K and i = 1, 2,

xi(k) ≤ r(1− p)
p

x−i(k − 1) +
r(1− p)

p
P−i(E0).

By recursively using Lemma A.2.3, we obtain the upper bound of
Pi((H

p
∗ )K(E)).

Lemma A.2.4. In any information system with ρ((Pi)i=1,2) = r, any event
E ∈ F1 ⊕F2 satisfies

Pi((Hp
∗ )

K(E)) ≤ max{P1(E), P2(E)}
K∑

k=0

{
r(1− p)

p

}k

(A.1)

for all i = 1, 2.

We are now in a position to prove Lemma 3.2. It remains to consider
the limit of the right hand side of (A.1) as K → ∞. This is where the
assumption that p > r/(1 + r) is used.

Proof of Lemma 3.2. If p > r/(1+r), or r(1−p)/p < 1, then the right hand
side of (A.1),

∑K
k=0{r(1− p)/p}k, converges to

1

1− r(1− p)
p

=
p

(1 + r)p− r

as K →∞. Hence, by Lemma A.2.4 we have the desired inequality.

A.3 Proof of Lemma 3.3

The proof of the present Lemma is closely related to the proof of Lemma 3.2.
We state it for completeness. Let us restate the labelling of state space we
have used in the proof of Lemma 3.2.

Let E0
i = Ei and E0 = E0

1 ∪ E0
2 . Define {Ek

1 , Ek
2 , Ek}∞k=1 recursively by

Ek
i = Bp

i (Ek−1), Ek = Ek
1 ∪ Ek

2 . Set also E−1
i = ∅ and let Dk

i = Ek
i \E

k−1
i .

Note again that for all k ≥ 0, (Hp
∗ )k(E) = Ek.
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Proof of Lemma 3.3.

Pi ((Hp
∗ )
∞(E)) = Pi

 ⋃
i∈{1,2}

∞⋃
l=0

(
Dl

i\El−1
) by Lemma ??;

≤ Pi

(∞⋃
l=1

(
Dl

i\El−1
))

+ Pi

(∞⋃
l=1

(
Dl
−i\El−1

))
+ Pi(E0)

=
∑
l≥1

Pi

(
Dl

i\El−1
)

+
∑
l≥1

Pi

(
Dl
−i\El−1

)
+ Pi(E0)

(since for each i, and l 6= l′, Dl
i\El−1 and Dl′

i \El′−1 are disjoints)

≤ 1− p

p

∑
l≥1

Pi

(
Dl

i ∩ El−1
)

+
∑
l≥1

P−i

(
Dl
−i ∩ El−1

)+ ξ + ε

≤ 1− p

p

∑
l≥1

Pi

(
Dl

i ∩ El−1
)

+
∑
l≥1

Pi

(
Dl
−i ∩ El−1

)+
ξ

p
+ ε

=
1− p

p

(
Pi

(∞⋃
l=1

(Dl
i ∩ El−1)

)
+ Pi

(∞⋃
l=1

(Dl
−i ∩ El−1)

))
+

ξ

p
+ ε

(since for each i, and l 6= l′, Dl
i ∩ El−1 and Dl′

i ∩ El′−1 are disjoints)

=
1− p

p
Pi

 ⋃
i∈{1,2}

∞⋃
l=1

(
Dl

i ∩ El−1
)+

ξ

p
+ ε by Lemma ??

≤ 1− p

p
Pi ((Hp

∗ )
∞(E)) +

ξ

p
+ ε by Remark ??.

This yields

Pi((Hp
∗ )
∞(E)) ≤ ξ

2p− 1
+

p

2p− 1
ε

and completes the proof.
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