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Abstract

The aim of this paper is to present the new theory called “inductive game the-
ory”. A paper, published by one of the present authors with A. Matsui, discussed
some part of inductive game theory in a specific game. Here, we will give a more
developed discourse of the theory. The paper is written to show one entire picture
of the theory: From individual raw experiences, short-term memories to long-term
memories, inductive derivation of individual views, classification of such views, deci-
sion making or modification of behavior based on a view, and repercussion from the
modified play in the objective game. We focus on some clear-cut cases, forgetting
a lot of possible variants, but will still give a lot of results. In order to show one
possible discourse as a whole, we will ask the question of how Nash equilibrium is
emerging from the viewpoint of inductive game theory, and will give one answer.

1. Introduction

1.1. General Motivations

In game theory and economics it is customary to assume, often implicitly and sometimes
explicitly, that each player has well formed beliefs/knowledge of the game he plays.
Various frameworks have been prepared for explicit analyses of this subject. However,
the more basic question of where a personal understanding of the game comes from is
left unexplored. In some situations, such as parlour games, it might not be important
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to ask the source of a player’s understanding. The rules of parlour games are often
described clearly in a rule book. However, in social and economic situations, which
are main target areas for game theory, the rules of the game are not clearly specified
anywhere. In those cases, players need some other sources for their beliefs/knowledge.
They may have learned the structure of the game from other people, perhaps, through
education, but then we meet the same question of how those educators obtained their
understanding of the game. One ultimate source for a player’s understanding is his
individual experiences of playing the game. The purpose of this paper is to develop
and to present a theory about the origin and emergence of individual beliefs/knowledge
from the individual experiences of players with bounded cognitive abilities.

People often behave naturally and effectively without much conscious effort to un-
derstand the world in which they live. For example, we work, socialize, exercise, eat,
sleep, without thinking about the structure of our social situation. The accumulation of
experiences gained by these activities will, nevertheless, influence our understanding and
thoughts about society. On some level of abstraction, the social situations we interact
in can be viewed as games that are repeated over time. By behaving and experiencing
in these games, individuals accumulate information, which will in turn influence their
beliefs about the games they play.

Treating particular experiences as the ultimate source of general beliefs/knowledge
is an inductive process. Induction is differentiated from deduction in the way that in-
duction is a process of deriving a general statement from a finite number of observations,
while deduction is a process of deriving conclusions with the same or less logical content
with well-formed inference rules from given premises. Formation of beliefs/knowledge
about social games from individual experiences is typically an inductive process. Thus,
we will call our theory inductive game theory, as was done in Kaneko-Matsui [16]. In
fact, economic theory has had a long tradition of using arguments about learning by
experiences to explain how players come to know the structure of their economy. Even
in introductory microeconomics textbooks, the scientific method of analysis is discussed:
collecting data, formulating hypotheses, predicting, behaving, checking, and updating.
Strictly speaking, these steps are applied to economics as a science, but also sometimes,
less scientifically, to ordinary peoples’ economic activities.

Our theory formalizes some part of an inductive process of an individual decision
maker. In particular, we describe how a player might use his experiences to form a
hypothesis about the rules and structure of the game. In the starting point of our
theory, a player has no a priori beliefs/knowledge about the structure of the particular
game. All beliefs/knowledge about the structure of the particular game are derived
from his experiences and memories.

In our theory, a player tends to follow some regular behavior, but he occasionally
experiments by taking some trials in order to learn about the game he plays. Game
theorists and scientists might wonder how a player can act regularly or conduct ex-
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periments initially without any beliefs or knowledge. Recall, as mentioned above, that
many of our activities do not involve high brow analytical thoughts, but we simply act.
Accordingly, we presume in our analysis that some well defined default action is known
to a player, and whenever he faces a situation he has not thought about, he chooses this
action. Initially, the default action describes his regular behavior. We may interpret this
default action as a norm in society. The early experimental trials are not well developed
experiments, but rather trials taken to see what happens. By taking these trials and
observing the outcomes, a player will start to learn more about the other possibilities
and the game overall.

The theory we propose has three main stages illustrated in Figure 1.1: the (early)
experimentation stage; the inductive derivation stage; and the analysis stage. In the
(early) experimentation stage, the player accumulates experiences by choosing his de-
fault action or previously prescribed actions and maybe occasionally by trying some
alternatives, which may already require conscious effort. This stage may take quite
some time and involve many repetitions before a player moves on to the inductive
stage. In the inductive derivation stage he constructs a view of the game based on the
accumulated experiences. In the analysis stage, he uses his derived view to analyze and
optimize his behavior. If a player successfully passes through these three stages, then he
brings back his optimizing behavior to the objective situation in the form of a strategy
and behaves accordingly. In this paper, we will stop at various points to discuss what
might happen when a player meets some difficulty at some stage. However, one inten-
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tion is to give a entire scenario, so we will move on to each stage. After passing through
all three stages, the player may start to experiment again with other behaviors and the
experimentation stage starts again. Experimentation is no longer early since the player
now has a belief about the game being played. Armed with his belief, a player may now
potentially learn more from his experiments.

While we will take one player through all the stages in our theory, we emphasize
that other players will experiment and move through the stages also at different times
or even at the same time. The precise timing of this movement is not given rigorously.
In Section 7.2 we give an example of how this process of moving through these stages
might occur. We emphasize that experiments are still infrequent occurrences, and the
regular behavior is crucial for a player to gain some information from his experiments.
Indeed, if all players experiment too frequently, little would be learned.

We should distinguish our theory from some approaches in extant game theory. First,
we take up the type-space approach of Harsanyi [9], which has been further developed by
Mertens-Zamir [22] and Brandenburger-Dekel [3]. In this approach, a player starts with
a set of parameter values describing the possible games a player might be playing, and
considers a description of each player’s beliefs about those parameters. In our theory, we
ask the origin and emergence of the beliefs of players with bounded cognitive abilities.
Here, a belief is not about parameter values but about the structure of the game he
is playing. We look for the sources for the origin and emergence in the individual
experiences. In this sense, our approach is quite different from the type-space approach.
One benefit of our approach is to able to consider how a player may formulate his basic
beliefs about the game structure from his experiences. On the other hand, when player’s
have more information about the set of possible parameters, a type-space approach may
be appropriate.

Next, we distinguish our theory from the behavioral game theories that fall un-
der the terms of evolution/learning/experiment (cf., Weibull [28], Fudenberg-Levine [6],
Kalai-Lehrer [11], and more generally, Camerer [4]) and the cased based decision theory
of Gilboa-Schmeidler [7]. The behavioral game theories are typically interested in ad-
justment/convergence of behavior to some equilibrium. They do not address questions
on how a player learns the rules/structure of the game. By rules/structure of the game,
we do not mean the “rules of behavior” used by behavioral game theorists to describe
what are more commonly called strategies in game theory. Instead, by those terms,
we mean the order of moves, players, information structure, payoffs, etc. In contrast to
behavioral game theory, a main target of our theory is the emergence of a player’s beliefs
about the rules/structure. Case based decision theory looks more similar to ours. This
theory focuses on how a player uses his past experiences to predict the consequences
of an action in similar games. Unlike our theory, it does not discuss the emergence of
beliefs/knowledge on social structures.

We now discuss the inductive derivation stage in more detail. A player may, from
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time to time, construct a personal view to better understand the structure of some ob-
jective game he has been repeatedly playing. His view depends on his past interactions.
The entire dynamics of a player’s interactions is conceptually illustrated in the upper
figure of Figure 1.2. Here, each particular game is assumed to be described by a pair
(Γ,m) of an n-person extensive game Γ and memory functions m = (m1, ...,mn), which
will be explained in detail in Sections 1.2 and 2.2. Different superscripts denote different
games a player might face and the arrows represent the passing of time. This diagram
expresses the fact that a player will interact in different games with different players,
and sometimes repeat the same games.

We will describe local memories in an extensive game Γ with the concept of a memory
function mi. In the standard theory of extensive games, the memory ability of a player,
such as the perfect recall condition, is expressed in terms of information sets (cf. Kuhn
[19]), but this does not explicitly describe the memory ability of a player. Since memory
itself plays a central role in our inductive game theory, we need an explicit formulation
of local memories, which is given by a memory function.

We assume that a player focuses on a particular game situation such as (Γ1,m1),
but he does not try to understand the entire dynamics of repeated plays of all games
depicted in the upper diagram of Figure 1.2. The situation (Γ1,m1) occurs occasionally,
and we assume that when it occurs, the player notices it and his behavior depends only
upon its occurrence. By these assumptions, the entire game is effectively reduced into
the lower diagram of Figure 1.2. His target is the particular situation (Γ1,m1). In the
remainder of the paper, we denote a particular situation (Γ1,m1) under our scrutiny by
(Γo,mo), where the superscript “o” means “objective”.
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The induction in our theory is made from the various accumulated experiences of
a player i. From his accumulated experiences, player i inductively derives his general
belief (Γi,mi) about the structure of (Γo,mo). His general belief (Γi,mi) is called a
personal view of player i. The first component in his personal view is the game Γi

which he believes to be playing. The second component is the memory function mi he
believes he has in the game.

The objective memory function moi of player i describes how the raw experiences of
playing the game are perceived in his mind. We refer to these memories as short-term
ones. Each short-term memory may be used to make an on the spot decision. For a
more global picture of the game structure, a player needs to accumulate the memories
of multiple different experiences.

A personal view (Γi,mi) is constructed based only on the part of the game player i
has experienced, and only on the corresponding memories he has accumulated as long-
term memories. What/how short-term memories are accumulated over repeated plays
will be discussed in Section 1.2.

1.2. Treatments of Memories and Inductive Processes

The memories of a player are based on what he observes in each play of the game. These
memories are occurring in his mind. We start with the short-term memories which occur
as the game is played. We presume that the player might observe information pieces
and actions in each play of the game. The information pieces correspond to what in
game theory are typically called “information sets”, and they convey information to the
player about the set of available actions at the current move and perhaps some other
details about the current environment.

A short-term memory mi(x) for a player at his node (move) x consists of sequences of
pairs of information pieces and actions as depicted in Figure 1.3. In the figure it consists
of three sequences and describes what, a player thinks, might have happened prior to
the node x in the current play of the game. In his mind, any of these sequences might
have happened; the multiplicity may be due to forgetfulness. We will use the terms
memory thread for such a sequence, and memory yarn for the value (“set of memory
threads”) of the memory function at a point of time.

Now we consider the long-term memories. Recall that the players are in the repeated
situation described as the lower diagram of Figure 1.2. Objectively speaking, the entire
history of short-term memories for player i is a long sequence. We assume, rather than
keeping this entire sequence of short-term memories, that only one incidence of each
short-term memory, i.e., a set of memory threads and a set of memory yarns, may
possibly remain in the mind of player i as a long-term memory. As we are interested in
players with limited cognitive abilities, we presume that such players retain only some
incidences of short-term memories in their long-term memories.
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We use the concept of habituation to motivate the types of short-term memories
that are likely to remain as long-term ones. The process of habituation is the process
of memorizing something by repeating it frequently enough. While a player may not
retain the exact frequency of having had a short-term memory, the more frequently he
has it, the more likely he is to retain it. Things occurring on some regular basis will
become long-term memories. In addition, a player may use some conscious effort to
keep some memories as long-term ones. In particular, when he makes experiments, he
might try to recall the results. Conscious effort might still require some repetition, but
not as much as without it. The transition from short-term to long-term memories will
be discussed in Section 3, first in a heuristic manner before our mathematization of an
inductive derivation. We refer to the long-term memories as accumulated memories.

We will focus on two sets of accumulated memories: the set of accumulated memory
threads and the set of accumulated memory yarns. The first set is used by a player i to
inductively derive the subjective game Γi. The second set is used by player i to construct
his subjective memory function mi. We refer to the pair of a set of accumulated threads
and a set of accumulated yarns as a memory kit. This is loosely described in Diagram
1.4.

The memory kit brings us to the process of induction, by which a player transforms
his accumulated memories into a personal view. In this paper we consider one specific
procedure for the induction process, which we call the initial segment procedure. In this
process, the player focuses on the maximal threads in his memory as the source for his
view. This initial segment procedure will be discussed formally in Section 4. Since the
aim of this paper is to present a basic scenario, we give this clear-cut case. In separate
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papers, we will give more general procedures.
Our work may be compared to some of the philosophy literature on induction. Fran-

cis Bacon [1] discussed a process of gradual induction as a means of learning about the
laws of nature. Hume’s [10] work is also related to what we are doing since it also em-
phasizes that individual experience is the ultimate source of our understanding nature.
Both Hume and Bacon focus on learning about cause and effect from past experiences.
Our theory includes learning about cause and effect by experiences, but it is used specif-
ically to learn about the rules of a particular game, rather than the laws of nature. It
is relevant to emphasize that in our theory, a player often constructs a false view, may
find some falsities, and it would be difficult for him to remove such falsities entirely.
Thus, our discourse does not give a simple progressive view for induction. It is more
close to Thomas Kuhn’s [20] discourse of scientific revolution (cf. also Harper-Schulte
[8] for a concise survey of related works).

1.3. The Structure of the Present Paper

This paper is divided into three parts:

Part I: Background, and Basic Concepts of Inductive Game Theory - -Section
1 to Section 3. Section 1 is now describing the motivation, background, and a rough
sketch of our new theory. We will attempt, in this paper, to give a basic scenario of our
entire theory. The mathematical structure of our theory is based on extensive games.

8



Section 2 gives the definition of an extensive game in two senses: strong and weak.
This distinction will be used to distinguish the objective description of a game from a
player’s inductively derived description. The derivation of a view is based on a player’s
experiences and memories. Section 3 gives an informal theory of accumulating long-
term memories, and a formal description of the long-term memories as a memory kit.

Part II: Inductive Derivation of a Personal View - - Section 4 to Section 6.
In Section 4, we define an inductively derived personal view. We do not describe the
induction process entirely. Rather, we give conditions that determine whether on not
a personal view might be inductively derived from a memory kit. Because we have so
many potential views, we define a direct view in Section 5, which turns out to be a
representative of all the views a player might inductively derive (Section 6).

Part III: Decision Making using an Inductively Derived View - - Section 7 to
Section 9. In this part, we consider each player’s use of his derived view for his decision
making. We consider a specific memory kit which allows each player to formulate
his decision problem as a 1-person game. Nevertheless, this situation serves as an
experiential foundation of Nash equilibrium. This Nash equilibrium result, and more
general issues of decision making, are discussed in Sections 7 and 8.

2. Extensive Games, Memory, Views, and Behavior

To describe a basic situation like (Γ1,m1) in Figure 1.2, we will use an n-person extensive
game Γ1 and memory functions m1 = (m11, ...,m

1
n). We follow essentially Kuhn’s [19]

formulation of an extensive game to represent Γ1.1 The memory functions m11, ...,m
1
n

are new and will be described in Section 2.2. Because we use the same tools to model
the inductively derived view of a player, we will give an extensive game in the strong
and weak senses in Section 2.1. One in the weak sense is needed since a player may only
experience some part of the game being played. We do adopt an extensive game in the
strong sense to describe the objective situation. After describing extensive games and
memory functions, we formally define an objective description (Γ1,m1) and a personal
view (Γi,mi) of player i in Section 2.2. In Section 2.3 we give a formal definition of a
behavior pattern (strategy configuration) for the players.

2.1. Extensive Games

First, we define an extensive game Γ in the strong sense, and then we define an extensive
game in the weak sense. Our definition of an extensive game in the strong sense differs

1There are various formulations of extensive games such as in Selten [27], Dubey-Kaneko [5], Osborne-
Rubinstein [25] and Ritzberger [26]. Those are essentially the same formulations, while Dubey-Kaneko
[5] give a simultaneous move form.
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from that of Kuhn [19] mainly in that the information sets of Kuhn are replaced by
information pieces. Although this difference is inessential from the objective point of
view, it is essential, indeed, from the subjective point of view, which will be explained
later. An extensive game in the weak sense differs more substantially from an extensive
game of Kuhn.

For notational simplicity, we sometimes make use of a function with the empty
domain, which we call an empty function. When the empty domain and some (possibly
nonempty) region are given, the empty function is uniquely determined. The reason for
a slightly twisted definition of K33 will be found in K330.

Definition 2.1 (Extensive Games). An extensive game in the strong sense Γ =
((X,<), (λ,W ), {(ϕx, Ax)}x∈X , (π, N), h) is defined as follows:
K1(Game Tree): (X,<) is a finite forest (in fact, a tree by K14);

K11: X is a finite non-empty set of nodes, and < is a partial ordering over X;

K12: {x ∈ X : x < y} is totally ordered with < for any y ∈ X; 2

K13: X is partitioned into the set XD of decision nodes and the set XE of endnodes
so that every node in XD has at least one successor, and every node in XE has no
successors;3

K14: X has the smallest element x0, called the root.4

K2(Information Function): W is a finite set of information pieces and λ : X →W is a
surjection with λ(x) 6= λ(z) for any x ∈ XD and z ∈ XE ;

K3(Available Action Sets): Ax is a finite set of available actions for each x ∈ X;
K31: Ax = ∅ for all x ∈ XE;

K32: for all x, y ∈ XD, λ(x) = λ(y) implies Ax = Ay;

K33: for any x ∈ X, ϕx is a bijection from the set of immediate successors of x to Ax;

K4(Player Assignment): N is a finite set of players and π : W → 2N is a player
assignment with two conditions;

K41: |π(w)| = 1 if w ∈ {λ(x) : x ∈ XD} and π(w) = N if w ∈ {λ(x) : x ∈ XE};
K42: for all j ∈ N, j ∈ π(w) for some w ∈ {λ(x) : x ∈ XD};

2The binary relation < is called a partial ordering on X iff it satisfies (i)(irreflexivity): x ≮ x; and
(ii)(transitivity): x < y and y < z imply x < z. It is a total ordering iff it is a partial ordering and
satisfies (iii)(totality): x < y, x = y or y < x for all x, y ∈ X.

3We say that y is a successor of x iff x < y, and that y is an immediate successor of x, denoted by
x <I y, iff x < y and there is no z ∈ X such that x < z and z < y.

4A node x is called the smallest element in X iff x < y or x = y for all y ∈ X.
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K5(Payoff functions): h = {hi}i∈N , where hi : {λ(x) : x ∈ XE} → R is a payoff
function for player i ∈ N.

Bijection ϕx associates an action with an immediate successor of x. Game theoreti-
cally, it names each branch at each node in the tree. When x is an endnode, ϕx is the
empty function. Since Ax is empty, too, by K31, ϕx is a bijection.

When K14 (root) is dropped, and K33 (bijection) and K5 (payoffs) are replaced by
the following weaker requirements, we say that Γ is an extensive game in the weak sense:

K330: for any x ∈ X, ϕx is a function from the set of immediate successors of x to Ax.

K50: h : {λ(x) : x ∈ XE}→ R is a payoff function for player i.

Since X may not have the smallest element, (X,<) is not necessarily a tree. However,
(X,<) is divided into several connected parts. We can prove that a maximal connected
subset of (X,<) is a tree. Thus, (X,<) is a class of trees, i.e., a forest. For any x ∈ X,
there is a unique path to x, i.e., each maximal set {x1, ..., xm+1} with xt < xt+1 for
t = 1, ...,m and xm+1 = x. When x is an endnode, we will call the path to x a play.

In an extensive game in the weak sense, an action a at a node x may not uniquely
determine an immediate successor. See Figure 2.1, which will be discussed as a derived
view in Section 4.1. The converse, however, that an immediate successor determines a
unique action, does hold by K330. Thus, we can define: x <Ia y iff x <

I y and ϕx(y) = a,
which means that y is an immediate successor of x via action a. Then, we define x <a y
iff there is some y0 such that x <Ia y

0 and (y0 = y or y0 < y).
We will use an extensive game in the strong sense as an objective description of a

social situation we target, e.g., Γo = Γ1 in Figure 1.2. An extensive game in the weak
sense will be used for a personal view inductively derived from experiences. The latter
differs from the former in several respects, besides the one mentioned above. First, we
take the payoffs as personal and assume that a player’s personal view does not include
the payoffs of other players. Hence, condition K5 is weakened to K50 for a personal
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view. Dropping the root assumption and weakening K33 are more substantial changes.
We will see why such changes are needed when we derive a personal view in Section
4. These are alternative assumptions and we will discuss other alternatives in separate
papers.

For an extensive game in the weak or strong sense, condition K32 implies that the
set of available actions at a node x is determined by the information piece w = λ(x).
Thus, we may write Aw or Aλ(x) rather than Ax.

An extensive game in the strong sense is the same as that given in Kuhn [19], except
that we use information pieces W , rather than information sets. When the structure
of Γ is known, information sets are defined by information pieces, i.e., {x : λ(x) = w}
for w ∈ W . In this sense, our definition of an extensive game is essentially the same
as Kuhn’s formulation from the objective point of view. However, the replacement of
information sets by information pieces is substantive from the subjective point of view
for our inductive game theory.

For the purpose of comparisons, we first mention the standard interpretation of the
theory of extensive games due to Kuhn [19] (also, cf., Luce-Raiffa [21], Section 3.6).
The interpretation is summarized as follows:

(i)(Cognizance): each player is fully cognizant of the game structure;
(ii)(Ex Ante Decision): each player makes a strategy choice before the actual play of
the game.

Under (i), when a player receives an information piece w, he can infer the information
set {x : λ(x) = w} corresponding to piece w.

In the inductive context described in Section 1, the assumption (i) is dropped. In-
stead, players learn some part of the game structure by playing the game. Early on,
a player may not infer at all the set of possible nodes having information piece w. To
explain such differences, we use one small example of an extensive game, which we will
repeatedly use to illustrate new concepts.

Example 2.1. Consider the extensive game depicted in Figure 2.2. It is an example
of a 2-person extensive game. Player 1 moves at the root x0, and then at the node x3
if it is reached. Player 2 moves at x1 or x2 depending on the choice of player 1 at x0.
At endnode z4 the payoffs to players 1 and 2 are (h1(z4), h2(z4)) = (0, 1). The infor-
mation function λ assigns λ(x0) = w, λ(x1) = λ(x2) = v, λ(x3) = u. At the endnodes,
z1, z2, z3, z4, z5, the information function is the identity function, i.e., λ(zt) = zt for
t = 1, ..., 5. In Kuhn’s interpretation, each player has the knowledge of the game tree.
In Figure 2.2, for example, when player 2 receives information piece v, he can infer that
either x1 or x2 is possible, which means that he knows the information set {x1, x2}. He
can also infer from his structural knowledge that player 1 chose either a or b at x0.

Under the inductive interpretation, when player 2 receives information piece v, he
may not come to either of the conclusions mentioned in the previous paragraph. He
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might not even be aware of the existence of player 1. In such a case, piece v does not
imply the information set {x1, x2} and the choices by player 1 either. Thus, in the
inductive situation, receiving information piece v may be totally different from knowing
the corresponding information set.

The above consideration suggests that there are multiple interpretations of the
knowledge a player gets from an information piece. Here, we specify the minimal con-
tent a player gets from each information piece w in Γ:

M1: the set Aw of available actions;

M2: the value π(w) of the player assignment π if w is a decision piece;

M3: his own payoff hi(w) (as a numerical value) if w is an endpiece.

These are interpreted as being written on each piece w. These conditions will be dis-
cussed further when we consider some specific memory functions in Section 2.2 and the
inductive derivation of a view in Section 4.

Let us return to (i) and (ii) of the standard interpretation of an extensive game given
by Kuhn [19]. In our inductive game theory, since we drop the cognizance assumption (i),
the ex ante decision making of (ii) does not make sense before an individual constructs
a view of the game. We presume that until he constructs a view, he follows some regular
behavior and makes occasional trials in an effort to learn the game he is playing. At
some point of time, he will try to construct a view based on his accumulated memories
of his experiences. Once a view is constructed, it may then be used by the player to
construct an optimal strategy for future plays.
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2.2. Memory Functions and Views

It is standard in the literature of extensive games to describe the memory ability of a
player in terms of information sets (cf. Kuhn [19]). This does not separate the role of an
information piece (set) as information transmission from the role of individual memory
capabilities. In our inductive game theory, the treatment of memories plays a central
role, and thus, we need an explicit formulation of individual memories in addition to an
extensive game. For this reason, we will introduce the concept of a memory function,
which describes short-term memories of a player within an extensive game.

A memory function expresses a player’s short-term memory about the history of
the current play of a game. Let Γ = ((X,<), (λ,W ), {(ϕx, Ax)}x∈X , (π,N), h) be an
extensive game in the weak or strong sense. Recall that for each node x ∈ X, there is
a unique path to x which is denoted by hx1, ..., xm+1i with xm+1 = x. Also, the actions
taken at x1, ..., xm on the path to x are uniquely determined, i.e., for each t = 1, ...,m,
there is a unique at ∈ Axt satisfying ϕxt(xt+1) = at. We define the complete history of
information pieces and actions up to x by

θ(x) = h(λ(x1), a1), ..., (λ(xm), am),λ(xm+1)i. (2.1)

The history θ(x) consists of observable elements for players, while the path hx1, ..., xm+1i
to x consists of unobservables for players. A memories will be defined in terms of these
observable elements.

A short-term memory consists of memory threads that look somewhat like the his-
torical sequence θ(x). However, we allow a player to be forgetful, which is expressed by
incomplete threads or multiple threads. Formally, a memory thread is a finite sequence

µ = h(v1, a1), ..., (vm, am), vm+1i, (2.2)

where
vt ∈W, at ∈ Avt for all t = 1, ...,m and vm+1 ∈W. (2.3)

Each component (vt, at) (t = 1, ...,m) or vm+1 in µ is called a memory knot. A finite
nonempty set of memory threads is called a memory yarn. See Figure 1.3 for an illus-
tration of these concepts. Now, we have the definition of a memory function.

Definition 2.2 (Memory Functions). We say that a function mi is a memory func-
tion of player i iff for each node x ∈ Xi := {x ∈ X : i ∈ π · λ(x)}, mi(x) is a memory
yarn satisfying:

w = λ(x) for all hζ, wi ∈ mi(x). (2.4)

The memory function mi gives a memory yarn consisting of a finite number of
memory threads at each node for player i. The multiplicity of threads in a yarn describes
uncertainty at a point in time about the past.
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In Figure 1.3, the memory yarn mi(x) consists of three memory threads. The first
one is a long one, the second and third are memory threads of short lengths. Condition
(2.4) states that the tails of any memory threads at a node x are identical to the correct
piece λ(x). This is interpreted as meaning that the player correctly perceives the current
information piece.

Here, we mention five specific examples of memory functions. In the first memory
function, which is the exact perfect recall memory function, player i recalls what in-
formation he received during the current game and what actions he took, but nothing
about the other players. For this example, we define player i’s own history: For a node
x ∈ Xi, let θ(x) = h(λ(x1), a1), ..., (λ(xm), am), λ(xm+1)i, and let hxk1 , ..., xkl , xkl+1i
be the subsequence of nodes in the path hx1, ..., xm, xm+1i to x belonging to player i,
i.e, i ∈ π · λ(xkt) for t = 1, ..., l + 1. Then we define player i’s (objective) history of
information pieces and actions up to x by:

θ(x)i = h(λ(xk1), ak1), ..., (λ(xkl), akl),λ(xkl+1)i. (2.5)

(1) Exact Perfect Recall Memory Function: It is formulated as follows:

mEPRi (x) = {θ(x)i} for each x ∈ Xi. (2.6)

With the memory function mEPRi , player i recalls his own information pieces and actions
taken in the current play of the game. This memory function will have a special status
in the discourse of this paper.

In Figure 2.2, the memory function mEPR1 for player 1 is given as:

mEPR1 (x0) = {hwi}, and mEPR1 (x3) = {h(w, b), ui}; (2.7)

mEPR1 (zt) = {h(w, a), zti} for t = 1, 2 and mEPR1 (z3) = {h(w, b), z3i};
mEPR1 (z4) = {h(w, b), (u, a), z4i} and mEPR1 (z5) = {h(w, b), (u, b), z5i}.

At node x3, player 1 receives piece u and recalls his choice b at w. By the minimal
requirement M1, he knows the available actions Aw = {a, b} and Au = {a, b}. Without
adding any other source than mEPR1 , player 2 does not appear in the scope of player 1.
It will be discussed that Figure 2.1 is an inductively derived view in this example.

The next example is the Markov memory function. As its name suggests, a player
forgets the entire history after he makes a decision. This memory function is defined as
follows:

(2) Markov Memory Function: It is formulated as

mMi (x) = {λ(x)} for each x ∈ Xi. (2.8)
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It gives only the present information piece. Nonetheless, by the minimal requirement
M1, the player can extract his available action set Aλ(x) whenever he receives an infor-
mation piece λ(x).

For both mEPRi and mMi , we would have no difficulty in presuming that each player
only receives his own information pieces and gets the minimal information described by
M1, M2 and M3. As we will see now, some other memory functions provide a player
with information about some other players’ information pieces and actions. The first
such memory function is the perfect information memory function.

(3) Perfect Information Memory Function: This is formulated as

mPIi (x) = {θ(x)} for each x ∈ Xi. (2.9)

Recall that θ(x) is given by (2.1). Thus, if player i has this memory function, he recalls
the perfect history even including the other players’ pieces. By M1 and M2, he also
knows the available actions and the player who moves at each decision piece. There are
at least two possible interpretations of how he comes to know the perfect history.

One interpretation is that player i observes other players’ moves as the game is
played. Another interpretation is that player i’s information pieces contain the complete
history, i.e., θ(x) is written on piece λ(x). Under either interpretation, a player gets
more than the minimal amount of information described in M1-M3.

The next memory function typically gives a player less information than the perfect
information memory function.

(4) Classical Memory Function: This memory function is formulated as:

mCi (x) = {θ(y) : y ∈ Xi and λ(y) = λ(x)} for each x ∈ Xi. (2.10)

Observe that this function gives player i the set of complete histories up to nodes with
his current information piece. The multiplicity of memory threads can be interpreted
as some ambiguity about the past. This memory function can also be interpreted in
the ways suggested for mPIi . We should mention yet another interpretation which is the
motivation for the name “classical” memory function. In this interpretation, player i
knows the structure of the extensive game. Consequently, he can infer the set of possible
complete histories compatible with the present information piece. The classical memory
function together with this interpretation is less compatible with our inductive game
theory than the other memory functions. Since it is still mathematically allowed and is
closer to the classical game theory, we consider it.

The general definition of a memory function allows it to even involve false com-
ponents. We give one example of false memories using the following simple extensive
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game. Consider the 1-person extensive game (Γ,m1) depicted as Figure 2.3 with the
identity information function.

z1 z2
-a %b

x

Figure 2.3

A false memory function m1 is given as:

m1(x) = {hxi},m1(z1) = {h(x, a), z1i} and m1(z2) = {h(x, a), z2i}. (2.11)

This m1 takes a false value at z2, at which player 1 incorrectly recalls having chosen a
at x though he actually chose b at x.

Having described an extensive game and memory functions, we now have the basic
ingredients for objective descriptions and (subjective) personal views. Both are de-
scribed by extensive games and memory functions.

(Objective Description): A pair (Γo,mo) is called an objective description iff Γo is
an extensive game in the strong sense and mo = (mo1, ...,m

o
n) is an n-tuple of memory

functions in Γo.

The objective description is not available to a player. We use the superscript o to
denote the objective description. We will put a superscript i to denote a personal view
of player i.

(Personal View): A pair (Γi,mi) is a personal view for player i iff Γi is an extensive
game in the weak sense specifying only the payoff function of player i, and mi is a
memory function for player i in Γi.

A personal view (Γi,mi) of player i describes the game player i believes he is playing.
Since his belief is based on his experiences, we do not include the memory functions or
payoffs of other players. We regard payoff values and memory values as personal.5

2.3. Behavior Patterns

Let Γ = ((X,<), (λ,W ), {(ϕx, Ax)}x∈X , (π,N), h) be an an extensive game in the weak
or strong sense and let mi be a memory function for player i ∈ N. The extensive game
and memory function may be either the objective description or a personal view. We
give a definition of a behavior pattern that works in both cases.

5As stated several times, we regard this as an alternative assumption adopted in the present discourse.
This can be extended to include other players.
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We say that a function σi on the set of nodes XD
i := {x ∈ XD : i ∈ π · λ(x)} is a

behavior pattern (strategy) of player i iff it satisfies conditions (2.12) and (2.13):

for all x ∈ XD
i , σi(x) ∈ Ax; (2.12)

for all x, y ∈ XD
i , mi(x) = mi(y) implies σi(x) = σi(y). (2.13)

Condition (2.12) means that a behavior pattern σi prescribes an action to each decision
node. Condition (2.13) means that a strategy depends upon local memories. These are
standard conditions for the definition of a strategy. We denote, by Σi, the set of all
behavior patterns for player i in Γ. We say that an n-tuple of strategies σ = (σ1, ...,σn)
is a profile of behavior patterns.

We use the term behavior pattern (strategy) to acknowledge that the behavior of a
player may initially represent some default behavior with no strategic considerations.
Once, a player has gathered enough information about the game, his behavior may
become strategic. This will be discussed in a remark in the end of Section 3.2.

In order to evaluate a behavior pattern, we introduce the concepts of compatible
endnodes and compatible endpieces. All evaluations of strategies in this paper will be
done in terms of compatible endpieces. Each behavior profile σ = (σ1, ...,σn) determines
the set of compatible endnodes:

z(σ) = {z ∈ XE : θ(z) = h(λ(x1),σ(x1)), ..., (λ(xk),σ(xk)),λ(xk+1)i (2.14)

for the path hx1, ..., xk, xk+1i to z}.

Thus, the actions in the history θ(z) were prescribed by the behavior profile σ =
(σ1, ...,σn). Each behavior profile σ also determines the set of compatible endpieces:

λ(σ) = {w : λ(x) = w for some x ∈ z(σ)}. (2.15)

When Γ is an extensive game in the strong sense, z(σ) and λ(σ) are singleton sets.
However, for extensive games in the weak sense, these sets may have multiple elements.
(They may be empty since all actions may not be used in the extensive game in the
weak sense, but this difficulty will not be discussed in the discourse of this paper.)

3. Bounded Memory Abilities and Accumulation of Short-term Mem-
ories

In this section, we first define a domain of accumulation of short-term memories. This
definition is based on the presumption that a player has a quite restricted ability of
memory. Theoretically, however, there are still many other possibilities. In Section
3.2, we will give one informal theory about the accumulation of short-term memories
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as long-term ones. This informal theory suggests a particular domain which we call the
unilateral trial (UT) domain, which turns out to be linked to Nash equilibrium behavior,
as will be shown in Section 7.2. Informal discussions of this type are intended to provoke
further discussions and debates over the appropriate domain(s) for consideration. As
well described by von Neumann-Morgenstern [29], p.7,

... This preliminary stage is necessarily heuristic, i.e., the phase of transition from
unmathematical plausibility considerations to the formal procedure of mathematics. ...

we need a careful premathematical consideration for our theory.

3.1. The Objective Recurrent Situation and Domains of Accumulation of
Local Memories

Let an extensive game Γo = ((Xo, <o), (λo,W o), {(ϕox, Aox)}x∈X , (πo,No), ho) in the
strong sense and a profile mo = (mo1, ...,m

o
n) of memory functions be the description

of the objective situation. The present purpose is to consider the accumulation of mem-
ories from playing in (Γo,mo) repeatedly.

>From the objective point of view, an individual player, i, has been experiencing
short-term memories:

· · · | mi(x
t
1), ...,mi(x

t
`t) | mi(x

t+1
1 ), ...,mi(x

t+1
`t+1

) | · · · (3.1)

(Γo,mo) at t (Γo,mo) at t+ 1

where hxt1, ..., xt`ti is the realized sequence of player i’s nodes in the occurrence of (Γ
o,mo)

at time t. Due to bounded memory, player i will only accumulate some part of these as
long-term memories.

In the extensive game (Γo,mo), the domain of accumulation for player i is a non-
empty subset Di of the set Xo

i = {x ∈ Xo : πo(x) 3 i} of nodes for player i. Player i
is relevant in his own domain Di iff it contains at least one decision node for player i.
This definition will be important later in this paper.

We say that a pair (TDi ,YDi) of a set of memory threads and a set of memory yarns
is a memory kit for domain Di iff

TDi =
S
x∈Di

moi (x); (3.2)

YDi = {moi (x) : x ∈ Di}. (3.3)

A memory kit is determined by both the domain of accumulation Di and the objective
memory function moi of player i. It will be the source for an inductive construction of
a personal view. The set TDi of memory threads is used to construct a skeleton of the
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tree for a personal view. The set YDi of yarns is used to construct a perceived memory
function. Mathematically speaking, the latter set gives the former, but we keep those
two sets to emphasize that they have different usages.

It may be appropriate to compare our intended use of a memory kit (TDi ,YDi)
with a jigsaw puzzle. Treating the memory threads as pieces in a jigsaw puzzle, a
player will first try to reconstruct the extensive game he is playing. If he succeeds
at this task, he may next treat the memory yarns as the pieces in his jigsaw puzzle,
and try to put memory yarns to appropriate nodes. It is important to keep in mind
that unlike a standard jigsaw puzzle, the pieces in his memory kit may typically be
incomplete and some are missing. In putting the pieces together, he acts as an artist,
adding and ignoring somewhat as necessary. Consequently, the picture he constructs
from his memory kit may not resemble closely the original even though it could be more
understandable and, perhaps, more understandable.

For a memory kit, we assume that player i has accumulated some incidences of
short-term memories as both threads and yarns. A kit does not include a sequence of
short-term memories and/or frequencies. In Section 3.2, we will discuss one rationale
for this treatment.

Here, we give three domains of accumulation. The first two are trivial ones, and the
third example is the one we are going to explore in this paper.

(1): Full Domain: This is simply given as the entire set DFi = X
o
i of player i’s nodes.

When the game is small, is repeated often enough, and when the accumulation ability
of player i is strong enough, this domain may be appropriate.

(2): Cane Domain: A cane domain is a complete set of nodes for player i on one
play. Formally, let hx0, ..., xmi be the path to an endnode xm. Then the cane domain
of player i to xm is given as {x0, ..., xm}∩Xo

i . A cane domain may arise if every player
behaves always following some regular behavior pattern with no deviations.

Now, let σo = (σo1, ...,σ
o
n) be a profile of behavior patterns in the extensive game

(Γo,mo). Then, this σo determines a unique path to an endnode. Hence, the cane domain
for player i is uniquely determined, which is denoted by Dci (σ

o). Using this concept, we
can define the unilateral trial domain relative to a profile of behavior patterns.

(3): Unilateral Trial (UT) Domain: The UT-domain relative to a profile σo =
(σo1, ...,σ

o
n) of behavior patterns for player i is given as

DUi (σ
o) =

S
σi∈Σoi

Dci (σi,σ
o
−i). (3.4)

Here, Σoi is the set of all behavior patterns for player i in (Γ
o,mo) and (σi,σo−i) is the

profile obtained from σo by substituting σi for σoi in σ
o. That is, the UT-domain DUi (σ

o)
is the set of nodes for player i that are reached by unilateral deviations of player i.
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For a unified treatment of the above domains, we introduce one condition. We say
that a domain Di for player i is closed iff Di is expressed as some union of cane domains
of player i. The above three examples of domains are closed. A domain which is not
closed is the set XoE of endnodes.

Example 3.1. Let us continue with the example of Figure 2.2. Let the regular behavior
be given by σo1(x0) = σo1(x3) = a and σo2(x1) = σo2(x2) = c. The cane domain and UT-
domain of player 1 determined by σo are given as

Dc1(σ
o) = {x0, z1} and DU1 (σo) = {x0, z1, z3}.

The full domain is simply given as DF1 = X
o
1 = {x0, x3, z1, z2, z3, z4, z5}.

The memory kit of player 1 depends also on his objective memory function mo1. For
the three domains mentioned above and the Markov, EPR memory functions, we have
a total of six memory kits. We mention two and leave the reader to consider the other
four.

For the EPR memory function mo1 = m
EPR
1 and the cane domain, we have TDc

1(σ
o) =

{hwi, h(w, a), z1i}, and YDc
1(σ

o) = {{hwi}, {h(w, a), z1i}}.
For the Markov memory function mo1 = m

M
1 and the UT-domain, we have TDU

1 (σ
o) =

{hwi, hz1i, hz3i} and YDU
1 (σ

o) = {{hwi}, {hz1i}, {hz3i}}.

3.2. An Informal Theory of Behavior and Accumulation of Memories

Our mathematical theory starts with a memory kit. Behind a memory kit, there is some
underlying process of behavior and accumulation of short-term memories that gener-
ates this kit. We now describe one such underlying process informally which justifies
the UT-domain of accumulation. This description is given in terms of some informal
postulates.

(1): Postulates for Behavior and Trials: The first postulate is the rule-governed
behavior of each player in the recurrent situation ..., (Γo,mo), ..., (Γo,mo), ....

Postulate BH1 (Regular Behavior): Each player typically behaves regularly fol-
lowing his behavior pattern σoi .

Player i may have adopted his regular behavior for some time without thinking, perhaps
since he found worked well in the past or he was taught to follow it. Without assuming
regular behavior and/or patterns, a player may not be able to extract any causal pattern
from his experiences. In essence, learning requires some regularity.

To learn some other part than that regularity experienced in the extensive game,
the players need to make some trial deviations. We postulate that such deviations take
place in the following manner.

Postulate BH2 (Occasional Deviations): Once in a while (infrequently), each
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player unilaterally and independently makes a trial deviation σi ∈ Σoi from his reg-
ular behavior σoi and then returns to his regular behavior.

Early on, such deviations may be unconscious or not well thought out. Nevertheless, a
player might find that a deviation leads to a better outcome, and he may start making
deviations consciously in the future. Once he has become conscious of his behavior-
deviation, he might make more and/or different trials.

The set of trial deviations for a player is not yet well specified. In the remainder
of this paper, we explore one extreme case where he tries every possible behavior. The
following postulate is made for simplicity in our discourse and since it connects our
theory to standard game theory.

Postulate BH3 (All Possible Trials): Each player experiments over all his possible
behaviors.

Postulate BH3 is an extreme case that each player tries all his alternative behaviors.
We do not take this as basic. The choice of a smaller set of trial deviations is very
relevant, since a player might not have prior knowledge of his available behaviors. This
aspect will be explored in a separate paper.

(2): Epistemic Postulate: Each player may learn something through his regular
behavior and deviations. What he learns in an instant is described by his short-term
memory. For the transition from short-term memories to long-term memories, there are
various possibilities. Here we list some postulates based on bounded memory abilities
that suggest only the UT-domain of accumulation.

The first postulate states that if a short-term memory does not occur frequently
enough, it will disappear from the mind of a player. We give this as a postulate for a
cognitive bound on a player.

Postulate EP1 (Forgetfulness): If experiences are not frequent enough, then they
would disappear from a player’s mind.

In the face of this cognitive bound, only some memories become lasting. The first type
of memories that become lasting are the regular ones since they occur quite frequently.
The process of making a memory last by repetition is known as habituation.

Postulate EP2 (Habituation): A short-term (local) memory becomes lasting as
a long-term memory in the mind of a player by habituation, i.e., if he experiences
something frequently enough, it remains in his memory as a long-term memory even
without conscious effort.

By EP2, when all players follow their regular behavior patterns, the short-termmemories
given by them will become long-term memories by habituation.

The remaining possibilities for long-term memories are the memories of trials made
by some players. We postulate that a player may consciously spend some effort to
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memorize the outcomes of his own trials.

Postulate EP3 (Conscious Memorization Effort): A player makes a conscious
effort to memorize the result of his own trials. These efforts are successful if they occur
frequently enough relative to his trials.

Postulate EP3 means that when a player makes a trial deviation, he also makes a
conscious effort to record his experience in his long-term memory. These memories are
more likely to be successful if they are repeated frequently enough relative to his trials.
Since the players are presumed to behave independently, the trial deviations involving
multiple players will occur infrequently, even relative to one player’s trials. Thus, the
memories associated with multiple players’ trials do not remain as long-term memories.
This has the implication that our experiential foundation is typically incompatible with
the subgame perfect concept of Selten [27], which will be discussed again in Section 9.

In sum, postulates EP1 to EP3 and BH1 to BH3 suggest that we can concentrate
on the UT-domain of a player.

Some other domains such as a cane domain and the full domain might emerge
as candidates in slightly different situations. For example, if no trials are made, then
EP2(Habituation) gives the cane domain corresponding to σo. Alternatively, if the game
is small enough and if it is repeated enough, then each player has experienced every
outcome. And if he has an ability to recall all the incidences, then we would get the full
domain. The additional assumption of full recall seems plausible for small games.

Remark (Default Decision and all the Possible Behaviors): One may criticize
our treatments in that:

(1) σoi has the total domain X
o
i and

(2) σi varies over the entire Σoi of (3.4),

since these might conflict with the assumption of no a priori knowledge of the structure
of the game for player i.

We can answer (1) by interpreting one action at every decision node as a default
action. When a player receives an unknown information piece, he just takes the default
action. This assumption avoids a player’s need to plan for his behavior over the entire
domain.

We take (2) as a legitimate criticism, particularly, when the game is large. We
have chosen (3.4) as a working assumption in this paper. We will develop a theory
corresponding to this criticism in a future paper. Nevertheless, the case treated in the
present paper helps to connect our theory to the standard game theory.
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4. Inductively Derived Views

In this section, we will give a definition of an inductively derived (personal) view, which
we abbreviate as an i.d.view. Here, player i uses only his memory kit (TDi ,YDi) as a
summary of his experiences to construct an i.d.view. Before the definition, we will talk
about our basic principles to be adopted in this paper. After the definition, we will
consider various examples to see the details of the definition.

4.1. Observables, Observed, and Additional Components

The central notion in the present paper is the process of inductive inferences. An
inductive inference is distinguished from a deductive inference in that the former allows
some generalization of observations by adding some hypothetical components, while the
latter changes expressions following the well-formed inference rules and keeps the same
or less contents. A player, i, having a memory kit (TDi ,YDi) may add some hypothetical
components to the kit in his inductive process to develop a personal view.

The need for this addition of hypothetical components may be found in the assump-
tion that a player can only observe some elements of the objective extensive game Γo.
As remarked in Section 2.2, only information pieces and actions are observable for each
player, while nodes are hypothetical and unobservables. In addition, many or some
pieces and actions that are observable will not end up in the memory kit. Pieces and
actions only along some of the paths in a game tree will likely be observed for play-
ers. Moreover, the bounds on their memory capabilities will allow them to accumulate
memories of only some of what they have observed. The memory kit (TDi ,YDi) is the
collection of observed parts which are effectively remaining in the mind of player i.

Since player i describes his view (Γi,mi) as an extensive game in the weak sense with
a memory function, he will need to invent a tree structure by adding hypothetical nodes.
In this sense he already goes beyond deductive inferences. To construct a coherent view,
a player may add other components, e.g., more information pieces, actions, and possible
histories to his memories. In this paper, however, we adhere to the basic principle that
only elements in the memory kit (TDi ,YDi) can be used as the observables in (Γi,mi). In
Section 4.2, we will adopt a specific inductive process called the initial-segment procedure
and use this procedure to define an i.d.view. With this procedure, a player forms the
underlying skeletal structure of his view by adding hypothetical nodes. In a separate
paper, we consider a more loose restriction on inductive inferences.

4.2. Definition and Examples

Now, consider the recurrent situation of (Γo,mo) illustrated in Figure 1.2. Here, Γo =
((Xo, <o), (λo,W o), {(ϕox, Aox)}x∈Xo , (πo, No), {hoi }i∈No) is an extensive game in the
strong sense and mo = (mo1, ...,m

o
n) is an n-tuple of memory functions. Recall that a
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personal view is given as a pair (Γi,mi), where Γi = ((Xi, <i), (λi,W i), {(ϕix, Aix)}x∈Xi ,
(πi, N i), hi) is an extensive game in the weak sense specifying only the payoff function
hi of player i and mi is a memory function for player i in that game. We assume that
player i uses his memory kit (TDi ,YDi) in the sense of (3.2) and (3.3) to construct his
personal view (Γi,mi).

Strictly speaking, we will not consider the precise process of inductive derivation of
a view (Γi,mi). Instead, we consider possible candidates of (Γi,mi) for the result of
inductive derivation. For the definition of such a candidate, we need a bridge between
(TDi ,YDi) and (Γi,mi). We can think of various procedures to have such bridges, but
we will use one procedure, called the initial-segment procedure, as stated in Section 4.1.
It will become clear shortly why we have chosen this name.

First, for a given candidate (Γi,mi), we can define the set Θ(Γi) of possible histories
in Γi:

Θ(Γi) = {θi(y) : y ∈ Xi}, (4.1)

where θi(y) = h(w1, a1), ..., (wm, am), wm+1i is the complete history up to y in Γi. We
would like to have a procedure to yield this set from his experiences captured in TDi .
Each complete history θi(y) ∈ Θ(Γi) is an initial segment of a maximal history in Γi,
that is, Θ(Γi) is described as the set of initial segments of maximal histories. To connect
Θ(Γi) to TDi , we use the set of initial segments of threads in TDi .

For the sake of rigor, we make the following definitions. First, a subsequence of
[(w1, a1), ..., (wm, am)] is simply defined in the standard manner by regarding each
(wt, at) as a component of the sequence. Second, h(w1, a1), ..., (wm, am), wm+1i is said
to be a subsequence of h(v1, b1), ..., (vk, bk), vk+1i iff [(w1, a1), ..., (wm, am), (wm+1, a)] is
a subsequence of [(v1, b1), ..., (vk, bk), (vk+1, a)] for some a. A supersequence is defined in
the dual manner. We say that h(w1, a1), ..., (wm, am), wm+1i is a maximal sequence in a
given set of sequences iff there is no proper supersequence in that set. An initial segment
of h(w1, a1), ..., (wm, am), wm+1i is a subsequence of the form h(w1, a1), ..., (wk, ak), wk+1i
and k ≤ m.

Now, we can define the set of initial segments of memory threads in TDi as:

T ∗Di := {hξ, vi : hξ, vi is an initial segment of some maximal sequence in TDi}. (4.2)

We require Θ(Γi) to be the same as T ∗Di for Γ
i to be inductively derived from TDi . It

should now be clear why this is called the initial-segment procedure. A player uses all
his initial segments in TDi and nothing more to construct the histories in Γ

i.
We now give the full set of requirements for an inductively derived personal view

based on this procedure. As mentioned above, we will give a more general definition of
an i.d.view in another paper, which will allow for other inductive procedures. In the
following definition, we assume that player i is relevant in his own domain Di, i.e., Di
contains at least one decision node of player i.
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Definition 4.1 (Inductively Derived View). A personal view (Γi,mi) for player i
is inductively derived from the memory kit (TDi ,YDi) iff
P1(Construction of an Extensive Game): Γi is an extensive game in the weak
sense satisfying:

(a)(Preservation of the Informational Structure): Θ(Γi) = T ∗Di ;

(b)(Action Sets): Aix = A
o
λi(x)

for each x ∈ Xi;

(c)(Player Assignment at Decision Nodes): πi · λi(x) = πo · λi(x) for all x ∈ XiD;

(d)(Own Payoffs): hi · λi(x) = hoi · λi(x) for each x ∈ XiE;

P2(Construction of a Memory Function): mi is a memory function on Xi
i = {x ∈

Xi : i ∈ πi · λi(x)} satisfying:
(a)(Preservation of Memory Yarns): {mi(x) : x ∈ Xi

i} ⊆ YDi ;
(b)(Internal Consistency): θi(x) ∈ mi(x) for any x ∈ Xi

i ;

(c)(History Determined Memories): if θi(x) = θi(y), then mi(x) = mi(y).

We abbreviate an inductively derived view as an i.d.view.
Since the memory kit (TDi ,YDi) is completely determined by the domain of accumu-

lation Di and the objective memory function moi of player i, we may sometimes speak of
an i.d.view for Di or just an i.d.view when there appears to be no source for confusion.

For an i.d.view, the extensive game Γi is constructed based on the set T ∗Di of initial
segments of maximal memory threads in TDi . P1a states that the game tree is based
on T ∗Di . Conditions P1b, P1c, P1d are the minimum requirements M1, M2, M3 stated
in Section 2.1. By P1c and K42, the player set for Γi is determined as

N i = {j ∈ No : j ∈ πi · λi(x) for some x ∈ XiD}.

Since λi is a surjection from Xi to W i by K2, and since Θ(Γi) = T ∗Di by P1a, we have
W i ⊆ W o. Hence, P1b and P1c are well-defined. For the well-definedness of P1d, it
should hold that for any x ∈ XiE, the associated piece λi(x) is an endpiece in the
objective game Γo. Thus, if λi(x) is not an endpiece in the objective game Γo for some
x ∈ XiE, then (Γi,mi) is not an i.d.view.

The personal memory function mi is constructed based on the set YDi of memory
yarns. Condition P2a states that the player uses only his accumulated memory yarns in
his construction, though he might not use all of them. Condition P2b is a consistency
requirement that each yarn mi(x) should contain the complete history θi(x). This is
made since (Γi,mi) is now in the mind of player i and can be seen by player i as the
objective observer. Still, P2b is just one alternative among several internal consistency
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requirements. Condition P2c is a more basic principle about the view a player induc-
tively constructs. It states that a player should not have different memories, unless two
nodes have a different history in his view Γi.

To see how an i.d.view is obtained, we look at several examples.

Example 4.1 (Exact Perfect Memory Function mEPR1 ). Observe that for this
memory function, any i.d.view will be a one player game played by player 1. Consider
this memory function on the cane domain described in Example 3.1. Recall that the
memory kit is given as

TDc
1(σ

o) = {hwi, h(w, a), z1i}, and YDc
1(σ

o) = {{hwi}, {h(w, a), z1i}}.

Then TDc
1(σ

o) = T ∗Dc
1(σ

o), and an i.d.view is given as Figure 4.1. It consists of the set

of nodes X1 = {y0, y1}, λ1(y0) = w,λ1(y1) = z1,π
1(w0) = π1(z1) = {1}, h1(z1) = 2

and his memory function satisfies m1(y1) = {h(w, a), z1i} and m1(y0) = {hwi}. Since
A1y0 = A

o
w = {a, b} by P1b, condition K33 (bijection requirement) is violated, but K330

is satisfied.

y1
↑a
y0

y1 y01
↑a ↑a
y0 y00

Figure 4.1. Figure 4.2.

Now, we consider some multiplicity of i.d.views. Observe that in Definition 4.1, the
connection between (TDi ,YDi) and (Γi,mi) are made based on observable information
pieces and actions. The nodes are unobservable in the original game (Γo,mo) and the
nodes are auxiliary in the derived game (Γ1,m1). We can use different symbols for y0
and y1 without changing the informational structure of the game. In addition, the game
having the duplication of (Γ1,m1) described in Figure 4.2 satisfies all the requirements
of Definition 4.1. Thus, we have multiple personal views. We will introduce the concept
of a game theoretic p-morphism in Section 6 as a means for dealing with some types of
multiplicity.

Example 4.2 (Markov Memory Function mM1 : Failure). Let player i have the
Markov memory function mMi . The domain Di contains a decision node y of player i
in Γo, as noted before Definition 4.1. Let λo(y) = w. Since mMi is the Markov memory
function, hwi is a maximal sequence in T ∗Di . Let (Γ

i,mi) be a personal view. Then,
by P1a, hwi is a maximal sequence in Θ(Γi). This means there must be an endnode
y0 ∈ XiE such that λi(y0) = w. But since hoi (w) is not defined, (Γ

i,mi) cannot be an
i.d.view.

Example 4.3 (Perfect Information Memory Function mPI1 : Full Recoverabil-
ity). Let player 1 have the perfect information memory function mPI1 and let the domain
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be the full domain DF1 = X
o
1 in the game of Figure 2.2. In this case, player 1 can re-

construct the objective game Γo from his memory kit, except for player 2’s payoffs and
memory function. When player 1 has the classical memory function mC1 , we also have
the full recoverability result when we use the full domain DF1 .

We give one last example which shows some difficulty that may be encountered with
the classical memory function on some closed domains.

Example 4.4 (Classical Memory mC1 with the Cane Domain: Failure). Let
player 1 have the classical memory function mC1 on the cane domain D

c
1 described in

Example 3.1. Then one candidate is described as Figure 4.3, which violates condition
K31.

z1
↑c
y1 : v y2 : v

-a %b

y0 : w

Figure 4.3.

In fact, there is no i.d.view. To see this, let (Γ1,m1) be a candidate for a personal view
of player 1. With the classical memory function on the cane domain, player 1 will have
the memory thread h(w, b), vi as a maximal one in T ∗D1 . This means that Γ

1 must have
an endnode x, and λ1(x) = v. But ho1(v) is not defined since v is not an endpiece in Γ

o.

5. Direct Views

In Section 4, we gave the definition of an inductively derived view for a given memory
kit (TDi ,YDi) and found that there may be many i.d.views for each (TDi ,YDi). In this
section, we single out one of those views which we call the direct view. We will argue
that it has a special status among i.d.views or simply among views. Here, we give some
results for a direct view to be an i.d.view. In Section 6, we will show that our analysis
of direct views is sufficient to describe the game theoretic contents of any i.d.view.

A direct view for a given memory kit (TDi ,YDi) is constructed by treating each
thread in T ∗Di as a node in the derived game. As in Section 4, we assume that player i
is relevant in his own domain Di.

Definition 5.1 (Direct View). A direct view (Γd,md) = ((Xd, <d), (λd,W d),
{(ϕdx, Adx)}x∈Xd , (πd, Nd), hd),md) from a memory kit (TDi ,YDi) is defined in the fol-
lowing manner:

d1: Xd = T ∗Di ;
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d2: hξ, vi <d hη, wi iff hξ, vi is a proper initial segment of hη, wi;
d3 (Information Function): λdhξ, vi = v for all hξ, vi ∈ Xd; and

W d = {v : hξ, vi ∈ Xd for some ξ};
d4 (Action sets): Adhξ,vi = A

o
v for all hξ, vi ∈ Xd; and if hξ, vi ∈ XdD, then

ϕdhξ,vihξ, (v, a), ui = a for each immediate successor hξ, (v, a), ui of hξ, vi;
d5 (Player Assignment): πd(v) = πo(v) for all hξ, vi ∈ XdD; and

πd(v) = Nd for all hξ, vi ∈ XdE , where Nd = {j : j ∈ πo(v) for some hξ, vi ∈ XdD};
d6 (Payoff Function): for any hξ, vi ∈ XdE , if λo(x) = v for some x ∈ XoE,

then hd(v) = hoi (v); and otherwise, h
d(v) is arbitrary;

d7 (Memory Function): for any node hξ, vi in Xd
i , if some y ∈ YDi contains hξ, vi,

then mdhξ, vi is such a y ∈ YDi ; and otherwise, mdhξ, vi = {hξ, vi}.
In the following, Γd = ((Xd, <d), (λd,W d), {(ϕdx, Adx)}x∈Xd , (πd, Nd), hd) defined by d1
to d6 is called a direct structure, and md defined by d7 is a direct memory function.

Conditions d6 and d7 have some arbitrariness and allow multiple direct views for a
given memory kit (TDi ,YDi). However, when a direct structure is an extensive game in
the weak sense, it is uniquely determined, though there may remain multiple memory
functions.

A direct view (Γd,md) for (TDi ,YDi) may not be a personal view; specifically, condi-
tions K21 and K31 may be violated. Example 4.4 violates K21 and K31, and also, when
the objective memory function is the Markov, a direct view typically violates K31. In
Theorem 5.2, we will give a condition for a direct view to be a personal view as well as
an i.d.view.

Another important comment is about the constructive nature of a direct view. It
is directly constructed using the components in the memory kit, focusing the initial
segments of memory threads in TDi . In Section 6, it will be further shown that it is the
smallest among i.d.views for a given (TDi ,YDi).

By condition d1, the nodes in Xd are actually threads in T ∗Di . Consequently, the
complete history up to each node x ∈ Xd is the same as x itself. This fact is stated as
a lemma.

Lemma 5.1. For any direct structure Γd, θd(x) = x for all x ∈ Xd.

Proof. Let x ∈ Xd. Then x = hξ, vi = h(w1, a1), ..., (wk, ak), vi is an initial segment
of a maximal thread in TDi . The path to hξ, vi is hw1i, h(w1, a1), w2i, ..., h(w1, a1), ...,
(wk−1, ak−1), wki, hξ, vi. The complete history up to hξ, vi is the sequence h(w1, a1), ...,
(wk−1, ak−1), (wk, ak), vi, which is x itself.

Let us now look at an example of a direct view.

Example 4.1 (continued): In Figures 4.1 and 4.2 we gave two examples of i.d.views
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Figure 5.1:

for player 1. This example has a unique direct view, which is given in Figure 5.1 and is
an i.d.view with the memory function mi(x) = {x} for all x ∈ Xd.

A direct view for a given memory kit (TDi ,YDi), however, may not be an i.d.view.
The memory kits in Examples 4.2 and 4.4 lead to this type of problem. In either of
these examples, the direct structure is not an extensive game in the weak sense.

Now, we give conditions for a direct view to be an i.d.view. Recall the assumption
that player i is relevant for his own domain Di.

Theorem 5.2 (Conditions for a Direct View to be I.D.): Let (TDi ,YDi) be a
memory kit.

(i): The direct structure Γd for (TDi ,YDi) is uniquely determined and is an extensive
game in the weak sense satisfying P1a-P1d if and only if for any maximal hξ, vi in T ∗Di ,
v = λo(x) for some x ∈ XoE .

(ii): Let Γd be a direct structure for TDi . There there is a direct memory function m
d

for Γd satisfying P2a-P2c if and only if for any hξ, wi ∈ T ∗Di with i ∈ πo(w), there is an
x ∈ Di such that hξ, wi ∈ moi (x).

This theorem will be proved at the end of this section. The part (i) states that a
condition for the unique determination of a direct structure is that every maximal thread
in T ∗Di occurs at an endnode in the objective game. The part (ii) gives a necessary and
sufficient condition for a direct memory function prescribed by d7 to satisfy P2a-P2c.
When both of these conditions are satisfied, there is a direct view that is i.d., but there
is still, however, some arbitrariness in the memory function, which allows for multiple
direct views, which is shown by Example 5.1.
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Figure 5.2:

Example 5.1. Consider the objective 1-person sequential move game of Figure 5.2.
Here, the information function is given by λo(yt) = v for t = 1, 2, and it is the identity
function everywhere else. Suppose that the domain of accumulation is the full domain
DF1 = X

o
1 = X

o. Let the objective memory function m̂o1 be defined by:

m̂o1(yt) =

⎧⎨⎩
{θo(yt)} if t 6= 1 and t 6= 2;
{h(y0, a), vi, h(y0, b), vi, hvi} if t = 1;
{h(y0, a), vi, h(y0, b), vi} if t = 2.

(5.1)

In this example, the direct structure Γd is uniquely determined, which has the same
structure as Figure 5.2 consisting of nodes θo(y1), ..., θo(y6). However, a memory func-
tion has some arbitrariness at the nodes θo(y1) and θo(y2). For example, assigning the
memory md(θo(y1)) = mo1(y2) and m

d(θo(y2)) = mo1(y1), together with m
d(θo(yt)) =

moi (yt) for t 6= 1 and t 6= 2, gives one i.d.direct view. In this view, the player mixes up
his memories at y1 and y2. In Section 8.2, we will see how this mixing up may create
some difficulties. Another view is where he assigns his memory yarns correctly. Still
two other views are obtained if he assigns one memory yarn to each of those nodes.

We now introduce two conditions on a memory function, that we will use in combi-
nation with Theorem 5.2 to provide a sufficient condition for the uniqueness of a direct
view.

(Recall of Past Memories - RPM): for all x, y ∈ Xo
i , if hξ, wi ∈ moi (x) and x <o y,

then hξ, wi is a proper initial segment of some hη, vi ∈ moi (y).
(Single Thread Yarns - STY): |moi (x)| = 1 for all x ∈ Xo

i .
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The first condition states that every memory thread occurring at a node x of player i,
will occur as a subsequence of a thread at any later node y of player i. This is inter-
preted as meaning that player i recalls what past memories he had in the current play
of the game. The second condition is simply that each yarn consists of a single thread.

The following corollary gives a sufficient condition for the unique determination of
a direct view, which guarantees that it is an i.d.view.

Corollary 5.3. Let (TDi ,YDi) be a memory kit having a closed domain Di and derived
from moi satisfying conditions RPM and STY. Furthermore, suppose the latter part of
Theorem 5.2.(ii). Then, the direct view (Γd,md) is uniquely determined by d1-d7, and
md(x) = {x} for all x ∈ Xd

i . Moreover, (Γ
d,md) is an i.d.view.

It is straightforward to check that the exact perfect recall memory function mEPRi

and the perfect information memory function mPIi on a closed domain satisfy the con-
ditions of Corollary 5.3. Thus, in those cases, we can speak of a unique direct view. We
prove this corollary after proving Theorem 5.2.

Proof of Theorem 5.2.(i)(If): Suppose that for any maximal hξ, vi in T ∗Di , v = λo(x)

for some x ∈ XoE. Under this supposition, we first show that the direct structure is a
uniquely determined extensive game in the weak sense.

Let Γd be a direct structure satisfying d1 to d7. First, observe that the verification
of each of K11 to K13 is straightforward by d1, d2, the non-emptiness of Di and the
finite number of threads for each yarn of the memory function moi . Condition K2 follows
from K2 for Γo, d1, d2, d3, condition (2.3) for moi , and the supposition of the if part.
Condition K31 also follows from the supposition of the if part together with K31 on
Γo and d4. Conditions K32 and K330 follow from d1, d2, d3, and d4. K4 uses d5 and
d6. Finally, condition K50 follows from d6. The supposition of the if part implies the
payoff function hdi is uniquely determined by d6. Thus, we have shown that the direct
structure Γd is determined uniquely as an extensive game in the weak sense.

Next we show that P1a holds. By Lemma 5.1, Θ(Γd) = Xd, and by d1, Xd = T ∗Di .
Hence, Θ(Γd) = T ∗Di . The other parts of P1 follow immediately from the definition of a
direct structure.

(Only-if): Suppose that there is a maximal hξ, vi in T ∗Di and v = λo(x) for some x ∈ XoD.
By K33 for Γo, Aox 6= ∅. By d4, we have Adhξ,vi = Aox 6= ∅. However, hξ, vi ∈ XdE since

hξ, vi is maximal in T ∗Di . Hence, K31 is violated for Γ
d, and thus Γd is not an extensive

game in the weak sense.

(ii)(If): Suppose that for any hξ, wi ∈ T ∗Di with i ∈ πo(w), there is an x ∈ Di such
that hξ, wi ∈ moi (x). Then we can define mdhξ, wi = moi (x). This is a direct memory
function of player i for the direct structure Γd, since it associates a memory yarn from
YDi to each hξ, wi ∈ T ∗Di = X

d
i . Then, P2a and P2b are satisfied since by Lemma 5.1,
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θdhξ, wi = hξ, wi. Finally, md satisfies P2c, since by Lemma 5.1, θdhξ, wi = θdhη, vi
implies hξ, wi = hη, vi.
(Only-if): If md is a direct memory function for Γd, then the result follows by P2a and
P2b for md.

Proof of Corollary 5.3. The right-hand side of Theorem 5.2.(i) is equivalent to that
if hξ, wi ∈ T ∗Di and λ

o(x) = w for some decision node x ∈ Di, then hξ, wi is not maximal
in T ∗Di . Let hξ, wi ∈ T

∗
Di
and suppose that λo(x) = w for some decision node x ∈ Di.

Then either hξ, wi is a proper initial segment of some hη, vi ∈ T ∗Di , or hξ, wi ∈ TDi .
In the first case, hξ, wi cannot be maximal in T ∗Di . Suppose that hξ, wi ∈ TDi . Then,
hξ, wi ∈ moi (x0) for some x0 ∈ Di. By K2, (2.4), and the supposition that λo(x) = w for
some decision node x ∈ Di, it follows that x0 must also be a decision node in Di. Then,
by closedness we have a z ∈ Di with x0 <o z. By RPM, there is a hη, vi ∈ moi (z) such
that hξ, wi is a proper subsequence of hη, vi. Thus, hξ, wi is not maximal in T ∗Di .

By Theorem 5.2.(i), the direct structure Γd is uniquely determined and is an ex-
tensive game in the weak sense satisfying P1a-P1d. It remains to be shown that the
memory function md(x) = {x} is the only memory function for Γd that satisfies P2. By
the supposition in the corollary that for any hξ, wi ∈ T ∗Di with i ∈ πo(w), there is an
x ∈ Di, it follows by Theorem 5.2.(ii) that there is a direct memory function for Γd that
satisfies P2. By STY, md(x) = {x} is the only possible memory function for Γd.

6. Game Theoretical p-Morphisms: Comparisons of Views

In this section, we will show that for any i.d.view (Γi,mi) for a given memory kit
(TDi ,YDi), there is a direct and inductively derived view (Γd,md) having the same game
theoretical structure. This result reduces the multiplicity of i.d.views, and allows us to
concentrate on the direct views for our analysis of i.d.views. For example, the existence
of an i.d.view is equivalent to the existence of a direct i.d.view. This consideration will
be possible by introducing the concept of a game theoretical p-morphism, which is a
modification of a p-morphism in the modal logic literature (cf. Ono [24] and Blackburn-
de Rijke-Venema [2]). We call it simply a g-morphism.

6.1. Definition and Results

In the following definition, we abbreviate the superscript i for each component of (Γi,mi)
and (Γ̂i, m̂i) to avoid unnecessary complications.

Definition 6.1 (Game Theoretical p-Morphism): Let (Γ,m) and (Γ̂, m̂) be personal
views of player i. A function ψ from X to X̂ is called a g-morphism (game theoretical
p-morphism) iff

g0: ψ is a surjection from X to X̂;
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g1: for all x, y ∈ X and a ∈ Ax, x <a y implies ψ(x) <̂a ψ(y);
g2: for all x̂, ŷ ∈ X̂, y ∈ X and a ∈ Âx̂,

x̂ <̂a ŷ and ŷ = ψ(y) imply x <a y and x̂ = ψ(x) for some x ∈ X;
g3 (Information Pieces): λ̂ · ψ(x) = λ(x) for all x ∈ X;
g4 (Action Sets): Âψ(x) = Ax for all x ∈ X;
g5 (Player Assignment): π̂ · λ̂ · ψ(x) = π · λ(x) for all x ∈ X;
g6 (Payoff Function): ĥ · λ̂ · ψ(x) = h · λ(x) for all x ∈ XE;

g7 (Memory Function): m̂ · ψ(x) = m(x) for all x ∈ Xi.
We say that (Γ,m) is g-morphic to (Γ̂, m̂), denoted by (Γ,m) ½ (Γ̂, m̂), iff there is a
g-morphism from (Γ,m) to (Γ̂, m̂).

A g-morphism ψ compares one personal view to another one. When a g-morphism
exists from (Γ,m) and (Γ̂, m̂), the set of nodes in Γ is mapped onto the set of nodes in Γ̂,
while the game theoretic components of (Γ,m) are preserved. Since ψ is a surjection from
X to X̂, we cannot take the direct converse of g1, but we take a weak form, g2, which
requires that the image (Γ̂, m̂) should not have any additional structure. In sum, the
mapping ψ embeds (Γ,m) into (Γ̂, m̂) without losing the game structure. Nevertheless,
a g-morphism allows a comparison of quite different games.

In the modal logic literature, the concept of a p-morphism is used to compare two
Kripke models and their validities. As mathematical objects, Kripke models and ex-
tensive games have some similarity in that their basic structures are expressed as some
graphs (or trees) (cf., Ono [24] and Blackburn at el [2]). In our case, the other game
theoretical components including a memory function are attached over the extensive
game. Therefore, we require our g-morphism to preserve those components, i.e., g3-g7.
It will be seen that this concept is very useful for comparisons of i.d.views for a given
memory kit.

Let us consider a few examples to understand g-morphisms.

Example 6.1 (Infinite Number of P.V.’s g-morphic to a given P.V.). Given
personal view (Γ,m), we can construct a larger personal view by simply replicating
(Γ,m). The replicated game with twice as many nodes is g-morphic to (Γ,m). By this
method, we can construct personal views of any size that are g-morphic to (Γ,m). Thus,
there are an infinitely many personal views g-morphic to (Γ,m).

We will see from the following example that the set of personal views g-morphic to a
given personal view is not only many but also is more complicated than what Example
6.1 describes.

Example 6.2. Figure 6.1 gives a g-morphism between two 1-person games, where
the memory function for each personal view is assumed to be the perfect information
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Figure 6.1:

memory function mPI . Define ψ as the identity mapping everywhere except that ψ(x01) =
x1 and ψ(x02) = x2. Then this ψ is a g-morphism from the left game to the right game.

It is easy to find two personal views between which there are no g-morphisms. Here,
we give such an example, in which no g-morphism is caused by memory functions.

Example 6.3 (Negative Example). Consider the objective description of Example
5.1. In this case, the player has four distinct direct views, each of which is an i.d.view.
The direct structure is uniquely determined, but there are four possible direct memory
functions. No g-morphisms are admitted between each pair of direct views.

Now, we show that a g-morphism fully preserves the i.d.property. The theorems
presented in this subsection will be proved in Section 6.2.

Theorem 6.1 (Preservation of the I.D. Property). Suppose that (Γ,m) is g-
morphic to (Γ̂, m̂). Then, (Γ,m) is an i.d.view for (TDi ,YDi) if and only if (Γ̂, m̂) is an
i.d.view for (TDi ,YDi).

It follows from this theorem and Example 6.1 that if a given memory kit (TDi ,YDi)
admits at least one i.d.view, then there are, in fact, an infinite number of i.d.views for
(TDi ,YDi). Thus, we should consider which i.d.views are more appropriate than others.
We will see that the direct views have a special status among the i.d.views. Before that,
we give the following simple but basic observations, which can be proved just by looking
at the definitions carefully.

Lemma 6.2.(1): The g-morphic relation½ satisfies reflexivity and transitivity.

(2): Suppose that (Γ,m) ¾½ (Γ̂, m̂). Then the g-morphism ψ from (Γ,m) to (Γ̂, m̂)
satisfies
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g0∗: ψ is a bijection from X to X̂;

g1∗: for all x, y ∈ X and a ∈ Ax, x <a y if and only if ψ(x) <̂a ψ(y).
Here we write (Γ,m) ¾½ (Γ̂, m̂) iff Γ,m) ½ (Γ̂, m̂) and (Γ̂, m̂) ½ (Γ,m). By (1),

the relation¾½ is an equivalence relation over personal views. We can use this relation
to consider the equivalence classes of personal views. Any two views in one equivalence
class are isomorphic in the sense of g0∗,g1∗ and g3-g7, where g2 is included in g1∗. These
two views are identical in our game theoretical sense except for the names of nodes.

In the next theorem we show that every i.d.view is g-morphic to a direct view.

Theorem 6.3 (g-Morphism to a Direct Personal View). Let (TDi ,YDi) be a
memory kit. For each i.d.view (Γ,m), there is a direct view (Γd,md) such that (Γd,md)
is a personal view and (Γ,m) is g-morphic to (Γd,md).

The direct view (Γd,md) given in Theorem 6.3 is also an i.d.view for (TDi ,YDi) by
Theorem 6.1. This has the implication that we can focus our attention on direct views
without loss of generality. The following corollary states that the existence of an i.d.view
is characterized by the existence of a direct i.d.view which in turn is characterized by
Theorem 5.2.

Corollary 6.4. (Existence of an i.d.view). Let (TDi ,YDi) be a memory kit. There
is an i.d.view for (TDi ,YDi) if and only if there is a direct view that is an i.d.view for
(TDi ,YDi).

In particular, this result suggests that when a direct view for a memory kit (TDi ,YDi)
is unique and is i.d., the direct view (Γd,md) is really the smallest, except for the iso-
morphic ones such as mentioned in Lemma 6.2. In general, however, there may still be
several distinct direct i.d.views for a given memory kit, as was pointed out in Example
5.2. Even then, the class of all i.d.views can be partitioned into corresponding sub-
classes so that every view in each subclass is g-morphic to the unique direct one in that
subclass. Also, the direct views have a constructive nature by definition. Thus, a direct
view passes two criteria:

(i) it should be small;

(ii) it should be constructive.

When there are multiple direct i.d.views, however, a player still may face some difficul-
ties, which will be discussed in Section 8.

6.2. Proofs of the Results

First, we start with giving a simple observation.

Lemma 6.5. Let ψ be a g-morphism from (Γ,m) to (Γ̂, m̂). Then x ∈ XD if and only
if ψ(x) ∈ X̂D.
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Proof. Let x ∈ XD. Then x has an immediate successor. Thus, Ax 6= ∅ by K330,
which implies Âψ(x) 6= ∅ by g4. By K31, ψ(x) ∈ X̂D. The converse follows by tracing
back this argument starting with ψ(x) ∈ X̂D.

The next lemma translates g1 and g2 into the corresponding ḡ1 and ḡ2 in terms of
the immediate successor relation <Ia.

Lemma 6.6. Suppose that ψ is a g-morphism from (Γ,m) to (Γ̂, m̂). Then:

ḡ1: for all x, y ∈ X and a ∈ Ax, x <Ia y implies ψ(x) <̂
I
a ψ(y);

ḡ2: for all x̂, ŷ ∈ X̂, y ∈ X and a ∈ Âx̂,
x̂ <̂

I
a ŷ and ŷ = ψ(y) imply x <Ia y and x̂ = ψ(x) for some x ∈ X.

Proof. ḡ1: Let x <Ia y for some x, y ∈ X. Now, on the contrary, suppose that ψ(x) <̂a
ẑ <̂b ψ(y) for some ẑ and b. Then, by g2, there is some z ∈ X such that ψ(z) = ẑ and
z <b y. By K12 for Γ, we have x <a z <b y or z <b x <a y. The first case, x <a z <b
y, is impossible since it contradicts x <Ia y. In the second case, we have ẑ <̂bψ(x) by
g1, and then, by ψ(x) <̂a ẑ, we have ẑ<̂ẑ by transitivity (K11) for Γ̂, which contradicts
irreflexivity (K11) for Γ̂. Thus, we must have ψ(x) <̂Ia ψ(y).

ḡ2: Let x̂ <̂Ia ŷ and ŷ = ψ(y) for some x̂, ŷ ∈ X̂, y ∈ X and a ∈ Âx̂. By g2, there
is some x ∈ X such that x <a y and x̂ = ψ(x). Now, on the contrary, suppose that x
<a z <b y for some z and b. Then, by g1, we have ψ(x) <̂a ψ(z) <̂b ψ(y), which is a
contradiction to x̂ <̂Ia ŷ. Thus, we must have x <

I
a y.

The next lemma makes use of the previous one.

Lemma 6.7. Suppose that ψ is a g-morphism from (Γ,m) to (Γ̂, m̂). Then:

(1): If hx1, ..., xmi is a path in (Γ,m), then hψ(x1), ...,ψ(xm)i is a path in (Γ̂, m̂) and
θ(xt) = θ̂ · ψ(xt) for t = 1, ...,m.
(2): If hx̂1, ..., x̂mi is a path in (Γ̂, m̂), then there is a path hx1, ..., xmi in (Γ,m) such
that ψ(xt) = x̂t and θ(xt) = θ̂(x̂t) for t = 1, ..m.

Proof.(1): Let hx1, ..., xmi is a path in (Γ,m). Then there are a1, ..., am−1 such that
xt <

I
at xt+1 for t = 1, ...,m − 1. Thus, ψ(xt) <̂

I
at ψ(xt+1) for t = 1, ...,m − 1 by ḡ1 of

Lemma 6.6. This means that hψ(x1), ...,ψ(xm)i is a path in (Γ̂, m̂) and θ(xt) = θ̂ ·ψ(xt)
for t = 1, ...,m.

(2) Let hx̂1, ..., x̂mi be a path in (Γ̂, m̂). Then there are a1, ..., am−1 such that x̂t <̂Iat
x̂t+1 for t = 1, ...,m − 1. Then, we can choose an xm ∈ X with ψ(xm) = x̂m. Then,
applying ḡ2 of Lemma 6.6 to the last pair (x̂m−1, x̂m) and ψ(xm) = x̂m, there is an
xm−1 ∈ X such that ψ(xm−1) = x̂m−1 and xm−1 <Iam−1 xm. Repeating this argument
(exactly speaking, by mathematical induction), we construct hx1, ..., xmi with xt <Iat
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xt+1 for t = 1, ...,m− 1 and ψ(xt) = x̂t for t = 1, ..., t. This is a path in (Γ,m) having
the required properties.

We have the immediate result from Lemma 6.7 that the mapping ψ preserves the
complete histories of information pieces and actions, and the values of the memory
yarns.

Lemma 6.8. Suppose that ψ is a g-morphism from (Γ,m) to (Γ̂, m̂). Then:

(a): Θ(Γ) = Θ(Γ̂);

(b): {mi(x) : x ∈ Xi
i} = {m̂i(x) : x ∈ X̂i

i}.
Proof.(a): Lemma 6.7.(1) states that θ(x) = θ̂ ·ψ(x) for all x ∈ X. Thus, Θ(Γ) ⊆ Θ(Γ̂).
Conversely, take any x̂ ∈ X̂. Lemma 6.7.(2) states that there is an x such that θ(x) =
θ̂(x̂). Thus, Θ(Γ̂) ⊆ Θ(Γ).
(b): By g7, we have {mi(x) : x ∈ Xi

i} ⊆ {m̂i(x) : x ∈ X̂i
i}. The converse inclusion

follows from the surjectivity of ψ by g0.

Now, we prove Theorem 6.1. Actually, we prove a more precise claim than the
theorem: when there is a g-morphism ψ from (Γ,m) to (Γ̂, m̂), each of P1a-P1d and
P2a-P2c for (Γ,m) is equivalent to the corresponding one for (Γ̂, m̂).

Proof of Theorem 6.1. Suppose that there is a g-morphism ψ from (Γ,m) to (Γ̂, m̂).
As stated above, we prove that each requirement of P1a-P1d and P2a-P2c for (Γ,m) is
equivalent to the corresponding one for (Γ̂, m̂).

P1a: By Lemma 6.8.(a), we have Θ(Γ) = Θ(Γ̂). P1a holds for Γ, i.e., T ∗Di = Θ(Γ), if

and only if T ∗Di = Θ(Γ̂), i.e., P1a for Γ̂.

P1b: Let P1b hold for Γ, i.e., Ax = Aoλ(x). Consider any x̂ ∈ X̂. Then we have some
x ∈ X with ψ(x) = x̂. By g4, Âx̂ = Ax. Thus, Âx̂ = Aoλ(x). Since λ(x) = λ̂(x̂) by g3, we

have Âx̂ = Aoλ̂(x̂). The converse can be proved similarly.

P1c: Suppose that P1c holds for Γ̂, i.e., π̂ · λ̂(x̂) = πo · λ̂(x̂) for any x̂ ∈ X̂. Let x ∈ X.
By g3,g5 and P1c for Γ̂, we have π · λ(x) = π̂ · λ̂ ·ψ(x) = πo · λ̂ ·ψ(x) = πo · λ(x). Thus,
we have P1c for Γ. The converse is similar.

P1d: Suppose that P1d for Γ. Consider any x̂ ∈ X̂.We should show ĥ · λ̂(x̂) = hoi · λ̂(x̂).
By g3,g6 and P1d for Γ, we have ĥ·λ̂(x̂) = ĥ·λ̂·ψ(x) = h·λ(x) = hoi ·λ(x) = hoi ·λ̂·ψ(x) =
hoi · λ̂(x̂). Thus, P1d for Γ̂. The converse is similar.
P2a: By Lemma 6.8.(b), {m̂(x̂) : x̂ ∈ X̂i} = {m(x) : x ∈ Xi}. Hence, m satisfies P2a if
and only if m̂ does.

P2b: By g7 and Lemma 6.7, m satisfies P2b if and only if m̂ does.

P2c: Suppose P2c for m̂. Let θ̂(x̂) = θ̂(ŷ). Since ψ is a surjection, we have some x, y ∈ X
such that ψ(x) = x̂ and ψ(y) = ŷ. By Lemma 6.7, θ(x) = θ̂(x̂) and θ(y) = θ̂(ŷ). Hence
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m(x) = m(y) by P2c for m. Then, by g7, m̂(x̂) = m(x) and m̂(ŷ) = m(y). Thus, P2c
holds for m̂. The converse is similar.

The next target is to prove Theorem 6.3. We take two steps to have the assertion of
the theorem: under the supposition that (Γ,m) is an i.d.view for memory kit (TDi ,YDi),
(1) we can find a direct view so that it is a personal view; and (2) it is g-morphic to
(Γ,m). The first part is given as a lemma, and the second is given as the proof of the
theorem.

Lemma 6.9. Suppose that (Γ,m) is an i.d.view for memory kit (TDi ,YDi). Then
(Γd,md) is a personal view where Γd is the unique direct structure for (TDi ,YDi) and
md is defined by:

for all x ∈ Xd
i , m

d(x) = m(yx) for some yx ∈ Xi satisfying θ(yx) = x. (6.1)

Proof. Let (Γ,m) be an i.d.view for memory kit (TDi ,YDi). We first show the right
hand side of Theorem 5.2.(i). This implies that Γd is the unique direct structure for
(TDi ,YDi) and Γd is an extensive game in the weak sense. We next show that (6.1)
defines a memory function for Γd, from which it follows that (Γd,md) is personal view.

Suppose, on the contrary, that there is some maximal thread hξ, vi ∈ T ∗Di such that
v = λo(x) for some x ∈ XoD. Then, Aov 6= ∅ by K33 for Γo. Since (Γ,m) is an i.d.view
for memory kit (TDi ,YDi), we have Θ(Γ) = T ∗Di by P1a. Also, since hξ, vi is maximal
in T ∗Di , there exists y ∈ X

E such that θ(y) = hξ, vi. Then, by P1b, Ay = Aov 6= ∅. This
contradicts that y is an endnode in Γ. Hence, the right hand side of Theorem 5.2.(i)
holds.

Now let us see that md is defined by (6.1) is a memory function for Γd. By P1a,
W = W d. Then by c4 and P1b, md is a memory function for Γd since m is a memory
function for Γ.

Proof of Theorem 6.3. Let (Γ,m) be an i.d.view for (TDi ,YDi). By Lemma 6.9,
(Γd,md) is a personal view, where Γd is the unique direct structure for (TDi ,YDi) and
md is defined by (6.1). First we show that (Γd,md) is a direct view. Since Γd is the
unique direct structure, we need only to show that md satisfies d7. Let x ∈ Xd

i . By
(6.1) and P2b for m, x = θ(yx) ∈ m(yx) = md(x) for some yx ∈ Xi.

We define the function ψ from (Γ,m) to (Γd,md) by:

ψ(x) = θ(x) for all x ∈ X. (6.2)

The proof will be completed if we show that ψ is a g-morphism from (Γ,m) to (Γd,md).

g0: We have Xd = T ∗Di by d1, and also Θ(Γ) = T
∗
Di
by P1a for (Γ,m). Thus, Xd = Θ(Γ)

and so ψ is a surjection from X to Xd.

g1: Let x < y. Then, θ(x) is an initial segment of θ(y), i.e., ψ(x) = θ(x) <d θ(y) = ψ(y)
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by d2.

g2: Let x̂ <d ŷ and ŷ = ψ(y). Then, x̂ and ŷ can be written as hξ, vi and hη, wi
respectively, and by d2, hξ, vi is an initial segment of hη, wi. Since ŷ = ψ(y) = θ(y) =
hη, wi, and hξ, vi is an initial segment of hη, wi, we can find a unique x on the path to
y with θ(x) = hξ, vi. Thus, x < y and ψ(x) = θ(x) = x̂.

For g3-g7 we will use the generic history θ(x) = hξ, vi for the node x in question.
g3: Let x ∈ X. Then ψ(x) = θ(x) = hξ, vi. Hence, λd · ψ(x) = λdhξ, vi = v where the
last equality follows from d3. Hence, we have shown that λd · ψ(x) = λ(x).

g4: Let x ∈ X . Then, by d4, Achξ,vi = A
o
v. By P1b, we have Ax = A

o
λ(x) = A

o
v. Hence,

Acψ(x) = Ax.

g5: Let x ∈ X. By d3, πd·λd·ψ(x) = πc(v). If x ∈ XD, then by P1c, π·λ(x) = πo·λ(x) =
πo(v). Also, since x ∈ XD, it follows by Lemma 6.2 that hξ, vi ∈ XdD. Hence, by d5,
πd(v) = πo(v). Thus, for x ∈ XD we have the desired result that πd ·λd ·ψ(x) = π ·λ(x).
Next consider x ∈ XE. Then by K42, π · λ(x) = {j : j ∈ π · λ(y) for some y ∈ XD}. By
Lemma 6.5, g0 and d5, it follows that this set is equivalent to πd(v).
g6: ĥ · λ̂ · ψ(x) = h · λ(x) for all x ∈ XE : Let x ∈ XE. By P1a and P1d, v = λ(x) =
λo(y) for some y ∈ XoE, and h(v) = hoi (v). By Lemma 6.2 and g3, ψ(x) ∈ XdE and
λ · ψ(x) = v = λo(y) for some y ∈ XoE. So, by d6, hd(v) = hoi (v). Hence, we have
shown that hd · λd · ψ(x) = h · λ(x).
g7: Let x ∈ Xi. Then by the definition of ψ, (6.1) and P2c for m, it follows that
md · ψ(x) = md · θ(x) = m(y) = m(x).

7. DecisionMaking and Prescribed Behavior in Inductive Game Theory

The inductive derivation of an individual view from past experiences is not the end of
the entire scenario of our theory. The next step is to use an i.d.view for decision making
and to bring the prescribed (or modified) behavior back to the objective situation. This
is the third stage of Figure 1.1. Because this paper aims to present a basic and entire
scenario of our theory, we will here concentrate on a clear-cut case. Specifically, we
assume in this section that the objective memory function moi for each player i is given
as the exact perfect memory function mEPRi , and that player i has the unilateral trial
domain DUi (σ

o). Then, we will discuss how he can use the inductively derived view for
his decision making as well as how the prescribed behavior helps his objective behavior.
This gives an experiential foundation for Nash equilibrium.

7.1. Decision Making using a Personal View

Our analysis of decision making using a personal view is restricted to players who are
relevant in their own domains of accumulation. Players who are not relevant in their
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own domains will have no decision making to consider. We presume in this subsection
that each player i is relevant in his own domain and has:

(7a): the EPR memory function moi = m
EPR
i ;

(7b): behavior pattern σoi ;

(7c): the UT domain DUi (σ
o);

(7d): the direct view (Γd,md).

In this case, it is already proved in Corollary 5.3 that there is a unique direct i.d.view
for each player i. We assume that player i adopts the unique direct i.d.view (Γd,md).
In Section 8, we will argue how the consideration here is extended to other cases, i.e.,
where he adopts another i.d.view.

Figure 7.1 describes the steps from experimentation (trial and error) to decision
making using the i.d.view. One basic question is whether the i.d.view helps the player
for his decision making, as well as whether the decision can be used in the objective
situation when he brings it back there. The following lemma states that when 7a-7d
hold, the direct i.d.view (Γd,md) consists of an extensive game in the strong sense and a
memory function that uses all the yarns in YDi . The proofs of the results will be given
in the end of this subsection.

Lemma 7.1. The direct view (Γd,md) for (TDi ,YDi) = (TDU
i (σ

o),YDU
i (σ

o)) is uniquely
determined and is an i.d.view satisfying:

(a): Γd is a 1-person extensive game in the strong sense with Nd = {i};
(b): md satisfies P2a with equality, i.e., {md(x) : x ∈ Xd} = YDU

i (σ
o).
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For the consideration of utility maximization of a behavior pattern σi, player i needs
to consider the sets of compatible endnodes for various behavior patterns. Recall from
(2.15) that λ(σ) denotes the set of compatible endpieces for a profile of behavior patterns
σ = (σ1, ...,σn). Since Γd is a 1-person extensive game in the strong sense, the set of
compatible endpieces will be a singleton set for each behavior pattern σi of player i.
Consequently, we will use λd(σi) here to denote the compatible endpiece in Γd for σi.

Then, player i has a subjective strategy σdi in Γ
d to maximize hd in the following

sense:
hd · λd(σdi ) ≥ hd · λd(σi) for all σi ∈ Σdi . (7.1)

Once again, we emphasize that this decision is made in the personal view of player i, i.e.,
in the mind of player i. This is conceptually not the same as the payoff maximization
in the objective situation, which is now the subject to be considered.

After the choice of the subjective strategy in (7.1), player i brings back σdi to the
objective situation (Γo,mo), adjusting his behavior pattern σoi with σ

d
i . The adjustment

from his objective behavior σoi into σ
1
i is as follows: for all x ∈ Xo

i ,

σ1i (x) =

⎧⎨⎩
σdi hξ, vi if moi (x) = {hξ, vi} for some hξ, vi ∈ Xd;

σoi (x) if moi (x) /∈ YDU
i (σ

o).
(7.2)

That is, player i follows σdi whenever a memory yarn in YDU
i (σ

o) occurs; and otherwise, he

keeps the old behavior pattern. Mathematically, σ1i ∈ Σoi , i.e., this adjustment produces
a behavior pattern for player i in Γo. The next theorem states that the modified strategy
σ1i of player i defined by (7.2) is actually objectively utility maximizing for player i in
Γo when the other players follow their regular behavior σo−i in Γ

o.
Before the next theorem, we give a small remark. Since the objective game Γo is

also an extensive game in the strong sense, the set of compatible endpieces λo(σi,σo−i)
will also be a singleton for player i’s behavior pattern σi and the other players’ behavior
patterns σo−i. We follow the convention of using λo(σi,σ

o
−i) to denote the compatible

endpiece, not the set of compatible endpieces.

Theorem 7.2 (One-Person Utility Maximization in the n-Person Game): The
strategy σ1i defined by (7.2) satisfies the objective payoff maximization for player i, i.e.,

hoi · λo(σ1i ,σo−i) ≥ hoi · λo(σi,σo−i) for all σi ∈ Σoi . (7.3)

This theorem has various points to be emphasized: First, this is not the utility max-
imization obtained directly in the objective situation. Instead, the utility maximization
is made in his i.d.view (Γd,md), and then the modified strategy σ1i is brought to the
objective situation (Γo,mo). It happens that it actually maximizes his objective utility
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function. We emphasize that this process of obtaining the objective utility maximiza-
tion is indirect, and occurs only after many repetitions of collecting data to construct
his view.

A second point is that when the modified strategy σ1i is brought to the objective
situation, it gives a sufficient prescription to player i to behave in his expected world.
One reason is that md satisfies condition P2a with equality. Otherwise, the subjective
memory function may not prescribe actions for all possible memory yarns.

Thus, we have succeeded in having individual utility maximization in the well-defined
form in both subjective and objective senses. Nevertheless, once we leave the case of 7a-
7d, player i would have many difficulties at various levels in Figure 7.1. These problems
will be discussed in Section 8.2 and in separate papers.

Proof of Lemma 7.1.(a): The condition Nd = {i} follows immediately since moi =
mEPRi . By Corollary 5.3, it suffices to show that Γd satisfies K14 and K33.

K14: Since Γo is an extensive game in the strong sense, each strategy combination
determines a unique play. Let hx1, ..., xmi be the unique play determined by σo, and
let xt be the first node of player i in this play, i.e., i ∈ πo · λo(xt) and i /∈ πo · λo(xs)
for all s < t. Then θo(xt) = h(λo(x1),σoj1(x1)), ..., (λ

o(xt−1),σojt−1(xt−1)),λ
o(xt)i where

j1, ..., jt−1 denote the players moving at x1, ..., xt−1 respectively. Let (σi,σo−i) be any
other strategy combination where all the players other than player i choose according
to σo. Then, the first t nodes in the play determined by this strategy combination must
also be x1, ..., xt. Hence, for any play determined on the unilateral trial domain, xt is
the first node of player i. Thus, xt determines the smallest node θo(xt) in Xd.

K33: We show that for each hξ, vi ∈ XdD, the function ϕdhξ,vi defined in d4 is a bijection.

Let hξ, vi ∈ XdD and let a be an arbitrary action in Ahξ,vi. Since hξ, vi ∈ XdD and
the memory function is EPR, hξ, vi = θo(x)i for some x ∈ Xo

i , and x is on the path
determined by some (σi,σo−i). Consider the strategy σ

0
i defined by:

σ0i(y) =

⎧⎨⎩
σi(y) if moi (y) 6= moi (x);

a if moi (y) = m
o
i (x).

Since moi = m
EPR
i , moi (y) 6= moi (x) for any y ∈ XoD

i on the path to x. Hence x is on the
play determined by (σ0i,σ

o
−i). Since the other players follow their strategies in σo, the

action a determines a unique immediate successor hξ, (v, a), ui ∈ Xd. A different action
a0 ∈ Ahξ,vi determines a different immediate successor hξ, (v, a0), u0i ∈ Xd. Thus, the
mapping ϕdhξ,vi from hξ, (v, a), ui to a is a bijection.
(b): Let x ∈ Di. We show that moi (x) ∈ {md(y) : y ∈ Xd}. Since moi = mEPRi , we have
TDi = T ∗Di . Since m

o
i (x) = {θo(x)i}, it follows that θo(x)i ∈ T ∗Di = Xd. Corollary 5.3

states that the direct view (Γd,md) exists uniquely and md(y) = {y} for all y ∈ Xd
i .
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Hence, md(θo(x)i) = {θo(x)i} = moi (x).
Proof of Theorem 7.2. Consider any σi ∈ Σoi . Recall that the endnode determined
by (σi,σo−i) in Γ

o is denoted by z(σi,σo−i). Let x = z(σi,σ
o
−i). Consider the history of

player i at x, i.e., θo(x)i = h(w1, a1), ..., (wm, am), wm+1i with wm+1 = λo(x), and also,
let the corresponding history of nodes be given as hx1, ..., xm, xm+1i with xm+1 = x.
Then, λo(xt) = wt and σi(xt) = at for all t = 1, ...,m. Hence, we choose a strategy τdi
having the property that τdi h(w1, a1), ..., (wt−1, at−1), wti = σi(xt) for t = 1, ...,m. Then,
the compatible endpiece λo(σi,σo−i) = {v} is the same as λd(τdi ). Hence, λo(σ1i ,σo−i) =
λd(τdi ). If we apply this procedure to σ1i , then we have σ

d
i satisfying (7.1). Hence, we

have λo(σ1i ,σ
o
−i) = λd(σ1i ).

By d7 and using the above result, we have hoi ·λo(σ1i ,σo−i) = hd·λd(σdi ) ≥ hd·λd(τdi ) =
hoi · λo(σi,σo−i).

7.2. An Experiential Foundation for Nash Equilibrium

Mathematically speaking, it is easy to extend the result of Theorem 7.2 to every player
in the player set of players in No who are relevant in their own domains, and then we
obtain a Nash equilibrium. Here, we will still state this theorem, and then consider its
implications. For it, however, we need some more notation and one more definition.

First, since our discussion will involve more than one i.d.view, we put subscript “i”
to the direct i.d.view of player i, i.e., (Γdi ,m

d
i ). Second, for each player i who is relevant

in his own domain, we define the induced strategy σdi of σ
o to the direct i.d.view (Γdi ,m

d
i )

for (TDU
i (σ

o),YDU
i (σ

o)) by: for all hξ, wi ∈ Xd
i ,

σdi hξ, wi = σoi (x) for any x ∈ Xo
i with θo(x) = hξ, wi. (7.4)

The well-definedness of (7.4) is verified as follows. First, by the properties of the EPR
memory function, for each hξ, wi ∈ Xd

i , there is an x ∈ Xo
i such that θ

o(x) = hξ, wi.
Secondly, since θo(x) = θo(y) implies mEPRi (x) = mEPRi (y), the strategy defined by (7.4)
does not depend upon he choice of x. Finally, we verify (2.12) and (2.13) for σdi . The
condition (2.12) follows from d4. Condition (2.13) is also satisfied since by Corollary 5.3,
the direct memory function of player i is uniquely determined as mdi hξ, wi = {hξ, wi}.

Then we have the following theorem, which is a straightforward implication of The-
orem 7.2

Theorem 7.3 (Experimental Foundation for Nash Equilibrium): A profile σo of
behavior patterns is a Nash equilibrium in (Γo,mo) if and only if for each player i ∈ No

who is relevant in his own UT-domain DUi (σ
o), the induced strategy σdi of σ

o to the
direct view (Γdi ,m

d
i ) for the memory kit (TDU

i (σ
o),YDU

i (σ
o)) satisfies condition (7.1).

First, let us recall that we have adopted the assumptions 7a-7d in this section. Under
these assumptions, each player makes his decision in his 1-person derived view. The
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theorem states that the behavior pattern σo is a Nash equilibrium in the the objective
game (Γo,mo) if and only the induced strategy for each player i maximizes his utility
in the direct view (Γdi ,m

d
i ). Thus, this theorem decomposes the Nash equilibrium in

(Γo,mo) into utility maximizations in n one-person games.
As discussed in Section 3, the accumulation of (TDU

i (σ
o),YDU

i (σ
o)) and the inductive

derivation of (Γdi ,m
d
i ) need many repetitions of the game (Γ

o,mo). Also, in the present
scenario, each player revises his behavior over DUi (σ

o), and other players may be influ-
enced by his revision, and may change their personal views. This process of changing
may continue. The above theorem describes a stationary state in this revision process.

The revision process may take a long time to reach a Nash equilibrium or even may
not reach a Nash equilibrium. Furthermore, we did not explicitly consider the case
where the players’ trials and errors are restricted. If we take these limitations over
experimentations, the above “Nash equilibrium” is understood as a Nash equilibrium
relative to the restricted domains of actions.

In the above senses, Theorem 7.3 is one characterization of Nash equilibrium from
the experiential viewpoint. In separate papers, we will discuss other characterizations
of Nash equilibrium and/or difficulties arising for them.

Finally, we give one example to suggest the nonconvergence of the process of revising
behavior via constructed personal views. If the objective game (Γo,mo) has no Nash
equilibria, then the above process does not converge. The following example has a Nash
equilibrium.

Example 7.1. (Nonconvergence): Consider the 2-person simultaneous game which
is described as Figure 7.2 and its payoffs are given in Figure 7.3. The bold arrow is the
regular path (s12, s22) and each player is presumed to have the EPR memory function.

s21 s22 s23
s11 (3, 3)NE (2, 2) (2, 2)
s12 (2, 2) (4, 2) (2, 4)
s13 (2, 2) (2, 4) (4, 2)

Figure 7.3

Player 1’s direct i.d.view is the 1-person game summarized by the matrix form of Figure
7.4, and player 2’s i.d.view is the 1-person game summarized in Figure 7.5.

s11 2
s12 4
s13 2

s21 s22 s23
2 2 4

Figure 7.4 Figure 7.5
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11s 12s
13s

21s
23s

23s
22s

the entire  gam e U T dom ain

Figure 7.2:

In this case, player 1 maximizes his utility in his i.d.view by choosing s12. Thus, he has
no incentive to change his objective behavior from the regular pattern. However, player
2 maximizes his utility in his i.d.view by changing from s22 to s23.

By this revision, the regular behavior becomes (s12, s23). After experiencing this pair
as well as some trials, the personal views of the player’s will be revised to the 1-person
games summarized by the matrices of Figures 7.6 and 7.7.

s11 2
s12 2
s13 4

s21 s22 s23
2 2 4

Figure 7.6 Figure 7.7

With this new view, player 1 now finds that he should change his behavior, while player
2 does not. The revised behavior becomes (s13, s23). In this manner, the players move
cyclically through the four regular behaviors depicted in the bottom right corner of
Figure 7.8, and never converge to the Nash equilibrium (s11, s21).

s21 s22 s23
s11 (3, 3) (2, 2) (2, 2)
s12 (2, 2) (4, 2) → (2, 4) ↓
s13 (2, 2) ↑ (2, 4) ← (4, 2)

Figure 7.8
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8. g-Morphism Analysis of Decision Making

In Section 7, we assumed that each player makes a decision using the direct view
(Γd,md). In Section 6, we showed, using the concept of a g-morphism, that the direct
view can be regarded as a representative one. In this section, we apply the g-morphism
analysis to the decision making of a player. The concept of a g-morphism helps us an-
alyze decision making within all i.d.views, not just direct ones. Here we do not restrict
ourselves to the memory kits based on the EPR memory function mEPRi and on the
unilateral trial domain DUi (σ

∗). Although the g-morphism analysis works well, we will
find certain difficulties in decision making with personal views and in transitions from
subjective optimality to objective behavior.

8.1. Subjective Optimality and g-Morphism Analysis

Let (Γ,m) be a personal view of player i. We assume that Γ satisfies N = {i}, i.e., it is
a 1-person game. We call such a view a purely personal view.

We compare subjective optimality across g-morphic views of player i. For this pur-
pose, let (Γ,m) and (Γ̂, m̂) be two purely personal views of player i, and let σi ∈ Σi and
σ̂i ∈ Σ̂i. Here, we follow the convention that each notion in (Γ̂, m̂) is distinguished from
the corresponding one in (Γ,m) by the “cap”, e.g., Σi and Σ̂i are the sets of strategies
of (Γ,m) and (Γ̂, m̂), respectively. We say that σi and σ̂i are endpiece-equivalent iff

λ(σi) = λ̂(σ̂i). (8.1)

Recall that λ(σi) is the set of compatible endpieces for σi, which was defined in (2.15).
Endpiece-equivalent strategies σi and σ̂i lead to the same endpieces in (Γ,m) and (Γ̂, m̂).
Using this notion, we show that it suffices to consider the direct view in order to study
subjective optimality in a personal view.

The first theorem guarantees that the strategic consideration in either view of (Γ,m)
and (Γ̂, m̂) can be carried over to the other as far as the compatible endpieces are
concerned. The proofs will be given in the end of this subsection.

Theorem 8.1 (g-Morphism and Behavior). Let (Γ,m) and (Γ̂, m̂) be two purely
personal views of player i, and let ψ be a g-morphism from (Γ,m) to (Γ̂, m̂).

(a): For each σ̂i ∈ Σ̂i, the function σi defined by (8.2) is a strategy in Σi and is
endpiece-equivalent to σ̂i: for all x ∈ XD

i ,

σi(x) = σ̂i · ψ(x). (8.2)

(b): For each σi ∈ Σi, the function σ̂i defined by (8.3) is a strategy in Σ̂i and is
endpiece-equivalent to σi: for each x̂ ∈ X̂D

i ,

σ̂i(x̂) = σi(x) for some x ∈ XD
i with ψ(x) = x̂. (8.3)

47



Although Theorem 8.1 itself (as well as the following corollaries) does not refer to
i.d.views, the theorem is more relevant in the context of i.d.views. Recalling the results
of Section 6, Theorem 8.1 guarantees that our strategic analysis on a direct view is
carried over to any other i.d.view that is g-morphic to that direct view.

We should consider the implications of Theorem 8.1 in two respects. One is in terms
of subjective optimality, and the other is about when player i brings back his modified
behavior in the objective situation. From the viewpoint of g-morphisms, everything
works well even in these respects. However, there are some difficulties intrinsic to these
two respects, which are not captured by g-morphisms. These will be discussed in Section
8.2.

(1): g-Morphism and Subjective Optimality: Here since we do not assume that
moi is the EPR memory function and the domain is the unilateral-trial oneD

U
i (σ

∗), some
i.d.views may be extensive games in the properly weak sense. In such cases, the utility
maximization (7.3) in Section 7 needs some modification. Here, we give one possible
modification.

Let (Γ,m) be a purely personal view of player i. A strategy σi is subjectively optimal
in (Γ,m) iff

min
w∈λ(σi)

h(w) ≥ min
w0∈λ(σ0i)

h(w0) for all σ0i ∈ Σi. (8.4)

Optimality of σi means that the worst outcome compatible with this strategy is better
than or equal to the worst outcome of any other strategy. That is, we assume the
maximin criterion for his decision making.

Corollary 8.2 (g-Morphism and Subjective Optimality). Let (Γ,m) and (Γ̂, m̂)
be two purely personal views of player i, and let ψ be a g-morphism from (Γ,m) to
(Γ̂, m̂).

(a): If σi satisfies (8.4) in (Γ,m), then the endpiece-equivalent strategy σ̂i defined by
(8.3) satisfies (8.4) in (Γ̂, m̂).

(b): If σ̂i satisfies (8.4) in (Γ̂, m̂), then the endpiece-equivalent strategy σi defined by
(8.2) satisfies (8.4) in (Γ,m).

Again, we talk about the corollary in the context of i.d.views. By the results of
Section 6, we can regard (Γ̂, m̂) as a direct one. By this result, we lose nothing in terms
of subjective optimality by focusing on a direct view.

(2): g-Morphism and Objective Behavior: After his decision making in an i.d.view,
a player modifies his behavior pattern by his subjective strategy, and brings it back to
the objective situation. This modification, in theory, might depend upon the particular
i.d.view of the player. In fact, we will show that the prescriptions for objective strategies
are not different across g-morphic i.d.views. This implies that we can focus on the direct
view even in the step of taking the prescription back to the objective world.
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For the above consideration, we first modify (7.2) in the following way. Let (Γ,m)
be a purely personal view of player i and let σi satisfy (8.4). We define the prescribed
behavior of player i in (Γo,mo) by: for all x ∈ Xo

i ,

σ1i (x) =

⎧⎨⎩
σi(x

0) if moi (x) = m(x
0) for some x0 ∈ X;

σoi (x) if moi (x) 6= m(x0) for any x0 ∈ X.
(8.5)

This strategy prescribes the same behavior as (7.2) in the more restrictive case con-
sidered in Section 7. The next corollary states that g-morphic views give the same
prescriptions for behavior in the objective situation.

Corollary 8.3 (g-Morphism and Modified Behavior). Let (Γ,m) and (Γ̂, m̂) be
two purely personal views of player i, and let ψ be a g-morphism from (Γ,m) to (Γ̂, m̂).

(a): Let σi be a strategy in (Γ,m), and let σ̂i be the endpiece-equivalent strategy de-
fined by (8.3). Then σi and σ̂i prescribe the same behavior to player i in (Γo,mo), that
is, the modified behaviors defined by (8.5) with σi and σ̂i are the same.

(b): Let σ̂i be a strategy in (Γ̂, m̂), and let σi be the endpiece-equivalent strategy defined
by (8.2). Then σi and σ̂i prescribe the same behavior to player i in (Γo,mo).

In this corollary, we did not refer to the optimization condition (8.4). Of course, we
can assume that σi in (a) or σ̂i in (b) satisfies (8.4). Although Corollary 8.2 states that
subjective optimality is invariant with personal views, subjective optimality may not
guarantee, in general, the objective optimality of the prescribed behavior in contrast to
Theorem 7.2. This as well as some other difficulties arising in subjective thinking will
be discussed in Section 8.2.

Now we prove Theorem 8.1 and the corollaries.

Proof of Theorem 8.1.(a): Let σ̂i ∈ Σ̂i. Consider the function σi defined by (8.2).
We show that σi satisfies (2.12) and (2.13) for (Γ,m), and that it is endpiece-equivalent
to σ̂i.

Since σ̂i · ψ(x) ∈ Âψ(x) by (2.12) for σ̂i and g4 requires Âψ(x) = Ax, we have
σi(x) ∈ Ax, i.e., σi satisfies (2.12). To prove (2.13) for σi, consider x, y ∈ XD

i with
m(x) = m(y). Then, by g7, m̂ · ψ(x) = m̂ · ψ(y). Since σ̂i satisfies (2.13), we have
σ̂i · ψ(x) = σ̂i · ψ(y), which means σi(x) = σi(y).

Next we show that the two strategies are endpiece-equivalent. This has two parts,
λ(σi) ⊆ λ̂(σ̂i) and λ̂(σ̂i) ⊆ λ(σi).

First, let w ∈ λ(σi). Then, there is a play hx1, ..., xk, xk+1i in Γ with λ(xt+1) = w
and θ(xk+1) = h(λ(x1),σi(x1)), ..., (λ(xk),σi(xk)),λ(xk+1)i. We denote ψ(xt) by x̂t for
t = 1, ..., k + 1. By Lemma 6.7, hx̂1, ..., x̂k+1i is a play in Γ̂ and θ̂(x̂t+1) = θ(xk+1). By
g3, λ̂(x̂t) = λ(xt) for t = 1, ..., k+1, and by (8.2), σ̂i(x̂t) = σi(xt) for t = 1, ..., k. Hence,
θ̂(x̂t+1) = h(λ̂(x̂1), σ̂i(x̂1)), ..., (λ̂(x̂1), σ̂i(x̂k)), λ̂(x̂k+1)i, which means w ∈ λ̂(σ̂i).
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Conversely, let w ∈ λ̂(σ̂i). Then, there is a play hx̂1, ..., x̂k, x̂k+1i in Γ̂ with λ̂(x̂t+1) =
w and θ̂(x̂t+1) = h(λ̂(x̂1), σ̂i(x̂1)), ..., (λ̂(x̂1), σ̂i(x̂k)), λ̂(x̂t+1)i. By Lemma 6.7, there
is a play hx1, ..., xk, xk+1i in (Γ,m) such that ψ(xt) = x̂t and θ̂(x̂t+1) = θ(xk+1) for
t = 1, ..., k + 1. By g3, λ̂(x̂t) = λ(xt) for t = 1, ..., k + 1, and by (8.2), σ̂i(x̂t) = σi(xt)
for t = 1, ..., k. Hence, θ(xk+1) = h(λ(x1),σi(x1)), ..., (λ(xk),σi(xk)),λ(xk+1)i, which
means w ∈ λ(σi).

(b): Let σi ∈ Σi. Then, it holds that for all x, y ∈ XD,

if ψ(x) = ψ(y), then σi(x) = σi(y). (8.6)

Suppose ψ(x) = ψ(y). Then by g7, m(x) = m(y). This and (2.13) imply σi(x) = σi(y).
Next, we show that σ̂i given in (8.3) is well-defined as a function over X̂D

i . Take
an arbitrary x̂ ∈ X̂D

i . Since ψ is a surjection, there is some x ∈ X satisfying ψ(x) = x̂.
By Lemma 6.5, x ∈ XD

i . By (8.6), the particular x chosen to satisfy ψ(x) = x̂ does not
affect the strategy σ̂i(x̂). Hence, (8.3) defines a unique function σ̂i for player i.

Once we show that σ̂i satisfies (2.12) and (2.13), we will conclude that σ̂i is a strategy
in (Γ̂, m̂). By (2.12) for σi and g4, we have that σ̂i(x̂) ∈ Âx̂ = Ax, i.e., σ̂i satisfies (2.12).
Next, let x̂, ŷ ∈ X̂D

i and m̂(x̂) = m̂(ŷ). Then, by g7, for any x, y ∈ XD
i , if ψ(x) = x̂

and ψ(y) = ŷ, then m(x) = m(y). Since σi satisfies (2.13), we have σi(x) = σi(y), and
σ̂i(x̂) = σ̂i(ŷ).

We can prove that σ̂i and σi are endpiece-equivalent in almost the same way as in
the proof of (a) using (8.3) in place of (8.2).

Proof of Corollary 8.2.(a): Let σi satisfy (8.4) in (Γ,m), and let σ̂i be the endpiece-
equivalent strategy defined by (8.3). By g3, g6, and endpiece-equivalence of σi and σ̂i,
we have min

ŵ∈λ̂(σ̂i)
ĥ(ŵ) = min

w∈λ(σi)
h(w). For each σ̂0i ∈ Σ̂i, Theorem 8.1 guarantees that

there is an endpiece-equivalent strategy σ0i ∈ Σi defined by (8.2) and min
ŵ0∈λ̂(σ̂0i)

ĥ(ŵ0) =

min
w0∈λ(σ0i)

h(w0). Hence, since σi satisfies (8.4) in (Γ,m), we have, min
ŵ∈λ̂(σ̂i)

ĥ(ŵ) ≥ min
ŵ0∈λ(σ̂0i)

h(ŵ0)

for all σ̂0i ∈ Σ̂i.
Part (b) is proved in almost the same way.

Proof of Corollary 8.3.(a): Let σi satisfy (8.4) in (Γ,m), and let σ̂i be the strategy
defined by (8.3). By Corollary 8.3, σ̂i satisfies (8.4) in (Γ̂, m̂). We let σ1i (x) and σ̂1i (x)
denote the behavior prescribed by (8.5) in (Γ,m) and (Γ̂, m̂) respectively. Let x ∈ Xo

i .
If moi (x) = m(x

0) for some x0 ∈ X, then by g0 there is an x̂0 ∈ X̂ where x̂0 = ψ(x0). By
(8.3), σ̂i(x̂0) = σi(x

0), so σ1i (x) = σ̂1i (x). If, alternatively, m
o
i (x) 6= m(x0) for any x0 ∈ X,

then σ1i (x) = σoi (x) = σ̂1i (x). Part (b) is proved in almost the same way as (a).
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8.2. Difficulties involved in Subjective Thinking and in Playing in the Ob-
jective Situation

In Section 7, we assumed that player i has the memory function moi = mEPRi and
the unilateral trial domain DUi (σ

o). Then, he succeeds in having the unique direct
view, in finding an optimal strategy in (Γd,md) as well as in bringing it back to the
objective situation. However, if we drop these assumptions, then a subjectively optimal
strategy may not help him behave properly in the objective situation. We can find many
difficulties in decision making here, but we restrict ourselves to only some of them.

(1): Difficulty in Subjective Thinking: We start with a difficulty involved in
subjective thinking. In Corollary 5.3, we gave a necessary and sufficient condition for
a direct view to be unique and inductively derived. When the direct view is uniquely
determined, the results of Section 6 state that it is essentially the smallest i.d.view.
Also, the results of Section 8.1 imply that decision making is invariant for the choice of
a personal view.

Problems may arise, not because of multiplicity of i.d.views, but rather because
possible multiplicity of direct views for a given memory kit (TDi ,YDi). In this case,
player i faces a difficulty first in choosing an i.d.view.

In Example 5.1 there are four direct i.d.views, which all differ in terms of the memory
function. Figure 8.1 gives two of those direct i.d.views with only the relevant memory
yarns listed, and the payoffs are now attached. In the left view, the memory yarns are
mixed up at the nodes h(y0, a), vi and h(y0, b), vi as mo1(y2) and mo1(y1), while in the right
view, he expects the same memory yarn mo1(y1) at each of his second decision nodes.
In the right view, he does not use the memory yarn mo1(y2) in YDi . This multiplicity of
views causes some difficulty for the player in deciding which view to use for his decision
making. His choice of a view may influence his decision making since, e.g., in the left
view he can make different choices at h(y0, a), vi and h(y0, b), vi, while in the right view,
he is required to make the same choice.

(2): Difficulty in Objective Optimality: Suppose that player i has chosen an
i.d.direct view and a behavior pattern for it that is subjectively optimal in the sense of
(8.4). Consider the left direct view of Figure 8.1. One subjectively optimal strategy is
defined by σ1 which chooses action a at the root node and if his memory node where
his memory is mo1(y2), while choosing b if his memory yarn is m

o
1(y1). When he modifies

his regular behavior in the objective game by this strategy σ1 and brings it back to the
objective situation, he receives the payoff 0. Thus he fails to behave optimally in the
objective situation. In this case, he may want to revise his behavior or his view.

Next, consider the right direct view. In this view, he has a subjectively optimal
strategy prescribing the choice of b at the root node. If he takes this strategy to the
objective world, he will receive the memory yarn mo1(y2), which he does not expect
and, indeed, is not contained in his constructed personal view. Thus, the player finds
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Figure 8.1:

a further difficulty with his view and a reason to revise his behavior or his view. This
difficulty is caused by the weak inclusion condition of P2a, allowing the possibility
of {mi(x) : x ∈ Xi

i} ( YDi . By strengthening P2a to equality, this difficulty could
be avoided as in the right view of Figure 8.1. Nevertheless, the multiplicity of views
remains, and so does the difficulty that a subjectively optimal strategy may not be
objectively optimal.

Thus, when there are multiple i.d.direct views, player i may meet some difficulties
both subjectively and objectively. Either of these difficulties gives a player a reason to
revise his behavior or his view. In this paper, however, we do not consider those revi-
sions. In a separate paper (Kaneko-Kline [15]), we will discuss these types of difficulties.

9. Concluding Comments

In this paper, we have given a discourse of inductive game theory by confining ourselves
to clear-cut cases. It would be, perhaps, appropriate to start this section with comments
on the discourse of this paper. Then we will discuss some implications for extant game
theory of the considerations given in our discourse.

9.1. Comments on the Discourse of this Paper

We have made particular choices of assumptions and definitions for our discourse. One
important methodological choice is to adopt extensive games in the strong and weak
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senses for objective and subjective descriptions. First, we will give some comments on
this choice, and then, we will discuss the definition of an inductively derived view given
in Section 4 based on the initial segment procedure.

As pointed out in Section 4, an extensive game contains observable and unobservable
elements. The nodes with the successor relation are unobservable for the players and
even for the outside observer, in which sense those are highly hypothetical. The com-
ponents in a memory kit are all observables and actually observed. Thus, our definition
of the inductive derivation of a personal view from a memory kit extends the observed
observables by adding hypothetical elements. This may be interpreted as an “inductive”
process of adding unobservable elements to observed data. However, this freedom of
adding hypothetical elements leads us a proliferation of possible views. To prevent this
proliferation, we need some criterion to choose a view from many possible ones. In this
paper, we have used the concept of a g-morphism (game theoretical p-morphism) to
choose a smallest one.

Conceptually speaking, the choice of a personal view is done by a player, rather than
us. While the definition of an inductive derivation allows many views, a player cannot
construct a large one because of his bounded cognitive ability. Thus, the criteria of
smallness and constructiveness are important from this point of view. The direct view
defined in Section 5 has a constructive nature as well as being a smallest one for a given
memory kit. In this sense, the direct view has a special status among those possible
views.

Nevertheless, Definition 4.1 may admit no inductively derived view for a given mem-
ory kit, as characterized by Theorem 5.2. In fact, the initial segment procedure adopted
in Definition 4.1 still gives a strong restriction on the addition of hypothetical elements.
If we allow more freedom in using hypothetical elements in an inductive derivation, we
could avoid the nonexistence result. For example, if we allow a player to add “nature
nodes” to his personal view, we could even avoid the use of an extensive game in the
weak sense. On the other hand, this creates vast arbitrariness in inductive derivations;
and we expect serious difficulties in finding natural criteria to narrow down the use of
“nature nodes”. Until we find natural criteria, we should refrain from the cheap use of
“nature nodes”.

The above conclusion may sound negative to any extension of our definition of an
inductive derivation, but we have different opinions. We could actually have a more
general procedure to construct a personal view than the initial segment procedure.
Since this paper is intended to provide an entire scenario, we have chosen the initial
segment procedure as a clear-cut case. In separate papers, we will discuss less restrictive
definitions.

Another comment should be given on the choice of extensive games. In fact, we can
avoid the adoption of extensive games; instead, the present authors ([14]) have developed
a theory of information protocols, which avoids the use of nodes and describes game

53



situations directly in terms of information pieces and actions together with a history-
event relation. If we adopt this theory, then we could avoid a proliferation of personal
views generated by the use of hypothetical nodes. In the theory of information protocols
it may be easier to discuss extensions of inductive derivations. One reason for our
adoption of extensive games is their familiarity within our profession. Nevertheless, the
choice of extensive games makes the distinction between observables and unobservables
explicit, which is another reason for our choice.

We expect gradual developments of inductive game theory to come about by deeper
analysis and alternative approaches to the various stages mentioned in the diagram of
Figure 1.1. By such gradual developments, we may find natural criteria for steps such
as the use of nature nodes, and some experimental tests of inductive game theory.

9.2. Some Implications to Extant Game Theory

It is a main implication of the discourse of inductive game theory that a good individual
view on society is difficult to construct from the experiential point of view. There are
many places for a player to get stuck in his inductive process and analysis process.
Nevertheless, we gave a characterization theorem of Nash equilibrium in Section 7. We
will discuss some implications of our discourse on inductive game theory to extant game
theory and economics chiefly with respect to Nash equilibrium.

There are various interpretations of Nash equilibrium (cf. Kaneko [13], Act 4). Nash
[23] himself described his concept from purely ex ante decision making, but in economic
applications, it is typically more natural to interpret Nash equilibrium as a strategically
stable stationary state in a recurrent situation. The characterization given in Section 7
is along this line of interpretations.

Our characterization of Nash equilibrium is a full description of the stationary state
interpretation including ex ante decision making in a player’s constructed personal view.
To reach Nash equilibrium, which may not be the case, it takes a long time. Also, the
process of trial and error may not allow all possible available actions. The Nash equi-
librium reached should be regarded as a Nash equilibrium in the game with respect to
the actually experienced domains. Thus, the characterization of Nash equilibrium in
Section 7 should not merely be interpreted as a positive result. It means that the char-
acterization would be obtained if all those processes go through well and if reservations
about restrictions on trials are taken into account.

>From the same point of view, the subgame perfect equilibrium of Selten [27] in-
volves even deeper difficulties from our experiential point of view, which was already
pointed out in Kaneko-Matsui [16]. The reason is that subgame perfection requires
higher order experimentations. When one player deviates from his regular behavior,
other players in turn need, again, to make experimentations from regular behavior.
This second or higher order experimentation is already problematic and violates some
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principles discussed in the informal theory in Section 3.2. In fact, a similar criticism is
applied to Nash equilibrium, as already stated. Nash equilibrium itself is regarded as
one limit notion, and subgame perfection is a higher limit concept.

Taking the above criticism seriously, one important problem would arises. The com-
plexities, in a certain sense, of an inductively derived view as well as of experimentations
are measured and restricted. In the epistemic logic context, Kaneko-Suzuki [18] intro-
duced the concept contentwise complexity, which measures “contentwise complexity” of
a single instance of a game. This notion can be converted to our inductive game theory.
Then, we will be able to give restrictions on individual views as well as experiments. In
this manner, our inductive game theory will be developed in the direction of “bounded
rationalities”.

We have restricted our attention to the purely experiential sources. In our society,
usually, we have different sources of beliefs/knowledge such as from other people or
through education. These suggest that a player may get more beliefs/knowledge on the
social structure, but do not suggest that he can guess other people’s thinking, which
has usually been assumed in the standard game theory (cf., Harsanyi [9] for incomplete
information game and Kaneko [12] for the epistemic logic approach). At least, the
assumption of common knowledge is far beyond experiences. If we restrict interpersonal
thinking to very shallow levels, deductive game theory may have some connections to
inductive game theory (cf. Kaneko-Suzuki [17] for such a direction of deductive game
theory).
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