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1 Introduction

Many auction situations suggest that bidders are uncertain about the ex post value of the

auctioned object when forming their bids. Examples include construction procurements

and natural resource auctions among others.1 In construction procurement, unpredictable

weather conditions may affect the cost for performing the contract. Given the length of

the contract, firms may also face important variations in raw material input prices. Both

may contribute to a significant change in the firm’s costs. In online auctions, bidders do

not perfectly know the quality of the auctioned object due to the lack of information or

assessment.

Risk aversion is a widely adopted assumption in economic models. While considering

auction models, Maskin and Riley (1984) consider the optimal design when the bidders are

risk averse. Matthews (1987) compares different auction designs with risk averse bidders

from a buyer’s point of view. McAfee and McMillan (1987) consider an auction with a

stochastic number of risk averse bidders. Experimental studies have provided support

for bidders’ risk aversion.2 Athey and Levin (2001), Campo, Guerre, Perrigne and Vuong

(2003) and Perrigne (2003) provide empirical evidence for risk-averse bidders using timber

auction data.

Eso and White (2003) consider auction models with uncertain ex post values and

risk averse bidders and compare different auction formats from the point of view of both

1Athey and Levin (2001) consider the US forest service auctions in which the uncertain final payment

in these auctions is related to the quantity of timber harvested, which is imperfectly known at the time

of bidding.
2Cox, Smith and Walker (1988) use a constant relative risk aversion (CRRA) utility function to explain

the observed overbidding relative to the risk neutral Nash equilibrium. Cox, Roberson and Smith (1982)

reject the risk neutral Nash equilibrium bidding behavior in favor of a CRRA model. While considering

a quantal response equilibrium, Goeree, Holt and Palfrey (2002) provide some evidence for risk averse

bidders. See Kagel (1995) for a survey of this literature.
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auctioneer and bidders. In a stochastic private value (SPV) framework they put forward,

each bidder receives an (ex ante) signal about his ex post private value for the auctioned

object. The (ex post) private value is modeled as the sum of the (ex ante) private signal

and a zero mean random shock. At the time of bidding, each bidder knows his private

signal, his utility function as well as the private signal distribution and the random shock

distribution. The bidders are symmetric in the sense that they share the same risk attitude

and the same distributions of signals and random shocks. Moreover, it is assumed that

private signals and random shocks are all independent.

This paper extends the structural auction literature by addressing the identification

and estimation of the stochastic private value model as described above in a first-price

sealed-bid auction setting.3 Campo, Guerre, Perrigne and Vuong (2003) consider the

identification and estimation of a standard private value auction model with indepen-

dent private values and risk averse bidders. They show that the model is in general not

identified from the observed bids only and that identification can be achieved through

additional parametric restrictions. Following their semiparametric identification result,

they propose a semiparametric estimator, which has a non standard consistency rate. My

paper considers a more general model with stochastic private values. In particular, the

model that I consider encompasses the deterministic case considered by Campo, Guerre,

Perrigne and Vuong (2003) in which there is no ex post risk. Nonetheless, identification

of the SPV model is achieved through exploiting the observability of the winner’s ex post

value. Moreover, the semiparametric estimator converges at the standard
√

N rate.

The structure of the SPV model is defined as the bidders’ utility function, the private

signal distribution and the ex post shock distribution. It is assumed that the utility func-

tion is concave, i.e. bidders are risk averse. Identification consists in recovering uniquely

the structure of the model from observations. In a first-price sealed-bid auction, one

3It will be shown that the same identification result also holds for the descending auction setting.
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usually observes the bids and the number of bidders. It is clear that the SPV model is

not identified from the bids only since these observations do not provide enough infor-

mation to recover the utility function and two distributions nonparametrically. A first

natural restriction is to parameterize the utility function. A constant absolute risk aver-

sion (CARA) specification is chosen for its mathematical simplicity. As a matter of fact,

it leads to a constant risk premium. This parametric restriction is insufficient to achieve

identification of the model. In particular, additional restrictions such as parametric con-

ditional quantiles as in Campo, Guerre, Perrigne and Vuong (2003) will at most allow us

to identify the private signal distribution up to a shift equal to the risk premium. The ex

post shock distribution remains unidentified even if the risk premium can be identified,

because the same risk premium can result from different shock distributions for a given

CARA function. That is why more information is needed to identify the distribution of

the random shock. The ex post private value of the winning bidder conveys information

on both the ex post shock and the private signal. The observability of the winner’s ex

post private value together with the winning bid allows us to identify the CARA risk

aversion parameter, the private signal distribution and the shock distribution without

making additional parametric restrictions. Since only information about the winning bid

and winner’s ex post private value is required, this identification result also holds for the

descending auction setting. This identification result relies on convolution theorem. First,

the distribution of the winner’s ex ante private signal is identified, as the winner’s ex ante

signal is the expectation of the winner’s ex post private value conditional on the winning

bid. Then the distribution of a typical bidder’s private signal is identified, since the pri-

vate signals of the bidders are i.i.d. distributed and the winner’s ex ante private signal is

the first order statistics of all the private signals of the bidders. Second, since the winner’s

ex post private value is the sum of his ex ante private signal and the ex post shock, and

the private signal is independent of the ex post shock, the ex post shock distribution is
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then identified as a result of the convolution theorem. Moreover, the identification of the

ex ante private signal and ex post shock distributions does not rely on the specification

of the bidders’ utility function. The risk aversion parameter and the risk premium can

then be identified through considering the inverse bidding function.

The semiparametric identification result naturally leads to a semiparametric estima-

tion procedure, which will be conducted in three steps. Using the winners’ ex post values

and bids, the first step consists in estimating the risk aversion parameter and the risk

premium using a nonstandard nonlinear least square estimator. The dependent variable

is the winner’s ex post private value, the explanatory variables are the winning bid and a

nonparametric estimator of the ratio of winning bid distribution function over its density.

The ratio is evaluated at the observed winning bids. The asymptotic distribution of the

estimator in this step is derived. The uncertainties in the private value can thus be ex-

amined by testing whether the risk premium equals to zero. In particular, the standard

parametric rate
√

N is achieved in spite of the nonparametric component involved in the

estimation cannot be estimated at the rate of
√

N . This result is easily understood as

the method suggested fits into the framework of Newey and Mcfadden (1994). This is the

first time in the structural empirical auction literature, the parametric rate is achieved in

estimating the risk aversion parameter. Using the estimated values for the risk aversion

parameter and the risk premium, the second and third step recover respectively the pseudo

values for winners’ private ex ante signals and ex post shocks through the inverse bidding

function. These pseudo values are used to estimate nonparametrically the distributions

of the private signal and ex post shock.

Since the standard parametric rate
√

N is achieved to estimate risk aversion para-

meter and the risk premium. It is expected that the estimation procedure can provide

satisfying results with a relatively small sample size. I then conduct a Monte Carlo study

with simulated auction data. The results show the good behavior of the semiparametric
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estimator.

My paper contributes to the structural analysis of auction data by extending the

structural approach to a stochastic private value framework. Specifically, it provides useful

tools to analyze auctions in which uncertainty on the ex post value of the auctioned object

is important such as in procurement and natural resource auctions among others. As such,

some auction data could be reanalyzed in this perspective. Though the observability of

the winner’s ex post value may be restrictive, it is required for the winner only. As a

matter of fact, some data such as the US Forest Service timber auction data provides

some information on the amount of harvested timber, which could be used to assess the

ex post private value.

The paper is organized as follows. A second section is devoted to the identification

of the SPV model after a brief introduction of the model. A third section presents the

semiparametric estimation procedure as well as its asymptotic properties. A fourth section

contains the simulation exercise, while a fifth section concludes. The appendix contains

all the proofs.

2 Identification

This section presents the identification of the SPV model under a CARA utility speci-

fication. I first briefly introduce the symmetric SPV model with risk averse bidders for

first-price sealed-bid auctions.

2.1 The SPV Model

A single and indivisible object is sold through a first-price sealed-bid auction. All sealed

bids are collected simultaneously. The object is sold to the highest bidder who pays his

bid. Within the SPV paradigm, each bidder is assumed to have an (ex ante) private
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signal about his random ex post private value. The signal is equal to the expectation of

the random ex post private value. The signal is denoted by vi, which is private informa-

tion across bidders. The vis are i.i.d. distributed with a density f(·) and a cumulative

distribution function F (·) both defined on the support [v, v] . Bidder i’s ex post private

value is denoted by ṽi. For any i ∈ {1, 2, ..., n}, ṽi = vi + εi, where n is the number of

bidders in the auction and the εis are i.i.d. zero-mean ex post shocks with a density h(·)

and a cumulative distribution function H(·). The shocks εi are assumed to be indepen-

dent of the signals vj, ∀i, j ∈ {1, 2, ..., n}. Both distributions F (·) and H(·) are common

knowledge across bidders. Bidders are assumed to be risk averse and to evaluate their

monetary gain from the auction by a strictly concave utility function.4 Bidders is assumed

to have initial wealth denoted by w. Their von Neumann Morgenstern utility function is

then UvNM (· + w). If bidder i wins the auction, his monetary gain is ṽi − bi, while ṽi is

unknown at the time of the auction. If he loses the auction, his gain is zero.

A bidder i with a signal vi and a bid bi has an expected utility equal to Eεi
UvNM (w +

vi + εi − bi)Pr(bi ≥ bj, j 6= i) + UvNM (w)(1 − Pr(bi ≥ bj, j 6= i)). As usual, I consider

strictly increasing and symmetric equilibrium bidding strategies denoted by b(·). With

independent private signals, the probability of winning the auction reduces to F n−1(vi).

I define U(·) = UvNM (w + ·)−UvNM(w). Note that U(0) = 0. Bidder i chooses his report

v̂i to maximize his expected utility in the following problem

max
v̂i∈[v,v]

F n−1(v̂i)Eεi
U(vi + εi − b(v̂i)).

Differentiating with respect to v̂i and requiring v̂i = vi at the Bayesian Nash equilibrium, I

obtain the Bayesian Nash equilibrium strategy b(·, U, F, H, n), which satisfies the following

differential equation

1 = (n − 1)
f(vi)

F (vi)
λ(vi − b(vi))

1

b′(vi)
, (1)

4The model can be easily extended to accommodate the risk neutrality case.
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where λ(x) = Eεi
U(x + εi)/(dEεi

U(x + εi)/dx).

Differential equation (1) with the boundary condition b(v) = v − π determines the

equilibrium bidding strategy b(·), where π satisfies Eεi
U(π + εi) = U(0) = 0.5 The risk

premium π is the amount to be given to any bidder with a utility function U(·) in order

for him to take the risk of εi if his initial wealth were equal to 0. Thus π depends on U(·)

and H(·). When εi ≡ 0, the SPV model degenerates to the deterministic private value

model considered by Campo, Guerre, Perrigne and Vuong (2003). Hereafter, I define

[U(·), F (·), H(·)] as the structure of the SPV model.

2.2 Identification Under a CARA Specification

This section addresses the identification problem of the structure [U(·), F (·), H(·)] from

observations. Generally in first-price sealed-bid auctions, the number of bidders n and

their bids bi, i = 1, . . . , n are observed. Because signals are random, bids are also random

and distributed as G(·). First, let us consider whether the structure [U(·), F (·), H(·)] can

be recovered uniquely from the knowledge of (n, G(·)). Following Campo, Guerre, Per-

rigne and Vuong (2003) who consider a simpler structure [U(·), F (·)], it is clear that the

SPV model is not identified from (n, G(·)) even when the bidders’ utility function is para-

meterized as CARA or CRRA. Hereafter, I consider the identification of the model under

the CARA specification for the bidders’ utility function. The CARA utility function has

been frequently adopted when modeling risk aversion in economic models. I consider the

CARA utility function for its mathematical simplicity.6 Under a CARA utility specifica-

tion, the effect of the ex post risk in the SPV model is reduced to the introduction of a

risk premium.

5At the lower boundary, the competition drives the EεiU(v − b(v) + εi) = U(0).
6I will show that the identification of the distributions of the ex ante private signal and ex post shock

does not depend on the specification of the bidders’ utility function.
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Denote by UCARA
vNM the set of all CARA utility functions. The Arrow-Pratt coefficient

of absolute risk aversion at x is defined as −U ′′
vNM (x)/U ′

vNM (x). Therefore, the CARA

utility functions takes the form UvNM (x) = α 1−exp(−rx)
r

+ β, ∀r > 0, ∀α > 0, ∀β ∈ IR,

where r is the measure of absolute risk aversion. This leads to U(x) = α̃(1 − exp(−rx))

with α̃ = α exp(−rw)
r

. The following lemma provides the λ(·) function for a CARA utility

function. Appendix A provides the proof of this result.

Lemma 1: If U(·) is CARA(r) and ε is a zero-mean random shock, then λ(·) = (exp(r(·−

π)) − 1)/r, where π is the constant risk premium defined by EεU(ε + π) = U(0) = 0 in

the boundary condition.

Following Guerre, Perrigne and Vuong (2000), one can express the differential equation

(1) using the equilibrium bid distribution G(·).7 For every b ∈ [b(v), b(v)], I have G(b) =

F (b−1(b)) = F (v) with a density g(b) = f(v)/b′(v). Thus the differential equation (1) can

be written equivalently as

1 = (n − 1)
g(bi)

G(bi)
λ(vi − bi). (2)

Because λ′(·) ≥ 1, λ(·) is strictly increasing. Thus solving (2) for vi gives

vi = bi + λ−1

(
1

n − 1

G(bi)

g(bi)

)

= bi + π(r, H) +
1

r
log

(
1 +

r

n − 1

G(bi)

g(bi)

)

= ξ(bi, r, G, H, n), (3)

where λ−1(·) denotes the inverse of λ(·). This equation gives each bidder’s private value

signal as a function of its corresponding bid, the bid distribution, the number of bidders,

the shock distribution and the CARA risk aversion parameter.8 Equation (3) tells us that

7Note that if only the winning bid is observed, one have G(·) = Gw(·)1/n, where Gw(·) is the distrib-

ution of the winning bid.
8The boundary condition can be derived from (3) by considering the lower boundary.
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the private signal will be larger by the amount of the risk premium π(r, H) relative to the

deterministic private value model with no ex post shock.

Note that the parameters α, β and w do not appear in (3) or in the boundary condition

as they do not affect the bidding strategy. It follows naturally that these parameters

cannot be identified.9 In order to achieve identification of α̃, I can normalize U(·) such

that U(1) = 1, which gives α̃ = 1/(1 − exp(−r)). Hereafter, I impose the following

assumptions on the utility function U(·) and the distributions F (·) and H(·).

Definition 1: The set UCARA is defined as the set of CARA utility functions U(·) satis-

fying U(0)=0 and U(1)=1.

Definition 2: For R ≥ 1, let FR be the set of distribution functions F (·) satisfying

(i) F (·) is a c.d.f. with support [v, v] , where 0 ≤ v < v < ∞,

(ii) F (·) admits R + 1 continuous derivatives on [v, v],

(iii) f(·) = F ′(·) > 0 on [v, v],

(iv) The monotone hazard rate property holds i.e.,
d

F (v)
f(v)

dv
> 0.

Following Theorem 1 in Campo, Guerre, Perrigne and Vuong (2003), when U(·) ∈

UCARA and F (·) ∈ FR, the equilibrium strategy b(·) admits R + 1 continuous derivatives

on [v, v]. In addition, I have b′(v) > 0. The log concavity of F (v) in item (iv) of Definition

2 ensures that b′(v) < 1, thus v − b(v) is increasing wrt. v.10

9When the initial wealth varies across bidders, the bidding strategies remain symmetric across bidders

for the same reason.
10First, I show that I must have b′(v) ≤ 1. Note b′(v) = (n − 1) f(v)

F (v)λ(v − b(v)). Taking limit on

both sides when v goes to v leads to the result that b′(v) = n−1
n < 1. Note also b′′(v) = 1

n−1
f(v)
F (v)λ

′(v −

b(v))(1 − b′(v)) + 1
n−1λ(v − b(v))d2 log F (v)

dv2 . It is easy to see that b′(v) starts from n−1
n at v and has no

chance to go strictly above 1 as v increases because whenever it has a chance to reach 1 at a point of v∗,

it has to drop below 1 since b′′(v∗) = 1
n−1λ(v∗ − b(v∗))d2 log F (v∗)

dv2 < 0. Second, I show b′(v) < 1. Suppose

there exists v′ ∈ (v, v], b′(v′) = 1, then b′′(v′) < 0. Thus I must have v′′ < v′ which gives b′(v′′) > 1. But

this is contradictory to b′(v) ≤ 1 on [v, v].
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Definition 3: For R ≥ 1, let HR be the set of c.d.f. functions H(·) satisfying

(i) H(·) is a c.d.f. with support [ε, ε] , where −∞ < ε ≤ ε < ∞,

(ii) H(·) has zero mean,

(iii) H(·) admits R + 1 continuous derivatives on [ε, ε],

(iii) h(·) = H ′(·) > 0 on [ε, ε].

Note that an additional restriction should be imposed on the structure [U(·), F (·), H(·)]

since observation provides positive values for the bids. Define (UCARA × FR × HR)∗ =
{
[U(·), F (·), H(·)]

∣∣∣ v − π(r, H) ≥ 0, [U(·), F (·), H(·)] ∈ UCARA × FR ×HR

}
as the set of

structures leading to nonnegative bids.11

The equilibrium bid distribution G(·) then satisfies some regularity properties implied

by the regularity assumptions on [U, F ] and the smoothness of the equilibrium bid strategy

b(·). These regularity properties are summarized in the following definition.12

Definition 4: For R ≥ 1, let GR be the set of distribution functions G(·) satisfying

(i) G(·) is a c.d.f. with support [b, b] , where 0 ≤ b < b < +∞,

(ii) G(·) admits R+1 continuous derivatives on [b, b],

(iii) g(·) = G′(·) > 0 on [b, b],

(iv) G(·)/g(·) admits R + 1 continuous derivatives on [b, b].

(v) The monotone hazard rate property holds i.e.,
d

G(b)
g(b)

db
> 0.

Items (ii) and (iv) in Definition 4 imply that g(·) admits R+1 continuous derivatives

on (b, b], i.e. g(·) is smoother than f(·). Item (v) means that the bid distribution G(b)

must be log concave.

Additional restrictions such as those on parametric conditional quantiles as in Campo,

11Considering (3) at the lower bound b gives v = b + π. Assuming b ≥ 0 implies v − π ≥ 0. Note that

b′(v) > 0.
12I do not provide a proof of the properties (i) − (iv) as it is similar to Campo, Guerre, Perrigne and

Vuong (2003). Property (v) holds because G(b)
g(b) = F (v)

f(v) b′(v) = (n − 1)λ(v − b(v)).
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Guerre, Perrigne and Vuong (2003) will at most allow us to identify the private signal

distribution up to a shift equal to the risk premium. The ex post shock distribution

remains unidentified nonparametrically from (n, G(·)) only, even if the risk premium can

be identified, because the same risk premium can result from different shock distributions

for a given CARA function. That is why more information is needed to identify the

distribution of the random shock. I then assume the observability of the winner’s ex post

private value. The ex post private value of the winning bidder conveys information on

both the ex post shock and the private signal. Though this seems to be restrictive in

practice, some auction data such as that on the timber and oil track auctions provide

information that could be used to assess the winner’s private value. Note that having the

winner’s (ex post) private value does not solve trivially the identification problem because

the ex ante signal and ex post shock are not observed.

Hereafter, I assume that the joint distribution J(·, ·) of the equilibrium winning bid

and the winning (ex post) private value is known, when considering the identification of

he model.13 The identification problem is whether the structure [U, F, H] ∈ (UCARA ×

FR ×HR)∗ can be uniquely recovered from the knowledge of J(·, ·).

Let vw denote the winner’s private signal, εw his ex post shock, bw his bid and ṽw his

(ex post) private value. Since the bidding strategy b(·) is strictly increasing, I have

vw = max
i=1,...,n

vi, bw = max
i=1,...,n

bi = b(vw), ṽw = vw + εw, (4)

and

ṽw=
n∑

i=1

ṽi1I(vj <vi, ∀j 6= i), if vw >v(n−1), εw=
n∑

i=1

εi1I(vj <vi, ∀j 6= i), if vw >v(n−1), (5)

where v(n−1) is the second highest private signal. Note that in contrast to that bw and vw

are the maximum of bi and vi respectively, ṽw and εw are not the maximum of ṽi and εi

13The knowledge of J(·, ·) from observed winning bid and observed winning (ex post) private value is

an estimation issue.
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respectively. For the winner, (3) can then be written as

vw = bw + π(r, H) +
1

r
log

(
1 +

r

n − 1

G(bw)

g(bw)

)

= ξ(bw, r, G, H, n). (6)

Assuming that only the winning bid is observed, (6) can be written equivalently as

vw = bw + π(r, H) +
1

r
log

(
1 +

n r

n − 1

Gw(bw)

gw(bw)

)

= ξ̃(bw, r, Gw, H, n), (7)

since G(·)
g(·) = nGw(·)

gw(·) , where Gw(·) is the distribution of the winning bid and gw(·) its

corresponding density. As Gw(b)
gw(b)

= G(b)
g(b)

/n, items (iv) and (v) in Definition 4 imply that

Gw(·) is also log concave, and gw(·) admits R + 1 continuous derivatives on (b, b].

Equation (7) with ṽw = vw + εw gives

εw = ṽw − bw − π(r, H) − 1

r
log

(
1 +

nr

n − 1

Gw(bw)

gw(bw)

)

= ṽw − ξ̃(bw, r, Gw, H, n). (8)

Lemma 2 provides a result, which will be used further in the identification and estimation

of the SPV model. The proof of Lemma 2 is given in Appendix A.

Lemma 2: Suppose [U, F, H] ∈ UCARA ×FR ×HR, then vw and εw are independent, and

εw is distributed as εi. Furthermore, bw and εw are independent.

The observability of the winner’s ex post private value together with the winning bid

allows us to identify the CARA risk aversion parameter, the private signal distribution and

the shock distribution without making additional parametric restrictions. Identification

means that for a given equilibrium joint distribution of winning bid and winner’s (ex post)

private value J(·, ·), there exists a unique structure [U(·), F (·), H(·)] ∈ (UCARA×FR×HR)∗

that leads to this joint distribution. This is the object of Proposition 1, which relies on
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the convolution theorem. Moreover, the identification of the ex ante private signal and ex

post shock distributions does not rely on the specification of the bidders’ utility function.

Proposition 1: Let n ≥ 2. Any structure [U(·), F (·), H(·)] ∈ (UCARA × FR × HR)∗ is

identified from the joint distribution of J(bw, ṽw), where bw is the equilibrium winning bid

and ṽw is the winner’s ex private value in a first-price sealed-bid auction with structure

[U(·), F (·), H(·)].

Proof of Proposition 1: Equation (8) implies

ṽw = bw + π(r, H) +
1

r
log

(
1 +

nr

n − 1

Gw(bw)

gw(bw)

)
+ εw. (9)

Because bw and εw are independent as shown in Lemma 2, then

E(ṽw|bw) = bw + π(r, H) +
1

r
log

(
1 +

nr

n − 1

Gw(bw)

gw(bw)

)
+ E(εw|bw)

= bw + π(r, H) +
1

r
log

(
1 +

nr

n − 1

Gw(bw)

gw(bw)

)
+ E(εw)

= bw + π(r, H) +
1

r
log

(
1 +

nr

n − 1

Gw(bw)

gw(bw)

)

= vw. (10)

Equation (10) implies that the distribution of vw is identified as the distribution of

E(ṽw|bw). Thus the distribution of private signals F (·) is identified because vw is the

first order statistics of all vi and vis are i.i.d. distributed. Moreover, since ṽw = vw + εw

and vw, εw are independent with each other, the distribution of εw, which is also the

distribution of εi, is identified as a result of convolution theorem. Note that the above

identification results do not rely on the specification of the bidders’ utility function.

Furthermore, π(r, H) can be identified from the boundary condition

π(r, H) = E(ṽw|bw = b) − b.

The risk aversion parameter can be identified from the following equation, as (1/r) log(1+
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nr/((n − 1)gw(b))) is a strictly decreasing function with respect to r,

E(ṽw|bw = b) = b + π(r, H) +
1

r
log

(
1 +

nr

n − 1

1

gw(b)

)
.

Alternatively, the shock distribution H(·) can be identified as the distribution of εw in

the following equation

εw = ṽw − vw

= ṽw − bw − π(r, H) − 1

r
log

(
1 +

nr

n − 1

Gw(bw)

gw(bw)

)
. (11)

The following minimization problem which will be used for the estimation of r and π,

provides an alternative way to identify the parameters r and π(r, H) since it has a unique

solution at the true value of the parameters. Namely,

(r, π(r, H)) = Argmin(r̃,π̃)∈ΘE0

(
ṽw − bw − π̃ − 1

r̃
log

(
1 +

nr̃

n − 1

Gw(bw)

gw(bw)

))2

, (12)

where Θ is a compact set with the true value (r, π(r, H)) as an inner point. This is shown

in the consistency proof of my estimator for (r, π(r, H)) in Appendix B. 2

3 Estimation

3.1 General Procedure

I consider now L auctions selling similar objects to same number of bidders.14 Following

the identification result, I observe the winning bid and winner’s ex post private value

(bw
` , ṽw

` ), ` = 1, ..., L. The semiparametric identification naturally leads to a semiparamet-

ric estimation procedure, which will be conducted in three steps.

14Heterogeneity across auctioned objects could be easily introduced through a discrete variable. The

method can be also extended to continuous variables.
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Step 1: Equation (11), where the ratio Gw(·)/gw(·) is replaced by its nonparametric

estimate from observed winning bids, is used to define a nonlinear least square estimator

as in (12) to estimate the risk aversion parameter and the risk premium from the winners’

ex post values and bids.

Step 2: Using the estimated values for the risk aversion parameter and the risk pre-

mium obtained in Step 1, winners’ pseudo private signals can be computed using (10).

The private signal density f(·) is estimated nonparametrically from these pseudo private

signals.

Step 3: Using the estimated values for the risk aversion parameter and the risk premium

obtained in Step 1, winners’ pseudo ex post shocks can be computed using (11). The

shock density h(·) is estimated nonparametrically using these pseudo shocks.

Specifically, from (10), I have

E(ṽw|bw) = bw + π(r, h) +
1

r
log

(
1 +

nr

n − 1

Gw(bw)

gw(bw)

)
, ∀ bw ∈ [b, b], (13)

and from (9)

ṽw
` = bw

` + π(r, h) +
1

r
log

(
1 +

nr

n − 1

Gw(bw
` )

gw(bw
` )

)
+ εw

` , ` = 1, ..., L. (14)

The ratio Gw(·)/gw(·) can be estimated nonparametrically from the observations bw
` , ` =

1, ..., L.15 With Gw(·)/gw(·) replaced by its estimate, (14) can be used to estimate r and

π(r, h) by a nonlinear least square (NLLS) estimator, which will be detailed below.

Using the observed ṽw
` and bw

` , ` = 1, ..., L, the pseudo signals vw
` can be estimated

nonparametrically as

v̂w
` = Ê(ṽw|bw = bw

` ), ∀ ` = 1, ..., L, (15)

15If all the bids bi`, i = 1, . . . , n, ` = 1, . . . , L are observed, it is more efficient to use all these observations

rather than the winning bid only to estimate nGw(·)/gw(·) = G(·)/g(·).
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where Ê(ṽw|bw) is a nonparametric estimate for E(ṽw|bw). Alternatively, from (13), the

winner’s private signal v̂w
` can be computed using the first step estimator (r̂, π̂(r, H)) as

v̂w
` = bw

` + π̂(r, h) +
1

r̂
log

(
1 +

nr̂

n − 1

Ĝw(bw
` )

ĝw(bw
` )

)
, ∀ ` = 1, ..., L. (16)

Thus the private signal distribution can be nonparametrically estimated from the pseudo

values v̂w
` , ` = 1, ..., L. Since f(·) = fw(·)/(n[F w(·)](n−1)/n), where f(·) is the marginal

density for vi, F w(·) and fw(·) are the distribution and density of vw, respectively. A

natural estimator for f(v) is then f̂(v) = f̂w(·)/(n[F̂ w(·)](n−1)/n), where F̂ w(·) and f̂w(·)

are nonparametric estimators for F w(·) and fw(·) respectively, constructed using the

pseudo signals v̂w
` , ` = 1, ..., L.

The pseudo shocks ε̂w
` can be estimated as

ε̂w
` = ṽw

` − v̂w
` , ∀ ` = 1, ..., L. (17)

The distribution of εw, which is also the distribution of εi, can then be nonparametrically

estimated from ε̂w
` , ` = 1, ..., L.

Note that there are at least two restrictions that can be used to test the model. First,

E(ṽw|bw = bw
` ) can be compared with bw

` +π̂(r, h)+(1/r̂) log(1+nr̂Ĝw(bw
` )/((n−1)ĝw(bw

` )))

as they are two different estimates for vw
` . Second, π̂(r, h) can be compared with π(r̂, ĥ)

as they are two different estimates for the risk premium.

3.2 Asymptotic Properties for the Estimators for r and π(r, H)

Equation (11) suggests a NLLS estimator for (r0, π0) which maximizes

1

L

L∑

`=1

(
ṽw

` − bw
` − π − 1

r
log

(
1 +

nr

n − 1

Gw(bw
` )

gw(bw
` )

))2

,

where (r0, π0) is the true value for (r, π(r, H)). As Gw(·)/gw(·) is unknown, this esti-

mator is infeasible. Thus I need to replace Gw(·)/gw(·) by its estimate obtained from a

nonparametric estimator.
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For estimating the ratio Gw(·)/gw(·), I propose to use the following kernel estimators

following Guerre, Perrigne and Vuong (2000)

Ĝw(bw) =
1

L

L∑

`=1

1I(bw
` ≤ bw), (18)

ĝw(bw) =
1

L

L∑

`=1

Kh(b
w
` − bw), (19)

where Kh(·) = (1/h)K(·/h) with K(·) a kernel function and h a bandwidth. Note that

the estimator for Gw(·) is a simple counting process.

The nonparametric kernel estimator of a density is known to suffer from the boundary

effect, which consists in a bias close to the boundaries. A convenient method to correct

this problem is to introduce a trimming. As a matter of fact, adopting a weight func-

tion is equivalent to doing a trimming, which takes care of the boundary effect of the

nonparametric estimator ĝw(·).

The previous discussion eventually leads to using the following method relying on a

NLLS estimator to estimate the risk aversion parameter r and the risk premium π. In

particular,

(r̂L, π̂L) = Argmin(r,π)∈ΘQ̂L(r, π), (20)

where Θ ⊂ (0, +∞) × [0, +∞) is a compact set containing the true value r0 > 0, π0 ≥ 0.

The function Q̂L(r, π) is defined as

Q̂L(r, π) =
1

L

L∑

`=1

(
ṽw

` − bw
` − π − 1

r
log

(
1 +

nr

n − 1

Ĝw(bw
` )

ĝw(bw
` )

))2

w(bw
` ), (21)

where w(·) is a weight on (−∞, +∞) taking strictly positive values on (b∗, b
∗
) and a zero

value elsewhere. I restrict w(·) to have bounded (R + 1)th derivative. Here [b∗, b
∗
] can be

any subset of (b, b). Any interval [b∗, b
∗
] ⊂ (b, b) guarantees the identification of r and π

as shown in Appendix B.
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3.2.1 Consistency

This section addresses the consistency of the estimator (r̂L, π̂L) suggested above. I first

need to make some assumptions.

Assumption 1: E0(ṽ
w)2 < ∞.

Assumption 2: supbw∈[b∗,b
∗
]

∣∣∣ Ĝ
w(bw)

ĝw(bw)
− Gw(bw)

gw(bw)

∣∣∣ = O( 1
rL

), a.s., where rL → ∞.

Note that Assumption 1 is a standard moment condition, and Assumption 2 is always

satisfied for the estimators defined in (18) and (19) as indicated in the following Lemma

3 under appropriate choice of kernel function and bandwidth. Under Assumptions 1 and

2, I have the following consistency result, whose proof is given in Appendix B.

Proposition 2: Under Assumptions 1 and 2, the NLLS estimator as defined in (20) and

(21) for r and π(r, H) is consistent.

3.2.2 Asymptotic Normality

Before presenting the asymptotic normality result, I need to address the consistency rate

for (r̂L, π̂L) and to make the following assumptions on the kernel function K(·) and the

bandwidth h.

Assumption 3: Let R ≥ 1. Suppose

(i) K(·) is a (R+1)th-order kernel on a compact subset of IR, i.e.,
∫

K(u)du = 1,
∫

K(u)us

du = 0, ∀ 1 ≤ s ≤ R, and
∫

K(u)uR+1du is finite. Moreover, supu∈IR |K(u)| and
∫

K2(u)du are finite.

(ii) Lh2 → ∞, Lh2(R+1) → 0 and L
(
hR+1 + 1√

L̃h

)4
→ 0 as L → ∞, where L̃ = L

log L
.

Note that h = (log L/L)k with k ∈ (1/(2R + 2), 1/2) satisfies Assumption 3(ii). Since

k > 1/(2R + 2) > 1/(2R + 3), h is less than h∗ = (log L/L)1/(2R+3), where h∗ is the

standard optimal bandwidth. Thus Assumption 3(ii) requires undersmoothing as usually

required for a semiparametric estimator to achieve the
√

N consistency.
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From Lemma B2 in Guerre, Perrigne and Vuong (2000), I have the following lemma

as gw(bw) is bounded away from zero on any support of the form [b+ δ, b], ∀ δ ∈ (0, b− b).

Lemma 3: Under Assumption 3,

sup
bw∈[b,b]

(
|Ĝw(bw) − Gw(bw)| w(bw)

)
= O(r−1

Gw), a.s. (22)

where rGw =
(

L
log L

) 1
2 , and

sup
bw∈[b,b]

(
|ĝw(bw) − gw(bw)| w(bw)

)
= O(r−1

gw ) = o(L− 1
4 ), a.s., (23)

where rgw =
(
hR+1 + 1√

L̃h

)−1
where L̃ = L

log L
.

From Lemma 3, Assumption 3 implies Assumption 2 for the nonparametric estimators

(18) and (19). Thus under Assumptions 1 and 3, the NLLS estimator as defined in (20)

and (21) for r and π(r, H) is consistent following Proposition 2.

Relying on the projection theorem of the U -statistics in Serfling (1980) and Lemma 3.1

in Powell, Stock and Stoker (1989), I can show the asymptotic normality of the semi-

parametric estimators for r and π(r, H). I need first to introduce some new notations.

Namely, θ = (r, π) and ϕ(·, ·, ·) is a function on [b, b]× [0, +∞]×Θ taking values in [b, +∞]

defined as ϕ(b, x, θ) = b + π + 1
r
log

(
1 + nr

n−1
x
)

as (B.1) in Appendix B.

Proposition 3: Under Assumptions 1 and 3,
√

L(θ̂L − θ0)
d−→ N

(
0, Ω

)
for the NLLS

estimator defined in (20), where the nonparametric estimators Ĝw(bw) and ĝw(bw) are

defined in (18) and (19). Here, Ω = A−1BA−1 and

A = E0



∂ϕ

(
bw, Gw(bw)

gw(bw)
, θ0

)

∂θ

∂ϕ
(
bw, Gw(bw)

gw(bw)
, θ0

)

∂θ′
w(bw)


 ,

B = Var0



w(bw)


ṽw − ϕ

(
bw,

Gw(bw)

gw(bw)
, θ0

)
− Gw(bw)

gw(bw)

∂ϕ
(
bw, Gw(bw)

gw(bw)
, θ0

)

∂x




∂ϕ
(
bw, Gw(bw)

gw(bw)
, θ0

)

∂θ
+
∫ b

bw

∂ϕ
(
t, Gw(t)

gw(t)
, θ0

)

∂x

∂ϕ
(
t, Gw(t)

gw(t)
, θ0

)

∂θ
w(t)dt



 .
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The proof of Proposition 3 is given in Appendix B. Proposition 3 says that the semi-

parametric estimators for r and π(r, H) achieve the parametric consistency rate, namely
√

L. This result follows the semiparametric literature as the model that I consider fits

into the general framework considered by Newey and McFadden (1994, Section 8). The

reason why the parametric rate is achieved, while it is not in Campo, Guerre, Perrigne

and Vuong (2003) lies in the observability of the winner’s ex post private value assumed

in this paper. Since Proposition 3 shows the asymptotic normality of the estimator for

(r, π) and provides an expression for the covariance matrix for the estimate (r̂, π̂), a test

can be performed to test the significancy of π. As a matter of fact, the null hypothesis

H0 : π = 0 corresponds to the case of deterministic private values.

3.3 Nonparametric Estimation of f(·)

For any inner interval [vl, vu] ⊂ (v, v), on which the density f(·) is to be estimated, I

consider a particular fixed trimming defined as follows. Let bl = ξ−1(vl, r, G, H, n), bu =

ξ−1(vu, r, G, H, n). Take b0 ∈ (b, bl) and b0 ∈ (bu, b). Thus, [bl, bu] ⊂ (b0, b0) ∈ (b, b). 16

Instead of using (16) directly to recover the pseudo signals, I trim some v̂w
` s from the

estimation of f(·) when the corresponding bw
` s are close to the boundaries. In particular,

this gives

v̂w
` =





bw
` + π̂(r, h) + 1

r̂
log

(
1 + nr̂

n−1

Ĝw(bw
`

)

ĝw(bw
`

)

)
if bw

` ∈ [b0, b0],

−∞ if bw
` ∈ [b, b0),

+∞ if bw
` ∈ (b0, b],

∀` = 1, ..., L, (24)

where r̂ and π̂(r, H) are estimates from the first step and Ĝw(·) and ĝw(·) are defined

16Note that [bl, bu] and [b, b0] are not restricted to be smaller than the trimming interval [b∗, b
∗
] used

when (r, π) are estimated.
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by equations (18) and (19), respectively. The bandwidth used in (24) to estimate gw(·)

vanishes at the optimal rate (L/ log(L))1/(2R+3). Note that this bandwidth does not vanish

at the same rate as the bandwidth used to estimate gw(·) in the first step of the estimator.

Assumption 3 and Lemma 3 require a particular vanishing rate, which must undersmooth

the corresponding density. This rate allows us to obtain a
√

L rate for the estimator of

r and π. In Step 2, the objective is to estimate f(·) at the fastest possible rate from the

recovered private signals. Thus, another smoothing parameter, which corresponds to the

standard vanishing (optimal) rate, is needed in step 2 in order to recover the winners’

pseudo signals in the fastest possible rate.

I then define the following nonparametric estimator for winner’s signal density fw(·)

as

f̂w(vw) =
1

Lhf

L∑

`=1

K

(
v̂w

` − vw

hf

)
, (25)

where K(·) is a kernel of order R defined on a compact support, hf is a bandwidth

vanishing at the rate (L/ log(L))1/(2R+3). Note that this bandwidth corresponds to a

oversmoothing as the density fw(·) is R-order differentiable. This oversmoothing provides

the fastest rate of estimating fw(·) because the pseudo values instead of the true values of

vw
` are used to estimate fw(·). Following a similar reasoning as in Theorem 3 in Guerre,

Perrigne and Vuong (2000), I have f̂w(vw) converging uniformly and almost surely at the

rate (L/ log L)R/(2R+3) to fw(vw) on [vl, vu].

I then define the following nonparametric estimators for F w(·)

F̂ w(vw) =
1

L

L∑

`=1

1I(v̂w
` ≤ vw). (26)

Thus, f(·) can be estimated as follows

f̂(v) =
f̂w(v)

n[F̂ w(v)](n−1)/n
, ∀ v ∈ [vl, vu]. (27)
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It is well known that F̂ w(·) converges uniformly and almost surely to F w(·) on [vl, vu]

at a faster rate than f̂w(·) does. Thus f̂(·) converges uniformly and almost surely to f(·)

at the rate (L/ log L)R/(2R+3) on [vl, vu].

3.4 Nonparametric Estimation of h(·)

From Lemma 2, εi and εw follow the same distribution H(·). Thus h(·) can be estimated

using an estimator for the density of εw. The pseudo ε̂w
` can be computed as

ε̂w
` = ṽw

` − v̂w
` , ∀ ` = 1, ..., L. (28)

Because of the boundary effect in the nonparametric estimator ĝw(·), v̂w
` can be a biased

estimate when the corresponding bw
` is close to the boundaries. In this case, ε̂w

` may be

a biased estimate of εw
` as well. In order to eliminate this boundary effect, I need to do

some trimming, which leads to eliminating the ε̂w
` s from the estimation of h(·) when the

corresponding bw
` s are close to the boundaries. This gives

ĥ(ε) =
1

L0hh

L∑

`=1

1I(bw
` ∈ [b0, b0])K

(
ε̂w

` − ε

hh

)
, (29)

where L0 =
∑L

`=1 1I(bw
` ∈ [b0, b0]), K(·) is a kernel function of order R defined on a

compact support and hh is a bandwidth vanishing at the rate (L/ log L)1/(2R+3). This

bandwidth corresponds to an oversmoothing as the density h(·) is R-order differentiable.

This oversmoothing gives the fastest rate of estimating h(·) because the pseudo values

instead of the true values of εw
` are used to estimate h(·). This trimming is rather simple:

Only the observations corresponding to bw
` ∈ [b0, b0] are used in the estimation of h(·).

Note that this trimming is different from the one adopted for the estimation of fw(·). In

particular, f̂(·) is obtained through a smoothing based on L observations, while ĥ(·) is

obtained through a smoothing based on only L0 ≤ L observations. Since εw and bw are

independent, ignoring a subsample based on bw will still provide a consistent estimate for
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the density of εw. This is not the case for f(·) because vw is an increasing function of bw.

Based on a similar reasoning as in Theorem 3 in Guerre, Perrigne and Vuong (2000), ĥ(·)

converges uniformly and almost surely to h(·) at the rate (L/ log L)R/(2R+3) on any inner

support [ε∗, ε∗] ∈ (ε, ε).

4 Monte Carlo Study

This section provides a step by step guide of the estimation procedure presented in Section

3 relying on simulated auction data. Moreover, the results show the good behavior of the

estimator on small samples.

4.1 Monte Carlo Design

All the bidders participating in different auctions are assumed to have the same degree of

absolute risk aversion. Specifically, I consider the CARA parameter r = 1. For simplicity,

I consider auctions of similar auctioned objects and n = 2 bidders. If heterogeneity

across auctioned objects can be characterized by a discrete variable and/or the number

of bidders varies across auctions, the same procedure can apply for each pair of values for

the auction characteristics variable and number of bidders.

To run the Monte Carlo experiments, I need to find an auction structure, which leads

to a simple equilibrium bidding strategy. I consider the following truncated exponential

distribution for the private signals

F (v) =
1 − exp(−v−v

2
)

1 − exp(−v−v
2

)
(30)

on the interval [v, v] ∈ (0, +∞). Note that this F (·) satisfies the properties in Definition 2.

The ex post shocks εi are assumed to be uniformly distributed on the interval [−v, v].17

17The ex post gain of the winning bidder is nonnegative in this setting.
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Note that this H(·) satisfies the properties in Definition 3. With a CARA(1) utility

function and a uniform H(·) distribution, the risk premium is

π(r = 1, H) = log

(
exp(v) − 1

exp(v)

2v

)
. (31)

Note that π is a strictly increasing function of v. Moreover, π(r = 1, H) < v.

This setting of the auction structure leads to that the equilibrium bidding strategy

takes the following linear form

b(v) = v − π(r = 1, H) + (v − v)/2. (32)

This linear form is especially convenient when simulating the equilibrium bids. The com-

plex numerical computation involved in calculating the equilibrium bid is then avoided.

I assume v = 2, and v = 10. The Monte Carlo study consists in 500 replications indexed

by j = 1, 2, ..., 500 in the following procedure:

1. Let L = 100. Private signals vi`, i = 1, 2, ` = 1, . . . , L are random draws from the

distribution F (v) given in (30), while winners’ ex post shocks εw
` , ` = 1, . . . , L are

random draws from the uniform distribution on [−2, 2].

2. The winners’ private values are computed as ṽw
` = vw

` +εw
` , where vw

` = maxi=1,2{vi`},

` = 1, . . . , L. The risk premium π(r = 1, H) is computed from (31) and is equal to

0.5952.

3. Equilibrium winning bids bw
` , ` = 1, . . . , L are computed from (32) using the vw

` , ` =

1, . . . , L.

4.2 A Step by Step Guide

The observations are the winning bids bw
` , ` = 1, . . . , 100 and the winner’s private value

ṽw
` , ` = 1, . . . , 100. I implement the estimation procedure given in Section 3 from these
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observations to recover the CARA risk aversion parameter r, the risk premium π, the

private signal density f(·) and the shock density h(·). Hereafter, I consider R = 1.

The first step consists in developing a NLLS estimator from equation (8). The ratio

Gw(·)/gw(·) needs first to be estimated using a standard counting process for the numera-

tor and a kernel density estimator for the denominator as defined in (18) and (19). I choose

a triweight kernel of the form K(u) = (35/32)(1− u2)3 when |u| ≤ 1 and K(u) = 0 when

|u| ≥ 1. The bandwidth h requires special attention. In particular, the
√

N consistency

rate for the estimator of (r, π) as given in Proposition 3 requires some assumptions on the

bandwidth used in the estimator of gw(·) as described in Assumption 3(ii). As a matter

of fact, some undersmoothing is necessary in the estimation of gw(·). To satisfy such a

requirement, I choose a bandwidth of the form h = cg(L/ log L)−5/16, since 5/16 belongs

to the interval (1/4, 1/2) for R = 1. See the discussion after Assumption 3. Regarding

the constant cg, I simply set cg = σbw , where σbw is the empirical standard deviation of

the observed winning bids bw
` . See Härdle (1991). Using the estimated ratio Ĝw(·)/ĝw(·),

the NLLS estimator as defined in (20) can be implemented. For simplicity the weight

function w(·) is chosen to be equal to one on [b, b]. This step provides an estimate for r

and π denoted as r̂ and π̂.

The second step consists in recovering the winners’ signals as defined in (24) using

r̂ and π̂. This equation requires a different estimate for the ratio Gw(·)/gw(·). Note

that such an estimate has been performed with undersmoothing in the first step. The

second step requires another convergence rate for the bandwidth used in estimating gw(·)

as the objective is to estimate f(·). The distribution Gw(·) will be estimated using a

counting process as in (18), while the density gw(·) will be estimated using a kernel

estimator as in (19) with a bandwidth of the form h = cg(L/ log L)−1/5, where cg = σbw .

This bandwidth corresponds to the optimal rate as defined by Stone (1982). I do not

perform any trimming as suggested in (24) as I prefer the Monte Carlo results to display
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the impact of any potential boundary effect when estimating gw(·). Using the pseudo

winners’ signals v̂w
` , ` = 1, . . . , 100, the winner’s signal density can be estimated using a

kernel estimator as defined in (25). I choose a triweight kernel function and a bandwidth

of the form hf = cf (L/ log L)−1/5 following Guerre, Perrigne and Vuong (2000), which is

an oversmoothing bandwidth for R = 1. The constant cf is simply set as the empirical

standard deviation of the pseudo signals v̂w
` . Thus, I estimate the distribution F w(·) using

a counting process as in (26). This allows me to estimate the signal density f(·) using

the estimated winners’ signal density and distribution as in (27).

The third step consists, for each auction, in recovering the ex post shocks εw
` from the

difference between the observed winner’s private value ṽw
` and the recovered winner’s signal

v̂w
` recovered in step 2. These pseudo shocks are then used to estimate nonparametrically

their density h(·). I use a similar kernel function with a bandwidth of the form hh =

ch(L/ log L)−1/5 with ch obtained from the empirical standard deviation of the pseudo

shocks. As in step 2, no trimming is conducted. This allows the estimation for h(·) to

display the impact of the boundary effect in the kernel estimator for gw(·).

4.3 Estimation Results

The above procedure is performed 500 times, which gives (r̂j, π̂j, f̂j(·), ĥj(·), j = 1, . . . , 500).

Using these 500 estimates, I construct 95-percent confidence intervals for r and π. I es-

timate the densities f(·) and h(·) at 100 equally spaced values on the intervals [2, 10]

and [−2, 2], respectively. For each of these values, I have 500 different estimates for both

densities, from which I eliminate 12 of the lowest values as well as 12 of the highest values

to obtain the 95% confidence intervals.

The 95-percent confidence interval for the risk aversion parameter is [0.5994, 1.4985],

which covers the true value r = 1. The median of these 500 estimates is equal to 0.9990,

which is very close to 1. The 95-percent confidence interval for the risk premium is
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[0.2136, 0.9976], which covers the true value π = 0.5952. The median of the 500 estimates

is equal to 0.5985, which is very close to the true value. The results show that on average

one can expect to recover the true values though the precision is a little bit low. Note that

the precision could be improved by doing some trimming at every step of the method.

Nonetheless, given the boundary effects, one can consider that the estimation method

provides very good results for a sample size of 100 auctions (one pair of winning bid and

winning ex post private value in each auction).

Figure 1 displays the 95-percent confidence interval for the private signal density esti-

mated at 100 equally spaced points on [2, 10], the median of these 500 estimates at every

estimation point, as well as the true density. The median perfectly superimposes the true

density, when excluding the values between 2 and 3, which corresponds to some bound-

ary effects. The 95-percent confidence interval captures the shape of the density almost

everywhere. Note that the width of the confidence interval is large for values between 2

and 3, while it becomes small on the rest of the interval for the signal density. This is due

to the fact that the variance of the kernel density estimator is proportional to the true

value of the density.

[Figure 1 here]

Figure 2 displays the 95-percent confidence interval for the ex post shock density

estimated at 100 equally spaced points on [−2, 2], the median of these 500 estimates at

every estimation point, as well as the true density. The median superimposes the true

density on the interval [-1.6,1.6]. On the boundaries, the estimator tends to underestimate

the true density, which correspond to some boundary effects. For this reason, the 95-

percent confidence interval does not capture all the shape of the true density. The width

of the confidence interval is relatively small for such a number of observations and a

nonparametric estimator.
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[Figure 2 here]

Overall, the Monte Carlo results show the good behavior of the semiparametric mul-

tistep procedure presented in Section 3 given the relatively small number of auctions.

These results clearly display the impact of some boundary effects, which could be further

corrected by using some trimming. Some Monte Carlo experiments have been also con-

ducted for a smaller number of auctions (L = 50). While the median values show a good

match between the estimates and the true values of the parameters and density functions,

the confidence intervals become wider. Results are available upon request to the author.

5 Conclusion

This paper extends the empirical structural auction literature to the stochastic private

value model, while addressing its identification and estimation under a CARA specification

for the bidders’ utility function in a first-price sealed-bid auction setting. The model is

not identified from bids only and more information/observation is needed to pin down

the risk premium and the shock distribution. Thus additional observation, which conveys

information on the ex post shock is necessary to identify the SPV model. When the

winner’s ex post private value is observed, the SPV model is shown to be identified. In

particular, the identification of the distributions of the ex ante private signal and ex post

shock does not depend on the specification of the bidders’ utility function. Since only

information about the winning bid and winner’s ex post private value is required, the

identification result also holds for the descending auction setting.

Following the semiparametric identification result, a semiparametric estimation pro-

cedure is suggested to estimate the CARA parameter, the risk premium as well as the

distributions of the private signals and the ex post shocks. Asymptotic properties for the

estimator of the risk premium and risk aversion parameter are derived and the standard
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√
N consistency rate is achieved, in contrast to Campo, Guerre, Perrigne and Vuong

(2003). A Monte Carlo study is conducted to illustrate the estimation procedure using

simulated data. The results show the good behavior of the estimation method on small

samples.

Several extensions could be entertained. First, the estimation procedure could be

generalized to the case of continuous characteristics. Though the implementation is a

straightforward extension of the current method, the derivation of its asymptotic proper-

ties becomes more involved. Second, other families of utility functions could be considered

such as the constant relative risk aversion utility functions. In this case, the risk premium

is no longer a constant and becomes a function of the private signal. This greatly compli-

cates the estimation problem, while the model is still identified under similar conditions

as in this paper. Third, the independence of private signals may seem to be a restric-

tive assumption, which could be relaxed to affiliated private signals. Identification of the

model is likely to be obtained if the private signals are assumed to be independent of the

ex post shocks. Fourth, the requirement of additional information such as the winner’s ex

post value may seem restrictive as some auction data do not contain such an information

or contain some imperfect information, which could be used to assess the winner’s private

value. Thus, other possibilities could be explored to identify the SPV model. As a matter

of fact, some asymmetry among bidders through their attitude toward risk aversion can

help in identifying the model. Nonetheless, considering stochastic private values repre-

sents an important step in the analysis of auction data as many auction situations suggest

that the value of the object is not known with certainty by the bidders at the time of

bidding. In this respect, many auction data for which the ex post value of the auctioned

object may be subject to some uncertainty or fluctuations could be studied within the

perspective of stochastic private values.
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Appendix A

Proof of Lemma 1: Since U(·) is a CARA utility function, EεU(x + ε) = U(x − π), thus

dEεU(x+ε)/dx = U ′(x−π). It is then easy to verify that λ(x) = EεU(x+ε)/(dEεU(x+ε)/dx) =

U(x− π)/U ′(x− π) = (exp(r(x− π)) − 1)/r. 2

Proof of Lemma 2: Since [U,F,H] ∈ UCARA × FR × HR, b′(·, r, F,H, n) > 0 following

Theorem 1 in Campo, Guerre, Perrigne and Vuong (2003). Thus (4) and (5) hold. Moreover,

∀v0 ∈ [v, v], ∀ε0 ∈ [ε, ε],

P (vw ≤ v0) =
n∑

i=1

P (vw ≤ v0|i wins)P (i wins)=
n∑

i=1

P (vw ≤ v0|i wins)
1
n

=
n∑

i=1

P (vi ≤ v0| i wins)
1
n

=
n∑

i=1

P (vi ≤ v0, vj < vi,∀j 6= i)
P (i wins)

1
n

=F n(v0), (A.1)

P (εw ≤ ε0) =
n∑

i=1

P (εw ≤ ε0| i wins)P (i wins)=
n∑

i=1

P (εw ≤ ε0|i wins)
1
n

=
n∑

i=1

P (εi ≤ ε0| i wins)
1
n

=
n∑

i=1

P (εi ≤ ε0)
1
n

=H(ε0), (A.2)

P (vw ≤ v0, ε
w ≤ ε0) =

n∑

i=1

P (vw ≤ v0, ε
w ≤ ε0|i wins)P (i wins)

=
n∑

i=1

P (vw ≤ v0, ε
w ≤ ε0|i wins)

1
n

=
n∑

i=1

P (vi ≤ v0, ε
i ≤ ε0|i wins)

1
n

=
n∑

i=1

P (εi ≤ ε0, v
i ≤ v0, vj < vi,∀j 6= i)
P (i wins)

1
n

=F n(v0)H(ε0). (A.3)

Equations (A.1), (A.2) and (A.3) imply that vw and εw are independent with each other

and that εw follows the distribution of εi. Note that vw and εw are independent with each other

implies bw = b(vw) and εw are independent with each other. 2
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Appendix B

Proof of Proposition 2: Let define

QL(r, π) =
1
L

L∑

`=1

(
ṽw
` − bw` − π − 1

r
log

(
1 +

nr

n− 1
Gw(bw` )
gw(bw` )

))2

w(bw` ),

Q(r, π) = E0

(
ṽw − bw − π − 1

r
log

(
1 +

nr

n− 1
Gw(bw)
gw(bw)

))2

w(bw).

In order to establish the consistency of the NLLS estimator, I need to show that (i) Q̂L(r, π)

uniformly converges to Q(r, π) in probability with (r, π) ∈ Θ when Ĝw(bw)/ĝw(bw) uniformly

converges on [b∗, b∗] and, (ii) the minimization problem min(r,π)∈ΘQ(r, π) has a unique solution.

First, I show that Q̂L(r, π) converges to Q(r, π) uniformly and almost surely when (r, π) ∈ Θ.

The proof consists in two steps. Based on Jennrich (1969) Strong Law of Large Number (SLLN),

the first step consists in showing that QL(r, π) converges to Q(r, π) almost surely and uniformly

with (r, π) ∈ Θ, while the second step shows that Q̂L(r, π) converges to QL(r, π) almost surely

and uniformly with (r, π) ∈ Θ. Let first define

ψ(vw, bw, r, π) =
(
ṽw − bw − π − 1

r
log
(

1 +
nr

n− 1
Gw(bw)
gw(bw)

))2

w(bw).

Since log(1 + x) ≤ x, when x ∈ [0,+∞), I have

sup
(r,π)∈Θ

|ψ(vw, bw, r, π)|

= sup
(r,π)∈Θ

(
ṽw − bw − π − 1

r
log
(

1 +
nr

n− 1
Gw(bw)
gw(bw)

))2

w(bw)

≤ sup
(r,π)∈Θ

(
|ṽw| +

∣∣∣∣b
w + π +

1
r

log
(

1 +
nr

n− 1
Gw(bw)
gw(bw)

)∣∣∣∣
)2

w(bw)

= sup
(r,π)∈Θ

(
|ṽw| + bw + π +

1
r

log
(

1 +
nr

n− 1
Gw(bw)
gw(bw)

))2

w(bw)

≤
(
|ṽw| + bw + max

(r,π)∈Θ
(π) +

n

n− 1
Gw(bw)
gw(bw)

)2

w(bw).

Let

ψ̃(vw, bw) =

(
|ṽw| + bw + max

(r,π)∈Θ
(π) +

n

n− 1
Gw(bw)
gw(bw)

)2

w(bw).
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I have E0ψ̃(vw, bw) = 2E0

[(
|ṽw|+bw+sup(π)+ n

n−1
Gw(bw)
gw(bw)

)2
w(bw)

]
. Thus as long as Assumption

1 holds, I have E0ψ̃(vw, bw) <∞, which implies that QL(r, π) converges to Q(r, π) almost surely

and uniformly with (r, π) ∈ Θ from Jennrich (1969) SLLN as ψ(vw, bw, r, π) is continuous on Θ.

I then have to show that under Assumptions 1 and 2, Q̂L(r, π) converges to QL(r, π) almost

surely and uniformly with (r, π) ∈ Θ. Let θ = (r, π) and define function ϕ(·, ·, ·) from [b, b] ×

[0,+∞] × Θ to [b,+∞] as follows

ϕ(b, x, θ) = b+ π +
1
r

log
(

1 +
nr

n− 1
x

)
. (B.1)

Before proceeding further, I need to establish the following lemma.

Lemma B.1: If x, x̃ ≥ 0, then

∣∣∣ϕ(b, x̃, θ) − ϕ(b, x, θ)
∣∣∣ ≤ n

n− 1

∣∣∣x̃− x
∣∣∣, ∀θ ∈ Θ.

The proof of Lemma B.1 is in Appendix C.

From Lemma B.1, if Ĝw(bw)/ĝw(bw) ≥ 0,
∣∣∣∣∣ϕ(bw,

Ĝw(bw)
ĝw(bw)

, θ) − ϕ(bw,
Gw(bw)
gw(bw)

, θ)

∣∣∣∣∣≤
n

n− 1

∣∣∣∣∣
Ĝw(bw)
ĝw(bw)

− Gw(bw)
gw(bw)

∣∣∣∣∣ , ∀θ ∈ Θ.

I can now consider |Q̂L(r, π) − QL(r, π)|. Let B̂` = ṽw
` − ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ

)
and B` = ṽw

` −

ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ
)
. I apply the inequality |B̂2

` − B`
2| ≤ (B̂` − B`)2 + 2|B`||B̂` − B`| to show the

desired result. In particular,

|Q̂L(r, π) −QL(r, π)|

=

∣∣∣∣∣∣
1
L

L∑

`=1







(
ṽw
` − ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ

))2

−
(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ

))2

w(bw` )





∣∣∣∣∣∣

≤ 1
L

L∑

`=1





∣∣∣∣∣∣

(
ṽw
` − ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ

))2

−
(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ

))2
∣∣∣∣∣∣
w(bw` )





≤ 1
L

L∑

`=1

∣∣∣∣∣2
(
ṽw
` −ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

,θ

))((
ϕ(bw` ,

Ĝw(bw` )
ĝw(bw` )

,θ

)
−ϕ
(
bw` ,

Gw(bw` )
gw(bw` )

,θ

))
w(bw` )

∣∣∣∣∣
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+
1
L

L∑

`=1

[
ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ

)
− ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ

)]2

w(bw` )

≤ sup
bw∈[b∗,b

∗
]

∣∣∣∣∣ϕ
(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ

)
− ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ

)∣∣∣∣∣

× 1
L

L∑

`=1

∣∣∣∣∣2
(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ

))
w(bw` )

∣∣∣∣∣

+ sup
bw∈[b∗,b

∗
]

∣∣∣∣∣ϕ
(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ

)
− ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ

)∣∣∣∣∣

2

× 1
L

L∑

`=1

w(bw` ).

By SLLN, 1
L

∑L
`=1

∣∣∣2
(
ṽw
` − ϕ

(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ
) )
w(bw` )

∣∣∣ converges almost surely to E0

∣∣∣2
(
ṽw
` −

ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ
) )
w(bw` )

∣∣∣ < ∞, and 1
L

∑L
`=1w(bw` ) converges almost surely to E0w(bw). Thus

under Assumptions 1 and 2, Lemma B.1 implies that, as L→ ∞,

sup
(r,π)∈Θ

|Q̂L(r, π) −QL(r, π)| = O(
1
rL

), a.s. (B.2)

Equation (B.2) implies that Q̂L(r, π) converges to QL(r, π) almost surely and uniformly with

(r, π) ∈ Θ under Assumptions 1 and 2. Combining the above results, I have under Assumptions

1 and 2,

sup
(r,π)∈Θ

|Q̂L(r, π) −Q(r, π)| = o(1), a.s.

It remains to show that there exists [b∗, b∗] ∈ (b, b) such that the minimization problem

Argmin(r,π)∈ΘQ(r, π) has a unique solution r∗ = r0, π
∗ = π0, where

Q(r, π) = E0

(
ṽw − bw − π − 1

r
log
(

1 +
nr

n− 1
Gw(bw)
gw(bw)

))2

w(bw)

= EbwEεw|bw

(
ṽw − bw − π − 1

r
log

(
1 +

nr

n− 1
Gw(bw)
gw(bw)

))2

w(bw)

= Ebww(bw)

{
Var0εw

+
[
π0−π+

1
r0

log
(
1+
nr0
n−1

Gw(bw)
gw(bw)

)
−1
r

log
(
1+

nr

n−1
Gw(bw)
gw(bw)

)]2}
. (B.3)

From (B.3), the solution (r = r0, π = π0) does solve the above minimization problem. Item (v)

in Definition 4 implies that for any [b∗, b∗] ∈ (b, b) I have ∀bw ∈ [b∗, b∗],
d

(
Gw(bw)
gw(bw)

)

dbw > 0. Consider
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any interval [b∗, b∗] ∈ (b, b), I claim that the minimization problem Argmin(r,π)∈ΘQ(r, π) has a

unique solution (r = r0, π = π0). Suppose that (r̃, π̃) also solves the problem. Thus I must

have π0 − π̃ + 1
r0

log
(
1 + nr0

n−1
Gw(bw)
gw(bw)

)
− 1

r̃ log
(
1 + nr̃

n−1
Gw(bw)
gw(bw)

)
= 0 on [b∗, b∗]. Taking the first

derivative for both sides gives

d
(

Gw(bw)
gw(bw)

)

dbw


 1

n−1
n + r0

Gw(bw)
gw(bw)

− 1
n−1

n + r̃Gw(bw)
gw(bw)


 = 0, ∀ bw ∈ [b∗, b∗].

As Gw(bw)
gw(bw) > 0, ∀ bw ∈ [b∗, b∗], thus I must have r̃ = r0, which leads to π̃ = π0.

Based on the above results, for any interval [b∗, b∗] ∈ (b, b), (r̂L, π̂L) almost surely converges

to the true value (r0, π0) if Assumptions 1 and 2 hold. 2

Proof of Proposition 3: From Lemma 3, Assumption 3 implies Assumption 2 for the non-

parametric estimators (18) and (19). Thus from Proposition 2, under Assumptions 1 and 3 I

have

θ̂L − θ0 = o(1), a.s.. (B.4)

The first-order condition of (20) is given by

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ̂L

))


∂ϕ

(
bw` ,

Ĝw(bw
`

)

ĝw(bw
`

) , θ̂L

)

∂θ




2×1

w(bw` ) = 02×1. (B.5)

Taking the Taylor expansion of the left-hand side at θ = θ0 gives

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ0

))


∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ0

)

∂θ




2×1

w(bw` )

+





L∑

`=1




(
ṽw
` − ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ̃L

))


∂2ϕ

(
bw` ,

Ĝw(bw
`

)

ĝw(bw
`

) , θ̃L

)

∂θ∂θ′




2×2

−



∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`
) ,θ̃L

)

∂θ

∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`
) ,θ̃L

)

∂θ′




2×2


w(bw` )





(̂θL−θ0)2×1 =02×1,

35



where θ̃L is a middle point between θ̂L and θ0. Thus

√
L(θ̂L − θ0) =





−1
L

L∑

`=1




(
ṽw
` − ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ̃L

)) ∂2ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ∂θ′

−
∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ

∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ′


w(bw` )





−1

×





1√
L

L∑

`=1

(
ṽw
` −ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

,θ0

)) ∂ϕ

(
bw` ,

Ĝw(bw
`
)

ĝw(bw
`
) ,θ0

)

∂θ
w(bw` )




. (B.6)

Therefore the conclusion of Proposition 3 holds from Lemmas B.2 and B.3 below.

Lemma B.2: Under Assumptions 1 and 3,

1
L

L∑

`=1



∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`
) , θ̃L

)

∂θ

∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`
) , θ̃L

)

∂θ′

−
(
ṽw
` −ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

,θ̃L

)) ∂2ϕ

(
bw` ,

Ĝw(bw
`
)

ĝw(bw
`
) , θ̃L

)

∂θ∂θ′


w(bw` )

→ E0



∂ϕ
(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ

∂ϕ
(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ′
w(bw)


 a.s.,

where the nonparametric estimators Ĝw(bw) and ĝw(bw) are defined in (18) and (19).

Proof of Lemma B.2: See Appendix C.

Lemma B.3: Under Assumptions 1 and 3, SL
d−→ N

(
0, B

)
, where

SL =
1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ0

)) ∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ0

)

∂θ
w(bw` ),

where the nonparametric estimators Ĝw(bw) and ĝw(bw) are defined in (18) and (19).

Proof of Lemma B.3: See Appendix C. 2
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Appendix C

Proof of Lemma B.1:

∣∣∣ϕ(b, x̃, θ) − ϕ(b, x, θ)
∣∣∣ =

∣∣∣∂ϕ(b, x′, θ)
∂x

(x̃− x)
∣∣∣ ≤ n

n− 1

∣∣∣x̃− x
∣∣∣, ∀θ ∈ Θ, (C.1)

where x′ is a value between x and x̃. 2

Proof of Lemma B.2: The proof consists in two steps. The first step will show

1
L

L∑

`=1

(
ṽw
` −ϕ

(
bw` ,
Ĝw(bw` )
ĝw(bw` )

,θ̃L

))


∂2ϕ

(
bw` ,

Ĝw(bw
`

)

ĝw(bw
`

) , θ̃L

)

∂θ∂θ′




2×2

w(bw` ) = o(1) a.s., (C.2)

while the second step will show

1
L

L∑

`=1



∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ

∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ′
w(bw` )




−E0



∂ϕ
(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ

∂ϕ
(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ′
w(bw)


 = o(1) a.s. (C.3)

The left-hand side of (C.2) can be written as

1
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ̃L

)) ∂2ϕ

(
bw` ,

Ĝw(bw
`

)

ĝw(bw
`

) , θ̃L

)

∂θ∂θ′
w(bw` )

=
1
L

L∑

`=1

[(
ṽw
` −ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

,θ0

))
+

(
ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

,θ0

)
− ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

,θ̃L

))]

×



∂2ϕ

(
bw` ,

Gw(bw
`
)

gw(bw
`
) ,θ0

)

∂θ∂θ′
+



∂2ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`
) ,θ̃L

)

∂θ∂θ′
−
∂2ϕ

(
bw` ,

Gw(bw
`
)

gw(bw
`
) , θ0

)

∂θ∂θ′





w(bw` )

=
1
L

L∑

`=1



(
ṽw
` −ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

,θ0

))
∂2ϕ

(
bw` ,

Gw(bw
`

)

gw(bw
`
) ,θ0

)

∂θ∂θ′


w(bw` )

+
1
L

L∑

`=1

(
ṽw
` −ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))


∂2ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`
) ,θ̃L

)

∂θ∂θ′
−
∂2ϕ

(
bw` ,

Gw(bw
` )

gw(bw
`
) ,θ0

)

∂θ∂θ′


w(bw` )
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+
1
L

L∑

`=1



(
ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

,θ0

)
−ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

,θ̃L

))
∂2ϕ

(
bw` ,

Gw(bw
` )

gw(bw
`
) ,θ0

)

∂θ∂θ′


w(bw` )

+
1
L

L∑

`=1

[(
ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

,θ0

)
− ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ̃L

))

×



∂2ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`
) ,θ̃L

)

∂θ∂θ′
−
∂2ϕ

(
bw` ,

Gw(bw
` )

gw(bw
`
) ,θ0

)

∂θ∂θ′





w(bw` )

= A1 +B1 + C1 +D1. (C.4)

I consider the four components A1, B1, C1 and D1 one by one. By SLLN,

A1 =
1
L

L∑

`=1

(
ṽw
` −ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))
∂2ϕ

(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ∂θ′
w(bw` ) = O(

1√
L

), a.s. (C.5)

|B1|=

∣∣∣∣∣∣∣∣

1
L

L∑

`=1

(
ṽw
` −ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

,θ0

))


∂2ϕ

(
bw` ,

Ĝw(bw
`

)

ĝw(bw
`

) ,θ̃L

)

∂θ∂θ′
−
∂2ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) ,θ0
)

∂θ∂θ′


w(bw` )

∣∣∣∣∣∣∣∣

≤ 1
L

L∑

`=1

∣∣∣∣∣̃v
w
` −ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

,θ0

)∣∣∣∣∣

∣∣∣∣∣∣∣∣

∂2ϕ

(
bw` ,

Ĝw(bw
`

)

ĝw(bw
`

) ,θ̃L

)

∂θ∂θ′
−
∂2ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) ,θ0
)

∂θ∂θ′

∣∣∣∣∣∣∣∣
w(bw` )

≤ sup
bw∈[b,b]





∣∣∣∣∣∣∣∣

∂2ϕ

(
bw, Ĝw(bw)

ĝw(bw) , θ̃L

)

∂θ∂θ′
−
∂2ϕ

(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ∂θ′

∣∣∣∣∣∣∣∣
w(bw` )





× 1
L

L∑

`=1

∣∣∣∣∣ṽ
w
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

)∣∣∣∣∣w(bw` ) = o(1), a.s.. (C.6)

|C1|=

∣∣∣∣∣∣∣

1
L

L∑

`=1

(
ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

,θ0

)
−ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

,θ̃L

))
∂2ϕ

(
bw` ,

Gw(bw
`

)

gw(bw
`

) ,θ0
)

∂θ∂θ′
w(bw` )

∣∣∣∣∣∣∣

≤ 1
L

L∑

`=1

∣∣∣∣∣∣∣
ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

)
− ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ̃L

) ∣∣∣
∣∣∣
∂2ϕ

(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ∂θ′

∣∣∣∣∣∣∣
w(bw` )
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≤ sup
bw∈[b,b]

{∣∣∣∣∣ϕ
(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

)
− ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ̃L

)∣∣∣∣∣w(bw` )

}

× 1
L

L∑

`=1

∣∣∣∣∣∣∣

∂2ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ∂θ′

∣∣∣∣∣∣∣
w(bw` ) = o(1), a.s. (C.7)

|D1| =

∣∣∣∣∣
1
L

L∑

`=1

[(
ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

)
− ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ̃L

))

×



∂2ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ∂θ′
−
∂2ϕ

(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ∂θ′





w(bw` )

∣∣∣∣∣

≤ 1
L

L∑

`=1

∣∣∣∣∣ϕ
(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

)
− ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ̃L

)∣∣∣∣∣

×

∣∣∣∣∣∣∣∣

∂2ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ∂θ′
−
∂2ϕ

(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ∂θ′

∣∣∣∣∣∣∣∣
w(bw` ).

≤ sup
bw∈[b,b]

{∣∣∣∣∣ϕ
(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

)
− ϕ

(
bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ̃L

)∣∣∣∣∣w(bw` )

}

× sup
bw∈[b,b]





∣∣∣∣∣∣∣∣

∂2ϕ

(
bw, Ĝw(bw)

ĝw(bw) , θ̃L

)

∂θ∂θ′
−
∂2ϕ

(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ∂θ′

∣∣∣∣∣∣∣∣
w(bw` )





=o(1), a.s. (C.8)

Thus (C.2) holds from (C.4)-(C.8).

Similarly, the left-hand side of (C.3) can be written as

1
L

L∑

`=1



∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ

∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ′
w(bw` )




=
1
L

L∑

`=1



∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ

∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ′
w(bw` )




+
1
L

L∑

`=1






∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ
−
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ



∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ′
w(bw` )



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+
1
L

L∑

`=1



∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ



∂ϕ

(
bw` ,

Ĝw(bw
`

)

ĝw(bw
`

) , θ̃L

)

∂θ′
−
∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ′


w(bw` )




+
1
L

L∑

`=1






∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ
−
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ




×



∂ϕ

(
bw` ,

Ĝw(bw
`

)

ĝw(bw
`

) , θ̃L

)

∂θ′
−
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ′


w(bw` )




= A2 +B2 + C2 +D2. (C.9)

I consider the four components one by one. By SLLN,

A2 =
1
L

L∑

`=1



∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ

∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ′
w(bw` )




= E0



∂ϕ
(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ

∂ϕ
(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ′
w(bw)


+O(

1√
L

), a.s. (C.10)

|B2|=

∣∣∣∣∣∣∣∣

1
L

L∑

`=1






∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ̃L

)

∂θ
−
∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ



∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ′
w(bw` )




∣∣∣∣∣∣∣∣

≤ sup
bw∈[b,b]





∣∣∣∣∣∣∣∣

∂ϕ

(
bw, Ĝw(bw)

ĝw(bw) , θ̃L

)

∂θ
−
∂ϕ
(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ

∣∣∣∣∣∣∣∣
w(bw)





× 1
L

L∑

`=1

∣∣∣∣∣∣∣

∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ′
w(bw` )

∣∣∣∣∣∣∣
= o(1), a.s. (C.11)

Similarly, I have

|C2| ≤ o(1), |D2| ≤ o(1), a.s.. (C.12)

Thus (C.3) holds from (C.9)-(C.12). This completes the proof of Lemma B.2. 2
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Proof of Lemma B.3: I consider the following decomposition of the SL.

SL = S1
L + S2

L + S3
L + S4

L, (C.13)

where

S1
L =

1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ
w(bw` ), (C.14)

S2
L =

1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))

×



∂ϕ(bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ0)

∂θ
−
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ


w(bw` ), (C.15)

S3
L =

1√
L

L∑

`=1

(
ϕ

(
bw` ,
Gw(bw` )
gw(bw` )

,θ0

)
−ϕ
(
bw` ,

Ĝw(bw` )
ĝw(bw` )

,θ0

))
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`
),θ0
)

∂θ
w(bw` ), (C.16)

S4
L =

1√
L

L∑

`=1

(
ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

)
− ϕ(bw` ,

Ĝw(bw` )
ĝw(bw` )

, θ0)

)

×



∂ϕ

(
bw` ,

Ĝw(bw
` )

ĝw(bw
`

) , θ0

)

∂θ
−
∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ


w(bw` ). (C.17)

Note that S1
L is regular and that SLLN directly applies. I then consider the other three

components. Namely,

S4
L ≤

√
L sup

bw∈[b,b]

{∣∣∣∣∣ϕ
(
bw,

Gw(bw)
gw(bw)

, θ0

)
− ϕ

(
bw,

Ĝw(bw)
ĝw(bw` )

, θ0

)∣∣∣∣∣w(bw)

}

× sup
bw∈[b,b]





∣∣∣∣∣∣∣∣

∂ϕ

(
bw, Ĝw(bw)

ĝw(bw) , θ0

)

∂θ
−
∂ϕ
(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ

∣∣∣∣∣∣∣∣
w(bw)





=
√
L O(r−2

gw ) = o(1), a.s. (C.18)

S2
L =

1√
L

L∑

`=1

(
ṽw
` −ϕ

(
bw` ,
Gw(bw` )
gw(bw` )

,θ0

))
∂ϕ2(bw` ,x ,̀θ0)

∂θ∂x

(
Ĝw(bw` )
ĝw(bw` )

−Gw(bw` )
gw(bw` )

)
w(bw` )
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=
1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))(
∂ϕ2

(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ∂x

+
∂ϕ3(bw` , x̃`, θ0)

∂θ∂x2

(
x` −

Gw(bw` )
gw(bw` )

))(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
w(bw` )

=
1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))
∂ϕ2

(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ∂x

×
(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
w(bw` )

+
1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))

×∂ϕ
3(bw` , x̃`, θ0)
∂θ∂x2

(
x` −

Gw(bw` )
gw(bw` )

)(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
w(bw` )

= S21
L + S22

L . (C.19)

where x` takes a value between Gw(bw` )/gw(bw` ) and Ĝw(bw` )/ĝw(bw` ), and x̃` takes a value between

x` and Gw(bw` )/gw(bw` ), ` = 1, 2, ..., L.

I then consider the two components S21
L and S22

L . In particular,

S21
L =

1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))
∂ϕ2(bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0)

∂θ∂x

×
(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
w(bw` ), (C.20)

S22
L =

1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))

×∂ϕ
3(bw` , x̃`, θ0)
∂θ∂x2

(
x` −

Gw(bw` )
gw(bw` )

)(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
w(bw` ). (C.21)

Note that
∣∣∣S22

L

∣∣∣ ≤ 1√
L

L∑

`=1

∣∣∣∣∣

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))

×∂ϕ
3(bw` , x̃`, θ0)
∂θ∂x2

(
x` −

Gw(bw` )
gw(bw` )

)(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
w(bw` )

∣∣∣∣∣

≤ sup
bw∈[b,b]

{∣∣∣∣∣
∂ϕ3(bw` , x̃(bw), θ0)

∂θ∂x2

(
x(bw) − Gw(bw)

gw(bw)

)(
Ĝw(bw)
ĝw(bw)

− Gw(bw)
gw(bw)

)
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×w(bw)

∣∣∣∣∣

}
1√
L

L∑

`=1

∣∣∣∣∣

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))
w(bw` )

∣∣∣∣∣

=
√
L O(r−2

gw ) = o(1), a.s. (C.22)

Thus I can focus on S21
L which is the remaining part of S2

L. I first need to consider the term

w(bw)
(

Ĝw(bw)
ĝw(bw) − Gw(bw)

gw(bw)

)
before proceeding further. Linearizing Ĝw(bw)

ĝw(bw) − Gw(bw)
gw(bw) gives

w(bw)

(
Ĝw(bw)
ĝw(bw)

− Gw(bw)
gw(bw)

)

= w(bw)

(
1

g̃w(bw)

(
Ĝw(bw) −Gw(bw)

)
− G̃w(bw)

(g̃w(bw))2
(ĝw(bw) − gw(bw))

)

= w(bw)

((
1

gw(bw)
− 1

(˜̃g
w
(bw))2

(g̃(bw) − gw(bw))

)(
Ĝw(bw) −Gw(bw)

)

− (ĝw(bw) − gw(bw))

(
Gw(bw)

(gw(bw))2
+

1

(ˆ̃g
w
(bw))

2 (G̃w(bw) −Gw(bw))

− 2 ˆ̃G
w
(bw)

(ˆ̃g
w
(bw))

3 (g̃w(bw) − gw(bw))






= w(bw)

(
Ĝw(bw` )−Gw(bw` )

gw(bw` )
− Gw(bw` )

(gw(bw` ))2
(̂gw(bw` )−gw(bw` ))

)
+O(r−2

gw ), (C.23)

where g̃w(bw) takes a value between ĝw(bw) and gw(bw), G̃w(bw) takes a value between Ĝw(bw)

andGw(bw), ˜̃g
w
(bw) and ˆ̃g

w
(bw) take values between g̃w(bw) and gw(bw), and ˜̃G

w
(bw) and ˆ̃G

w
(bw)

take values between G̃w(bw) and Gw(bw), respectively.

Equations (C.20) and (C.23) imply that

S21
L =

1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))
∂ϕ2

(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ∂x
×

(
Ĝw(bw` )−Gw(bw` )

gw(bw` )
− Gw(bw` )

(gw(bw` ))
2 (̂gw(bw` )−gw(bw` ))

)
w(bw` )+

√
LO(r−2

gw ). (C.24)

Thus I only need to consider the remaining part of S21
L , which is denoted by

S̃21
L =

1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))
∂ϕ2

(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ∂x
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×
{Ĝw(bw` ) −Gw(bw` )

gw(bw` )
− Gw(bw` )

(gw(bw` ))2
(ĝw(bw` ) − gw(bw` ))

}
w(bw` )

= S̃211
L − S̃212

L − S̃213
L + S̃214

L , (C.25)

where

S̃211
L =

1√
L

L∑

`=1

(
ṽw
` −ϕ

(
bw` ,
Gw(bw` )
gw(bw` )

,θ0

))
∂ϕ2

(
bw` ,

Gw(bw
` )

gw(bw
`
),θ0
)

∂θ∂x

w(bw` )
gw(bw` )

Ĝw(bw` ),

S̃212
L =

1√
L

L∑

`=1

(
ṽw
` −ϕ

(
bw` ,
Gw(bw` )
gw(bw` )

,θ0

))
∂ϕ2

(
bw` ,

Gw(bw
` )

gw(bw
`
),θ0
)

∂θ∂x

Gw(bw` )w(bw` )
(gw(bw` ))

2 ĝw(bw` ),

S̃213
L =

1√
L

L∑

`=1

(
ṽw
` −ϕ

(
bw` ,
Gw(bw` )
gw(bw` )

,θ0

))
∂ϕ2

(
bw` ,

Gw(bw
` )

gw(bw
`
) , θ0

)

∂θ∂x

w(bw` )
gw(bw` )

Gw(bw` ),

S̃214
L =

1√
L

L∑

`=1

(
ṽw
` −ϕ

(
bw` ,
Gw(bw` )
gw(bw` )

,θ0

))
∂ϕ2

(
bw` ,

Gw(bw
`
)

gw(bw
`

) , θ0
)

∂θ∂x

Gw(bw` )w(bw` )
(gw)(bw` )

.

I will apply the projection theorem of the U -statistics (Serfling, 1980) to show S̃211
L =

S̃213
L + op(1) and S̃212

L = S̃214
L + op(1), which together eventually lead to S̃21

L = op(1).

I first consider S̃211
L . Let a211(ṽw, bw)) =

(
ṽw − ϕ

(
bw, Gw(bw)

gw(bw) , θ0
)) ∂ϕ2

(
bw ,

Gw(bw)
gw(bw)

,θ0

)

∂θ∂x
w(bw)
gw(bw) ,

then I have

S̃211
L =

1√
L

L∑

`=1

a211(ṽw
` , b

w
` ) Ĝw(bw` )=

√
L

{
1
L2

L∑

`=1

L∑

`′=1

a211(ṽw
` , b

w
` )1I(bw`′−bw` ≤ 0)

}

=
√
L





1
L2

L∑

`=1

L∑

`′=1,`′ 6=`

a211(ṽw
` , b

w
` )1I(bw`′ − bw` ≤ 0)



+

√
L

{
1
L2

L∑

`=1

a211(̃vw
` ,b

w
` )

}
.

Since I have S̃2112
L =

√
L
{

1
L2

∑L
`=1 a

211(ṽw
` , b

w
` )
}

= op( 1√
L
), the main part of S̃211

L is

S̃2111
L =

√
L
{ 1
L2

L∑

`=1

L∑

`′=1,`′ 6=`

a211(ṽw
` , b

w
` ) 1I(bw`′ − bw` ≤ 0)

}

=
√
L





1
L2

L−1∑

`=1

L∑

`′=`+1

[a211(ṽw
` ,b

w
` )1I(bw`′−bw` ≤ 0) + a211(ṽw

`′ , b
w
`′)1I(b

w
` −bw`′ ≤ 0)]





=
√
L
{L(L− 1)

L2
U2111

L

}
,
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where

U2111
L =

2
L(L− 1)

L−1∑

`=1

L∑

`′=`+1

P 2111
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′),

P 2111
L (̃vw

` ,b
w
` ;ṽ

w
`′,b

w
`′)=

a211(̃vw
` ,b

w
` )1I(b

w
`′−bw` ≤ 0)+a211(̃vw

`′,b
w
`′)1I(b

w
` −bw`′ ≤ 0)

2
.

Note that P 2111
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′) does not depend on L.

Let Û2111
L be the projection of U2111

L on the observations, namely

Û2111
L = γ2111

L +
2
L

L∑

`=1

(R2111
L (ṽw

` , b
w
` ) − γ2111

L ),

whereR2111
L (ṽw

` , b
w
` ) = E0[P 2111

L (ṽw
` , b

w
` ; ṽw

`′ , b
w
`′)|ṽw

` , b
w
` ], γ2111

L = E0[R2111
L (ṽw

` , b
w
` )] = E0[P 2111

L (ṽw
` ,

bw` ; ṽw
`′ , b

w
`′)]. Note that R2111

L (ṽw
` , b

w
` ) and γ2111

L do not depend on L.

Direct computation gives

R2111
L (ṽw

` , b
w
` ) =

a211(ṽw
` , b

w
` )

2
Ebw

`′
[ 1I(bw`′ − bw` ≤ 0)|ṽw

` , b
w
` ]

=
a211(ṽw

` , b
w
` )

2

∫
1I(bw`′ − bw` ≤ 0)gw(bw`′)db

w
`′

=
a211(ṽw

` , b
w
` )

2
Gw(bw` ),

γ2111
L = E0[R2111

L (ṽw
` , b

w
` )] = 0.

I first show
√
L(U2111

L −Û2111
L ) = op(1). According to Lemma 3.1 in Powell, Stock and Stoker

(1989), it suffices to show E0[P 2111
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)P

′2111
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)] = o(L). This is true as

E0[P 2111
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)P

′2111
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)] does not depend L.

Now I can consider the main component of
√
LU2111

L , which is

√
LÛ2111

L =
√
Lγ2111

L +
√
L

2
L

L∑

`=1

(R2111
L (ṽw

` , b
w
` ) − γ2111

L )

=
√
L
( 1
L

L∑

`=1

a212(ṽw
` , b

w
` ) gw(bw` )

)
= S̃213

L .

Thus when L→ ∞,

S̃211
L = S̃2111

L + S̃2112
L =

√
L
{L(L− 1)

L2
U2111

L

}
+ op(

1√
L

)
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=
L(L− 1)

L2

{√
LÛ2111

L +
√
L(U2111

L − Û2111
L )

}
+ op(

1√
L

)

=
L(L− 1)

L2

{
S̃213

L + op(1) + op(1)
}

+ op(
1√
L

) = S̃213
L + op(1), (C.26)

as desired.

Similarly, I will next show S̃212
L = S̃214

L + op(1).

Let a212(ṽw, bw)) =
(
ṽw − ϕ

(
bw, Gw(bw)

gw(bw) , θ0
))∂ϕ2(bw ,

Gw(bw)
gw(bw)

,θ0)

∂θ∂x
Gw(bw)w(bw)

(gw(bw))2
, then I have

S̃212
L =

1√
L

L∑

`=1

a212(ṽw
` , b

w
` ) ĝw(bw` ) =

√
L
{ 1
L2

L∑

`=1

L∑

`′=1

a212(ṽw
` , b

w
` ) Kh(bw`′ − bw` )

}

=
√
L
{ 1
L2

L∑

`=1

L∑

`′=1,`′ 6=`

a212(ṽw
` , b

w
` ) Kh(bw`′ − bw` )

}
+
√
L
{Kh(0)

L2

L∑

`=1

a212(ṽw
` , b

w
` )
}
.

Since S̃2122
L =

√
L
{

Kh(0)
L2

∑L
`=1 a

212(ṽw
` , b

w
` )
}

= op( 1√
Lh

), the remaining part of S̃212
L becomes

S̃2121
L =

√
L
{ 1
L2

L∑

`=1

L∑

`′=1,`′ 6=`

a212(ṽw
` , b

w
` ) Kh(bw`′ − bw` )

}

=
√
L
{ 1
L2

L−1∑

`=1

L∑

`′=`+1

(a212(̃vw
` ,b

w
` )+a

212(̃vw
`′,b

w
`′))Kh(bw` −bw`′)

}
=

√
L
{L(L− 1)

L2
U2121

L

}
,

where

U2121
L =

2
L(L− 1)

L−1∑

`=1

L∑

`′=`+1

P 2121
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′),

P 2121
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′) =

a212(ṽw
` , b

w
` ) + a212(ṽw

`′ , b
w
`′)

2
Kh(bw` − bw`′).

Let Û2121
L be the projection of U2121

L on the observations, namely

Û2121
L = γ2121

L +
2
L

L∑

`=1

(R2121
L (ṽw

` , b
w
` ) − γ2121

L ),

whereR2121
L (ṽw

` , b
w
` ) = E0[P 2121

L (ṽw
` , b

w
` ; ṽw

`′ , b
w
`′)|ṽw

` , b
w
` ], γ2121

L = E0[R2121
L (ṽw

` , b
w
` )] = E0[P 2121

L (ṽw
` ,

bw` ; ṽw
`′ , b

w
`′)].

I first show
√
L(U2121

L −Û2121
L ) = op(1). According to Lemma 3.1 in Powell, Stock and Stoker

(1989), it suffices to show E0[P 2121
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)P

′2121
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)] = o(L). Namely,

E0

[
P 2121

L (ṽw
` , b

w
` ; ṽw

`′ , b
w
`′)P

′2121
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)
]
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=
1
4
E0

[
K2

h(bw` − bw`′)(a
212(ṽw

` , b
w
` ) + a212(ṽw

`′ , b
w
`′))(a

′212(ṽw
` , b

w
` ) + a′212(ṽw

`′ , b
w
`′))
]

=
1
4
E0

{
K2

h(bw` − bw`′)
[
a212(ṽw

` , b
w
` )a′212(ṽw

` , b
w
` )

+2 a212(ṽw
`′ , b

w
`′)a

′212(ṽw
` , b

w
` ) + a212(ṽw

`′ , b
w
`′)a

′212(ṽw
`′ , b

w
`′)
]}
.

=
1
4
E(bw

`
,bw

`′)

{
K2

h(bw` − bw`′)Eṽw
`

,ṽw
`′ |b

w
`

,bw
`′

[
a212(ṽw

` , b
w
` )a′212(ṽw

` , b
w
` )

+2 a212(ṽw
`′ , b

w
`′)a

′212(ṽw
` , b

w
` ) + a212(ṽw

`′ , b
w
`′)a

′212(ṽw
`′ , b

w
`′)
]}
.

=
1
4
E(bw

`
,bw

`′)

{
K2

h(bw` − bw`′)(M(bw` ) +M(bw`′))
}
,

where

M(bw) = Eṽw
`
|bw

`
[a212(ṽw

` , b
w
` )a′212(ṽw

` , b
w
` )]

= Var0(εw)



∂ϕ2

(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ∂x





∂ϕ2

(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ∂x




′(
Gw(bw)w(bw)

(gw(bw))2

)2

.

As supbw∈[b,b] |M(bw)| <∞, E0[P 2121
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)P

′2121
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)]

≤ 1
2 supbw∈[b,b] |M(bw)|E(bw

`
,bw

`′)
{K2

h(bw` − bw`′)}. Using the change of variable u =
bw
` −bw

`′
h ,

E(bw
`

,bw
`′)
{K2

h(bw` − bw`′)} =
1
h

∫ ∫
K2(u)gw(bw)gw(bw + uh)dbwdu

≤ 1
h

sup
bw∈[b,b],u∈(−∞,+∞)

|gw(bw)gw(bw + uh)|
∫ ∫

K2(u)dbwdu

=
1
h

sup
bw∈[b,b],u∈(−∞,+∞)

|gw(bw)gw(bw + uh)|(b − b)
∫
K2(u)du.

Since
∫
K2(u)du <∞ and 1√

Lh
= o(1), I have

E0[P 2121
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)P

′2121
L (ṽw

` , b
w
` ; ṽw

`′ , b
w
`′)] = o(

√
L) = o(L).

I can now consider the main component of
√
LU2121

L , which is
√
LÛ2121

L =
√
Lγ2121

L +
√
L 2

L

∑L
`=1(R

2121
L (ṽw

` , b
w
` ) − γ2121

L ), with

R2121
L (ṽw

` , b
w
` ) = E0[

a212(ṽw
` , b

w
` ) + a212(ṽw

`′ , b
w
`′)

2
Kh(bw` − bw`′)|ṽw

` , b
w
` ]

=
a212(ṽw

` , b
w
` )

2
Ebw

`′
[Kh(bw` −bw`′)|ṽw

` , b
w
` ]=

a212(ṽw
` , b

w
` )

2

∫
Kh(bw` −bw`′)gw(bw`′)db

w
`′

=
a212(ṽw

` , b
w
` )

2
gw(bw` ) +

a212(ṽw
` , b

w
` )

2

∫
K(u)(gw(bw` + hu) − gw(bw` ))du

= R2121(ṽw
` , b

w
` ) + t2121L (ṽw

` , b
w
` ),
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where

R2121(ṽw
` , b

w
` ) =

a212(ṽw
` , b

w
` )

2
gw(bw` ),

t2121L (ṽw
` , b

w
` ) =

a212(ṽw
` , b

w
` )

2

∫
K(u)(gw(bw` + hu) − gw(bw` ))du.

Since γ2121
L = E0[R2121

L (ṽw
` , b

w
` )] = E0[R2121(ṽw

` , b
w
` ) + t2121L (ṽw

` , b
w
` )] = 0, thus

√
LÛ2121

L =
√
L
( 2
L

L∑

`=1

R2121
L (ṽw

` , b
w
` )
)

=
√
L
( 1
L

L∑

`=1

a212(ṽw
` , b

w
` ) gw(bw` )

)
+

√
L
( 2
L

L∑

`=1

t2121L (ṽw
` , b

w
` )
)

= S̃214
L +

√
L
( 2
L

L∑

`=1

t2121L (ṽw
` , b

w
` )
)
.

Let T 2121
L =

√
L
(

2
L

∑L
`=1 t

2121
L (ṽw

` , b
w
` )
)
, then Var0(T 2121

L ) = E0

[( ∫
K(u)(gw(bw` + hu) −

gw(bw` ))du
)2
a212(ṽw

` , b
w
` )a′212(ṽw

` , b
w
` )
]

= O(h2(R+1)) = o(1). Thus by Chebyshev’s inequality,

T 2121
L = op(1).

Thus when Assumption 3(ii) is satisfied,

S̃212
L = S̃2121

L + S̃2122
L

=
√
L
{L(L− 1)

L2
U2121

L

}
+ op(

1√
Lh

)

=
L(L− 1)

L2

{√
LÛ2121

L +
√
L(U2121

L − Û2121
L )

}
+ op(

1√
Lh

)

=
L(L− 1)

L2

{
S̃214

L + op(1) + op(1)
}

+ op(
1√
Lh

) = S̃214
L + op(1), (C.27)

as desired.

When Assumption 3(ii) is satisfied, from (C.22), (C.25), (C.26), (C.27),

S2
L = S21

L + S22
L = S21

L + op(1)

= S̃21
L + op(1) = S̃211

L − S̃212
L − S̃213

L + S̃214
L + op(1)

= S̃213
L − S̃214

L − S̃213
L + S̃214

L + op(1) = op(1), (C.28)

as desired.
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I now turn to S3
L. Namely

S3
L =

1√
L

L∑

`=1

∂ϕ(bw` , x`, θ0)
∂x

(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ
w(bw` )

=
1√
L

L∑

`=1



∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂x
+
∂2ϕ(bw` , x̃`, θ0)

∂x2

(
x` −

Gw(bw` )
gw(bw` )

)


×
(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ
w(bw` )

=
1√
L

L∑

`=1

∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂x

(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ
w(bw` )

+
1√
L

L∑

`=1

∂2ϕ(bw` , x̃`, θ0)
∂x2

(
x` −

Gw(bw` )
gw(bw` )

)

×
(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ
w(bw` ) = S31

L + S32
L , (C.29)

where x` takes a value between Gw(bw
` )

gw(bw
`

) and Ĝw(bw
` )

ĝw(bw
`

) , and x̃` takes a value between x` and Gw(bw
` )

gw(bw
`

) ,

` = 1, 2, ..., L, and

S31
L =

1√
L

L∑

`=1

∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

),θ0
)

∂x

(
Ĝw(bw` )
ĝw(bw` )

− Gw(bw` )
gw(bw` )

)
∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ
w(bw` ),

S32
L =

1√
L

L∑

`=1

∂2ϕ(bw` ,x̃ ,̀θ0)
∂x2

(
x`−

Gw(bw` )
gw(bw` )

)(
Ĝw(bw` )
ĝw(bw` )

−Gw(bw` )
gw(bw` )

)
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`
), θ0

)

∂θ
w(bw` ).

Since |S32
L | ≤

√
L O(r−2

gw ) = o(1), I can then focus on S31
L which is the main part of S3

L.

Applying (C.23) I have

S31
L =

1√
L

L∑

`=1

{ 1
gw(bw` )

(
Ĝw(bw` ) −Gw(bw` )

)
− Gw(bw` )

(gw(bw` ))2
(
ĝw(bw` ) − gw(bw` )

)}

×
∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂x

∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ
w(bw` ) +

√
L O(r−2

gw ). (C.30)

When Assumption 3(ii) is satisfied,
√
L O(r−2

gw ) = o(1). Consider the main component of
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S31
L which is

S̃31
L =

1√
L

L∑

`=1

{ 1
gw(bw` )

(
Ĝw(bw` ) −Gw(bw` )

)
− Gw(bw` )

(gw(bw` ))2
(
ĝw(bw` ) − gw(bw` )

)}

×
∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂x

∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ
w(bw` ) = S̃311

L − S̃312
L ,

where

S̃311
L =

1√
L

L∑

`=1

w(bw` )
gw(bw` )

∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂x

∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ
Ĝw(bw` ),

S̃312
L =

1√
L

L∑

`=1

{ Gw(bw` )
(gw(bw` ))2

∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂x

∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`

) , θ0
)

∂θ
w(bw` )ĝw(bw` ).

I will consider the above two components one by one.

Let a311(bw) = w(bw)
gw(bw)

∂ϕ

(
bw ,

Gw(bw)
gw(bw)

,θ0

)

∂x

∂ϕ

(
bw ,

Gw(bw)
gw(bw)

,θ0

)

∂θ , then

S̃311
L =

1√
L

L∑

`=1

a311(bw` )Ĝw(bw` ) =
√
L
{ 1
L2

L∑

`=1

L∑

`′=1

a311(bw` ) 1I(bw`′ − bw` ≤ 0)
}

=
√
L
{ 1
L2

L∑

`=1

L∑

`′=1,`′ 6=`

a311(bw` ) 1I(bw`′ − bw` ≤ 0)
}

+
√
L
{ 1
L2

L∑

`=1

a311(bw` )
}

= S̃3111
L + S̃3112

L ,

where S̃3111
L =

√
L
{

1
L2

∑L
`=1

∑L
`′=1,`′ 6=` a

311(bw` ) 1I(bw`′−bw` ≤ 0)
}
, S̃3112

L =
√
L
{

1
L2

∑L
`=1 a

311(bw` )
}
.

As S̃3112
L = Op( 1√

L
), the main part of S̃311

L is

S̃3111
L =

√
L
{ 1
L2

L∑

`=1

L∑

`′=1,`′ 6=`

a311(bw` ) 1I(bw`′ − bw` ≤ 0)
}

=
√
L
{ 1
L2

L−1∑

`=1

L∑

`′=`+1

[a311(bw` )1I(bw`′ − bw` ≤ 0) + a311(bw`′) 1I(bw` − bw`′ ≤ 0)]
}

=
√
L
{L(L− 1)

L2
U3111

L

}
,

where

U3111
L =

2
L(L− 1)

L−1∑

`=1

L∑

`′=`+1

P 3111
L (bw` ; bw`′),

P 3111
L (bw` ; bw`′) =

a311(bw` )1I(bw`′ − bw` ≤ 0) + a311(bw`′) 1I(bw` − bw`′ ≤ 0)
2

.
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Let Û3111
L be the projection of U3111

L on the observations, i.e., Û3111
L =γ3111

L + 2
L

∑L
`=1(R

3111
L (bw` )−

γ3111
L ), where R3111

L (bw` ) = E0[P 3111
L (bw` ; bw`′)|bw` ], γ3111

L = E0[R3111
L (bw` )] = E0[P 3111

L (bw` ; bw`′)]. I

will first show
√
L(U3111

L − Û3111
L ) = op(1). According to Lemma 3.1 in Powell, Stock and

Stoker (1989), it suffices to show E0[P 3111
L (bw` ; bw`′)P

′3111
L (bw` ; bw`′)] = o(L). Note this is true since

P 3111
L (bw` ; bw`′) does not depend on L.

Now I are ready to consider the main component of
√
LU3111

L , which is

√
LÛ3111

L =
√
Lγ3111

L +
√
L

2
L

L∑

`=1

(R3111
L (bw` ) − γ3111

L ). (C.31)

Let γ3111 = E0[
Gw(bw)
gw(bw)

∂ϕ

(
bw ,

Gw(bw)
gw(bw)

,θ0

)

∂x

∂ϕ

(
bw ,

Gw(bw)
gw(bw)

,θ0

)

∂θ w(bw)] andR3111(bw` ) = a311(bw
`

)

2 Gw(bw` )

+
∫ a311(bw

`′ )

2 1I(bw` − bw`′ ≤ 0)gw(bw`′)db
w
`′ . Direct computation gives

R3111
L (bw` ) =

a311(bw` )
2

Ebw
`′
[1I(bw`′ − bw` ≤ 0)|bw` ] + E0[

a311(bw`′)
2

1I(bw` − bw`′ ≤ 0)|bw` ]

=
a311(bw` )

2

∫
1I(bw`′−bw` ≤0)gw(bw`′)db

w
`′ +

∫
a311(bw`′)

2
1I(bw` − bw`′ ≤ 0)gw(bw`′)db

w
`′

=
a311(bw` )

2
Gw(bw` ) +

∫
a311(bw`′)

2
1I(bw` − bw`′ ≤ 0)gw(bw`′)db

w
`′ = R3111(bw` ),

γ3111
L = E0[R3111

L (bw` )] = E0[R3111(bw` )]

=
1
2
γ3111 + E0[

∫
a311(bw`′)

2
1I(bw` − bw`′ ≤ 0)gw(bw`′)db

w
`′ ],

=
1
2
γ3111 +

∫ ∫
a311(bw`′)

2
1I(bw` − bw`′ ≤ 0)gw(bw` )gw(bw`′)db

w
` db

w
`′ ,

=
1
2
γ3111 +

∫
a311(bw`′)

2
Gw(bw`′)g

w(bw`′)db
w
`′ = γ3111.

Thus (C.31) becomes

√
L(Û3111

L − γ3111) =
√
L
( 2
L

L∑

`=1

(R3111(bw` ) − γ3111)
)
.

When Assumption 3(ii) is satisfied,

S̃311
L = S̃3111

L + S̃3112
L

=
√
L
{L(L− 1)

L2
U3111

L

}
+Op(

1√
L

)
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=
L(L− 1)

L2

{√
LÛ3111

L +
√
L(U3111

L − Û3111
L )

}
+Op(

1√
L

)

=
L(L− 1)

L2

{√
L(Û3111

L − γ3111) +
√
Lγ3111 + op(1)

}
+Op(

1√
L

)

=
√
L
( 2
L

L∑

`=1

(R3111(bw` ) − γ3111)
)

+
√
Lγ3111 + op(1) (C.32)

Let consider S̃312
L now. Using the following notation

a312(bw) =
Gw(bw)

(gw(bw))2
∂ϕ
(
bw, Gw(bw)

gw(bw) , θ0
)

∂x

∂ϕ
(
bw, Gw(bw)

gw(bw) , θ0
)

∂θ
w(bw),

I obtain

S̃312
L =

1√
L

L∑

`=1

a312(bw` )ĝw(bw` ) =
√
L
{ 1
L2

L∑

`=1

L∑

`′=1

a312(bw` ) Kh(bw`′ − bw` )
}

=
√
L
{ 1
L2

L∑

`=1

L∑

`′=1,`′ 6=`

a312(bw` ) Kh(bw`′ − bw` )
}

+
√
L
{Kh(0)

L2

L∑

`=1

a312(bw` )
}

= S̃3121
L + S̃3122

L ,

where S̃3121
L =

√
L

L2

∑L
`=1

∑L
`′=1,`′ 6=` a

312(bw` )Kh(bw`′ − bw` ) and S̃3122
L =

√
L
{

Kh(0)
L2

∑L
`=1 a

312(bw` )
}
.

Under Assumption 3(ii), S̃3122
L = Op( 1√

Lh
) = o(1), thus the main part of S̃312

L is

S̃3121
L =

√
L
{ 1
L2

L∑

`=1

L∑

`′=1,`′ 6=`

a312(bw` ) Kh(bw`′ − bw` )
}

=
√
L
{ 1
L2

L−1∑

`=1

L∑

`′=`+1

(a312(bw` ) + a312(bw`′)) Kh(bw` − bw`′)
}

=
√
L
{L(L− 1)

L2
U3121

L

}
,

where

U3121
L =

2
L(L− 1)

L−1∑

`=1

L∑

`′=`+1

P 3121
L (bw` ; bw`′),

P 3121
L (bw` ; bw`′) =

a312(bw` ) + a312(bw`′)
2

Kh(bw` − bw`′).

Let Û3121
L be the projection of U3121

L on the observations, i.e., Û3121
L =γ3121

L +2
L

∑L
`=1(R

3121
L (bw` )

−γ3121
L ), where R3121

L (bw` ) = E0[P 3121
L (bw` ; bw`′)|bw` ], γ3121

L = E0[R3121
L (bw` )]=E0[P 3121

L (bw` ;b
w
`′)]. I now
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want to show
√
L(U3121

L − Û3121
L ) = op(1). According to Lemma 3.1 in Powell, Stock and Stoker

(1989), it suffices to show that E0[P 3121
L (bw` ; bw`′)P

′3121
L (bw` ; bw`′)] = o(L). Namely,

E0[P 3121
L (bw` ; bw`′)P

′3121
L (bw` ; bw`′)]

=
1
4
E0[K2

h(bw` − bw`′)(a
312(bw` ) + a312(bw`′))(a

′312(bw` ) + a′312(bw`′))].

=
1
4
E0{K2

h(bw` − bw`′)[a
312(bw` )a′312(bw` ) + 2 a312(bw`′)a

′312(bw` ) + a312(bw`′)a
′312(bw`′)]}.

=
1
4
E(bw

`
,bw

`′)
{K2

h(bw` − bw`′)M(bw` , b
w
`′)},

where M(bw` , b
w
`′) = a312(bw` )a′312(bw` ) + 2 a312(bw`′)a

′312(bw` ) + a312(bw`′)a
′312(bw`′).

Since supbw
`
∈[b,b],bw

`′∈[b,b]
|M(bw` , b

w
`′)| <∞, E0[P 3121

L (bw` ; bw`′)P
′3121
L (bw` ; bw`′)] ≤

1
2 supbw

`
∈[b,b],bw

`′∈[b,b]

|M(bw` , b
w
`′)|E(bw

`
,bw

`′ )
{K2

h(bw` − bw`′)}. Using the change of variable u =
bw
`
−bw

`′
h gives

E(bw
`

,bw
`′)
{K2

h(bw` − bw`′)} =
1
h

∫ ∫
K2(u)gw(bw)gw(bw + uh)dbwdu

≤ 1
h

sup
bw∈[b,b],u∈(−∞,+∞)

|gw(bw)gw(bw + uh)|
∫ ∫

K2(u)dbwdu

=
1
h

sup
bw∈[b,b],u∈(−∞,+∞)

|gw(bw)gw(bw + uh)|(b − b)
∫
K2(u)du.

Since
∫
K2(u)du <∞ and 1√

Lh
= o(1), I have E0[P 3121

L (bw` ; bw`′)P
′3121
L (bw` ; bw`′)] = o(

√
L) = o(L).

Now I consider the main component of
√
LU3121

L , which is
√
LÛ3121

L =
√
Lγ3121

L +
√
L 2

L

∑L
`=1

(R3121
L (bw` ) − γ3121

L ). Direct computation gives

R3121
L (bw` ) = E0

[
a312(bw` ) + a312(bw`′)

2
Kh(bw` − bw`′)|bw`

]

=
a312(bw` )

2
Ebw

`′
[ Kh(bw` − bw`′)|bw` ] + Ebw

`′

[
a312(bw`′)

2
Kh(bw` − bw`′)|bw`

]

=
a312(bw` )

2

∫
Kh(bw` − bw`′)g

w(bw`′)db
w
`′ +

∫
a312(bw`′)

2
Kh(bw` − bw`′)g

w(bw`′)db
w
`′

=
a312(bw` )

2

∫
K(u)gw(bw` + hu)du+

∫
a312(bw` + hu)

2
K(u)gw(bw` + hu)du

=
a312(bw` )

2
gw(bw` )+

a312(bw` )
2

gw(bw` ) +
a312(bw` )

2

∫
K(u)(gw(bw` + hu) − gw(bw` ))du

+
∫
K(u)

(a312(bw` + hu)
2

gw(bw` + hu) − a312(bw` )
2

gw(bw` )
)
du

= R3121(bw` ) + t3121L (bw` ),
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where

R3121(bw` ) = a312(bw` )gw(bw` ),

t3121L (bw` ) =
a312(bw` )

2

∫
K(u)(gw(bw` + hu) − gw(bw` ))du

+
∫
K(u)

(a312(bw` + hu)
2

gw(bw` + hu)− a312(bw` )
2

gw(bw` )
)
du.

Since w(·) has a bounded (R+ 1)-th order direvative, I can show that t3121L (bw` ) = O(hR+1) and

E(t3121L (bw` )) = O(hR+1) using standard argument.

Let γ3121 = E0[R3121(bw` )] = E0[
Gw(bw)
gw(bw)

∂ϕ

(
bw,

Gw(bw)
gw(bw)

,θ0

)

∂x

∂ϕ

(
bw,

Gw(bw)
gw(bw)

,θ0

)

∂θ w(bw)], then I have γ3121 =

γ3111 by definition, and γ3121
L = E0[R3121

L (bw` )] = E0[R3121(bw` )+t3121L (bw` )] = γ3121+E0[t3121L (bw` )].

Thus

√
L(Û3121

L − γ3121) =
√
L
( 2
L

L∑

`=1

(R3121
L (bw` ) − γ3121

L )
)
−

√
L(γ3121 − γ3121

L )

=
√
L
(2
L

L∑

`=1

(a312(bw` )g
w(bw` )−γ3121)

)
+
√
L
(2
L

L∑

`=1

(t3121L (bw` )−E0t
3121
L (bw` ))

)
−
√
L(γ3121−γ3121

L ).

Let T 3121
L =

√
L
(

2
L

∑L
`=1(t

3121
L (bw` ) − E0t

3121
L (bw` )

)
, then

Var0(T 2121
L ) = 4E0

[
(t3121L (bw) − E0t

3121
L (bw))(t3121L (bw) − E0t

3121
L (bw))′

]

= 4E0

[
t3121L (bw)t′3121L (bw)

]
− 4E0t

3121
L (bw)E′

0t
3121
L (bw) = O(h2(R+1)) = o(1).

Thus by Chebyshev’s inequality, T 3121
L = op(1). I also have that Assumption 3(ii) implies

√
L(γ3121 − γ3121

L ) =
√
LE0[t3121L (bw)]

=
√
LE0[

a312(bw)
2

∫
K(u)(gw(bw + hu) − gw(bw))du

+
∫
K(u)

(a312(bw + hu)
2

gw(bw + hu) − a312(bw)
2

gw(bw)
)
du]

=
√
L O(hR+1) = op(1).

Aggregating the above results gives

S̃312
L = S̃3121

L + S̃3122
L =

√
L
{L(L− 1)

L2
U3121

L

}
+Op(

1√
Lh

)
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=
L(L− 1)

L2

{√
LÛ3121

L +
√
L(U3121

L − Û3121
L )

}
+Op(

1√
Lh

)

=
L(L− 1)

L2

{√
L(Û3121

L − γ3121) +
√
Lγ3121 + op(1)

}
+Op(

1√
Lh

)

=
L(L− 1)

L2

{√
L
( 2
L

L∑

`=1

(a312(bw` ) gw(bw` ) − γ3121)
)

+
√
Lγ3121 + op(1)

}
+Op(

1√
Lh

)

=
√
L
( 2
L

L∑

`=1

(a312(bw` ) gw(bw` ) − γ3121)
)

+
√
Lγ3121 + op(1). (C.33)

Since γ3121 = γ3111, I have

S3
L = S31

L + S32
L = S31

L + op(1) = S̃31
L + op(1) = S̃311

L − S̃312
L + op(1)

=
(√

L
( 2
L

L∑

`=1

(R3111(bw` ) − γ3111)
)

+
√
Lγ3111

)

−
(√

L
( 2
L

L∑

`=1

(a312(bw` ) gw(bw` ) − γ3121)
)

+
√
Lγ3121

)
+ op(1)

=
1√
L

L∑

`=1

2
(
R3111(bw` ) − a312(bw` ) gw(bw` )

)
+ op(1)

=
1√
L

L∑

`=1

(∫
a311(bw`′)1I(b

w
` −bw`′ ≤ 0)gw(bw`′)db

w
`′−a311(bw` )G

w(bw` )
)
+op(1). (C.34)

Note that Ebw

( ∫
a311(t)1I(bw − t ≤ 0)gw(t)dt− a311(bw)Gw(bw)

)
= 0 holds as γ3121 = γ3111.

Aggregating S1
L, S

2
L, S

3
L and S4

L from (C.14), (C.18), (C.28) and (C.34) gives

SL = S1
L + S2

L + S3
L + S4

L

=
1√
L

L∑

`=1

(
ṽw
` − ϕ

(
bw` ,

Gw(bw` )
gw(bw` )

, θ0

))
∂ϕ
(
bw` ,

Gw(bw
`

)

gw(bw
`

) , θ0
)

∂θ
w(bw` )

+
1√
L

L∑

`=1

( ∫
a311(bw`′)1I(b

w
` − bw`′ ≤ 0)gw(bw`′)db

w
`′ − a311(bw` )Gw(bw` )

)
+ op(1)

=
1√
L

L∑

`=1





∫ b

bw
`

∂ϕ
(
t, Gw(t)

gw(t) , θ0
)

∂x

∂ϕ
(
t, Gw(t)

gw(t) , θ0
)

∂θ
w(t)d t

+


̃vw

` −ϕ
(
bw` ,
Gw(bw` )
gw(bw` )

,θ0

)
−Gw(bw` )
gw(bw` )

∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`
),θ0
)

∂x



∂ϕ
(
bw` ,

Gw(bw
` )

gw(bw
`
),θ0
)

∂θ
w(bw` )





+op(1).
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Since Ebw

(∫
a311(t)1I(bw − t ≤ 0)gw(t)dt − a311(bw)Gw(bw)

)
= 0 and E0

{(
ṽw−ϕ

(
bw,G

w(bw)
gw(bw),θ0

))

∂ϕ

(
bw,

Gw(bw)
gw(bw)

,θ0

)

∂θ w(bw)
}

= 0, CLT gives

SL
d−→ N

(
0, B

)
. 2
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                                Figure 1: Ex ante Private Signal Density 
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                                               Figure 2: Ex post Shock Density 


