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Abstract

This paper presents analysis of contractual settings with complete but unverifiable
information and where trade consists of a sequence of verifiable productive actions,
between which renegotiation can occur. The main result identifies an equivalent, sim-
plified model that can be used to calculate the set of implementable value functions.
The result also shows that the detrimental effects of renegotiation between productive
actions can be counteracted when the parties can sufficiently communicate with the
external enforcer over time. Corollary results address the form of optimal contracts
and the effect of irreversible productive actions.
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In any contractual setting, details of the trading technology may have a significant im-
pact on the optimal design of contracts and on the prospects for cooperation and efficient
exchange. The trade of a good or service often involves a nontrivial period of time in which
a sequence of productive actions can be taken. For example, delivery of an industrial prod-
uct (such as a specialized computer system) may require, in order, (i) construction at the
seller’s plant, (ii) transportation to the buyer’s facility, and (iii) configuration of the equip-
ment; these actions may take place over weeks or months. Another example is a durable
trading opportunity, where a product (say, a software package) can be provided at any point
in a window of time and where trade can possibly be reversed (the software uninstalled).

In this paper, I examine a contracting model in which verifiable productive actions take
place over multiple periods of time. My goals are to explore the effect of renegotiation
between productive actions and to develop a simple way of analyzing these contractual
settings, so one can better understand how the technology of trade affects contracts and
behavior. The main result in this paper shows that the scope of contracting in a large class
of models with multi-period trade can be characterized by examining related simplified
models that are conventional, static mechanism-design problems. The result implies that
the constraining effect of renegotiation between productive actions can be neutralized by
designing contracts that take advantage of messages sent across periods of time. Corol-
lary results address the form of optimal contracts and the effect of irreversible productive
actions.

In relation to the literature, the starting point for the modeling exercise herein is a
standard contracting model with complete, but unverifiable information and ‘“ex ante rene-
gotiation” (Moore and Repullo 1988, Maskin 1999). The timing in this model is: two
contracting parties form a contract, they making unverifiable investments that determine
the “state,” they have an opportunity to renegotiate their contract, they make announce-
ments, and then an external enforcer compels a trade action and transfer (modelled as a
public action). The standard contracting model lends itself to mechanism-design analysis,
whereby one calculates the set of implementable state-contingent outcomes.

In terms of enriching the standard model to allow more dynamic elements, while main-
taining the structure of unverifiable actions followed by verifiable ones, there are two ob-
vious directions for study: (1) examine situations in which the unverifiable investments
can take place over time, keeping the verifiable trade action as one-shot, and (2) examine
situations in which trade involves a sequence of verifiable productive actions, keeping the
unverifiable investment as one-shot. Che and Sakovics (2004a,b) work in the first direc-
tion by examining durable investment opportunities in an infinite-horizon setting. Herein,
I work in the second direction.

Figure 1 displays the time line of the model that I analyze. Relative to the standard
contracting model with complete/unverifiable information and ex ante renegotiation, the
model here has 7" periods in which verifiable productive actions are taken; the standard
model is the special case of 7" = 1. I refer to the case of 7" > 1 as the “multiple-trading-
periods model.”



Period 0 Players establish a contract.

Unverifiable events determine the state, 6.

Period 1 Players can renegotiate their contract.

Players make announcements; a random draw occurs.

The external enforcer takes productive action p'
and compels transfer m'. Payoffs realized.

Period 2 Players can renegotiate their contract.

Players make announcements; a random draw occurs.

The external enforcer takes productive action p’
and compels transfer m’. Payoffs realized.

Period 7' Players can renegotiate their contract.
Players make announcements; a random draw occurs.

The external enforcer takes productive action p’
and compels transfer m". Payoffs realized.

Figure 1: Time line of a contractual relationship with 7" periods of productive actions.

A complication for contracting in the case of multiple trading periods is that the players
can renegotiate their contract between productive actions in successive periods of time
(that is, at the beginning of each period 2, 3, ..., T"). Renegotiation causes distortions that
generally interfere with contractual objectives. For example, suppose the parties send an
out-of-equilibrium message profile in period 1. Then implementation relies on specifying
for this message profile a sequence of productive actions p!, p2,..., pT that sufficiently
punishes the players for deviating in period 1. Such a sequence may be inefficient in the
actual state, in which case the players will want to renegotiate. Although the players are
not able to renegotiate productive action p! following their first-period messages, they will
be able to renegotiate the productive actions specified for later periods. Thus, at least for
productive actions p2, p3,..., pT, there is a sense in which renegotiation has an “interim”
(after messages, before productive actions) flavor. This suggests that settings with multiple
trading periods may have tighter constraints on implementation than would be present if
commitment to a sequence of productive actions were possible.

Another complication that arises with multiple trading periods is a technical one: cal-
culating the implementable set involves examining quite a few incentive conditions applied
at different points in time. Essentially, one must perform a mechanism-design analysis for
each period, using as continuation values a selection of state-contingent value functions



Period 0 Players establish a contract.

Unverifiable events determine the state, 6.

Period 1 Players can renegotiate their contract.

Players make announcements; a random draw occurs.

The external enforcer takes all productive
actions p', p’, ..., p' and compels transfer m.
Payoffs realized.

Figure 2: Time line of the simplified model.

that can be implemented from the start of the next period.

The main result in this paper addresses both the effect of renegotiation in settings with
multiple trading periods and the issue of how to calculate the implementable set. The anal-
ysis shows that, if the players can communicate with the external enforcer before each
productive action, then the distorting effects of renegotiation in periods 2, 3,...,7 can
be counteracted. To be precise, I prove that implementation of state-contingent outcomes
in the multiple-trading-periods model is equivalent to implementation in the simplified
mechanism-design model described in Figure 2. In the simplified model, the external en-
forcer takes the sequence of productive actions all at once and there is no opportunity
for renegotiation between productive actions. Furthermore, whereas the multiple-trading-
periods model can be difficult to analyze directly (in terms of added incentive conditions to
check), the simplified model entails a more straightforward analysis.

The key ingredient of my analysis is a lemma that applies to any single-period mechanism-
design problem with transferable utility. Consider any two states € and 6’ and any particular
trade action a. The lemma establishes the existence of a mechanism that, in equilibrium,
(1) yields an efficient outcome in every state and (ii) gives player 1 in state 6 and player 2 in
state 6’ payoffs that, in sum, are equivalent to the payoffs that would be achieved in these
states if the given (possibly inefficient) action a were imposed.

To see how this lemma helps establish a connection between the multiple-trading-
periods model and the simplified model, consider a setting with two trading periods (7" =
2) and think about the messages that the players send in period 1. Suppose that we want
the players to truthfully report the state, so that each player says “0” in state 6 and each
says “6" in state 8’. To give them the incentive to report truthfully, the players must be
sufficiently punished in the event that they send the out-of-equilibrium announcement pro-
file (6’,0). Note that this profile can occur if player 1 deviates unilaterally in state 6 (by
saying that the state is 6) or if player 2 deviates unilaterally in state 6’.

In the simplified model, one could specify that any particular pair of productive actions
(p!, p?) be taken following the message profile (6, 0). This action sequence serves to
punish player 1 in state 6 and punish player 2 in state 6’, so that the players have the
incentive to report truthfully. Note that ! and p? may be inefficient actions in state 6 or



in state 0’; in fact, this may be desirable as punishments go. Because renegotiation occurs
only before messages are sent, the inefficiency of the productive actions is of no concern in
the sense that the players can commit to them for any out-of-equilibrium message profile.

It is a different story in the original two-trading-periods model, where a contract spec-
ifying p? for period 1 message profile (9, §) would be renegotiated by the players at the
start of period 2 (if p? is inefficient), effectively lightening the punishment. However, the
key lemma establishes that, for the two given states 6 and 6’, the punishment level associ-
ated with p? can actually be achieved by a renegotiation-proof mechanism for the second
period. As a result, value functions that are implementable in the simplified model can also
be implemented in the multiple-trading-periods model.!

In the next section, I discuss aspects of an example to generate the intuition behind
the main result and to illustrate the key lemma. The example also gives some intuition
for other results in this paper. Section 2 presents the general model in detail and contains
the main result. Section 3 contains the supporting analysis, including how the contracting
model can be formulated as a recursive mechanism-design problem. In Section 4, I discuss
contractual form and the special case in which there is a durable trading opportunity. There
I show how optimal contracts can be structured to utilize messages in a minimal way. I also
prove that, in stationary environments—in which there are no transitory costs of reversing a
productive action—it is optimal to use stationary contracts that treat periods independently.
Further, reversal costs have a positive effect on implementability. Concluding remarks are
in Section 5, and the Appendix contains proofs of the lemmas.

By analyzing how trade involves specific sequences of productive actions, this paper
furthers my general research agenda, part of which is to (i) discover how the technolog-
ical details of contractual settings influence outcomes, (ii) demonstrate the importance of
carefully modeling these details, and (ii1) provide a flexible framework that facilitates the
analysis of various applications. By “technological details,” I mean the nature of productive
actions, the actions available to external enforcers, the manner in which agents communi-
cate and negotiate with one another, and the exact timing of these various elements in a
given contractual relationship.? The results herein show that it is instructive to model the
sequence of productive actions that compose trade, but that some aspects of the technol-
ogy can be safely abstracted from—in particular, renegotiation between productive actions
when players can send messages.

' The other direction of the equivalence result is more easily established.

2In other papers, I focus on the nature of productive actions (Watson 2005a), the mechanics of evidence
production (Bull and Watson 2004a,b), and contract writing and renegotiation costs (Schwartz and Watson
2004, Brennan and Watson 2002). These papers and the present one show that the technological details can
matter significantly.



1 Example

This section contains partial analysis of an example to illustrate the paper’s main result and
to give intuition on the other results.

A Contractual Relationship with Two Trading Periods

Consider a setting in which a buyer (player 1), a seller (player 2), and an external
enforcer (who is not a strategic player) interact over three periods of time, numbered 0, 1,
and 2. Here is a description of the production technology and external enforcement in the
contractual relationship.

At the beginning of period 0, the contracting parties (players 1 and 2) form a contract
that includes a specification of how the external enforcer should take public actions (de-
scribed below) as a function of announcements that the players will make in subsequent
periods. At the end of period 0, the seller chooses a level of investment, which defines the
state of the relationship. Investment is either “good” (state g) or “bad” (state b). The play-
ers commonly observe the state, but the state is not verifiable to the external enforcer. The
good investment level entails an immediate cost 17 € [0, 4] borne by the seller; investing at
the bad level costs the seller nothing.

At the beginning of period 1, the players have an opportunity to renegotiate their con-
tract. Then they simultaneously make public announcements. After announcements, an
external enforcer compels the parties to take a productive action and compels a monetary
transfer between the parties. The productive action is either “trade” or “not.” Formally,
the productive action and monetary transfer are modelled as a public action taken by the
external enforcer.® At the end of period 1, the players receive payoffs. The following ta-
ble describes the players’ first-period payoffs as a function of the state and the productive
action, holding aside the seller’s investment cost and the externally enforced transfer.

Trade Not
Stateg 2,0 1,0
Stateb 0,0 0,0

The buyer’s payoff is listed first. Assume that monetary transfers affect the players’ payoffs
in an additive fashion.

In period 2, the players interact as they did in period 1. They have an opportunity
to renegotiate their contract and then they make announcements. The external enforcer
observes the announcements and takes the period-2 public action, which, as in period 1, is
a transfer and whether to trade. Payoffs in period 2 are just as described for period 1—that
is, they are given by the table shown in the previous paragraph—except that the seller bears

3The interpretation is that, in reality, the players themselves take the productive action. However, the
productive action is verifiable and so the external enforcer can force any particular public action to be chosen.
In the setting studied herein, where there is no renegotiation between the time messages are sent to the
external enforcer and when the trade action occurs, there is no distortion in modeling the productive action
as public. See Watson (2005a) on this point.



an additional cost « if the productive action in period 1 was “trade” and the productive
action in period 2 is “not.”

To interpret the model, think of the buyer’s value of trade as a flow over two periods.
For example, the transaction involves software that can be installed on the buyer’s computer
and is valuable to the buyer in both periods 1 and 2. If “trade” occurs in the first period,
then the buyer enjoys the benefit of the software in this period; then, “trade” again in the
second period means the software remains installed so that the buyer continues to benefit
from it in period 2. However, if “trade” were selected in the first period and “not” is chosen
in the second period, then the latter means that the software is uninstalled and so the buyer
misses its second-period benefit and the seller pays « to perform the uninstallation. Another
possibility is that “not” is chosen in period 1 and then “trade” is chosen in period 2; in this
case, the buyer obtains the value of the software only in the second period. The buyer’s
gain of 1 when “not” is selected in a given period is interpreted as a direct benefit of the
seller’s investment that is not contingent on trade.

The parameter k measures the degree to which the decision “trade” in the first period is
reversible in the second period. The case of k = 0 has frictionless reversibility. Note that,
regardless of k, the efficient outcome of the contractual relationship is good investment
followed by trade in both periods, which generates a joint value of 4 —n that is nonnegative
by assumption.

A contract may be fairly complicated in this two-trading-periods model. Specifically,
it specifies two functions, one for each period. For period 1, the contract specifies the first-
period public action as a function of the announcements made in period 1. For period 2,
the contract specifies the second-period public action as a function of announcements made
in both periods. The contract, along with equilibrium behavior in the message phase in
every state and in both periods, implies the implementation of a value function v that gives
the players’ payoff vector from the beginning of period 1 as a function of the state. To
understand what can be achieved in the contractual relationship, we calculate the set of
implementable value functions. Obtaining the efficient outcome relies on giving the seller
the incentive to invest at level g. That is, from period 1, the difference between his payoff
in states g and b must be at least 7, meaning that the value function satisfies

v2(g) — v2(b) = 1. (D

A Simplified Model

We convert the two-trading-periods model into a one-trading-period “simplified model”
by letting the external enforcer take both of the productive actions (formerly taken in peri-
ods 1 and 2) simultaneously at the end of the first period. To be more precise, the simplified
model runs for two periods, 0 and 1. Period O interaction works as in the original model: the
players form a contract and then the seller chooses either good or bad investment, paying 1
if he makes the good investment. The set of states is {g, b} as before. In period 1, the play-
ers have an opportunity to renegotiate their contract and then they make announcements.
At the end of period 1, the external enforcer takes a public action, which is to compel a
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transfer and a vector of two productive actions (each either “trade” or “not”). Payoffs are
determined as in the original model. For example, in state g if the public action is no trans-
fer and the productive-action vector (trade, not), then the buyer obtains 3—that is, 2 from
the first productive action and 1 from the second—and the seller gets —«. The seller’s cost
of good investment is not included here.

The simplified model is basically the original model without the renegotiation and mes-
sage phases that occur between the public action in period 1 and the public action in pe-
riod 2. A contract in the simplified model specifies the vector of public actions as a function
of the announcement profile in the single trading period. The contract, along with equilib-
rium behavior in the message phase in every state, implies the implementation of a value
function v described earlier. Obtaining the efficient outcome relies on implementing a value
function that satisfies Condition 1, the same as in the original two-trading-periods model.

Notes on the Relation of the Two Models

At first blush, it seems that one should be able to implement a wider range of value func-
tions in the simplified model than can be done in the original two-trading-periods model
because the simplified model involves fewer points where a renegotiation opportunity im-
poses a constraint. This suggests that the significant part of an equivalence proof entails
showing that every value function that can be implemented in the simplified model can also
be implemented in the original model. In this subsection, I partially analyze the original
and simplified models to illustrate the connection for the example. I start by sketching
some of the conditions for implementation in the simplified model.

The simplified model is essentially a static complete-information mechanism-design
problem and, as such, is quite easy to analyze. The mechanism-design problem is defined
by the set of states {g, b}, the set of feasible public actions (transfers, whether to trade at
the first opportunity, and whether to trade at the second opportunity), and the payoffs as a
function of the state and public action. The players’ contract is a mechanism, specifying
message spaces for the players and a function relating the public action to message profiles.
The mechanism, along with Nash equilibrium behavior in the message phase in each state,
implies a value function.*

Recall that the external enforcer does not observe the state directly, so the transfer and
productive actions are a function of only the players’ messages. To determine the value
functions that can be implemented in the simplified model, we can perform a standard
mechanism-design analysis. The revelation principle applies, so we can focus on direct-
reporting mechanisms (where each player’s message space is {g,b}) and truthful reports
in equilibrium. With this restriction, a mechanism is given by a table that specifies public
actions for each of the four message profiles.> Further, we look for mechanisms for which
the message profile (g, g) is a Nash equilibrium in state g and the message profile (b, b) is
a Nash equilibrium in state b. The players can renegotiate their contract at the beginning

4This is “weak Nash implementation,” because we look for Nash equilibria in the message phase and will
not require uniqueness.
31t will not be necessary to consider randomization over public actions.



of period 1, so this is a setting of “ex ante renegotiation.” As discussed herein and in the
related literature, the effect of ex ante renegotiation is represented by constraining attention
to mechanisms that yield efficient outcomes in equilibrium in both states. This means
that we constrain attention to mechanisms that specify the productive-action vector (trade,
trade) when the message profile is (g, g).

Here is a candidate mechanism:

BN 8 b
(trade, trade) and (not, not) and trans-
transfer k£ from Bto S fer k"' from B to S
Table *
b (trade, not) and trans- (not, not) and trans-
fer k' fromBto S fer k" from B to S

which implies the following static message games for the two states.

B S g b B g b
g _ k, k _ km’ km g 4 _ k, k 2 _ km’ km
b _ k'j k!_ K _ k”, ku b 3 _ k'j k!_ K 2 _ k”, ku

Message game in state b Message game in state g

Suppose this mechanism implements value function v. Then we have v(g) = (4 — k, k)
and v(b) = (—k”, k"”). Regarding incentives to truthfully report the state, note that the off-
diagonal cells of the mechanism must serve to punish the players. For instance, the public
action specified for message profile (b, g) must be sufficient to simultaneously (i) dissuade
the buyer from declaring the state to be b when the state is actually g and (i1) discourage
the seller from declaring “g” in state b. Thus, we need vy(g) > 3 — k" and v,(b) > k' — k.
Summing these inequalities and substituting for v; (g) using the fact that v (g) +v2(g) = 4,
we obtain

v2(g) —v2(b) = 1 +«. 2

Thus, by specifying the productive-action vector (trade, not) for the message profile (b, g),
we obtain the bound of Inequality 2.°

Let us turn our attention back to the original two-trading-periods model and think about
whether the bound of Inequality 2 can be attained. If not, then more value functions can
be implemented in the simplified model than can be implemented in the original model,
and then the two models would not yield equivalent characterizations of implementability.

®The productive-action vector (trade, not) provides the best punishment—that is, the lowest possible sum
of player 1’s payoff in state g and player 2’s payoff in state b—when k exceeds one. Otherwise, the vector
(not, not) yields the lowest punishment value of 2. Note that if x < 3 and n > max{2, 1 + «} then Inequality 1
does not hold for any implementable value function. In this case, it is efficient for the seller to make the good
investment but there is no contract that gives him the incentive to do so.



First consider a simple contract like that discussed above, where the public action is pre-
scribed by Table x. Specifically, suppose the players use a contract in which the external
enforcer notes the announcements make in period 1 but ignores any announcements made
in period 2. The external enforcer takes the sequence of productive actions prescribed in
the table (now taken over periods 1 and 2) and compels the prescribed transfer in both
periods 1 and 2.

Observe what would happen with this contract if the message profile in period 1 is
(b, g). Then productive action “trade” is taken at the end of the first period and the players
face the prospect that productive action “not” will be taken in the second period. Note
that, in this contingency, “not” is inefficient in both states.” Thus, at the beginning of
period 2, the players will take the opportunity to renegotiate their contract and switch to
the productive action “trade” for the second period. For simplicity, suppose that the buyer
(player 1) has all of the bargaining power and gets the full surplus of renegotiation. The
surplus is the difference in the joint value of “trade” and “not” in the second period, which
is 1 4 « in state g and « in state b. Then, from the message phase of period 1, the buyer’s
payoff of reporting “b” when the state is actually g is

2—Kk]+[1—k)+14+&] =4+« — 2k

The first bracketed term is the buyer’s period 1 payoff from the prescribed public action.
The second bracketed term has the buyer’s value of “not” with transfer k', plus the renego-
tiation surplus. The seller’s payoff of reporting “g” when the state is actually b is 2k’ — .

Suppose this contract implements value function v. As before, the renegotiation op-
portunities imply efficiency in each state, so v{(g) + v2(g) = 4. Without fully analyzing
behavior, we see at least that the equilibrium conditions for messages in the first period
include vy (g) > 4 4+ k — 2k’ and v, (b) > 2k’ — k. Summing these and using the efficiency

condition for state g, we obtain
v2(g) — v2(b) < 0.

Comparing this with Inequality 2, we conclude that a simple translation of the contract
studied for the one-trading-period case fares worse in the two-period setting.

Utilizing second-period messages allows for a greater scope of implementation in the
original two-trading-periods model. To see this, again focus on the message profile (b, g)
sent in the first period. Let us ask whether we can find a contractual specification for this
message profile that can match the punishment value that was achieved in the simplified
model with productive-action sequence (trade, not). The key issue is whether a contract
can be designed so that, even with the efficient productive action in each state (required by
renegotiation at the beginning of period 2), the relevant payoffs can be held down to the
levels that would be achieved by committing to (trade, not). As before, the relevant payoffs
are player 1’s in state g and player 2’s in state b, because these are the critical ones for
testing whether the players want to unilaterally deviate to message profile (b, g).

"It is inefficient in state g even if k = 0, because the buyer would not gain the full value of trade; it is
inefficient in state b if « > 0.
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Begin by analyzing the value functions that can be implemented from the start of pe-
riod 2. Suppose that productive action “trade” was taken in period 1. Then, the payoffs in
period 2, in terms of the state and period-2 productive action (holding aside the transfer)
are given by:

Trade  Not
Stateg 2,0 1,—«
Stateb 0,0 0,—«

Let v2 be a value function from the start of period 2 that can be implemented by a contract,
conditional on “trade” chosen in the first period. Assume efficiency in each state, to cap-
ture renegotiation at the start of period 2. Analyzing the message game in period 2 using
the same techniques described earlier, we find that the best way to punish the players for
sending the message profile (b, g)—that is, punishing the buyer in state g and the seller
in state b—is to specify productive action “not” for this message profile. Summing the
buyer’s equilibrium condition for the message phase in state g with the seller’s condition in
state b, we obtain

vi(g) +v3(b) = 1 —«. 3)

Moving to period 1, consider a contract that has the following features. If the message
profile in period 1 is (g, g) then the second-period announcements are ignored, “trade” is
selected in both periods, and some transfer is made. If the message profile in period 1
is (b,b), the same outcome is specified, except with a possibly different transfer. If the
message profile is (b, g), then “trade” is selected in the first period and, in the second-
period continuation, the contractual terms are arranged to support the continuation value
v? that achieves the bound of Inequality 3. Suppose value function v is implemented. In
the first-period message phase, the buyer’s equilibrium condition in state g is thus

vi(g) > 2+ vf(g),

whereas the seller’s equilibrium condition in state b is
v2(b) > 0 + v3(b).
Summing these, using the bound of Inequality 3 and that v;(g) + v2(g) = 4, we get
v2(g) —va(b) < 1 +«.

Note that this is the same condition derived by using productive-action sequence (trade, not)
in the simplified model (Inequality 2). The idea is that, for the out-of-equilibrium message
profile (b, g) in period 1, we do not need to commit to “not” in period 2. Rather, we just
need the sum of period 2 continuation values v?(g) + vZ(b) to be the same as if “not” were
chosen. These continuation values can be implemented in the example, while still having
efficient productive actions in equilibrium so that, for example, vf(g) + v% (g) =2.

In addition to providing some intuition behind the relation between the multiple-trading-
periods model and the simplified model, the example furnishes some other generalizable
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conclusions. Observe that as x increases, so does the extent to which the seller can be
motivated to make the good investment in period 0. If ¥ exceeds 1, then implementability
strictly improves over the case of k = 0. Furthermore, if x > 3 then efficient investment
can be induced, regardless of the cost n. Thus, the example suggests that irreversibility
of productive actions serves to enhance implementability and improve the prospects for
efficient investment and trade. Also, it is not difficult to see that, for the case of k = 0, a
simple “stationary” contract suffices for implementation; this type of contract treats the two
periods of production separately (so the second-period productive action does not depend
on the first-period messages) and symmetrically.

2 The Contracting Model and Main Result

The general model features a long-term contractual relationship with complete but unveri-
fiable information and external enforcement. Interaction occurs as shown in Figure 1. Here
is a description of the basic technology of the relationship. The players interact over 7" + 1
periods of time, starting in period O and ending in period 7'. In period 0, individual actions
of the players, and possibly random events, determine the state 6 € ®, which is commonly
observed by the players but not verifiable to the external enforcer. Most of the analysis
does not concern how the state is determined, rather concentrating on what state-contingent
continuation values can be implemented from period 1. In each period ¢t € {1,2,...,T},
which is called a trading period, the external enforcer takes a public action and the players
receive payoffs. The public action includes a specification of monetary transfers induced
by the external enforcer.

The public action in period ¢ is written as (p’, m’), where m’ denotes the monetary
transfer between the players (the “transfer”) and p’ is the non-monetary part (call it the
“productive action”). The transfer is a vector m’ = (m’,m}), where m} denotes the
amount of money received by player i. Assume that transfers are balanced,® in that

m' € R§ = {(m, m)) | m +m)y = 0}.

The productive action is an element of a given set P’, assumed compact. Let A’ =
(p', p?...., p") describe the list of public actions taken from period 1 to period 7. Let

8The assumption of balanced transfers plays an important role in models like the one studied here. It
is appropriate as a representation of one or both of the following realistic features of real contractual set-
tings. First, holding aside litigation costs, courts do not generally perform “money burning.” Second, court
enforcement typically occurs at the end of productive relations (period 7" here), at which point all productive
actions have been taken and the court merely compels monetary transfers. If a contract specified that money
be burned, or given to a third party, the contracting parties would renegotiate the contract—and retain the
money—just before going to court at the end of their relationship. Remember that the modeling choice of
treating verifiable productive actions as public is for mathematical convenience and is innocuous so long as
renegotiation is not possible between messages and productive actions in each period. In reality, productive
actions are taken by the contracting parties themselves, but they are “forced” in that the players anticipate
punishing transfers if they fail to perform.
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A = (p', p?,..., pT) describe the sequence of productive actions for all T periods. De-
fine
A ={(p", p*: ... p)|p-e P fort =1,2,...,t}

and write A = AT,

Payoffs in a given period are a function of the state and of the history of public actions
to this point in time. Assume that payoffs are linear in money and that the payoff in a given
period does not depend on the monetary transfers made in earlier periods. Thus, for any
t > 1, the period-¢ payoff vector is given by a function u’: A’ x® — R2, so thatif A’ is the
history of productive actions through period # and m’ is the monetary transfer in period ¢,
then the payoff vector in period ¢ is u’(A’, 6) + m’. Payoffs for the entire game are the sum
of payoffs in the individual periods. Assume that the functions u’ are continuous in A’.

Players can communicate with the external enforcer in each period by sending public
messages. The external enforcer also manages a public randomization device as directed
by the contracting parties. Players contract on how they will communicate with the external
enforcer and on how the public actions will be selected as a function of messages they send
and the realization of the public randomization device.

The contract specifies, for each period # > 1, message spaces A’ and A4} for the players,
as well as the space Ay and distribution o) € A A} for the public random variable. Call
a' = (al, a}, d5) the “message profile” or “announcement profile.” Let A* = AL x A} x A},
and let H' = A' x A2 x --- x A" be the set of 7-period histories of message profiles. Also,
write H® = {h™"}, where #™! is the null history at the start of the first period. Assume
that there is a given set A such that, for every 7, A" is restricted to be a subset of A.

The contract also specifies functions p’ : H® — P' and u': H' — R} that prescribe,
respecively, the productive action and transfer in period 7 as a function of history of message
profiles. Summarizing, the externally enforced component of the players’ contract is

¢ = (Atvaf)vptvﬂt)thl-

The externally enforced component is one part of the players’ contract (the other part be-
ing the self-enforced part described below), but for brevity I often describe ¢ as simply a
“contract.” Let C be the space of such contracts. Note that H' is defined relative to a given
contract ¢; this dependence can be highlighted by writing H’(c).

In each period, the players have an opportunity to renegotiate their contract. Note that,
at a given period ¢ > 1, the messages, random draws, and public actions in preceding
periods have already occurred; further, these are recorded in the history A’~! and in the
externally enforced contract in place. Thus, there is no loss in assuming that the players
can renegotiate over only the message spaces and specification of public actions for periods
t,t +1,...,T. Let C'(c) denote the set of externally enforced contracts that are feasible
in period-¢ renegotiation when c is the outstanding contract.’

LG8, pt, p%)T_ |, wehave ¢ € C'(c) if and only if AT = AT, ag = ag, pt = p°,
at_

1.

9That is, for any ¢ = (A*
and 0 = u*fort =1,2,...
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To describe payoffs in each period in terms of the contract and announcements, a
bit more notation is helpful. For a given contract ¢, a 7-period message history h’ =
(a',a?,...,a") € H'(c) implies the sequence of public actions from period 1 to period ¢.
Let ¢’ (c, h") denote this sequence of public actions. That is,

'(c,h') = (p'(a'), p*(a',a?),....p (@', d?%, ... ad")).

The payoff vector at the end of period 7, in terms of the contract and message history, can
then be written
Ul(c,h,0) = u'(¢'(c,h),0) + u' (h").

On the right side of this expression, ¢’ is defined by the p* functions, which, along with
u!, are as specified by the contract c.

Writing the payoffs as a function of the contract and message history, here is a more
detailed version of the time line shown in Figure 1:

In period 0:

— Contract formation, with externally enforced component c.
— Realization of the state, § € ©.

In each period ¢ € {1,2,...,T}:

— Renegotiation to contract ¢’. If no renegotiation occurs, then ¢’ is the
contract outstanding from the previous period.

— Players send messages a| € A’ and a, € A’; public random draw
al € Al is realized.

— Public action (p’, m") is taken by the external enforcer, as directed by

the contract ¢/, and the players received payoffs u’(A!,0) + m' =
U'(c’, h', 0) for the period.

Equilibrium and Implementation

As described above, the externally enforced component of the players’ contract is given
by c. There is also a self-enforced component, which refers to how the players coordinate
their behavior in the message phase of each period. Rational behavior is analyzed using
the notion of contractual equilibrium, which combines (1) a bargaining solution to describe
how the players renegotiate at the beginning of each period with (ii) a Nash equilibrium
(that is, individual best response behavior) in the message phase of each period, given pay-
offs in the current period and continuation values from the next period.'® Regarding item
(i), consider the standard bargaining solution in which the players negotiate to the Pareto

10This is a natural equilibrium concept when the renegotiation phase is modelled cooperatively. See Watson
(2005b) for details on the general notion of contractual equilibrium, including a full discussion of the relation
between cooperative and noncooperative models of negotiation.
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frontier and divide the surplus of negotiation by the bargaining weights 7 = (7, ;) that
are fixed over time.!! The surplus is defined relative to a disagreement point, which is a
continuation value that the players expect will occur if they fail to reach an agreement.
Assume that this disagreement point is an arbitrary selection from the supportable contin-
uation values under the existing contract.'?

Contractual equilibrium is represented by sets of continuation values for the various
contingencies that can arise during the game. Let

B'={(c,h" Y |ceC, "' e H (c)}

be the set of consistent pairs of contracts and (¢ — 1)-period message histories. For each pe-
riod ¢ > 1, the continuation values are given by a correspondence V’: E’ x ® == R2. That
is, V(c,h'"!, 0) is the set of continuation values that are consistent with the behavioral
theory from the start of period ¢, with contract ¢ outstanding, the history 4’~! of messages
in previous periods, and in state 6.

Contractual equilibrium is derived inductively, by calculating supportable continuation
values from period 7 as a function of the posited sets of continuation values from period
¢+ 1. To write the conditions, take as given the function V'*!. Suppose that, in state 6 at the
end of period ¢, externally enforced contract ¢ is in force and the history of messages is /.
Then the continuation value from period ¢ + 1 is some vector v't!(h?,0) € VI+i(c, h', 0).
The function v'*! : H’(c) x ® — R? describes the continuation value that the players
anticipate selecting, as a function of the state and history.

In the message phase of period 7, then, player i expects the (period plus continuation)
payoff

E [U!(c, (ht_l,ao,ai,aj)» 0) + U;+1((ht_1,ao,ai,aj), 0) | o]

when he chooses message a; and the other player sends message a;. Here, the expectation
is taken with respect to the random draw a, which has distribution af,. A mixed message
profile (o}, ay) € A A" x A A% is a Nash equilibrium of the period-7 message phase in state
0 if

E [Uf(c,(h" " a0, a;.a;),0) + v" (W', a0, ai,a;),0) | o, o o]
Z E [Uit(cv (ht_lva()va;?aj)?@) + U;+1((ht_1,a(),a;-,aj),0) | 056,05;] (4)
forevery a; € Abandi = 1,2.

Vi

In terms of play from period ¢, the self-enforced component of the players’ contract is
the selection of continuation values for the start of the next period and the selection of a
Nash-equilibrium message profile for the current period.

"'"The assumption of fixed 7 is not important to the analysis herein; in fact, the characterization results are
unchanged even if 7 is history-dependant.

12The existing contract may support multiple continuation values, in particular if it gives rise to multiple
Nash equilibria in the current period’s message phase. In this sense, the concept of implementation studied
here does not insist on uniqueness. See the Conclusion for more discussion of this issue.
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Write Y'(c, h'"!, 0) as the set of supportable continuation values in state 6 from the
start of period 7, with the externally enforced contract ¢ and the history of messages 4'~!.
That is,

Y(c,h"",0) = {y € R* | there exist v/*!: H'(c) x ® — R%, a} € AA!,
and a;‘ € AA’2, such that Condition 4 holds and 5)
vItL(h!, 0) € VIti(c,h',0) forall i' € H'(c) and 6 € O}.

Suppose that the state is 6, the history of messages through period ¢ — 1 is 4’~!, and
that externally enforced contract ¢ in force at the end of period ¢ — 1. Consider contract
renegotiation at the start of period 7. If the players fail to renegotiate, they will expect some
continuation value y from the set Y?(c,h’™!, ), which is their disagreement point for
the renegotiation phase.'> Because the players can renegotiate to any externally enforced
contract ¢/, the set of continuation values over which the players are negotiating is

U Y@.n o).

¢’eCt (h!=1)

The players will select a continuation value that maximizes their joint value from period 7,
which is

T
teyt—1 — T\ T ()T
y' (A 0) _glea;;[ula ,0) + u3 (17, 0)]

subject to A'~! = ¢'~!(c, h'~!). In the maximand above, foreach t € {r,t +1,..., T}, A®
is defined as the first T elements of A. Regarding the case of ¢ = 1, recall that there is only
the null 0-length history, so y! is a function of only 6; in this case, there are no restrictions
on the choice of A.

The reason ' identifies the maximum joint value from period 7 is that (i) players have
common knowledge of the state and (ii) they can always write a new contract that prescribes
any desired sequence of public actions from period ¢. Thus, they are selecting A constrained
only by the sunk public actions from periods 1 through 7 — 1 (hence the condition that
M1 = @' 1(c, h'~1)). This specification yields the maximum joint value from period z.
Furthermore, it would not be renegotiated in future periods because there is no more surplus
to be achieved.

The theory of negotiation implies the following relation between the sets Y and the
sets of renegotiated continuation values V.

Viie,h'',0) = {y € R?| there exists y € Y'(c, h'~", 6) such that
y=y+aly @ e h), 0 -y -y 1} (6)

3Note that this is a selection from possibly multiple continuation values that can be supported.
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Definition 1 A collection of value correspondences (V' : 8" x ® = Rz)tT:”Ll1 represents

contractual equilibrium in the game from period 1 if (i) for every 6 € ©® and each t €
{1,2,..., T}, Expression 6 holds and V' is nonempty valued; and (ii) VT (¢, hT,0) =
{(0,0)} for every 0, every ¢ € C, and every hT € HT (¢). If such a collection of value
correspondences exists then I say that contractual equilibrium exists.

Theorem 1: If contractual equilibrium exists then the value correspondences are uniquely
defined. If A is finite then contractual equilibrium exists.

This result is a special case of Theorem 2 in Watson (2005b). Hereinafter, I assume that
contractual equilibrium exists.

I use term value function (or continuation value function) for any function v: ® — R?
that gives the continuation payoff from the start of a given period as a function of the
state. The key value functions to be considered are those that relate to period 1 and arise in
contractual equilibrium.

Definition 2 An externally enforced contract component c is said to implement value
function v: ® — R? ifv(0) € V(c, h™", ) for every 0 € ©. If there is a contract that
implements a given value function v then v is said to be implementable.

It will also be appropriate to speak of implementing a value function from a period other
than period 1, as the analysis in the next section requires. In this case, I will say “implement
from period ¢.”

Characterization Result

Consider any contractual relationship, which is defined by 7', ®, and P’ and u’ for
t €{l1,2,...,T};callit the origingl modeAl. Then df:ﬁne the related simplified model as the
contractual relationship givenby 7 = 1,0 = @, P! = P! x P? x--- PT Jand

T
a'(h.0) =) ut(A'.0),
=1
where A = (p!, Z ., T) is as previously defined, and A® is the first T elements of
p,p p p y

A. Note that the simplified model has a single trading period, where all of the productive
actions from the original model are consolidated. The payoffs are just as in the original
model as a function of the sequence of productive actions, except they accrue in the new
single trading period. There is a single transfer in the trading period.

Theorem 2: Consider any contractual relationship with multiple trading periods. A value
function v is implementable in this original model if and only if it is implementable in the
simplified model.

Thus, however complicated is the original model, it can be analyzed by examining a par-
ticularly simple, standard mechanism-design problem.
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3 Supporting Analysis

This section contains details on how the contracting problem can be written as a recursive
mechanism-design problem, a formulation used to prove the main result.

Mechanism-Design Preliminaries

In this subsection, I review and add a bit to the tools of static mechanism-design theory,
which will be helpful in analyzing the dynamic contractual settings on which this paper is
focused.'* Note that a complete-information mechanism-design problem can be expressed
in terms of the state space ® and a set of outcome functions W, where each element of W
is a function w: ® — R? that gives a payoff vector contingent on the state. An outcome w
captures the payoff consequences of whatever is physically specified for the continuation
following messages. For example, consider the one-period case of the model developed in
Section 2, where the public action is (p', m') and the payoffs are given by u' (p!, 0) +m'.
Then a given public action (p',7") is represented by the value function w, where

w(@) =u'(p',0) +m'

for every 6 € ®. Thinking of outcomes in terms of state-contingent payoffs is more general
(in a useful way) than is thinking in terms of physical outcomes such as public actions.

A mechanism specifies message spaces 4; and A4, for the players, a space Ay with
probability distribution &g, and a function f: Ay x Ay X A, — W that gives the outcome
as a function of the players’ announcements. The revelation principle applies, so one can
focus on direct-reporting mechanisms (where 4; = A, = ©) and truthful reports in
equilibrium. With this restriction, a mechanism is given by Ao, ag, and f: 4gx O x © —
W . For such a mechanism, the strategies of reporting truthfully form a Nash equilibrium
in each state 0 if

vi(0) = E[f(a0,0,0)i(0) | o] = E[f (0. 0;,0)i(0) | ao]
forall 0/ e ®andi = 1,2 (7

A value function v : ® — R? is implementable if there exists a mechanism (Ag, o, 1)
such that Condition 7 holds for every 6 € ©®.

To characterize the set of implementable value functions, we simply write the Nash
equilibrium conditions for each state. In states 6 and 6’, the players will send message
profiles (6, 0) and (6, 6’), respectively, in equilibrium. It is essential that the outcome
specified for message profile (6, 6) be sufficient to simultaneously (i) dissuade player 1
from declaring the state to be 8" when the state is actually 6 and (ii) discourage player 2
from declaring “6” in state 6’. Thus, letting w and w’ denote the outcomes specified for
message profiles (6, ) and (6, 6”), respectively, implementation relies on the existence of
an outcome w satisfying

wi(0) > wi(A) and w5(0") = wa(6). (8)

14See Watson (2005a) for more details on the material in this subsection.
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With the following property, Inequalities 8 hold if and only if w(0) + w5(0") > w.(0) +
W, (0).

Definition 3: W is called closed under constant transfers if /lw € W and m € R% ]
impliesw +m e W.

The effect of ex ante renegotiation (that is, renegotiation prior to the message phase)
is represented by constraining attention to mechanisms that yield efficient outcomes in
equilibrium in every state.!> If W is closed under constant transfers, efficiency simply
means maximizing the players’ joint value.

Definition 4: W is said to possess state-contingent maximum joint values if y(6) =
max w1(0) + w,(0) exists for each 0 € B.
we

One can easily verify that, if W possesses state-contingent maximum joint values and is
closed under constant transfers, then randomization (a non-trivial specification of «) is not
needed to implement value functions with ex ante renegotiation.

Let V denote the set of implementable value functions with ex ante renegotiation. To
summarize the above analysis, if W is closed under constant transfers and W possesses
state-contingent maximum joint values, then V is characterized as follows.

V = {v:0® = R?| v1(0) + v2(0) = y(9) forevery 6 € O,

and, for every 0, 0" € ©, there exists w € W 9)
such that v{(0) + v2(6') > W1(6) + W2(0')}.
I refer to wq(0) + W, (0’) as the “punishment value” for states 6 and 6’. The set V is closed
under constant transfers.

The following result is a key component of the main result in this paper and also may
be of independent interest.

Lemma 1: Consider a two-player mechanism-design problem described by a set of states
® and a set of outcomes W, such that W possesses state-contingent maximum joint values
and is closed under constant transfers. For any given two states 0,0’ € © and for any
given w € W, there is an implementable value function v: ® — R? such that

(i) v1(0) +v2(0") = w, () + w,(0'), and
(ii) v1(0”) + v2(0”) = y(0") for every 6" € ©.

5For example, consider any given mechanism f for which truthful reporting is a Nash equilibrium in
every state and, ignoring randomization for simplicity, define mechanism f” as follows. For every state
0, define f’(0, 0) to be the outcome that the players would renegotiate to select, given the disagreement
outcome f(6, 8). For every message profile (601, 6,), where 61 # 6,, let f'(01,62) = f(01,6,). It is not
difficult to verify that, with mechanism f”, truthful reporting is a Nash equilibrium in every state; further, it
yields the same state-contingent outcome as was achieved with f renegotiated ex ante.

19



The proofs of this and the other lemmas are in the appendix.

Recursive Mechanism-Design Representation

To analyze the contracting model of Section 2, it will be useful to think in terms of
continuation value functions from the start of each period; recall that a value function gives
the continuation value vector in a given period as a function of the state. I will represent
sets of continuation-value functions at a particular period in terms of the productive actions
taken earlier, rather than in terms of the outstanding contract ¢. Let V/(A’~!) be the set
of value functions that can be implemented from period ¢ contingent on productive actions
A~ taken earlier. This set is defined across all contracts that are consistent with the history
AL of productive actions. To formalize, for each ¢ and every A’, let

L'(A) = {(c, h") | A" = ¢"(c, h")}.
Then

VIA'™Y) = {v: ® — R? | there exist ¢ € C and A", such that
(c,h"~Y)y € L' Y (A'"1) and, for every 6 € O, v(0) € V'(c,h'!,0)}

Observe that individual incentives in a given period depend only on the past productive
actions and on the contractual terms for this and future periods. Also, the contractual terms
A" af, p*, u! for a specific period ¢ are not constrained by the terms specified for other
periods. This implies that the set of implementable value functions from period ¢ depends
not on the contractual terms that were in force in previous periods, except as they affected
the productive actions taken in previous periods. To be precise, for any A’~! and any
(5, jl\t—l) c Lt—l()\t—l)’

{v: ® — R? | there exists ¢ € C*(¢) such that,
for every 0 € ©, v(0) € Vi(c,h'"1,0)} = VI

Note that (¢, 2"™1) € L™™1 (A1) and ¢ € C(¢) imply (¢, h'~1) € LI~ (A7),

Given these facts, we can characterize the sets V' (A1) recursively in terms of some
standard, static mechanism-design problems. First, we define VT +'(AT) = {(0, 0)} for
every AT € AT. That is, because the relationship ends after period 7', the continuation
value after period T is zero. Then, for each 1 = 1,2,...,T, we relate V' to V! by
means of a standard, static mechanism-design problem. To this end, let w’ : ® — R?
represent the continuation value vector following the message phase in a given period, as a
function of the state. That is, w’ is an outcome at period ¢ and is given by

w'(0) = u' (AL, p), 0) +m + v T1(0), (10)

where (p, m) is the public action in period ¢ and v’*! gives the continuation payoffs from
the start of the next period, as a function of the state. Given V/*! and a history of productive
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actions A’~!, the set of feasible outcomes in period 7 is

WA = {w':® — R? | there exist p € P!, m € R}, and a function
vt e V(A1 p), such that Equation 10 holds for every 6 € ©}

The mechanism-design problem that relates V’(A~!) to the correspondence V'*! is
described by the set of states ® and the outcome set W’ (A’~!). The mechanism-design
problem has ex ante renegotiation, because the players can renegotiate prior to the message
phase. Applying the characterization of Expression 9 on page 19, we have

VIA™Y) = {v: 0 > R? | v1(0) + v,(0) = y' (A1, 0) for every 0 € O,
and, for every 0,0’ € O, there exists w € W/ (A1) (11)
such that v{(0) + v2(60") > w1 (0) + w1 (0')}

Proof of Theorem 2

To prove Theorem 2, I use an induction method. The key step is to demonstrate that,
for any 7" > 1, implementation in any 7 -period contractual relationship is equivalent to
implementation in a specific (7" — 1)-period relationship that is defined by consolidating
into a single period the productive actions that were to be taken in periods 7" — 1 and 7.
With this claim established, iterative application yields Theorem 2.

Take as given a T'-period model—call it the original model—with the productive action
set in period ¢ denoted by P’ and the payoff vector in period ¢ given by u’(A’, 8) + m’, for
t =1,2,...,T. I defined the reduced model with T' — 1 periods as follows. The reduced
model is assumed to have exactly the same productive action sets and payoffs in periods 1
through 7" — 2 as has the original model. In period 7" — 1, the reduced model’s productive
action set is defined as PT~! x PT and its payoff vector is given by

uT—l(()\T—2’ pT—l)’ 0) 4 uT(()\T—2’ pT—l’ pT)’ 0) 4 I’}’ZT_I,
where 47! and u” are from the original model.

The original and reduced models are identical on periods 1 through 7" — 2 and they
share the set of (7" — 2)-period productive histories, AT72. Let V' denote the set of
implementable continuation values (as a function of the history of productive actions)
from period ¢ for the original model, where t € {1,2,...,T}. Let I;'R’ed give the set
of implementable continuation values from period ¢ for the reduced model, where here
tef{l,2,...,T —1}.

I claim that the original and reduced models’ continuation-value sets from period 7' — 1
are equal; that is, for each AT=2 € AT72,

VITHOT) = V'),
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To see this, recall the characterization of V" (A1) from Expression 11. We can use Ex-
pression 10 (on page 20) to write this directly in terms of productive actions. Doing so, we
have for the case of the original model at period T" — 1:

VITTAT72) = (0:© > R? | v1(0) + v2(0) = yT~1(AT~2,9) for every 6 € O,
and, for every 6,0’ € ©, there exist pT~!1 ¢ PT!
and vT € VT (AT2, pT=1) such that vy (0) + v2(0) > J(pT~1, vT)},

where
JpTM ") =l TG pTTN.0) + up AT pTT.0) + 0] (0) + v1 (9).
The corresponding expression for the case of the reduced model is:

VITIAT2) = (0: @ = R? | v1(0) 4 v2(0) = yT71(AT2, 0) for every 6 € O,
and, for every 6,6’ € O, there exist pT~! € PT=!and pT € PT
such that v (9) + v2(8) = K(pT~!, pT)},

where

K(p™ ) = ul (G2 7.0 4 ud AT 7). )
+ul (A2, pT=1 1), 0) + ul (W72, pT71, pT), 0)).

The proof continues with two lemmas that relate V7 ~! and V,I;!.

Lemma 2: Fix AT 2. Take any two states 0,0 € © and any productive actions pT—1e
PT=V and pT € PT. There exists vI € VI(AT=2, pT=1) such that K(pT=', pT) =
J(pTh 7).

This result addresses an outcome from period 7" — 1 that is simultaneously designed to (1)
punish player 1 from claiming the state to be 6" when the state is in fact 6, and (ii) punish
player 2 from claiming the state to be 6 when the state is in fact ’. In the reduced model,
the punishment occurs by prescribing productive actions p”~! and p” for message profile
(9, 0). In the original model, productive action p? ! can be prescribed for period T — 1,
but the specification for period 7" is subject to renegotiation at the beginning of period 7.
Thus, to get the same punishment value, one has to obtain it from a continuation value
function v” that is implementable from period 7. The proof of this lemma (contained in
the appendix) uses Lemma 1 to find the appropriate value function.

Lemma 3: Fix AT 72, Take any two states 0,6' € ©, any productive action p™ ' € PT™!,
and any value function vl € VT (AT=2, pT=1). There exists a productive action pT € PT
such that K(pT=1, pT) < J(pT=1,07).
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The proof of this lemma (in the appendix) locates the productive action p? by examining
how v7 is implemented from period 7. In particular, p7 is chosen to be the productive
action associated with the punishment value for states 6 and 6’.

Note that Lemma 2 implies

Vi ' T2 c VT aT™),
whereas Lemma 3 implies the reverse inclusion relation. Thus,
Vi |72 = VTG,

Because the original and reduced models are identical on periods 1 through 7" — 2, and
because the continuation value sets are characterized by backward induction, we conclude
that

I;vlied = I7t

fort = 1,2,...,T — 1. In particular, the equivalence holds for # = 1, which means that
the set of implementable value functions in the original and reduced models are the same.

4 Other Results

In this section, I provide a result on the form of optimal contracts and additional results for
the special case of a durable trading opportunity.

Details of Optimal Contracts in the Multiple-Trading-Periods Model

I have portrayed the multiple-trading-periods model as an accurate depiction of real
contractual relationships, whereas the simplified model is an abstract construct that (with
Theorem 2) facilitates calculating the set of implementable value functions. If we are
interested in examining the details of real contracts, it is useful to go beyond the question
of what is implementable and also work to understand the structure of optimal contracts
in the multiple-trading-periods model. Theorem 2 does not provide the details of optimal
contracts, because an optimal contract in the simplified model cannot be applied directly to
the real world of multiple trading periods.

However, analysis of the relation between the two models gives some intuition about
optimal contracts in the multiple-trading-periods model. First, as noted in the analysis
of the previous section, successive application of the revelation principle justifies limiting
attention to contracts in which messages are direct reports of the state. Second, contracts
can be structured so that renegotiation does not actually occur in any period, regardless
of whether players sent equilibrium message profiles in previous periods. Third, one can
focus on contracts in which messages are used in a given period only if the players have
consistently disagreed about the state in previous periods; that is, if the players send the
same report in some period then the external enforcer can ignore all messages in future
periods.
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To formalize these properties, I shall use the following terms in describing a contract
¢ = (A" ab, p', W),

Direct reporting: A} = A}, = © foreveryt = 1,2,..., T and, in the contractual equi-
librium, players report truthfully in every state and period, whatever the history;

Renegotiation-proof: V'(c,h'™!,0) = eff Y'(c,h'"!,0) for every t, h'~' € H'"!(c),
and 6 € O;

Renegotiation-proof in equilibrium: V’(c,h'~!,0) = eff Y'(c,h'~!,0) foreveryt,0 €
©,and A"~ = ((0,0),(0,0),...,(0,0));

Minimal message usage: for every 7, i’ = (a',a?,...,d"), and h"" = (a'',ad?,...,a")
with i, " € H'(c),if h" and h"* coincide through some period © < ¢ and if a] = a3,
then p’ (h') = p'(h") and ' (h") = p'(h").

Here “eff” stands for the Pareto frontier. Also, “A’ and /A" coincide through 7” means
that ¢/ = & for /[ = 1,2,...,7. On the renegotiation-proofness property, recall that
Y'(c,h'™1,0) is the set of continuation payoffs that can be supported from the begin-
ning of period ¢ with contract ¢, whereas V'’ is the set implied when players renegotiate
from points in Y’ to the Pareto frontier of feasible continuation payoffs. The condition
Vi(e,h'™1,0) = eff Y'(c,h'"!,0) means that there is no surplus of renegotiation; the
players achieve efficient continuation values by staying with their current externally en-
forced contract c. Note that renegotiation-proofness in equilibrium means that the players
do not actively renegotiate on the equilibrium path, where truthful reporting occurred in
previous periods.

Theorem 3: Consider any contractual relationship with multiple trading periods. Every
implementable value function can be implemented by a contract that features direct re-
porting and is renegotiation-proof. Also, every implementable value function can be im-
plemented by a contract that features direct reporting and minimal message usage, and is
renegotiation-proof in equilibrium.

Proof: On the first claim, the direct reporting and renegotiation-proofness properties fol-
low from the analysis in the previous section. That is, in the recursive mechanism-design
formulation, we have the revelation principle at each stage of the analysis. Ex ante renego-
tiation at each stage is represented by the Pareto criterion on the equilibrium path in every
state (as shown in Expression 9 on page 19); contracts so identified are renegotiation-proof
in every state and period, whatever the history of messages.

On the second claim, consider a contract ¢’ that implements v, that features direct re-
porting, and is renegotiation-proof. We can define a related contract ¢ that is identical to ¢’
for all histories in which the players have sent different reports of the state in every period.
However, at the first instance in which @} = a, contract ¢ prescribes the sequence of pro-
ductive actions and transfers from period ¢ that would result under contract ¢’ if the players
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were to send this same message profile in each of the remaining periods. The sequence of
public actions may still depend on a random draw, but it no longer is conditioned on the
players’ messages in periods ¢t + 1,7 + 2,...,T. Itis easy to see that, with contract c,
the players have the incentive to report truthfully in every state. Also, ¢ is renegotiation-
proof in equilibrium, because (by ¢’ being renegotiation-proof) the sequence of productive
actions prescribed when players consistently name the same state over time is efficient in
this state.'® Q.E.D.

Minimal message usage has practical appeal. Optimal contracts can be designed so
that, over time, players need to continue communicating with the external enforcer only if
they had always disputed in the past by sending different reports.

Durable Trading Opportunities and Reversibility

Many contractual relationships can be described as having durable trading opportuni-
ties, meaning that (i) the traded good or service yields a flow payoff over time and (ii) the
trade can be delayed or reversed. For example, a retail firm may contract with a computer
software company to design and install specialized software for inventory control. The
software will generate for the retailer a flow of value over time, starting as soon as the soft-
ware is installed. Suppose the software can be installed as early as in January; furthermore,
if the seller fails to install the software in January, it can still be installed in February, or
March, or later. However, if it is installed in, say, March, then the buyer will not obtain
the value of the software in January or February. Also, the software can be uninstalled,
yielding a subsequent flow payoff as though the software were never installed.

I represent durability by assuming that the set of feasible productive actions is constant
across periods—that is, there is a set P such that P’ = P for every period ¢. If the
productive action p is taken in the current period, then it can be reversed by selecting any
other productive action in the next period. Selection of the same productive action in the
next period means that the action today is not reversed. Assume that the players’ utility in
a given period can be written in the following separable way. For each ¢t > 2,

u' (A, 0) =y (p'.0)—k'(p'~', p'.0),

and, fort =1,
u' (A, 0) = y(p'.0).

The function ¥ : P x ® — R? gives the per-period flow payoff of the current productive
action. The function k’: P x P x ® — R? gives the cost of changing the productive action
from period # — 1 to period ¢. Thus, assume that «’(p, p,0) = (0,0) and «’(p, p’,0) >
(0,0), forevery t € {2,3,...,T},all p, p’ € P,and every 6 € ©O.

A special case of a durable trading opportunity is a stationarity environment with no
cost of reversing productive actions—that is, where «* = (0,0) forall ¢t € {2,3,...,T}.
The next result shows that, for stationary environments, it suffices to consider stationary

16Contract c is not necessarily renegotiation-proof out of equilibrium.
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contracts. Regarding the definition of a stationary contract, recall that the externally en-
forced component of the contract is

c= (A" a5, 0" 1)y

A stationary contract has the property that (i) A’ and o are the same across periods, (ii)
p't H — P'and u': H' — R} depend only on announcements made in period ¢ and so
can be written as functions p’ : A — P’ and u': A" — R, and (iii) p’ and ' are the
same across periods.

Theorem 4: In any stationary contracting environment, if a value function v is imple-
mentable then it can be implemented using a stationary contract.

On the applied side, this theorem establishes that optimal contracts can always take a sim-
ple, stationary form, whereby the players interact in the same way in each period. On
the technical side, the theorem shows that the analysis of long-term contracting reduces
to selecting a one-period mechanism that is repeated over time. That is, players choose
a long-term contract that requires them to play the same short-term mechanism in each
period.

Proof of Theorem 4: By Theorem 2, we can study the simplified (f = 1) version of the
model to calculate implementable value functions. In a stationary environment, payoffs
in the simplified model are just a scaled version of the payoffs in any single period of
the original model, in the following sense. First, in each state, the efficient sequence of
productive actions is a constant sequence. That is, for state 6, there is a productive action
p*(0) such that A*(0) = (p*(0), p*(0), ..., p*(0)) is the efficient sequence of productive
actions. Further, in the original model, it is efficient in the continuation from a given period
t to select p*(0) thereafter, regardless of the productive actions taken earlier. Second, the
best (lowest) punishment value for states € and 6’ is achieved with some constant sequence
of productive actions (p(6,6"), p(6,6"),..., p(6,0")).

Thus, if value function v can be implemented in the simplified model, then v/ T is
implementable in a given period of the original model when this period is considered in
isolation of the others. A stationary contract treats each period in isolation of the others,
and so a stationary contract can be used to implement v/ 7" on a per-period basis, implying
that v is implemented. Q.E.D.

On the effect of reversal costs, recall that the intuition from the example is that higher
reversal costs imply a greater scope of implementability. In a sense, reversal costs work
much like money burning, which has beneficial effects when applied in out-of-equilibrium
contingencies. The next theorem establishes the claim generally.

Theorem 5: Consider any contracting environment with a durable trading opportunity.

Fix the function W and consider two reversal-cost technologies given by k', ... kT and
kY,...,kRT. Let V and V denote the sets of implementable value functions in the two

cases. If k' > k' for every period t, then V. C V. Furthermore, the inclusion relation is
strict for large enough reversal costs.
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Thus, increasing the reversal costs implies an increase in the set of implementable value
functions. The technical meaning of “large enough reversal costs” in the theorem is that
there exists a number L (which depends on k!, ..., «T) such that, for some period 7, some
state 6, and some productive actions p, p’ € P, we have ' (p, p’,0) > «'(p, p’,0) + L.
This theorem suggests that it may be fruitfull to examine reversal costs in applied settings.
Reversability is perhaps straightforward to estimate empirically and reversal costs may
differ substantially within industries.

Proof of Theorem 5: By Theorem 2, we can study the simplified (f = 1) version of the
model to calculate implementable value functions. Recall that without the reversal costs,
in each state, the efficient sequence of productive actions is a constant sequence. Because
k' (p, p,0) = (0,0)—that is, there is no cost of keeping the same productive action from
period to period—this continues to be true even in the setting of positive reversal costs.
By the renegotiation proofness principle, we consider mechanisms that specify efficient
sequences of productive actions in equilibrium in each state; further, the efficient sequences
and implied values are unchanged as reversal costs increase.

However, increased reversal costs imply weakly lower punishment values (used for out-
of-equilibrium message profiles) and so increases the set of implementable value functions.
It is not difficult to see that, for a large enough L, the model with higher reversal costs
allows for a lower punishment value for some states 6,60’. Lemma 1 then implies the
existence of an implementable value function in the model with higher reversal costs that
cannot be implemented in the model with lower reversal costs. Q.E.D.

5 Conclusion

This paper takes a modest step in my research program of exploring how technological
details affect the form and efficacy of contracts. The modeling exercise demonstrates the
value of accounting for how trade involves a sequence of productive actions, while showing
that one can easily analyze such settings with standard tools. By examining the sequence of
productive actions in a given contractual relationship, one will generally see ways for the
parties to be punished off the equilibrium path (for example, using reversals of productive
actions) that may not have been apparent with more stylized accounts of trade. I believe
that empirical work will benefit from looking closely at the technological details of real
contractual relationships

I note that transferrable utility (monetary transfers and payoffs that are linear in money)
is a key assumption for Theorem 2. In particular, Lemma 1 relies on being able to (i)
shift utility away from player 1 when both players report the state to be 6 and (ii) shift
utility away from player 2 when both players report the state to be 6, just enough so that
v1(0) + v2(0") = w,(0) + w,(0"). Further, the characterization of implementation in
Expression 9 on page 19—in particular, the inequality condition—relies on transferrable
utility. If one were to dispense with the transferrable utility assumption, Lemma 1 would
not longer hold and it would generally be possible to implement more in the simplified
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model than can be done in the original multiple-trading-periods model.

I pointed out earlier that the concept of implementation used here does not require
uniqueness of equilibrium from each period. On this issue, I have a few comments. First,
the potential advantage of arranging the externally enforced component of contract to
achieve uniqueness depends on how players would deal with multiple equilibria, which
ought to be studied directly; Watson (2005b) works in this direction and gives conditions
under which selection is handled as assumed here. Second, settings with little external
enforcement typically have intrinsic non-uniqueness, so it does not always make sense to
consider a unquiness objective. Third, unique implementation is usually analyzed in the
context of extensive-form mechanisms. One can view the contractual relationships stud-
ied here as dynamic mechanisms, with the added feature that the players can renegotiate
between rounds of communication. In such a setting, it may be worth formulating a con-
cept that requires uniqueness from each period. Such a concept, and the relation between
multi-stage and simplified models, may be an interesting topic for future research.

In the framework studied here, I assumed that renegotiation occurs before messages are
sent in each period. One might also be interested in the case in which renegotiation occurs
between the time messages are sent and when productive actions are taken. I have two
points to make on this setting. First, if one continues to model the productive actions as
public then all of the results herein extend to the case of renegotiation between messages
and productive actions. The statement and proof of Lemma 1, for instance, extend with the
modification that w,(6) and w,(6’) are replaced with values that the players obtain when
renegotiating from w in states 6 and 6’.

Second, however, it may no longer be appropriate to treat the productive actions as
public. In fact, Watson (2005a) shows that artificial constraints are created by modeling
individual actions as public when they are immediately preceded by renegotiation. That
is, if the contracting parties are the ones to physically take the productive actions, and
if renegotiation can occur just before the productive actions, then modeling the actions
as public generally creates a distortion. Further, if we model the productive actions as
individual, and there is renegotiation after messages are sent, then it is not clear whether
the results of this paper survive.!”

Analyzing settings with individual productive actions and post-message renegotiation
in each period seems like a reasonable item for a “research to do” list. Another direction
worth exploring is to look at settings in which verifiable and unverifiable actions mingle
over time. Further, I think it would be useful to examine situations with infinite horizons.

"In the related and recent literature, many papers feature models in which verifiable trade actions are
treated as public and in which renegotiation takes place between messages and trade (for instance, Edlin and
Reichelstein 1996, Che and Hausch 1999, and Maskin and Moore 1999). One might be inclined to think that
such a model approximates a real situation in which there is a durable trading opportunity and the parties
can always reverse the trade outcome after the external enforcer establishes a ruling (after the mechanism).
Considering the durable-trading-opportunity setting studied here, this sort of approximation seems correct
if one assumes that the players cannot communicate with the external enforcer past some period , where
T is close to 1, T is large, and the players are assumed to be patient. The communication barrier may be
interepreted as an incompleteness assumption.
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A Proofs of the Lemmas

In this appendix, the lemmas are restated and proved.

Lemma 1: Consider a two-player mechanism-design problem described by a set of states
® and a set of state-contingent value functions (outcomes) W, such that W possesses state-
contingent maximum joint values and is closed under constant transfers. For any given two
states 0,0’ € © and for any given w € W, there is an implementable value function
v: ® — R? such that

(i) v1(6) + v2(6") = w, (8) + w,(6"), and
(i1) v1(0”) + v2(8”) = y(8”) for every 0" € ©.

Proof of Lemma 1: Take any w and fix 6 and 6’ for the duration of this proof. We can find
an outcome w satisfying

wi(0) =w,(0) and wy(6) + w2(0) = y(0) (12)
and an outcome w’ satisfying
wy(0) = w,(0") and wi(0") + w5y(0") = y(0'). (13)
We can then find an outcome w € W satisfying
wa(0) = w2(f) and W =w + (B, —P) (14)

for some scalar 8. These three outcomes exist because W is closed under constant transfers
and attains a maximum in each state.

Define mechanism f: @2 — W as follows. (There will be no need for randomization,
so Ay is left out.) Players send reports of the state, and the report vector is (a;, a»). Specify
that f(0,0) = w; that is, if both players report the state to be 6 then the outcome is w.
Further, for all 8” # 0, specify f(6”,6) = w and f(6,0”) = w. Finally, let w’ be the
outcome specified for all other announcement profiles, including when both players report
the state to be 6’

By construction of f', reporting truthfully is a Nash equilibrium in state 6 and it yields
an efficient outcome in this state, with payoff vector w(6). Regarding incentives in state 6’,
note that, by construction, player 2’s report of “6’” is a best response to truthfull reporting
by player 1. Player 1 also prefers to report honestly in state 6" if and only if w](0’) >
w1 (6’). I next demonstrate that this inequality holds.

Define “inefficiency amounts” ¢ (6) and o (6’) by

o(0) = y(0) —[w, () + w,(0)]

and
o(0") = y(0") —[w,(0") + w,(0)].
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Expression 12 yields the equation w,(0) = y(0) — w,(6). Using Expression 14 to substi-
tute for w,(6), we obtain

wy(0) =B =y(0) —w,(0).
We can then substitute for B by again using Expression 14 (in particular w; (6") = w,(6")+

B), to get
wi(0") = w,(0") +w,(0) + w,(0) —y(0).

Substituting for the last three terms using the definition of o (6) yields
w,(0) =w(0") +0o(b). (15)

Starting from scratch, we see that Expression 13 yields the equation w}(6) = y(8') —
w,(0"). Substituting for w, (0’) using the definition of o (8’), we obtain

wi(8) = w(6") + o (8. (16)
Combining Equations 15 and 16 to substitute for w, (6’), we obtain
wi(0) =w(0") +0(0) + o (0).

The amounts o (6) and o (0’) are nonnegative, which implies that w/(6’) > w;(0’). This
means that player 1’s report of “6"” is a best response in state 6’ to honest reporting by
player 2. Thus, truthful reporting is a Nash equilibrium in state 6’ and yields an efficient
outcome in this state, with payoff vector w’(6’). Because there are only three outcomes
specified by f over all report profiles, there exist Nash equilibria in all other states as well.
Selecting Nash equilibria (6, 0) and (6, 0’) in states 6 and 6’, respectively, and an arbi-
trary selection of equilibria in the other states, we conclude that mechanism f* implements
some value function v satisfying v(6) = w(6) and v(0") = w’(0’). We can employ the
revelation principle and the “renegotiation-proofness principle” used earlier to find another
mechanism f” that implements a value function v such that v(6) = w(6), v(0") = w'(¢’),
and v (0”) + v,(0”) = y(0”) for every state 8”. Finally, by construction, we have

vi(0) + v2(6") = wi(6) + wi(0) = w,(6) + w,(6").

Q.E.D.

Lemma 2: Fix A7~2. Take any two states 6,0’ € ® and any productive actions p7 ! €

PT-1and pT e PT. There exists v7 € VT (AT2, pT1) such that K(pT~!, pT) =
J(pT1 7).

Proof of Lemma 2: Note that, for the case of the original model, the set I7T(AT_2, p
is the solution of the mechanism-design problem defined by outcome set

T—l)

WITOT2 pT~h = {wl:©® — R? | there exist pT € PT and m € R}
such that w7 (") = uT (AT, pT),0") 4+ m for every 6" € B},
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which is clearly closed under constant transfers and attains a maximum in every state.
Lemma 1 therefore applies. Take any two states 6,0’ € ® and any productive actions
pT=1 e PT=1and pT € PT. Let w” be defined by

w(@//) — uT(()\T_z,pT_l,pT),QH),

for every §” € ®. Think of w as the outcome of specifying productive action p? (following
(~AT_2, pT~1)) with no monetary transfer. By Lemma 1, there exists a value function v €
VT (AT=2, pT=1) such that

I @) +0I(0)) = w, (0)+w,(0) = uT (W72, pT71, pT), 0)+ul (A T2, pT71, pT), ).

Comparing the definitions of J and K then shows that they are equal for the selected p” !,
pT, and vT . Q.E.D.

Lemma 3: Fix A7 72, Take any two states 0, 6" € ©, any productive action pI—te Pl 1,
and any value function v7 € VT (AT=2, pT=1). There exists a productive action p? € PT
such that K(pT=!, pT) < J(pT—1,v7).

Proof of Lemma 3: Let WT (A7=2, pT=1) be defined as in the proof of Lemma 2 above.
By implementability of v7 from period 7T, there is an outcome @ € WT(AT=2, pT~1) such
that

ol (6) + oI (6) = 11(6) + 2(6),

We know that, in characterizing 1, there are a productive action p7 € PT and a constant
transfer m € R? such that

11\)(0//) — UT(()\,T_I,pT),GH) + m
for every 6” € ®. Thus, we have that
W1(0) + W2(8) = ul (AT, pT),0) + ul (AT, pT), 0)).

The transfer m does not appear because the players’ components cancel. Comparing the
definitions of J and K yields the claimed inequality. Q.E.D.
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