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2 Lobby Formation Game

We will focus on interest groups’ lobbying activities over government policies.
We will consider a two stage game. In stage 1, interest groups decide if they
join a lobbying process or not. In stage 2, the lobbying groups lobby over
government policies. Having stated we assume a two stage game, we have to
say that our solution concept is more like a pseudo-dynamic solution, since
we consider a stationary state allocation. We start with the setup of a lobby
formation game.

2.1 The Setup

There is a set of potential lobby participants (players), N = {1, ..., n} and
the government G. The government G can choose an agenda a from the
set of agendas A. Each player i has utility function vi : A → R+, and
similarly the government has utility function vG : A → R+. Each player i
can choose if it participate in a lobby or not: if player i decides to participate
in lobbying activities, then it can offer a menu of contributions Ti : A→ R+.
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Suppose that subset S of N participates in the lobbying activities. Then, if
the government chooses a ∈ A, then the government gets the payoff

uG(a; (Ti)i∈S) = vG(a) +
X
i∈S

Ti(a),

and player i gets payoff

ui(a;Ti(a)) = vi(a)− Ti(a).

The government chooses a policy that maximizes uG:

a∗(S) ∈ argmax
a∈A

uG(a; (Ti)i∈S).

2.2 Lobbying

Given the set of participants S, we can apply the results in Bernheim and
Whinston (1986, QJE). Although there are many Nash equilibria in this
menu auction game, they show that the set of Nash equilibria in truthful
strategies and the set of coalition-proof Nash equilibria are equivalent, and
the set of resulting payoffs of these equilibria is characterized as follows. For
each T ⊆ S, let

W (T ) ≡ max
a∈A

X
i∈T

vi(a) + vG(a),

and
W (∅) ≡ max

a∈A
vG(a),

The equilibrium agenda that the government chooses is

a∗(S) ∈ argmax
a∈A

ÃX
i∈S

vi(a) + vG(a)

!
,

and firms’ equilibrium payoff vector u ∈ RS
+ is an element of the Pareto

frontier of set

Z ≡
(
u0 ∈ RS

+ :
X
i∈T

ui ≤W (S)−W (S\T ) for all T ⊂ S

)
.

The inequality that Z satisfies can be interpreted that since the complement
set S\T can achieve total payoff W (S\T ) by themselves, T cannot ask more
than W (S)−W (S\T ).
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2.3 Lobby Participation

We now consider a stationary state of lobby participation and players’ payoffs.
An outcome is a list (S, a∗(S), u, uG) ∈ 2N × RN × R+ such that (i) for all
i /∈ S, ui = vi(a

∗(S)), (ii) for all T ⊂ S,
P

i∈T ui ≤ W (S) −W (S\T ), and
(iii) uG = W (S) −

P
i∈S ui.

1 An outcome (S, u, uG) is internally stable
if for all i ∈ S, ui ≥ vi(a

∗(S\{i})) holds. Internal stability of an outcome
requires that no member of lobby can free ride unilaterally. We also say
that a participant set S is an internally stable lobby, if there exists an
internally stable outcome (S, a∗(S), u, uG). The readers may wonder about
external stability. It is a bit harder to define, since when an outsider joins,
we need to allocate some payoff to that player. However, we can imagine
the following situation: once a new allocation is attained by including the
new player, then the new allocation may not be internally stable. Thus,
we may use the following: An outcome (S, a∗(S), u, uG) is stable if it is
internally stable, and there is no internally stable outcome (S0, a∗(S0), u0, u0G)
with S0 % S and u0i > ui for all i ∈ S0.2 We also say that a participant set S
is a stable lobby, if there exists a stable allocation (S, a∗(S), u, uG). Note
that there always exists a maximally internally stable outcome, since the set
of internally stable participant sets is nonempty (S = ∅ is always trivially
an internally stable lobby for any game) and there are only finite number of
players.

Proposition 1. There is stable lobby and outcome.

3 The Case of No Conflict of Interest

First, we consider a simple case in which all players’ interests are in the same
direction, while the intensity of their interests are heterogeneous. A stylized
public good model can be viewed as a special class of the above game. Agenda
is a public good provision level, and is one-dimensional: A = R+, and the
provision cost of public good is described by a C2 cost function C : A→ R+

1An outcome contains a∗(S) as an argument of its definition, since there may be mul-
tiple maximizing agendas.

2This definition of stability has a similarity with the ones in Conley and Konishi (2002)
and Konishi and Ünver (2006).
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with C(0) = 0, C 0(a) > 0 and C 00(a) ≥ 0. Player i’s utility function is
quasi linear in private good net consumption x and is written as vi(a) − x,
where vi : A → R+ is vi(0) = 0, v0i(a) > 0 and v00i (a) ≤ 0. In order to
guarantee the existence of solution, we assume the Inada condition on the
cost function: lima→0C

0(a) = 0 and lima→∞C 0(a) = ∞. Laussel and Le
Breton (1998, 2001) extensively studied the equilibrium payoff structures of
common agency games on general versions of this public good problem, and
obtained many interesting and useful results. Our analysis is built on theirs,
but we consider possible free riding: our focus is the conflict between lobbying
and free riding.
We will consider a common agency game of this economy. Let T ⊂ N .

The efficient public good provision level for T is described by3

a∗(T ) ≡ argmax
a∈A

X
i∈T

vi(a)− C(a).

For a lobby group S ⊂ N , no free-riding incentive means that for all i ∈ S,

vi(a
∗(S))− ti ≥ vi(a

∗(S\{i}),

where ti is player i’s contribution level. A lobby participant i ∈ S receives
ui = vi(a

∗(S))− ti. In this particular game, we have

W (S) =
X
i∈S

vi(a
∗(S))− C(a∗(S)).

As Laussel and Le Breton (1998, 2001) note, this problem can be reinter-
preted as a lobbying problem by letting uG(a) = −C(a). That is, the gov-
ernment does not want to provide public good, but if players offer enough
contributions then public good is provided. Thus, participating in lobby-
ing means consumers’ voluntary contributions through menu auction, and
not participating means their free riding. The following is a straightforward
extension of a result of Laussel and Le Breton (1998, 2001).

Proposition 2. Consider a public good economy. For S ⊂ N , uS ∈ RS
+ is

an internally stable allocation if and only if:

1.
P

i∈S ui =W (S) =
P

i∈S vi(a
∗(S))− C(a∗(S))

3Under the assumptions, the maximizer is a singleton.
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2. for all T ⊂ S,
P

i∈T ui ≥W (T ) =
P

i∈T vi(a
∗(T ))− C(a∗(T ))

3. for all i ∈ S, ui ≥ vi(a
∗(S\{i}).

Proof. Since W (∅) = −C(0) = 0, we have W (S) − W (∅) = W (S). As
is known from Laussel and Le Breton (2001: Theorem 3.2), if (W (T ))T⊂S
exhibits convexity (i.e., for all S ⊃ T 0 % T with i /∈ T 0,W (T 0∪{i})−W (T 0) ≥
W (T ∪ {i}) −W (T ) holds), then there will not be any rent to the agent:4

thus,
P

i∈S ui = W (S) −W (∅) = W (S).5 This is condition 1. With this
property, condition (ii) for the lobbying game outcome for S: for all T ⊂ S,X

i∈T
ui ≤W (S)−W (S\T ),

is rewritten as, X
i∈S\T

ui ≥W (S\T )

or by rereading S\T as T , X
i∈T

ui ≥W (T )

for all T ⊂ S. Thus, we have condition 2. Condition 3 follows from the
requirement of no free riding (singleton deviation is optimal in public good
economy).¥

An allocation that satisfies conditions 1 and 2, uS ∈ RS
+, is in the core of

a TU game (W (T ))T⊂S. Thus, an internally stable allocation requires group
stabilities, and no free riding incentive. Conditions 2 and 3 are conflicting
requirements. A high θ consumers have less free-riding incentives, while if
they get together, they can form a strong deviating coalition. Thus, it is
possible that for some S, there is no core allocation that satisfies condition
3, even if there is an allocation for S that satisfies codition 3 in general. We
consider two special cases: (i) symmetric case where vi(a) = vj(a) for all
a ∈ A and all i, j ∈ N , and (ii) quadratic cost case where vi(a) = θia and
C(a) = ka2 (θi > 0 for all i ∈ N and k > 0).

4Laussel and Le Breton (2001) calls this property "no rent property,"
5Moreover, Konishi, Le Breton and Weber (1999) show that coalition-proof Nash equi-

librium is also stong Nash equilibrium with the no rent property.
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3.1 Symmetric Players

In this subsection, we assume that all players’ payoff functions are the same:
i.e., vi(a) = vj(a) = v(a) for all i, j ∈ N . The no free rider condition is

ui = v(a∗(S))− ti ≥ v(a∗(S\{i})).
Since the core of TU game is a convex set, a symmetric cost sharing should
be in the core unless the core is empty. We know that the core is nonempty
in public good economy for all S ⊂ N . Thus, what is needed for internal
stability is just the following symmetric condition:

v(a∗(S))− C(a∗(S))

|S| ≥ v(a∗(S\{i})),

or
|S|v(a∗(S))− C(a∗(S)) ≥ |S|v(a∗(S\{i})).

Proposition 3. In the symmetric case, there exists an internally stable allo-
cation for S if and only if S satisfies |S|v(a∗(S))−C(a∗(S)) ≥ |S|v(a∗(S\{i}))
(aggregated "no free riding conditions").

3.2 Linear Utility and Quadratic Cost Functions

In this subsection, we assume vi(a) = θia for all i ∈ N and C(a) = ka2,
where θi > 0 and k > 0 are parameters. In this case, despite of heterogeneous
players, the same condition as above is necessary and sufficient for internal
stability.

Proposition 4. In the quadratic public good problem, there exists an
internally stable allocation for S if and only if S satisfies

P
i∈S θia

∗(S) −
k(a∗(S))2 ≥

P
i∈S θia

∗(S\{i}) (aggregated "no free riding conditions").

Proof. By Condition 3, if the above request is violated, there is no allocation
that satisfies no free riding for S. Thus, we only need to show that if the
above request is satisfied then we can find a core allocation that satisfies
condition 3. To be instructive, we will not explicitly solve a∗(T ) for a while.
The strategy we take is to construct an allocation, and verify that it is in the
core. Let uS ∈ RS

+ be such that for all i ∈ S

ui = θia
∗(S\{i}) + θiP

j∈S θj

ÃX
i∈S

θia
∗(S)− k(a∗(S))2 −

X
j∈S

θja
∗(S\{j})

!
.
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Notice that the contents of the parenthesis is the aggregated "no free riding"
surplus: given the no free riding conditions, the most surplus the lobby group
S can distribute for their members. The above formula distribute this surplus
proportionally according to members’ willingnesses-to-pay θs. Obviously, we
have

P
i∈S ui = W (S) =

P
i∈S θia

∗(S) − k(a∗(S))2, and ui ≥ θia
∗(S\{i}).

Thus, we only need to check condition 2. For a coalition T $ S, we haveX
i∈T

ui −W (T )

=
X
i∈T

θia
∗(S\{i}) +

P
i∈T θiP
j∈S θj

ÃX
j∈S

θja
∗(S)− k(a∗(S))2 −

X
j∈S

θja
∗(S\{j})

!

−
ÃX

i∈T
θia

∗(T )− k(a∗(T ))2

!

=

P
i∈T θiP
j∈S θj

ÃX
j∈S

θja
∗(S)− k(a∗(S))2

!
−
ÃX

i∈T
θia

∗(T )− k(a∗(T ))2

!

+
X
i∈T

θia
∗(S\{i})−

P
i∈T θiP
j∈S θj

X
j∈S

θja
∗(S\{j}).

We want this to be nonnegative for all T ⊂ S. Now, we use quadratic cost
and linear utility. The first order condition for optimal public good provision
is X

i∈S
θi − 2ka = 0,

or

a∗(S) =

P
i∈S θi
2k

.

Thus, we have

X
i∈S

θia
∗(S)− k(a∗(S))2 =

¡P
i∈S θi

¢2
2k

−
¡P

i∈S θi
¢2

4k
=

¡P
i∈S θi

¢2
4k

,

and

θia
∗(S\{i}) =

θi
³P

j∈S θj − θi
´

2k
.
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Without loss of generality, we can set k = 1
2
. Then, we haveX

i∈T
ui −W (T )

=

P
i∈T θi

2
P

j∈S θj

ÃX
j∈S

θj

!2
− 1
2

ÃX
i∈T

θi

!2
+
X
i∈T

θi
X

j 6=i,j∈S
θj −

P
i∈T θiP
i∈S θi

X
i∈S

θi
X

j 6=i,j∈S
θj

=
1

2

ÃX
i∈T

θi

!ÃX
j∈S

θj

!
+
X
i∈T

θi

ÃX
j∈S

θj − θi

!
−
P

i∈T θiP
i∈S θi

X
i∈S

θi

ÃX
j∈S

θj − θi

!

=
1

2

ÃX
i∈T

θi

!ÃX
j∈S

θj

!
+
X
i∈T

θi

ÃX
j∈S

θj

!
−
X
i∈T

θ2i −
X
i∈T

θi

ÃX
j∈S

θj

!
+

P
i∈T θiP
i∈S θi

X
i∈S

θ2i

=
1

2

ÃX
i∈T

θi

!ÃX
j∈S

θj

!
−
X
i∈T

θ2i +

P
i∈T θiP
i∈S θi

X
i∈S

θ2i

=

ÃX
i∈T

θi

!"P
j∈S θj

2
−
P

i∈T θ
2
iP

i∈T θi
+

P
i∈S θ

2
iP

i∈S θi

#

=

ÃX
i∈T

θi

!"P
j∈S θj

2
−
X
j∈T

θjP
i∈T θi

× θj +
X
j∈S

θjP
i∈S θi

× θj

#
.

The second term is the only negative term, and it takes maximum absolute
value when T is composed by the players with the highest values of θj. Let us
call such value θmax. Suppose that

P
i∈S ui −W (T ) < 0. Then, by focusing

the first two terms, we know θmax >
1
2

P
i∈S θi. However, if it is the case, we

have P
j∈S θj

2
−
X
j∈T

θjP
i∈T θi

× θj +
X
j∈S

θjP
i∈S θi

× θj

≥
P

j∈S θj

2
− θmax +

X
j∈S

θjP
i∈S θi

× θj

≥ θmax
2
− θmax +

θmaxP
i∈S θi

× θmax

>
θmax
2
− θmax +

1

2
× θmax = 0.

This is a contradiction. Therefore, all conditions 1, 2 and 3 are satisfied for
an allocation uS.¥
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It is obvious that a maximal internally stable lobby achieves a Pareto
efficient internally stable outcome in public good economies. Note, however,
that all Pareto efficient internally stable allocation is achieved by a maximal
internally stable lobby. For example, suppose that both S and S0 are inter-
nally stable lobbies and S0 ⊃ S is maximal. If allocation u under S satisfies
uj = vj(a

∗(S\{j}) for all j 6= i ∈ S, and ui =
P

j∈S vj(a
∗(S))− C(a∗(S))−P

j 6=i vj(a
∗(S\{j})), then there may not be an internally stable allocation u0

under S0 with u0i ≥ ui, since everybody besides i need more in order to satisfy
internal stability under S0 than under S. For this, i needs to have a high θi
so that condition 2 does not bind.
It should be noted though that there is tendency that a Pareto efficient

maximal internally stable allocation tends to be more equal than any other
Pareto efficient allocation. It is because under maximal internally stable
lobby S0, the surplus of lobby defined by

Φ(S0) ≡
X
j∈S0

vj(a
∗(S0))− C(a∗(S0))−

X
j∈S0

vj(a
∗(S0\{j}))

must be rather small (otherwise, it can still expand by adding more mem-
bers). Thus, there is only small room for giving extra to some members of
S0 in addition to their participation constraint.
Even in quadratic cost case, we can make an interesting observation.6

Proposition 5. Even in the quadratic cost case, a maximal internally stable
lobby may not be consecutive.

Proof. By the following an example.

Example. Let v(a) = a, and C(a) = 1
2
a2. Suppose that N = {1, 2, 3, 5, 11}

with θi = i for each i ∈ N . In this case, a∗(S) =
P

i∈S i, since for group S, the
marginal benefit and cost are

P
i∈S i and a, respectively. Suppose that S1 =

{3, 5, 11}. Then, a∗(S1) = 19 and W (S1) = 180.5. Now, 11v(a∗(S1\{11})) =
88, 5v(a∗(S1\{5}) = 70 and 3v(a∗(S1\{3})) = 48. Since 88+70+48 > 180.5,
there is no internally stable allocation for S1. Similarly, there is no internally
stable allocation for S2 = {2, 5, 11}. However, for S3 = {1, 5, 11}, a∗(S3) = 17

6Although the context and approach are very different, in political science and sociology,
formation of such non-consecutive coalitions is of a tremendous interest. For a game
theoretical treatment of this line of literature (known and "Gamson’s law"), see Le Breton
et al. (2007).
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and W (S3) = 144.5. Now, 11v(a∗(S3\{11})) = 66, 5v(a∗(S3\{5}) = 60 and
1v(a∗(S3\{1})) = 16, thus any (u11, u5, u1) with u11+u5+u1 = 144.5 satisfies
conditions 2 and 3. Condition 3 requires u11 ≥ 66, u5 ≥ 60 and u1 ≥ 16.
Condition 2 also requires u11 + u5 ≥ 128, u11 + u1 ≥ 72 and u5 + u1 ≥ 18
(only the first one can bind given condition 3). As Proposition 4 asserts,
(u11, u5, u1) = (66 + 2.5× 11

17
, 60 + 2.5× 5

17
, 16 + 2.5× 1

17
) for S3 satisfies all

the above conditions, thus is internally stable, and is maximal. This example
shows that the maximal internally stable lobby may not be consecutive.¥

The intuition is simple. Suppose Φ(S) is positive. Then by Proposition
1, there is an internally stable allocation for S. Thus, let us find S0 ⊃ S
such that Φ(S0) ≥ 0. If the value of Φ(S) is not so high, adding high θ
player(s) increases a∗(S0) a lot. This makes free-riding problem severer, and
Φ(S0) < 0 may occur by that. However, if low θ player(s) are added, the
free-rider problem does not become too severe, and Φ(S0) ≥ 0 may be more
easily satisfied.

4 The Case of Conflict of Interest

There are two agendas A = {−1, 1}, and there are two groups of players
N = N+∪N−: each player i ∈ N+ has utility function vi(a) = θia, and each
player j ∈ N− has utility function vj(a) = −θja, where θi, θj > 0. That is,
players in group N+ prefer a = 1 to a = −1, while ones in N− prefer a = −1
to a = 1. The government’s utility function is uG(a) = 0 for all a ∈ {−1, 1}
so that the government has no policy preference. For S ⊂ N , we have

a∗(S) =

⎧⎨⎩
−1 if

P
i∈N+∩S θi −

P
j∈N−∩S θj < 0

{−1, 1} if
P

i∈N+∩S θi −
P

j∈N−∩S θj = 0

1 if
P

i∈N+∩S θi −
P

j∈N−∩S θj > 0

The government gets contributions of the losing groups’ utility sum in each
case.
In this problem, a maximal internally stable allocation is described in a

simple manner. When
P

i∈N+ θi >
P

j∈N− θj, subset S ⊂ N is a maximal
internally stable lobby if N− ∩ S = N−,

P
i∈N+∩S θi >

P
j∈N− θj, and for

any i0 ∈ N+ ∩ S,
P

i∈N+∩(S\{i0}) θi <
P

j∈N− θj holds. Symmetrically, whenP
i∈N+ θi <

P
j∈N− θj, subset S ⊂ N is a maximal internally stable lobby if
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N+∩S = N+,
P

i∈N+ θi >
P

j∈N−∩S θj, and for any j
0 ∈ N−∩S,

P
i∈N+ θi <P

j∈N−∩(S\{j0}) θj holds. That is, the group that has majority wins, but if
some player in the majority group knows that her group can win without
her, then she free-rides. And "maximal" has a good justification here. If a
player is in a minority group and is a free-rider, she has an incentive to join
the lobby to reverse the result. In the end, the minority group pays nothing,
so they lose nothing by joining the lobby. Thus, maximal internally stable
lobby is well-motivated in this particular problem, too.

5 Lobby Formation Game

In this section, we define a coalition-proof lobby. Note that we are not only
talking about coalition-proof Nash equilibrium allocation in the menu auction
stage. We also require that the lobby group formation itself is coalition-proof
as well. We first define the first stage lobby formation game assuming that
the outcome of each possible lobby S is a coalition-proof Nash equilibrium
of a menu auction game played by S. A lobby formation game is a list
G(N, {0, 1}, (ui)i∈N), where players’ strategy sets are common {0, 1}: 0 and
1 represent "not participating" and "participating" in a lobby, respectively.
A strategy profile σ = (σ1, ..., σn) ∈ {0, 1}N . Let S(σ) = {i ∈ N : σi = 1}.
The payoff profile when S is formed as a lobby is an outcome of the common
agency game with S(σ) being the lobby: the payoff profile u(σ) ∈ RN

+ is
on the Pareto frontier of {u0 ∈ RN

+ : u0i = vi(a
∗(S(σ))) for all i ∈ S(σ),

and
P

j∈T u
0
j ≤ W (T ) −W (S\T ) for all T j S(σ)}. For any V ⊆ N , any

σ ∈ {0, 1}N and any σ0V ∈ {0, 1}V , the pair (V, σ0V ) is a strategic coalitional
deviation from σ if ui (σ0V , σ−V ) > ui (σ) for every i ∈ V. A strategy
profile σ∗ ∈ {0, 1}N is a strong Nash equilibrium of G(N, {0, 1}, (ui)i∈N)
if there exists no strategic coalitional deviation from σ∗ (Aumann 1959). This
is a very strong requirement, since strong equilibrium is necessarily Pareto
efficient. Indeed, in public good provision game, strong Nash equilibrium
does not exist in the presence of free riding incentive.
Next we define a weaker solution concept based on credibility of strategic

coalitional deviations: coalition-proof Nash equilibrium (Bernheim, Peleg,
and Whinston, 1987). Fix game G(N, {0, 1}, (ui)i∈N). For V ⊆ N , consider
a reduced game Ḡ(V, σN\V ) that is a strategic-form game with players in V
by letting players inN\V passive players inG(N, {0, 1}, (ui)i∈N), who always
play σN\V . A coalition-proof Nash equilibrium (CPNE) is recursively
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defined as follows:

(a) For any i ∈ N and any σ−i ∈ {0, 1}N\{i}, strategy σ∗i ∈ {0, 1} is a
CPNE of reduced game Ḡ({i}, σ−i) if there is no σ0i ∈ {0, 1} with
ui (σ

0
i, σ−i) > ui (σ

∗
i , σ−i).

(b) Pick any positive integer r < |N |. Let all CPNEs of a reduced game
Ḡ(W,σN\W ) be defined for any W ⊂ N with |W | ≤ r and any σN\W ∈
{0, 1}N\W . Then,

(i) for any V ⊆ N with |V | = r+1, σ∗V is self-enforcing in reduced
game Ḡ(V, σN\V ) if for every W ⊂ V we have σ∗W is a CPNE of
reduced game Ḡ(W,σ∗V \W ) of Ḡ(V, σN\V ), and

(ii) for any V ⊆ N with |V | = r+1, σ∗V is a CPNE of reduced game
Ḡ(V, σN\V ) if σ∗V is self-enforcing in reduced game Ḡ(V, σN\V ),
and there is no other self-enforcing σ0V such that ui

¡
σ0V , σN\V

¢
>

ui
¡
σ∗V , σN\V

¢
for every i ∈ V.

For any V ⊆ N and any strategy profile σ, let CPNE(G(V, σN\V )) denote
the set of CPNE strategy profiles on V for the game Ḡ(V, σN\V ). For any
strategy profile σ, a strategic coalitional deviation (V, σ0V ) from σ is credible
if σ0V ∈ CPNE(Ḡ(V, σN\V )). A CPNE is a strategy profile that is immune
to any credible strategic coalitional deviation.
We claim the following.

Conjecture. In both games without conflict and with conflict, an allocation
(S, a∗(S), u, uG) is stable if and only if G(N, {0, 1}, (ui)i∈N) with ui(σ(S)) =
ui for all i ∈ N . Moreover, S is maximal internally stable lobby. In games
without conflict, uG = 0, while in games with conflict, uG > 0.
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