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Abstract

This paper shows that more procyclical returns to scale in recent decades have

flattened the Phillips curve when conventional activity measures, such as the output

gap, labor gap, and labor share, are used as forcing variables. In contrast, the marginal

cost Phillips curve remains steep. Using a simple, intuitive model with a translog

production function, we illustrate a novel channel linking input complementarity and

procyclical returns to scale to the identified slopes of the Phillips curves. By utilizing the

estimated production functions and quantitative models, we emphasize the importance

of our mechanism for rationalizing the US inflation data.
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1 Introduction

Stable inflation dynamics and substantial business cycle fluctuations in the first two decades

of the 21st century sparked a reexamination of the relationship between inflation and eco-

nomic activity, i.e., the Phillips curve. A series of recent studies have documented two

divergent empirical results: the Phillips curves based on conventional measures of economic

activity, such as the output gap, unemployment gap, and labor shares, have flattened (Stock

and Watson, 2007, 2020; Del Negro et al., 2020; Inoue et al., 2024; Smith et al., 2025), and

the version based on marginal costs is steep and alive (Gagliardone et al., 2025). We propose

a theory that reconciles these two seemingly contradictory empirical patterns.1 Furthermore,

our quantitative analyses predict the growing significance of inflation expectations in under-

standing recent US inflation data and the Phillips curve, echoing the insights from Coibion

and Gorodnichenko (2015), Hazell et al. (2022), and Meeks and Monti (2023).

The commonly used Cobb–Douglas (Galí and Gertler, 1999; Sbordone, 2002; Eichen-

baum and Fisher, 2007) and constant elasticity of substitution (CES, Gagnon and Khan,

2005; McAdam and Willman, 2013) production functions in the study of Phillips curves fea-

ture constant returns to scale. Switching from those tightly parameterized functional forms

to a more flexible translog production function (Christensen et al., 1973; De Loecker and

Warzynski, 2012; Hyun et al., 2024) introduces cyclical variations in returns to scale around

their long-term value.2 This novel cyclical fluctuation in returns to scale introduces a wedge

between conventional measures of economic activities and marginal costs.3 Depending on

the cyclicality of this wedge, the slopes of the Phillips curves using conventional activity

1To capture variations in marginal costs, Gagliardone et al. (2025) uses average variable costs with explicit
consideration of potentially time-varying returns to scale. This cost structure is consistent with our theory,
which builds on the microfounded cyclicality of returns to scale.

2For studies assuming translog functional forms for the demand side of the economy, see, e.g., Christensen
et al. (1975); Bergin and Feenstra (2000); Feenstra (2003); Bilbiie et al. (2012); Lewis and Poilly (2012);
Bilbiie et al. (2014); Fujiwara and Matsuyama (2023). In a recent paper, Olivi et al. (2024) assumes gen-
eralized, nonhomothetic consumption utilities to investigate optimal monetary policy responses to sectoral
shocks. In a similar spirit, we generalize the supply block of standard models, rather than the demand block,
using translog production functions and focus on their implications for the Phillips curves and aggregate
inflation dynamics.

3The concept of time-varying returns to scale has recently been explored in relation to the decline in in-
formation technology prices (Lashkari et al., 2024), capital misallocation (Hubmer et al., 2025), and the
complementarity between labor and energy (Hyun et al., 2024); these studies employed a nonhomothetic
CES production function, an exogenously determined returns-to-scale process, and a translog production
function, respectively. In this paper, we utilize a translog function, following Hyun et al. (2024), to inves-
tigate the implications of endogenously cyclical returns to scale that arise from the complementarity and
substitutability among capital, skilled labor, and unskilled labor.
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measures as forcing variables could deviate from that of the marginal cost Phillips curve.

We show that returns to scale have been more procyclical in recent decades, and this change

has resulted in the flattening of the conventional Phillips curves. In contrast, the marginal

cost Phillips curve is still steep despite decades-long highly stable inflation before the re-

cent pandemic, exemplified by missing disinflation and reinflation episodes (Coibion and

Gorodnichenko, 2015; Ball and Mazumder, 2020).

We illustrate this mechanism using analytical expressions and graphical representations

based on a simple model that incorporates a translog production function in an otherwise

baseline New Keynesian model (see, e.g., Woodford, 2003; Galí, 2015). We show that the

translog form, which is a second-order approximation of a generic production function, is

general enough to nest the Cobb–Douglas and CES models within the log-linearization of

the equilibrium conditions. Furthermore, relaxing the restrictive Cobb–Douglas and CES

functional forms introduces cyclical fluctuations in returns to scale, consistent with the em-

pirical evidence for time-varying returns to scale in Hyun et al. (2024) and Hubmer et al.

(2025).4 When factor inputs are complementary, the productivity of one input increases

with the use of the other, and vice versa. Thus, when inputs are used more than usual, the

overall marginal productivity can rise, leading to an increase in returns to scale.

This cyclical fluctuation in returns to scale introduces a novel element in the marginal

costs of production in the translog model. In contrast, in the Cobb–Douglas and CES models,

the marginal costs consist only of total factor productivity (TFP) and factor prices such as

wages. Because conventional measures of economic activity, such as the output gap, labor

gap, and labor shares, primarily reflect factor prices and TFP, returns to scale become an

omitted variable in conventional Phillips curve regressions.5

The Phillips curves are often estimated using instruments for aggregate demand, such as

identified monetary policy shocks, to address potential endogeneity due to mismeasurement

and price markup shocks (see, e.g., Mavroeidis et al., 2014; Coibion et al., 2018; McLeay

and Tenreyro, 2020; Barnichon and Mesters, 2020, 2021; Inoue et al., 2024).6 However, even

4Hyun et al. (2024, section 2.3) documents an empirical pattern supporting the notion of procyclical returns
to scale based on industry-level panel data. Using detailed firm-level data, Hubmer et al. (2025, appendix
D) shows that more than half of the variance in returns to scale across firms and over time is driven by an
autoregressive component, leading to significantly persistent dynamics at business cycle frequencies.

5See, e.g., Galí and Gertler (1999); Sbordone (2002); Eichenbaum and Fisher (2007) for empirical studies
employing labor shares as a forcing variable in the Phillips curve.

6Other intriguing approaches in the literature include introducing alternative measures of inflation and slack
(Stock and Watson, 2010, 2020; Ball and Mazumder, 2011, 2019, 2020), using regional variations (Kiley,
2015; Hooper et al., 2020; McLeay and Tenreyro, 2020; Hazell et al., 2022; Fitzgerald et al., 2024), and
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when using instruments, the estimated slopes of the conventional Phillips curves could still

be affected by omitted variable biases if returns to scale are cyclical conditional on monetary

policy shocks. In contrast, the marginal cost Philips curve is not subject to this confounding

factor because marginal costs already account for variations in returns to scale. Therefore,

if the cyclicality of returns to scale and the resulting magnitude of the omitted variable bias

change over time, the conventional Phillips curves could flatten without a corresponding

change in the marginal cost Phillips curve.7

We examine the relevance of this novel mechanism to US inflation dynamics through the

lens of medium-scale dynamic stochastic general equilibrium (DSGE) models. We augment

the partial equilibrium, four-input, nested CES production model studied in Krusell et al.

(2000) and Ohanian et al. (2023) with a normalized translog production function proposed

by Hyun et al. (2024). Firms use structure, equipment, skilled labor, and unskilled labor

for production. We combine this production block of the economy with standard elements

of quantitative New Keynesian general equilibrium models known to be useful in explaining

US time series data, such as sticky prices and wages, fixed costs of production, investment

adjustment costs, costly capacity utilization, and consumption habits (see, e.g., Christiano

et al., 2005; Smets and Wouters, 2007).

We consider three models based on the Cobb–Douglas, nested CES, and translog pro-

duction functions. We estimate these models separately for two different time periods using

an early sample (1966-99) and a late sample (2000-19). To examine structural changes, we

focus on production function parameters, the cyclicality of returns to scale, and the slopes of

the Phillips curves with different forcing variables. When estimating the models, we employ

additional data to the standard aggregate time series in light of the two types of capital

(structures and equipment) and labor (skilled and unskilled) in the models. Specifically,

we use equipment stock, relative labor hours and wage rates between skilled and unskilled

workers.

Our quantitative results are summarized as follows. First, the translog model better

relying on sectoral and firm-level data (Imbs et al., 2011; Gagliardone et al., 2025). In our quantitative
analyses, we take a different route of structural model-based inferences following An and Schorfheide (2007);
Schorfheide (2011); Del Negro et al. (2020). This full-information method is complementary to the limited
information approaches mentioned above.

7This rationalization of the flattening of the Phillips curves for conventional measures of (inverse) slack
echoes the findings of Atkeson and Ohanian (2001) that the relationship between inflation and measures of
slack may not be stable. This instability could be the case in our framework even when the slope of the
marginal cost Phillips curve is stable, as shown in Section 2.
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matches the US macroeconomic data than the other models. Second, when estimating the

unrestricted translog model, we reject the parameter restrictions imposed by the Cobb–

Douglas and nested CES models. Third, by comparing the estimated models using the pre-

and post-2000 data, we find that the translog model can jointly replicate the steep marginal

cost Phillips curve and the flattening of the conventional Phillips curves. Fourth, the mecha-

nism connecting the cyclical returns to scale to marginal costs and inflation, embedded in the

translog model, plays a crucial role in this result. In this analysis, we capture the potential

effects of other structural changes on the slopes of the Phillips curves via variation in the

Calvo price stickiness parameter. This reduced-form estimate indicates that the contribution

of alternative mechanisms to the flattening of the Phillips curves is modest and statistically

insignificant. In contrast, the Cobb–Douglas and nested CES models without cyclical re-

turns to scale rely on unrealistically sticky prices and quite flat Phillips curves to match

the stable inflation data after 2000. Furthermore, the translog model predicts the increased

importance of inflation expectations in understanding inflation data and the Phillips curve.

Finally, the historical decomposition of pandemic-era inflation data using the translog model

suggests that high inflation in 2021 and 2022 was primarily driven by loose monetary policies

and supply-side disturbances. This result emphasizes that monetary policies are still highly

relevant to inflation despite the recent flattening of conventional Phillips curves. In contrast,

the Cobb–Douglas and CES models do not predict this policy implication. Given their quite

flat Phillips curves, these models primarily rely on price markup shocks and shifts in the

Phillips curves to explain inflation fluctuations.

We also estimate production function parameters using industry-level panel data and

instrumental variable (IV) methods. Our estimates using the pre- and post-2000 data align

with the structural estimation results based on the translog DSGE models, providing addi-

tional empirical evidence of stronger input complementarity at the aggregate level in recent

decades than in earlier decades (see Appendix D).8

The remainder of this paper is organized as follows. Section 2 explains the mechanism

behind the flattening of the Phillips curves when conventional measures of activity, such as

8We use the first-order conditions (FOCs) for the firm’s cost-minimization problem following Gandhi et al.
(2020), Hubmer et al. (2025), and Hyun et al. (2024). This condition establishes a relationship between
the marginal product of an input (e.g., skilled labor) and its price (e.g., the skilled wage rate). Using
this condition, we identify the shape of the production function associated with the input considered. We
utilize the time series and cross-sectional variations in (lagged) input prices as IVs to further enhance the
identification, following Doraszelski and Jaumandreu (2013, 2018). See Appendix D for details.
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the output gap, labor gap, and labor shares, are used as forcing variables. Using a simple

tractable model with a translog production function, we illustrate the underlying intuition

and introduce a novel channel linking input complementarity and procyclical returns to scale

to the identified slopes of the Phillips curves. Building on this insight, Section 3 constructs

a medium-scale DSGE model with a translog production function for quantitative analyses.

Through the lens of the estimated model, we investigate the slopes of the Phillips curves;

the relationships among the returns to scale, marginal costs, and inflation; and the inflation

dynamics under the model and during the pandemic period. Section 4 concludes the paper.

2 Illustrative Model

This section illustrates the mechanism connecting input complementarity and cyclical re-

turns to scale with the slopes of the Phillips curves. This illustration is based on a flexible

translog production function (Christensen et al., 1973; Hyun et al., 2024) incorporated into

an otherwise baseline New Keynesian model (see, e.g., Woodford, 2003; Galí, 2015). This

simple tractable model facilitates an intuitive exposition of the novel channel linking input

complementarity to the slopes of the Phillips curves.

We describe the model below, focusing on new terms in equilibrium conditions arising

from more general production functions than Cobb–Douglas functions. The derivations of

standard model elements are kept brief.

Firms. Intermediate goods and their producers are indexed by i ∈ [0, 1]. Firms operate

in a monopolistically competitive environment. The final goods are produced by combining

intermediate goods in a Dixit and Stiglitz (1977) manner. Price-setting friction of the Calvo

(1983) type leads to the following New Keynesian Phillips curve in log-linearization:

π̂t = βEt[π̂t+1] + κm̂ct + εpt , (2.1)

where π, mc, and εp represent inflation, real marginal costs, and an exogenous component

in price markup, respectively. Hats are used to denote log deviations from the steady-state

values of the corresponding variables. The slope of the marginal cost Phillips curve, κ, is

given by (1−βζ)(1−ζ)
ζ

, where β is the discount factor and 1 − ζ is the probability of resetting

the price of an intermediate good in each period.

Next, we discuss the production function. We drop the firm and time indices, i and
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Table 1: Comparison of different production functions

Cobb–Douglas CES Translog

Production
function

y = lα1

1 lα2

2
y
ȳ
=
[

α1

Ä
l1
l̄1

äφ
+ α2

Ä
l2
l̄2

äφ]1/φ
y = f(l1, l2)

Log deviation
form

ŷ = α1 l̂1 + α2 l̂2 ŷ = α1 l̂1 + α2 l̂2 +

0.5α1α2φ
î
(l̂1)2 − 2l̂1 l̂2 + (l̂2)2

ó ŷ = α1 l̂1 + α2 l̂2 + 0.5β11(l̂1)2 +

β12 l̂1 l̂2 + 0.5β22(l̂2)2

Elast. of output
w.r.t. lj

∂ log y
∂ log lj

= αj
∂ log y
∂ log lj

= αj + α1α2φ(l̂j − l̂k), j ̸= k ∂ log y
∂ log lj

= αj + βjj l̂j + βjk l̂k, j ̸= k

Returns to scale rts = 1 rts = 1 rts = 1+(β11+β12)l̂1+(β12+β22)l̂2

Notes: We ignore the TFP term, εa, in this table. The returns to scale are defined as the scale elasticity, i.e.,
∂ log f(λl1,λl2)

∂ log λ
|λ=1. The CES production function is written in the deviation form following Cantore and Levine (2012).

For the CES and translog functions, we ignore the higher-order terms that degenerate when the equilibrium conditions are
log-linearized.

t, when they are unnecessary. Suppose that intermediate goods are produced using two

types of labor, l1 and l2, such that y = exp (εa) f(l1, l2), where εa represents an exogenously

determined level of TFP. A generic production function, f , increases with each input around

the steady state, (l̄1, l̄2), where a bar denotes the steady-state value of a variable. We

introduce two types of labor because the concept of input complementarity is not natural

when a production function has only a single input. By focusing on a symmetric equilibrium,

where l1 = l2, we write the equilibrium conditions in terms of the aggregate labor, l = l1+ l2,

similar to the baseline New Keynesian models. Note that this modeling assumption is only

for illustrative purposes. We examine the input complementarity and substitutability among

equipment, skilled labor, and unskilled labor in Section 3 for the quantitative analyses.

We consider a second-order Taylor expansion of f in the logarithm, ignoring the higher-

order terms that degenerate when the equilibrium conditions are log-linearized. Suppose

that αj =
∂ log y
∂ log lj

= 0.5 in the steady state for j = 1, 2. Similarly, the second-order derivatives

are denoted by βjk =
∂2 log y

∂ log lj∂ log lk
in the steady state for j, k = 1, 2. Thus:

ŷ = εa + α1l̂1 + α2l̂2 + 0.5β11(l̂1)
2 + β12l̂1l̂2 + 0.5β22(l̂2)

2. (2.2)

Clearly, at the first order, f is proportional to a conventional Cobb–Douglas production

function, lα1
1 lα2

2 , or l because of the symmetry (l1 = l2). However, the novelty in our theory

arises from the second-order properties of the production function, captured by the translog

parameters, βjk.
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To illustrate the workings of the translog parameters, we compare Equation (2.2) with

the Cobb–Douglas and CES production functions. Table 1 shows the key differences among

the three functions at the first and second orders, while omitting the TFP and irrelevant

higher-order terms. The Cobb–Douglas function is log-linear. Thus, the elasticity of output

with respect to each input, αj, and the returns to scale, α1 + α2, are constant. For the CES

function, one more parameter, φ ≤ 1, governs the coefficients on the second-order terms.

At the second order, we can convert the CES function to a translog form with parameter

restrictions such that β11 = β22 = α1α2φ and β12 = −β11. When φ < 0, the two inputs

are complementary in the sense that β12 > 0. In this case, the elasticity of the output with

respect to l1 increases in l2, and vice versa. However, ∂ log y
∂ log l1

decreases in l1, balancing the

productivity gain from the input complementarity and l2 and making the returns to scale

constant. The translog specification relaxes the restrictions on βjks. Note that without the

restriction that β11 = −β12, the input complementarity (β12 > 0) does not necessarily imply

that ∂ log y
∂ log l1

decreases in l1.

One of the most intriguing implications of this property is that the returns to scale can

vary over time under the translog production function. When defined as the scale elasticity,
∂ log f(λl1,λl2)

∂ log λ
|λ=1, the returns to scale are given by the sum of the elasticity of output:

rtst = 1 + (β11 + β12)l̂1t + (β12 + β22)l̂2t

= 1 + (β11 + 2β12 + β22)l̂t, (2.3)

where the second line uses the symmetry between the two types of labor. For example,

suppose that β11 = β22 = 0, as in the Cobb–Douglas case, the two types of labor are

complementary (β12 > 0), and the aggregate labor is procyclical. In this situation, the

returns to scale are also procyclical, fluctuating around the long-term value of one (see

also Hyun et al., 2024, for empirical evidence for procyclical returns to scale). Thus, the

production function (2.2) features constant returns to scale in the long run but allows for

short-run variations. In contrast, for the Cobb–Douglas and CES functions, rtst simplifies

to one because the parameter restrictions imply that β11+β12 = β12+β22 = 0 in both cases.

To examine the effects of time-varying returns to scale on marginal costs, we consider

the cost minimization problem of an intermediate goods producer:

min
l1,l2

w1l1 + w2l2 −mc [exp(εa)f(l1, l2)− y] ,
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where wj is the real wage rate for type j labor for j = 1, 2. The FOCs imply that, in

log-linearization, the aggregate marginal costs equal:

m̂ct = ŵt
︸︷︷︸

factor prices

− εat
︸︷︷︸

tfp

− ”rtst
︸︷︷︸

returns to scale

, (2.4)

where wt is the aggregate wage rate and ”rtst = (β11 + 2β12 + β22)l̂t.
9 The first two terms in

Equation (2.4) reflect the average variable costs, (w1l1 + w2l2)/y, based on the factor prices

and TFP. These terms correspond to the marginal costs in the baseline New Keynesian

models with the Cobb–Douglas or CES production functions that assume constant returns to

scale. In contrast, the translog specification generates a novel element–the cyclical returns to

scale–in the marginal cost. Again, suppose that aggregate labor is procyclical, β11 = β12 = 0,

and β12 > 0. In this case, the marginal productivity gain from the input complementarity,

along with a larger-than-usual labor input (l̂ > 0), decreases the marginal costs in expansions.

This mechanism is captured by the procyclical variation in the returns to scale in Equation

(2.4).10

Households. To further simplify the expression for the marginal costs in Equation (2.4), we

specify the household side of the economy. The period utility function of the type j worker is

given by log cj −
h
1+1/σl
j

1+1/σl
, where cj and hj are the consumption and hours of a type j worker,

respectively. The aggregate type j labor input, lj, equals 0.5hj because the population share

of each type is 0.5. σl is the Frisch elasticity of the labor supply. Suppose that the labor

market is competitive. Using the symmetry, the market clearing condition (y = c), and the

labor supply schedule (-ĉj + ŵj =
1
σl
ĥj for j = 1, 2), it follows that ŵ− εa = (1+ 1

σl
)l̂. Thus,

Equation (2.4) implies the following:

m̂ct =

Å
1 +

1

σl

ã
l̂t −”rtst =

ï
1 +

1

σl
− (β11 + 2β12 + β22)

ò
l̂t. (2.5)

Phillips curves. From the marginal cost Phillips curve (2.1) and the expression for the

9The FOCs are given by wj = mc exp(εa)fj = mc exp(εa) ∂ log f
∂ log lj

f
lj

= mc y
lj

∂ log f
∂ log lj

for j = 1, 2. Because of the

symmetry, the aggregate wage rate, w, equals w1 = w2 and, similarly, l̂ = l̂1 = l̂2. Then, Equation (2.4)

follows from the fact that ŷ = εa + l̂ in log-linearization.
10Gagliardone et al. (2025, equation (14)) similarly assumes that the marginal costs depend on the average

variable costs and the returns to scale.
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marginal costs (2.5), we obtain the following labor Phillips curve:

π̂t = βEt[π̂t+1] + κm̂ct + εpt

= βEt[π̂t+1] + κ

ï
1 +

1

σl
− (β11 + 2β12 + β22)

ò
l̂t + εpt .

Suppose that β11 = β22 = 0, as in the Cobb–Douglas model. Then, according to the above

equation, stronger input complementarity (β12 > 0) and the resulting procyclical returns to

scale yield flatter labor Phillips curves. The following proposition and remark formalize this

observation.

Proposition 1 (Phillips curves with cyclical returns to scale). Assume the model structure

discussed in this section. For different measures of economic activity, such as the marginal

cost, output gap, labor gap, and labor shares, the following hold:

marginal cost Phillips curve: π̂t = βEt[π̂t+1] + κm̂ct + εpt ,

output gap Phillips curve: π̂t = βEt[π̂t+1] + κ(1 + 1/σl)output gapt + εpt − κ”rtst,
labor gap Phillips curve: π̂t = βEt[π̂t+1] + κ(1 + 1/σl)labor gapt + εpt − κ”rtst,

labor share Phillips curve: π̂t = βEt[π̂t+1] + κ⁄�labor sharet + εpt − κ”rtst.

Proof. We use ∗ to denote variables under flexible price equilibrium. Note that m̂c∗t = 0.

Thus, Equation (2.5) implies that l̂∗t = 0. Furthermore, output gapt = ŷt − ŷ∗t = (εat + l̂t)−

(εat + l̂∗t ) = l̂t. Similarly, labor gapt = l̂t − l̂∗t = l̂t. Then, Equation (2.5) and the marginal

cost Phillips curve yield the output gap and labor gap Phillips curves above. Finally, for

the labor share Phillips curve, note that ⁄�labor sharet = ŵt + l̂t − ŷt = ŵt − εat = m̂ct +”rtst
because of Equation (2.4).

Remark 1. In practice, when estimating a Phillips curve, IVs that are orthogonal to εpt

can be used to address potential endogeneity arising from supply-side disturbances (see

Mavroeidis et al., 2014; Coibion et al., 2018; Barnichon and Mesters, 2020, 2021; McLeay

and Tenreyro, 2020; Inoue et al., 2024). However, even in this case, if conventional measures

of economic activity other than the marginal costs are used as forcing variables, the returns

to scale term might behave as an omitted variable in regression equations. If the activity

measure is procyclical conditional on the variations captured by the instruments, the pro-

cyclical returns to scale could induce a downward omitted variable bias in the estimated
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slope of the Phillips curves. Finally, if the returns to scale have become more procyclical

in recent decades, the omitted variable bias in the identified slope would be more negative,

leading to the flattening of the Phillips curves when the conventional activity measures are

employed. Note that this prediction holds even when the “true” slope of the marginal cost

Phillips curve, κ, remains large (see Gagliardone et al., 2025). Furthermore, this prediction

is supported by data; we show stronger input complementarity and more procyclical returns

to scale in recent decades than in earlier decades in Section 3 and Appendix D.

The downward omitted variable bias in the identified slope coincides with a decrease in

the elasticity of marginal costs with respect to the conventional activity measures, such as the

output gap, ∂m̂c
∂output gap

. In the translog model, the procyclical returns to scale, represented

by a positive value of β11 + 2β12 + β22, decrease the abovementioned elasticity: ∂m̂c
∂output gap

=

1 + 1
σl

− (β11 + 2β12 + β22). Note that the pass-through of the output gap into inflation,
∂π̂

∂output gap
, is determined by the slope of the marginal cost Phillips curve, ∂π̂

∂m̂c
= κ, and

the elasticity of marginal costs with respect to the output gap, ∂m̂c
∂output gap

. Thus, a small
∂m̂c

∂output gap
can result in a weak pass-through of the output gap into inflation even when

the marginal cost Phillips curve is steep. This theoretical prediction provides an explicit

microfoundation for the reduced-form, empirical results that ∂m̂c
∂output gap

is less than one in

recent periods in Gagliardone et al. (2025).

Figure 1 graphically illustrates this mechanism. Assume that σl = ∞ for exposition

so that the Phillips curves in Proposition 1 share the same slope, κ. The Phillips curve,

conditional on the expected inflation and cost-push shocks, is upward sloping on the economic

activity and inflation planes. Thus, the Phillips curve serves as the aggregate supply curve,

labeled AS in Figure 1. Note that estimating the slope of this curve is analogous to identifying

the slope of the supply curve in the supply–demand simultaneous equation system. As

emphasized by McLeay and Tenreyro (2020), the data consist of the equilibrium pairs of

inflation and economic activity levels, such as point E. To properly identify κ, we need to

use demand shifters, such as the monetary policy shocks employed in Barnichon and Mesters

(2020, 2021), as instruments. The identification assumption is that the AD curve shifts to

AD′, whereas the AS curve remains the same; therefore, comparing the two equilibrium

points (E and F ) allows econometricians to estimate κ. However, Proposition 1 implies that

the AS curve could shift downward to AS ′ in response to expansionary monetary policy

shocks when conventional measures of economic activity, such as the output gap, labor

gap, and labor share, are employed and the returns to scale are procyclical conditional on
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economic activity

inflation

E

F

GG′

AD

AD′
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Identified AS

Figure 1: Graphical illustration of the Phillips curve flattening

monetary policy shocks. The increase in”rtst works as an endogenous supply shifter, driving

the economy to point G rather than F . Thus, the identified AS curve, denoted by the purple

dashed line connecting points E and G in Figure 1, could be flatter than the true underlying

AS curve.

Note that in the (m̂c, π̂) pair, the equilibrium moves from point E to G′ because”rts does

not appear in the marginal cost Phillips curve. However, for a conventional forcing variable,

e.g., the labor gap, the new equilibrium is represented by point G. That is, the labor gap

increases more than the marginal costs do, and the difference between the two, the distance

between points G′ and G, reflects the increase in returns to scale (see also the first equality

in Equation (2.5)). If this mechanism has become more effective in recent decades, the AS

curve would shift further downward. Then, econometricians can observe the flattening of the

conventional Phillips curves even when the underlying slope, κ, remains largely unchanged.

Remark 2. A specific supply-side effect of demand disturbances propagating through the

cyclical returns to scale is central to the above mechanism for the flattening of the conven-

tional Phillips curves without an accompanying decrease in the slope of the marginal cost

Phillips curve. Relatedly, aggregate demand might affect the supply block of the economy

11



through other channels, such as endogenous R&D (Comin and Gertler, 2006; Anzoategui

et al., 2019; Bianchi et al., 2019; Okada, 2022; Ma and Zimmermann, 2023; Antolin-Diaz

and Surico, 2024; Cloyne et al., 2024), misallocation (Basu and Fernald, 2002; Eisfeldt and

Rampini, 2006; Hsieh and Klenow, 2009; Beaudry and Portier, 2014; Alam, 2020; Baqaee

et al., 2024), firm dynamics (Smirnyagin, 2023; Fujiwara and Matsuyama, 2023), search effort

(Qiu and Ríos-Rull, 2022; Bai et al., 2024b), increasing returns to scale (Hall, 1990; Basu and

Fernald, 1997), and capacity utilization (Basu, 1996; Boehm and Pandalai-Nayar, 2022). If

the effects of these mechanisms have recently become more procyclical, the identified Phillips

curves could be flatter than previous curves for similar reasons.

A key distinction between our mechanism and other prominent supply-side channels of

monetary policy is that the cyclical returns to scale do not affect TFP at the first order; the

TFP in our model (εat ) is exogenous and equal to the Solow residual at the first order. In con-

trast, several other supply-side mechanisms described above could directly affect measured

aggregate TFP (see also Ma and Zimmermann, 2023; Jordà et al., 2023).

Additionally, in Appendix A, we compare our translog framework with several other

models that have nonconstant returns to scale. We show that standard models with time-

invariant, increasing returns to scale (see, e.g., Baxter and King, 1991; Benhabib and Farmer,

1994) do not yield a wedge between marginal costs and conventional measures of economic

activity. In contrast, a Cobb–Douglas production function with time-varying elasticities of

output with respect to each input, as in, e.g., yit = exp(εat )l
α1t
1,itl

α2t
2,it, can generate procyclical

returns to scale. However, such models feature corresponding procyclical fluctuations in the

measured TFP, unlike our translog model.

Given this consideration, we empirically investigate how TFP responds to monetary pol-

icy shocks in the pre- and post-2000 samples (see Appendix C.3 for details). We document

that the level of TFP responded procyclically to monetary policy shocks in the early sam-

ple. However, in the later sample, the impulse responses are close to zero and statistically

insignificant. Thus, we find no significant evidence of increasingly procyclical TFP responses

to monetary policy shocks in recent periods. To be clear, we do not argue that those other

supply-side mechanisms are weak. Rather, our findings suggest they have not strengthened

enough in the past two to three decades to drive the observed flattening of the Phillips

curves. Note that our empirical results on TFP do not contradict our proposed explanation

on the basis of the procyclical returns to scale because the returns to scale can endogenously

vary over time without affecting εat in our framework.
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Remark 3. As an alternative to Equation (2.2), we can assume a normalized translog form

proposed by Hyun et al. (2024):

yit = exp(εat )l
α1
1,itl

α2
2,it

︸ ︷︷ ︸

Cobb–Douglas

× exp (s.o.t.it)
︸ ︷︷ ︸

Translog terms

,

where s.o.t.it = β11l̂1,itl̂1t + β12l̂1,itl̂2t + β21l̂2,itl̂1t + β22l̂2,itl̂2t, (2.6)

and β12 = β21. This production function for firm i has the following properties: First,

the second-order term, s.o.t,it, degenerates in the steady state because the log deviation

terms are zero, l̂j,it = l̂jt = 0 for j = 1, 2. Thus, the steady state of the model is identical

to that of the Cobb–Douglas model and, in particular, does not depend on the translog

parameters, {βjk : j, k = 1, 2}. This property allows us to focus on the business cycle

implications of input complementarity and cyclical returns to scale without altering the

long-term predictions of the model. Second, the production functions (2.2) and (2.6) yield

the same aggregate equilibrium conditions in log-linearization. Furthermore, the production

function in a deviation form from the steady state is given by:

yit
ȳ

= exp(εat )

Å
l1,it
l̄1

ãα1t
Å
l2,it
l̄2

ãα2t

,

where α1t = α1 + β11l̂1t + β12l̂2t, α2t = α2 + β21l̂1t + β22l̂2t, and a bar denotes the steady-

state values. Thus, the translog structure induces a potentially time-varying elasticity of

output with respect to each input, α1t and α2t, leading to time-varying returns to scale,

rtst = α1t+α2t. Finally, the production function (2.6) does not allow each firm to choose its

returns to scale, reflected by the fact that α1t and α2t are exogenous from firm i’s perspective.

This property simplifies the second-order conditions for firm i’s cost minimization problem,

similar to the Cobb–Douglas model (see Appendix B).11

11Furthermore, because rtst is not a variable that pertains to individual firms, the omitted variable in the
Phillips curve regressions due to rtst could be (partially) absorbed by time (or more granular) fixed effects
when disaggregated data are utilized for identification. Relatedly, Gagliardone et al. (2025) controls for
the returns to scale (i) by using industry-by-time fixed effects at the granular industry level (table 2,
columns (c)-(d)) and (ii) by explicitly modeling and estimating translog production functions for each
sector, following the estimation methods in Lenzu et al. (2024) (table A.3).
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3 Quantitative Analyses

This section constructs a medium-scale DSGE model with a translog production function for

quantitative analyses. We estimate the model parameters using Bayesian methods and show

that the translog model fits the US macroeconomic data better than the Cobb–Douglas and

nested CES models do. By comparing the estimated models using pre- and post-2000 data,

we find the following: (i) The translog model successfully replicates both a steep marginal

cost Phillips curve and the flattening of the conventional Phillips curves. (ii) In doing so, our

mechanism plays a crucial role by connecting the cyclical returns to scale, marginal costs,

and inflation. (iii) The translog model also predicts the increased importance of the expected

inflation in the US inflation dynamics in recent periods. (iv) The historical decomposition of

the pandemic-era inflation data implies that high inflation in 2021 and 2022 was primarily

driven by loose monetary policy as well as supply-side shocks.

3.1 Model

We augment the partial equilibrium, four-input, nested CES model of production described

in Krusell et al. (2000) and Ohanian et al. (2023) with a translog production function. We

combine this novel framework for the supply block of the economy with a quantitative New

Keynesian general equilibrium model. Firms use structure, equipment, skilled labor, and un-

skilled labor in production. Following Christiano et al. (2005), Smets and Wouters (2007),

and Justiniano et al. (2010), the model features standard frictions known to be useful for

explaining the US aggregate data, such as sticky prices and wages, fixed costs of production,

investment adjustment costs, costly capacity utilization, and external consumption habits.

The standard structure in the other parts of the model allows us to emphasize the input com-

plementarity and substitution structure, the workings of the translog production function,

the resulting cyclical returns to scale, and their contribution to the slopes of the Phillips

curves.

We employ a translog production function for our baseline quantitative analyses for sev-

eral reasons. First, the translog framework naturally provides a microfoundation for cyclical

returns to scale, as illustrated in Section 2. Second, translog parameters have a struc-

tural interpretation as a semi-elasticity of output elasticity with respect to each input (e.g.,

β12 = ∂
∂ log l2

Ä
∂ log y
∂ log l1

ä
in Equation (2.2)), informing on the degree of input complementarity.

Third, we show in Section 3.2.3 that the data used for estimation provide sufficient infor-
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mation about the degree of input complementarity, resulting in reasonably precise translog

parameter estimates. This is the case despite the fact that a multi-factor translog production

function introduces several additional parameters to estimate compared with the standard

Cobb–Douglas function. Finally, as a robustness check, we further examine two simpler mod-

els in which a smaller number of parameters disciplines the cyclicality of returns to scale.

Specifically, we consider (i) a model where the returns to scale co-move with the output gap,

with its sensitivity governed by a single parameter, and (ii) a two-factor model à la Smets

and Wouters (2007) with three translog parameters. The cyclicality of the returns to scale

and its implications for the slopes of the Phillips curves largely remain similar, although

the translog model is statistically significantly preferred over the simpler output gap-based

model (See Appendices C.4 and C.5).

Below, we briefly introduce the translog model with a focus on the novel elements. See

Appendix B for additional details.

3.1.1 Firms

The final goods are produced by combining intermediate goods, indexed by i ∈ [0, 1], via a

Kimball (1995) aggregator.12 Intermediate goods producers can randomly reset their prices

with a probability of 1− ζp in each period. As a result, the model features a New Keynesian

price Phillips curve, which is examined in detail in Section 3.3.

The production function for the intermediate good i is given by:

Yt(i) = exp(εat )[Kst(i)]
αks [Ket(i)]

αke [γtLst(i)]
αs [γtLut(i)]

αu × exp(s.o.t.it)− γtυ, (3.1)

s.o.t.it =
Ä
k̂i,et, l̂i,st, l̂i,ut

ä
β
Ä
k̂et, l̂st, l̂ut

ä′
,

where Kst(i), Ket(i), Lst(i), and Lut(i) are structures, capital equipment services, skilled

labor hours, and unskilled labor hours, respectively. γ is the (gross) growth rate on the

balanced growth path (BGP). υ represents the fixed cost in production. The profit is zero

on the BGP, (Φ − 1)Ȳt = γtυ, where Φ and Ȳt are the gross price markup and output on

12There are several modeling strategies for real rigidities, such as quasi-kinked demand curves (Kimball,
1995), firm-specific capital (Eichenbaum and Fisher, 2007), industry-specific factor markets (Woodford,
2003, 2005), and roundabout production networks (Basu, 1995). We employ the quasi-kinked demand
curves following Smets and Wouters (2007). The effects of other potential mechanisms may be incorporated
into the estimated slope of the price Phillips curve via the Calvo price-stickiness parameter in a reduced-
form manner.
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the BGP, respectively. The aggregate productivity, εat , follows an exogenous process. We

assume that αks + αke + αs + αu = 1.

Similar to Equation (2.6) in the illustrative model, we assume a normalized translog

structure for the second-order terms following Hyun et al. (2024). We use bars and hats to

denote the BGP values and log deviations from these values, respectively; k̂i,et = log
Ä
Ket(i)

K̄et

ä
,

l̂i,st = log
Ä
Lst(i)

L̄st

ä
, l̂i,ut = log

Ä
Lut(i)

L̄ut

ä
, k̂et = log

Ä
Ket

K̄et

ä
, l̂st = log

Ä
Lst

L̄st

ä
, and l̂ut = log

Ä
Lut

L̄ut

ä
,

where Ket, Lst, and Lut are aggregate equipment services, skilled labor hours, and unskilled

labor hours, respectively. β is a symmetric matrix consisting of the six translog parameters:

β =

Ü
βkk βks βku

βks βss βsu

βku βsu βuu

ê

.

We assume that structures appear only in the first-order term in the production function

following Krusell et al. (2000) and Ohanian et al. (2023). However, arbitrary degrees of input

complementarity and substitutability among the other three factors, represented by β, are

allowed by adopting a translog functional form.

Firms use four inputs, Kst(i), Ket(i), Lst(i), and Lut(i), to minimize the production cost,

RstKst(i) +RetKet(i) +WstLst(i) +WutLut(i), where Rst, Ret, Wst, and Wut are the nominal

rental rate of structures, rental rate of equipment services, skilled wage rate, and unskilled

wage rate, respectively. MCt(i) is the Lagrange multiplier associated with the constraint

Yt(i) ≥ Y , representing nominal marginal costs.

The FOCs for this cost-minimization problem are as follows:

Kst(i) :
RstKst(i)

PtỸt(i)
= mct(i)αks, (3.2)

Ket(i) :
RetKet(i)

PtỸt(i)
= mct(i)αke,t, αke,t ≡

Ä
αke + βkkk̂et + βksl̂st + βkul̂ut

ä
, (3.3)

Lst(i) :
WstLst(i)

PtỸt(i)
= mct(i)αst, αst ≡

Ä
αs + βksk̂et + βssl̂st + βsul̂ut

ä
, (3.4)

Lut(i) :
WutLut(i)

PtỸt(i)
= mct(i)αut, αut ≡

Ä
αu + βkuk̂et + βsul̂st + βuul̂ut

ä
, (3.5)

where Ỹt(i) = Yt(i)+ γtυ, Pt is the aggregate price level, and mct(i) represents real marginal

costs. Thus, the factor income shares, adjusted by fixed costs in production, are proportional
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to marginal costs times the elasticity of Ỹt(i) with respect to each input. Note that αke,t,

αst, and αut are time-varying and endogenously determined. Furthermore, although the

second-order term in the production function (3.1) vanishes in log linearization, the translog

parameters appear in the log-linearized FOCs and influence firms’ factor input decisions.

3.1.2 Households

A representative household consists of a continuum of members indexed by j ∈ [0, 1]. In

each period, χt ∈ (0, 1) fraction of members are skilled workers, and the remaining 1 − χt

fraction of workers are unskilled, where χt follows an exogenous process. We assume that

members with j ∈ [0, 1− χt) and j ∈ [1− χt, 1] are unskilled and skilled, respectively.

The period utility function of member j is given by
A1j

1−σc

(
Ct(j)−hCt−1

)1−σc
exp
Ä
A2j

σc−1
1+σl

Ht(j)
1+σl
ä
,

where Ct(j) is consumption, hCt−1 represents an external consumption habit, and Ht(j) is

labor hours. The preference parameters, A1j and A2j, vary across worker types. For skilled

workers, A1j = A2j = 1. For unskilled workers, A1j = A1 and A2j = A2, where the values of

A1 and A2 are chosen to maintain the “representativeness” of agents such that consumption

and labor hours are the same across the worker types on the BGP. This property allows us

to deviate minimally from the representative agent framework. However, Ct(j) and Ht(j)

can vary across types in the short term.

A family head solves the resource allocation and portfolio choice problems by deciding

the consumption (Ct(j)) of the family members, family-level risk-free nominal bonds (Bt),

structure investment (Ist), equipment investment (Iet), structure stock (K̃st), equipment

stock (K̃et), and equipment utilization rate (Zt) to maximize the following utilitarian welfare

function:

E0

∞∑

t=0

βt
∫ 1

0

ï
A1j

1

1− σc

(
Ct(j)− hCt−1

)1−σc
exp

Å
A2j

σc − 1

1 + σl
Ht(j)

1+σl

ãò
dj

subject to the budget constraint as follows:

∫

Ct(j) dj + Ist + Iet +
Bt

exp(εbt)RtPt

+ Tt (3.6)

≤
Bt−1

Pt

+
Wst

∫
1

1−χt

Ht(j) dj

Pt

+
Wut

∫
1−χt

0
Ht(j) dj

Pt

+
RstK̃s,t−1

Pt

+
RetZtK̃e,t−1

Pt

− a(Zt)K̃e,t−1 +
Π

w

t

Pt

+
Πt

Pt

and the capital accumulation equations for structure and equipment: K̃st = (1−δs)K̃s,t−1+
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î
1− Ss

Ä
Ist

Is,t−1

äó
Ist and K̃et = (1− δe)K̃e,t−1 + exp(εit)

î
1− Se

Ä
Iet

Ie,t−1

äó
Iet. Rt is the (gross)

nominal returns to bonds. εbt denotes an exogenous premium in returns to bonds, reflecting

a structural shock to the demand for safe and liquid assets (Fisher, 2015). Tt represents

lump-sum taxes. Πw

t
and Πt are the profits of labor unions and firms paid out as dividends.

a(·) reflects costly capacity utilization. We assume that a(Z̄) = 0 and Z̄ = 1, where Z̄ is the

steady-state level of utilization. Following Smets and Wouters (2007), we reparametrize
a′(Z̄)

a′′(Z̄)
as 1−ψ

ψ
. The amount of structure and equipment services households can rent to

firms is given by Kst = K̃s,t−1 and Ket = ZtK̃e,t−1, respectively. Ss(·) and Se(·) are the

investment adjustment costs for structure and equipment such that Ss(γ) = Se(γ) = 0,

S ′
s(γ) = S ′

e(γ) = 0, S ′′
s (γ) = ϕs > 0, and S ′′

e (γ) = ϕe > 0. εit is an exogenously determined

(equipment) investment-specific productivity.

3.1.3 Other Components of the Model

Households relegate labor supply decisions to labor market institutions. The skilled labor

supply from households is differentiated and channeled to skilled labor unions. These labor

unions set nominal wages for each differentiated skilled labor service subject to Calvo-type

frictions, where the resetting probability in each period is denoted by 1 − ζs. The differ-

entiated labor services are combined into composite skilled labor services using a Kimball

aggregator and sold to intermediate goods producers. This structure yields a New Keynesian

skilled wage Phillips curve. We introduce a similar labor market structure for unskilled la-

bor. With a probability of ζu, the unskilled labor unions cannot adjust wages in each period.

The model similarly features a New Keynesian unskilled wage Phillips curve. The skilled

and unskilled wage markup shocks have independent ARMA(1,1) processes, following Smets

and Wouters (2007).

The total supply of unskilled labor hours to intermediate goods producers is given

by
∫ 1−χt

0
Ht(j) dj. Thus, the market for unskilled labor clears when Lut =

∫
Lut(i)di =

∫ 1−χt

0
Ht(j) dj. Similarly, we have Lst =

∫
Lst(i)di =

∫ 1

1−χt
Ht(j) dj.

The central bank’s monetary policy rule is given by: Rt

R̄
=
Ä
Rt−1

R̄

äρ î(
Πt

Π̄

)rπ
Ä
Yt
Y ∗

t

äryó1−ρ
(
Yt/Yt−1

Y ∗

t /Y
∗

t−1

)r∆y

exp(εrt ), where R̄ is the steady state nominal (gross) rate and Y ∗
t is the natural

level of output in an economy with flexible prices and wages and without markup shocks to

prices and wages. ρ determines the degree of interest rate smoothing. rπ, ry, and r∆y reflect

the responsiveness of the policy rate to each forcing variable.
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The aggregate resource constraint in this economy is standard: Ct+It+Gt+a(Zt)K̃e,t−1 =

Yt, where aggregate consumption and investment are given by Ct =
∫
Ct(j) dj and It =

Ist + Iet, respectively. Government spending, Gt, is exogenously determined.

3.1.4 Cobb–Douglas and Nested CES Models

The translog model nests similar models on the basis of the Cobb–Douglas and nested

CES production functions in log linearization of the corresponding equilibrium conditions.

Clearly, the Cobb–Douglas model can be obtained by imposing the restriction that the

translog parameters are zero, β = 0.

Next, we consider a nested CES production function employed in Krusell et al. (2000)

and Ohanian et al. (2023). In a deviation form based on dimensionless parameters such as

those in Cantore and Levine (2012); Cantore et al. (2014, 2015), we can write the nested

CES production function as follows:

Yt(i) + γtυ

Ȳt + γtυ
= exp(εat )

ï
Kst(i)

K̄st

òαks






α̃u

ï
Lut(i)

L̄ut

òφux
+ α̃x

Ç
α̃k

ï
Ket(i)

K̄et

òφks
+ α̃s

ï
Lst(i)

L̄st

òφksåφux
φks







1−αks
φux

,

where α̃u + α̃x = 1, α̃k + α̃s = 1, and −∞ ≤ φux, φks ≤ 1. Similar to the results shown

in Table 1, this nested CES function can be converted to a translog form. The steady-

state income shares in the translog function are obtained as follows: αu = (1 − αks)α̃u,

αke = (1 − αks)α̃xα̃k, and αs = (1 − αks)α̃xα̃s. See Appendix B for similar results for the

translog parameters.

Finally, all three models share the same log-linearized aggregate production functions

around the BGP, Ŷt = Φ(εat + αksK̂st + αkeK̂et + αsL̂st + αuL̂ut).

3.2 Bayesian Estimation

We estimate the three models with different production functions using pre- and post-2000

US time series data and Bayesian methods. A comparison of the model fits reveals that the

translog model better matches the data than the Cobb–Douglas and CES models do. Fur-

thermore, the estimated production function parameters reflect potential structural changes

in production technology between the two sample periods, which could further influence the

cyclicality of returns to scale and the identified slopes of the Phillips curves.
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3.2.1 Data, Priors, and Methods

Data. We use eight quarterly variables and three annual variables for estimation. The

quarterly variables include skilled workers’ employment shares and the seven observables

employed by Smets and Wouters (2007), such as growth rates of per capita real GDP, con-

sumption, and investment; labor hours; the growth rate of the real wage rate; price inflation;

and the nominal interest rate. We replace the federal funds rate with the shadow rate of Wu

and Xia (2016) from 2009:q1 to 2015:q4 because of the binding zero lower bound.

Using the Current Population Survey (CPS), we compute skilled employment shares.

Following Krusell et al. (2000) and Ohanian et al. (2023), college graduates are considered

skilled workers. Because of the data limitation in the early period, this variable is only

available for the first quarters until 1975. Since then, it has been available every quarter.

We remove the seasonal variation using X-13 ARIMA.

In light of two types of capital (structures and equipment) and labor (skilled and un-

skilled), we borrow three related annual variables from Ohanian et al. (2023) to discipline the

model parameters. These variables are the growth rate of per capita equipment stock (in-

cluding intellectual property products), the changes in relative labor hours, and the changes

in the relative wage rates between skilled and unskilled workers. The capital stock is con-

structed using perpetual inventory methods. The two labor market variables are calculated

using the CPS data. These annual variables are assumed to be observable in the fourth

quarter of each year.

Our sample begins in 1966:q1 as in Smets and Wouters (2007) and ends in 2019:q4 before

the recent pandemic. We divide the data into early (1966-99) and late (2000-19) samples

and estimate each model for each sample period. In total, we have six estimated models for

the three production functions and the two sample periods.

State-space system. The state equation is constructed using the Sims (2002) method for

each parameter value. The measurement equation consists of available observations among

the eleven variables described above each quarter, leading to a mixed-frequency state-space

model (see, e.g., Schorfheide and Song, 2015, 2025).

Real GDP, consumption, investment, price inflation, and the nominal interest rate are

mapped to Yt, Ct, It, Pt/Pt−1, and Rt in the model, respectively. The aggregate labor hours

are matched with Ht ≡
∫ 1

0
Ht(j) dj = Lst + Lut. The aggregate wage rate is given by the

total wage bills divided by the aggregate hours, Wt ≡
WstLst+WutLut

PtHt
. The skilled employment
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share corresponds to χt. We assume that log(χt) = log(χ̄)+εχt , where εχt follows a mean-zero

AR(1) process. We set χ̄ at 0.21 for the pre-2000 sample and 0.325 for the post-2000 sample,

which are the values of χt around the midpoint of each sample.

The three annual variables are observed (with measurement errors) in the fourth quar-

ter. The growth rate of per capita equipment stock corresponds to log(K̃et/K̃e,t−4) + νkt.

νkt represents a measurement error in the empirical capital stock variable computed using

perpetual inventory methods. νkt has an independently and identically distributed normal

density with a mean of zero and a standard deviation of σν,k. The relative annual labor

hours, denoted by rellannt , equal Lst+Ls,t−1+Ls,t−2+Ls,t−3

Lut+Lu,t−1+Lu,t−2+Lu,t−3
. The annual change in this variable,

log(rellannt /rellannt−4 ), is observed with measurement errors, νht ∼ N(0, σ2
ν,h), because the labor

market variables in the CPS are known to be subject to nonnegligible measurement errors

(see, e.g., Bound and Krueger, 1991). Similarly, the relative annual wage rate, relwann
t , is

given by WstLst+...+Ws,t−3Ls,t−3

Lst+...+Ls,t−3
/WutLut+...+Wu,t−3Lu,t−3

Lut+...+Lu,t−3
. The measurement of its annual change,

log(relwann
t /relwann

t−4 ), involves measurement errors denoted by νwt ∼ N(0, σ2
ν,w).

The model includes nine structural shocks and three measurement errors. The structural

shocks include shocks to TFP (εat ), investment-specific productivity (εit), monetary policy

(εrt ), risk premium (εbt), government spending (εgt ), price markup (εpt ), skilled wage markup

(εst), unskilled wage markup (εut ), and the employment share of skilled workers (εχt ).

Priors. We use standard priors for conventional parameters, similar to Smets and Wouters

(2007) and Justiniano et al. (2010). For the other parameters, we set the following priors.

We assume that αks ∼ N(0.1, 0.0052) given the results in Krusell et al. (2000) and Ohanian

et al. (2023). Combined with the prior for αke ∼ N(0.25, 0.022), this assumption implies

that the capital income share a priori ranges from 0.3-0.4 within the two standard deviation

intervals. Given the steady increase in the skilled labor supply (Goldin and Katz, 2009), the

mean of αs is assumed to be 0.2 and 0.3 for the early and late samples, respectively.

The translog parameters, e.g., βkk, have normal priors with a mean of zero and a standard

deviation of 0.15. This prior is rather loose and less informative, which is illustrated by

the fact that previous estimates based on nested CES functions are within a one-standard

deviation interval. For example, when φux = 0.401, φks = −0.495, and αks = 0.117, following

Krusell et al. (2000) in combination with αke = 0.25 and αs = 0.2, the corresponding translog

parameters are less than 0.09 in absolute value (see Appendix B).

Shocks to χt, ε
χ
t , has an AR(1) process: εχt = ρχε

χ
t−1 + ηχt . Because this variable is slow-

moving and steadily increases throughout the sample period, we assume that ρχ has a beta
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distribution with a mean of 0.9. Finally, the standard deviations of the measurement errors,

σν,k, σν,h, and σν,w, have inverse gamma distributions with a mean of 0.15 and a standard

deviation of 0.03. Thus, a priori, measurement errors are assumed not to be excessively

large.

We fix δs and δe at 0.026/4 and 0.16/4, respectively, according to Fernald (2014, p. 18)

and Ohanian et al. (2023, fig 3.3(b)). The steady-state share of government spending (0.18),

steady-state wage markups (1.5), and Kimball curvature parameters (10) are set at the same

values as those in Smets and Wouters (2007).

Methods. The posterior distributions are computed using a Metropolis–Hastings algorithm

with a chain length of 200,000. The likelihood of the state-space system is calculated using a

Kalman filter. The acceptance rates of the chain for the six cases range from 22%-30%. We

summarize the posterior distributions using the mode and credible intervals. See Appendix

C.1 for the complete list of the estimated parameters, priors, and posteriors for the six cases.

3.2.2 Model Comparison

This section shows that the estimated translog model better matches the data than the two

alternative models do. Specifically, we test and reject the restrictions imposed on the translog

parameters by the Cobb–Douglas and nested CES forms, compare the size of measurement

errors across the models, and assess the log-likelihood in the posterior modes and marginal

data densities (MDDs).13 The results favor the translog model.

The production function (3.1) implies that the aggregate returns to scale are influenced

by the fixed cost and the translog structure. Let lowercase letters denote the detrended

real variables around the BGP, e.g., yt = Yt
γt

, ket = Ket

γt
, lst = Lst, and lut = Lut. In

log-linearization:

”rtst = −
Φ− 1

Φ
ŷt

︸ ︷︷ ︸

”rtsfc

+
Ä
βk·k̂et + βs·l̂st + βu·l̂ut

ä
︸ ︷︷ ︸

”rtstl

, (3.7)

where βk· = βkk+βks+βku, βs· = βks+βss+βsu, and βu· = βku+βsu+βuu. The countercyclical

variation in ”rtst due to the fixed costs in production, captured by ”rtsfc, is shared among

13The MDD avoids overfitting due to extra degrees of freedom by systematically accounting for the number of
parameters in the model, similar to its asymptotic approximation, i.e., the Bayesian information criterion.
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Table 2: Model comparison

(1) (2) (3) (4) (5) (6)

Early sample (1966-99) Late sample (2000-19)

Cobb–Douglas Nested CES Translog Cobb–Douglas Nested CES Translog

Panel A. Returns to scale parameters

βk· 0 0 -0.27 0 0 -0.21

- - (-0.63, -0.13) - - (-0.27, -0.19)

βs· 0 0 -0.13 0 0 0.23

- - (-0.23, -0.06) - - (0.15, 0.33)

βu· 0 0 -0.37 0 0 -0.28

- - (-0.69, -0.11) - - (-0.48, -0.16)

Panel B. Measurement errors

σν,ke
3.79 3.83 3.87 0.23 1.69 0.37

(3.19, 4.58) (3.23, 4.67) (3.22, 4.68) (0.19, 0.38) (1.25, 2.34) (0.30, 0.50)

σν,h 3.13 0.14 0.14 0.14 0.14 0.14

(2.66, 3.83) (0.10, 0.21) (0.10, 0.21) (0.10, 0.21) (0.10, 0.22) (0.12, 0.16)

σν,w 0.14 1.44 1.21 2.55 1.46 1.28

(0.10, 0.22) (1.20, 1.84) (1.04, 1.49) (2.11, 3.15) (1.18, 1.86) (1.12, 1.66)

Panel C. Log-likelihood in the posterior mode and marginal data densities

log-likelihood -96.10 -87.20 -70.27 71.88 85.13 114.42

log MDD -347.75 -332.69 -311.52 -193.08 -165.21 -173.65

Notes: Panel A shows the estimated returns to scale parameters (βk·, βs·, and βu·) in the posterior mode and the equal-tailed
95% credible intervals. Columns (1)-(3) and (4)-(6) present the results from the three different models estimated using the early
and late samples, respectively. Panel B regards the magnitude of the measurement errors. Panel C illustrates the log-likelihood
in the posterior mode and the MDD. The MDD is computed using the Sims et al. (2008) algorithm.

the three models.14 In contrast, the cyclical variation originating from the second-order

properties of the production function, denoted by”rtstl, is unique to the translog model. For

the Cobb–Douglas model, βk· = βs· = βu· = 0 because all six translog parameters are zero.

Like β11 + β12 = β12 + β22 = 0 for the two-input CES model in Table 1, the translog form of

the nested CES model also satisfies βk· = βs· = βu· = 0, implying that ”rtstlt = 0.15 We test

the validity of these restrictions by estimating the translog model.

Panel A in Table 2 shows the results. The table illustrates the estimated returns to scale

parameters in the posterior mode and the equal-tailed 95% credible intervals. Columns (1)-

(3) and (4)-(6) present the results from the three different models estimated using the early

and late samples, respectively. Per the discussion above, the returns to scale parameters,

βk·, βs·, and βu·, are zero in Columns (1), (2), (4), and (5). Note that none of the six 95%

credible intervals in Panel A Columns (3) and (6) include zero, rejecting the prediction of

14The fixed costs are linked to the gross price markup, Φ, through the zero-profit condition on the BGP.
15Choosing six translog parameters subject to these three restrictions and the additional restriction βku =
−α̃kβuu, arising from the specific nesting order of the two CES aggregators, is equivalent to determining
the two CES parameters, φux and φks. See Appendix B.
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the time-invariant ”rtstlt under the Cobb–Douglas and CES models.

The results shown in Panel B imply that rationalizing the data for equipment stock,

relative labor hours, and relative wage rates jointly is challenging in a general equilibrium

framework. There is no case in Panel B where the magnitude of all three measurement errors

is small. Given that, the translog model performs no worse than the other two models do.

For example, the translog model better explains the post-2000 relative wage data (σν,w) than

the Cobb–Douglas model does. Compared with the translog model, the nested CES model

is less successful at matching the capital stock data (σν,ke) in the recent sample.

For the pre-2000 data, the translog model is consistently favored according to both the

log-likelihood in the posterior mode and the MDD (Panel C). For the post-2000 data, the

two criteria alternatively select the translog and nested CES models. Thus, given the results

in Panels A-C, we conclude that the translog model, which predicts the time-varying returns

to scale, matches the data better than the two alternative models do, at least in the posterior

modes.

3.2.3 Production Function Parameters

Next, we discuss the production function parameters. Table 3 shows that the steady-state

factor income shares (Panel A) and price markups (Panel C) are largely comparable across

the three models in a given sample period. Between the two sample periods, the skilled

labor share (αs) increases, and the price markup (Φ) decreases. Consistent with the results

in Smets and Wouters (2007, table 1A), Φ is relatively large, and capital income shares are

relatively small compared with conventional calibration in all six cases.

The data used for estimation provide sufficient information about the production function

parameters. The posterior distributions of the translog parameters are centered around non-

zero values and are significantly less dispersed than their priors (Panel B). The lengths of the

95% credible intervals are considerably shorter than those of the similar intervals a priori,

which are approximately 0.6 (see Figure C.1 in Appendix C.1 for the shape of the posterior

distributions compared with the priors in each sample period). Furthermore, the Hessian of

the posterior density, evaluated at the mode, has full rank, implying that our model passes

the diagnostic test for parameter identifiability in a DSGE model (Canova and Sala, 2009).

The translog model rejects the Cobb–Douglas and nested CES specifications, which is

consistent with the model comparison results in Table 2. Most of the 95% credible intervals
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Table 3: Production function parameters

(1) (2) (3) (4) (5) (6)

Early sample (1966-99) Late sample (2000-19)

Cobb–Douglas Nested CES Translog Cobb–Douglas Nested CES Translog

Panel A. Factor income shares in the steady state

αks 0.10 0.10 0.10 0.10 0.09 0.10

(0.09, 0.11) (0.09, 0.10) (0.09, 0.10) (0.09, 0.11) (0.08, 0.10) (0.10, 0.11)

αke 0.19 0.18 0.20 0.14 0.12 0.09

(0.16, 0.22) (0.15, 0.21) (0.16, 0.22) (0.11, 0.17) (0.10, 0.15) (0.08, 0.10)

αs 0.09 0.15 0.12 0.20 0.24 0.24

(0.06, 0.18) (0.12, 0.19) (0.10, 0.14) (0.13, 0.24) (0.23, 0.31) (0.20, 0.26)

αu 0.62 0.58 0.58 0.57 0.54 0.57

(0.52, 0.66) (0.53, 0.63) (0.56, 0.62) (0.53, 0.63) (0.46, 0.56) (0.55, 0.61)

Panel B. Translog and CES parameters

βkk 0 0.11 -0.09 0 -0.04 0.04

- (0.09, 0.13) (-0.42, -0.03) - (-0.14, -0.03) (0.01, 0.04)

βks 0 -0.03 -0.06 0 0.08 0.00

- (-0.04, -0.01) (-0.12, -0.02) - (0.07, 0.19) (-0.01, 0.04)

βku 0 -0.08 -0.12 0 -0.04 -0.25

- (-0.10, -0.07) (-0.23, 0.07) - (-0.05, -0.03) (-0.32, -0.23)

βss 0 0.09 0.08 0 0.00 0.13

- (0.07, 0.12) (0.07, 0.10) - (-0.09, 0.02) (0.04, 0.18)

βsu 0 -0.07 -0.16 0 -0.07 0.10

- (-0.09, -0.05) (-0.20, -0.10) - (-0.14, -0.07) (0.04, 0.20)

βuu 0 0.15 -0.10 0 0.11 -0.13

- (0.12, 0.18) (-0.33, 0.02) - (0.10, 0.19) (-0.33, 0.00)

φux 0 0.74 - 0 0.52 -

- (0.60, 0.84) - - (0.47, 0.86) -

φks 0 0.78 - 0 -0.65 -

- (0.64, 0.92) - - (-1.95, -0.57) -

Panel C. Gross price markup in the steady state

Φ 1.65 1.69 1.63 1.36 1.36 1.39

(1.53, 1.77) (1.54, 1.81) (1.49, 1.77) (1.23, 1.47) (1.19, 1.50) (1.27, 1.50)

Notes: Columns (1)-(3) and (4)-(6) illustrate the estimation results for the Cobb–Douglas, nested CES, and translog models
using the early and late samples, respectively. Panel A shows the factor income shares in the steady state in the posterior mode
and the equal-tailed 95% credible intervals. Panels B and C cover the translog and CES parameters and the steady-state price
markups, respectively.

for the translog parameters in Columns (3) and (6) in Panel B do not include zero, rejecting

the Cobb–Douglas function. In Columns (2) and (5), we show the implied translog param-

eters by φux, φks and the nested CES function. Note that the CES-based βkk and βuu (and

βsu for the late sample) have different signs from the corresponding translog estimates in

Columns (3) and (6). Furthermore, the magnitudes of βku and βss in Column (5) substan-

tially differ from those in Column (6). Thus, despite being tractable, the nested CES function

might not be flexible enough to capture several aspects of the input complementarity and

substitution patterns in the data.
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Finally, by comparing Columns (3) and (6) in Panel B, we find that βkk, βks, βku, and

βsu, in particular, changed substantially. An increase in βkk probably reflects an increase in

intellectual property products capital (Koh et al., 2020) and an innate positive externality in

“ideas” (Romer, 1990). βks is closely related to the degree of the capital-skill complementarity

(Griliches, 1969; Autor et al., 2003; Chirinko, 2008; Chirinko and Mallick, 2017; Berlingieri

et al., 2024), which also increases in the nested CES model, as shown in Columns (2) and

(5). The capital deepening and concurrent automation of low- and medium-skill tasks might

explain the decrease in βku (Goos and Manning, 2007; Michaels et al., 2014). A negative

βsu for the pre-2000 data seems consistent with the conventional view on the substitutability

between skilled and unskilled labor (Autor et al., 2008). However, when estimated using

post-2000 data, βsu becomes positive (Column (6)).16 Furthermore, this pattern does not

occur in the nested CES model; βsu in Columns (2) and (5) are similar to each other. We

corroborate our structural estimates with an independent empirical analysis reported in

Appendix D. We estimate production function parameters using industry-level panel data

and IV methods. The results consistently indicate stronger input complementarity in later

sample periods, further supporting our structural estimation results for production function

parameters.

3.3 Slopes of the Phillips Curves

This section presents the main quantitative exercise: the analysis of the slopes of the Phillips

curves. We show that the translog model can jointly replicate the steep marginal cost Phillips

curve and the flattening of conventional Phillips curves in recent decades. In contrast, the

Cobb–Douglas and nested CES models rely on unrealistically sticky prices and quite flat

Phillips curves to match the inflation data after 2000.

The New Keynesian price Phillips curve in our model features real marginal costs as a

forcing variable:

π̂t = β̃γEt[π̂t+1] + κm̂ct + εpt , (3.8)

where β̃ = βγ−σc is the discount factor in the detrended economy. The slope of this marginal

cost Phillips curve, κ, is determined by (1−ζpβ̃γ)(1−ζp)

ζp
1

1+θp(Φ−1)
. Relative to the illustrative

16See also Havranek et al. (2024, table 5) for a wide range of estimates in the literature, including the case
of gross complementarity between skilled and unskilled labor.

26



model in Section 2, κ includes a term representing strategic complementarity in price setting,

depending on the curvature of the Kimball aggregator (θp = 10 following Smets and Wouters

2007) and the gross price markup (Φ).

We compute the model-predicted slopes of the Phillips curves with different forcing vari-

ables as follows. Let xt denote a measure of economic activity, such as the real marginal

cost, output gap, labor gap, and labor shares. The Phillips curve based on xt is given by:

π̂t = βxEt[π̂t+1] + κxxt + errorx,t,

where κx represents the slope of this Phillips curve. We project π̂t on Et[π̂t+1] and xt and

obtain κx from the projection coefficient:

(

∗

κx

)

=

[

varc,mp

(

Et[π̂t+1]

xt

)]−1

covc,mp

[(

Et[π̂t+1]

xt

)

, π̂t

]

, (3.9)

where subscripts c and mp indicate that we use the cyclical variation with the periodicity

from 6-32 quarters driven by monetary policy shocks. We compute the (co)variances in

Equation (3.9) by integrating the frequency-domain representation of the model (while only

allowing monetary policy shocks) over the business cycle frequencies. Equivalently, we can

obtain κx by applying the ideal bandpass filter to the infinite time series of π̂t, Et[π̂t+1], and

xt and use monetary policy shock series as IVs.17 Thus, our formula corresponds to the

population version of empirical practices of estimating Phillips curves using detrended data

by filters (Mavroeidis et al., 2014; Stock and Watson, 2020) and the identified monetary

policy shocks as instruments (Barnichon and Mesters, 2020, 2021). However, our results are

robust to not using filters (see Appendix C.2).

We consider the following forcing variables: marginal costs (m̂ct), the output gap (ŷt−ŷ∗t ),

the labor gap (ĥt − ĥ∗
t ), labor shares (◊�wtht/yt) following Galí and Gertler (1999); Sbordone

(2002); Eichenbaum and Fisher (2007), and fixed cost adjusted labor shares ( ¤�wtht/(yt + υ)).

The last variable is included because it equals m̂ct in the Cobb–Douglas model (see Equations

(3.4) and (3.5)). Note that when xt = m̂ct, κx coincides with the underlying slope of the

17When x = mc, this method correctly identifies κ in Equation (3.8). Let B(L) denote the ideal bandpass
filter, where L is a lag operator. Because B(L) is a linear, time-invariant filter, applying it to Equation
(3.8) leads to {B(L)π̂t} = β̃γ{B(L)Et[π̂t+1]}+ κ{B(L)m̂ct}+ {B(L)εpt }. Thus, the slope remains to be κ.
Furthermore, because monetary policy shocks {εrt} are orthogonal to the basis of the residual (i.e., price
markup shocks), {εpt }, the instruments’ exclusion restriction is satisfied.
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Table 4: Slopes of the Phillips curves

(1) (2) (3) (4) (5) (6)

Early sample (1966-99) Late sample (2000-19)

Cobb–Douglas Nested CES Translog Cobb–Douglas Nested CES Translog

Panel A. Calvo price stickiness parameter

ξp 0.66 0.72 0.65 0.84 0.89 0.75

(0.53, 0.79) (0.59, 0.85) (0.53, 0.78) (0.80, 0.89) (0.89, 0.97) (0.72, 0.77)

Panel B. Slopes of the price Phillips curves

marginal cost 0.023 0.013 0.026 0.006 0.003 0.017

(0.007, 0.057) (0.004, 0.037) (0.009, 0.059) (0.003, 0.010) (0.000, 0.003) (0.014, 0.023)

output gap 0.016 0.010 0.028 0.006 0.001 0.005

(0.004, 0.027) (0.003, 0.021) (0.009, 0.049) (0.003, 0.009) (0.000, 0.003) (0.004, 0.007)

labor gap 0.027 0.020 0.039 0.006 0.002 0.005

(0.007, 0.044) (0.005, 0.037) (0.013, 0.066) (0.004, 0.010) (0.000, 0.003) (0.003, 0.006)

labor share 0.047 0.044 0.118 0.009 0.005 0.009

(-0.140, 0.197) (-0.084, 0.143) (-0.481, 0.406) (0.005, 0.015) (0.000, 0.006) (0.007, 0.012)

labor share, 0.023 0.016 0.047 0.006 0.003 0.006

υ adjusted (0.007, 0.057) (0.005, 0.041) (0.010, 0.197) (0.003, 0.010) (0.000, 0.003) (0.004, 0.009)

Notes: Columns (1)-(3) and (4)-(6) illustrate the results from the Cobb–Douglas, nested CES, and translog models estimated
using the early and late samples, respectively. Panel A shows the Calvo price stickiness parameter in the posterior mode and
the equal-tailed 95% credible intervals. Panel B focuses on the slopes of the price Phillips curves with different forcing variables,
computed using Equation (3.9).

New Keynesian price Phillips curve, κ, in Equation (3.8).

Panel A in Table 4 shows the Calvo price stickiness parameter, ξp. For the early sample,

the three models feature ξp values of approximately two-thirds. As shown in Columns (4)

and (5), the estimated Cobb–Douglas and nested CES models rely on large ξp values for the

late sample, corresponding to excessively sticky prices. For example, the average duration

of prices implied by ξp in Column (5) is longer than nine quarters. In contrast, the translog

model uses reasonable values of ξp to match the data. In the posterior mode, ξp is 0.75 in

Column (6), which is consistent with the empirical evidence on the degree of price stickiness

in Bils and Klenow (2004) and Nakamura and Steinsson (2008).

ξp under the translog model modestly increased in the posterior mode from 0.65 to 0.75

between the two sample periods. As a result, κ in Column (6), 0.017, is slightly smaller

than that in Column (3), 0.026. This decline is statistically insignificant given that 0.017 is

included in the 95% credible interval in Column (3), (0.009, 0.059). Furthermore, 0.017 still

corresponds to a significantly positive slope of the marginal cost Phillips curve. We obtain

this result despite highly stable inflation during the late sample, exemplified by the missing

disinflation and reinflation episodes (Coibion and Gorodnichenko, 2015; Ball and Mazumder,

2020). Finally, 0.017 is largely consistent with the empirical results in Gagliardone et al.
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(2025) when estimation uncertainty is taken into consideration, despite the different methods,

countries, and covered industries in the data.18

The increase in ξp and the resulting decrease in κ may reflect other potential changes af-

fecting the slopes of the Phillips curves in a reduced-form manner.19 For example, building on

Basu (1995), Rubbo (2023, section 6) shows that changes in the input-output structure have

decreased the slopes of the Phillips curves by a modest amount (about 30%) via macroeco-

nomic complementarities. This magnitude is largely comparable to our results for the slopes

of the marginal cost Phillips curve, κ, but is insufficient to rationalize the flattening of the

conventional Phillips curves.

In short, through the lens of the translog model, which matches the data better than the

other two models do, the New Keynesian price Phillips curve is not flat and is alive well.

Furthermore, despite this result for the marginal cost Phillips curve, the translog model can

generate substantially smaller κx values for the conventional activity measures in Column

(6) than κx in Column (3), i.e., the flattening of the conventional Phillips curves. Thus,

we conclude that the translog model with structural changes, captured by the differences

in translog parameters between the two sample periods, can rationalize the two seemingly

contradictory empirical results of a steep marginal cost Phillips curve (Gagliardone et al.,

2025) and flattened conventional Phillips curves (Del Negro et al., 2020; Stock and Watson,

2020; Hazell et al., 2022; Inoue et al., 2024; Smith et al., 2025).

The results differ for the other production functions. The Cobb–Douglas and nested

CES models predict quite flat marginal cost Phillips curves for the late sample, given the

large values of ξp. Those quite flat marginal cost Phillips curves translate into similarly

flat conventional Phillips curves, as shown in Columns (4) and (5). Thus, in this case, the

flattening of the conventional Phillips curves mirrors the similar flattening of the marginal

cost Phillips curve, contradicting the empirical evidence in Gagliardone et al. (2025). We

18The two-standard-error bands reported in Gagliardone et al. (2025, table 2, panel c) include 0.017 for
three out of four regression specifications (their unrestricted model and the two models controlling for
unobserved confounding factors using industry-by-time fixed effects at the granular industry level).

19These changes may include (i) sectoral transformation toward services (Galesi and Rachedi, 2019; Cotton
and Garga, 2022) and the fact that service prices are stickier than manufacturing prices (Bils and Klenow,
2004; Nakamura and Steinsson, 2008; Imbs et al., 2011; Carvalho et al., 2021), (ii) trade and globalization
(Sbordone, 2007), (iii) market concentration (Wang and Werning, 2022; Fujiwara and Matsuyama, 2023;
Baqaee et al., 2024), (iv) the production network and an increase in the intermediate input share (Basu,
1995; Rubbo, 2023), (v) occupational composition in the labor market and an increase in the share of non-
routine jobs (Siena and Zago, 2021), and (vi) the growing competition among online retailors (Cavallo,
2018).

29



obtain similar results when we simulate the translog model and estimate the Cobb–Douglas

and nested CES models using the simulated data (see Appendix C.2).

3.4 Marginal Costs and Cyclical Returns to Scale

Next, we discuss the mechanism involved. Specifically, we relate the non-flattening of the

marginal cost Phillips curve and the flattening of the conventional Phillips curves to more

procyclical returns to scale in recent decades.

Like Equation (2.4) of the illustrative model, the marginal costs consist of factor prices,

TFP, and returns to scale owing to the translog structure:

m̂ct = αksr̂st + αker̂et + αsŵst + αuŵut
︸ ︷︷ ︸

factor prices

− εat
︸︷︷︸

tfp

− (βk·k̂et + βs·l̂st + βu·l̂ut)
︸ ︷︷ ︸

”rtstlt

. (3.10)

Thus, cyclical variation in returns to scale weakens the connection between marginal costs

and their conventional components, such as factor prices and TFP. Consider an expansionary

monetary policy shock increasing the output gap. Because the wage Phillips curves are

steep in the model (see the estimates of ζs and ζu in Tables C.1-C.2 in Appendix C.1) and

in the data (Galí and Gambetti, 2020; Heise et al., 2022; Bernanke and Blanchard, 2023),

factor prices respond procyclically to the shock, paralleling the response of the output gap.

However, the response of the marginal costs could be mitigated given the procyclical response

of rtstlt . In this case, inflation fluctuates less than the output gap (i.e., the output gap Phillips

curve is quite flat), not because the pass-through of the marginal costs on inflation is weak

(i.e., the marginal cost Phillips curve is steep) but because the marginal costs are relatively

stable owing to the offsetting of procyclical factor prices and returns to scale conditional on

monetary policy shocks. This prediction of the translog model is consistent with the missing

pass-through of labor costs to price inflation in the recent US data (Peneva and Rudd, 2017).

To illustrate this mechanism, we plot the impulse responses of the relevant variables to

one-standard-deviation expansionary monetary policy shocks in Figure 2. We first consider

models without cyclical variation in ”rtstlt . Panel (b) shows that the marginal costs increase

similarly under the nested CES model across the sample period. However, because of sub-

stantially stickier prices in the late sample, the inflation responses are much smaller for the

late sample than for the early sample in Panel (a). Similarly, for the Cobb–Douglas model,

the pass-through of the marginal costs on inflation has been weak in recent decades (not
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Figure 2: Impulse responses to expansionary monetary policy shocks

Notes: This figure plots the impulse responses to one-standard-deviation expansionary monetary policy shocks. We show the
model-predicted impulse responses in the posterior mode with the equal-tailed 95% credible intervals for each sample period.
Panels (a) and (b) are based on the nested CES model. The other panels regard the translog model.

shown), reflecting the estimated flattening of the marginal cost Phillips curve.

The results differ in the translog model with a cyclical rtstlt . When estimated using the

late sample, monetary policy shocks generate persistent inflation responses with a smaller

impact response than those in the early sample (Panel (c)). These distinct inflation dynamics

reflect the dissimilar responses of marginal costs between the two sample periods (Panel (d)).

In contrast to the hump-shaped responses of marginal costs before 2000, the short-term

responses within a year are muted after 2000. These close-to-zero responses lead to small

changes in the present discounted values of marginal costs in the short term and, thus, small

variations in inflation responses.20

These distinct dynamics of marginal costs mostly arise from more procyclical rtstlt after

2000 than before (see Hyun et al., 2024; Hubmer et al., 2025, for empirical evidence of time-

20Equation (3.8) implies that π̂t = κ
∑

∞

τ=0
(β̃γ)τEt[m̂ct+τ ] +

∑
∞

τ=0
(β̃γ)τEt[ε

p
t+τ ]. Thus, the responses of

π̂t+h to a monetary policy shock at time t for h ≥ 0 depend on the discounted values of the expected
responses of marginal costs, κ

∑
∞

τ=0
(β̃γ)τEt[m̂ct+h+τ ].
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varying returns to scale). Panels (e) and (f) decompose the response of marginal costs into

that of factor prices and rtstlt considering Equation (3.10). Note that procyclical rtstlt after

2000 partially cancel out procyclical factor prices, yielding smaller responses in marginal

costs.

Finally, Panels (g)-(i) show the responses of the gap between marginal cost and other

measures of economic activity, constituting an omitted variable in conventional Phillips curve

regressions, as illustrated in Proposition 1. More countercyclical responses in recent periods

generate more negative omitted variable biases in the identified slope, κx. The flattening of

the conventional Phillips curves follows from this result.21

3.5 Determinants of Inflation

The above results imply that the inflation dynamics and their determinants could vary

across the models and the sample periods. From the results of the variance decomposition

analysis, we find that the translog model in recent periods relies more on risk premium

shocks, probably capturing the Great Recession, and less on price markup shocks than the

other models do. Furthermore, inflation expectation is a more important driver of inflation

in the post-2000 period than before.

Table 5 shows the variance of inflation at the business cycle frequencies (Panel A) and its

decomposition into the contribution of the nine structural shocks (Panel B) in the posterior

mode of each model. Given more stable inflation data in recent periods, the estimated

models using the post-2000 data predict smaller variances than those using the early sample.

Furthermore, all three models similarly predict that price and wage markup shocks explain

the majority of the cyclical variations in inflation in Columns (1)-(3). However, for the late

sample, different models attribute inflation volatility to different shocks. Given a quite flat

Phillips curve, the nested CES model relies heavily on price markup shocks. The Cobb–

Douglas model adds investment-specific shocks to the set of meaningful drivers of inflation,

yielding a larger cyclical variance of inflation than the nested CES model does. In contrast

to the results in Columns (1)-(5), the translog model captures aggregate fluctuations due to

21The conventional measures of economic activity mostly reflect factor prices in the marginal costs. Consider
the posterior mode of the translog model in recent periods. Conditional on monetary policy shocks, the
cyclical correlations between factor prices (αksr̂st+αker̂et+αsŵst+αuŵut) and the output gap, labor gap,
labor shares, and fixed cost adjusted labor shares are 0.95, 0.94, 0.98, and 0.97, respectively. In contrast,
corrc,mp(m̂ct, factor prices) is only 0.31, reflecting the cyclical returns to scale in the marginal costs (see
Equation (3.10)).
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Table 5: Variance decomposition of inflation

(1) (2) (3) (4) (5) (6)

Early sample (1966-99) Late sample (2000-19)

C–D NCES Translog C–D NCES Translog

Panel A. Variance of inflation at the cyclical frequencies

varc(π̂t) 0.086 0.076 0.084 0.050 0.018 0.057

Panel B. Contribution of each structural shock, %

Productivity (Hicks neutral) 3 2 3 3 1 1

Risk premium 1 0 1 1 6 40

Government spending 1 0 1 2 0 0

Investment-specific productivity 3 1 7 41 0 12

Monetary policy 5 4 9 9 2 8

Price markup 55 69 50 38 91 34

Wage markup, skilled 1 4 1 2 0 1

Wage markup, unskilled 32 20 27 2 1 2

Skilled worker population share 0 0 0 0 0 1

Notes: This table shows the variance of inflation at the business cycle frequencies corresponding to the periodicity of 6-32
quarters (Panel A) and its decomposition into the contribution of the nine structural shocks (Panel B) in the posterior mode.

Table 6: Variance decomposition of inflation using the Phillips curve

(1) (2) (3) (4) (5) (6)

Early sample (1966-99) Late sample (2000-19)

Et[π̂t+1] m̂ct εpt Et[π̂t+1] m̂ct εpt
Panel A. Decomposition of varc(π̂t) using the Phliips curve: π̂t = β̃γEt[π̂t+1] + κm̂ct + εpt

covc(π̂t, β̃γEt[π̂t+1] or κm̂ct or εpt ) 0.062 0.004 0.018 0.048 0.002 0.008

slope (β̃γ or κ or 1) 0.997 0.026 1 0.999 0.017 1

corrc(π̂t,Et[π̂t+1] or m̂ct or εpt ) 0.978 0.409 0.684 0.969 0.301 0.530

stdc(π̂t) 0.290 0.290 0.290 0.239 0.239 0.239

stdc(Et[π̂t+1] or m̂ct or εpt ) 0.219 1.428 0.089 0.206 1.391 0.061

Panel B. Contribution of each structural shock, %

Productivity (Hicks neutral) 3 17 - 1 4 -

Risk premium 1 7 - 49 -2 -

Government spending 1 6 - 0 0 -

Investment-specific productivity 9 22 - 14 30 -

Monetary policy 11 20 - 9 -3 -

Price markup 40 -18 100 23 37 100

Wage markup, skilled 1 0 - 1 17 -

Wage markup, unskilled 34 44 - 2 15 -

Skilled worker population share 0 0 - 1 2 -

Notes: Panel A decomposes varc(π̂t) through the lens of the Phillips curve. Equation (3.8) implies that varc(π̂t) =
covc(π̂t, β̃γEt[π̂t+1]) + covc(π̂t, κm̂ct) + covc(π̂t, ε

p
t ). These three terms are shown in the first row based on the translog

models in the posterior mode for the pre- and post-2000 samples. The remaining part of Panel A decomposes each covariance
into the slope (e.g., κ), the correlation between π̂t and, e.g., m̂ct, and standard deviations of these two variables. Panel B
presents conditional covariances on each structural shock relative to unconditional covariances. For example, according to
column (5), 4% of covc(π̂t, κm̂ct) is because of the covariation driven by TFP shocks.

risk premium shocks and their contribution to inflation. Finally, wage markup shocks have

minimal contributions to overall inflation volatility in recent periods in all three models.
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Table 6 decomposes varc(π̂t) through the lens of the Phillips curve. Equation (3.8) implies

that varc(π̂t) = covc(π̂t, β̃γEt[π̂t+1]) + covc(π̂t, κm̂ct) + covc(π̂t, ε
p
t ). These three terms equal

0.062, 0.004, and 0.018 (the first three numbers in the first row in Panel A) in the posterior

mode of the translog model for the pre-2000 sample. Similarly, for the translog model

using the post-2000 data, varc(π̂t) is decomposed into 0.048 (inflation expectation), 0.002

(marginal cost), and 0.008 (price markup shock). These numbers imply that the contribution

of inflation expectation to inflation volatility, covc(π̂t,β̃γEt[π̂t+1])
varc(π̂t)

, increased from 74% to 84%

between the two sample periods. This increased importance of inflation expectation or,

relatedly, a decrease in covc(π̂t, κm̂ct) can be decomposed into changes in the slope (κ), the

correlation between π̂t and m̂ct, and the standard deviations of these two variables, as shown

in Panel A. Comparing Columns (2) and (5) suggests that the decrease in covc(π̂t, κm̂ct) is

mostly due to the moderate flattening of the marginal cost Phillips curve (κ) and a decrease

in the correlation between inflation and the marginal cost.

The decrease in this correlation results from procyclical returns to scale that dampen the

short-term responses of marginal costs conditional on demand shocks. Consider the impulse

responses of inflation and marginal costs to monetary policy shocks (Figure 2(c)-(d)). The

impact response of marginal costs is weak. In contrast, inflation responds significantly be-

cause it reflects the present discounted value of the current and future marginal costs. Given

similar mechanisms for other demand shocks, the contemporaneous correlation between the

marginal costs and inflation decreases after 2000 compared with before 2000.

Panel B illustrates conditional covariances on each structural shock relative to uncondi-

tional covariances. For example, according to Column (5), 4% of covc(π̂t, κm̂ct) is because of

the comovement driven by TFP shocks. Comparing Columns (2) and (5), we find that the

contribution of demand shocks (risk premium, government spending, and monetary policy)

to covc(π̂t, κm̂ct) indeed decreased between the two periods. The contemporaneous covari-

ance conditional on monetary policy shocks is negative in Column (5), reflecting a negative

short-run response of marginal costs (or procyclical price markups) in Figure 2(d) for the

recent period. A similar result holds for risk premium shocks (not shown) as a result of

procyclical returns to scale conditional on demand shocks.

Another significant difference between Columns (2) and (5) is the correlation between

inflation and the marginal costs conditional on price markup shocks. Before 2000, a positive

price markup shock increased inflation and decreased the marginal cost, generating a negative

correlation between them. In contrast, after 2000, price makeup shocks led to positively
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correlated variations between inflation and the marginal cost. This change is again caused

by more procyclical returns to scale. When a price markup shock induces high inflation and

low output, decreased factor inputs endogenously decrease returns to scale, pushing marginal

costs upward.

3.6 Pandemic-Era Inflation through the Lens of the Model

Given the different inflation dynamics under the translog model compared with those under

the Cobb–Douglas and nested CES models, this section investigates recent inflation data

through the lens of all three models. Specifically, we augment the sample with the eight

quarterly variables used for the Bayesian estimation in Section 3.2 from 2020:q1 to 2024:q2.22

For each model, given the parameter values in the posterior mode in Section 3.2, we use the

Kalman smoother to estimate the realized structural shocks during this extended sample

period from 2020:q1-2024:q2.

Figure 3(b)-(d) shows the historical decomposition of the realized quarterly inflation

into the contributions of each structural shock and the pre-2020 economic conditions for

the Cobb–Douglas, nested CES, and translog models, respectively. Panel (a) presents the

federal funds rate (augmented with the shadow rate of Wu and Xia (2016) when the zero

lower bound was binding) and quarterly GDP deflator inflation. Clearly, US monetary policy

was loose between 2021:q1 and 2022:q2 when inflation was increasing.

Panel (d) shows that the translog model emphasizes the contribution of risk premium

shocks at the onset of the pandemic in 2020:q2, reflecting elevated demand for safe assets

(Fisher, 2015), and loose monetary policies contributing to high inflation during 2021:q1-

2022:q2 in addition to price markup shocks, probably reflecting global supply chain disrup-

tions (Di Giovanni et al., 2022; Bai et al., 2024a), the global energy crisis (Bernanke and

Blanchard, 2023), and a (unmodeled) nonlinear Phillips curve (see, e.g., Harding et al., 2023;

Benigno and Eggertsson, 2023). Because this model features less sticky prices than the other

two models do, demand shifters such as monetary policy and risk premium shocks appear

to be meaningful sources of recent inflation fluctuations. Note that this result holds despite

quite flat conventional Phillips curves in recent periods.

In contrast, the Cobb–Douglas (Panel (b)) and nested CES (Panel (c)) models rely heav-

ily on price markup shocks to match the realized inflation dynamics after 2020. Because

22We use the skilled employment share until 2023:q4. Its values in 2024:q1-q2 are treated as missing.
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Figure 3: Historical decomposition of the pandemic-era inflation

Notes: Panel (a) presents the federal funds rate (augmented with the shadow rate of Wu and Xia (2016) when the zero lower
bound was binding) and quarterly GDP deflator inflation. Panels (b)-(d) show the historical decomposition of the realized
quarterly inflation into the contribution of each structural shock and the pre-2020 conditions for the Cobb–Douglas, nested
CES, and translog models, respectively.

the Phillips curves are quite flat in these models, demand disturbances contribute little to

inflation, as shown in Table 5.23 Instead, these models shift the Phillips curve using supply

shocks to match the inflation fluctuations.

In short, the translog model provides a more comprehensive interpretation of pandemic-

era inflation than the Cobb–Douglas and nested CES models do. The historical decompo-

sition in Panel (d) reflects several aggregate developments that occurred during the period

instead of relying solely on supply-side disturbances. Furthermore, this result emphasizes

that monetary policies have been highly relevant to inflation in recent years, which is con-

sistent with the results based on different methods (see Comin et al., 2023; Gagliardone

and Gertler, 2023; Bocola et al., 2024; Giannone and Primiceri, 2024). In contrast, the

Cobb–Douglas and nested CES models do not predict this policy implication.24

23See L’Huillier et al. (2022); Beaudry et al. (2024b) for other policy implications of quite flat Phillips curves.
24Our historical decomposition analysis using a structural model is complementary to other explanations

for recent inflation. Given the Ricardian nature of the model, fiscal shocks had limited contributions
to inflation, as shown in Figure 3. For models emphasizing the role of massive fiscal stimulus packages
and increases in unfunded government debt, see Chen et al. (2022); Bianchi et al. (2023); Barro and
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Robustness checks. Our quantitative model in this section features six translog parame-

ters. Although the data and estimation methods yield reasonably precise estimates of these

parameters, we further check the robustness of the results to two simpler models with fewer

additional degrees of freedom. Specifically, we consider (i) a four-factor model where a sin-

gle parameter disciplines the cyclicality of returns to scale and their co-movement with the

output gap, and (ii) a two-factor model à la Smets and Wouters (2007) with three translog

parameters. The cyclicality of the returns to scale and its implications for the slopes of

the Phillips curves largely remain unchanged. However, the MDD significantly prefers the

translog model over the simpler output gap-based model (see Appendices C.4 and C.5).

4 Conclusion

This paper shows that more procyclical returns to scale in recent decades can reconcile

the two seemingly divergent empirical findings: (i) the Phillips curves have flattened when

conventional measures of economic activity, such as the output gap, labor gap, and labor

shares, are employed (Del Negro et al., 2020; Stock and Watson, 2020; Inoue et al., 2024;

Smith et al., 2025), and (ii) the Phillips curve is steep and alive when the marginal costs

are used as a forcing variable (Gagliardone et al., 2025). We develop a theory based on a

more flexible production function than the tightly parameterized Cobb–Douglas and CES

functions. Our quantitative results emphasize how changes in the cyclicality of returns

to scale help explain inflation dynamics and the Phillips curve. Furthermore, our model

predicts the growing significance of inflation expectations, echoing the insights from Coibion

and Gorodnichenko (2015), Hazell et al. (2022), and Meeks and Monti (2023).

This paper considers closed economy models and ignores the potential source of meaning-

Bianchi (2023); Di Giovanni et al. (2023). Crump et al. (2024) focuses on labor market conditions and the
measurement of the natural rate of unemployment, which is absent in our model. Note that our analysis
assumes full-information, linear rational expectations models. Beaudry et al. (2024a) deviates from this
assumption and introduces limited information and bounded rational beliefs that affect inflation through
inflation expectations. Finally, several authors have questioned linearity and proposed convex price and
wage Phillips curves (see Daly and Hobijn, 2014; Ball et al., 2022; Boehm and Pandalai-Nayar, 2022;
Harding et al., 2022, 2023; Benigno and Eggertsson, 2023; Schmitt-Grohé and Uribe, 2023; Blanco et al.,
2024a,b). In contrast, Beaudry et al. (2025) shows that the evidence in support of a convex Phillips curve
is not robust. Additionally, Kocherlakota (2024) argues that the substitution effect among intermediate
goods yields a concave Phillips curve. Interestingly, a nonlinear version of our model can generate convex
Phillips curves even in an environment similar to that of Kocherlakota (2024) if input complementarity is
sufficiently strong (see Appendix A and Gagliardone et al. 2025, for a related discussion on the basis of
macroeconomic complementarities).
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ful complementarity between imported intermediate goods and domestic factor inputs. The

rise of globalization, the ongoing tariff war, and their macroeconomic implications through

cyclical returns to scale under the translog framework are left for future research.
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A Supplementary Materials for Section 2

We examine the nonlinear properties of the Phillips curve resulting from translog produc-

tion functions. We show that sufficiently strong input complementarity yields convex labor

and output Phillips curves using the tractable illustrative model in Section 2, without log-

linearization. See Baek and Lee (2025, appendix A) for details.

We also compare our framework with other models of nonconstant returns to scale. We

show that increasing but time-invariant returns to scale (Baxter and King, 1991, 1993; Ben-

habib and Farmer, 1994; Schmitt-Grohé, 1997) cannot explain the seemingly contradictory

empirical results regarding the slopes of the conventional and marginal cost Phillips curves.

In addition, we consider an alternative production function, yt = exp(εat )l
αt

t . We show that

when αt and, as a result, the returns to scale are procyclical, the measured TFP should include

corresponding procyclical fluctuations, unlike our translog framework. Because the TFP has

not responded to monetary policy shocks more procyclically in recent periods (Remark 2),

our proposed explanation emphasizes the cyclical returns to scale that are microfounded by
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B Medium-scale DSGE Model

In Section 3, we develop a quantitative DSGE model featuring a normalized translog produc-

tion function based on four factor inputs: structure, equipment, skilled labor, and unskilled

labor. For details such as equilibrium conditions, steady state, log-linearized equations, com-

parison with the benchmark Smets and Wouters (2007b) model, and the translog represen-

tation of nested CES production functions (Krusell et al., 2000; Ohanian et al., 2023) in

log-linearization, see Baek and Lee (2025, appendix B).

C Supplementary Materials for Section 3

Here we discuss the robustness checks and the details that are not explicitly illustrated in the

main text.

C.1 Prior and Posterior Distributions

This section presents the results of Bayesian estimation. For the details on the data used

for the estimation and the observables in the state-space system, see Baek and Lee (2025,

appendices C.1 and C.2).

We use standard priors for conventional parameters, similar to Smets and Wouters

(2007b) and Justiniano et al. (2010). For the translog parameters, e.g., βkk, we assume normal

priors with a mean of zero and a standard deviation of 0.15. To illustrate that this prior is

rather loose, suppose φux = 0.401, φks = −0.495, and αks = 0.117, following Krusell et al.

(2000). In combination with αke = 0.25 and αs = 0.2, the corresponding translog parameters

(see Baek and Lee, 2025, appendix B.1.2) are less than 0.09 in absolute value. Thus, a priori

standard deviation of 0.15 is large enough to cover previous estimates based on the nested

CES functions as reasonable cases. For the nested CES model, we assume that 1 − φux and

1 − φks have Gamma distributions with a mean of 1 and a standard deviation of 0.5. Thus,

φux and φks are zero on average, corresponding to a Cobb–Douglas function.

Tables C.1 and C.2 present the complete list of estimated parameters along with their

prior and posterior distributions. We summarize the posterior distributions using the mode

and the equal-tailed 95% credible intervals. We present the results for the early sample (1966-

1999) and the late sample (2000-2019) in separate tables. Each table covers the results based

on the three production functions: Cobb–Douglas, nested CES, and translog. For the nested

CES model, we show the implied translog parameters. We employ a standard Markov Chain

Monte Carlo (MCMC) technique to obtain the posterior distribution. Specifically, we use
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Figure C.1: Prior and posterior distributions of the translog parameters

a Metropolis–Hastings algorithm with a chain length of 200,000. The chain starts at the

posterior mode, computed using interior-point methods. We use either the inverse of the

numerical hessian in the mode or the variance of the posterior distribution obtained from

a preliminary MCMC algorithm with a chain length of 10,000 as a variance of the jump

distribution in our algorithm. The step sizes are adjusted to obtain reasonable acceptance

rates.

Figure C.1 focuses on the prior and posterior distributions of the six translog parameters

when the translog models are estimated using the early sample (1966-99) and the late sample

(2000-19). For the posterior, we plot the (normalized) histograms of the MCMC draws. Using

the right vertical axis, we also show the probability density function of the prior distributions,

N(0, 0.152).

The posterior distributions of the translog parameters are centered around non-zero values

and are significantly less dispersed than their priors. The lengths of the 95% credible intervals

are much shorter than those of the similar intervals a priori, which are approximately 0.6

(= 2× 1.96× 0.15). These results indicate that the data used for estimation provide sufficient

information about the production function parameters.

C.2 Robustness Check: Slopes of the Phillips Curves

This section evaluates the robustness of the results for the slopes of the Phillips curves pre-

sented in Table 4. First, we estimate the Phillips curves without applying bandpass filters.

In this case, we use monetary policy shocks at lags 0 to 20 as IVs, following Barnichon and
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Table C.1: Estimation results for the early sample (1966-1999)

Parameter Priors Cobb–Douglas Nested CES Translog
Mean Std. Family Mode (2.5%, 97.5%) Mode (2.5%, 97.5%) Mode (2.5%, 97.5%)

−100 log β 0.25 0.1 Gamma 0.20 (0.07, 0.35) 0.26 (0.11, 0.40) 0.21 (0.08, 0.34)
σc 1.5 0.25 Normal 1.37 (1.13, 1.69) 1.20 (1.06, 1.47) 1.21 (1.06, 1.51)
h 0.7 0.1 Beta 0.68 (0.58, 0.78) 0.72 (0.61, 0.81) 0.70 (0.61, 0.79)
σl 1.5 0.25 Normal 1.16 (0.68, 1.81) 1.62 (1.24, 2.11) 1.72 (1.29, 2.18)
φs 4 1.5 Normal 5.04 (3.17, 7.88) 5.16 (3.40, 7.99) 4.65 (3.01, 7.59)
φe 4 1.5 Normal 4.19 (2.53, 6.36) 4.99 (3.30, 7.22) 3.71 (2.36, 6.14)
ψ 0.5 0.15 Beta 0.28 (0.08, 0.44) 0.35 (0.24, 0.56) 0.31 (0.14, 0.52)
ξp 0.5 0.1 Beta 0.66 (0.53, 0.79) 0.72 (0.59, 0.85) 0.65 (0.53, 0.78)
ξs 0.5 0.1 Beta 0.62 (0.53, 0.90) 0.63 (0.47, 0.74) 0.45 (0.35, 0.61)
ξu 0.5 0.1 Beta 0.61 (0.52, 0.82) 0.65 (0.58, 0.81) 0.69 (0.59, 0.83)
αks 0.1 0.005 Normal 0.10 (0.09, 0.11) 0.10 (0.09, 0.10) 0.10 (0.09, 0.10)
αke 0.25 0.02 Normal 0.19 (0.16, 0.22) 0.18 (0.15, 0.21) 0.20 (0.16, 0.22)
αs 0.2 0.05 Normal 0.09 (0.06, 0.18) 0.15 (0.12, 0.19) 0.12 (0.10, 0.14)
βkk 0 0.15 Normal 0 - 0.11 (0.09, 0.13) -0.09 (-0.42, -0.03)
βks 0 0.15 Normal 0 - -0.03 (-0.04, -0.01) -0.06 (-0.12, -0.02)
βku 0 0.15 Normal 0 - -0.08 (-0.10, -0.07) -0.12 (-0.23, 0.07)
βss 0 0.15 Normal 0 - 0.09 (0.07, 0.12) 0.08 (0.07, 0.10)
βsu 0 0.15 Normal 0 - -0.07 (-0.09, -0.05) -0.16 (-0.20, -0.10)
βuu 0 0.15 Normal 0 - 0.15 (0.12, 0.18) -0.10 (-0.33, 0.02)

1− ϕux 1 0.5 Gamma 1 - 0.26 (0.16, 0.40) - -
1− ϕks 1 0.5 Gamma 1 - 0.22 (0.08, 0.36) - -

Φ 1.25 0.1 Normal 1.65 (1.53, 1.77) 1.69 (1.54, 1.81) 1.63 (1.49, 1.77)
ρ 0.75 0.1 Beta 0.80 (0.76, 0.87) 0.83 (0.79, 0.89) 0.82 (0.79, 0.87)
rπ 1.5 0.25 Normal 2.08 (1.76, 2.44) 1.95 (1.62, 2.32) 2.06 (1.78, 2.43)
ry 0.125 0.05 Normal 0.08 (0.06, 0.15) 0.10 (0.07, 0.18) 0.12 (0.09, 0.19)
r∆y 0.125 0.05 Normal 0.21 (0.15, 0.27) 0.22 (0.17, 0.29) 0.21 (0.16, 0.27)
π̄ 0.625 0.1 Gamma 0.78 (0.52, 0.96) 0.72 (0.49, 0.92) 0.68 (0.47, 0.85)
γ̄ 0.4 0.1 Normal 0.41 (0.38, 0.44) 0.40 (0.34, 0.44) 0.44 (0.41, 0.47)
l̄ 0 2 Normal 0.62 (-0.59, 3.65) 0.82 (-2.26, 4.12) -0.93 (-3.58, 1.20)
ρa 0.5 0.2 Beta 0.94 (0.88, 0.99) 0.91 (0.86, 0.98) 0.87 (0.82, 0.98)
ρb 0.5 0.2 Beta 0.21 (0.03, 0.42) 0.20 (0.03, 0.47) 0.21 (0.05, 0.37)
ρg 0.5 0.2 Beta 0.95 (0.92, 0.97) 0.96 (0.94, 0.99) 0.96 (0.93, 0.98)
ρI 0.5 0.2 Beta 0.68 (0.55, 0.82) 0.64 (0.54, 0.80) 0.69 (0.57, 0.82)
ρr 0.5 0.2 Beta 0.18 (0.02, 0.27) 0.16 (0.02, 0.25) 0.15 (0.02, 0.25)
ρp 0.5 0.2 Beta 0.86 (0.77, 0.98) 0.80 (0.68, 0.91) 0.88 (0.75, 0.98)
ρs 0.5 0.2 Beta 0.98 (0.93, 0.99) 1.00 (0.99, 1.00) 0.99 (0.99, 1.00)
ρu 0.5 0.2 Beta 0.98 (0.98, 0.99) 0.99 (0.98, 1.00) 0.99 (0.97, 1.00)
ρχ 0.9 0.05 Beta 0.98 (0.98, 0.99) 0.98 (0.98, 0.99) 0.98 (0.98, 0.99)
µp 0.5 0.2 Beta 0.47 (0.16, 0.87) 0.46 (0.14, 0.71) 0.54 (0.06, 0.79)
µs 0.5 0.2 Beta 0.94 (0.03, 0.99) 0.28 (0.02, 0.74) 0.47 (0.28, 0.85)
µu 0.5 0.2 Beta 0.41 (0.19, 0.96) 0.88 (0.78, 0.97) 0.82 (0.29, 0.96)
σa 0.1 2 Inv.Gamma 0.39 (0.36, 0.46) 0.38 (0.34, 0.45) 0.32 (0.28, 0.40)
σb 0.1 2 Inv.Gamma 0.25 (0.21, 0.33) 0.26 (0.20, 0.33) 0.26 (0.22, 0.33)
σg 0.1 2 Inv.Gamma 0.60 (0.53, 0.68) 0.60 (0.53, 0.68) 0.58 (0.51, 0.66)
σI 0.1 2 Inv.Gamma 0.64 (0.52, 0.81) 0.65 (0.49, 0.81) 0.66 (0.55, 0.83)
σr 0.1 2 Inv.Gamma 0.24 (0.21, 0.27) 0.24 (0.21, 0.27) 0.23 (0.20, 0.27)
σp 0.1 2 Inv.Gamma 0.11 (0.07, 0.17) 0.13 (0.08, 0.17) 0.13 (0.07, 0.17)
σs 0.1 2 Inv.Gamma 0.90 (0.06, 1.00) 0.11 (0.05, 0.30) 0.41 (0.23, 0.75)
σu 0.1 2 Inv.Gamma 0.10 (0.06, 0.31) 0.27 (0.21, 0.34) 0.19 (0.09, 0.27)
σχ 0.1 2 Inv.Gamma 1.10 (0.97, 1.27) 1.10 (0.97, 1.27) 1.10 (0.97, 1.27)
σν,k 0.15 0.03 Inv.Gamma 3.79 (3.19, 4.58) 3.83 (3.23, 4.67) 3.87 (3.22, 4.68)
σν,h 0.15 0.03 Inv.Gamma 3.13 (2.66, 3.83) 0.14 (0.10, 0.21) 0.14 (0.10, 0.21)
σν,w 0.15 0.03 Inv.Gamma 0.14 (0.10, 0.22) 1.44 (1.20, 1.84) 1.21 (1.04, 1.49)

Mesters (2020). Second, we employ the translog model as the data generating process (DGP)

and estimate both the Cobb–Douglas and nested CES models using simulated data. We show

that our findings in the main text are robust to these two exercises.
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Table C.2: Estimation results for the late sample (2000-2019)

Parameter Priors Cobb–Douglas Nested CES Translog
Mean Std. Family Mode (2.5%, 97.5%) Mode (2.5%, 97.5%) Mode (2.5%, 97.5%)

−100 log β 0.25 0.1 Gamma 0.13 (0.06, 0.30) 0.55 (0.34, 0.97) 0.08 (0.07, 0.10)
σc 1.5 0.25 Normal 0.93 (0.89, 0.97) 0.86 (0.70, 1.01) 0.87 (0.85, 0.97)
h 0.7 0.1 Beta 0.89 (0.86, 0.92) 0.58 (0.42, 0.67) 0.75 (0.75, 0.76)
σl 1.5 0.25 Normal 1.50 (1.16, 1.98) 1.38 (0.73, 1.72) 0.96 (0.61, 1.14)
φs 4 1.5 Normal 6.27 (4.98, 8.99) 6.22 (3.51, 8.42) 4.67 (3.81, 5.34)
φe 4 1.5 Normal 7.81 (6.28, 9.87) 2.31 (1.39, 3.54) 7.49 (5.52, 8.34)
ψ 0.5 0.15 Beta 0.92 (0.85, 0.97) 0.94 (0.72, 0.95) 0.38 (0.36, 0.43)
ξp 0.5 0.1 Beta 0.84 (0.80, 0.89) 0.89 (0.89, 0.97) 0.75 (0.72, 0.77)
ξs 0.5 0.1 Beta 0.70 (0.57, 0.78) 0.75 (0.69, 0.89) 0.72 (0.69, 0.76)
ξu 0.5 0.1 Beta 0.65 (0.52, 0.74) 0.86 (0.60, 0.90) 0.75 (0.73, 0.76)
αks 0.1 0.005 Normal 0.10 (0.09, 0.11) 0.09 (0.08, 0.10) 0.10 (0.10, 0.11)
αke 0.25 0.02 Normal 0.14 (0.11, 0.17) 0.12 (0.10, 0.15) 0.09 (0.08, 0.10)
αs 0.3 0.05 Normal 0.20 (0.13, 0.24) 0.24 (0.23, 0.31) 0.24 (0.20, 0.26)
βkk 0 0.15 Normal 0 - -0.04 (-0.14, -0.03) 0.04 (0.01, 0.04)
βks 0 0.15 Normal 0 - 0.08 (0.07, 0.19) 0.00 (-0.01, 0.04)
βku 0 0.15 Normal 0 - -0.04 (-0.05, -0.03) -0.25 (-0.32, -0.23)
βss 0 0.15 Normal 0 - 0.00 (-0.09, 0.02) 0.13 (0.04, 0.18)
βsu 0 0.15 Normal 0 - -0.07 (-0.14, -0.07) 0.10 (0.04, 0.20)
βuu 0 0.15 Normal 0 - 0.11 (0.10, 0.19) -0.13 (-0.33, 0.00)

1− ϕux 1 0.5 Gamma 1 - 0.48 (0.14, 0.53) - -
1− ϕks 1 0.5 Gamma 1 - 1.65 (1.57, 2.95) - -

Φ 1.25 0.1 Normal 1.36 (1.23, 1.47) 1.36 (1.19, 1.50) 1.39 (1.27, 1.50)
ρ 0.75 0.1 Beta 0.81 (0.77, 0.84) 0.91 (0.87, 0.96) 0.86 (0.86, 0.86)
rπ 1.5 0.25 Normal 1.06 (1.05, 1.13) 1.43 (0.95, 1.90) 1.88 (1.79, 2.18)
ry 0.125 0.05 Normal -0.01 (-0.02, -0.01) 0.17 (0.09, 0.25) -0.05 (-0.07, -0.04)
r∆y 0.125 0.05 Normal 0.03 (0.00, 0.06) 0.17 (0.15, 0.28) 0.15 (0.13, 0.20)
π̄ 0.625 0.1 Gamma 0.68 (0.49, 0.84) 0.72 (0.59, 0.90) 0.60 (0.48, 0.83)
γ̄ 0.4 0.1 Normal 0.10 (0.01, 0.18) 0.09 (0.03, 0.31) 0.21 (0.19, 0.29)
l̄ 0 2 Normal 4.94 (1.79, 7.12) 3.85 (1.54, 7.22) 4.07 (1.92, 5.34)
ρa 0.5 0.2 Beta 0.87 (0.82, 0.91) 0.93 (0.90, 0.99) 0.85 (0.85, 0.85)
ρb 0.5 0.2 Beta 0.20 (0.09, 0.34) 0.95 (0.94, 0.99) 0.98 (0.98, 0.98)
ρg 0.5 0.2 Beta 0.98 (0.96, 0.99) 0.94 (0.91, 0.99) 1.00 (1.00, 1.00)
ρI 0.5 0.2 Beta 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.94 (0.94, 0.94)
ρr 0.5 0.2 Beta 0.56 (0.49, 0.67) 0.54 (0.36, 0.68) 0.52 (0.39, 0.55)
ρp 0.5 0.2 Beta 0.99 (0.99, 1.00) 0.55 (0.20, 0.82) 1.00 (1.00, 1.00)
ρs 0.5 0.2 Beta 0.98 (0.98, 0.99) 0.74 (0.06, 0.80) 0.18 (0.17, 0.19)
ρu 0.5 0.2 Beta 0.97 (0.96, 0.98) 0.17 (0.04, 0.99) 0.98 (0.98, 0.98)
ρχ 0.9 0.05 Beta 1.00 (0.99, 1.00) 0.99 (0.98, 1.00) 0.98 (0.98, 0.98)
µp 0.5 0.2 Beta 0.97 (0.96, 0.98) 0.39 (0.09, 0.76) 0.72 (0.67, 0.74)
µs 0.5 0.2 Beta 0.30 (0.04, 0.64) 0.30 (0.21, 0.79) 0.42 (0.38, 0.49)
µu 0.5 0.2 Beta 0.89 (0.79, 0.93) 0.45 (0.30, 0.97) 0.92 (0.92, 0.92)
σa 0.1 2 Inv.Gamma 0.40 (0.36, 0.48) 0.42 (0.33, 0.48) 0.31 (0.27, 0.37)
σb 0.1 2 Inv.Gamma 0.25 (0.20, 0.32) 0.07 (0.04, 0.08) 0.02 (0.02, 0.02)
σg 0.1 2 Inv.Gamma 0.40 (0.34, 0.46) 0.36 (0.29, 0.41) 0.26 (0.21, 0.29)
σI 0.1 2 Inv.Gamma 0.42 (0.30, 0.53) 1.36 (0.72, 1.78) 0.13 (0.11, 0.13)
σr 0.1 2 Inv.Gamma 0.11 (0.09, 0.13) 0.11 (0.09, 0.14) 0.11 (0.10, 0.12)
σp 0.1 2 Inv.Gamma 0.21 (0.18, 0.25) 0.15 (0.11, 0.20) 0.11 (0.10, 0.12)
σs 0.1 2 Inv.Gamma 0.08 (0.05, 0.19) 0.12 (0.12, 1.95) 1.51 (1.25, 1.93)
σu 0.1 2 Inv.Gamma 0.73 (0.59, 0.93) 0.84 (0.13, 0.85) 0.30 (0.25, 0.38)
σχ 0.1 2 Inv.Gamma 0.74 (0.65, 0.89) 0.75 (0.64, 0.88) 0.81 (0.69, 0.86)
σν,k 0.15 0.03 Inv.Gamma 0.23 (0.19, 0.38) 1.69 (1.25, 2.34) 0.37 (0.30, 0.50)
σν,h 0.15 0.03 Inv.Gamma 0.14 (0.10, 0.21) 0.14 (0.10, 0.22) 0.14 (0.12, 0.16)
σν,w 0.15 0.03 Inv.Gamma 2.55 (2.11, 3.15) 1.46 (1.18, 1.86) 1.28 (1.12, 1.66)

First, we employ the population version of the two-stage least squares estimation of the

Phillips curve, π̂t = βxEt[π̂t+1] + κxxt + errorx,t, without using a filter. We utilize monetary

policy shocks at lags 0 to 20, Zt ≡ (εrt , . . . , ε
r
t−20)

′, as IVs. Let PZ(·) be the projection operator
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Table C.3: Slopes of the Phillips curves (without filters)

(1) (2) (3) (4) (5) (6)

Early sample (1966-99) Late sample (2000-19)
Cobb–Douglas Nested CES Translog Cobb–Douglas Nested CES Translog

Panel A. Calvo price stickiness parameter

ξp 0.66 0.72 0.65 0.84 0.89 0.75
(0.53, 0.79) (0.59, 0.85) (0.53, 0.78) (0.80, 0.89) (0.89, 0.97) (0.72, 0.77)

Panel B. Slopes of the price Phillips curves

marginal costs 0.023 0.013 0.026 0.006 0.003 0.017
(0.007, 0.057) (0.004, 0.037) (0.009, 0.059) (0.003, 0.010) (0.000, 0.003) (0.014, 0.023)

output gap 0.016 0.009 0.028 0.005 0.002 0.007
(0.005, 0.027) (0.002, 0.019) (0.010, 0.048) (0.003, 0.008) (0.000, 0.003) (0.005, 0.011)

labor gap 0.028 0.023 0.041 0.007 0.001 0.004
(0.008, 0.046) (0.007, 0.040) (0.015, 0.069) (0.004, 0.011) (0.000, 0.002) (-0.007, 0.007)

labor share 0.045 0.003 0.118 0.009 0.004 -0.001
(-0.117, 0.176) (-0.038, 0.042) (-0.366, 0.324) (0.005, 0.017) (0.000, 0.004) (-0.006, 0.008)

labor share, 0.023 0.020 0.047 0.006 0.002 0.003
υ adjusted (0.007, 0.057) (0.006, 0.045) (0.005, 0.182) (0.003, 0.010) (0.000, 0.003) (-0.003, 0.008)

on the space spanned by Zt: PZ(·) = Z ′

t[var(Zt)
−1cov(Zt, ·)]. Because Zt consists of monetary

policy shocks, the first-stage projections of π̂t, Et[π̂t+1], and xt yield the following results:

PZ(π̂t) =
20∑

i=0

φrπ,iε
r
t−i, PZ(Et[π̂t+1]) =

20∑

i=0

φrπ,i+1ε
r
t−i, PZ(xt) =

20∑

i=0

φrx,iε
r
t−i,

where φrπ,i and φrx,i represent the impulse response coefficients of πt+i and xt+i to the monetary

policy shock, εrt , respectively. Then, the two-stage least squares estimate of (βx, κx)
′ is given

by:

(
βx

κx

)
=

[
var

(
PZ(Et[π̂t+1])

PZ(xt)

)]−1

cov

[(
PZ(Et[π̂t+1])

PZ(xt)

)
, PZ(π̂t)

]

=

[∑20
i=0(φ

r
π,i+1)

2
∑20

i=0 φ
r
π,i+1φ

r
x,i∑20

i=0 φ
r
π,i+1φ

r
x,i

∑20
i=0(φ

r
π,x)

2

]−1 [∑20
i=0 φ

r
π,i+1φ

r
π,i∑20

i=0 φ
r
x,iφ

r
π,i

]
.

We use this formula to compute κx for different forcing variables.

Table C.3 shows the results in the posterior mode and the equal-tailed 95% credible

intervals. Note that when real marginal costs are used, the results are the same as those

in Table 4. In this case, the regression equation reduces to the price Phillips curve in the

model, where errorx,t = εpt . Then, monetary policy shocks satisfy the relevance and exclusion

restrictions of IVs, resulting in κx = κ = (1−ζpβ̃γ)(1−ζp)

ζp
1

1+θp(Φ−1)
, similar to the specification

employed in the main text.1 For the conventional Phillips curves, the computed slopes slightly

1β̃ = βγ−σc is the discount factor in the detrended economy, where γ is the gross growth rate on the BGP

and σc is the consumption utility parameter. θp represents the curvature of the Kimball aggregator, while Φ
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differ from those in Table 4. However, the results remain largely robust in the sense that the

translog model can jointly replicate the steep marginal cost Phillips curve and the flattening

of conventional Phillips curves in recent decades. In contrast, the Cobb–Douglas and nested

CES models feature unrealistically sticky prices and quite flat Phillips curves to explain the

post-2000 data.

Our second robustness exercise employs the translog model in the posterior mode as the

DGP. Using the simulated data and the same Bayesian estimation method in Section 3.2,

we estimate the Cobb–Douglas and nested CES models. Specifically, we first estimate the

model’s state variable in the first period (1966:Q1 and 2000:Q1) for each sample using the

Kalman smoother, the translog model in the posterior mode, and the US time series data.

Then, we simulate the model starting from this initial state for 136 periods in the case of the

early sample to match the sample size in the data. For the late sample, we simulate the model

for 80 periods. For each set of simulated data, we estimate the Cobb–Douglas and nested CES

models and compute the corresponding posterior modes. We repeat this process 20 times.

The results align with the analysis in the main text (Table 4) based on the US aggregate

time series data. For the early sample, the averages of the estimated Calvo price stickiness

parameter, ζp, for the Cobb–Douglas and nested CES models are approximately 0.6, similar

to the value under the DGP, 0.65. As a result, the price Phillips curves are also steep, similar

to the results in Table C.3 based on the US data. In contrast, for the late sample, the averages

of the estimated ζp are greater than 0.9. Thus, to match the data simulated by the translog

model in the late sample, the other two models rely on excessively sticky prices and quite

flat price Phillips curves. This result is also consistent with the results in Table C.3 and the

discussion in the main text, emphasizing more procyclical returns to scale in recent decades

than in earlier decades.

C.3 Empirical Responses of TFP to Monetary Policy Shocks

A specific supply-side effect of demand disturbances propagating through the cyclical returns

to scale is central to our mechanism for the flattening of the Phillips curve. As discussed in

Remark 2, an important feature distinguishing our mechanism from other prominent supply-

side channels of monetary policy is that the cyclical returns to scale do not affect TFP at the

first order. The TFP in the model (εat ) is exogenous and equal to the Solow residual at the

first order. In contrast, the influence of several supply-side mechanisms may be reflected in

the responses of the measured aggregate TFP.

denotes the gross price markup.
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Figure C.2: IRF of GDP, TFP, and energy to contractionary monetary policy shocks

Given this consideration, we estimate the impulse response function (IRF) of TFP to

monetary policy shocks. We use the following local projections à la Jordà (2005):

TFPt+h − TFPt−1 = ψhηt + Γ′

hcontrolt + error, (C.1)

where {ψ0, ψ1, . . .} constitutes an IRF of TFP to a monetary policy shock ηt. We include an

intercept and four lagged values of ∆TFPt ≡ TFPt − TFPt−1 and ηt as controls. We use

heteroskedasticity-autocorrelation-consistent standard errors for inferences. Following Chris-

tiano et al. (1996), Coibion (2012), Gorodnichenko and Lee (2020), and many others, the

impact responses to monetary policy shocks are assumed to be zero. Impulse responses of

other variables are estimated similarly.

We use the TFP measure computed by Fernald (2014a,b). For ηt, we rely on high-

frequency monetary policy surprises around the FOMC meetings. Specifically, we use the

monetary policy surprise series orthogonal to predictable variations in the instrument pre-

sented by Bauer and Swanson (2023). The sample period for this exercise begins in 1988:q1

and ends in 2019:q4. We divide the sample around 2000 as is the case in Section 3.

Figure C.2 shows the annualized responses to a one-standard-deviation contractionary

monetary policy shock. The first and second rows illustrate the results based on the early and

late samples, respectively. The confidence intervals are at the 90% level. In the early sam-

ple, TFP was conditionally procyclical on monetary policy shocks; GDP and TFP decreased
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simultaneously. In the late sample, GDP responds in a similarly hump-shaped manner. How-

ever, TFP does not respond much. The point estimates are close to zero and statistically

insignificant at all horizons. Therefore, it is less likely that the TFP-affecting supply-side

mechanisms of monetary policy have become sufficiently strong in recent periods to flatten

the Phillips curves.

In the third column, we plot the responses of the US industrial energy use to the same

monetary policy shock during the same sample period. This variable is interpreted as a

proxy for the capacity utilization rate, zt, in the model. We obtain the monthly data from

U.S. Energy Information Administration (2021). We remove the seasonal variation using X-13

ARIMA and aggregate the series to the quarterly frequency.

In the translog model, the procyclical rtstlt arises from the changes in the translog pa-

rameters (Table 3) and related factor input decisions (Equations (3.2)-(3.5)). The response

of k̂et is of particular interest in this regard. In the early sample, expansionary monetary

policy shocks lead to an increase in the utilization rate, zt, and equipment services, ket. In

contrast, in recent periods, zt and ket have decreased in the short term (not shown). A

smaller ket than usual, combined with a negative βk·, contributes to procyclical returns to

scale (r̂ts
tl

t = βk·k̂et + βs·l̂st + βu·l̂ut) in the estimated model in the late sample.

The results in Figure C.2 imply that US industrial use of energy, a proxy for the utilization

rate, significantly decreased in response to expansionary monetary policy shocks in the post-

2000 sample, whereas the signs are opposite before 2000. Thus, the data and the model exhibit

the same signs of energy (utilization) responses in each sample period, further supporting the

mechanism in our model.

Therefore, we conclude that the empirical evidence in this section is broadly consistent

with the role of the procyclical returns to scale in recent decades in flattening the Phillips

curves. Furthermore, the signs of energy responses in the data and the model in each sample

period are the same and change between the two sample periods. Because energy usage is

not directly used for the Bayesian estimation of the DSGE models, this result constitutes

suggestive evidence for the mechanism in our model.

C.4 Robustness Check: A Simplified Four-Input Model

This section analyzes a parsimonious model where only a single parameter governs the second-

order term in the production function and the cyclicality of returns to scale. This simplified

model, with only one new degree of freedom, is more tightly parameterized and disciplined

than the nested CES (two parameters) and translog (six parameters) models in the main text.

As a result, this section allows us to focus directly on the cyclicality of returns to scale and
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utilize time series variations to estimate only one novel parameter, in addition to standard

parameters.

C.4.1 Model

We assume the following four-factor production function:

Yt(i) = exp(εat )[Kst(i)]
αks [Ket(i)]

αke [γtLst(i)]
αs [γtLut(i)]

αu × exp(s.o.t.it)− γtυ,

s.o.t.it =
(
αkek̂i,et + αsl̂i,st + αul̂i,ut

)
φ (ŷt − ŷ∗t ) , (C.2)

where k̂i,et = log
(
Ket(i)

K̄et

)
, l̂i,st = log

(
Lst(i)

L̄st

)
, l̂i,ut = log

(
Lut(i)

L̄ut

)
, and ŷt− ŷ∗t is the output gap.

The single new parameter in this model relative to the Cobb–Douglas model is φ. Note that

φ (ŷt − ŷ∗t ) and αkek̂i,et + αsl̂i,st + αul̂i,ut can be related to α5t and l̂it in remark 4 in Baek and

Lee (2025), respectively. That is, the component in returns to scale that affects real marginal

costs is given by φ (ŷt − ŷ∗t ) in this model.

From the log-linearized FOCs for the cost minimization problem when the production

function is given by Equation (C.2), we obtain that:

m̂ct = αksr̂st + αker̂et + αsŵst + αuŵut︸ ︷︷ ︸
factor prices

− εat︸︷︷︸
TFP

− (αke + αs + αu)φ(ŷt − ŷ∗t )︸ ︷︷ ︸
returns to scale

. (C.3)

Note that the returns to scale component in real marginal costs changes from βk·k̂et+ βs·l̂st+

βu·l̂ut under the baseline translog model to (αke + αs + αu)φ(ŷt − ŷ∗t ) in this model (Equation

(C.3)). Furthermore, in this model, the cyclicality of the returns to scale, given the factor

income share parameters, is disciplined by a single parameter, φ, whereas all six translog

parameters matter for βk·k̂et + βs·l̂st + βu·l̂ut.

The remaining part of the model is the same as the baseline model with the normal-

ized translog production function. Furthermore, we use the same data, priors, and Bayesian

estimation methods as in the main text.

C.4.2 Results

Prior and posterior distributions. See Table C.4 for the estimation results. The prior

mean of the skilled labor share, αs, is 0.2 and 0.3 for the early and late samples, respectively.

Model comparison. Table C.5 shows the size of measurement errors (σν,ke , σν,h, and σν,w),

log-likelihood in the mode, and the marginal data density (MDD). For each sample period, we
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Table C.4: Estimation results for the output gap model

Parameter Priors Early sample (1966-99) Late sample (2000-19)
Mean Std. Family Mode (2.5%, 97.5%) Mode (2.5%, 97.5%)

−100 log β 0.25 0.1 Gamma 0.25 (0.10, 0.38) 0.29 (0.29, 0.34)
σc 1.5 0.25 Normal 1.14 (1.03, 1.44) 0.63 (0.60, 0.64)
h 0.7 0.1 Beta 0.73 (0.62, 0.81) 0.84 (0.83, 0.84)
σl 1.5 0.25 Normal 1.44 (0.98, 1.92) 1.44 (1.39, 1.58)
φs 4 1.5 Normal 4.93 (3.19, 7.79) 4.02 (3.63, 4.12)
φe 4 1.5 Normal 4.28 (2.81, 6.61) 6.25 (4.83, 6.92)
ψ 0.5 0.15 Beta 0.31 (0.16, 0.53) 0.48 (0.47, 0.51)
ξp 0.5 0.1 Beta 0.61 (0.51, 0.73) 0.70 (0.66, 0.71)
ξs 0.5 0.1 Beta 0.66 (0.51, 0.79) 0.81 (0.81, 0.83)
ξu 0.5 0.1 Beta 0.60 (0.52, 0.78) 0.96 (0.96, 0.96)
αks 0.1 0.005 Normal 0.10 (0.09, 0.11) 0.10 (0.09, 0.10)
αke 0.25 0.02 Normal 0.19 (0.16, 0.22) 0.10 (0.08, 0.12)
αs 0.2 or 0.3∗ 0.05 Normal 0.13 (0.11, 0.18) 0.24 (0.20, 0.26)
ϕ 0 0.15 Normal -0.19 (-0.39, 0.02) 0.16 (0.09, 0.22)
Φ 1.25 0.1 Normal 1.64 (1.50, 1.75) 1.47 (1.29, 1.58)
ρ 0.75 0.1 Beta 0.80 (0.77, 0.86) 0.90 (0.89, 0.90)
rπ 1.5 0.25 Normal 2.02 (1.75, 2.41) 1.81 (1.61, 2.03)
ry 0.125 0.05 Normal 0.10 (0.07, 0.17) 0.00 (-0.01, 0.00)
r∆y 0.125 0.05 Normal 0.20 (0.15, 0.27) 0.13 (0.12, 0.18)
π̄ 0.625 0.1 Gamma 0.77 (0.52, 0.96) 0.94 (0.78, 1.11)
γ̄ 0.4 0.1 Normal 0.42 (0.38, 0.45) 0.38 (0.36, 0.44)
l̄ 0 2 Normal -0.05 (-2.16, 3.82) 3.30 (1.36, 6.82)
ρa 0.5 0.2 Beta 0.89 (0.84, 0.98) 0.88 (0.87, 0.88)
ρb 0.5 0.2 Beta 0.18 (0.04, 0.38) 0.97 (0.97, 0.97)
ρg 0.5 0.2 Beta 0.96 (0.93, 0.98) 1.00 (1.00, 1.00)
ρI 0.5 0.2 Beta 0.67 (0.55, 0.81) 0.99 (0.99, 0.99)
ρr 0.5 0.2 Beta 0.19 (0.03, 0.29) 0.39 (0.35, 0.40)
ρp 0.5 0.2 Beta 0.88 (0.79, 0.98) 0.99 (0.99, 0.99)
ρs 0.5 0.2 Beta 1.00 (0.99, 1.00) 1.00 (1.00, 1.00)
ρu 0.5 0.2 Beta 0.99 (0.99, 1.00) 0.40 (0.39, 0.43)
ρχ 0.9 0.05 Beta 0.98 (0.98, 0.99) 0.99 (0.99, 0.99)
µp 0.5 0.2 Beta 0.53 (0.17, 0.80) 0.87 (0.87, 0.88)
µs 0.5 0.2 Beta 0.29 (0.03, 0.62) 0.95 (0.95, 0.95)
µu 0.5 0.2 Beta 0.83 (0.72, 0.97) 0.55 (0.54, 0.57)
σa 0.1 2 Inv.Gamma 0.40 (0.36, 0.47) 0.42 (0.38, 0.49)
σb 0.1 2 Inv.Gamma 0.27 (0.22, 0.33) 0.02 (0.02, 0.02)
σg 0.1 2 Inv.Gamma 0.60 (0.53, 0.68) 0.39 (0.32, 0.38)
σI 0.1 2 Inv.Gamma 0.65 (0.52, 0.82) 0.23 (0.22, 0.27)
σr 0.1 2 Inv.Gamma 0.24 (0.21, 0.27) 0.11 (0.10, 0.12)
σp 0.1 2 Inv.Gamma 0.14 (0.08, 0.18) 0.13 (0.13, 0.15)
σs 0.1 2 Inv.Gamma 0.12 (0.05, 0.28) 0.44 (0.37, 0.55)
σu 0.1 2 Inv.Gamma 0.29 (0.24, 0.36) 0.76 (0.64, 0.79)
σχ 0.1 2 Inv.Gamma 1.10 (0.97, 1.28) 0.75 (0.69, 0.82)
σν,k 0.15 0.03 Inv.Gamma 3.83 (3.22, 4.58) 0.39 (0.33, 0.57)
σν,h 0.15 0.03 Inv.Gamma 0.14 (0.10, 0.21) 0.14 (0.10, 0.20)
σν,w 0.15 0.03 Inv.Gamma 3.15 (2.68, 3.83) 2.55 (2.13, 3.23)

illustrate the results based on the baseline translog model and the output gap-based cyclical

returns to scale model in this appendix.

The data consistently prefer the translog model to the output gap model in both sample

periods. First, the output gap model relies on a significantly larger value of σν,w than the

translog model. Second, for both sample periods, the translog model has substantially larger

log-likelihood in the mode and the MDD than the output gap model. Thus, we conclude that

the translog model matches the data better than the simpler output gap model.
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Table C.5: Model comparison

(1) (2) (3) (4)
Early sample (1966-99) Late sample (2000-19)

Translog Output gap Translog Output gap
Panel A. Measurement errors

σν,ke
3.87 3.83 0.37 0.39

(3.22, 4.68) (3.22, 4.58) (0.30, 0.50) (0.33, 0.57)
σν,h 0.14 0.14 0.14 0.14

(0.10, 0.21) (0.10, 0.21) (0.12, 0.16) (0.10, 0.20)
σν,w 1.21 3.15 1.28 2.55

(1.04, 1.49) (2.68, 3.83) (1.12, 1.66) (2.13, 3.23)
Panel B. Log-likelihood at the posterior mode and marginal data densities

log-likelihood -70.27 -111.26 114.42 91.48
log MDD -311.52 -364.95 -173.65 -199.06

Table C.6: Production function parameters (simpler four-input model)

(1) (2) (3) (4)
Early sample (1966-99) Late sample (2000-19)

Translog Output gap Translog Output gap
Panel A. Factor income shares in the steady state

αks 0.10 0.10 0.10 0.10
(0.09, 0.10) (0.09, 0.11) (0.10, 0.11) (0.09, 0.10)

αke 0.20 0.19 0.09 0.10
(0.16, 0.22) (0.16, 0.22) (0.08, 0.10) (0.08, 0.12)

αs 0.12 0.13 0.24 0.24
(0.10, 0.14) (0.11, 0.18) (0.20, 0.26) (0.20, 0.26)

αu 0.58 0.58 0.57 0.56
(0.56, 0.62) (0.53, 0.62) (0.55, 0.61) (0.55, 0.61)

Panel B. Translog and returns-to-scale parameters

βkk -0.09 - 0.04 -
(-0.42, -0.03) - (0.01, 0.04) -

βks -0.06 - 0.00 -
(-0.12, -0.02) - (-0.01, 0.04) -

βku -0.12 - -0.25 -
(-0.23, 0.07) - (-0.32, -0.23) -

βss 0.08 - 0.13 -
(0.07, 0.10) - (0.04, 0.18) -

βsu -0.16 - 0.10 -
(-0.20, -0.10) - (0.04, 0.20) -

βuu -0.10 - -0.13 -
(-0.33, 0.02) - (-0.33, 0.00) -

ϕ - -0.19 - 0.16
- (-0.39, 0.02) - (0.09, 0.22)

Panel C. Gross markup in the steady state

Φ 1.63 1.64 1.39 1.47
(1.49, 1.77) (1.50, 1.75) (1.27, 1.50) (1.29, 1.58)

Production function parameters. Next, we discuss the production function parameters.

Table C.6 shows that the steady-state factor income shares (Panel A) and price markups (Panel

C) are largely comparable across the translog and output gap models in a given sample period.

As discussed in the main text, the translog parameters are reasonably precisely estimated

relative to the parameter uncertainty a priori. Also, by comparing Columns (1) and (3)

in Panel B, we find that several parameters have changed substantially, leading to more
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Table C.7: Slopes of the Phillips curves

(1) (2) (3) (4)
Early sample (1966-99) Late sample (2000-19)

Translog Output gap Translog Output gap
Panel A. Calvo price stickiness parameter

ξp 0.65 0.61 0.75 0.70
(0.53, 0.78) (0.51, 0.73) (0.72, 0.77) (0.66, 0.71)

Panel B. Slopes of the price Phillips curves

real marginal costs 0.026 0.035 0.017 0.022
(0.009, 0.059) (0.014, 0.065) (0.014, 0.023) (0.021, 0.032)

output gap 0.028 0.026 0.005 0.001
(0.009, 0.049) (0.010, 0.039) (0.004, 0.007) (0.000, 0.002)

labor gap 0.039 0.042 0.005 0.001
(0.013, 0.066) (0.016, 0.062) (0.003, 0.006) (0.000, 0.002)

labor share 0.118 0.136 0.009 -0.008
(-0.481, 0.406) (-0.455, 0.472) (0.007, 0.012) (-0.023, 0.005)

labor share, 0.047 0.046 0.006 0.005
υ adjusted (0.010, 0.197) (0.017, 0.116) (0.004, 0.009) (0.002, 0.012)

procyclical returns to scale in the late sample.

These results survive in the simpler output gap model. The returns to scale cyclicality

parameter, φ, changes statistically significantly in Columns (2) and (4). The increase in φ

indicates countercyclical returns to scale in the past and procyclical returns to scale in recent

periods, consistent with the predictions from the translog models. Finally, the posterior

credible sets for φ in Columns (2) and (4) are substantially narrower than a prior credible set,

(−0.3, 0.3), implying that the data and Bayesian estimation method are informative about

the cyclicality of returns to scale.

Slopes of the Phillips curves. Table C.7 presents the Calvo price stickiness parameter

(Panel A), ξp, and the model-predicted slopes of the Phillips curves (Panel B), κx, in the

posterior mode with the 95% credible intervals. Similar to the translog model, the output gap

model with cyclical returns to scale also relies on a reasonable degree of price stickiness in

both sample periods. For example, at the posterior mode for the post-2000 period, ξp is 0.7,

which is well within the ballpark range.

The slopes of the marginal cost Phillips curve in Panel B echo the results for ξp. The

slopes are not small and similar across all columns. Thus, through the lens of the model

allowing for cyclical returns to scale, the New Keynesian Phillips curve did not flatten and

is alive well. Furthermore, as shown in Column (4), the output gap model yields quite flat

conventional Phillips curves, similar to those of the translog model (Column (3)).

Thus, the structural changes reflected in more procylical returns to scale, captured by the

different φ (β) coefficient values in the output gap (translog) model between the two sample

periods, can explain the two seemingly contradictory empirical results that the marginal cost
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Phillips curve is steep and alive and the conventional Phillips curve flattened.

C.5 Robustness Check: Two-Input Models

Although we adopt the basic structure of a medium-scale DSGE model in Smets and Wouters

(2007b), there are a few differences between our model and the Smets–Wouters model. The

major differences include (i) production functions, (ii) the number of factor inputs, and (iii)

additional variables used for Bayesian estimation.

This section considers simpler models with two inputs (capital and labor) than the model

in Section 3 with four inputs (structure, equipment, skilled labor, and unskilled labor) for a

robustness check. Furthermore, we use the same seven quarterly variables to estimate the

model as those in Smets and Wouters (2007b).

The main results are robust to those changes. The translog production function yields

stable slopes of the New Keynesian price Phillips curve to some extent and a decrease in the

slopes of the conventional Phillips curves based on, e.g., the output and labor gaps.

C.5.1 Model

Intermediate goods producers employ labor and utilize capital services in their production.

We consider the following three production functions:

Cobb–Douglas: Yt(i) = exp(εat )[Kt(i)]
α[γtLt(i)]

1−α − γtυ,

CES: Yt(i) = exp(εat )
(
a1[Kt(i)]

φ + a2[γ
tLt(i)]

φ
)1/φ

− γtυ,

Translog: Yt(i) = exp(εat )[Kt(i)]
α[γtLt(i)]

1−α × exp
(
βkkk̂itk̂t + βlkk̂it l̂t + βlk l̂itk̂t + βll l̂it l̂t

)
− γtυ,

where α is the steady-state capital income share. The CES parameter φ implies that the elas-

ticity of substitution between labor and capital is 1
1−ϕ

. βs are translog parameters. The above

CES production function can be converted to a deviation form using the steady-state income

shares as follows: Yt(i)+γtυ

Ȳt+γtυ
= exp(εat )

(
α
[
Kt(i)

K̄t

]ϕ
+ (1− α)

[
γtLt(i)

γtL̄t

]ϕ)1/ϕ

. Furthermore, it can

be shown that the equilibrium conditions in the CES model are equivalent to those in the

translog model in log-linearization when:

βkk = α(1− α)φ, βlk = −α(1− α)φ, βll = α(1− α)φ. (C.4)

Other elements of the models are the same as those in the Smets and Wouters (2007b)

model. The model features Calvo-type sticky prices and wages with Kimball (1995) aggre-

gators, investment-adjustment costs, costly capacity utilization, and external consumption
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habits. Like Section 3, we rule out price and wage indexation: ιp = ιw = 0 (see Woodford,

2007; Cogley and Sbordone, 2008; Phaneuf et al., 2018). Furthermore, we assume that govern-

ment spending does not depend on productivity shocks: ρga = 0. For the remaining details,

see Smets and Wouters (2007a,b).

C.5.2 Results

Data. We use seven quarterly variables for estimation that include growth rates of per capita

real GDP, consumption, and investment; labor hours; the growth rate of the real wage rate;

price inflation; and the nominal interest rate (replaced by the shadow rate of Wu and Xia

(2016) when the zero lower bound was binding). Following Smets and Wouters (2007b), the

sample begins in 1966:q1. We divide the data into two periods, 1966-1999 and 2000-2019.

Prior and posterior distributions. Tables C.8 and C.9 present Bayesian estimation re-

sults for the early and late subsamples, showing each parameter’s prior (mean, standard

deviation, distribution family) and posterior mode with a 95 % credible interval.

Model comparison. Table C.10 shows the returns to scale parameters, βk· = βkk+βlk and

βl· = βll+βlk, log-likelihood in the mode, and the MDD. The Cobb–Douglas and CES models

feature βk· = βl· = 0 by assumption and, therefore, ˆrts
tl

t = βk·k̂t + βl·l̂t = 0. In contrast,

the translog model does not impose such restrictions so that the returns to scale ˆrts
tl

t can be

time-varying.

In log-linearization, the translog model nests the other two models. Therefore, we can test

the validity of the restrictions imposed by the Cobb–Douglas and CES functions by testing

whether zero falls in the credible interval for the returns to scale parameters in Columns (3)

and (6) for the early and late samples, respectively. Except for the 95% credible interval for

βl· in Column (6), all the other credible intervals in Panel A do not include zero. Thus, the

data reject the predictions of the restrictive Cobb–Douglas and CES models at the 5% level.

The data consistently favor the translog model when the three models are compared using

the likelihood in the mode and the MDD. For both sample periods, the translog model has the

largest log-likelihood in the mode and the MDD among the three models. Thus, we conclude

that the translog model matches the data better than the two alternative models.

It is also worth noting that the returns to scale parameters increase statistically signifi-

cantly between Columns (3) and (6), hinting at potential structural changes that may have

affected the comovement between inflation and economic activity.
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Table C.8: Estimation results for the early sample (1966-1999) and the two-input models

Parameter Priors Cobb–Douglas CES Translog
Mean Std. Family Mode (2.5%, 97.5%) Mode (2.5%, 97.5%) Mode (2.5%, 97.5%)

φ 4 1.5 Normal 5.65 (3.93, 7.93) 5.83 (3.89, 8.09) 5.31 (3.50, 7.74)
σc 1.5 0.25 Normal 1.48 (1.24, 1.80) 1.48 (1.21, 1.82) 1.40 (1.14, 1.72)
h 0.7 0.1 Beta 0.68 (0.60, 0.78) 0.69 (0.61, 0.79) 0.70 (0.62, 0.81)
ξw 0.5 0.1 Beta 0.71 (0.62, 0.86) 0.70 (0.61, 0.84) 0.68 (0.59, 0.82)
σl 1.5 0.25 Normal 1.50 (1.07, 2.02) 1.51 (1.08, 2.02) 1.43 (0.99, 1.97)
ξp 0.5 0.1 Beta 0.67 (0.56, 0.80) 0.69 (0.54, 0.81) 0.65 (0.53, 0.76)
ψ 0.5 0.15 Beta 0.46 (0.25, 0.72) 0.43 (0.24, 0.75) 0.45 (0.22, 0.81)
Φ 1.25 0.1 Normal 1.59 (1.46, 1.71) 1.60 (1.46, 1.73) 1.60 (1.45, 1.73)
rπ 1.5 0.25 Normal 2.03 (1.71, 2.41) 2.02 (1.73, 2.42) 2.04 (1.75, 2.42)
ρ 0.75 0.1 Beta 0.81 (0.77, 0.86) 0.81 (0.76, 0.86) 0.80 (0.76, 0.85)
ry 0.125 0.05 Normal 0.09 (0.06, 0.15) 0.09 (0.05, 0.15) 0.11 (0.07, 0.17)
r∆y 0.125 0.05 Normal 0.22 (0.16, 0.28) 0.22 (0.16, 0.28) 0.22 (0.16, 0.29)
π̄ 0.625 0.1 Gamma 0.83 (0.59, 1.02) 0.82 (0.59, 1.01) 0.81 (0.57, 1.01)

−100 log β 0.25 0.1 Gamma 0.20 (0.07, 0.34) 0.20 (0.08, 0.35) 0.21 (0.08, 0.36)
l̄ 0 2 Normal 2.06 (0.04, 4.74) 2.10 (0.13, 4.88) 1.89 (0.06, 4.53)
γ̄ 0.4 0.1 Normal 0.42 (0.39, 0.45) 0.42 (0.39, 0.45) 0.42 (0.39, 0.46)
α 0.3 0.05 Normal 0.20 (0.16, 0.24) 0.20 (0.15, 0.24) 0.21 (0.16, 0.25)
σa 0.1 2 Inv. Gamma 0.44 (0.39, 0.50) 0.43 (0.38, 0.50) 0.41 (0.37, 0.49)
σb 0.1 2 Inv. Gamma 0.25 (0.20, 0.31) 0.25 (0.20, 0.31) 0.26 (0.21, 0.33)
σg 0.1 2 Inv. Gamma 0.57 (0.51, 0.65) 0.57 (0.51, 0.65) 0.57 (0.51, 0.65)
σI 0.1 2 Inv. Gamma 0.46 (0.36, 0.57) 0.46 (0.35, 0.56) 0.49 (0.38, 0.60)
σr 0.1 2 Inv. Gamma 0.25 (0.22, 0.29) 0.25 (0.22, 0.29) 0.25 (0.22, 0.29)
σp 0.1 2 Inv. Gamma 0.13 (0.09, 0.18) 0.13 (0.08, 0.18) 0.13 (0.07, 0.17)
σw 0.1 2 Inv. Gamma 0.20 (0.16, 0.25) 0.20 (0.16, 0.25) 0.20 (0.16, 0.25)
ρa 0.5 0.2 Beta 0.95 (0.92, 0.99) 0.95 (0.92, 0.99) 0.95 (0.92, 0.99)
ρb 0.5 0.2 Beta 0.18 (0.04, 0.44) 0.18 (0.05, 0.41) 0.18 (0.02, 0.37)
ρg 0.5 0.2 Beta 0.98 (0.96, 0.99) 0.98 (0.96, 1.00) 0.97 (0.96, 1.00)
ρI 0.5 0.2 Beta 0.65 (0.54, 0.81) 0.64 (0.53, 0.84) 0.63 (0.52, 0.80)
ρr 0.5 0.2 Beta 0.14 (0.02, 0.23) 0.14 (0.02, 0.24) 0.14 (0.02, 0.24)
ρp 0.5 0.2 Beta 0.85 (0.74, 0.96) 0.84 (0.73, 0.98) 0.88 (0.78, 0.99)
ρw 0.5 0.2 Beta 0.97 (0.93, 0.99) 0.97 (0.94, 0.99) 0.97 (0.95, 0.99)
µp 0.5 0.2 Beta 0.52 (0.18, 0.79) 0.51 (0.14, 0.80) 0.54 (0.07, 0.80)
µw 0.5 0.2 Beta 0.84 (0.74, 0.95) 0.84 (0.72, 0.95) 0.83 (0.70, 0.95)
βlk 0 0.15 Normal 0.00 - -0.05 (-0.10, 0.15) -0.16 (-0.29, 0.05)
βll 0 0.15 Normal 0.00 - 0.05 (-0.15, 0.10) -0.21 (-0.46, -0.02)
βkk 0 0.15 Normal 0.00 - 0.05 (-0.15, 0.10) -0.04 (-0.37, 0.04)
1− ϕ 1 0.5 Gamma 1.00 - 0.72 (0.38, 1.99) - -

Production function parameters. As shown in Panel A, the steady-state capital income

share, α, is estimated to be small. The estimates in Columns (4) and (5) are particularly

small, less than 10%. The steady state markup is estimated to be approximately 60% for the

pre-2000 sample. Those results are similar to the results in Smets and Wouters (2007b, Table

1A). Φ estimates are smaller for the post-2000 sample, ranging from 1.35 to 1.39.

When the CES production function is assumed, capital and labor are estimated to be

more substitutable in the mode for the recent sample than in the mode for the early sample.

This result is consistent with Cantore et al. (2017), illustrating that the increase in the supply

of skilled labor relative to the supply of unskilled labor and their aggregation to a single labor

factor can be a source of an increase in the elasticity of substitution between capital and labor,

1/(1−φ) (see also Papageorgiou and Saam, 2008). Furthermore, φ is not precisely estimated.

The 95% credible interval for 1/(1−φ) varies from 0.5-2.6 for the early sample and from 1-10
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Table C.9: Estimation results for the late sample (2000-2019) and the two-input models

Parameter Priors Cobb–Douglas CES Translog
Mean Std. Family Mode (2.5%, 97.5%) Mode (2.5%, 97.5%) Mode (2.5%, 97.5%)

φ 4 1.5 Normal 5.90 (4.10, 8.53) 6.25 (4.36, 8.76) 5.74 (3.87, 8.32)
σc 1.5 0.25 Normal 1.04 (0.92, 1.61) 1.13 (0.96, 1.61) 1.16 (0.87, 1.52)
h 0.7 0.1 Beta 0.62 (0.46, 0.69) 0.58 (0.45, 0.68) 0.61 (0.49, 0.73)
ξw 0.5 0.1 Beta 0.84 (0.75, 0.88) 0.84 (0.76, 0.89) 0.86 (0.80, 0.91)
σl 1.5 0.25 Normal 1.35 (0.87, 1.88) 1.38 (0.92, 1.91) 1.41 (0.96, 1.93)
ξp 0.5 0.1 Beta 0.87 (0.71, 0.92) 0.86 (0.72, 0.92) 0.72 (0.61, 0.87)
ψ 0.5 0.15 Beta 0.82 (0.70, 0.98) 0.81 (0.73, 0.97) 0.20 (0.03, 0.31)
Φ 1.25 0.1 Normal 1.35 (1.19, 1.49) 1.35 (1.21, 1.51) 1.39 (1.26, 1.57)
rπ 1.5 0.25 Normal 1.38 (1.06, 2.07) 1.39 (1.03, 2.03) 1.69 (1.35, 2.18)
ρ 0.75 0.1 Beta 0.89 (0.86, 0.94) 0.90 (0.86, 0.94) 0.90 (0.86, 0.94)
ry 0.125 0.05 Normal 0.17 (0.10, 0.26) 0.17 (0.10, 0.25) 0.17 (0.10, 0.26)
r∆y 0.125 0.05 Normal 0.16 (0.12, 0.22) 0.16 (0.12, 0.23) 0.16 (0.11, 0.23)
π̄ 0.625 0.1 Gamma 0.58 (0.44, 0.73) 0.56 (0.43, 0.73) 0.62 (0.47, 0.84)

−100 log β 0.25 0.1 Gamma 0.15 (0.05, 0.31) 0.15 (0.06, 0.32) 0.12 (0.04, 0.26)
l̄ 0 2 Normal 0.96 (-0.96, 2.57) 0.35 (-1.48, 2.23) -0.01 (-3.09, 1.77)
γ̄ 0.4 0.1 Normal 0.27 (0.24, 0.37) 0.25 (0.23, 0.35) 0.26 (0.21, 0.30)
α 0.3 0.05 Normal 0.09 (0.08, 0.17) 0.09 (0.08, 0.17) 0.14 (0.11, 0.18)
σa 0.1 2 Inv. Gamma 0.44 (0.37, 0.52) 0.44 (0.37, 0.52) 0.35 (0.30, 0.43)
σb 0.1 2 Inv. Gamma 0.06 (0.04, 0.07) 0.06 (0.04, 0.07) 0.05 (0.04, 0.07)
σg 0.1 2 Inv. Gamma 0.31 (0.28, 0.40) 0.30 (0.27, 0.39) 0.33 (0.29, 0.40)
σI 0.1 2 Inv. Gamma 0.25 (0.19, 0.36) 0.20 (0.11, 0.26) 0.19 (0.12, 0.27)
σr 0.1 2 Inv. Gamma 0.11 (0.09, 0.14) 0.11 (0.09, 0.14) 0.10 (0.09, 0.12)
σp 0.1 2 Inv. Gamma 0.14 (0.10, 0.19) 0.14 (0.10, 0.19) 0.14 (0.09, 0.18)
σw 0.1 2 Inv. Gamma 0.60 (0.47, 0.72) 0.60 (0.48, 0.71) 0.59 (0.50, 0.74)
ρa 0.5 0.2 Beta 0.92 (0.88, 0.98) 0.92 (0.89, 0.97) 0.90 (0.86, 0.99)
ρb 0.5 0.2 Beta 0.93 (0.87, 0.97) 0.93 (0.88, 0.97) 0.91 (0.86, 0.96)
ρg 0.5 0.2 Beta 0.68 (0.61, 0.97) 0.61 (0.52, 0.97) 0.95 (0.93, 1.00)
ρI 0.5 0.2 Beta 0.77 (0.74, 0.98) 0.82 (0.78, 0.97) 0.88 (0.71, 0.97)
ρr 0.5 0.2 Beta 0.56 (0.37, 0.69) 0.56 (0.39, 0.70) 0.53 (0.35, 0.66)
ρp 0.5 0.2 Beta 0.67 (0.30, 0.95) 0.66 (0.31, 0.95) 0.94 (0.87, 1.00)
ρw 0.5 0.2 Beta 0.36 (0.02, 0.38) 0.36 (0.05, 0.46) 0.27 (0.03, 0.36)
µp 0.5 0.2 Beta 0.48 (0.05, 0.91) 0.46 (0.06, 0.91) 0.79 (0.59, 0.95)
µw 0.5 0.2 Beta 0.62 (0.27, 0.91) 0.62 (0.26, 0.67) 0.53 (0.30, 0.74)
βlk 0 0.15 Normal 0.00 - -0.06 (-0.11, 0.00) 0.09 (-0.04, 0.25)
βll 0 0.15 Normal 0.00 - 0.06 (0.00, 0.11) 0.05 (-0.24, 0.34)
βkk 0 0.15 Normal 0.00 - 0.06 (0.00, 0.11) 0.40 (0.28, 0.58)
1− ϕ 1 0.5 Gamma 1.00 - 0.35 (0.10, 0.98) - -

Table C.10: Model comparison

(1) (2) (3) (4) (5) (6)
Early sample (1966-99) Late sample (2000-19)

Cobb–Douglas CES Translog Cobb–Douglas CES Translog
Panel A. Returns to scale parameters

βk· 0 0 -0.19 0 0 0.49
- - (-0.54, -0.05) - - (0.30, 0.77)

βl· 0 0 -0.36 0 0 0.14
- - (-0.66, -0.08) - - (-0.21, 0.50)

Panel B. Log-likelihoods and marginal data densities

log-likelihood 153.47 153.83 157.67 224.61 226.89 237.72
log MDD 55.23 54.80 56.49 129.92 132.48 136.64

for the late sample.

The implied translog parameters by the CES model are shown in Columns (2) and (5).

Those values are substantially different from the directly estimated translog parameter values
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Table C.11: Production function parameters (two-input model)

(1) (2) (3) (4) (5) (6)
Early sample (1966-99) Late sample (2000-19)

Cobb–Douglas CES Translog Cobb–Douglas CES Translog
Panel A. Factor income shares in the steady state

α 0.20 0.20 0.21 0.09 0.09 0.14
(0.16, 0.24) (0.15, 0.24) (0.16, 0.25) (0.08, 0.17) (0.08, 0.17) (0.11, 0.18)

1− α 0.80 0.80 0.79 0.91 0.91 0.86
(0.76, 0.84) (0.76, 0.85) (0.75, 0.84) (0.83, 0.92) (0.83, 0.92) (0.82, 0.89)

Panel B. Translog and CES parameters

βkk 0 0.05 -0.04 0 0.06 0.40
- (-0.15, 0.10) (-0.37, 0.04) - (0.00, 0.11) (0.28, 0.58)

βkl 0 -0.05 -0.16 0 -0.06 0.09
- (-0.10, 0.15) (-0.29, 0.05) - (-0.11, 0.00) (-0.04, 0.25)

βll 0 0.05 -0.21 0 0.06 0.05
- (-0.15, 0.10) (-0.46, -0.02) - (0.00, 0.11) (-0.24, 0.34)

ϕ 0 0.28 - 0 0.65 -
- (-0.99, 0.62) - - (0.02, 0.90) -

Panel C. Gross markup in the steady state

Φ 1.59 1.60 1.60 1.35 1.35 1.39
(1.46, 1.71) (1.46, 1.73) (1.45, 1.73) (1.19, 1.49) (1.21, 1.51) (1.26, 1.57)

Table C.12: Slopes of the Phillips curves

(1) (2) (3) (4) (5) (6)
Early sample (1966-99) Late sample (2000-19)

Cobb–Douglas CES Translog Cobb–Douglas CES Translog
Panel A. Calvo price stickiness parameter

ξp 0.67 0.69 0.65 0.87 0.86 0.72
(0.56, 0.80) (0.54, 0.81) (0.53, 0.76) (0.71, 0.92) (0.72, 0.92) (0.61, 0.87)

Panel B. Slope of the price Phillips curves

marginal costs 0.023 0.019 0.027 0.005 0.005 0.023
(0.008, 0.051) (0.007, 0.057) (0.011, 0.062) (0.002, 0.028) (0.002, 0.026) (0.004, 0.047)

output gap 0.013 0.012 0.022 0.002 0.002 0.009
(0.003, 0.026) (0.004, 0.026) (0.008, 0.039) (0.001, 0.009) (0.001, 0.007) (0.003, 0.015)

labor gap 0.022 0.020 0.034 0.002 0.003 0.009
(0.005, 0.041) (0.006, 0.041) (0.012, 0.056) (0.001, 0.011) (0.001, 0.009) (0.003, 0.014)

labor share 0.045 0.041 0.111 0.007 0.009 0.202
(-0.073, 0.123) (-0.082,

0.128)
(-0.368,
0.336)

(-0.046, 0.077) (-0.031,
0.050)

(-0.160,
0.216)

labor share, 0.023 0.020 0.042 0.005 0.005 0.028
υ adjusted (0.008, 0.051) (0.007, 0.059) (0.014, 0.175) (0.002, 0.028) (0.002, 0.023) (0.005, 0.062)

in Columns (3) and (6). In four cases among the six (three parameters and two sample peri-

ods), the CES β in the mode is not included in the 95% credible interval for the corresponding

estimates in Columns (3) and (6). Thus, similar to the model comparison results, we conclude

that the restrictions imposed by the Cobb–Douglas and CES production functions might be

too restrictive. The data consistently favor the translog model.

Finally, by comparing Columns (3) and (6) in Panel B, we find that all three translog

parameters increased substantially between the two sample periods.
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Slopes of the Phillips curves. Table C.12 presents the Calvo price stickiness parameter

(Panel A), ξp, and the model-predicted slopes of the Phillips curves (Panel B), κx, in the

posterior mode with the 95% credible intervals. For the early sample, all three models feature

ξp of approximately two-thirds. In contrast, the Cobb–Douglas and CES models yield large

ξp and excessively sticky prices for the late sample. The corresponding average durations

of a price are greater than seven quarters. The results based on the translog model differ

remarkably. ξp is 0.72, which is well within the ballpark range.

The slopes of the marginal cost Phillips curve in Panel B echo the results for ξp. The

slopes are not small and similar across Columns (1)-(3) and (6). Thus, through the lens of the

translog model, which matches the data better as shown above, the New Keynesian Phillips

curve did not flatten. In contrast, the Cobb–Douglas and CES models predict quite flat

marginal cost Phillips curves for the late sample, given the large values of ξp. The quite flat

marginal cost Phillips curves in Columns (4) and (5) translate into similarly flat conventional

Phillips curves. We also consider the labor share adjusted by fixed costs in production, wtlt
yt+υ

,

which equals the real marginal costs in the Cobb–Douglas model. Other than the case of

labor share, the translog model generates the flattening of these conventional Phillips curves,

although the marginal cost Phillips curve did not flatten (Columns (3) and (6)).

D Empirical Analyses

This section estimates production function parameters using industry-level panel data and

IV methods. We show that the estimates are consistent with the results based on the struc-

tural estimation of the translog DSGE models in the main text, corroborating stronger input

complementarity at the aggregate level in recent decades than in earlier decades.

D.1 Data

We utilize data from the EU KLEMS Growth and Productivity Accounts, which provide de-

tailed, harmonized, industry-level information across a wide range of European countries. We

focus on EU KLEMS data for five main reasons. First, the macroeconomic dynamics motivat-

ing our analysis are not unique to the US. Smith et al. (2025, tables 1 and 5) documented that

the conventional Phillips curves in the Euro area flattened around 2000, similarly to the US

case (see also Musso et al., 2009; Oinonen et al., 2013; Oinonen and Vilmi, 2021). Moreover,

the recent disconnect between wage growth and price inflation is a shared phenomenon in

both regions (Peneva and Rudd, 2017; Eser et al., 2020). Second, disaggregated labor data

by industry and educational attainment are essential for our analysis of input complementar-
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ity. The EU KLEMS dataset provides this information, which is collected consistently over

a long sample period. Third, comparable datasets for the US economy, e.g., the US data in

EU KLEMS and NBER-CES (Bartelsman and Gray, 1996), do not include the disaggregated

labor input measures. This feature makes the European data particularly well-suited for the

empirical analysis in this section. Fourth, the EU KLEMS dataset covers a broad set of coun-

tries and, in particular, industries. Such wide coverage and rich variation can be leveraged

to represent production technology at the aggregate level, enabling a straightforward com-

parison with the quantitative analyses in the main text. Finally, the EU KLEMS data are

publicly available, widely used, and well-documented, ensuring transparency and replicability

(O’Mahony and Timmer, 2009; Bontadini et al., 2023). In short, the EU KLEMS dataset

provides a valuable source for empirical validation of our hypothesis, complementary to the

structural analysis in the main text.

We construct a multi-country, industry-level panel database by merging the national,

labor, and capital accounts from the EU KLEMS dataset. To maximize coverage, we com-

bine three EU KLEMS releases. The March 2008 release covers 1970 to 1999. The October

2012 and February 2023 releases are merged to cover 2002 to 2019. Years 2000 and 2001 are

dropped because most countries lack labor data by education for those years. The result-

ing sample spans 14 countries–Austria, Belgium, Denmark, Finland, France, Germany, Italy,

Japan, Luxembourg, the Netherlands, Portugal, Spain, Sweden, and the United Kingdom.

We extract data from the national accounts on the volumes and prices of output, inter-

mediate inputs, total labor hours, and total labor compensation across industries, countries,

and years. The labor accounts break down labor inputs by education level, enabling us to

calculate hours worked by college graduates (skilled labor) and others (unskilled labor), along

with the wages for each group. Additionally, we obtain the volumes and prices of real capital

stock from the capital accounts.

We drop observations with negative values for key variables such as output, real capital

stock, intermediate inputs, and labor hours. Our key dependent variable, the cost share of

skilled labor, is measured by dividing the labor compensation for skilled labor by total nominal

output. We construct the price indices for capital and intermediate inputs by dividing the

nominal values by the real values. For the pre-2000 analysis, nominal values for capital stock

are unavailable, so we construct the price index for capital services by dividing nominal capital

services by their real counterpart.2 Lastly, skilled and unskilled wages are derived by dividing

2Capital services are measured in terms of the user cost. The March 2008 release includes information on

the volume index of capital services, which is used to construct the volume of capital services. Specifically, we

calculate the volume of capital services by multiplying the volume indices by the capital services in the base

year.
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the total compensation for each labor group by the total hours worked by that group in a

given year.

Tables D.1 reports the basic summary statistics.

Table D.1: Summary Statistics

Mean Std. Dev. P25 P50 P75 N

Panel A: Pre-2000 Analysis (1970-1999)

Gross output (Nominal) 7375391.21 31393663.17 10409.64 32264.23 131930.00 2372
Gross value added (Nominal) 3745028.74 13423626.63 5823.17 17672.12 70553.98 2372
Intermediate inputs (Nominal) 3630362.45 18979350.35 3960.08 13400.88 60570.64 2372
Capital services (Nominal) 1539879.22 6336040.40 1361.14 4954.79 18735.00 2359
Lab. comp. skilled (Nominal) 499056.63 1826917.45 202.93 1042.46 5269.12 2372
Lab. comp. unskilled (Nominal) 1370416.67 5102660.32 2122.06 8310.41 35063.90 2372
Hours worked skilled 311317.98 693935.23 16617.13 61459.31 225367.02 2372
Hours worked unskilled 2304998.98 3978051.17 253718.02 675825.12 2392444.88 2372
Capital stock (Real) 26183669.34 118401167.25 36547.59 109569.70 488850.61 2372
Gross output (Real) 7653806.99 30794245.26 14743.83 49637.35 148653.30 2372
Gross value added (Real) 4001638.41 13487293.69 8779.23 26947.33 84943.36 2372
Intermediate inputs (Real) 3601328.80 18203988.44 5738.12 20361.74 67829.65 2372
Capital services (Real) 1425721.59 5880110.02 1984.89 6053.09 23789.57 2372

Panel B: Post-2000 Analysis (2002-2019)

Gross output (Nominal) 4029025.53 24897641.41 25911.00 90266.00 232755.80 2566
Gross value added (Nominal) 2127887.31 12179543.84 12782.20 47341.00 115549.00 2566
Intermediate inputs (Nominal) 1901138.20 13925085.56 11313.90 40720.00 117038.90 2566
Capital stock (Nominal) 773413.26 3325113.71 32939.04 78577.39 261008.00 2566
Lab. comp. skilled (Nominal) 22364.69 40889.09 1698.62 7402.52 26938.32 2566
Lab. comp. unskilled (Nominal) 27227.34 40550.98 3090.86 12972.64 32222.29 2566
Hours worked skilled (millions) 417804.89 598070.37 45371.35 165152.95 510874.38 2566
Hours worked unskilled (millions) 1020254.83 1489607.29 97743.02 373289.12 1320759.50 2566
Capital stock (Real) 755820.78 3127297.99 35049.26 81939.43 277916.00 2566
Gross output (Real) 4068907.01 25124917.36 26763.75 92752.51 236993.19 2566
Gross value added (Real) 2152839.65 12312930.73 13476.80 51356.48 120256.81 2566
Intermediate inputs (Real) 1917842.42 13952868.79 11417.89 42883.11 118729.10 2566

Notes: This table presents summary statistics for the data used in our empirical analysis. Panel A uses the March
2008 EU KLEMS release for our pre-2000 analysis; Panel B merges the October 2012 and February 2023 releases for
our post-2000 analysis. Capital stock is only available in real terms for 1970–1999, so nominal capital services are
reported instead in Panel A. All variables are expressed in millions, except for hours worked, which are expressed in
thousands, with nominal values reported in their respective national currencies. Our baseline analysis includes data
for Austria, Belgium, Denmark, Finland, France, Germany, Italy, Japan, Luxembourg, the Netherlands, Portugal,
Spain, Sweden, and the United Kingdom. Sources: The March 2008, October 2012, and February 2023 releases of
EU KLEMS.

D.2 Empirical Framework

Estimating a translog production function is challenging because of the large number of pa-

rameters involved. To address this issue, we use the FOC for the firm’s cost-minimization

problem following Gandhi et al. (2020), Hubmer et al. (2025), and Hyun et al. (2024). This

condition establishes a relationship between the marginal product of an input (e.g., skilled

labor) and its price (e.g., the skilled wage rate). Using this condition, we identify the shape of

the production function associated with the input considered. We utilize the time series and

cross-sectional variations in (lagged) input prices as IVs to further enhance the identification,

following Doraszelski and Jaumandreu (2013, 2018) and Hyun et al. (2024).
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To fix ideas, consider an economic environment similar to that in the main text with the

following production function:

y = exp (εa) f(logx)− ν,

where y denotes the output, εa represents the level of productivity, and x is a vector of factor

inputs. The fixed cost of production, ν, ensures the zero-profit condition on the BGP. The

FOC for the cost-minimization problem with respect to an input xi is given by:

P i

P︸︷︷︸
real input price

= mc×
ỹ

xi
∂ log f

∂ log xi︸ ︷︷ ︸
marginal product

⇒
P ixi

Py︸ ︷︷ ︸
≡si

= mc
ỹ

y

∂ log f

∂ log xi
(D.1)

where P i represents the nominal price of xi, ỹ = y + ν, mc denotes the real marginal costs of

production, and si is the input expenditure share of total sales for input xi.

We log-linearize this equation and relate the input i’s expenditure share to factor inputs

in period t as follows:

ŝit =
∑

k

δikx̂
k
t + τt, where δik = −βk· − (Φ− 1)αk +

βik
αi
, (D.2)

αi =
∂ log f
∂ log xi

, βik =
∂2 log f

∂ log xk∂ log xi
, βk· =

∑
ℓ βkℓ, and Φ is the gross markup along the BGP. τt is

given by real factor prices and the level of productivity: τt =
∑

ℓ αℓ
̂(P ℓ
t /Pt)− εat .

The key parameters in this section, δiks, represent how xk affects the input share, si. As

shown in Equation (D.2), δik consists of three terms. The first term, −βk·, emerges because

xk has effects on mc via rtstl and, thus, si (see Equation (D.1)). When βk· > 0, xk positively

contributes to rtstl, and thus, mc decreases. The second component, −(Φ− 1)αk, arises from

the fixed cost in production, inducing countercyclical variations in ỹ
y
. Finally, βik

αi
captures

how the output elasticity (ignoring the fixed costs), ∂ log f
∂ log xi

, varies with xk. Note that in a

textbook New Keynesian model with a Cobb–Douglas production function (βik = 0 for all i

and k and ν = 0) (see, e.g., Galí, 2015), the input share, si, simplifies to mc × αi. In that

case, all input shares exhibit the same cyclical variations because ŝit = m̂ct = τt for all i, and

δik equals zero for all i and k.

Building on Equation (D.2), we estimate the following equation:

log
(
sicjt
)
=
∑

k

δik log
(
xkcjt
)
+ αc + γj + τt + εicjt, (D.3)
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where c, j, and t denote country, industry, and year, respectively. We include country, industry,

and time fixed effects (αc, γj, and τt) to control for unobserved heterogeneity at these levels.

Because sicjt, can be computed using the two nominal values, P i
cjtx

i
cjt and Pcjtycjt, no real

output series or price index is needed (see, e.g., Hottman et al., 2016). Finally, we assume

that δs do not depend on industry j. That is, we consider a representative production function

to inform the aggregate production function assumed in the DSGE model in the main text.

Equation (D.3) is based on the relationship between the real input price and the marginal

product of the input. A wedge between these two quantities may arise from frictions in the

economy, such as input adjustment costs (Hall, 2004), imperfect competition in output and

factor markets (Rotemberg and Woodford, 1999; Berger et al., 2022), and financial frictions

(Jermann and Quadrini, 2012; Arellano et al., 2019; Bigio and La’O, 2020). After controlling

for county, industry, and time fixed effects, the remaining idiosyncratic component of this

wedge could appear in the residual, εicjt. This residual term may also capture measurement

errors and ex post productivity shocks (Gandhi et al., 2020).

To enhance the identification of δs, following Doraszelski and Jaumandreu (2013, 2018)

and Hyun et al. (2024), we utilize lagged input prices as IVs. Our identification assumption is

that after controlling for fixed effects, the idiosyncratic components of the lagged input prices

are orthogonal to the idiosyncratic components of the wedge in the residual. For instance, if

the residual is serially uncorrelated, the lagged input prices satisfy the exogeneity condition

for the IVs. The relevance condition holds when xi is correlated with the input price and

the input price is serially correlated. In addition to this benchmark specification, we perform

several robustness checks considering potential sources of persistence in the residual, such as

adjustment costs and persistent country-industry-specific components in productivity. For the

IV relevance, we will present the first-stage F-statistics as a measure of correlations between

xi and lagged input prices.

D.3 Estimation Results

We focus on the cases where the skilled labor share is the dependent variable in the regression

equation (D.3). We show that the values of δ vary between the two sample periods, consistent

with the structural estimation results in the main text.

We use the skilled labor share in this section for three reasons. First, the translog model

estimation results in the main text indicate that βks and βsu increased significantly between

the pre- and post-2000 samples. These increases in βs suggest that δks and δsu also changed

accordingly between the two sample periods. Note that this prediction is testable using the

IV estimation results of Equation (D.3) when the skilled labor share is placed on the left-hand
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Table D.2: IV and structural estimation of δ

IV Estimation Structural Estimation
pre-2000 post-2000 pre-2000 post-2000

(1) (2) (3) (4)

Capital -0.548 0.765
(0.091) (0.321)

Structure -0.060 -0.040
(0.008) (0.007)

Equipment -0.361 0.192
(0.132) (0.070)

Skilled Labor 0.429 -0.093 0.746 0.207
(0.239) (0.418) (0.040) (0.129)

Unskilled Labor -0.721 0.477 -1.259 0.475
(0.389) (0.640) (0.100) (0.234)

Intermediate Goods 0.334 0.135
(0.322) (0.120)

F-stat for Capital 25.25 13.25
F-stat for Skilled Labor 158.89 13.15
F-stat for Unskilled Labor 61.33 23.46
F-stat for Intermediate Goods 531.64 71.62

Observations 2,372 2,566

Notes: The skilled labor share is used as the dependent variable in regression equation (D.3). Columns (1) and (2) report the IV
regression results for the period 1970-1999 and 2002-2019, respectively. The inputs are instrumented using lagged input prices
at t − 1 and t − 2. The two-step efficient GMM specification is employed, with standard errors clustered at the country level,
shown in parentheses. In Columns (3) and (4), we calculate the values of δ in the posterior mode and the posterior standard
deviation of the translog model. For this purpose, we use Equation (D.2) and the Bayesian estimation results discussed in the
main text.

side. Second, δsi includes the βsi
αs

term in Equation (D.2). Since αs is relatively small, even

a moderate change in βsi could result in a sizable shift in the DSGE model-implied δsi for

i = k, u. In contrast, δui is less sensitive to changes in βui because αs < αu. Thus, detecting a

structural change in the degree of input complementarity (represented by different values of

βs) from the estimates of δs in the empirical model is more viable when the skilled labor share

is considered than the unskilled labor share. Finally, decomposing capital into structures and

equipment, as Krusell et al. (2000) and Ohanian et al. (2023) did for the US aggregate data,

is challenging for the EU KLEMS data because of the lack of necessary information. Thus,

we do not pursue empirical specifications using the equipment (or capital) expenditure shares

for the comparability of the results.

To investigate potential changes in the production function over time, we split the sample

into two periods: 1970-1999 and 2002-2019. Columns (1) and (2) in Table D.2 present the

IV estimation results for the pre- and post-2000 samples, respectively. The two-step efficient

generalized method of moments (GMM) estimator is employed, with standard errors clustered

at the country level. One- and two-year lagged input prices are utilized as IVs. In Columns

(3) and (4), we calculate the values of δ in the posterior mode and the posterior standard

deviation of the translog model. For this purpose, we use Equation (D.2) and the Bayesian

estimation results discussed in the main text.
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By comparing the results in Columns (1) and (2), we can evaluate how the production

function has changed over time. First, the sign of the coefficient on capital shifts from negative

to positive, indicating that capital has become more complementary to skilled labor over time.

Similarly, the coefficient on unskilled labor is negative in Column (1) but becomes positive

and insignificant in Column (2). This result suggests that skilled and unskilled labor were

more substitutable in the earlier period but became less substitutable over time. In contrast,

the coefficient on skilled labor decreases between the two sample periods. Overall, all these

changes are consistent with the results from the structural estimations shown in Columns (3)

and (4); δks (equipment-skilled labor) and δsu (skilled labor-unskilled labor) increase, whereas

δss decreases between the two sample periods in the posterior mode of the translog model.

Despite the different methods, types of variations, and countries covered in the data, the

results from the IV and structural estimations are largely congruent with one another.

In summary, the IV analysis in this section suggests that the production function has

evolved over time, consistent with the DSGE analysis in the main text. This empirical evidence

aligns well with our explanation of the flattening of the Phillips curve, which is based on

changes in the degree of input complementarity and the resulting cyclicality of returns to

scale. Our results also emphasize the need for a more flexible approach beyond the standard

Cobb–Douglas production function.

D.4 Robustness

The results in the previous section are robust to multiple alternative specifications and data

adjustments as follows: (i) we use two- and three-year lagged input prices as IVs to address

potential serial correlation in the baseline regression’s residual, (ii) we adopt a value-added

production function, (iii) we use the skilled-labor share adjusted for average input-price move-

ments (
∑

k αkp̂kt in τt, see Equation (D.2)), (iv) we apply the Driscoll and Kraay (1998)

standard errors, (v) we include different sets of countries, (vi) we substitute capital services

(available only in the March 2008 release) for capital stock, and (vii) we account for persistent

components in the residual, such as country-industry-specific productivity levels. In all these

cases, the main results remain largely unchanged.

First, we present the estimation results when using two- and three-year lagged input

prices as instrumental variables. As shown in Column (1), “Diff IVs” of Table D.3, our find-

ings are robust to the use of different sets of instrumental variables. Specifically, the coefficient

on capital shifts from negative to positive, suggesting that capital has become more comple-

mentary to skilled labor over time. Similarly, the coefficient on unskilled labor is negative in

the left sub-column but turns positive in the right sub-column.
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Second, our findings are robust to using different dependent variables. Specifically, in

Column (2) “Value-Added” of Table D.3, we show the results based on the expenditure shares

out of the value-added, instead of the gross output. For Column (3) “sskilled labor

cjt −
∑

k αkp̂kt”

of Table D.3, we use the skilled labor share adjusted by
∑

k αjkt
̂(Pjkt/Pjt) in view of the fact

that τt =
∑

k αkp̂kt + εat .

Third, our baseline specification employs standard errors clustered at the country level.

To ensure the robustness of our findings, we also repeat the analysis using Driscoll and Kraay

(1998) standard errors, given the relatively long time series in our data compared to the

number of countries included. Column (4) “D-K s.e.” of Table D.3 shows that our results are

robust to the use of Driscoll and Kraay (1998) standard errors instead.

Additionally, we repeat the analysis by expanding the set of countries covered in our

sample. In our baseline specification, for consistency, we used a subset of countries available

in both the March 2008 release and the February 2023 release. To show that the results are not

sensitive to this choice, we include data for Finland and Italy for 2000–2001 in the post-2000

sample and use all available data from each release. Column (5) “Diff Sample” of Table D.3

shows that our findings in the main text are not dependent on the set of countries.

Furthermore, we used information about capital stock for our baseline analysis. Because

the March 2008 release includes capital services in addition to the values of real capital stock,

we can check the robustness of our results to using capital services instead of capital stock for

the pre-2000 sample. We further consider both the gross-output shares and the value-added

shares in Columns (6) and (7), respectively. Clearly, our results are robust to the use of an

alternative measure of capital.

Finally, we consider the country-industry-specific level of productivity, featuring persis-

tent and therefore predictable dynamics. Our baseline regression equation was log
(
sicjt
)
=

∑
k δik log

(
xkcjt
)
+αc+γj+τt+ε

i
cjt. Here, we interpret εcjt as the level of productivity. We as-

sume that εcjt has a persistent process represented by an AR(1) process: εcjt = ρjεcj,t−1+ηcjt.

We allow the degree of persistence, captured by the AR(1) coefficient, ρj, to vary across in-

dustries. With the remaining idiosyncratic components in the residual, such as measurement

errors, denoted by ωicjt, we have the following equation:

log
(
sicjt
)
=
∑

k

δik log
(
xkcjt
)
+ αc + γj + τt + εcjt + ωicjt.

We assume that ωicjt is serially uncorrelated.

For a simple notation, we define a function, ϕ, as follows: ϕicjt(δ,ρ) ≡ log
(
sicjt
)
−[∑

k δik log
(
xkcjt
)
+ αc + γj + τt

]
= εcjt + ωicjt, where ρ is a vector of industry-specific AR
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Table D.3: Robustness Checks

(1) Diff IVs (2) Value-Added (3) sskilled labor

cjt −

∑
k αkp̂kt (4) D–K s.e.

1970-1999 2002-2019 1970-1999 2002-2019 1970-1999 2002-2019 1970-1999 2002-2019

Capital −0.486 0.619 −0.775 0.752 −0.800 0.865 −0.466 0.933
(0.086) (0.266) (0.082) (0.584) (0.139) (0.362) (0.086) (0.145)

Skilled labor 0.340 −0.564 0.047 0.892 0.889 −0.415 0.080 −0.130
(0.151) (0.345) (0.204) (0.686) (0.281) (0.749) (0.033) (0.569)

Unskilled labor −0.664 0.220 −0.097 0.615 −0.597 0.511 −0.708 0.561
(0.447) (0.542) (0.138) (0.810) (0.519) (0.776) (0.059) (0.105)

Intermediate goods 0.175 −0.067 −0.913 0.473 0.310 0.077
(0.386) (0.138) (0.361) (0.118) (0.076) (0.193)

(5) Diff Sample (6) Cap. GO (7) Cap. VA (8) AR(1) resid.

1970-1999 2000-2019 2002-2019 1970-1999 1970-1999 1970-1999 2002-2019

Capital / Cap. Services −0.595 0.885 1.420 −0.223 −0.428 0.037 0.330
(0.088) (0.279) (0.331) (0.036) (0.052) (0.047) (0.141)

Skilled labor 0.521 −0.497 −0.192 0.339 0.480 0.662 0.361
(0.245) (0.319) (0.478) (0.101) (0.130) (0.097) (0.217)

Unskilled labor −0.690 0.623 0.468 −0.615 −0.601 −0.117 0.026
(0.421) (0.526) (0.426) (0.370) (0.135) (0.281) (0.174)

Intermediate goods 0.321 0.076 0.004 −0.156 −0.171 −0.623
(0.301) (0.117) (0.098) (0.323) (0.162) (0.079)

Notes: Column (1) “Diff IVs” reports estimates obtained when inputs are instrumented with lagged input prices at t− 2 and t− 3.
Column (2) “Value-added” repeats the baseline specification but uses the skilled-labor share of value added as the dependent variable,
while Column (3) “sskilled labor

cjt −

∑
k αkp̂kt” repeats the baseline specifications but uses the skilled-labor share adjusted for average

input-price movements. Column (4) “DK s.e.” keeps the baseline equation but computes Driscoll and Kraay (1998) standard errors.
For columns (1)–(4) the left sub-column covers 1970–1999 and the right sub-column 2002–2019. Column (5) “Diff samples” varies
country coverage: the three sub-columns correspond to 1970–1999 (all countries in the March 2008 release), 2000–2019 (a transitional
sample that includes only Finland and Italy for 2000–01), and 2002–2019 (the full post-2000 set). Columns (6) and (7) replace capital
stock with capital services and restrict the sample to 1970–1999; Column (6) uses the gross-output share and Column (7) the value-
added share. Column (8) allows industry-specific AR(1) persistence in the residual; the left and right sub-columns again relate to
1970–1999 and 2002–2019. Unless otherwise noted, inputs (skilled labour, unskilled labour, capital, intermediate goods) enter in logs
and are instrumented with prices lagged one and two years; estimation relies on the two-step efficient GMM with country-clustered
standard errors (in parentheses). The default sample comprises Austria, Belgium, Denmark, Finland, France, Germany, Italy, Japan,
Luxembourg, the Netherlands, Portugal, Spain, Sweden, and the United Kingdom. Sources: The March 2008 release, the October
2012 release, and the February 2023 release of EU KLEMS.

coefficients, ρj. We utilize the orthogonality between lagged input prices and productivity

shocks (ηcjt) for identification. Note that:

ϕicjt(δ,ρ)− ρjϕ
i
cj,t−1(δ,ρ) = (εcjt + ωicjt)− ρj(εcj,t−1 + ωicj,t−1) = ηcjt + ωicjt − ρjω

i
cj,t−1.

Thus, for two- and three-year lagged input prices, Zcj,t−2, we have the following moment

conditions: E
{
Zcj,t−2

[
ϕicjt(δ,ρ)− ρjϕ

i
cj,t−1(δ,ρ)

]}
= 0. We jointly estimate δ and ρ using

these moment conditions and the GMM approach.

Column (8) “AR(1) resid” of Table D.3 shows the estimated δ parameters with standard

errors. Similar to the baseline results shown in Table D.2, the coefficients on capital and

unskilled labor increase over time, while the coefficient on skilled labor decreases. Thus, we

conclude that our results are robust to explicitly controlling for persistence in the level of

productivity driven by country-industry-specific productivity shocks.
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