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Abstract

Commonly used methods for estimating production functions assume that firms’ output
quantities are observable, whereas typical datasets contain only revenue. We study the
nonparametric identification of production and consumer demand functions from revenue
data under monopolistic competition with a general nonparametric demand function. Under
standard assumptions, we provide a constructive, nonparametric identification of several
firm-level objects, including the gross production function, total factor productivity (TFP),
price markups over marginal costs, output prices, output quantities, and the demand
function. Considering the homothetic single-aggregator (HSA) demand system of ?, we
further identify the representative consumer’s utility function, enabling counterfactual
analysis of market outcomes and welfare. We propose a semiparametric estimator feasible
for standard firm-level datasets and show in simulations that it performs well, whereas
treating revenue as output generates substantial bias. Applying the estimator to Chilean
manufacturing data, we reject the CES specification in favor of HSA, and counterfactual
analysis indicates that market power reduces welfare by about 3%—6% of industry revenue

in the three largest manufacturing industries in 1996.
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1 Introduction

The estimation of production functions and markups is a central tool in empirical analyses of
market outcomesE] The residual from an estimated production function, commonly interpreted
as total factor productivity (TFP), serves as a key measure of firm-level technological efficiency
(see Bartelsman and Doms| (2000); Syverson| (2011)) and its contribution to aggregate produc-
tivity (e.g.,|Olley and Pakes, [1996). Researchers also use estimated elasticities of production
functions to study technological change (e.g., Van Biesebroeck, 2003} Doraszelski and Jauman/{
dreu, |2018) and to infer price markups over marginal cost (e.g., Hall, 1988; |De Loecker and
Warzynski, | 2012). Markup estimation based on production functions has been widely applied
across diverse fields and complements the demand-based approach (e.g., Berry, Levinsohn, and
Pakes, (1995) in empirical analyses of firms’ market power.

A common assumption underlying many production function and markup estimation meth-
ods is that firms’ output quantities are observable. In practice, however, most firm-level datasets
contain only revenue information rather than physical quantities. As a result, many empirical
studies approximate output by deflating firm-level revenue using an industry-level price de-
ﬂatorE] For production function estimation, this practice of using revenue in place of output
quantity can be justified under perfect competition, where output prices are exogenous and
identical across firms. Following [Marschak and Andrews| (1944)’s pioneering critique, a large
body of research has cautioned against this approach under imperfect competition. Numerous
studies have demonstrated that replacing output quantity with revenue can severely bias esti-
mates of production function parameters (e.g., Klette and Griliches, [1996; |De Loecker, 2011)
and TFP (e.g., Foster, Haltiwanger, and Syverson, |2008}; [Katayama, Lu, and Tybout, 2009;
De Loecker], 2011)). More recently, Bond, Hashemi, Kaplan, and Zoch| (2020) show that using
revenue in place of output quantity may lead to serious biases in estimation of firm’s markups.
Despite these concerns, the practice persists due to the scarcity of firm-level quantity dataE]

This paper contributes to the literature on production function and markup estimation
by establishing nonparametric identification of the production function, TFB markup, and
the consumer demand function from firm-level revenue data under monopolistic competition.

Our identification proof is constructive, relying on standard assumptions from the production

Griliches and Mairesse| (1999) and |Ackerberg, Benkard, Berry, and Pakes| (2007) provide excellent surveys of
production function estimation methods.

2A few studies employ datasets with firm-level quantity information (e.g., [Foster, Haltiwanger, and Syverson,
2008; IDe Loecker, Goldberg, Khandelwal, and Pavcnik, [2016; [Lu and Yu, [2015} Nishioka and Tanakal |2019), but
such data are typically limited to specific countries, industries, and time periods and remain inaccessible to most
researchers.

3Researchers also rely on revenue when products differ in quality, since physical output alone may not reflect
true production, though such practices often lack theoretical foundations.



function literature alongside additional non-parametric restrictions on firms’ demand functions.
This contribution is novel because the existing literature has not established whether it is possible
to identify production functions and consumer demand function from firm-level revenue data
without imposing parametric functional forms. Building on the constructive identification result,
we further develop a semiparametric estimator and demonstrate through simulations that it
performs well in finite samples.

Following Marschak and Andrews| (1944), Klette and Griliches (1996) and De Loecker
(2011), we explicitly model a demand function that an individual firm faces as a function of its
output, observable characteristics, and an unobserved transitory demand shockﬂ While each
of these earlier studies examines a demand function with a constant and identical demand
elasticity which implies identical markups across firms, we consider a nonparametric demand
function that generates heterogeneity in markups. Apart from this extension, our approach
relies on standard assumptions commonly adopted in the literature and can be implemented
using typical firm-level data found in empirical applications.

We develop a three-step identification approach that combines the control function approach
developed by Olley and Pakes (1996)), Levinsohn and Petrin| (2003), and |Ackerberg, Caves, and
Frazer (2015) and the first-order condition approach recently developed by Gandhi, Navarro,
and Rivers (2020) Following Levinsohn and Petrin (2003) and |Ackerberg et al. (2015), the
inverse function of a material demand function serves as a control function for TFP. In the first
step, we identify an unobserved demand shock that nonlinearly affects revenue by using the
control function as in Ackerberg et al.| (2015) and the instrument variable quantile regression
by |Chernozhukov and Hansen| (2005). Our novel second step identifies the control function
for TFP by applying the nonparametric identification of transformation models (e.g., Horowitz,
1996) examined by |[Ekeland, Heckman, and Nesheim| (2004) and Chiappori, Komunjer, and
Kristensen| (2015). By identifying the control function, TFP is identified (up to normalization)
from the dynamics of inputs, without output data. In the third step, we identify a production
function, markup, and a demand function, using the first-order condition for the material and
the control function identified in the second step.

Our method identifies several key objects from revenue data. In our main setting, markups
and output elasticities are identified up to scale, while the output price, output quantity, total
factor productivity (TFP), gross production function, and consumer demand function are identi-

fied up to scale and location, without imposing any parametric functional form. Identification

4De Loecker, Eeckhout, and Unger (2020) study an alternative approach using an exogenous variable to remove
output price variation from revenue data.

>These approaches assumed quantity data or perfect competition. (Gandhi et al.| (2020) also examined an
imperfect competition with a constant elastic demand as in Klette and Griliches| (1996) and |De Loecker| (2011])
where markups must be constant and identical across firms.



is cross-sectional, allowing these objects to vary over time. With the additional assumption of
local constant returns to scale, we can identify the levels of markups and output elasticities,
and identify the output price, output quantity, TFB production function, and consumer demand
function up to locationﬁ Finally, by considering the homothetic single-aggregator (HSA) de-
mand system of ?, we further identify the demand system and the representative consumer’s
utility function, and establish identification of counterfactual welfare effects.

We also develop a semiparametric estimator that assumes a Cobb-Douglas production
function but imposes no parametric restrictions on the demand system. The estimation proceeds
in three main steps, with an additional step devoted to demand-system estimation. In the first
step, we nonparametrically estimate the transitory demand shock using the smooth GMM IV
quantile regression proposed by Firpo, Galvao, Pinto, Poirier, and Sanroman (2022), which
ensures quantile monotonicity in instrumental-variable quantile regression. In the second step,
we estimate the control function using the profile likelihood estimator of Linton, Sperlich, and
Van Keilegom| (2008). In the third step, we recover the production function, markups, and TFP
This three-step procedure provides a standalone estimation of the production function that does
not rely on any parametric assumptions about demand. In the fourth step, for the purpose of
counterfactual welfare analyses as well as testing the CES demand assumption, we estimate the
the CoPaTh-HSA demand system of Matsuyama and Ushchey (2020)

Simulation results show that our estimator performs well in recovering structural parameters,
markups, and TFPs. Applying the estimator to Chilean plant-level data from the three largest
manufacturing industries (SIC 31, 32 and 38), we find evidence of misspecification under
the CES demand system. Finally, our counterfactual welfare analysis reveals that the market
power results in welfare losses of approximately 3%—-6% of industry revenue in the three largest
Chilean manufacturing industries in 1996.

The remainder of this paper is organized as follows. Section |2| summarizes previous studies
on how using revenue as output could bias the identification of production function, TFB and
markup; readers familiar with the literature can skip this section and proceed to Section
Section [3| presents our nonparametric identification results. Subsection [3.1]explains our setting,
and subsection demonstrates our three-step approach by offering a parametric example.
Subsection presents our nonparametric identification results, and subsection discusses
additional assumptions for fixing scale and location normalization. Subsection[3.5examines the

®Flynn, Gandhi, and Traina| (2019) impose global constant returns to scale to identify a production function.
In Subsection we clarify the distinction between local and global constant returns to scale.

’One frequently sees within the literature an assumption of market structure for the identification of demand
and supply side objects. For example, Berry, Levinsohn, and Pakes| (1995)) identify firm-level marginal costs by
specifying oligopolistic competition; meanwhile, Ekeland, Heckman, and Nesheim| (2004) and |Heckman, Matzkin,
and Nesheim| (2010) identify various demand and supply side objects of a hedonic model by exploiting the
properties of perfect competition.



identification of a demand system and a representative consumer’s utility function. Subsection
[3.6|and Appendix [B| presents identification results in alternative settings, including endogenous
labor input. Section [4| present our semiparametric estimator while Section |5| presents the
simulation results, comparing the performance of ACF method and our proposed method.
Section [f] presents an empirical application of our estimator with counterfactual welfare analysis

to the Chilean manufacturing plant data. Section [7|provides concluding remarks.

2 Biases from Using Revenue as Output Quantity

This section summarizes potential biases in the identification of the production function, total
factor productivity (TFP), and markups when revenue is used in place of output quantity. Let
Dit> Yie» and ry, := p;, + ;. denote the logarithms of price, output, and revenue for firm i at time
t, respectively. The corresponding uppercase letters represent their levels, e.g., P;, = exp(p;,)-
Suppose that these variables are related via the inverse demand function p;, = vy;,(y;,) and
the revenue function r;, = ¢;,(¥i.) := Yir + ¥ (¥ir)- Let y;, = f,(my, ki, L) + w;, be firm i’s
production function where w;, is TFP and x;, := (m;,, k;;, l;;) is a vector of the logarithms of
material, capital, and labor, respectively. To highlight the sources of biases from using revenue
as output, assume that TFP is identical across firms within time t, with w;, = w, for all i. This
simplification eliminates an additional and well-known source of bias, correlations between
inputs and TFP

From the first-order condition for profit maximization, P;, (1 + 7. ( yit)) = MC;,;,, where
MC;, denotes the marginal cost of producing one additional unit of output, the elasticity of

revenue with respect to output equals the inverse of the markup:

de;.(¥i) _ MC;,
dy p; .

(1)

Under perfect competition, where P;, = M C;,, variation in revenue across firms coincides with
that in output. However, they are generally different when markups vary across firms.
Suppose that, using revenue as output, a researcher identifies a true relationship between
revenue and inputs, @;.(x;.) := ;. (fi(x;;) + w,) to use @;.(x;.) as a proxy for f,(x;.). Prior
studies show that the use of revenue as output could cause biases in three forms. First, Marschak
and Andrews (1944) and Klette and Griliches (1996) establish that, from , the elasticity of

@i (x;,) relates to the true elasticity of f,(x;,) via markup:

0@ (x;¢) _ MC;, 3 f(x;,)

avit P; avit for Vie € {mit: kit: lit}' (2)



Thus, output elasticities would be underestimated by the extent of markup.

Second, Katayama et al.| (2009) and De Loecker| (2011)) demonstrated a bias in TFP estimates.
Let Aw, be a TFP change. Suppose that a TFP change for firm i is estimated as a change in
revenue with inputs being fixed, A&;, = AP;(x; )|y, =0 From , we see that this TFP
estimate relates to the true TFP change via markup:

. _ MG,
Awit - P
it

Aw,. (3)

Therefore, TFP would be underestimated by the extent of markup.

Finally, Bond et al. (2020) show that markup estimates using the method of Hall (1988)
and De Loecker and Warzynski (2012) are generally biased when revenue elasticity is used in
place of output elasticity. Suppose a firm is a price-taker of flexible input v. Halll (1988) and
De Loecker and Warzynski (2012) developed the following equation relating to markup and

output elasticity with respect to v as:

P _ o f(x;)/ vy
MC;, al

it

4)

where a!, is the ratio of expenditure on input v to revenue. If a researcher uses 9 ¢, (x;.)/dm;,
instead of 9 f,(x;,)/dm;, in markup equation (4), then from (2), the estimated markup is 1:

- M_Citaft(xit)
0P (x;)/0vy _ P Ove  _ 1 (5)
o aj,

In such a case, the markup would be underestimated |

Klette and Griliches| (1996) and De Loecker (2011) developed methods by which to identify
production functions from revenue data, by assuming a constant elastic demand function with
an identical elasticityﬂ However, with this specific demand function, markups must be constant
and identical across firms. Studies estimating markups from quantity data report substantial
heterogeneity in markups across firms (e.g., De Loecker, Goldberg, Khandelwal, and Pavcnik,
2016; |[Lu and Yu, |2015}; Nishioka and Tanakal, 2019)).

8Result (5) by Bond et al.| (2020) relies on the assumption that a researcher can correctly identify @;,(x;,). In
practice, misspecification of ;. (x;,) could derive markup estimates that contain some information on true
markups. For instance, De Loecker and Warzynski| (2012, Section VI) show that when f is Cobb-Douglas, it is
possible to identify the effect of firm-level variables (e.g., export) on markups.

9Katayama et al.| (2009) also developed a method by which to identify production functions from revenue
data. Their method allows for markup heterogeneity but requires the ability to estimate firm’s marginal costs from
total costs.



3 Identification

3.1 Setting

and [
respectively, with their respective supports denoted as %, .#, #, and £. We collect the three

We denote the logarithm of physical output, material, capital, and labor as y;,, m;;, k;;,

it>
inputs (material, capital, and labor) into a vector as x;, := (m;,, k;;, ;) € X := M x K x £L.

At time ¢, output y,, is related to inputs x;, = (m;,, k;,, ;;)’ through the production function
Yie = filxio ) + i, ©6)

where 2z}, is a vector of exogenous characteristics with support Z that may affect either the
functional form of f,(-) or the level of total factor productivity (TFP) (e.g., ownership status).
Firm-level productivity w;, follows a first-order stationary Markov process given by
Wi = h(wit—l)zﬁ_l) + Nies Nie " F,, (7)

where 7);, is an innovation to productivity that is serially uncorrelated, and zf‘t_l is a vector of
lagged characteristics with support %, that may affect the productivity process (e.g., previous
import status as in Kasahara and Rodrigue, [2008)). We assume that both the function h(-) and
the marginal distribution of 7);, are time-invariant.

The demand function for a firm’s product is strictly decreasing in its price, and its inverse
demand function is given by

Dit = lﬁt(yit’zidp €i)>

d
it

where z¢ is an observable firm characteristic with support %, that affects firm’s demand (e.g.,
firm’s export status in De Loecker and Warzynski (2012))) while €;, represents an unobserved
demand shock.
The unobserved demand shock €;, is generated by the process
iid

Git:T(git,git_l,...,git_v), git—s NFC fOl‘S:O, ].,..,U. (8)
Therefore, conditional on zft, the underlying innovation {;, has a transitory effect on the demand
shock €;,. Consequently, €;, is serially correlated over v periods but its persistence is limited in
that €;, is independent of €; ,_; for s > v + 1. In contrast, an innovation to productivity 7);, has
a permanent impact on future productivity in (7). The difference between demand and supply

shock specifications between (7)) and (8) captures the idea that demand shocks are temporary



while supply shocks are permanent (e.g., Nelson and Plosser, 1982)

As shown in Matzkin (2003), the identification of a non-additive unobservable €;, has to be
up to its monotonic transformation. Let F, be the c.d.f. of €;,. Without loss of generality, we
transform €;, to a uniform variable, using u;, := F.(€;,),

Pit = ¢t(yitazi’F;1(uit))
= ’(/)t(yitﬁzld[’ U;), u; ~ Unif(0,1). %)

Given t, u;, cross-sectionally follows an independent and identical uniform distribution.
The inverse demand function (9) is non-parametrically specified and generalizes the constant-
elasticity demand function examined by Marschak and Andrews| (1944), Klette and Griliches

(1996), and De Loecker| (2011). Equation (9) implicitly imposes two key assumptions. First,
d
it
u;,) represents the

i,bt(-,zl.dt, u;,) is common across firms once we control for observed demand characteristics z

d
it?

demand curve that each individual firm takes as given. This assumption is satisfied under

and a transitory scalar unobserved demand shock u;,. Second, ¢,(:,2

monopolistic competition (without free entry), where 1, can be expressed as 1, (y;,, zft, Ui, a,),
with a, denoting a vector of aggregate price and quantity indices which each firm treats as
exogenous.

Let r;, and Z be the logarithm of revenue and its support, respectively. Then, from (), the

observed revenue relates to output and input as follows:

d
rie = P Vi Zips i)

=@ (ft(mit:kit:litazit)'kwitazidpuit) (10)
where ('Pt(yitizft’uit) = szt(yitﬁzldpuit) + Vi
We make the following timing assumption.

Assumption 1. (a) (., k;,) is determined at the end of period t — 1 and is independent of 1, and
l;s for s > t. (b) my, is determined after firm’s observing (cw;,, uit,zft,zl.dt) but is independent of 1;,
and ¢, fors = t+1. © (24,2

(0 Zips u—1) is continuous and independent of u;, and 1, for s > t. (d)

each firm is a price-taker for material input.

Assumptions (a) (b) specify the timing structure, which is similar to that in|Gandhi et al.
(2020). In Subsection we present identification results when [;, is also endogenous. The

continuity requirement in Assumption (c) can be relaxed, but the exogeneity of (th: zidt, zﬁ_l) re-

19Here, the productivity w;, may capture factors such as persistent differences in product quality across firms.
From this perspective, the firm’s output y;, can be interpreted as as a quality-adjusted measure of output quantity.



mains an important—albeit potentially strong—assumption, though it is commonly maintained
in the empirical literatureE] Assumption (d) is also standard in most empirical applications.

Under Assumption the firm chooses m;, = M, (ww ki, Lic, zft,zi, uit) at time t to maximize
the profit:

M, (wit’ ki, L, 2] z uit) € argmrgxexp(got(ft(m: kies Lic, Z?t)‘i‘winzi: uit))_exp(pT+m)> (11)

it’ 7it?

where p}" denotes the logarithm of the common material price at time t¢.

Equation highlights two identification issues, originally raised by Marschak and Andrews
(1944). First, m;, correlates with two unobservables w;, and u;,. Second, r;, relates to x;, =
(my,, ki, l;;) via two unknown nonlinear functions (pt(-,zft, u;.) and f,(-).

For identification, we make the following assumptions.

Assumption 2. (a) f,(-) is continuously differentiable with respect to (m,k,1,2°) on M x A x
% x %, and strictly increasing in m. (b) For every (z%,u) € %; x [0,1], ¢,(-,z%,u) is strictly
increasing and invertible with its inverse <pt_1(r, 24 u), which is continuously differentiable with
respect to (r,2%,u) on & x %; x [0,1]. (c) For every (k,1,2°,2%,u) € # x £ x %, x %; x[0,1],
M, (-, k,1,2°,2¢%,u) is strictly increasing and invertible with its inverse Mt_l(m, k,1,2° 2z, u), which
is continuously differentiable with respect to (m,k,1,2°,2%,u) on M x H x £ x %, x %; x [0,1].
(@ (& -, Cii—yy) are independent from m;,.

Assumptions [2|(a) (b) are standard assumptions about smooth production and demand

d
it’

functions. In Assumption (b), the condition 2 ¢,(y;;, 2%, u;.)/dy; > 0 is equivalent to that the

elasticity of demand with respect to price, — (81/4( yit,zft, u;)/o yit)_l, being greater than 1;
this necessarily holds under profit maximization. Assumption [2|(c) is a standard assumption
in the control function approach that uses material as a control function for TFP (Levinsohn
and Petrin|, [2003}; /Ackerberg et al.,[2015). Assumption [2J(d) requires the demand shock and the
productivity shock are independent.

Let w;, := (k;;, lit,zft,zft) be observable exogenous variables at t. The inverse function of

the material demand function with respect to TFP
— -1
w; =M (Mg, Wi, Uy,)

is used as a control function for w;,. Since acpt(yit,zft,
d
it’

u;.)/ 2y, > 0, there exists the inverse
d

function ¢;'(-,z%,u;,) so that the revenue function r;, = ¢,(f,(x;,2},) + w;, 2%, u;,) can be

Un Appendix we further discuss identification when these variables are discrete and endogenous, under the
availability of suitable instruments.



written as:
-1 d -1
(Pt (ritazit’ uit) = ft(xinZ?J + Mt (mits Wits uit)' (12)
Let

vit = (WitJ uit, mit_l,Wit_l,uit_l,Zh )/ (S HV = W X [O, 1] X .ﬁ X W X [0, 1] X ffh

it—1

where # := X x ¥ x %, x %,. We assume that the data constitute a random sample of N firms

observed over multiple periods,

t N
{{risa Mg, Vis s=t—v—273i=1°
drawn from the population. Given a sufficiently large N, the econometrician can consistently

recover the corresponding population joint distributions.

Assumption 3. An econometrician is assumed to know the following objects: (a) the population
joint distribution of {r;, m;, vi}._._ _,; and (b) the material input cost for each firm, exp(p!" +

mit)'

Our objective is to identify ¢ '(-), f,(-),Mt'(-) from the population joint distribution of
{ri, my, v} }. Let {@i1(-), £7(-),M'(-)} be the true model structure that satisfies .

s=t—v—2

Then, for any (a,,,a,,,b,) €ER* xR, ,,

-1 d —1 d
2 (ritizipuit) = (alt + aZt) + btcpf (rit:zita uit) > ft(xitbzl?t =day + btft*(xit:zit >
and Mt_l(mit, Wit,uit) B azt + tht_l(mit, Wit,uit) (13)

also satisfy , and the true structure {Lp;"_l(-), ft*(-),Mf_l(-)} is observationally equivalent to
the structure li That is, the structure {4,0:1(-), ft(-),Mt‘l(-)} is identified only up to location
and scale normalization (a,,, a,,, b,) from restriction ({12).

Therefore, identification requires location and scale normalization. We fix (a,,, a,;, b;) in
by fixing the values of {(pt_l(-), ft(-),Mt_l(-)} at some points. Specifically, choosing two

1 * k * * >k * * *
points (m},, w},u}) and (m},, w},u;) on the support  x Z where m}, < m},, we denote
—— * E E T _ —1 * * ook . —1 * * ook
1 = fi(miy, k7,1, 277), ¢ = M~ (M, wi,u}), and ¢, := M~ (m],, w},u}). (14

Note that dM,'/dm, > O implies that ¢,, < cg,. Then, there exists a unique one-
to-one mapping between (cy,, ¢y, ¢3,) in (14) and (ay,,a,,b,) in (13) such that b,

(c3,—Co0)/ (M’:_l(mfl, wiut) =M (md, wh, uf)), ay, = ¢y, — by f(mfy, k¥, 1,27 and ay, =

10



Cor— by M (m?¥y, w¥,u?). Thus, we can fix the value of (a,,, a,,, b,) by choosing arbitrary values
(C1e>Cop» C3.) € R? that satisfies ¢,, < c5,. In particular, we impose the following normalization

that corresponds to (N2) in Chiappori et al.[ (2015)).

Assumption 4. (Normalization) The support .# x # x [0, 1] includes two points (m},, w},u;)
and (m, wy,u?) such that ¢; = ¢, =0 and c;, = 1 in ({14).

t0’

As|Chiappori et al.| (2015) demonstrates, this choice of normalization makes the identification
proofs transparent. In Section 3.4, we discuss how we can use additional restrictions and data

to identify the normalization parameters (a;,, a,,, b,).

3.2 Identification in a Parametric Example

Before presenting the nonparametric identification results, we demonstrate our identification

approach by applying it to a simple parametric example without exogenous covariates, i.e.,

S

d h . . . . o . . .
where (z{,,2;,,2!,) is empty. Consider a monopolistically competitive market where each firm i

faces the following constant elastic inverse demand function:

pie = o, + (p(w;) — Dy, (15)

where a, is an unknown parameter and p(-) is an unknown function satisfying 0 < p(-) < 1F_Z]
We assume that p’(u) < 0, which implies that the markup 1/p(u) is increasing in u.

Firm i has a Cobb-Douglas production function with the TFP w,, follows a first-order
autoregressive (AR(1)) process:

Yie = 0o+ 0,my + Ok + Ol + @y,
w; =hywiq + 1y, (16)

where {6, 0,,, O, 0;, h,} are unknown parameters. The firm’s revenue function is expressed as:
rie = o + p(u )0 + p (Ui )0nmye + p (Ui )0k + p (Ui )01 + p (Ui )y, (17)

Denote the ratio of material cost to revenue as

exp(p +my,)

S 1=
. exp(r;,)

12The demand function (I5)) can be derived from a constant elasticity of substitution (CES) utility function,
where the elasticity of substitution parameter depends on u. The term a, implicitly captures aggregate expenditure
and an aggregate price index.

11



Then, the first-order condition for (11]) can be written as

p(uit)em = Sit> (18)

which, in turn, determines the control function for w;, as
— V! —
Wi _Mt (mit’kit’linuit) - ﬁt(uit)‘i‘ﬁm(uit)mit +/jkkit +ﬁllit (19)

where ﬂt(uit) = (p?l - at(uit) - 90 _lnp(uit)em) /p(uit)a ﬂm(uit) = (1 _p(uit)em) /p(uit) > O:
B = —b6k and f; = —6,.

For notational brevity, assume that the support & includes two points (m},, k;,[) = (0,0,0)

and (m*,k*,1*) = (1,0,0). Following Assumption [4, we fix the location and scale of f,(:) and

t0’ ""t’ "t
M '(-) by imposing the following normalization:
0= £,(0,0,0) = 6,, 0=M,"(0,0,0,0.5) = 8,(0.5),
1=M;(1,0,0,0.5) = ,(0.5) + ,,(0.5) (20)

which implies 6, =0, ,(0.5) =0, and ,,(0.5) = 1.

Our identification approach follows three steps.
3.2.1 Step 1: Identification of the Demand Shocks
The first step identifies the demand shock u;,. Substituting w;, = M_'(m;,, k;, l;;, u;;) and using

6, = 0, we obtain

Tie = (at + p(uit)ﬂt(uit)) + p(uit) (Gm + ﬁm(uit)) m;,
+ o) (O + Bi) ki + p () (6, + B L, (21)
= (u;e) + M, (22)

where ¢ (u;,) == a, + p(u;,)p, (w;,) with ¢'(u) =—6, p’(w)/p(u) > 0 for all u.
From (22)), we have

Pr[r, —m;, < ¢,(w)]=u forallue[0,1]
because Pr[r, —m; < ¢,(w)] = Pr[¢,(u;) < ¢,(w)] = u by the monotonicity of
$.(-). Therefore, the quantile of r;, — m;, identifies u;, while the moment condition
E |:1 {rit —m;, < ¢, (u)} —u] = 0 for u € [0, 1] identifies ¢,(-).
Alternatively, from the first-order condition and the monotonicity of p(-) with p’(-) <0,

12



the demand shock u;, is identified as the quantile of 1/s;,. This equivalence arises because the

quantile of r;, —m;, coincides with that of 1/s;, = exp(r;, —m;, —pT").

Step 2: Identification of Control Function and TFP The second step identifies the control
function Mt_l(-). Substituting into the AR(1) process Ii leads to

—1 —1
M, (my, ki, Ly ug ) = tht_l(mit—l, kie—15 Li—1, Uie1) + Ny (23)
Since M (my,, ki, Ly, u;,) is linear in m;, from (19), we can rearrange (23) as:

my =y (U, ueq) + 1w ki + v (Wl + 68, (W, g )My

+ 8, (u; kg + 0, (i )li—q + iy (24)
where
Br By hy By h, B
it) = — 5 it)=— , 0 it) = , 0 it)] = > 25
) =g Gy 10 T Ty P Ty P Ty @
_ —Be(w;e) +hy By (we—1)
Y(uitﬁuit—l) - ﬁm(uit) 5 (26)

Nie = Nie/ Bm(Wie), and 6, (Wi, uj—1) = hy B (Uje—1)/ Br(w;,)- For a given (w;,,u;—1), isa
linear model. Since E [ ;| vic] = E [ ;| vie ]/ B(u;) = 0, where v, := (K¢, Ligs Xie1, Use, Uie—1);
we can identify {y(-,-), v«(*), (), 8,,(,+), 6,(-), 6;(*)} in from the conditional moment
restriction E [ 7;,| v;,] = 0.

Then, because f3,,(0.5) = 1, we can recover (6, 6;, h;) from as

5,(05)  §(0.5)
7:(0.5)  7,(0.5)°

Also, applying the normalization to (26), we have y(0.5,u,_,) = h,8,_,(u,_). Then, B,,(uw)
and B,(u) are identified from (25)-(26) as

1(0.5) _71i(05) . B,(w) = 7(0.5,11, 1) — (w1 )yi(0.5)
@ 7 Ti(w)

0, = —Pr = 11(0.5), 6, =—p; =7,(0.5), and h; =

Brm(w) =
Given the identification of (8, B, B.(-), B:(-)), we can identify w;, from (19).
Step 3: Identification of Production Function, Markup, and Demand Function The identifi-

cation of p(u) follows from substituting into f3,,(u) = (1 —p(u)6,,) /p(u), and rearranging

13



the terms, which yields
1 _sit _ 1 _Sit

Bm(i) — 71(0.5) /v ()’
Therefore, the markup 1/p(u;,) is identified.

p(u;) =

The first order condition implies that the revenue share of material expenditure is a
function of u;,, which we denote by s(u), such that s;, = s(u;,). In particular, s(0.5) represents
the median revenue share of material expenditure. Then, the identification of 8,, follows from
the identification of p(u) and the first order condition as

_s(0.5)  s(0.5)

Om = p(0.5)  1—5(0.5)

(27)

The Identification under Normalization In view of the first-order condition p(u;,)6,, = s;,,
it is clear from the argument above that the markup level cannot be separately identified from
the material input coefficient 8,, without imposing the normalization restriction f3,,(0.5) = 1.
More generally, the parameters are identified under the scale and location normalization of
f.(-) and Mt_l(-) in . Let 0; (i =0,m,k,1) and f;(u,) (j = t,m,k,[) be those parameters
identified above and let 9; and f37(u,) be the true parameters. Then, there exist unknown

normalization parameters (a, b) € R x R, such that
Op=a+b6;, By =a+bB;, 6, =06, B;(u)=Dbp;(u,).

We can fix the normalization by imposing further restrictions. For instance, if constant returns

to scale 0 + 6, + 6 =1 holds, then the scale parameter b can be identified as

5(0.5)

b=b(9m+9k+91)=9m+9k+91=T(Q5)—

Br— By
We discuss in subsection 3.4] additional assumptions for fixing normalization.

The above identification argument is illustrative but relies on the linearity of
Mt_l(mit, k;.,l;;,u;; ) under restrictive parametric assumptions. The next subsection establishes

nonparametric identification in a more general framework presented in Section (3.1

14



3.3 Nonparametric Identification
3.3.1 Step 1: Identification of the Demand Shocks

Substituting w;, = Mt_l(mit, w;,, U;,) into the revenue function Il , We can rewrite it as

Fie = (f(mlt’klt’ 1t7z )+M l(mlt’ lt:uit)’zgpuit)
=: ¢, (M, wy,u;), uy ~ Unif(0, 1). (28)

We impose the following assumptions.

Assumption 5. (a) (Monotonicity) d ¢,(m,w,u)/du > 0 for all (m,w,u) € A4 x# x[0,1].
(b) (Completeness) The conditional distribution of (m;., w;,) given (Mm;,_,_1, W;,_,) is complete in

the sense of Chernozhukov and Hansen| (2005); that is, for any measurable function g(m,w),
Elg(m;,, w;) | Mir—pe1> Wi—p ] =0 a.s. = g(my,,w;) =0 a.s.

Assumption [5|(a) implicitly imposes restrictions on the shape of the demand function. The

dp, 9o, > dp, 9o,

du dy Jdy du?’
d
—1/ (%f’lﬂ) > 0 denote the demand elasticity. Since 22 > 0 and aa—i‘ > 0, a sufficient

Appendix shows that Assumption (a) holds if and only if where o,(y,z¢,u) :=

condition for Assumption|[5|(a) is that an increase in the demand shock €;, makes demand less
elastic (i.e., increases the markup), while an increase in consumption makes demand more
elastic (i.e., decreases the markup).

Under Assumption [5|(a), given values of (m,w), ¢.(m,w,-) in can be interpreted as the
quantile function of revenue r. Although m;, is endogenous and correlated with u;,, Assumption
[1)(ii) and equation imply that u;, is independent of (m;,_,_;,w;,_,) While u,, is serially
correlated with u;, for s =1,...,v. Then, we have{rj

Prir, < ¢, (m;, w;,u)|m;_y_q, Wi, ]=u forallue[0,1].

Assumption [5|(b), referred to as the completeness condition, implies the following unique-
ness property: for any two candidate functions d)tl and qbtz and any fixed u € [0,1],

I:]- {rlt —= ¢ (mlt’wltJu)}| My y—1> Wie— v] = El:l {rit < ¢t2(mit’wit’u)}| mit—v—l:Wit—v:I a.s.

13This follows because

Pr[rlt —¢ (mlt’wlt7u)|mlt v—1> W itfv]zpr[q5 (mitﬁwit’uit)< ¢ (mitﬁwit’u)|mirfvfl9witfv]
_Pr[ult —ulmlt —v—1> Wit— U]

:u’

where the second equality follows from the monotonicity of ¢, (m,w,-) while the last equality holds because
Ui L (My_y1, Wi—y)-
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implies that ¢} (-,-,u) = ¢?>(-,-,u) almost surely. Then, following Chernozhukov and Hansen
(2005)), the moment condition

E[1{r; < ¢,(m;,w;,,u)} —u|lm;_,_1,W;—_,] =0 forue[0,1] (29)

identifies ¢,(-), and the demand shock u;, is identified as u;, = ¢, ' (r;;, m;;, w;,) under Assump-
tion 5

Proposition 1. Under Assumptions[1} 2} [3| and[5|hold, ¢.(-) and u;, are identified.

Hereafter, ¢,(-) and u;, are assumed to be known.

3.3.2 Step 2: Identification of Control Function and TFP

From , the control function w;, = M " (m;,, w;,,u;,) satisfies
—1 _ 1 h
M, (m;e, wi,u;) = hy (mit—b Wit—1, uit—l)zit_l) + Nie (30)

where h, (mit_l,wit_l,uit_l,zlht_l) = h(Mt__ll(mit_l,wit_l,uit_l),zl’?t_l). As OM['/dm;, > 0,
given the values of (w,,,u;,), the dependent variable in is a monotonic transformation of
m;,. Therefore, the model belongs to a class of transformation models, the identification
of which (Chiappori et al.| (2015) analyze.

We make the following assumption, which corresponds to Assumptions A1-A3, A5, and A6
in |Chiappori et al. (2015)

Assumption 6. (a) The distribution G,(-) of m; is absolutely continuous with a den-
sity function g,(-) that is continuous on its support. (b) m; is independent of v; :=
(Wi, Ui, Mg, Wi 1, uit_l,zﬁ_l)’ € ¥ with E[n,.|v;;] = 0. (¢) v;, is continuously distributed on V.
(d) Support 2 of w;, is an interval [w, @] C R, where w < 0and 1 < &. (e) h(-) is continuously
differentiable with respect to (w,z,) on Q x Z,. (f) The set .o/, := {(my 1, Wi, Uy 1,28 ) €
M XWX [0: 1] X gh : aGmtlvt(mit|Vit)/aqit—1 7é OfOT‘ all (mit:Wit:ut) € MW X [0: 1]} is

d h
nonempty for some q;;_1 € {m;;_1, ki1, lit—lizft_lazit_p uit—lazit_l}-

We can relax Assumption @(b) by allowing zlht and [;, to correlate with 7);, as discussed in
subsection [B] The sign restriction in Assumption [6(d) holds without loss of generality because
we can choose any two points in place of {0, 1} on the support of w;, without changing the

essence of our argument.

14Assumption [2| (c) corresponds to Assumption A4 of (Chiappori et al.| (2015).
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Assumption @(D can be interpreted as a generalized rank condition. Suppose g, (n;;) >0
for all n;, € R. Then, as will be shown below in (32), Assumption [6|(f) holds if either

7 (= ~ ~ ~h
Jh (mit—IJ Wit—15 uit—l’zit_1)

- #0 or
oz |
_ ~ ~ ~ ~h — ~ ~ ~
oh (Mt_ll(mit—l» Wit—15 uit—l)azit_l) aMt_ll(mit—ls W1, i) £0
0 Wiy 0q;c—

~ ~ ~ ~

h d h
holds for some (mit—l: Wit—1,Ujr—1, Zit—l) and dit—1 € {mit—l; kit—l) Zit—17 Z?t_lz Zit—l’ Uir—15 zit—l}'
The latter condition is equivalent to (1) w;,_; has a causal impact on w;, (dh/d w;,_; # 0) and
~1,/8q;;_, # 0). These conditions must be satisfied
for at least one exogenous variable q;,_, and some point (#;,_;, W;,_1, ﬂit_l,éﬁ_l).

Proposition 2| shows that the control function is identified from the distribution of (m;,, v;,).

(2) q;,_; has a causal impact on w;,_;, (M

Proposition 2. Suppose that Assumptions hold. Then, we can identify M '(-) up to scale and
location and G, (-) up to the scale normalization of n;,.

Proof. The proof follows the proof of Theorem 1 in Chiappori et al. (2015). In view of equation
(30), the conditional distribution of m;, given v,, satisfies

_ —1 1, h
Gmtlvt(mitlvit) =Gy, (Mt (M, wip, u;) —hy (mit—lz Wit—1, uit—l’zit_l) |Vit)

_ —1 7 h
- Gn (Mt (mitﬂ Wi, uit) - ht (mit—l) Wit—1, uit—l’zit_1)) ’

where the second equality follows from 7; L v, in Assumption [6|(b). Let g, €

{mit:kit’litazftazi:uit} and g;,_, € {mit—l)kit—lnlit—l:zft_lazg_l:zlht_puit—l}' The derivatives
of Gmtlvt(mitlvit) are
G, v (mye|vie) aMt_l(mit’Wit:uit)
IVt — ), 31
aqit aqit gn (nlt) ( )
aGmtlvt (my|vie) . ah(mit—hWit—l)uit—l’zlht_l) 39
aq.t . - aqt . gn(nit)J ( )
it— it—

— M1 7 h : :
where n;, = M (m;,, w;,,u;, ) —h, (mit_l,wit_l,uit_l,zit_l). Using Assumption @(f), we can
s d  h > ~ ~ sh
it—1° it_lszit_puit—l} and (mit—lawit—lsuit—lszit_l) € "‘qu
= - ~ sh
such that 3G, |,, (mtlkt, L, 2., U, mit_l,wit_l,uit_l,zit_l) /9q,_, # 0 for all (m,,k,,1,,2,,u,) €
MXAH XL XxZEX[0,1].

Dividing by (32), we derive

choose q;; 1 € {m;,_1, ki1, 1,2 z

t—1
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—1 T (= ~ ~ =h
aMt (mitﬂwitiuit) _ ah(mit—lswit—l’uit—lizit_l)
9q;; 9qit—
~ ~ ~ ~h
aGmtlv[ (mitlwit’ Ujr, M1, Wir—15 uit—l’zit_l) /94,

~ ~ ~ ~h .
8Gmt|vt (mitlwit: Ui, M1, Wie 1, uit—lazit_l) /04,

(33)

Then, from (33) for g;, = m;, and the normalization in Assumption 4, we obtain

—1 k7% * —1 % 7%
1=M, (m},k;, U, 2}, u;) =M, (m},, k}, [\, 27, u})
1 ah(mit—DWit—17uit—17§lht_1)
=_ , (34)
S 9G4

9e—1

where

S = fmtl aGth (mlw u mzt 1’ it— 1’ult 13 it— 1)/amf
m

qe—1 ° ~
5 aGm[m (mlwtaut’mit—lJWit—liuit—l’Zit_l)/aqt—l

Then, we identify 3f1(rhit_1,wit_1,ﬂit_1,2?t 1) / aqit 1 = —S,,_,- Substituting this into ll
OM (my, wy,,u;, )/ 0q;, for q, € {my, kyp, L, 2 z ,u; } are identified as follows:

it’

—1
aMt (mit’Wit:uit) _ aGmtlvt (mitlwitﬁult’mlt IJWM lault l:zlt 1)/ q:

0 T Y4 . (35)
Qi 8Gmflvt (mitlwit’ult’mlt l’Wlt l’ult lazlt 1)/aqt 1

Integrating Il with respective to q;, € {my, k;, l;;, %} obtains for any (m,, k., 1,,z},2%,u,),

Mt_l(mt,k l,,%; z ,u,)

(™ OM, (s, ky, L, 25, 2 ut) COM N (mly,s, L, 2,20 u,)

:Jm’;o om;, fkf ok;,

. rl oM (m}y, ki,s, 2, 58 ut) J 3M_1(mt0, S ut)
Ji; ol z 0z},

.\ re OM, '(miy, ki, U, 23, s, ut)ds+Jut oM (m?,, ki, 1, 2%, d*,s)ds 36)
J 0z, ur du;,

where the equality follows from M 1(m oo kU2 ,u7)=01n Assumption Substituting the
identified derivatives of M '(-) in into (36), we can identify M, *(m,, k,,l,,2},2%,u,) for
all (m,,k,,1,,2%,2%,u,) on their supports.

Finally, from w; = M_'(m,w;,u;), we can identify h.(m;_;, Wiy, ;20 ) =
E I:wit|mit—1:Wit—1s uit—lzzlht_1:| and n;, = wit_ilt(mit—liWit—lsuit—li Z_ 1) Thus, we can identify
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the distribution of 1;,, G, (-). O

3.3.3 Step 3: Identification of Production Function, Markup, and Demand Function

The final step identifies production function, markup, and demand function. From

o,.(m;,w;,u;,) = @, (ft(Xit,th) +Mt‘1 (mit,wit,uit),zft,uit) and the monotonicity of ¢,, dif-
‘o -1 d _ -1 :

ferentiating ¢~ (¢, (m;, w;, u;,), 25, ;) = fi(x,, 2], ) + M (my,, w;,, u;,) with respect to g, €

s d d 5 .
{my., ki, i, 25, } and g, € {2}, u;, } gives:

390t_1(7”iuzmun) o¢.(my, wy,uy,) . aft(xit’zft + aMt_l (M, Wi, Uye)
- 3

s s s (37)
ary g, 0q;, oq:
a(Pt_l(rit)zi:uit) d¢.(my, wip, uyy) . aMt_l (M, Wy, Uy) _ aﬁot_l(rit:zi: Up,) (38)
it oq;, oq;, dq;

Note that 8¢, (r;,2%,u,)/0r, = (3 0, (¥, 28 uit)/&‘yt)_1 represents the markup from . If

it’ it’

u;,)/dr, were known, then equations II and |l could identify
0f(x,%,)/0q¢ and 8¢, (r;,zL,u;,)/9q" given that M, '(m;,, w;,, u;,) is identified. However,

it’

the markup 9 ¢ (ry, 2%,
since the markup is unknown, identification requires further restriction. Following|Gandhi et al.

(2020), we use the first-order condition with respect to the material as an additional restriction.

Assumption 7. The first-order condition with respect to material for the profit maximization

problem
OF(02) | D97 2, u) exp(pl + m,)
omy, - ory exp ()

(39)

holds for all firms.

Rearranging the first-order condition, we obtain the markup equation used by |De Loecker
and Warzynski (2012)):

a(pt_l(ritazidpuit) _ aft(xitazft)/amit
or, exp(p" + m;,)/ exp(rit)'

(40)

We establish the following proposition.

Proposition 3. Suppose that Assumptions hold. Then, we can identify ¢ (), f,(-), and ¢ (")

d

up to scale and location and each firm’s markup 9 ¢ (r;,, 2%, u;,)/ 01, up to scale.

Proof. From and , the markup 8¢, *(r;,, 2%, u;,.)/r, is identified as

it?

d ‘Pt_l(rinzldp U,) aMt_l (M, wip, uy) (0 b (M, wip, Ui) exp(p;" +m;,) !
_ _ . @D
ar, om, om, exp (i)
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From ¢, and (41)), the markup is also identified as a function of (m,,w,,u,) as

7 (Pt_l(d)t(mt: Wy, ut): Zt)

nu‘t(mt’wt’ ut) =

ar,
_ aMt_l (mt: Wt:ut) (8¢t(mt,wt,ut) _ exp(p;" + mt) )_1 (42)
om, om, exp (¢, (m,,w,u,))
Substituting into (37), we identify 0 f,(x,,2)/3q, for ¢} € {m,, k,,1,,2} as follows:
af.(x,,z Kl oM (m,,w,,u
felx, t) = . (m,, wp 1) ¢.(m,w,,u,) . t (me, w, t)' 43)
94, 94, 94,
Using f,(m},, k},1,2;*) = 0 in Assumption 4, we identify f,(x,) by integration:
™ 3L (s, Ky, L, 2 “ 3 f,(m*,,s,1,,2°
fmokolpz = | L Eelem) o (7O Loz
t - om, . ok,
t0 t
l z
caf.(m* k¥ s,z caf.(m* Kk 1Fs
+ fulmig. k5.5 ds + fulmyg — )ds. (44)
It al, . oz

Let Z :={r, : r, = ¢.(m,,w,,u,) for some (m,,w,,u,) € X x Z x[0,1]} be the support of
r.. For given (r,,2%) € & x %, B,(r,,2%,u,) :== {(x,,2°) € X x %, : ¢.(x,,2%,2%,u,) = r.} is
non-empty by the construction of #. Then, because f,(x,,2}) and M " (m,, w,,u,) are identified,
the output quantity ¢;'(r,,2,,u,) for any (r,,z,,u,) € Z x & x [0, 1] is identified by

@ (o2t uy) = fi(x, 28) + M (my, we, u,) for (x,,28) € B,(r,,29,1,).

By monotonicity, ¢,(y,,z¢,u,) is identified from ¢;*(r,,z%,u,). Then, we can identify

lpt(.yt’zf’ut) as 1/%(%,2?,%) = ‘Pt(yt’zf:ut)_yt' O
The output quantity and price for individual firms are identified as y;, = cpt_l(rit,zidt,uit)

and p;, = "(/)t(}’inzi: Uy ) =T — ‘Pt_l(ritszfipuit), respectively.

Corollary 1. Suppose that Assumptions hold. Then, the production function, the demand

function, output quantities, output prices, and TFP are identified up to scale and location; markups

and output elasticities are identified up to scale.

Remark 1. Examination of the proofs reveals that we have over-identifying restrictions.
In particular, the proof of Proposition goes through with any choice of g;,_; €
{kie—1>Li—1, mit_l,zft_l,zi_l, uit_l,zf‘t_l} in ID Furthermore, the proof of Propositiondoes
not rely on the restriction in Il for identifying (pt_l('). These over-identifying restrictions
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can be exploited to construct specification tests for the model and to obtain more efficient

estimation.

3.3.4 Comparison to Existing Identification Approaches

Our setup extends existing identification analyses of production functions by allowing prices
to depend on output through an inverse demand function and by incorporating transitory
unobserved demand shocks as a source of heterogeneous markups. While our approach builds
on existing identification methods, our use of control functions and the IVQR framework differs
from conventional formulations.

First, because the model includes both productivity and demand shocks, the standard control
function approach cannot account for both sources of unobserved heterogeneity. We therefore
assume that demand shocks are transitory while productivity shocks are persistent and use the
IVQR approach to identify demand shocks in Step 1.

Second, Step 2 identifies the control function from the dynamics of input choices without
relying on output measures, distinguishing our approach from the standard control function
framework (e.g., Ackerberg et al., [2015).

Third, Ackerberg et al. (2015) identify a structural value-added function, y;,, =
fi(k;;,1..) + w,,, derived under perfect competition from a Leontief production function
¥, = min{f,(k;,, L;,)+w,,, a+m;,}. This formulation is difficult to apply under imperfect competi-
tion because y;, < f,(k;,,1;;)+c;, can occur. The maximum output capacity Y= filki, L)+,
is determined before a firm chooses m;, and y;,, so when y? is large—e.g., due to a high produc-
tivity shock—a profit-maximizing firm may produce y;, < yl.*tﬁ Intuitively, when TFP doubles,
a firm may avoid a large price decline by expanding output less than proportionally.

Fourth, our approach differs from Gandhi et al. (2020) in the use of the first-order condition

for materials. Their method identifies the material elasticity 0 f,(x;,,z;,)/dm;, from the first-
.. 3 f(xi0,2 My m; 20 (rip,2d . ..
order condition 1! In Zleild) oy SRR g, O (;;Z“ “) assuming perfect competition
t

omy, exp(ri¢)

where 3Lpt_1(rit,zd u;)/0r;, = 1 for all i. Under imperfect competition, when the markup

it?

depends on revenue r;,, 9 f,(x;,,%:,)/dm;, cannot be identified solely from this condition.

3.4 Fixing Normalization across Periods

Let (¢, '(-), f:(-),M['(-)) be a model structure for period t identified by using Propositions
and (3| under the normalization in Assumption 4 Let (¢7'(), f*(-),M7'(-)) denote the true

model structure. Since the structure is identified up to scale and location normalization, there

15As noted by |Ackerberg et al.| (2015), under perfect competition y;, < ¥, implies zero output, so only firms
with y;, =y, are observed. Under imperfect competition, however, positive output with y;, <y is possible.
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exist period-specific location and scale parameters (a,,,d,,, b,) € R*> x R, such as

_ d — d
(Pt 1(ritszit:uit) =day; + Ay + bt()‘);k 1(rit7zit5 uit)s ft(xitfzft =day; + btft*(xinzjt b

Mt_l(mit:wit:uit) =ay + tht_l(mit:Wit:uit)- (45)

Generally speaking, the location and scale normalization differ across periods—that is,
(ay;, asp, b,) # (ay,41,a5.41, b,41). For the identified objects to be comparable across periods,
we need to fix normalization across periods by assuming that some object in the model is

time-invariant. The subsection discusses these additional assumptions['|

3.4.1 Scale Normalization

From (45)), the ratio of identified markups across two periods relates to the ratio of true markups

as
-1 d -1 d
a(PH.l(riH-l’zit_H)uit+1)/ar . bt+1 a()o)tk+1(rit+lazit+1:uit+1)/ar
a‘Pt_l(rinZidt:uit)/ar b, 3¢ (ris 2wy )/

it?

Therefore, the ability to identify how true markups change over two periods requires identifica-
tion of the ratio of scale parameters, b,,,/b,. Similarly, the ratio of identified output elasticities
across periods and that of identified TFP deviation from the mean are related to their true

values via the ratio of scale parameters:

aft+1(xit+1ﬁth.ﬂ)/a‘q _ bt+1 8f;:.1(xit+1’zft+1)/aq

0 f(xi,%,)/9q b, Ofi(xi,%;)/q
W1 —E[wir41] _ b1 a);kt+1 —E [w;‘ktﬂ]
wif_E[wif] bf w?t_E[w;'kt:I

for g € {m,k,1,2°}.
To identify b,,,/b,, we consider the following assumptions.

Assumption 8. At least one of the following conditions (a)—(c) holds. (a) The unconditional
variance of 1;, does not change over time. (b) For some known interval 9 of & and some known
point z° € %, the output elasticity of one of the inputs evaluated at z;, = z°does not change over

time for all x € %AB. (c) For some known interval # of & and some known point z° € %,, the

18Klette and Griliches (1996) and De Loecker (2011) identify the levels of markups and output elasticities
from revenue data by using a functional form property of a demand function. They consider a constant elastic
demand function leading to ¢,(y;:,2i) = ay;; —(a — 1)z;, where z;, is an aggregate demand shifter, which
is an weighted average of revenue across firms, and a is an unknown parameter. This formulation implies
0 (rie,2;) = (1/@)ry, + (1 —1/a)z;, and imposes a linear restriction 8¢, ' (r;,2;,)/1i, + 0 ¢ (i, 2:,)/ 02 = 1,
which fixes the scale parameter b,.
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sum of output elasticities of the three inputs evaluated at z;, = z*does not change over time for all
X € A.

Assumption|[8|(a) holds, for example, if the productivity shock w;, follows a stationary process
because stationarity requires that the distribution of 7);, does not change over time. Assumption
[8(b) assumes that the elasticity of output with respect to one input does not change over time
for some known interval; meanwhile, under Assumption (c), returns to scale in production

technology does not change for some known interval of inputs.

Proposition 4. Suppose that Assumptions hold for time t and t + 1. Then, we can identify
the ratio of markups between two periods t and t + 1, the ratio of output elasticities between t and
t + 1, and the ratio of TFP deviation from the mean between t and t + 1.

Proof. Suppose that Assumption [8(a) holds. Let var(n,) and var(n,,,) be the variance of 7,
and 7),,, identified under the period-specific normalization in Assumption 4{for t and t + 1,
respectively. From || and II var(n,) = b?var(n?) and var(n,,,) = b?, var(n?,,). From

var(ny) = var(n;,,), b.41/b, is identified as b, ,/b, = Vvar(n,)/var(n,,,).
Let df,(x,,2;)/0q and 0 f,,1(x.1,%;,,)/9q be those elasticities identified under the period-

specific normalization in Assumption (4| for t and t + 1, respectively, and 3 f*(x,,z;)/dq and
3} 1(X¢41,25,,)/9q be the true elasticities. From (45)), 0 f,(x,,2})/0q = b,d f}(x,,2})/dq and
aft+1(xt+1:zi+1)/aq = bt+18f;11(xt+1:zi+1)/aq hold.

Suppose that Assumption (b) holds. Then, 9f*(x,2°)/dq = 0f}  (x,2°)/dq for
some input q € {m,k,l} and x € 9. Then, b,,,/b, is identified as b, /b,
(0fia(x,2°)/09)/ (0 f.(x,2")/Om) for x € A.

Suppose that Assumption [8|(c) holds, implying

of* (x,2°)/dm+af* (x,2°)/dk+3f* (x,2°)/31

*
t+1 t+1 t+1
for x € A.

Ofi(x,z5)/om+ 3 f (x,2°)/ 0k + 0 f(x,2)/01

Then, b,,,/b, is identified as

b1 Ofia(x,2°)/0m+0f 1(x,2°)/Fk+ 0 f 1(x,2°)/01

be - 3ft(x,zS)/3m+aft(x,zs)/3k+aft(szs)/al forx € .

3.4.2 Local Constant Returns to Scale

We consider the following local constant returns to scale that strengthens Assumption [8](c).
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Assumption 9. (Local Constant Returns to Scale) For some known interval # of % and some
known point z° € Z,, the sum of the output elasticities of the three inputs evaluated at z;, = 2;
equals to 1 for all x € A.

Assumption @] is stronger than Assumption (c) but weaker than those used in some studies
of markup estimation. In particular, markups are often estimated as the ratio of revenue exp(r;,)
to total cost T C;, under the assumption of a linear cost function TC;, = M C;,y;, with constant
marginal cost M C;,. Such a linear cost function requires stronger conditions than Assumption
@]: (i) global constant returns to scale for all x € &, (ii) full flexibility of all inputs, and (iii)
price-taking behavior in all input markets. By contrast, under Assumption [9 marginal cost may
increase with output, especially in the short run when dynamic inputs such as capital entail
adjustment costs.

With Assumption [9} the scale normalization parameter b, can be identified for all periods as
follows. Let f,(x,,2;) be the identified production function under Assumption {4/and f*(x,) be
the true one where f,(x,,2}) = a, + b, f(x,,2}) from . For x € %8, we have

(9 f(x,2)  Of (x,27)  Of (x,2)\  Of(x,%)  Of(x,2)  Of(x,z)
bf_bf( om | ok | al )_ om | ok o

Given that we have identified the scale parameter b, in (45]), we have established the following
proposition.

Proposition 5. Suppose that Assumptions and[9 hold. Then, ¢,(-), f.(-), and ¢ (-) can be
identified up to location. The levels of markup and output elasticities can be identified. Output
quantity, output price, and TFP can be identified up to location.

3.4.3 Location Normalization

Suppose that scale normalization b, is already identified—for example, from Proposition
Define

~—1 d e A1 d £ . N e
P, (rit’zitiuit) =9, (rit’zit:uit)/bt: ft(xitazft '_ft(xitazft)/bt: @y = Wy /by,
= alt/bt’ and d,, := aZt/bt' (46)
Then, (45) is written as

~— d ~ ~ _ d z ~ ~ ~
®, 1(ritazip uit) =da; +dy + (P;k 1(rit:zit:uit): ft(xitﬁsz) = aq; +ft*(xit12?t): Wi =dy t+ w;'kt-

(47)
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From (45)), the growth rates (log differences) of the identified output and TFP between t and
t + 1 are related to their true values as follows:

S d ~1 d _ = ~ s
(10t+1(rit+1’zit+15 Ujpp1) — 2 (rit:zit: Up) = Aypqq + gy — Ay — Ay
d

—1 d —1
+ (:02:.1(r‘it+1:2"it+1>uiH—l)_(')0;‘< (rinzitﬁuit):
ft+1(xit+1azft+1) _ft(xmzft = Ay — Ay, +ft*(xit+1szft+1) _ft*(xitszft >

LW (48)

Wir11 — Wjp = Agpqq — g T ;4

Therefore, to identify the growth rates of output and TFB we need to identify the changes in
the location parameters. To do so, we can use an industry-level producer price index P}, which
is often available as data, to identify the change in the location parameters. Suppose that P is
a Laspeyres index

Qe €XP(P}; + Y1)
Yien €XP(Pl + ¥io)

where N is a known set (or a random sample) of products. p;, and y;; are firm i’s log true price

P =

t

(49)

and log true output at the base period, respectively. The following argument holds for forms of
a price index (other than Laspeyres) as long as the price index is a known function of prices
that is homogenous of degree 1, which is typically satisfied.

Assumption 10. (a) The industry-level producer price index P} is known as data. (b) For some
known point (x,%°) €  x %, and the true production functions of t and t + 1, f(-) and f;* ,(*),

satisfy f(x,2°) = f,(x,2°).

Assumption [10|(b) is innocuous, implying that any output change between t and t + 1 when
inputs are fixed at x is attributed to a TFP change.

Using the aggregate price index, we can identify the change in the location parameters and
identify the growth of TFP and output.

Proposition 6. Suppose Assumptions 9] and[10|hold. Then, the true growth rate of output
Or  (ri1, 28 o UWie1) — 07 (1,28, uy,) and that of TFP w?,,, — w?, can be identified for each
firm.

Proof. Let p;, := r;y — ¢, (ri, 28, ;) and J;, := ¢ (ry, 2%, 1) be an output price and an

output quantity identified under the normalization in (46) and Assumption 4} respectively.
Using these, we calculate an industry-level producer price index with them:

Dici €xp(Di; + Fio)
Dici €xp(Pio + Fio)

P, =
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From (47) and (49), P, is written as

Zie]\? exp(—(dy, +ay) +pj, + a1 0+ Ao+ ¥ip)
i exp(Ply + ¥io)

= exp(d, o+ dy o — (dy, + dy))P;.

b, =

Therefore, d,,,; + dy;1 —d;, — Ay, is identified as:

81p1 + dyeqy — 6y —dy =InP’ —InP,; —(InP/ —InP,) (50)

From (48), we identify the output growth rate ¢ 1 (r; 11,28, 1, Uip1) — @7 (i, 25, ui,).

S

Evaluating the second equation in (48) at x,,; = x, = X and 2],

[10|(b), we identify d;,,, —d;, as:

=z, = 2°'in Assumption

Aypsr — Ay = &1,t+1 +f;:1(56,55) - (al,t +ft*(3_6,55))

:ft+1(‘i‘ﬂgs)_ft(izis)'
From (50), d,,.; —d,, is also identified as
Ayrp1 =l =INPY, —InPryy — (lnPt* _lnpt) - (frﬂ()_fais) _fr(i;is))-

Therefore, from (48)), the true TFP growth rate w;,, ; — w7, is also identified. H

3.5 Identification of HSA Demand System and Utility Function

Given that we have identified each firm’s output price and quantity, it is possible to identify
with additional assumptions a system of demand functions and a homothetic utility function of
a representative consumer. The identified demand system and the identified utility function

can be used to undertake counterfactual analysis and welfare analysis.

3.5.1 HSA demand system

We consider an HSA (homothetic single aggregator) system (?) of inverse demand functions
Let N, be the number of firms in the industry and &, :=1n (Zliv;l exp (rit)) be the log of industry

expenditure. The HSA system of inverse demand functions for products i = 1,...,N, in an

17The HSA system can be expressed as a system of direct demand functions or of inverse demand functions.
The two systems are self-dual in the sense that either can be derived from the other. ? and ? provide excellent
reviews on flexible extensions of the CES demand system, including the HSA demand system.
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industry is expressed as:

— d d .

DPit = 5? (yit —q; (YU Zt,llt) ’Z,'puit) + (I>t — Vit fori= 1’ ---:Nt
where &, is the log of consumer expenditure (budget) on the industry, st(-,zft, u;,) provides
the log of the market (budget) share of product i, y, := (¥1¢, - Yn,c) € Nt is a vector of
consumption, z‘f = (zft, o z]‘fit .) is a vector of observable demand shifters and u, := (uy,, ..., uy ;)
is a vector of demand shocks, and q,(y,, zf, u,) is the aggregate quantity index summarizing
interactions across product Note that q,(y,, zf, u,) is uniquely defined by the market share

constraint:

N

1 :Zexp(s’: (.yit_qt(Yt:Zg:ut):Z?:uit))- (51
i=1
Since s7(-) is nonparametric, the HSA demand system can nest various demand systems used
in the literature such as the CES demand system and the symmetric translog demand system
(Feenstra, 2003;; [Feenstra and Weinstein, 2017)@

3.5.2 Identification of the HSA demand system

For identification of a demand system, we make the following assumptions.

Assumption 11. (a) The good market is monopolistically competitive (without free entry)—that
is, each firm takes the quantity index q, (yt, zf, ut) as given. (b) (pt_l(rt,zf, u,) is identified up to

location.

First, the assumption of monopolistic competition follows Klette and Griliches| (1996) and
De Loecker (2011)), with the inverse demand function becoming a symmetric function of the
firm’s own output, as in (9). Second, the demand elasticity equals (u—1)/u when y is markup.
To identify the demand elasticity, we need to fix the scale normalization. Assumption [11] (b) is
satisfied when Proposition |5/ holds.

An HSA demand system can be identified as follows. Suppose variables in data are in an
“initial equilibrium” and we identify the “reduced-form” revenue function r;, = ¢,( yit,zft, U;,)
from the data. Let &, be the total industry expenditure, ®, = In (Ziﬁl exp (rl-t)). We first define

1/
181f the utility function is CES, U(y,) = [Z?’;lexp (pyit)] g

p (yie—InU(y,)) + ®, — y;;, and the quantity index is the same as the utility function, but they are generally
different.
19See |Matsuyama and Ushchev| (2020) regarding how the HSA nests the translog demand.

, the inverse demand becomes p; =
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the reduced-form budget share equation as:

St ("Zidt’uit) = ¥t ("Zidt’uif) — .

The structural and reduced-form functions are in the following relationship:

St(yit’zidpuit) :S;k (yit_th:Zi’uit) (52)

where q,, is the level of the quantity index in the initial equilibrium. For a given output vector

y,, we define qt(yt,zf, u,) by using the reduced-form revenue function:

N

1 :ZeXP (St (yit_EIt(Ytﬁsz u,), uit))' (53)
i=1

1

Then, we obtain a system of inverse demand functions for products i = 1, ..., N, in an industry:

Dit =S¢ (yit —q, (Yt: thi:ut) :Zidt:uit) +®,—y, fori=1,..,N,
From (52), §4,(y,,z!,u,) = q,(y;.2¢,u,) —qo,. Thus, we can identify the change in the
quantity index from the initial equilibrium. Since

~ d d d
S¢ (}’it —q,(¥:» Zt:ut)x Zits uit) = 5? (yit —q,(y,, Zt;ut)’zl’tx uit) s

we can use {st(-, ),q.(y,, zf, u,), <I>t} constructed above to obtain the value of the structural HSA
demand system {s*(-),q,(y,,z%,u,), & }.

Applying the result of Matsuyama and Ushchev| (2017, Proposition 1 and Remark 3), the
following proposition establishes that the HSA demand system constructed above can be derived
from a unique consumer preference, and that it is possible to identify an associated utility
function. Appendix [A.3|supplies the proof.

Proposition 7. Suppose Assumption holds. (a) There exists a unique monotone, con-
vex, and homothetic rational preference % over % that generates an HSA demand system
{got(-),qt(yt,zf,ut),@t}. (b) This preference % is represented by a homothetic utility function
defined by
N Yidyezdu,)
anf(yt,zf,ut)=qt(yt,zf,ut)+2f exp (s, (¢,58,u;,)) d¢
[ C

i=1

for some constant ¢ > 0. (c) The identified demand system and preference 2 do not depend on the
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location normalization of ¢ *(r,z%,u,).

3.5.3 Counterfactual analysis

We conduct a short-run partial equilibrium counterfactual analysis where firms change materials,
outputs, and prices, while pre-determined factor inputs (k;,, l;,), factor prices, and exogenous

variables (28,25, u;, W, Pp,) are fixed.

Monopolistic Competition Equilibrium Using the identified HSA demand system
{o.(+), qt(yt,zf, u,)}, we can calculate a monopolistic competition equilibrium (MCE). Define
m;, = ¥ (¥;) such that y;, = f, (Xit (Vi) kie liwzft) + w;, for given (ky, L, wy, %}, ). Equilib-
rium outputs and quantity index (y[', ") in an MCE are obtained from the log of the first order
condition for and the market share condition (53] as follows:

S (ylt_qt’ lt’ )
OYit

] (ylt_qt’ Zipu 't)+q)f+ln

of, (Xit (.yln;) S kit lit)
omy,
N

Zexp (st (ylt _qt s lt’ )) =1. (54)

i=1

+1In )(H(y ) O0fori=1,...,N,

The above system can be extended to incorporate policies such as tax and subsidies to investigate
their effects.

Welfare Costs of Firm’s Market Power In an empirical section below, we quantify the dead-
weight loss attributable to firm’s market power by considering the transition to a counterfactual
marginal cost pricing equilibrium (MCPE) i.e. perfect competition. In a MCPE, each firm sets

its price equal to its marginal cost. Equilibrium outputs and quantity index (y;, 4;) are obtained

. .. . e m_gmzd u; -1 .
from the first order conditions, which sets the markup to one, (W) =1, in (54),
it

and the market share condition (53)) as follows:

S (-ylt_qt’ Zits it)+q>i
aft(%if( F) kitslit)

(”7‘mlt

ZGXP Y5z u)) =1, (55)

+In

Xu(J’) Ofori=1,...,N,
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The consumer welfare cost of firm’s market power can be calculated as the utility change:

ln Ut(yi: Zfaut) - ln Ut(YT: Zf:ut) = Elt(Y?: Z(Z:ut) _QI(YTs zfyut)

Ni yf[—qt(yi,zf,ut)
+, f exp (s, (¢, 20, u;.)) .

i=1 J y[i-q, (v 2{ up)

An alternative welfare measure is the compensation variation, which is expressed in monetary
term. Solving (55)) for a given counterfactual log income ®¢, we can express outputs y;,(®!) in
the MCPE as functions of ®{. Then, we find a counterfactual income ®{* that achieve the same
utility as in the benchmark MCE.

InU,(y;(®), zf,ut)—ln Ut(y;”,zf,ut) = 0. (56)

Then, the compensation variation CV, is obtained as CV, = exp (<I>i) —exp (@T)
To evaluate the overall welfare change, the consumer’s loss may be compared with firms’
profit loss. The change in the total profits is the change in the total revenue minus the total

material costs:

Ni
M — 1" = (25— ) —exp (pc) ), {exp (1 () —exp (e (1))} (57)

i=1
3.6 Endogenous Labor Input

Identification is possible when a firm chooses [;, after observing w;, and u;,. In the spirits
of |Ackerberg et al.| (2015) and the dynamic generalized method of moment approach (e.g.,
Arellano and Bond, 1991}; Arellano and Bover, 1995;; Blundell and Bond, 1998, 2000), we provide
identification using lagged labor [;,_,. Specifically, we assume a firm incurs an adjustment cost
of labor input, e.g., costs of recruiting and training new workers. The profit maximization

problem for choosing [;, and m;, at time t is
max exp(p, (f, (m, L, ki1, ;) + @i, %, ui)) —exp(py + m) —exp(p, + ) = C(L L), (58)

where pi is the wage and C(l;,,;,_;) is the adjustment costs.The solution to the problem
provides a material demand function m;, = M, (w;,, L;,_;,5:,,1;,) and a labor demand function
i =L (i, lii_1,8i0 Uy ), where s;, := (ky, 25, 2%). We also consider a “conditional” material
demand function m;, = M, (w;,, l;;,S;;,U;;) when [, is given, which solves the conditional

problem (11I).

We assume both M, (-, l;,_;,s;;,u;,) and M, (-, ;,,s;;,u;,) are monotonically increasing func-

30



tions so that there exist their inverse functions
_ 1 =1
w; =M (Mg, Ly Sies Uy) = M, (Mg, e, 8105 Ue) -
In the first step, we substitute w;, = Mt_l(-) into the revenue function to obtain

— d
Fig = (Pt(ft(mit’ Lic, kitazft) + Mt ! (mit: LitsSics uit) 5% uit))

= ¢, My, L, Sip, Uy ) -

The first step identification is

Pr(r < o (M, L, Si W My 1, L1, Si0—y) = U

The IVQR identifies ¢ (-) and u;,.

In the second step, we formulate a transformation model using w;, = Mt‘l(-):

. . h
M, l(min lic—1 i, Uie) =h (M(_ll(mit—li Lit—2Sit—1>Uj—1); Zit) + Nt

_7i h
=h, (mit—D lic—2,Sit—1 uit—l’zit) + e

. P _ h .
Since 7;, is independent of v;, = (k;;, i1, Sir> Use> My—15 Kip—15 Li—2, Sir—1, Us—1, 21, ), the condi-

tional CDF of m;, on v;,_; becomes

cr—1 7 h
Gmtlvt(mlvt) = Gntlvt (Mt (my,, lit—l,sit: u;,)—h, (mit—l: lic—2,Sit—1 uit—lszit_l) |Vt)

or—1 1 h
= Gm (Mt (mit’ lit—l,sit’ uit) - ht (mit—ls lit—Zﬁsit—D uit—lr‘zit_l)) .

Following the same logic of the main text, we can identify Mt_l(-) and w;, under scale and loca-
tion normalization. Once we identify u;, and w;,, we can also identify w;, = M;" (my, li;, Sy, Us,),
e.g., by regression Mt_l (M5 Lies Sies i) = E [ielmye, L, Sips Uy ]-

Differentiating ¢ (¢, (m., wyp, u;), 28, u;,) = fo(xi,2,) + Mt (my,, wy,, u;,) with respect to
¢, € {my, ki, I, %5, } and q& € {28, u;,} gives the same equations as and . Therefore,

Proposition [3| holds with the same proof as before.

Role of Adjustment Costs The role of adjustment costs is to create variations in [;, for
given (my,, k;;,%;,u;,). When [;, is a fully flexible input without adjustment costs, the material
demand function and the labor demand function become m;, = M} (w;,, k;;, 2, u;,) and [, =
LE (w;r, ki, 23, 1;,), Tespectively. Once (my,, k;;,2;,1;,) are conditioned, w;,is also conditioned
so that [;, loses its variation and we cannot identify ¢, (m;,, L, Ki;, Zi¢, Uic)-
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4 Semiparametric Estimator

We develop a semiparametric estimator that is applicable with T > 4. We assume the Cobb-

Douglas production function:
fo(my, ki, L) = 6,,m;, + 6,k;, + 6,1, (59)
and TFP follows an AR(1) process:
Wi = P Wiy + Ni;- (60)
The control function becomes separable:
M (e, K, L, ) = A (Mg, ) — Ok — )1y, (61)
Substituting into the revenue function, we obtain

o, (0 + frlmy, ki, ), wy) = @ (0,,my, + A (my, uy,), uy ) = o (my, uy,), (62)

where ¢, depends only on (m,,u;,) and increases in m, and u,.

The second step transformation model becomes
Ac(mye, uy) = Ok + 6L + p A (M1, Ui 1) — POk — POl + e (63)

Step 1: Estimation of the Quantile of Demand Shocks The first step estimates ¢, (m;,, u;,)
and u;, by IV quantile regression. A traditional approach to IV quantile regression estimates
¢, (-,u) from the moment condition for a fixed quantile point u. This approach often yields
a non-monotonic and non-smooth function in u, which is problematic for our identification
using uniquely identified u;, and derivatives of ¢,. To overcome this, we use the smoothed GMM
quantile regression of |Firpo, Galvao, Pinto, Poirier, and Sanroman| (2022). Their approach stacks
moment conditions over all quantile points so we can estimate the smooth sieve function and
impose d¢,/du;, > 0. For the approximation of ¢,(m;,,u; ), we employ the basis B,(m;, 7)
that consists of a constant term, a B-spline basis of degree 3 with 2 interior knots in m;,, a cubic
polynomial in u;,, and interactions of the B-spline in m;, with u;, and ul.zt. Firpo et al. (2022)
also replace the indicator in (29) with a smooth kernel CDF to ease computation.

We partition [0, 1] into L equal parts and let T = {7,,...,7,;_;} (e.g. T={0.01,...,0.99}
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for L =100). The moment condition is

|:( (B(p(mit:T)Tat_rit) ) ]
E|| K; —7 |By(mj_,) |=0 forteT, (64)

bnl

where K;(+) is a smooth kernel CDF with bandwidth b,; and By, (m;,_,) := Bg ¢ (m;,_,,) is the
sieve basis of instruments. We use the B-spline basis of degree 3 with 2 interior knots in m;,_,
as instruments. Following Firpo et al.| (2022), we use the rule-of-thumb bandwidth and the
kernel CDF of [Horowitz (1998)):

K,(s):= [% + % (s — 253 + 255 — 237)] 1{se[—1,1]} +1{s > 1}.
The number of moment conditions (64)) is the number of IVs times the number of quantile
(S1+K;+1)x(L—1). As L is usually a large number, the moment condition typically
overidentifies a, so that we use GMM. Firpo et al.| (2022) derive a expression of the optimal
GMM weight matrix and showed it does not depend on the parameter a, so that its estimation
completes in one step. Monotonicity in m;, and u;, is imposed via linear constraints on the
derivatives of the basis functions. The demand shocks ;, are then estimated by numerically

inverting cﬁt(mit, ;) = r;;. The same procedure is applied to t — 1 to estimate ;,_;.

Step 2: Estimation of the control function The second step estimates the transformation
model (63). We use the profile likelihood (PL) estimator developed by Linton, Sperlich, and
Van Keilegom| (2008). From for q;, = m;, and (61), the conditional density of m,, given v;,

is written as

oA (my,,u;,)

gmtlvt(mitlvit) = &y, (nit) amit

To approximate A,(m;,,u;,), we use the basis B, (m;,,u;,) that is the Kronecker product of B-

spline bases of degree 3 with 1 interior knot in m;, and u;,. We do not assume a parametric

distribution on 7;,. Thus, the log-likelihood function is written as

> {in g, (milvid)} =D {Ing,, () +1n.8,B,(m;,u; )" B}
i=1 i=1

where g, (n) is the corresponding (Gaussian) kernel density. We obtain estimates of 7;, as fol-

lows. Using tilde to denote temporal estimate, for given f3,, we define A,,(f,) := B,(m;,, u;.)" B,
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in the transformation model (63) and project

A’it(ﬁt) = Qkkit + Qllit + pz’it—l(ﬁt—l) _pekkit—l _pellit—l + MNi¢- (65)

by OLS to express the residual n;,(/3,) that enters g, (-). Then, the PL estimator ¥; is defined as

v €argmax ) {Ing,. (n;,(v)))+1In3,B,(my, ;)" v} subject to 3,B,(m;, &))" vi > 0.
i=1

Vi

Step 3: Estimation of production function, markup, TFB and output With estimated 7,

we obtain if(mit, i1;,) to then estimate the following transformation model by OLS:
q * N * * T ~ * * *
Ay(my, 0y ) = Ok + 61 + pvi_ Ba(my oy, U 1) — pOki 1 — p 61y + 1y,

We estimate é; as follows:

5 . OBy (my, 11, )" ¥ exp(p' +m;,)
0 = median IR = — .
amBq&(mit’uit)Tat - W exp(rif)

Then, by De Loecker and Warzynski (2012), we estimate markups as follows:

é*

~ m

‘u’i = m *
¢ exp(pi" +m;)/exp(r;)

By assuming constant returns to scale (CRS), the scale parameter ?)t = 5;; + élj + él* is
estimated. Thus, the CRS normalized production parameters éj = é}?“ / i)t for j € {m,k, [} and
markups (,;, = [if,/b,. With the mean-zero restriction naturally inherent from the AR(1) TFP
process, the location parameter d,, = n™" 2?21 [i’t‘(mit, ;) — é]:(kit — él*lit] is estimated. The

estimated TFB output, and price are

_ Xt(mit’ ﬁit) - G;:kit - Ol*lit - aZt
.= L

1 bt

Vie = Oj¢ + 0,my + 011 + Ok,

>

A

Pie =it — Jie-
Step 4: Estimation of parametric CoPaTh-HSA demand system Our estimation steps of

production function above does not assume any parametric demand system. Thus, in theory, one

can estimate a fully nonparametric HSA demand system as described in Section However,
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in our empirical application, we estimate a parametric HSA demand system to obtain more
stable estimates from a dataset with a moderate sample size. In particular, we consider a HSA
demand system with the CoPaTh (constant pass-through) demand function with incomplete
pass-through by Matsuyama and Ushchev| (2020):

llog(exp(_ﬁt (yit_qt(Ytaet))+Kt)+eit) (66)

B. 1+e€;

where the quantity index q,(y,, €,) is implicitly defined by the market share constraint

S;k(.yit _qt(YtJ et)) eit) = 5[, -

for a given output vector y, = (¥, ..., ¥n¢) and a given demand shock vector €, = (€, ..., €x¢)-
Appendix derives the log-variable version of the CoPaTh demand from Matsuyama
and Ushchev| (2020)’s original formulation. As explained in Section we estimate the
following reduced form revenue function instead of the structural form (66):

(eXP(_ﬁt)’it +7)+ eit)

1
Sot(yl't>€it):¢)t+5t__log 1+e,

Be

where v, = f,q,(y;, €.) + K.
The CoPaTh-HSA demand predicts the markup as:

P _ (3% (Yies €ic)

-1
MC;, 3y ) =1+ € exp(Beyic —710)-

When f3, = 0, the markup is constant and the pass-through is complete. In addition, €;, = € is
common for all i, the demand system is reduced to the conventional CES demand system.
With the estimated outputs y,;, and markups fi;, from Step 3, the composite nonlinear least

square estimator of demand parameters (f3,, v,, 0,) is defined as,

A oa 1 —B. Vi + 1)+ € 2
R e (R (A e )

606)t ; /jt 1+ €t

+ > (@, — (quantile(e,.)))*,
s.t. X
_ P — 1
exp(ﬂtyit _Yt),
1 eXp(_ﬂtyit + Yr) + €it
1= exp(5 ——log( .
Z "B 1+e€;

i

€i¢

where quantile(e;,) is the empirical quantile of €¢;, among all firms and the industry revenue
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® =log (Z ; exp(rit)).<<We need to explain why we impose addition restrictions.>>

5 Simulation

This section presents the finite sample performance of our proposed estimator, comparing to
that of the ACF method when firms charge small but heterogeneous markups under the HSA
demand system. We consider a simple data-generating process (DGP) in which firms set variable
markups, calibrated to Chilean manufacturing data. Further details of the DGP and simulation
design are provided in the Appendix.

Consider N firms in a market and t € {1, 2, ..., T} period. Each firm produces one variety
of differentiated goods and faces the HSA-CoPaTh demand function (66). The demand shock
€;, follows an MA1 process: €;, = 0.5¢;,_; + {;;, where {;, ~ Unif[0,0.3]. The production
function takes the Cobb-Douglass form:

Yit = Qmmit + Gkkit + Ollit + wj; (67)

where w;, follows an AR1 process w;; = 0.8w;,_; + Nir, Nir ~ N (O, (0.05)2). Capital k;, and
labor [;, are predetermined and follow exogenous laws of motion explained in Appendix
For each period, we find equilibrium outputs and quantity index (y[',q}") in an MCE by

solving the first order order conditions and the market share condition analogous to (54)):

R S |
q)t+5t_ﬂr(yir?_q?1)+’<t+:'it_9_“+ﬁ_log(l‘l‘eit)
m t

— (1 + ﬁl) In(exp(—B, (y"—q") +x,)+€,)=0fori=1,.,N,
t

uL 1 exp(—f, (yln: _q;n) +K,)+ €,
Zexp 0,— /5— In T =1
€it

i=1 t

where 2, =In0,, + (0.k;, + 6,1, + &;,)/0,, and p,,, = 0. Appendix show its derivation.
The value of the “reduced-form” parameter (a,, 3,,7,) is determined by the HSA system’s
structural parameters (®,,6,, f,,,) = (20,—6.5,0.21,0) and the equilibrium quantity index
q.(y,,€,), such that (a,, B,) = (®, + 6,, 8,) = (13.5,0.21), while the value of y, depends on
q.(y,,€.), B;, and k,. Production function parameters are (6,,, 6,,6,) = (0.4,0.3,0.3). We
simulate 100 replications of N = 600 firms and T = 5 periods, with the following summary

statistics of the resulting markups:

20For model-consistency, we estimate the HSA demand system only using the firms with estimated markups
e > 1.
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Min. 1stQu. Median Mean 3rd Qu. Max
Markup 1.001 1.146 1.220 1.223 1.295 1.614

Table 1: Summary statistics of Markups in simulated data (t = 5)

In addition to our proposed estimator, we also consider the estimator proposed by Ackerberg
et al.| (2015) (ACF). |Gandhi et al.| (2020) (GNR) showed the difficulty of identification in the
DGP that ACF assumed where a firm-level unobserved shock is a scalar, TFP The GNR criticism
is not applicable for the current DGP with two unobserved shocks. However, to show our point
is different from the GNR critique, we employ the ACF method with constant returns to scale
(CRS) restriction (i.e., 8,, + 6, + 6, = 1) that Flynn, Gandhi, and Traina (2019) proposed to
address the GNR criticism 1]

5.1 Result

Figure (1| show the histograms of 100 estimates of (0,,, 6, 6;) from the ACF method with revenue
data and quantity data. While using quantity data yields estimates that are tightly clustered
around the true values, using revenue data substantially biases the estimation of the production
function. The simulation result confirms the long criticism in the literature against the ad hoc

use of revenue data.

2In Appendix, we present the details of the DGP and the estimation method as well as basically the same
results using the ACF method without imposing CRS.
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Figure 1: Production Function Estimation with ACF on Revenue Data and Quantity Data
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Figure [2| shows the histograms of 100 estimates for (6,,, 6,, 6;) from our proposed estimator
and (B,,6,,7,) at t = T on the HSA demand system. They are tightly clustered around their
true values, suggesting that our method recovering the structural parameters very well. Figure
shows the scatter plot of true versus estimated TFPs for the first 20 Monte Carlo simulations,
and Figure [4|shows the same for markups. The strong alignment of points along the 45-degree
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lines accompanying with the low RMSEs and high correlations suggest that our method precisely

estimates TFPs and markups.

Figure 2: Production Function and Demand System Estimation with Revenue Data
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Figure 3: True and estimated TFPs for first 20 MC Simulations
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Figure 4: True and estimated Markups for first 20 MC Simulations

True vs. Estimated Markups (First 20 MCs, All Firms): C—K—S
Corr =0.989 | RMSE = 0.017
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6 Empirical Application: Chilean Manufacturing Sector

The semiparametric estimator is applied to the Chilean manufacturing plant dataset, derived
from the census conducted by Chile Instituto Nacional de EstadAstica, covering all plants with
10 or more employees from 1993 to 1996. We define labor input as the number of workers,

material input as materials cost, and revenue as income plus the value of capital produced
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for own use, with all values deflated using appropriate deflators. Capital input is calculated
as the sum of deflated values for buildings, machinery, and vehicles, employing the perpetual
inventory method with appropriate deflators. Our analysis focuses on the three largest industries
with 2-digit SIC codes 31 (Food, Beverage, and Tobacco), 32 (Textiles, Apparel, and Leather
Products), and 38 (Metal Products, Electric/Non-electric Machinery, Transport Equipment, and
Professional Equipment) in 1996. We drop firms with non-positive capital. Also, firms with
material cost-to-revenue ratios of less than 0, above 1, and in the bottom and top 2 percentiles
of the distribution are excluded.

6.1 Result
Industry n ém ék él 0
31 736  0.848 0.013 0.138 1.386
(0.031) (0.010) (0.031) (0.052)
32 463 0.756  0.079  0.164  1.503
(0.049) (0.032) (0.045) (0.099)
38 391 0.672 0.058 0.270 1.628

(0.067) (0.037) (0.062) (0.167)

Table 2: Chilean Manufacturing plant estimation: Step 1, Step 2, and Step 3 (Industries 31, 32,
and 38 in 1996). Standard errors in parentheses with 100 non-parametric bootstrap iterations.

A N
A

Industry n p e o

31 698 0.154 1.770  -8.009
(0.011) (0.105) (0.159)

32 409 0.085 0.951 -6.899
(0.012) (0.141) (0.572)

38 347 0.103 1.367  -5.443
(0.044) (0.443) (1.352)

Table 3: Chilean Manufacturing plant estimation: Step 4 (Industries 31, 32, and 38 in 1996).
Standard errors in parentheses with 100 non-parametric bootstrap iterations.

Table |2| and [3| demonstrate a successful application of our method to standard empirical data.

Notably, we found empirical evidence that f3 is statistically significantly deviating from zero,
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suggesting that using CES demand system, which corresponds to the HSA demand system with
B = 0 would be misspecified. Moreover, Figures 5| and [f] presents scatter plots of the observed
revenue r;, against the fitted revenue by the HSA demand system from Step 4, and quantiles of
estimated demand shocks €;, from Step 4 against those u;, from Step 1, which show a good fit

of our HSA demand system by the alignment of points along the 45-degree line.

Figure 5: Observered revenue vs fitted revenue from Step 4
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Figure 6: Rank of demand shock from Step 1 vs Step 4
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6.2 Counterfactual Welfare Analysis

We quantify the consumer utility loss attributable to firm’s market power, calculating the
compensation variation for a counterfactual marginal cost pricing equilibrium (MPCE) as
described in Section First, we calculate a monopolistic competition equilibrium (MCE) as
our benchmark, using the estimated structural parameters from Table [2/and [3|and firm-level
states (k;,, l;;, @y, €;). Specifically, we recover y! and recalibrate y}* by jointly solving ,
which are simplified as:

& 2 .,m m, m yln; 1 A
¢)t+6t_ﬁtyit +y, to—% + Tlog(1+€it)

m t

1 A
— (1 + ﬂT) ]n(exp(—[jtyint1 + }/rtn) + éit) =0fori=1, .- N,

t

Y .1 (exp(—=Bym+r™)+é,
2 exp 5t - In — =1
B, 1+ €,

i=1

where =, = In8, + (0,k;, + 6, + &;)/0,and p,, is normalized to zero. The obtained
output vector and parameters exactly satisfy our HSA demand system, which also ensures
4, (yt’",e“t) = 0. Using this MCE as a benchmark removes model misspecification bias for
counterfactual analysis.

Second, we consider a marginal cost pricing equilibrium (MCPE) for given counterfactual
log income &¢. We find an output vector y¢(®{) and quantity index §,(®¢) by solving , which
are simplified as:

. (@) 1 exp(—p, (¥5 (@) —G(8)) +1™) + ¢,
<I>§+6t+Eit——y“E t)—Tln p(h (Vi th D)+ “|=0fori=1,.,N,
Om Be 1+é;
: .1 [exp(—B (¥ (2) =G (@) + ) + &,
exp| 6,——+1In - =1.
P . 1+€;

We suppose the same income case &; = &, as our benchmark.
Then, we calculate the compensation variation for transitioning to a MCPE. We find a

counterfactual income ®{* that leads to a zero utility change (56):

Vi (@)= (277) A m A
i T | exp(—f.{ + 7)) +¢€;
AIHUC(CI)?):(NIE(‘I)(;*)‘FZJ eXp(@—ﬂTlOg( p( ﬂtg Yt) t))dgzo

t 1+¢é,

m

i Yie

The compensation variation is calculated by CV, = exp(®{*) — exp(®,).
Finally, we calculate firms’ profit loss. In the case of ®; = &,, the total profit change is
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expressed as

N N N
- Ock;, + 0,1, + &; it (@
HC—HmZZexp(— k zt+é1 lt+wlt){exp(%)_exp(¥)} (68)

i=1 m

since y;, (i) = (Vie — Ockie — 0,1 — )/ 0,

Industry  CV ATl Overall

31 -14.1  -11.0 3.08
(2.71) (-2.39) (0.58)

32 -16.1  -9.89 6.20
(5.97) (5.04) (1.35)

38 -9.85  -4.07 5.78
(6.75) (4.55) (2.92)

Table 4: Compensating Variation, profit loss, and overall welfare change in percentage of industry
revenue exp(®,) in the transition from original equilibrium to MCPE of Chilean Industries 31,
32, and 38 in 1996 under HSA demand system. Standard errors in parentheses with 100
non-parametric bootstrap iterations.

From Table 4, we found empirical evidence that under our HSA demand system market
power in these industries results in consumer’s welfare losses of approximately 10%-15%
and profit gains of approximately 4%-11%, with overall welfare losses of 3%—6% of industry
revenue in the three largest Chilean manufacturing industries in 1996.

7 Concluding Remarks

The current study develops constructive nonparametric identification of production function
and markup from revenue data. Our method simultaneously addresses two fundamental
identification issues raised in the literature of production function estimation since Marschak
and Andrews (1944)—namely, correlations between inputs and TFB and biases from markup
heterogeneity when revenue is used as output. Under standard assumptions, when revenue
is modeled as a function of output (rather than a mere proxy for output), firm’s observed
characteristics and an unobserved demand shock, various economic objects of interest can be
identified from revenue data. We develop a semiparametric estimator that is implementable
with standard datasets used in the literature. In simulation, our estimator performs very well.

We successfully applied our estimator to Chilean manufacturing plant data and found empirical
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evidence of the misspecification of CES demand system. In counterfactual welfare analysis,
the result shows that the market power results in welfare losses of approximately 3%-6% of

industry revenue in the three largest Chilean manufacturing industries in 1996.
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A Online Appendix (Not for Publication)

A.1 Simulation
A.1.1 CoPaTh-HSA Demand System

We consider the “Incomplete Constant (and Common) Pass-Through” formulation of the CoPaTh-
HSA demand system in Matsuyama and Ushchev (2020). With their original notions, the budget
share function for product w is expressed as:

1/A

s (am) (-2 2] o

where Y is the level of output and Q(Y) is the quantity index which is a function of the output
vector Y. The pass-through rate

dlnP N Olnu 1
dlnMC =~ dlnMC A+1

p:

is a function of parameter A > 0 where u = P/MC is a markup. When A =0 and o, = 0, the
demand system is reduced to the conventional CES system.

We reformulate it in log variables:

5,(y) =S, (Y)=7,B., 0i+(1— ! )(—eXp(y ‘1)) }

Ou Yo
v So{1-3)(28)
5

—In(yofo)— —In )exp( Ay — q)+A1nn,)+i]
g

w

[exp(— A(y q)+Alny,)+ 1/(%—1)]
o,/(c,—1)

1/A

1
=In (Ya)/sw) - K In

Our formulation of the CoPaTh-HSA demand system of inverse demand functions is

i 1 exp(—B. (Vi =4y, €e)) +x) + €
S (yit’eit):(st_ﬂ—lOg( P( ﬁt it —q:\¥e, €¢ ¢ t).
t

1+e€;,

While the original formulation has three firm specific demand shifters (y,,, 8, 0,), We
only allow one shifter.

The correspondence between current parameter notations and Matsuyama and Ushchev:
(2020)’s is as follows:

Al



Current notations

i o, Be €it 1+e; K¢
Matsuyama and Ushchev| (2020)’s notations | « | Iny, B, | A= 1_7‘) — L Alny,
Range (_OO)OO) (0,00) (0,00) (11 OO) (—OO’ OO)

A.1.2 Structural form of CoPaTh-HSA Demand System

We presented the reduced form of HSA demand system with CoPaTh demand function by

Matsuyama and Ushchev| (2020) in the main text. The relationship to the structural form of the

HSA demand system is given by:

1
rit=q>t+5t—/3—10g
t

1
=®+6,——log
B

t

1+e€;,

)

where v, = B,9,(y,,€,) + k,. In the simulation, we set xk, = 0.

A.1.3 Data Generating Process

The demand shock €;, follows an MA1 process:

where &£;,and &;,_; are independent uniform random variables with supports [0,0.3].

Capital and labor are predetermined and follows the following exogenous laws of motion:

€ir = PeCi—1 T &

(exp(_ﬂt(yit — qt(Yt’ Et)) + Kt) + €
1+¢€;,
(exp(_ﬁtyit + }/t) + €it

)

k;, = 0.99k;,_; +0.11w;,_; + ey, exir ~ N(0,0.25%), k;, ~ N(10,1)
lit = 0.991“_1 + O‘llwit—l + elit, elit ~ N(O, 0.252), Zio ~ N(].O, 1).

Summary statistics The following table shows the summary statics of endogenous variables

and exogenous variables.
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Endogenous variables

t=5 Mean SD Min P25 Median P75 Max
Markup 1.223 0.101 1.001 1.146 1.220 1.295 1.614
m;, 11.323 0.565 8.986 10.951 11.322 11.692 13.937
Tit 13.44 0.579 10.98 13.06 13.45 13.82 15.91

Exogenous variables

t=>5 Mean SD Min P25 Median P25 Max
Wi, 0.000 0.0832 —0.314 —0.056 —0.000 0.0563 0.358
€t 0.225 0.0971 0.000 0.150 0.225 0.300 0.448
k;, 9.511 1.097 4.569 8.771  9.514 10.252 13.953
[ 9.520 1.094 4.875 8.778 9.521 10.257 14.131

A.1.4 |Ackerberg et al. (2015) estimation method

We estimate the production function with ACF using the R package prodest by (Rovigatti,
2017). Scale parameters are normalized under constant returns to scale (CRS), and location
parameters are normalized via the mean-zero restriction on the AR(1) TFP process for the
estimates. The initial values in optimization are set to the estimated parameters from our

method for empirical application and the true parameters for simulation.

A.2 Calculations and Proofs
A.2.1 A necessary and sufficient condition for Assumption

We first derive some derivatives for preparation. From ¢.(¥;¢, Zir, Uir) = Yie + Y Vie> Zie> Uie)s
the demand elasticity is expressed as

2, 1 d
=1l-——— = o0,(y,,2%u,) =
OYir O-t(yit:zidt: U;) t(ylt . lt)

1
1=0¢(Yie>2ie> Ui )/ 0 Yiy

Their derivatives are

do, _ %00y} an do, 3%¢,/0y; duy
0Yir (1_390t/a.)’it)2 ouy (1_89%/3.)’1%)2.

Denote the profit by
T (my,, wip, Uy, ) := exp(e,(f.(m, k;,, litazft) + Wi, 20Uy, ), th: Up) — eXP(PT +m)
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The first order condition for (11)) is

a()ot(ft(mlt’klt’ lt’Z )+wlt’ Zips l[‘) aft(mlt, its 1()
OYit om;,

7'C
3 _exp((pt(ft(mlt’kltﬁ mz )+ w2 lt’ U;))
m
—exp(p;" +m; ) =0

Their cross derivatives are

azﬂ:t = ex (r ) f (agot )2_'_ aztpt
omdw, W am (\3y, ) T ay?

02 Jdy, 0 02
7Tt — eXp(rlt) f (pt Lpt + SOt .
om; du, om O0Yi Ouy  Oylyy

From the implicit function theorem, the derivatives of the material demand function is

oM, _ 9*m,/dm;duy and oM, _ 2’m,/dmdw;,
du,  92m/om’ dw;, 92m,/om?

Differentiating m;, = M, (Mt_l(mitawitsuit)iwit:uit) by u;,, we obtain the derivatives of the
inverse function as

aMt_l(mit: Wi, U, . oM, /du,
du;, T M, /3wy
d2m,/dm;,du;,
B 21, /0m; 0wy

dp; dp; az(Pt
_a}’it duy; 3 Yitlic

(a‘Ft )2 + 2¢,
9Yit 3yl-2t

Finally, we derive the derivative of ¢, with respect to u;,:

a¢t(xit:zit:uit) _ a(Pt aMt_l n a(Pt
ouy, 0y Ouy ouy,

—1
:((aﬂot)z_i_acht) (atptazwt_agot 32% )
OYi ayizt ouy, aint 0Yit 0y 0uy,

— ((390t)2+ 32%)_1(1_ 3(,0t)2(3(,0t do, . ¢, 8Gt)
3Yit aint 9Yir Ou; 0y, 9y Juy,
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The assumptiondM, /d w;, > 0 and 2 f,/dm, > 0 implies (gf, ) + Z ﬁf > 0. Therefore, we have

8¢t(xit7zit16it) S0 e dy, 00, > de, ao‘t.
ou;, ou; 3y, 9y duy

A.2.2 Derivations of Equilibrium Conditions for MCE and MCPE

General HSA Demand System

MCE The profit maximization problem is

maxexp(CD +s (ft(m ki, Lir, 2} )+wlt q;,z w ))—exp(pmt+m).
The first order condition is

ast( lt_qt’ lt’ lt)aff( m; kie> L )
OYit om;,

exp (‘I’r +s; (}’M -4,z i: u)) = exp (pmt + m:’;)

Substituting m}; = y;, ( N ) and taking the log leads to

ds (ylt_qt’ Zip> lt)
i

q)f+sf(-ylt_qt’ Zie> lf)+ln
3ft()(it(yir?);kinlit)_

om;,

+In

me = Xit (yln:) =0.
MCPE The profit maximization problem is

maxexp (p +ft (m klt: llt’ ) + wlt) exp (pmt + m)

where the firm takes p?, as given

From p;, +ft(m kies lis % )+colt .+, (y;t—q;", 205 n) the first order condition is

) 3 fe (mS,, kie, Lie)

exp (@ +s. (v}, — /"%, A ——— = exp (P + ).
it

Substituting m}; = y;, (y ) and taking the log leads to

(I)(é+st(ylt_qt’ Zips U )

2f, (Xit (.yict) s kies lit)

+1In amit _pmt_Xit(yict):O'
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CoPaTh-HSA Demand System and Cobb-Douglas Production Function

(eXp(—ﬁt}/{? + YT) + eit)

1+e€;,

1
s(yil,€) =0,— ﬁ_ In

t

whereq, ( vy, ét) = 0 holds in an initial equilibrium.

m
t

MCE Since

s (vt en)  exp(=Byl+77)
oyit exp(—B.y +7i)+ €
m Vit — Ok — Ol — gy
Xit (-yit) == 0 ’

m

the first order condition becomes

1
®,+0,———1In
B

t

exp(_ﬂtyir;l + YT) + €it
1+e,

We use

) —ﬂt}’i"f + Yrtn
yir? - ekkit - ellit T

Letting Z;, =1n0,, + (6.k;, + 6,1;, + w;,)/6,, and p,,, = 0, it is simplified as

yro1
¢t+5t—ﬁtJ’{?+YT+Eit—9—“+/3—1H(1+€it)
m t

1 m m —
— (1 + ﬂ—)ln (exp(—ﬁtyit +7y7)+ eit) =0.

t

MCPE The first order condition becomes

1 exp(—B,yT +1™) +¢€;
(I)t+6t——ln( p( ﬂtylt Y[) t)
¢ 1+e€;,
y{?_ekkit_ellit_wit

+In6, —ppn— 5 =0

m

Letting E;, =1In 6, + (6.k;, + 6,1;; + w;,)/0,, and p,,, = 0, it is simplified as

o1 (eXP(—ﬂty{? +yT) + eit)
n =0

1+e€;,
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A.3 Identification of Demand Function
A.3.1 Proof for Proposition

The proof for Proposition [7| uses the following result of Matsuyama and Ushchev| (2017).

Theorem A.1. (Matsuyama and Ushchev, 2017, Remark 3 and Proposition 1). Consider a
mapping S(Y) := (S,(Y1), ..., Sy(Yy))' from RY to RY, which is differentiable almost everywhere,

is normalized by
N
sy =1, (A.2)
i=1
for some point Y* := (Y, ..., Yyy) and satisfies the following conditions

S(Y)Y, < S(Y;) fori=1,..,N,
SI(Y)S/(¥)) = 0 fori,j=1,...N, (A.3)

for all Y such that Zivzl S;(Y;) = 1. Then, (1) for any such mapping, there exists a unique monotone,
convex, continuous, and homothetic rational preference that generates the HSA demand system
described by

Y AL PR
i — Sl — <~ ortr=1,..,IN,
Y, \Q(y)

where I := 211 P,Y; and Q(Y) is obtained by solving

iSi(Qé ):1

i=1

(2) This homothetic preference is described by a utility function U which is defined by

N Y;/Q(Y)
InUY)=nQY)+ ) f %dg, (A.4)
i=1J¢

where ¢ = (cy, ..., Cy) is a vector of constants such that U(c) = 1.

Proof for Proposition

Proof. (a) We construct s,(y; — §,(y..2%,u,),2%,u;) and §,(y,,2z,u,) as is explained in

the main text. Fix z! := (z¢,...23 )u, := (wy,...,uy), and time t. For Y € %, de-

fine Q.(Y) := exp(qt(lnY,zd ut)) and S,(Y) := (Slt(Yl)"":SNtt(YNt)) such that S, (V;) =

t?

exp (st (lnYiJZidpuit)) = exp(tpt (lnYit,zi, uit) _q)t)

A7



From Assumption 2| (b) and y :=1InY,

0< ¢, (lanZd;u) 14 awt(lnY,zd,u) -1
dlny dlny

holds for any (y,z¢,u). The above inequality implies
S/ (Y)>0and S/ (Y)Y <S;(Y)foralli and Y

because

a, (ln Y, 24 ul-t)

it?

dlny

S (Y)Y =exp(¢,(InY,2¢,u;, ) —&,)

it?

it?

d¢,(InY,z4,u;,)
dlny '

=5,(Y)

Therefore, S(Y) satisfies the inequalities in |l for all Y satisfying >, S;,(Y;) = 1.
From Theorem[A.T| (1), there exists a unique monotone, convex, continuous, and homothetic

rational preference that generates

I, ( Yie )
Py =5,
Yie " \Q:(Y))

where I, = exp (®,) is the consumer’s budget. Taking the log of the above demand function, we

obtain

pie =@, +5.(yir —4:(¥e» Zf; u,), Zi:uit) — Vit

(b) Fix z! := (%, ..., 2% ),u, := (uy,, ..., uy,), and time t. For Y, € #, let U, := U,(Y,, z¢,u,)

be the utility function of the representative consumer. From Theorem |A.1}

N Y;/Q(Y)
antzant(Y)+ZJ %@dg.
=

a3 [ el )
1J¢

=

=q,(InY,z d&

t,ut)+Z g

i=

Applying a change in variable { =In& +a,(¥,) and d{ = %, we write

N .Yit_fh(Yr:Z(ti:ur)
ln Ut(YU Zf’ ut) = Qt(YIJ Zf} ut) + Z J exp (st (C, Zi’ uit)) dg

i=1 IHCl‘
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(c) The homothetic preference implies that the market share P, Y;,/I, depends only on a

price vector and is independent of income. From

N,

— ~ d d
- eXp t(yit_qt(Yt) Zt;ut);zit;uit)
i=1
N,

= > exp(s.(yi + v — 4.y, 20, u) — 7,25, 1y,
1

i=

N,
= ZeXp seie +1 = 8lye + 720,020, 1),
i=1

we have q,(y, +7, zt,u )=4q,(y;,z t,u )+ v. Since the output y;, = cpt_l(rl-t,zft,uit) is identified
up to location, there is a € R such that y;,, = a + y;, where y, is the true output. Note that

—qc(ye Zf:ut) =a+y,—q/la+y,, zfiut)
:a+yi*t_€h(y>:;zf;ut)_a
= yi*t_gh(yd;; Zf,llt).

The utility is expressed as:

Yie—Gc(ye azf;ut)

N
InU(y,,z%,u,) = §.(y., 2%, u,) + Zf exp (s, (¢,24,u,))de.
im1 J1

ne¢;

N Yi—a. vz u,)
ZQt(YT+a:Zf:ut)+ZJ exp(st(C:zidpuit))dg
n qr(ytk zt ut

—a+qt(yt,zt,u )+ZJ exp(st((:,zi,uit))d{

Ing;

=a+InU(y], zf,ut).

Therefore, the log utility function is identified up to the location normalization of ¢;'(-). The
identified utility function is a monotonic transformation of the true utility function, which

implies both utility functions represent the same consumer preference. ]

A.4 Endogenous Characteristics
A.4.1 Proof for Lemma

The following proof follows [Imbens and Newey (2009).
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Proof. From the monotonicity of T, in Assumption [B.1] (iii), we can define the inverse function

of T such that k¥ =T * (Gm @i, 3] ) For given (zX, ¢, @)

Fzﬂgt,w—t(zi{'gt, wt) = Pr(l—‘kt(git)wit: K’F ) < Zk|§lt Cey W 'CD'[)
—Pr( t—rkt (gtawn )|§1t Ser @ wt)

= Fu (T (o m1,2))). (fromkltl(glt, @)

Therefore, we have

&= Fu (0 (ieo @173 )) = s (7).

Consider an arbitrary point (&,,n,) on the support of (&;,n;,). Let (x3, Kf) =

(F (D, F _1(§ d)) Since F« is strictly monotonic, the conditional expectations given §;, = &,
d

k') = (%}

independence of (¢;,, @;,) and ( K it,nit) implies

are 1dent1cal to those given (x} x4). For any bounded function a(v;) of v;,, the

it’ it’

Ela(v; )& = &M = M.

=E|:a(vit)|1< =K} K‘i_Kt,’r)lt nt]

= J a (Fsr(gl'fwin Ki), La(Sie» @i Kf), wit) Fo o, (d(Gir> @)

= E[a(vi)li, = x5, =«

=E[a(vi)I€; =&, ].
For any bounded functions a(v;,) and b(n;,,), we have

[E[a(v; )b(m:)IEie = Eesnie = M 1Ei = &¢]
[b(ni)E[a(v; )IEie = Ecsmie = M 11Ei = & ]
[
[

E[a(vi))b(ni)IE: =&, ]

w5 B e BN S T e

b(ni)E[a(vi)lEir = &, J1Ei = &, ]
b(nit)lgit = gt]E [a(vit)lgit = gt]

Thus, 7, L v, |&;,. O
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B Alternative Settings

B.1 Endogenous Firm Characteristics

z1) may correlate with {;, and 7;,. In step 1, we can use (z; 24

Firm characteristics (Z it—v—1°“it—v—1

1t’

in place of (2} ) as instrument variables to construct the moment condition similar to

it—v? lt v
(29). In step 2, we consider the nonparametric control function approach by Imbens and
Newey (2009) using instrument variables in the triangular model setting. We assume there
exist instrument variables ¢;, = (¢, gft) , unknown functions I,, and unobservable scalars Kft

Z Ikl(;l‘l’C: l’l’]: )7(‘: ‘SJd)
it it

. h
where @, 1= (L, K U, Wip—1, Ujr1,21_1)-

Assumption B.1. For k =s,d, (i) gk 1 (’)’)lt,K ) (i) 1< is a scalar and K‘k 1 (¢;p, @;p).(iiD) T,

is strictly increasing in k* . (v) The CDF of Kl. o Py ( K; t), is strictly increasing on the support of Ki.(t.

Let F,i\., o (28]g., @) be the CDF of 2, conditional on (g;,, @;.) = (¢, @,). Define &¥, :=
F,, wt(zltlgw @,;)and &, := (&, l.t). Imbens and Newey| (2009) showed &;,can be used as
control variables, that is, 1;, becomes independent of v;, conditional on &;,. Appendix provides

a proof that follows Imbens and Newey (2009).
Lemma B.1. (Imbens and Newey, 2009, Theorem 1) n;, L v;/|&,-
From Lemma the conditional distribution of m;, given (v,,, §;,) satisfies

-1 7 h
Gmtlv[,gt(mitlvit: &)= Gn[|vt,gt (Mt (my, wi,u; ) —hy (mit—lswit—D uit—lizit_l) [Vies git)
_ -1 7 h
=Gy e, (Mt (M, Wi, U ) —hy (mit—D Wit—15 uit—lﬁzit_l) |§it) >

Taking the derivatives of both sides with respect to q;, € {my, k;, l;;,2!,,2%,u;,} and q;,_; €

s d h :
{m; 1, ki1, L, 28,525,152, Wi}, We obtain

aGmtlvt (mitlvit: git) _ aMt_l(mit’Winuit)

aqit aqit gn (’71t|£zt) ( )
aGmtvt(rni |Vi:€i) 8}_1(mi_,Wi_,ui_,Zlh_)
l — = e e (Ml (B.6)
aqit—l aqit_l

| 7 h
where 7;, = M, (mye, wi, u;) — hy (mit—hWit—lﬁuit—l’zit_1)'
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By taking the ratio of and (B.6), we obtain again. Therefore, following the same
steps in the proof for Proposition we can identify M7 '(-) up to scale and location and G, (-)
up to the scale normalization of 1,. Once ¢,(m;,, w;,u;,) and M (m;,, w;,,u;,) are identified,
the step 3 can identify the same objects as before.

B.2 Discrete Firm Characteristics
B.2.1 Exogenous Characteristics

d h : : L e (o] Jy —
Supposez;,, zf,and z;, are discrete variable and have finite supportZ, := {z_,...,2°},%; :=

it?
{z;, ...,zid} and &, := {z;, ...,z,{h} In stepl, the identification of the IVQR model does not require
the continuity of firm characteristics.Therefore, this section proves Propositions [2|and [3| The

following assumption modifies Assumption |2/ for discrete z°, and z¢.
it it

Assumption B.2. (a) Forevery 2° € %, f,(+,2°) is continuously differentiable with respect to (m, k, )
on M x A x ¥ and strictly increasing in m. (b) For every (zd,u) e %, x[0,1], cpt(-,zd,u) is
strictly increasing and invertible with its inverse ¢ (r, z%,u,), which is continuously differentiable
with respect to (r,u) on Z x [0,1]. (c) For every (k,1,25,2%,u) € # x ¥ x %, x %; x [0,1],
M, (;, k, L, 2°, 24 u) is strictly increasing and invertible with its inverse Mt_l(m, k,1,2°, 2z u), which
is continuously differentiable with respect to (m,k,1,2°,z%,u) on M x H x £ x %, x %; x [0,1].
(@ (&, -, Cii—yy) are independent from m;,.

The following assumption modifies Assumption @ for discrete z;, and zft.

Assumption B.3. (a) The distribution G,(-) of m is absolutely continuous with a den-
sity function g,(-) that is continuous on its support. (b) m;, is independent of v, :=
(Wies Uses My, Wieo1s U1, 2ly_y) € ¥ with E[1;[vie] = 0. (¢) (Xies Xy, Ujes Uye—y) is contin-
uously distributed on Z* x [0, 112 (d) The support 2 of w is an interval [w, @] C R where w < 0
and 1 < . (e) For every z" € %, h(-,2") is continuously differentiable with respect to w on .
() The set .y = {(M;e_1, Wig—1, Usem1,20_ ) € M X W x[0,1]X %5, : 0Gyy 1y, (M |V, )/ 0 qion 7
0 for all (m;,,w;,,u,) € M x W x[0,1]} is nonempty for some q;,_; € {m;,_1, Kir—1, lir—1, Uir—1 }-
(g) For each (mt_l,wt_l,ut_l,z?_l) € M xW x[0,1] x &, it is possible to find (., Ww,,1,) €
M x W x[0,1] such that 3G, |, (W, d,m,_1,w,_y,u,_y,3" )/dm, > 0.

The following proposition establishes the identification of M '(-).

Proposition B.1. Suppose that Assumptions @ and hold. Then, we can identify M, (-)
up to scale and location, and identify G,(-) up to scale.
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Proof. Choose normalization points (m},, k},[;,u;) and (m, k], [} *) in Assumptionl 4| as well

[ A g i t0? "’ "t
d .d 2 2
as( m; ki LU uy )e%x[o 1] such that, for( 2, 1,205,280 ,% )e% X i x %,
-1 d 1 d
M (my,, ki, U, 2, z u*)—co(zt,z ), M ~(m},, k}, 17, 2], z up) = ci(2), 2 ), (B.7)
* d * h — s d h
and h(mt ks L2t U2 ) = (2,2 ,2,),  (B.8)

where  {co(zf,2%), ¢,(25, 2¢ Nt t)ezxz, and {eo(z_ 2 zd 2l D are un-

=12 Eff Xg’d Xgh
known constants. Without loss of generality, let (z zd*) in Assumptlon be z}* = zs1 and

dx*
Zt

Z
= z;. Thus, the normalization in Assumptionﬂ is imposed as
1 1) — 1 1y
co(z,,2;,) =0and ¢;(z;,2;) = 1.

From the same step in the proof for Proposition we can show that there exist

- ~ - ~h
(mit_l,wit_l,uit_l,zit_l) and such some q,_; € {k,_,l,_1,M,_1,U;_1,2 } that

-1 (1 ~ ~ ~h
aMt (miwwit’uit) _ ah(mit—hWit—l:uit—lazit_l)
94 99—
5 ~ ~ ~h
aGm[m (mitlwit:uits mit—lawit—lauit—lszit_1) /24, (B.9)
~ ~ ~ ~h :
aGmtlvt (mitlwit’ Uje, M1, Wir—15 uit—l:zit_l) /9q,1
for all (m;,,w;,,u;,) and all q, € {m,, k,,,,u,}. From (B.7) and (B.11)), we have
1.1 1,1
1=1¢(z,,2;) —co(z;,2,)
=M, (mb,, kU, 285,28 uf) — M (mb, K U, 28, 20 u))
~ ~ ~ ~h
. 1 ah(mit—lﬂWit—l:uit—l’zit_l)
S‘Itfl aqt_l
and therefore identify dh (%, ;,%, 1)/dq,_; as
Oh (Mg, Wiy, Uyeep, 2 )
it—1> al s Y %1 :—Sqt ; (BlO)
di— -
where
3G, (mlk:,1: )/8 '
S, — m,|v, ml Iz t,Z Zd’u mlt 1’Wit—1’ult 1) lt 1 / m, dm

qe—1 % 1% o1 % ~ ~ ~
m, G, (mlktalt: 57zd:ut:mit—liwit—lﬂuit—lzzit_l)/aqt—l

By substituting (B.10) into (B.9), we can identify oM,'(m,,k,,l,,2.)/dq, for q, €
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{mtaktaluut}as

aMt_l(mit: Wies Ujp)
aqt

= S"qrfl thqtﬂ(ml’t’wit’ uit): (B.11)

where

aGmtlvt (mitlwit’ult’mlt 17Wlt l’ult ]-’zlt 1)/aqt

aGmtlvt (mitlwitiultimlt 1’Wlt liult lyzlt 1)/aqt 1
From (B.7) and (B.11)), M (x,,2,) is written as

M (x,, 25,25, 1) = co(25,28) + A (x,, 25,28 u,), (B.12)

TCIt‘lt—l(mit’ itr U lt) =

where

d
A (xt,zt,zt,ut)

m, ke
Ny d
=S, J Thq, (S ko5 1 21, t,ut)ds+f kg (My0s S5 1> 2 z ,u,)ds
k

X
My t

I, Ug
* s d * 1% s d
+J g, 1(mt0,kt,s,zt,zt,ut)ds+f Ti,q,_, (Mo, ki, U, 27, 20, 8)ds
l

*
t

*
U

From Assumption E (g), for a given point (m,_;,w,_;,U, 1,2 ) € M X W x
[0,1] x %&,, we can find some point (m,,w,i,) € A X W x [0,1] such that
aGth(rhtlwt,ﬂt,mt_l,wt_l,ut_l,z?_l)/ﬁmt > 0. . Then, identifies 8h (x,_1,2,1) /34,1
as

7 h R h
8h(mt—1’wt—1:ut—l’zt—1) _ aGmtlvt(rntll’vt:ut: mt—17wt—17ut—l’zt_l)/aqt—l
- SRV h
9q,1 oG, I, (MW, i, m,_,w,_,u,_q,2,)/0m,
1
oM, " (m,, W,, i t)
X
om,

Repeating this, we can identify dh (x,_;,2,_,) /2q,_, for all (x,_1,2,_,) € Z x %. From (B.7)
and (B.10), we can write h,(x,_;,2,_,) as

7 h d _h h
h(m_,w,_q,u, 0,2 ) =c(2]_, 2 1,2 )+ Ag(m_y,w_q,u, 4,2 ) (B.13)
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with

m,_ 1. s d * h
1 Oh (s, ki1, 11,2152, ut_l,zt_l)ds

om,_,

_ h —
Ap(me_y, Wy, Uy, Zt—l) =

X
m_

ke d * h
+ [ oh (mt 15> lt 1% 1’Zt—1’ut—1’zt—l)ds
Jki Ik

l
f‘”(’)h(mt Lk 8,2 zd w2t )
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Therefore, we can1dent1fyM 1(m k., 1,,2,)and h (xt 1,%1)upto {co(zt,z ), cz(zt "
DeﬁneH (Z t 1azt 1: ) _E[A (xtﬁz Z ut) Ah(mt Wi 1, U 1,2 )lztaz Zt 15221_192?_1]-
d

To determine {co(zt,z )}(zt,zf ez, 2, and {cz(zt %1% )}(Zt g 1)69”X% we evaluate

t 1’ )}zeff

d h
0= E[’i’)t|2t, 2 1’Zt—1’zt—1:|
=E[M 1(m ke lioz) —he (e 2e) 18520205002 ]
d d d h
=H (25,202 20z )+c0(z z0)— (2], 21 1,2, 1)
at different values of (z5,2%,25_,z¢ 2" ). First, evaluatlngE[mIZ zd,25 2l 1,2?_1]:0 at

(z5,2%) = (2}, 2}), and noting that cy(z] ,23) =0, we have

tl) H(zzz zd 2z ).

C2(Z t—1°°t—1>“t—1

tl’

Therefore, cz(z) is identified for all z € &. Second, evaluating E [ntlz z 25,29 gh ] =0

t—1°"t—1°"t—1
at (z°__,z¢

ozl ) =(21,2),2]), we identify co(2°,27) as

T d
co(z,28) = cy(2!, 2}, 2 ) —H, (25,27, 2] 2}, 2))

17 1 .1 .1 1 1 7 s 1 .1
—Ht(zs,zd,zs,zd,zh)—Ht(zt,zt,zs,zd,zh).

Given that {co(z, 2 Dzt st)ezxz, and {ca(z;_,, 28,20 )} s sl b ez, are identified, we
can identify M *(m,,k,,[,,2.) and h.(x,_1,2.) from (B.12) and |i From 1n;, = w; —

h,(x;,_1,2;,_1), we can identify the distribution of 1),, G, (n). O

Proposition B.2. Suppose that Assumptions and [7| hold. Then, we can identify
@ '(-) and f,(-) up to scale and location and each firm’s markup 3¢ *(F;;,2;,)/ 01, up to scale.

Proof. From and , the markup 8<pt_1(rit, z{,,U;,)/0r, is identified as .From ¢, and
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(41), the markup function u,(m,,w,,u,) is also identified as a function of (m,,w,,u,) as (42)).

Substituting into (37), we identify 0 f,(x,,2)/dq, for ¢ € {m,, k1 } as (43).

Define c¢;(z;) := f.(m], k},[},z}) for the point (m},, k},[;) in normalization and As-
sumption [4 Integrating 0 f.(x,,2;)/dq, for ¢ € {m,,k,,l,} identifies f,(m,,k,l,,2}) up to the
constant c;(z;):

fe(me, ke, 1, 2) = cp(2]) + Ap(my, ke, 1, 27)

where
o [ Ofs KLz % 8 f(myy,s,1,,2})
Af(mt7 kt; lt: Z[) = Jm* amt d ds + . takt : ds
t0 t
lt * * S
+ 8ft(mt05 kt’S’Zt)ds.
’ a1,

From the normalization (14) and Assumption 4], we have

Sot_l (¢t (m* k;‘,l* 5% zf*,u*) Zd* u*)

t0’ [ t)2%it 2t
_ * * Pk oSk —1 * * 1%k o8k dx k)
_ft(mtO’kt’lt’Zt )+Mt (mtO’kt’lt’zt > 24 ,ut)—O

and

ot (b (mip, ki 1250, 107) 2 )

_ * * Ix S —1 * * 1% s dx %
_ft(mtO’kt’lt’zt)+Mt (mto’kt’lt’zt’zt ’ut)

_ —1 * * 1% dx %
=c;(z}) + M, (M}, k;, U7, 2,2, ", u7).

t0> "> e e e 0

d
it?

The integration of 8¢, '(r;,, 2, u;,)/dr, leads to

* k*,l* o5 dx

.f¢i%wrt”%’ﬁ)9¢:%az#nﬁg
L 1

or
b (Mg ki 128 2 k) t

ds

:(pt_l (¢t (m* k* 1+ & Zd* u*)’zd* u*)

t0? e e’ e’ 0Tt it? "t

=cf(zi)+Mt_1(m* k* 1 28, 2 uy).
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Since ¢,(+), ¢ '(-)/dr, and M;'(-), ¢;(2) is identified as

ds

dx*
¢ (z) = J PR 010 2 )
(2) =
t ar,

¢ (mioki b2 2 uy)
-1 * * 1% oS odx %
—M_ " (m,, k}, 7,2}, 2.7, u7).
Thus, f,(x,,z;) is identified.
For given (r,,2%) € # x %, B, (r,,2%,u,) := {(x,2°) € ¥ x %, : ¢, (x,,25,2%,u,) =71} is
non-empty by the construction of 2. The output quantity ¢;'(r,,2,,u,) for any (r,,z,,u,) €
R x % x [0,1] is identified by

@ (ro2hu,) = fi(x, 28) + M (my, wy, u,) for (x,,25) € B,(r,,29,1,).

The output price for individual firms is identified as

. -1 d
Pit - =Tyt — &, (rit:zit:uit)'

B.2.2 Endogenous Characteristics

Firm characteristics (z;,,
d

it—v—1

d : s d
z;,) may correlate with u;, and 7,,.In step 1, we can use (z},_,,2,_,)

instead of (2}

TS ) as instrument variables to construct the moment condition similar
to (29). In step 2, we consider the control variable approach as in subsection Using
the same steps in subsection [B.1, we can derive and for continuous variables
Qic € {mye, kie, L, uy ) and q;q € {my_1, kir—1, li—1, ;1 }. Taking their ratios, we have (33).

Therefore, we can apply the same steps in subsection to establish identification.
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