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Abstract

Commonly used methods for estimating production functions assume that firms’ output

quantities are observable, whereas typical datasets contain only revenue. We study the

nonparametric identification of production and consumer demand functions from revenue

data under monopolistic competition with a general nonparametric demand function. Under

standard assumptions, we provide a constructive, nonparametric identification of several

firm-level objects, including the gross production function, total factor productivity (TFP),

price markups over marginal costs, output prices, output quantities, and the demand

function. Considering the homothetic single-aggregator (HSA) demand system of ?, we

further identify the representative consumer’s utility function, enabling counterfactual

analysis of market outcomes and welfare. We propose a semiparametric estimator feasible

for standard firm-level datasets and show in simulations that it performs well, whereas

treating revenue as output generates substantial bias. Applying the estimator to Chilean

manufacturing data, we reject the CES specification in favor of HSA, and counterfactual

analysis indicates that market power reduces welfare by about 3%–6% of industry revenue

in the three largest manufacturing industries in 1996.
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1 Introduction

The estimation of production functions and markups is a central tool in empirical analyses of

market outcomes.1 The residual from an estimated production function, commonly interpreted

as total factor productivity (TFP), serves as a key measure of firm-level technological efficiency

(see Bartelsman and Doms (2000); Syverson (2011)) and its contribution to aggregate produc-

tivity (e.g., Olley and Pakes, 1996). Researchers also use estimated elasticities of production

functions to study technological change (e.g., Van Biesebroeck, 2003; Doraszelski and Jauman-

dreu, 2018) and to infer price markups over marginal cost (e.g., Hall, 1988; De Loecker and

Warzynski, 2012). Markup estimation based on production functions has been widely applied

across diverse fields and complements the demand-based approach (e.g., Berry, Levinsohn, and

Pakes, 1995) in empirical analyses of firms’ market power.

A common assumption underlying many production function and markup estimation meth-

ods is that firms’ output quantities are observable. In practice, however, most firm-level datasets

contain only revenue information rather than physical quantities. As a result, many empirical

studies approximate output by deflating firm-level revenue using an industry-level price de-

flator.2 For production function estimation, this practice of using revenue in place of output

quantity can be justified under perfect competition, where output prices are exogenous and

identical across firms. Following Marschak and Andrews (1944)’s pioneering critique, a large

body of research has cautioned against this approach under imperfect competition. Numerous

studies have demonstrated that replacing output quantity with revenue can severely bias esti-

mates of production function parameters (e.g., Klette and Griliches, 1996; De Loecker, 2011)

and TFP (e.g., Foster, Haltiwanger, and Syverson, 2008; Katayama, Lu, and Tybout, 2009;

De Loecker, 2011). More recently, Bond, Hashemi, Kaplan, and Zoch (2020) show that using

revenue in place of output quantity may lead to serious biases in estimation of firm’s markups.

Despite these concerns, the practice persists due to the scarcity of firm-level quantity data.3

This paper contributes to the literature on production function and markup estimation

by establishing nonparametric identification of the production function, TFP, markup, and

the consumer demand function from firm-level revenue data under monopolistic competition.

Our identification proof is constructive, relying on standard assumptions from the production

1Griliches and Mairesse (1999) and Ackerberg, Benkard, Berry, and Pakes (2007) provide excellent surveys of
production function estimation methods.

2A few studies employ datasets with firm-level quantity information (e.g., Foster, Haltiwanger, and Syverson,
2008; De Loecker, Goldberg, Khandelwal, and Pavcnik, 2016; Lu and Yu, 2015; Nishioka and Tanaka, 2019), but
such data are typically limited to specific countries, industries, and time periods and remain inaccessible to most
researchers.

3Researchers also rely on revenue when products differ in quality, since physical output alone may not reflect
true production, though such practices often lack theoretical foundations.
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function literature alongside additional non-parametric restrictions on firms’ demand functions.

This contribution is novel because the existing literature has not established whether it is possible

to identify production functions and consumer demand function from firm-level revenue data

without imposing parametric functional forms. Building on the constructive identification result,

we further develop a semiparametric estimator and demonstrate through simulations that it

performs well in finite samples.

Following Marschak and Andrews (1944), Klette and Griliches (1996) and De Loecker

(2011), we explicitly model a demand function that an individual firm faces as a function of its

output, observable characteristics, and an unobserved transitory demand shock.4 While each

of these earlier studies examines a demand function with a constant and identical demand

elasticity which implies identical markups across firms, we consider a nonparametric demand

function that generates heterogeneity in markups. Apart from this extension, our approach

relies on standard assumptions commonly adopted in the literature and can be implemented

using typical firm-level data found in empirical applications.

We develop a three-step identification approach that combines the control function approach

developed by Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg, Caves, and

Frazer (2015) and the first-order condition approach recently developed by Gandhi, Navarro,

and Rivers (2020).5 Following Levinsohn and Petrin (2003) and Ackerberg et al. (2015), the

inverse function of a material demand function serves as a control function for TFP. In the first

step, we identify an unobserved demand shock that nonlinearly affects revenue by using the

control function as in Ackerberg et al. (2015) and the instrument variable quantile regression

by Chernozhukov and Hansen (2005). Our novel second step identifies the control function

for TFP by applying the nonparametric identification of transformation models (e.g., Horowitz,

1996) examined by Ekeland, Heckman, and Nesheim (2004) and Chiappori, Komunjer, and

Kristensen (2015). By identifying the control function, TFP is identified (up to normalization)

from the dynamics of inputs, without output data. In the third step, we identify a production

function, markup, and a demand function, using the first-order condition for the material and

the control function identified in the second step.

Our method identifies several key objects from revenue data. In our main setting, markups

and output elasticities are identified up to scale, while the output price, output quantity, total

factor productivity (TFP), gross production function, and consumer demand function are identi-

fied up to scale and location, without imposing any parametric functional form. Identification

4De Loecker, Eeckhout, and Unger (2020) study an alternative approach using an exogenous variable to remove
output price variation from revenue data.

5These approaches assumed quantity data or perfect competition. Gandhi et al. (2020) also examined an
imperfect competition with a constant elastic demand as in Klette and Griliches (1996) and De Loecker (2011)
where markups must be constant and identical across firms.
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is cross-sectional, allowing these objects to vary over time. With the additional assumption of

local constant returns to scale, we can identify the levels of markups and output elasticities,

and identify the output price, output quantity, TFP, production function, and consumer demand

function up to location.6 Finally, by considering the homothetic single-aggregator (HSA) de-

mand system of ?, we further identify the demand system and the representative consumer’s

utility function, and establish identification of counterfactual welfare effects.

We also develop a semiparametric estimator that assumes a Cobb-Douglas production

function but imposes no parametric restrictions on the demand system. The estimation proceeds

in three main steps, with an additional step devoted to demand-system estimation. In the first

step, we nonparametrically estimate the transitory demand shock using the smooth GMM IV

quantile regression proposed by Firpo, Galvao, Pinto, Poirier, and Sanroman (2022), which

ensures quantile monotonicity in instrumental-variable quantile regression. In the second step,

we estimate the control function using the profile likelihood estimator of Linton, Sperlich, and

Van Keilegom (2008). In the third step, we recover the production function, markups, and TFP.

This three-step procedure provides a standalone estimation of the production function that does

not rely on any parametric assumptions about demand. In the fourth step, for the purpose of

counterfactual welfare analyses as well as testing the CES demand assumption, we estimate the

the CoPaTh-HSA demand system of Matsuyama and Ushchev (2020).7

Simulation results show that our estimator performs well in recovering structural parameters,

markups, and TFPs. Applying the estimator to Chilean plant-level data from the three largest

manufacturing industries (SIC 31, 32 and 38), we find evidence of misspecification under

the CES demand system. Finally, our counterfactual welfare analysis reveals that the market

power results in welfare losses of approximately 3%–6% of industry revenue in the three largest

Chilean manufacturing industries in 1996.

The remainder of this paper is organized as follows. Section 2 summarizes previous studies

on how using revenue as output could bias the identification of production function, TFP, and

markup; readers familiar with the literature can skip this section and proceed to Section 3.

Section 3 presents our nonparametric identification results. Subsection 3.1 explains our setting,

and subsection 3.2 demonstrates our three-step approach by offering a parametric example.

Subsection 3.3 presents our nonparametric identification results, and subsection 3.4 discusses

additional assumptions for fixing scale and location normalization. Subsection 3.5 examines the

6Flynn, Gandhi, and Traina (2019) impose global constant returns to scale to identify a production function.
In Subsection 3.4.2, we clarify the distinction between local and global constant returns to scale.

7One frequently sees within the literature an assumption of market structure for the identification of demand
and supply side objects. For example, Berry, Levinsohn, and Pakes (1995) identify firm-level marginal costs by
specifying oligopolistic competition; meanwhile, Ekeland, Heckman, and Nesheim (2004) and Heckman, Matzkin,
and Nesheim (2010) identify various demand and supply side objects of a hedonic model by exploiting the
properties of perfect competition.
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identification of a demand system and a representative consumer’s utility function. Subsection

3.6 and Appendix B presents identification results in alternative settings, including endogenous

labor input. Section 4 present our semiparametric estimator while Section 5 presents the

simulation results, comparing the performance of ACF method and our proposed method.

Section 6 presents an empirical application of our estimator with counterfactual welfare analysis

to the Chilean manufacturing plant data. Section 7 provides concluding remarks.

2 Biases from Using Revenue as Output Quantity

This section summarizes potential biases in the identification of the production function, total

factor productivity (TFP), and markups when revenue is used in place of output quantity. Let

pi t , yi t , and ri t := pi t + yi t denote the logarithms of price, output, and revenue for firm i at time

t, respectively. The corresponding uppercase letters represent their levels, e.g., Pi t = exp(pi t).
Suppose that these variables are related via the inverse demand function pi t = ψi t(yi t) and

the revenue function ri t = ϕi t(yi t) := yi t +ψi t(yi t). Let yi t = ft(mi t , ki t , li t) +ωi t be firm i’s

production function where ωi t is TFP and x i t := (mi t , ki t , li t) is a vector of the logarithms of

material, capital, and labor, respectively. To highlight the sources of biases from using revenue

as output, assume that TFP is identical across firms within time t, with ωi t =ωt for all i. This

simplification eliminates an additional and well-known source of bias, correlations between

inputs and TFP.

From the first-order condition for profit maximization, Pi t

�

1+ψ′i t(yi t)
�

= MCi t , where

MCi t denotes the marginal cost of producing one additional unit of output, the elasticity of

revenue with respect to output equals the inverse of the markup:

dϕi t(yi t)
d y

=
MCi t

Pi t
. (1)

Under perfect competition, where Pi t = MCi t , variation in revenue across firms coincides with

that in output. However, they are generally different when markups vary across firms.

Suppose that, using revenue as output, a researcher identifies a true relationship between

revenue and inputs, ϕ̃i t(x i t) := ϕi t( ft(x i t) +ωt) to use ϕ̃i t(x i t) as a proxy for ft(x i t). Prior

studies show that the use of revenue as output could cause biases in three forms. First, Marschak

and Andrews (1944) and Klette and Griliches (1996) establish that, from (1), the elasticity of

ϕ̃i t(x i t) relates to the true elasticity of ft(x i t) via markup:

∂ ϕ̃i t(x i t)
∂ vi t

=
MCi t

Pi t

∂ ft(x i t)
∂ vi t

for vi t ∈ {mi t , ki t , li t}. (2)
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Thus, output elasticities would be underestimated by the extent of markup.

Second, Katayama et al. (2009) and De Loecker (2011) demonstrated a bias in TFP estimates.

Let ∆ωt be a TFP change. Suppose that a TFP change for firm i is estimated as a change in

revenue with inputs being fixed, ∆ω̃i t = ∆ϕ̃i t(x i t)|∆x i t=0 . From (1), we see that this TFP

estimate relates to the true TFP change via markup:

∆ω̃i t =
MCi t

Pi t
∆ωt . (3)

Therefore, TFP would be underestimated by the extent of markup.

Finally, Bond et al. (2020) show that markup estimates using the method of Hall (1988)

and De Loecker and Warzynski (2012) are generally biased when revenue elasticity is used in

place of output elasticity. Suppose a firm is a price-taker of flexible input v. Hall (1988) and

De Loecker and Warzynski (2012) developed the following equation relating to markup and

output elasticity with respect to v as:

Pi t

MCi t
=
∂ ft(x i t)/∂ vi t

αv
i t

(4)

where αv
i t is the ratio of expenditure on input v to revenue. If a researcher uses ∂ ϕ̃i t(x i t)/∂mi t

instead of ∂ ft(x i t)/∂mi t in markup equation (4), then from (2), the estimated markup is 1:

∂ ϕ̃i t(x i t)/∂ vi t

αv
i t

=
MCi t
Pi t

∂ ft (x i t )
∂ vi t

αv
i t

= 1. (5)

In such a case, the markup would be underestimated.8

Klette and Griliches (1996) and De Loecker (2011) developed methods by which to identify

production functions from revenue data, by assuming a constant elastic demand function with

an identical elasticity.9 However, with this specific demand function, markups must be constant

and identical across firms. Studies estimating markups from quantity data report substantial

heterogeneity in markups across firms (e.g., De Loecker, Goldberg, Khandelwal, and Pavcnik,

2016; Lu and Yu, 2015; Nishioka and Tanaka, 2019).

8Result (5) by Bond et al. (2020) relies on the assumption that a researcher can correctly identify ϕ̃i t(x i t). In
practice, misspecification of ϕ̃i t(x i t) could derive markup estimates (5) that contain some information on true
markups. For instance, De Loecker and Warzynski (2012, Section VI) show that when f is Cobb–Douglas, it is
possible to identify the effect of firm-level variables (e.g., export) on markups.

9Katayama et al. (2009) also developed a method by which to identify production functions from revenue
data. Their method allows for markup heterogeneity but requires the ability to estimate firm’s marginal costs from
total costs.
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3 Identification

3.1 Setting

We denote the logarithm of physical output, material, capital, and labor as yi t , mi t , ki t , and li t ,

respectively, with their respective supports denoted as Y ,M , K , and L . We collect the three

inputs (material, capital, and labor) into a vector as x i t := (mi t , ki t , li t)′ ∈ X :=M ×K ×L .

At time t, output yi t is related to inputs x i t = (mi t , ki t , li t)′ through the production function

yi t = ft

�

x i t , zs
i t

�

+ωi t , (6)

where zs
i t is a vector of exogenous characteristics with support ZS that may affect either the

functional form of ft(·) or the level of total factor productivity (TFP) (e.g., ownership status).

Firm-level productivity ωi t follows a first-order stationary Markov process given by

ωi t = h
�

ωi t−1, zh
it−1

�

+ηi t , ηi t
iid∼ Fη, (7)

where ηi t is an innovation to productivity that is serially uncorrelated, and zh
it−1 is a vector of

lagged characteristics with support Zh that may affect the productivity process (e.g., previous

import status as in Kasahara and Rodrigue, 2008). We assume that both the function h(·) and

the marginal distribution of ηi t are time-invariant.

The demand function for a firm’s product is strictly decreasing in its price, and its inverse

demand function is given by

pi t = ψ̃t(yi t , zd
it ,εi t),

where zd
it is an observable firm characteristic with support ZD that affects firm’s demand (e.g.,

firm’s export status in De Loecker and Warzynski (2012)) while εi t represents an unobserved

demand shock.

The unobserved demand shock εi t is generated by the process

εi t = Υ (ζi t ,ζi t−1, ...,ζi t−υ), ζi t−s
iid∼ Fζ for s = 0,1, ..,υ. (8)

Therefore, conditional on zd
it , the underlying innovation ζi t has a transitory effect on the demand

shock εi t . Consequently, εi t is serially correlated over υ periods but its persistence is limited in

that εi t is independent of εi,t−s for s ≥ υ+ 1. In contrast, an innovation to productivity ηi t has

a permanent impact on future productivity in (7). The difference between demand and supply

shock specifications between (7) and (8) captures the idea that demand shocks are temporary
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while supply shocks are permanent (e.g., Nelson and Plosser, 1982).10

As shown in Matzkin (2003), the identification of a non-additive unobservable εi t has to be

up to its monotonic transformation. Let Fε be the c.d.f. of εi t . Without loss of generality, we

transform εi t to a uniform variable, using ui t := Fε(εi t),

pi t = ψ̃t(yi t , zd
it , F−1

ε
(ui t))

=ψt(yi t , zd
it , ui t), ui t ∼ Unif(0, 1). (9)

Given t, ui t cross-sectionally follows an independent and identical uniform distribution.

The inverse demand function (9) is non-parametrically specified and generalizes the constant-

elasticity demand function examined by Marschak and Andrews (1944), Klette and Griliches

(1996), and De Loecker (2011). Equation (9) implicitly imposes two key assumptions. First,

ψt(·, zd
it , ui t) is common across firms once we control for observed demand characteristics zd

it

and a transitory scalar unobserved demand shock ui t . Second, ψt(·, zd
it , ui t) represents the

demand curve that each individual firm takes as given. This assumption is satisfied under

monopolistic competition (without free entry), where ψt can be expressed as ψt(yi t , zd
it , ui t , at),

with at denoting a vector of aggregate price and quantity indices which each firm treats as

exogenous.

Let ri t and R be the logarithm of revenue and its support, respectively. Then, from (6), the

observed revenue relates to output and input as follows:

ri t = ϕt(yi t , zd
it , ui t)

= ϕt

�

ft(mi t , ki t , li t , zs
i t) +ωi t , zd

it , ui t

�

(10)

where ϕt(yi t , zd
it , ui t) :=ψt(yi t , zd

it , ui t) + yi t .

We make the following timing assumption.

Assumption 1. (a) (li t , ki t) is determined at the end of period t − 1 and is independent of ηis and

ζis for s ≥ t. (b) mi t is determined after firm’s observing (ωi t , ui t , zs
i t , zd

it) but is independent of ηis

and ζis for s ≥ t + 1. (c)
�

zs
i t , zd

it , zh
it−1

�

is continuous and independent of uis and ηis for s ≥ t. (d)

each firm is a price-taker for material input.

Assumptions 1(a)(b) specify the timing structure, which is similar to that in Gandhi et al.

(2020). In Subsection 3.6, we present identification results when li t is also endogenous. The

continuity requirement in Assumption 1(c) can be relaxed, but the exogeneity of
�

zs
i t , zd

it , zh
it−1

�

re-

10Here, the productivity ωi t may capture factors such as persistent differences in product quality across firms.
From this perspective, the firm’s output yi t can be interpreted as as a quality-adjusted measure of output quantity.
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mains an important—albeit potentially strong—assumption, though it is commonly maintained

in the empirical literature.11 Assumption 1(d) is also standard in most empirical applications.

Under Assumption 1, the firm chooses mi t =Mt

�

ωi t , ki t , li t , zs
i t , zd

it , ui t

�

at time t to maximize

the profit:

Mt

�

ωi t , ki t , li t , zs
i t , zd

it , ui t

�

∈ argmax
m

exp(ϕt( ft(m, ki t , li t , zs
i t)+ωi t , zd

it , ui t))−exp(pm
t +m), (11)

where pm
t denotes the logarithm of the common material price at time t.

Equation (10) highlights two identification issues, originally raised by Marschak and Andrews

(1944). First, mi t correlates with two unobservables ωi t and ui t . Second, ri t relates to x i t =
(mi t , ki t , li t) via two unknown nonlinear functions ϕt(·, zd

it , ui t) and ft(·).
For identification, we make the following assumptions.

Assumption 2. (a) ft(·) is continuously differentiable with respect to (m, k, l, zs) onM ×K ×
L ×Zs and strictly increasing in m. (b) For every

�

zd , u
�

∈ Zd × [0,1], ϕt(·, zd , u) is strictly

increasing and invertible with its inverse ϕ−1
t (r, zd , u), which is continuously differentiable with

respect to (r, zd , u) on R ×Zd × [0,1]. (c) For every (k, l, zs, zd , u) ∈K ×L ×Zs ×Zd × [0,1],
Mt(·, k, l, zs, zd , u) is strictly increasing and invertible with its inverseM−1

t (m, k, l, zs, zd , u), which

is continuously differentiable with respect to (m, k, l, zs, zd , u) onM ×K ×L ×Zs ×Zd × [0, 1].
(d) (ζi t , ...,ζi t−υ) are independent from ηi t .

Assumptions 2(a)(b) are standard assumptions about smooth production and demand

functions. In Assumption 2(b), the condition ∂ ϕt(yi t , zd
it , ui t)/∂ yi t > 0 is equivalent to that the

elasticity of demand with respect to price, −
�

∂ψt(yi t , zd
it , ui t)/∂ yi t

�−1
, being greater than 1;

this necessarily holds under profit maximization. Assumption 2(c) is a standard assumption

in the control function approach that uses material as a control function for TFP (Levinsohn

and Petrin, 2003; Ackerberg et al., 2015). Assumption 2(d) requires the demand shock and the

productivity shock are independent.

Let wi t := (ki t , li t , zs
i t , zd

it) be observable exogenous variables at t. The inverse function of

the material demand function with respect to TFP

ωi t =M−1
t (mi t , wi t , ui t)

is used as a control function for ωi t . Since ∂ ϕt(yi t , zd
it , ui t)/∂ yt > 0, there exists the inverse

function ϕ−1
t (·, zd

it , ui t) so that the revenue function ri t = ϕt( ft(x i t , zs
i t) +ωi t , zd

it , ui t) can be

11In Appendix B, we further discuss identification when these variables are discrete and endogenous, under the
availability of suitable instruments.
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written as:

ϕ−1
t

�

ri t , zd
it , ui t

�

= ft(x i t , zs
i t) +M

−1
t (mi t , wi t , ui t). (12)

Let

vi t := (wi t , ui t , mi t−1, wi t−1, ui t−1, zh
it−1)

′ ∈ V :=W × [0, 1]×M ×W × [0,1]×Zh

whereW :=K ×L ×Zs×Zd . We assume that the data constitute a random sample of N firms

observed over multiple periods,

{{ris, mis, vis}ts=t−υ−2}
N
i=1,

drawn from the population. Given a sufficiently large N , the econometrician can consistently

recover the corresponding population joint distributions.

Assumption 3. An econometrician is assumed to know the following objects: (a) the population

joint distribution of {ris, mis, vis}ts=t−υ−2; and (b) the material input cost for each firm, exp(pm
t +

mi t).

Our objective is to identify ϕ−1
t (·), ft(·),Mt−1(·) from the population joint distribution of

{ris, mis, vis}ts=t−υ−2}. Let {ϕ∗−1
t (·), f ∗t (·),M

∗−1
t (·)} be the true model structure that satisfies (12).

Then, for any (a1t , a2t , bt) ∈ R2 ×R++,

ϕ−1
t

�

ri t , zd
it , ui t

�

= (a1t + a2t) + btϕ
∗−1
t

�

ri t , zd
it , ui t

�

, ft(x i t , zs
i t) = a1t + bt f ∗t (x i t , zs

i t),

andM−1
t (mi t , wi t , ui t) = a2t + btM∗−1

t (mi t , wi t , ui t) (13)

also satisfy (12), and the true structure {ϕ∗−1
t (·), f ∗t (·),M

∗−1
t (·)} is observationally equivalent to

the structure (13). That is, the structure {ϕ−1
t (·), ft(·),M−1

t (·)} is identified only up to location

and scale normalization (a1t , a2t , bt) from restriction (12).

Therefore, identification requires location and scale normalization. We fix (a1t , a2t , bt) in

(13) by fixing the values of {ϕ−1
t (·), ft(·),M−1

t (·)} at some points. Specifically, choosing two

points (m∗t0, w∗t , u∗t ) and (m∗t0, w∗t , u∗t ) on the support X ×Z where m∗t0 < m∗t1, we denote

c1t := ft(m
∗
t0, k∗t , l∗t , zs∗

t ), c2t =M−1
t (m

∗
t0, w∗t , u∗t ), and c3t :=M−1

t (m
∗
t1, w∗t , u∗t ). (14)

Note that ∂M−1
t /∂mt > 0 implies that c2t < c3t . Then, there exists a unique one-

to-one mapping between (c1t , c2t , c3t) in (14) and (a1t , a2t , bt) in (13) such that bt =
(c3t − c2t)/

�

M∗−1
t (m

∗
t1, w∗t , u∗t )−M

∗−1
t (m

∗
t0, w∗t , u∗t )

�

, a1t = c1t − b1t f ∗t (m
∗
t0, k∗t , l∗t , zs∗

t ) and a2t =
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c2t−b1tM∗−1
t (m

∗
t0, w∗t , u∗t ). Thus, we can fix the value of (a1t , a2t , bt) by choosing arbitrary values

(c1t , c2t , c3t) ∈ R3 that satisfies c2t < c3t . In particular, we impose the following normalization

that corresponds to (N2) in Chiappori et al. (2015).

Assumption 4. (Normalization) The supportM ×W × [0,1] includes two points (m∗t0, w∗t , u∗t)
and (m∗t0, w∗t , u∗t ) such that c1t = c2t = 0 and c3t = 1 in (14).

As Chiappori et al. (2015) demonstrates, this choice of normalization makes the identification

proofs transparent. In Section 3.4, we discuss how we can use additional restrictions and data

to identify the normalization parameters (a1t , a2t , bt).

3.2 Identification in a Parametric Example

Before presenting the nonparametric identification results, we demonstrate our identification

approach by applying it to a simple parametric example without exogenous covariates, i.e.,

where (zd
it , zs

i t , zh
it) is empty. Consider a monopolistically competitive market where each firm i

faces the following constant elastic inverse demand function:

pi t = αt + (ρ(ui t)− 1)yi t , (15)

where αt is an unknown parameter and ρ(·) is an unknown function satisfying 0< ρ(·)≤ 1.12

We assume that ρ′(u)< 0, which implies that the markup 1/ρ(u) is increasing in u.

Firm i has a Cobb–Douglas production function with the TFP ωi t follows a first-order

autoregressive (AR(1)) process:

yi t = θ0 + θmmi t + θkki t + θl li t +ωi t ,

ωi t = h1ωi t−1 +ηi t , (16)

where {θ0,θm,θk,θl , h1} are unknown parameters. The firm’s revenue function is expressed as:

ri t = αt +ρ(ui t)θ0 +ρ(ui t)θmmi t +ρ(ui t)θkki t +ρ(ui t)θl li t +ρ(ui t)ωi t . (17)

Denote the ratio of material cost to revenue as

si t :=
exp(pm

t +mi t)

exp(ri t)
.

12The demand function (15) can be derived from a constant elasticity of substitution (CES) utility function,
where the elasticity of substitution parameter depends on u. The term αt implicitly captures aggregate expenditure
and an aggregate price index.
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Then, the first-order condition for (11) can be written as

ρ(ui t)θm = si t , (18)

which, in turn, determines the control function for ωi t as

ωi t =M−1
t (mi t , ki t , li t , ui t) = βt(ui t) + βm(ui t)mi t + βkki t + βl li t (19)

where βt(ui t) =
�

pm
t −αt(ui t)− θ0 − lnρ(ui t)θm

�

/ρ(ui t), βm(ui t) = (1−ρ(ui t)θm)/ρ(ui t)> 0,

βk = −θk and βl = −θl .

For notational brevity, assume that the support X includes two points (m∗t1, k∗t , l∗t ) = (0, 0, 0)
and (m∗t0, k∗t , l∗t ) = (1, 0, 0). Following Assumption 4, we fix the location and scale of ft(·) and

M−1
t (·) by imposing the following normalization:

0= ft(0, 0,0) = θ0, 0=M−1
t (0,0, 0,0.5) = βt(0.5),

1=M−1
t (1,0, 0,0.5) = βt(0.5) + βm(0.5) (20)

which implies θ0 = 0, βt(0.5) = 0, and βm(0.5) = 1.

Our identification approach follows three steps.

3.2.1 Step 1: Identification of the Demand Shocks

The first step identifies the demand shock ui t . Substituting ωi t =M−1
t (mi t , ki t , li t , ui t) and using

θ0 = 0, we obtain

ri t =(αt +ρ(ui t)βt(ui t)) +ρ(ui t) (θm + βm(ui t))mi t

+ρ(ui t) (θk + βk) ki t +ρ(ui t) (θl + βl) li t (21)

=φ̃(ui t) +mi t , (22)

where φ̃(ui t) := αt +ρ(ui t)βt(ui t) with φ̃′(u) = −θmρ
′(u)/ρ(u)> 0 for all u.

From (22), we have

Pr[ri t −mi t ≤ φ̃t (u)] = u for all u ∈ [0, 1]

because Pr[ri t − mi t ≤ φ̃t (u)] = Pr[φ̃t (ui t) ≤ φ̃t (u)] = u by the monotonicity of

φ̃t(·). Therefore, the quantile of ri t − mi t identifies ui t while the moment condition

E
�

1
�

ri t −mi t ≤ φ̃t (u)
	

− u
�

= 0 for u ∈ [0,1] identifies φ̃t(·).
Alternatively, from the first-order condition (18) and the monotonicity of ρ(·) with ρ′(·)< 0,
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the demand shock ui t is identified as the quantile of 1/si t . This equivalence arises because the

quantile of ri t −mi t coincides with that of 1/si t = exp(ri t −mi t − pm
t ).

Step 2: Identification of Control Function and TFP The second step identifies the control

functionM−1
t (·). Substituting (19) into the AR(1) process (16) leads to

M−1
t (mi t , ki t , li t , ui t) = h1M−1

t−1(mi t−1, ki t−1, li t−1, ui t−1) +ηi t . (23)

SinceM−1
t (mi t , ki t , li t , ui t) is linear in mi t from (19), we can rearrange (23) as:

mi t = γ(ui t , ut−1) + γk(ui t)ki t + γl(ui t)li t +δm(ui t , ui t−1)mi t−1

+δk(ui t)ki t−1 +δl(ui t)li t−1 + η̃i t , (24)

where

γk(ui t) = −
βk

βm(ui t)
, γl(ui t) = −

βl

βm(ui t)
, δk(ui t) =

h1βk

βm(ui t)
, δl(ui t) =

h1βl

βm(ui t)
, (25)

γ(ui t , ui t−1) =
−βt(ui t) + h1βt−1(ui t−1)

βm(ui t)
, (26)

η̃i t = ηi t/βm(ui t), and δm(ui t , ui t−1) = h1βm(ui t−1)/βm(ui t). For a given (ui t , ui t−1), (24) is a

linear model. Since E [ η̃i t | vi t] = E [ηi t | vi t]/βm(ui t) = 0, where vi t := (ki t , li t , x i t−1, ui t , ui t−1),
we can identify {γ(·, ·), γk(·), γl(·), δm(·, ·), δk(·), δl(·)} in (24) from the conditional moment

restriction E [ η̃i t | vi t] = 0.

Then, because βm(0.5) = 1, we can recover (θk,θl , h1) from (25) as

θk = −βk = γk(0.5), θl = −βl = γl(0.5), and h1 = −
δk(0.5)
γk(0.5)

= −
δl(0.5)
γl(0.5)

.

Also, applying the normalization (20) to (26), we have γ(0.5, ut−1) = h1βt−1(ut−1). Then, βm(u)
and βt(u) are identified from (25)-(26) as

βm(u) =
γk(0.5)
γk(u)

=
γl(0.5)
γl(u)

and βt(u) = γ(0.5, ut−1)−
γ(u, ut−1)γk(0.5)

γk(u)
.

Given the identification of (βk,βl ,βm(·),βt(·)), we can identify ωi t from (19).

Step 3: Identification of Production Function, Markup, and Demand Function The identifi-

cation of ρ(u) follows from substituting (18) into βm(u) = (1−ρ(u)θm)/ρ(u), and rearranging

13



the terms, which yields

ρ(ui t) =
1− si t

βm(ui t)
=

1− si t

γk(0.5)/γk(ui t)
.

Therefore, the markup 1/ρ(ui t) is identified.

The first order condition (18) implies that the revenue share of material expenditure is a

function of ui t , which we denote by s(u), such that si t = s(ui t). In particular, s(0.5) represents

the median revenue share of material expenditure. Then, the identification of θm follows from

the identification of ρ(u) and the first order condition (18) as

θm =
s(0.5)
ρ(0.5)

=
s(0.5)

1− s(0.5)
. (27)

The Identification under Normalization In view of the first-order condition ρ(ui t)θm = si t ,

it is clear from the argument above that the markup level cannot be separately identified from

the material input coefficient θm without imposing the normalization restriction βm(0.5) = 1.

More generally, the parameters are identified under the scale and location normalization of

ft(·) and M−1
t (·) in (20). Let θi (i = 0, m, k, l) and β j(ut) ( j = t, m, k, l) be those parameters

identified above and let θ ∗j and β∗i (ut) be the true parameters. Then, there exist unknown

normalization parameters (a, b) ∈ R×R+ such that

θ0 = a+ bθ ∗0 , βt = a+ bβ∗t , θi = bθ ∗i , β j(ut) = bβ∗j (ut).

We can fix the normalization by imposing further restrictions. For instance, if constant returns

to scale θ ∗m + θ
∗
k + θ

∗
l = 1 holds, then the scale parameter b can be identified as

b = b
�

θ ∗m + θ
∗
k + θ

∗
l

�

= θm + θk + θl =
s(0.5)

1− s(0.5)
− βk − βl .

We discuss in subsection 3.4 additional assumptions for fixing normalization.

The above identification argument is illustrative but relies on the linearity of

M−1
t (mi t , ki t , li t , ui t) under restrictive parametric assumptions. The next subsection establishes

nonparametric identification in a more general framework presented in Section 3.1.
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3.3 Nonparametric Identification

3.3.1 Step 1: Identification of the Demand Shocks

Substituting ωi t =M−1
t (mi t , wi t , ui t) into the revenue function (10), we can rewrite it as

ri t = ϕt

�

f (mi t , ki t , li t , zs
i t) +M

−1
t (mi t , wi t , ui t), zd

it , ui t

�

=: φt (mi t , wi t , ui t) , ui t ∼ Unif(0,1). (28)

We impose the following assumptions.

Assumption 5. (a) (Monotonicity) ∂ φt(m, w, u)/∂ u> 0 for all (m, w, u) ∈M ×W × [0,1].
(b) (Completeness) The conditional distribution of (mi t , wi t) given (mi t−υ−1, wi t−υ) is complete in

the sense of Chernozhukov and Hansen (2005); that is, for any measurable function g(m, w),

E[g(mi t , wi t) | mi t−υ−1, wi t−υ] = 0 a.s. ⇒ g(mi t , wi t) = 0 a.s.

Assumption 5(a) implicitly imposes restrictions on the shape of the demand function. The

Appendix shows that Assumption 5(a) holds if and only if ∂ ϕt
∂ u

∂ σt
∂ y >

∂ ϕt
∂ y

∂ σt
∂ u , whereσt(y, zd , u) :=

−1/
�

∂ψt (y,zd ,u)
∂ y

�

> 0 denote the demand elasticity. Since ∂ ϕt
∂ u > 0 and ∂ ϕt

∂ y > 0, a sufficient

condition for Assumption 5(a) is that an increase in the demand shock εi t makes demand less

elastic (i.e., increases the markup), while an increase in consumption makes demand more

elastic (i.e., decreases the markup).

Under Assumption 5(a), given values of (m, w), φt(m, w, ·) in (28) can be interpreted as the

quantile function of revenue r. Although mi t is endogenous and correlated with ui t , Assumption

1(ii) and equation (8) imply that ui t is independent of (mi t−υ−1, wi t−υ) while ui t is serially

correlated with uis for s = 1, ..., v. Then, we have13

Pr[ri t ≤ φt (mi t , wi t , u) |mi t−υ−1, wi t−υ] = u for all u ∈ [0, 1].

Assumption 5(b), referred to as the completeness condition, implies the following unique-

ness property: for any two candidate functions φ1
t and φ2

t and any fixed u ∈ [0,1],
E
�

1
�

ri t ≤ φ1
t (mi t , wi t , u)

	�

�mi t−υ−1, wi t−υ

�

= E
�

1
�

ri t ≤ φ2
t (mi t , wi t , u)

	�

�mi t−υ−1, wi t−υ

�

a.s.

13This follows because

Pr[ri t ≤ φt (mi t , wi t , u) |mi t−υ−1, wi t−υ] =Pr[φt (mi t , wi t , ui t)≤ φt (mi t , wi t , u) |mi t−υ−1, wi t−υ]
=Pr[ui t ≤ u|mi t−υ−1, wi t−υ]
=u,

where the second equality follows from the monotonicity of φt (m, w, ·) while the last equality holds because
ui t ⊥ (mi t−υ−1, wi t−υ).
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implies that φ1
t (·, ·, u) = φ2

t (·, ·, u) almost surely. Then, following Chernozhukov and Hansen

(2005), the moment condition

E [1 {ri t ≤ φt (mi t , wi t , u)} − u|mi t−υ−1, wi t−υ] = 0 for u ∈ [0, 1] (29)

identifies φt(·), and the demand shock ui t is identified as ui t = φ−1
t (ri t , mi t , wi t) under Assump-

tion 5.

Proposition 1. Under Assumptions 1, 2, 3, and 5 hold, φt(·) and ui t are identified.

Hereafter, φt(·) and ui t are assumed to be known.

3.3.2 Step 2: Identification of Control Function and TFP

From (7), the control function ωi t =M−1
t (mi t , wi t , ui t) satisfies

M−1
t (mi t , wi t , ui t) = h̄t

�

mi t−1, wi t−1, ui t−1, zh
it−1

�

+ηi t , (30)

where h̄t

�

mi t−1, wi t−1, ui t−1, zh
it−1

�

:= h
�

M−1
t−1(mi t−1, wi t−1, ui t−1), zh

it−1

�

. As ∂M−1
t /∂mi t > 0,

given the values of (wi t , ui t), the dependent variable in (30) is a monotonic transformation of

mi t . Therefore, the model (30) belongs to a class of transformation models, the identification

of which Chiappori et al. (2015) analyze.

We make the following assumption, which corresponds to Assumptions A1–A3, A5, and A6

in Chiappori et al. (2015).14

Assumption 6. (a) The distribution Gη(·) of ηi t is absolutely continuous with a den-

sity function gη(·) that is continuous on its support. (b) ηi t is independent of vi t :=
(wi t , ui t , mi t−1, wi t−1, ui t−1, zh

it−1)
′ ∈ V with E[ηi t |vi t] = 0. (c) vi t is continuously distributed on V .

(d) Support Ω of ωi t is an interval [ω, ω̄] ⊂ R, where ω< 0 and 1< ω̄. (e) h(·) is continuously

differentiable with respect to (ω, zh) on Ω×Zh. (f) The setAqt−1
:= {(mi t−1, wi t−1, ui t−1, zh

it−1) ∈
M ×W × [0,1] × Zh : ∂ Gmt |vt

(mi t |vi t)/∂ qi t−1 ̸= 0 for all (mi t , wi t , ut) ∈ M ×W × [0,1]} is

nonempty for some qi t−1 ∈ {mi t−1, ki t−1, li t−1, zs
i t−1, zd

it−1, ui t−1, zh
it−1}.

We can relax Assumption 6(b) by allowing zh
it and li t to correlate with ηi t as discussed in

subsection B. The sign restriction in Assumption 6(d) holds without loss of generality because

we can choose any two points in place of {0,1} on the support of ωi t without changing the

essence of our argument.

14Assumption 2 (c) corresponds to Assumption A4 of Chiappori et al. (2015).
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Assumption 6(f) can be interpreted as a generalized rank condition. Suppose gη (ηi t)> 0

for all ηi t ∈ R. Then, as will be shown below in (32), Assumption 6(f) holds if either

∂ h̄
�

m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

∂ z̃h
it−1

̸= 0 or

∂ h
�

M−1
t−1(m̃i t−1, w̃i t−1, ũi t−1), z̃h

it−1

�

∂ωi t−1

∂M−1
t−1(m̃i t−1, w̃i t−1, ũi t−1)

∂ qi t−1
̸= 0

holds for some
�

m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

and qi t−1 ∈ {mi t−1, ki t−1, li t−1, zs
i t−1, zd

it−1, ui t−1, zh
it−1}.

The latter condition is equivalent to (1) ωi t−1 has a causal impact on ωi t (∂ h/∂ωi t−1 ̸= 0) and

(2) qi t−1 has a causal impact on ωi t−1, (∂M−1
i t−1/∂ qi t−1 ̸= 0). These conditions must be satisfied

for at least one exogenous variable qi t−1 and some point (m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1).

Proposition 2 shows that the control function is identified from the distribution of (mi t , vi t).

Proposition 2. Suppose that Assumptions 1–6 hold. Then, we can identifyM−1
t (·) up to scale and

location and Gη(·) up to the scale normalization of ηi t .

Proof. The proof follows the proof of Theorem 1 in Chiappori et al. (2015). In view of equation

(30), the conditional distribution of mi t given vi t satisfies

Gmt |vt
(mi t |vi t) = Gηt |vt

�

M−1
t (mi t , wi t , ui t)− h̄t

�

mi t−1, wi t−1, ui t−1, zh
it−1

�

|vi t

�

= Gη
�

M−1
t (mi t , wi t , ui t)− h̄t

�

mi t−1, wi t−1, ui t−1, zh
it−1

��

,

where the second equality follows from ηi t ⊥ vi t in Assumption 6(b). Let qi t ∈
{mi t , ki t , li t , zs

i t , zd
it , ui t} and qi t−1 ∈ {mi t−1, ki t−1, li t−1, zs

i t−1, zd
it−1, zh

it−1, ui t−1}. The derivatives

of Gmt |vt
(mi t |vi t) are

∂ Gmt |vt
(mi t |vi t)

∂ qi t
=
∂M−1

t (mi t , wi t , ui t)

∂ qi t
gη (ηi t) , (31)

∂ Gmt |vt
(mi t |vi t)

∂ qi t−1
= −

∂ h̄
�

mi t−1, wi t−1, ui t−1, zh
it−1

�

∂ qi t−1
gη (ηi t) , (32)

where ηi t = M−1
t (mi t , wi t , ui t) − h̄t

�

mi t−1, wi t−1, ui t−1, zh
it−1

�

. Using Assumption 6(f), we can

choose qi t−1 ∈ {mi t−1, ki t−1, li t−1, zs
i t−1, zd

it−1, zh
it−1, ui t−1} and (m̃i t−1, w̃i t−1, ũi t−1, z̃h

it−1) ∈ Aqt−1

such that ∂ Gmt |vt

�

mt |kt , lt , zt , ut , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt−1 ≠ 0 for all (mt , kt , lt , zt , ut) ∈
M ×K ×L ×Z × [0, 1].

Dividing (31) by (32), we derive
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∂M−1
t (mi t , wi t , ui t)

∂ qi t
= −

∂ h̄
�

m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

∂ qi t−1

×
∂ Gmt |vt

�

mi t |wi t , ui t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt

∂ Gmt |vt

�

mi t |wi t , ui t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt−1

. (33)

Then, from (33) for qi t = mi t and the normalization in Assumption 4, we obtain

1=M−1
t (m

∗
t1, k∗t , l∗t , z∗t , u∗t )−M

−1
t (m

∗
t0, k∗t , l∗t , z∗t , u∗t )

= −
1

Sqt−1

∂ h̄
�

m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

∂ qt−1
, (34)

where

Sqt−1
:=

�

∫ m∗t1

m∗t0

∂ Gmt |vt

�

m|w∗t , u∗t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂mt

∂ Gmt |vt

�

m|w∗t , u∗t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt−1

dm

�−1

.

Then, we identify ∂ h̄
�

m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qi t−1 = −Sqt−1
. Substituting this into (33),

∂M−1
t (mi t , wi t , ui t)/∂ qi t for qt ∈ {mi t , ki t , li t , zs

i t , zd
it , ui t} are identified as follows:

∂M−1
t (mi t , wi t , ui t)

∂ qi t
= Sqt−1

∂ Gmt |vt

�

mi t |wi t , ui t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt

∂ Gmt |vt

�

mi t |wi t , ui t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt−1

. (35)

Integrating (35) with respective to qi t ∈ {mi t , ki t , li t , zi t} obtains for any (mt , kt , lt , zs
t , zd

t , ut),

M−1
t (mt , kt , lt , zs

t , zd
t , ut)

=

∫ mt

m∗t0

∂M−1
t (s, kt , lt , zs

t , zd
t , ut)

∂mi t
ds+

∫ kt

k∗t

∂M−1
t (m

∗
t0, s, lt , zs

t , zd
t , ut)

∂ ki t

+

∫ lt

l∗t

∂M−1
t (m

∗
t0, k∗t , s, zs

t , zd
t , ut)

∂ li t
ds+

∫ zs
t

zs∗
t

∂M−1
t (m

∗
t0, k∗t , l∗t , s, zd

t , ut)

∂ zs
i t

ds

+

∫ zd
t

zd∗
t

∂M−1
t (m

∗
t0, k∗t , l∗t , zs∗

t , s, ut)

∂ zd
it

ds+

∫ ut

u∗t

∂M−1
t (m

∗
t0, k∗t , l∗t , zs∗

t , zd∗
t , s)

∂ ui t
ds (36)

where the equality follows fromM−1
t (m

∗
t0, k∗t , l∗t , z∗t , u∗t) = 0 in Assumption 4. Substituting the

identified derivatives ofM−1
t (·) in (35) into (36), we can identifyM−1

t (mt , kt , lt , zs
t , zd

t , ut) for

all
�

mt , kt , lt , zs
t , zd

t , ut

�

on their supports.

Finally, from ωi t = M−1
t (mi t , wi t , ui t), we can identify h̄t(mi t−1, wi t−1, ui t−1, zh

it−1) =
E
�

ωi t |mi t−1, wi t−1, ui t−1, zh
it−1

�

and ηi t =ωi t−h̄t(mi t−1, wi t−1, ui t−1, zh
it−1). Thus, we can identify
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the distribution of ηi t , Gηt
(·).

3.3.3 Step 3: Identification of Production Function, Markup, and Demand Function

The final step identifies production function, markup, and demand function. From

φt(mi t ,wi t ,ui t) = ϕt

�

ft(x i t , zs
i t) +M

−1
t (mi t , wi t , ui t) , zd

it , ui t

�

and the monotonicity of ϕt , dif-

ferentiating ϕ−1
t (φt(mi t , wi t , ui t), zd

it , ui t) = ft(x i t , zs
i t) +M

−1
t (mi t , wi t , ui t) with respect to qs

i t ∈
{mi t , ki t , li t , zs

i t} and qd
it ∈ {z

d
it , ui t} gives:

∂ ϕ−1
t (ri t , zi t , ui t)

∂ ri t

∂ φt(mi t , wi t , ui t)
∂ qs

i t

=
∂ ft(x i t , zs

i t)

∂ qs
i t

+
∂M−1

t (mi t , wi t , ui t)

∂ qs
t

, (37)

∂ ϕ−1
t (ri t , zd

it , ui t)

∂ ri t

∂ φt(mi t , wi t , ui t)
∂ qd

it

=
∂M−1

t (mi t , wi t , ui t)

∂ qd
it

−
∂ ϕ−1

t (ri t , zd
it , ui t)

∂ qd
t

. (38)

Note that ∂ ϕ−1
t (ri t , zd

it , ui t)/∂ rt =
�

∂ ϕt(yi t , zd
it , ui t)/∂ yt

�−1
represents the markup from (1). If

the markup ∂ ϕ−1
t (ri t , zd

it , ui t)/∂ rt were known, then equations (37) and (38) could identify

∂ ft(x t , zs
i t)/∂ qs

t and ∂ ϕ−1
t (ri t , zd

it , ui t)/∂ qd
t given thatM−1

t (mi t , wi t , ui t) is identified. However,

since the markup is unknown, identification requires further restriction. Following Gandhi et al.

(2020), we use the first-order condition with respect to the material as an additional restriction.

Assumption 7. The first-order condition with respect to material for the profit maximization

problem (11)
∂ ft(x i t , zs

i t)

∂mi t
=
∂ ϕ−1

t (ri t , zd
it , ui t)

∂ ri t

exp(pm
t +mi t)

exp (ri t)
(39)

holds for all firms.

Rearranging the first-order condition, we obtain the markup equation used by De Loecker

and Warzynski (2012):

∂ ϕ−1
t (ri t , zd

it , ui t)

∂ rt
=

∂ ft(x i t , zs
i t)/∂mi t

exp(pm
t +mi t)/exp (ri t)

. (40)

We establish the following proposition.

Proposition 3. Suppose that Assumptions 1–7 hold. Then, we can identify ϕ−1
t (·), ft(·), and ψt(·)

up to scale and location and each firm’s markup ∂ ϕ−1
t (ri t , zd

it , ui t)/∂ rt up to scale.

Proof. From (37) and (39), the markup ∂ ϕ−1
t (ri t , zd

it , ui t)/∂ rt is identified as

∂ ϕ−1
t (ri t , zd

it , ui t)

∂ rt
=
∂M−1

t (mi t , wi t , ui t)

∂mt

�

∂ φt(mi t , wi t , ui t)
∂mt

−
exp(pm

t +mi t)

exp (ri t)

�−1

. (41)
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From φt and (41), the markup is also identified as a function of (mt , wt , ut) as

µt(mt , wt , ut) :=
∂ ϕ−1

t (φt(mt , wt , ut), zt)

∂ rt

=
∂M−1

t (mt , wt , ut)

∂mt

�

∂ φt(mt , wt , ut)
∂mt

−
exp(pm

t +mt)

exp (φt(mt , wt , ut))

�−1

(42)

Substituting (42) into (37), we identify ∂ ft(x t , zs
t)/∂ qt for qs

t ∈ {mt , kt , lt , zs
t} as follows:

∂ ft(x t , zs
t)

∂ qt
= µt(mt , wt , ut)

∂ φt(mt , wt , ut)
∂ qt

−
∂M−1

t (mt , wt , ut)

∂ qt
. (43)

Using ft(m∗t0, k∗t , l∗t , zs∗
t ) = 0 in Assumption 4, we identify ft(x t) by integration:

ft(mt , kt , lt , zs
t) =

∫ mt

m∗t0

∂ ft(s, kt , lt , zs
t)

∂mt
ds+

∫ kt

k∗t

∂ ft(m∗t0, s, lt , zs
t)

∂ kt
ds

+

∫ lt

l∗t

∂ ft(m∗t0, k∗t , s, zs
t)

∂ lt
ds+

∫ zs
t

zs∗
t

∂ ft(m∗t0, k∗t , l∗t , s)

∂ zs
t

ds. (44)

Let R := {rt : rt = φt(mt , wt , ut) for some (mt , wt , ut) ∈ X ×Z × [0, 1]} be the support of

rt . For given (rt , zd
t ) ∈ R ×Zd , Bt(rt , zd

t , ut) := {
�

x t , zs
t

�

∈ X ×Zs : φt(x t , zs
t , zd

t , ut) = rt} is

non-empty by the construction ofR . Then, because ft(x t , zs
t) andM−1

t (mt , wt , ut) are identified,

the output quantity ϕ−1
t (rt , zt , ut) for any (rt , zt , ut) ∈ R ×Z × [0, 1] is identified by

ϕ−1
t (rt , zd

t , ut) = ft(x t , zs
t) +M

−1
t (mt , wt , ut) for

�

x t , zs
t

�

∈ Bt(rt , zd
t , ut).

By monotonicity, ϕt(yt , zd
t , ut) is identified from ϕ−1

t (rt , zd
t , ut). Then, we can identify

ψt(yt , zd
t , ut) as ψt(yt , zd

t , ut) = ϕt(yt , zd
t , ut)− yt .

The output quantity and price for individual firms are identified as yi t = ϕ−1
t (ri t , zd

it , ui t)
and pi t =ψt(yi t , zd

it , ui t) = ri t −ϕ−1
t (ri t , zd

it , ui t), respectively.

Corollary 1. Suppose that Assumptions 1–7 hold. Then, the production function, the demand

function, output quantities, output prices, and TFP are identified up to scale and location; markups

and output elasticities are identified up to scale.

Remark 1. Examination of the proofs reveals that we have over-identifying restrictions.

In particular, the proof of Proposition 2 goes through with any choice of qi t−1 ∈
{ki t−1, li t−1, mi t−1, zs

i t−1, zd
it−1, ui t−1, zh

it−1} in (35). Furthermore, the proof of Proposition 3 does

not rely on the restriction in (38) for identifying ϕ−1
t (·). These over-identifying restrictions
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can be exploited to construct specification tests for the model and to obtain more efficient

estimation.

3.3.4 Comparison to Existing Identification Approaches

Our setup extends existing identification analyses of production functions by allowing prices

to depend on output through an inverse demand function and by incorporating transitory

unobserved demand shocks as a source of heterogeneous markups. While our approach builds

on existing identification methods, our use of control functions and the IVQR framework differs

from conventional formulations.

First, because the model includes both productivity and demand shocks, the standard control

function approach cannot account for both sources of unobserved heterogeneity. We therefore

assume that demand shocks are transitory while productivity shocks are persistent and use the

IVQR approach to identify demand shocks in Step 1.

Second, Step 2 identifies the control function from the dynamics of input choices without

relying on output measures, distinguishing our approach from the standard control function

framework (e.g., Ackerberg et al., 2015).

Third, Ackerberg et al. (2015) identify a structural value-added function, yi t =
f̃t(ki t , li t) + ωi t , derived under perfect competition from a Leontief production function

yi t =min{ f̃t(ki t , li t)+ωi t , a+mi t}. This formulation is difficult to apply under imperfect competi-

tion because yi t < f̃t(ki t , li t)+ωi t can occur. The maximum output capacity y∗i t := f̃t(ki t , li t)+ωi t

is determined before a firm chooses mi t and yi t , so when y∗i t is large—e.g., due to a high produc-

tivity shock—a profit-maximizing firm may produce yi t < y∗i t .
15 Intuitively, when TFP doubles,

a firm may avoid a large price decline by expanding output less than proportionally.

Fourth, our approach differs from Gandhi et al. (2020) in the use of the first-order condition

for materials. Their method identifies the material elasticity ∂ ft(x i t , zs
i t)/∂mi t from the first-

order condition (39): ln
∂ ft (x i t ,z

s
i t )

∂mi t
= ln

exp(pm
t +mi t )

exp(ri t )
+ ln

∂ ϕ−1
t (ri t ,z

d
it ,ui t )

∂ rt
, assuming perfect competition

where ∂ ϕ−1
t (ri t , zd

it , ui t)/∂ ri t = 1 for all i. Under imperfect competition, when the markup

depends on revenue ri t , ∂ ft(x i t , zs
i t)/∂mi t cannot be identified solely from this condition.

3.4 Fixing Normalization across Periods

Let (ϕ−1
t (·), ft(·),M−1

t (·)) be a model structure for period t identified by using Propositions 2

and 3 under the normalization in Assumption 4. Let (ϕ∗−1
t (·), f ∗t (·),M

∗−1
t (·)) denote the true

model structure. Since the structure is identified up to scale and location normalization, there

15As noted by Ackerberg et al. (2015), under perfect competition yi t < y∗i t implies zero output, so only firms
with yi t = y∗i t are observed. Under imperfect competition, however, positive output with yi t < y∗i t is possible.

21



exist period-specific location and scale parameters (a1t , a2t , bt) ∈ R2 ×R+ such as

ϕ−1
t (ri t , zd

it , ui t) = a1t + a2t + btϕ
∗−1
t (ri t , zd

it , ui t), ft(x i t , zs
i t) = a1t + bt f ∗t (x i t , zs

i t),

M−1
t (mi t , wi t , ui t) = a2t + btM∗−1

t (mi t , wi t , ui t). (45)

Generally speaking, the location and scale normalization differ across periods—that is,

(a1t , a2t , bt) ̸= (a1t+1, a2t+1, bt+1). For the identified objects to be comparable across periods,

we need to fix normalization across periods by assuming that some object in the model is

time-invariant. The subsection discusses these additional assumptions.16

3.4.1 Scale Normalization

From (45), the ratio of identified markups across two periods relates to the ratio of true markups

as
∂ ϕ−1

t+1(ri t+1, zd
it+1, ui t+1)/∂ r

∂ ϕ−1
t (ri t , zd

it , ui t)/∂ r
=

bt+1

bt

∂ ϕ∗−1
t+1(ri t+1, zd

it+1, ui t+1)/∂ r

∂ ϕ∗−1
t (ri t , zd

it , ui t)/∂ r
.

Therefore, the ability to identify how true markups change over two periods requires identifica-

tion of the ratio of scale parameters, bt+1/bt . Similarly, the ratio of identified output elasticities

across periods and that of identified TFP deviation from the mean are related to their true

values via the ratio of scale parameters:

∂ ft+1(x i t+1, zs
i t+1)/∂ q

∂ ft(x i t , zs
i t)/∂ q

=
bt+1

bt

∂ f ∗t+1(x i t+1, zs
i t+1)/∂ q

∂ f ∗t (x i t , zs
i t)/∂ q

ωi t+1 − E [ωi t+1]
ωi t − E [ωi t]

=
bt+1

bt

�

ω∗i t+1 − E
�

ω∗i t+1

�

ω∗i t − E
�

ω∗i t
�

�

for q ∈ {m, k, l, zs}.
To identify bt+1/bt , we consider the following assumptions.

Assumption 8. At least one of the following conditions (a)–(c) holds. (a) The unconditional

variance of ηi t does not change over time. (b) For some known intervalB of X and some known

point zs ∈ Zs, the output elasticity of one of the inputs evaluated at zs
i t = zsdoes not change over

time for all x ∈ B . (c) For some known interval B of X and some known point zs ∈ Zs, the

16Klette and Griliches (1996) and De Loecker (2011) identify the levels of markups and output elasticities
from revenue data by using a functional form property of a demand function. They consider a constant elastic
demand function leading to ϕt(yi t , zi t) = αyi t − (α − 1)zi t where zi t is an aggregate demand shifter, which
is an weighted average of revenue across firms, and α is an unknown parameter. This formulation implies
ϕ−1

t (ri t , zi t) = (1/α)ri t +(1−1/α)zi t and imposes a linear restriction ∂ ϕ−1
t (ri t , zi t)/∂ ri t +∂ ϕ−1

t (ri t , zi t)/∂ zi t = 1,
which fixes the scale parameter bt .
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sum of output elasticities of the three inputs evaluated at zs
i t = zsdoes not change over time for all

x ∈B .

Assumption 8(a) holds, for example, if the productivity shockωi t follows a stationary process

because stationarity requires that the distribution of ηi t does not change over time. Assumption

8(b) assumes that the elasticity of output with respect to one input does not change over time

for some known interval; meanwhile, under Assumption 8(c), returns to scale in production

technology does not change for some known interval of inputs.

Proposition 4. Suppose that Assumptions 1–8 hold for time t and t + 1. Then, we can identify

the ratio of markups between two periods t and t + 1, the ratio of output elasticities between t and

t + 1, and the ratio of TFP deviation from the mean between t and t + 1.

Proof. Suppose that Assumption 8(a) holds. Let var(ηt) and var(ηt+1) be the variance of ηt

and ηt+1 identified under the period-specific normalization in Assumption 4 for t and t + 1,

respectively. From (30) and (45), var(ηt) = b2
t var(η∗t) and var(ηt+1) = b2

t+1var(η∗t+1). From

var(η∗t ) = var(η∗t+1), bt+1/bt is identified as bt+1/bt =
p

var(ηt)/var(ηt+1).
Let ∂ ft(x t , zs

t)/∂ q and ∂ ft+1(x t+1, zs
t+1)/∂ q be those elasticities identified under the period-

specific normalization in Assumption 4 for t and t + 1, respectively, and ∂ f ∗t (x t , zs
t)/∂ q and

∂ f ∗t+1(x t+1, zs
t+1)/∂ q be the true elasticities. From (45), ∂ ft(x t , zs

t)/∂ q = bt∂ f ∗t (x t , zs
t)/∂ q and

∂ ft+1(x t+1, zs
t+1)/∂ q = bt+1∂ f ∗t+1(x t+1, zs

t+1)/∂ q hold.

Suppose that Assumption 8(b) holds. Then, ∂ f ∗t (x , zs)/∂ q = ∂ f ∗t+1(x , zs)/∂ q for

some input q ∈ {m, k, l} and x ∈ B . Then, bt+1/bt is identified as bt+1/bt =
(∂ ft+1(x , zs)/∂ q)/(∂ ft(x , zs)/∂m) for x ∈B .

Suppose that Assumption 8(c) holds, implying

1=
∂ f ∗t+1(x , zs)/∂m+ ∂ f ∗t+1(x , zs)/∂ k+ ∂ f ∗t+1(x , zs)/∂ l

∂ f ∗t (x , zs)/∂m+ ∂ f ∗t (x , zs)/∂ k+ ∂ f ∗t (x , zs)/∂ l
for x ∈B .

Then, bt+1/bt is identified as

bt+1

bt
=
∂ ft+1(x , zs)/∂m+ ∂ ft+1(x , zs)/∂ k+ ∂ ft+1(x , zs)/∂ l
∂ ft(x , zs)/∂m+ ∂ ft(x , zs)/∂ k+ ∂ ft(x , zs)/∂ l

for x ∈B .

3.4.2 Local Constant Returns to Scale

We consider the following local constant returns to scale that strengthens Assumption 8(c).
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Assumption 9. (Local Constant Returns to Scale) For some known interval B of X and some

known point zs ∈ Zs, the sum of the output elasticities of the three inputs evaluated at zs
i t = zs

t

equals to 1 for all x ∈B .

Assumption 9 is stronger than Assumption 8(c) but weaker than those used in some studies

of markup estimation. In particular, markups are often estimated as the ratio of revenue exp(ri t)
to total cost T Ci t under the assumption of a linear cost function T Ci t = MCi t yi t with constant

marginal cost MCi t . Such a linear cost function requires stronger conditions than Assumption

9: (i) global constant returns to scale for all x ∈ X , (ii) full flexibility of all inputs, and (iii)

price-taking behavior in all input markets. By contrast, under Assumption 9, marginal cost may

increase with output, especially in the short run when dynamic inputs such as capital entail

adjustment costs.

With Assumption 9, the scale normalization parameter bt can be identified for all periods as

follows. Let ft(x t , zs
t) be the identified production function under Assumption 4 and f ∗t (x t) be

the true one where ft(x t , zs
t) = at + bt f ∗t (x t , zs

t) from (45). For x ∈B , we have

bt = bt

�

∂ f ∗t (x , zs)

∂m
+
∂ f ∗t (x , zs)

∂ k
+
∂ f ∗t (x , zs)

∂ l

�

=
∂ ft(x , zs)
∂m

+
∂ ft(x , zs)
∂ k

+
∂ ft(x , zs)
∂ l

.

Given that we have identified the scale parameter bt in (45), we have established the following

proposition.

Proposition 5. Suppose that Assumptions 1–7 and 9 hold. Then, ϕt(·), ft(·), and ψt(·) can be

identified up to location. The levels of markup and output elasticities can be identified. Output

quantity, output price, and TFP can be identified up to location.

3.4.3 Location Normalization

Suppose that scale normalization bt is already identified—for example, from Proposition 5.

Define

ϕ̃−1
t (ri t , zd

it , ui t) := ϕ−1
t (ri t , zd

it , ui t)/bt , f̃t(x i t , zs
i t) := ft(x i t , zs

i t)/bt , ω̃i t :=ωi t/bt ,

ã1t := a1t/bt , and ã2t := a2t/bt . (46)

Then, (45) is written as

ϕ̃−1
t (ri t , zd

it , ui t) = ã1t + ã2t +ϕ
∗−1
t (ri t , zd

it , ui t), f̃t(x i t , zs
i t) = ã1t + f ∗t (x i t , zs

i t), ω̃i t = ã2t +ω
∗
i t .

(47)
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From (45), the growth rates (log differences) of the identified output and TFP between t and

t + 1 are related to their true values as follows:

ϕ̃−1
t+1(ri t+1, zd

it+1, ui t+1)− ϕ̃−1
t (ri t , zd

it , ui t) = ã1t+1 + ã2t+1 − ã1t − ã2t

+ϕ∗−1
t+1(ri t+1, zd

it+1, ui t+1)−ϕ∗−1
t (ri t , zd

it , ui t),

f̃t+1(x i t+1, zs
i t+1)− f̃t(x i t , zs

i t) = ã1t+1 − ã1t + f ∗t (x i t+1, zs
i t+1)− f ∗t (x i t , zs

i t),

ω̃i t+1 − ω̃i t = ã2t+1 − ã2t +ω
∗
i t+1 −ω

∗
i t . (48)

Therefore, to identify the growth rates of output and TFP, we need to identify the changes in

the location parameters. To do so, we can use an industry-level producer price index P∗t , which

is often available as data, to identify the change in the location parameters. Suppose that P∗t is

a Laspeyres index

P∗t :=

∑

i∈Ñ exp(p∗i t + y∗i0)
∑

i∈Ñ exp(p∗i0 + y∗i0)
, (49)

where Ñ is a known set (or a random sample) of products. p∗i0 and y∗i0 are firm i’s log true price

and log true output at the base period, respectively. The following argument holds for forms of

a price index (other than Laspeyres) as long as the price index is a known function of prices

that is homogenous of degree 1, which is typically satisfied.

Assumption 10. (a) The industry-level producer price index P∗t is known as data. (b) For some

known point ( x̄ , z̄s) ∈ X ×Zs and the true production functions of t and t + 1, f ∗t (·) and f ∗t+1(·),
satisfy f ∗t ( x̄ , z̄s) = f ∗t+1( x̄ , z̄s).

Assumption 10(b) is innocuous, implying that any output change between t and t + 1 when

inputs are fixed at x̄ is attributed to a TFP change.

Using the aggregate price index, we can identify the change in the location parameters and

identify the growth of TFP and output.

Proposition 6. Suppose Assumptions 1–7, 9, and 10 hold. Then, the true growth rate of output

ϕ∗−1
t+1(ri t+1, zd

it+1, ui t+1)−ϕ∗−1
t (ri t , zd

it , ui t) and that of TFP ω∗i t+1 −ω
∗
i t can be identified for each

firm.

Proof. Let p̃i t := ri t − ϕ̃−1
t (ri t , zd

it , ui t) and ỹi t := ϕ̃−1
t (ri t , zd

it , ui t) be an output price and an

output quantity identified under the normalization in (46) and Assumption 4, respectively.

Using these, we calculate an industry-level producer price index with them:

Pt :=

∑

i∈Ñ exp(p̃i t + ỹi0)
∑

i∈Ñ exp(p̃i0 + ỹi0)
.
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From (47) and (49), Pt is written as

Pt =

∑

i∈Ñ exp(−(ã1t + ã2t) + p∗i t + ã1,0 + ã2,0 + y∗i0)
∑

i∈Ñ exp(p∗i0 + y∗i0)

= exp(ã1,0 + ã2,0 − (ã1t + ã2t))P
∗
t .

Therefore, ã1t+1 + ã2t+1 − ã1t − ã2t is identified as:

ã1t+1 + ã2t+1 − ã1t − ã2t = ln P∗t+1 − ln Pt+1 −
�

ln P∗t − ln Pt

�

(50)

From (48), we identify the output growth rate ϕ∗−1
t+1(ri t+1, zd

it+1, ui t+1)−ϕ∗−1
t (ri t , zd

it , ui t).
Evaluating the second equation in (48) at x t+1 = x t = x̄ and zs

t+1 = zs
t = z̄sin Assumption

10(b), we identify ã1t+1 − ã1t as:

ã1t+1 − ã1t = ã1,t+1 + f ∗t+1( x̄ , z̄s)−
�

ã1,t + f ∗t ( x̄ , z̄s)
�

= f̃t+1( x̄ , z̄s)− f̃t( x̄ , z̄s).

From (50), ã2t+1 − ã2t is also identified as

ã2t+1 − ã2t = ln P∗t+1 − ln Pt+1 −
�

ln P∗t − ln Pt

�

−
�

f̃t+1( x̄ , z̄s)− f̃t( x̄ , z̄s)
�

.

Therefore, from (48), the true TFP growth rate ω∗i t+1 −ω
∗
i t is also identified.

3.5 Identification of HSA Demand System and Utility Function

Given that we have identified each firm’s output price and quantity, it is possible to identify

with additional assumptions a system of demand functions and a homothetic utility function of

a representative consumer. The identified demand system and the identified utility function

can be used to undertake counterfactual analysis and welfare analysis.

3.5.1 HSA demand system

We consider an HSA (homothetic single aggregator) system (?) of inverse demand functions.17

Let Nt be the number of firms in the industry and Φt := ln
�∑Nt

i=1 exp (ri t)
�

be the log of industry

expenditure. The HSA system of inverse demand functions for products i = 1, ..., Nt in an

17The HSA system can be expressed as a system of direct demand functions or of inverse demand functions.
The two systems are self-dual in the sense that either can be derived from the other. ? and ? provide excellent
reviews on flexible extensions of the CES demand system, including the HSA demand system.
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industry is expressed as:

pi t = s∗t
�

yi t − qt

�

yt ,z
d
t ,ut

�

, zd
it , ui t

�

+Φt − yi t for i = 1, ..., Nt

where Φt is the log of consumer expenditure (budget) on the industry, st(·, zd
it , ui t) provides

the log of the market (budget) share of product i, yt := (y1t , ..., yNt t) ∈ Y Nt is a vector of

consumption, zd
t := (zd

1t , ..., zd
Nt t) is a vector of observable demand shifters and ut := (u1t , ..., uNt t)

is a vector of demand shocks, and qt(yt ,z
d
t ,ut) is the aggregate quantity index summarizing

interactions across products18. Note that qt(yt ,z
d
t ,ut) is uniquely defined by the market share

constraint:

1=
Nt
∑

i=1

exp
�

s∗t
�

yi t − qt(yt , zd
t , ut), zd

t , ui t

��

. (51)

Since s∗t (·) is nonparametric, the HSA demand system can nest various demand systems used

in the literature such as the CES demand system and the symmetric translog demand system

(Feenstra, 2003; Feenstra and Weinstein, 2017).19

3.5.2 Identification of the HSA demand system

For identification of a demand system, we make the following assumptions.

Assumption 11. (a) The good market is monopolistically competitive (without free entry)—that

is, each firm takes the quantity index qt

�

yt ,z
d
t ,ut

�

as given. (b) ϕ−1
t (rt , zd

t , ut) is identified up to

location.

First, the assumption of monopolistic competition follows Klette and Griliches (1996) and

De Loecker (2011), with the inverse demand function becoming a symmetric function of the

firm’s own output, as in (9). Second, the demand elasticity equals (µ− 1)/µ when µ is markup.

To identify the demand elasticity, we need to fix the scale normalization. Assumption 11 (b) is

satisfied when Proposition 5 holds.

An HSA demand system can be identified as follows. Suppose variables in data are in an

“initial equilibrium” and we identify the “reduced-form” revenue function ri t = ϕt(yi t , zd
it , ui t)

from the data. Let Φt be the total industry expenditure, Φt = ln
�∑Nt

i=1 exp (ri t)
�

. We first define

18If the utility function is CES, U(yt) =
�

∑Nt
i=1 exp (ρ yi t)

�1/ρ
, the inverse demand becomes pi t =

ρ (yi t − ln U(yt)) + Φt − yi t , and the quantity index is the same as the utility function, but they are generally
different.

19See Matsuyama and Ushchev (2020) regarding how the HSA nests the translog demand.

27



the reduced-form budget share equation as:

st

�

·, zd
it , ui t

�

≡ ϕt

�

·, zd
it , ui t

�

−Φt .

The structural and reduced-form functions are in the following relationship:

st

�

yi t , zd
it , ui t

�

= s∗t
�

yi t − q0t , zd
it , ui t

�

(52)

where q0t is the level of the quantity index in the initial equilibrium. For a given output vector

yt , we define q̃t(yt , zd
t , ut) by using the reduced-form revenue function:

1=
N
∑

i=1

exp
�

st

�

yi t − q̃t(yt , zd
t , ut), ui t

��

. (53)

Then, we obtain a system of inverse demand functions for products i = 1, ..., Nt in an industry:

pi t = st

�

yi t − q̃t

�

yt ,z
d
t ,ut

�

, zd
it , ui t

�

+Φt − yi t for i = 1, ..., Nt

From (52), q̃t(yt ,z
d
t ,ut) = qt(yt ,z

d
t ,ut) − q0t . Thus, we can identify the change in the

quantity index from the initial equilibrium. Since

st

�

yi t − q̃t(yt ,z
d
t ,ut), zi t , ui t

�

= s∗t
�

yi t − qt(yt ,z
d
t ,ut), zd

it , ui t

�

,

we can use
�

st(·, ), q̃t(yt ,z
d
t ,ut),Φt

	

constructed above to obtain the value of the structural HSA

demand system
�

s∗t (·), qt(yt ,z
d
t ,ut),Φt

	

.

Applying the result of Matsuyama and Ushchev (2017, Proposition 1 and Remark 3), the

following proposition establishes that the HSA demand system constructed above can be derived

from a unique consumer preference, and that it is possible to identify an associated utility

function. Appendix A.3 supplies the proof.

Proposition 7. Suppose Assumption 11 holds. (a) There exists a unique monotone, con-

vex, and homothetic rational preference ¥ over Ȳ that generates an HSA demand system
�

ϕt(·), q̃t(yt , zd
t , ut),Φt

	

. (b) This preference ¥ is represented by a homothetic utility function

defined by

ln Ut(yt ,z
d
t ,ut) = q̃t(yt ,z

d
t ,ut) +

Nt
∑

i=1

∫ yi t−q̃t (yt ,z
d
t ,ut )

c

exp
�

st

�

ζ, zd
it , ui t

��

dζ

for some constant c > 0. (c) The identified demand system and preference ¥ do not depend on the
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location normalization of ϕ−1
t (rt , zd

t , ut).

3.5.3 Counterfactual analysis

We conduct a short-run partial equilibrium counterfactual analysis where firms change materials,

outputs, and prices, while pre-determined factor inputs (ki t , li t), factor prices, and exogenous

variables (zd
it , zs

i t , ui t ,ωi t , pmt) are fixed.

Monopolistic Competition Equilibrium Using the identified HSA demand system

{ϕt(·), q̃t(yt , zd
t , ut)}, we can calculate a monopolistic competition equilibrium (MCE). Define

mi t = χi t (yi t) such that yi t = ft

�

χi t (yi t) , ki t , li t , zs
i t

�

+ωi t for given (ki t , li t ,ωi t , zs
i t). Equilib-

rium outputs and quantity index (ym
t , q̃m

t ) in an MCE are obtained from the log of the first order

condition for (11) and the market share condition (53) as follows:

st

�

ym
it − q̃m

t , zd
it , ui t

�

+Φt + ln
∂ st

�

ym
it − q̃m

t , zd
it , ui t

�

∂ yi t

+ ln
∂ ft

�

χi t

�

ym
it

�

, ki t , li t

�

∂mi t
− pmt −χi t

�

ym
it

�

= 0 for i = 1, ..., Nt

Nt
∑

i=1

exp
�

st

�

ym
it − q̃m

t , zd
it , ui t

��

= 1. (54)

The above system can be extended to incorporate policies such as tax and subsidies to investigate

their effects.

Welfare Costs of Firm’s Market Power In an empirical section below, we quantify the dead-

weight loss attributable to firm’s market power by considering the transition to a counterfactual

marginal cost pricing equilibrium (MCPE) i.e. perfect competition. In a MCPE, each firm sets

its price equal to its marginal cost. Equilibrium outputs and quantity index (yc
t , q̃c

t ) are obtained

from the first order conditions, which sets the markup to one,
�

∂ st(ym
it−q̃m

t ,zd
it ,ui t)

∂ yi t

�−1

= 1, in (54),

and the market share condition (53) as follows:

st

�

y c
i t − q̃c

t , zd
it , ui t

�

+Φc
t

+ ln
∂ ft

�

χi t

�

y c
i t

�

, ki t , li t

�

∂mi t
− pmt −χi t

�

y c
i t

�

= 0 for i = 1, ..., Nt

Nt
∑

i=1

exp
�

st

�

y c
i t − q̃c

t , zd
it , ui t

��

= 1. (55)
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The consumer welfare cost of firm’s market power can be calculated as the utility change:

ln Ut(y
c
t ,z

d
t ,ut)− ln Ut(y

m
t ,zd

t ,ut) = q̃t(y
c
t ,z

d
t ,ut)− q̃t(y

m
t ,zd

t ,ut)

+
Nt
∑

i=1

∫ y c
i t−q̃t (yc

t ,z
d
t ,ut )

ym
it−q̃t (ym

t ,zd
t ,ut )

exp
�

st

�

ζ, zd
it , ui t

��

dζ.

An alternative welfare measure is the compensation variation, which is expressed in monetary

term. Solving (55) for a given counterfactual log income Φc
t , we can express outputs y c

i t(Φ
c
t) in

the MCPE as functions of Φc
t . Then, we find a counterfactual income Φc∗

t that achieve the same

utility as in the benchmark MCE.

ln Ut(y
c
t(Φ

c∗
t ),z

d
t ,ut)− ln Ut(y

m
t ,zd

t ,ut) = 0. (56)

Then, the compensation variation CVt is obtained as CVt ≡ exp
�

Φc
t

�

− exp
�

Φm
t

�

.

To evaluate the overall welfare change, the consumer’s loss may be compared with firms’

profit loss. The change in the total profits is the change in the total revenue minus the total

material costs:

Πc −Πm ≡
�

Φc
t −Φ

m
t

�

− exp (pmt)
Nt
∑

i=1

�

exp
�

χi t

�

y c
i t

��

− exp
�

χi t

�

ym
it

��	

. (57)

3.6 Endogenous Labor Input

Identification is possible when a firm chooses li t after observing ωi t and ui t . In the spirits

of Ackerberg et al. (2015) and the dynamic generalized method of moment approach (e.g.,

Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and Bond, 1998, 2000), we provide

identification using lagged labor li t−1. Specifically, we assume a firm incurs an adjustment cost

of labor input, e.g., costs of recruiting and training new workers. The profit maximization

problem for choosing li t and mi t at time t is

max
m,l

exp(ϕt( ft(m, l, ki t , zs
i t) +ωi t , zd

it , ui t))− exp(pm
t +m)− exp(pl

t + l)− C(l, li t−1), (58)

where pl
t is the wage and C(li t , li t−1) is the adjustment costs.The solution to the problem

provides a material demand function mi t = M̃t (ωi t , li t−1, si t , ui t) and a labor demand function

li t = L̃t(ωi t , li t−1, si t , ui t), where si t := (ki t , zs
i t , zd

it). We also consider a “conditional” material

demand function mi t = Mt (ωi t , li t , si t , ui t) when li t is given, which solves the conditional

problem (11).

We assume both M̃t (·, li t−1, si t , ui t) andMt (·, li t , si t , ui t) are monotonically increasing func-
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tions so that there exist their inverse functions

ωi t =M−1
t (mi t , li t , si t , ui t) = M̃−1

t (mi t , li t−1, si t , ui t) .

In the first step, we substitute ωi t =M−1
t (·) into the revenue function to obtain

ri t = ϕt( ft(mi t , li t , ki t , zs
i t) +M

−1
t (mi t , li t , si t , ui t) , zd

it , ui t))

= φt (mi t , li t , si t , ui t) .

The first step identification is

Pr ( ri t ≤ φt (mi t , li t , si t , u)|mi t−υ−1, li t−υ−1, si t−υ) = u.

The IVQR identifies φ(·) and ui t .

In the second step, we formulate a transformation model using ωi t = M̃−1
t (·):

M̃−1
t (mi t , li t−1,si t , ui t) = h

�

M̃−1
t−1(mi t−1, li t−2, si t−1, ui t−1), zh

it

�

+ηi t

= h̄t

�

mi t−1, li t−2, si t−1, ui t−1, zh
it

�

+ηi t

Since ηi t is independent of vi t ≡ (ki t , li t−1,, si t , ui t , mi t−1, ki t−1, li t−2, si t−1, ui t−1, zh
it−1), the condi-

tional CDF of mi t on vi t−1 becomes

Gmt |vt
(m|vt) = Gηt |vt

�

M̃−1
t (mi t , li t−1,si t , ui t)− h̄t

�

mi t−1, li t−2, si t−1, ui t−1, zh
it−1

�

|vt

�

= Gηt

�

M̃−1
t (mi t , li t−1,si t , ui t)− h̄t

�

mi t−1, li t−2, si t−1, ui t−1, zh
it−1

��

.

Following the same logic of the main text, we can identify M̃−1
t (·) and ωi t under scale and loca-

tion normalization. Once we identify ui t andωi t , we can also identifyωi t =M−1
t (mi t , li t , si t , ui t),

e.g., by regressionM−1
t (mi t , li t , si t , ui t) = E [ωi t |mi t , li t , si t , ui t].

Differentiating ϕ−1
t (φt(mi t , wi t , ui t), zd

it , ui t) = ft(x i t , zs
i t)+M

−1
t (mi t , wi t , ui t) with respect to

qs
i t ∈ {mi t , ki t , li t , zs

i t} and qd
it ∈ {z

d
it , ui t} gives the same equations as (37) and (38). Therefore,

Proposition 3 holds with the same proof as before.

Role of Adjustment Costs The role of adjustment costs is to create variations in li t for

given (mi t , ki t , zi t , ui t). When li t is a fully flexible input without adjustment costs, the material

demand function and the labor demand function become mi t =MF
t (ωi t , ki t , zi t , ui t) and li t =

LF
t (ωi t , ki t , zi t , ui t), respectively. Once (mi t , ki t , zi t , ui t) are conditioned, ωi t is also conditioned

so that li t loses its variation and we cannot identify φt (mi t , li t , ki t , zi t , ui t).
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4 Semiparametric Estimator

We develop a semiparametric estimator that is applicable with T ≥ 4. We assume the Cobb-

Douglas production function:

ft(mi t , ki t , li t) = θmmi t + θkki t + θl li t , (59)

and TFP follows an AR(1) process:

ωi t = ρωi t−1 +ηi t . (60)

The control function becomes separable:

M−1
t (mi t , ki t , li t , ui t) = λt(mi t , ui t)− θkki t − θl li t . (61)

Substituting (61) into the revenue function, we obtain

ϕt (ωi t + ft(mi t , ki t , li t), ui t) = ϕt (θmmi t +λt(mi t , ui t), ui t) = φt(mi t , ui t), (62)

where φt depends only on (mt , ui t) and increases in mt and ut .

The second step transformation model becomes

λt(mi t , ui t) = θkki t + θl li t +ρλt−1(mi t−1, ui t−1)−ρθkki t−1 −ρθl li t−1 +ηi t . (63)

Step 1: Estimation of the Quantile of Demand Shocks The first step estimates φt (mi t , ui t)
and ui t by IV quantile regression. A traditional approach to IV quantile regression estimates

φt (·, u) from the moment condition (29) for a fixed quantile point u. This approach often yields

a non-monotonic and non-smooth function in u, which is problematic for our identification

using uniquely identified ui t and derivatives of φt . To overcome this, we use the smoothed GMM

quantile regression of Firpo, Galvao, Pinto, Poirier, and Sanroman (2022). Their approach stacks

moment conditions over all quantile points so we can estimate the smooth sieve function and

impose ∂ φt/∂ ui t > 0. For the approximation of φt(mi t , ui t), we employ the basis Bφ(mi t ,τ)
that consists of a constant term, a B-spline basis of degree 3 with 2 interior knots in mi t , a cubic

polynomial in ui t , and interactions of the B-spline in mi t with ui t and u2
i t . Firpo et al. (2022)

also replace the indicator in (29) with a smooth kernel CDF to ease computation.

We partition [0,1] into L equal parts and let T≡ {τ1, . . . ,τL−1} (e.g. T= {0.01, . . . , 0.99}
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for L = 100). The moment condition is

E

��

K1

�

Bφ(mi t ,τ)Tαt − ri t

bn1

�

−τ
�

BIV (mi t−υ)

�

= 0 for τ ∈ T, (64)

where K1(·) is a smooth kernel CDF with bandwidth bn1 and BIV (mi t−υ) := BS1,K1
(mi t−υ) is the

sieve basis of instruments. We use the B-spline basis of degree 3 with 2 interior knots in mi t−2

as instruments. Following Firpo et al. (2022), we use the rule-of-thumb bandwidth and the

kernel CDF of Horowitz (1998):

K1(s) :=
�

1
2
+

105
64

�

s−
5
3

s3 +
7
5

s5 −
3
7

s7
��

1{s ∈ [−1,1]}+ 1{s > 1}.

The number of moment conditions (64) is the number of IVs times the number of quantile

(S1 + K1 + 1)× (L − 1). As L is usually a large number, the moment condition (64) typically

overidentifies αt so that we use GMM. Firpo et al. (2022) derive a expression of the optimal

GMM weight matrix and showed it does not depend on the parameter αt so that its estimation

completes in one step. Monotonicity in mi t and ui t is imposed via linear constraints on the

derivatives of the basis functions. The demand shocks ûi t are then estimated by numerically

inverting φ̂t(mi t , ûi t) = ri t . The same procedure is applied to t − 1 to estimate ûi t−1.

Step 2: Estimation of the control function The second step estimates the transformation

model (63). We use the profile likelihood (PL) estimator developed by Linton, Sperlich, and

Van Keilegom (2008). From (31) for qi t = mi t and (61), the conditional density of mi t given vi t

is written as

gmt |vt
(mi t |vi t) = gηt

(ηi t)
∂ λt(mi t , ui t)

∂mi t
.

To approximate λt(mi t , ui t), we use the basis Bλ(mi t , ui t) that is the Kronecker product of B-

spline bases of degree 3 with 1 interior knot in mi t and ui t . We do not assume a parametric

distribution on ηi t . Thus, the log-likelihood function is written as

n
∑

i=1

�

ln gmt |vt
(mi t |vi t)

	

=
n
∑

i=1

�

ln gηt
(ηi t) + ln∂mBλ(mi t , ui t)

Tβt

	

.

where gηt
(η) is the corresponding (Gaussian) kernel density. We obtain estimates of ηi t as fol-

lows. Using tilde to denote temporal estimate, for given βt , we define λi t(βt) := Bλ(mi t , ui t)Tβt
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in the transformation model (63) and project

λi t(βt) = θkki t + θl li t +ρλi t−1(βt−1)−ρθkki t−1 −ρθl li t−1 +ηi t . (65)

by OLS to express the residual ηi t(βt) that enters gηt
(·). Then, the PL estimator ν̃∗t is defined as

ν̃∗t ∈ argmax
ν∗t

n
∑

i=1

�

ln gη∗t
�

η∗i t(ν
∗
t )
�

+ ln∂mBλ(mi t , ûi t)
Tν∗t

	

subject to ∂mBλ(mi t , ûi t)
Tν∗t > 0.

Step 3: Estimation of production function, markup, TFP, and output With estimated ν̃∗t ,

we obtain λ̃∗t (mi t , ûi t) to then estimate the following transformation model by OLS:

λ̃∗t (mi t , ûi t) = θ
∗
k ki t + θ

∗
l li t +ρν

∗T
t−1Bλ(mi t−1, ûi t−1)−ρθ ∗k ki t−1 −ρθ ∗l li t−1 +η

∗
i t .

We estimate θ̃ ∗m as follows:

θ̃ ∗m =median

 

∂mBλ(mi t , ûi t)T ν̃∗t
∂mBφ(mi t , ûi t)T α̂t −

exp(pm
t +mi t )

exp(ri t )

exp(pm
t +mi t)

exp (ri t)

!

.

Then, by De Loecker and Warzynski (2012), we estimate markups as follows:

µ̃∗i t =
θ̃ ∗m

exp(pm
t +mi t)/exp (ri t)

.

By assuming constant returns to scale (CRS), the scale parameter b̂t = θ̃ ∗m + θ̃
∗
k + θ̃

∗
l is

estimated. Thus, the CRS normalized production parameters θ̂ j = θ̃ ∗j /b̂t for j ∈ {m, k, l} and

markups µ̂i t = µ̃∗i t/b̂t . With the mean-zero restriction naturally inherent from the AR(1) TFP

process, the location parameter â2t = n−1
∑n

i=1

�

λ̃∗t (mi t , ûi t)− θ̃ ∗k ki t − θ̃ ∗l li t

�

is estimated. The

estimated TFP, output, and price are

ω̂i t =
λ̃∗t (mi t , ûi t)− θ̃ ∗k ki t − θ̃ ∗l li t − â2t

b̂t

,

ŷi t = ω̂i t + θ̂mmi t + θ̂l li t + θ̂kki t ,

p̂i t = ri t − ŷi t .

Step 4: Estimation of parametric CoPaTh-HSA demand system Our estimation steps of

production function above does not assume any parametric demand system. Thus, in theory, one

can estimate a fully nonparametric HSA demand system as described in Section 3.5. However,
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in our empirical application, we estimate a parametric HSA demand system to obtain more

stable estimates from a dataset with a moderate sample size. In particular, we consider a HSA

demand system with the CoPaTh (constant pass-through) demand function with incomplete

pass-through by Matsuyama and Ushchev (2020):

s∗t (yi t − qt(yt ,εt),εi t) := δt −
1
βt

log
�

exp(−βt (yi t − qt(yt ,εt)) + κt) + εi t

1+ εi t

�

(66)

where the quantity index qt(yt ,εt) is implicitly defined by the market share constraint (51)

for a given output vector yt = (y1t , ..., yN t) and a given demand shock vector εt = (ε1t , ...,εN t).
Appendix A.1.1 derives the log-variable version of the CoPaTh demand (66) from Matsuyama

and Ushchev (2020)’s original formulation. As explained in Section 3.5, we estimate the

following reduced form revenue function instead of the structural form (66):

ϕt (yi t ,εi t) = Φt +δt −
1
βt

log
�

exp(−βt yi t + γt) + εi t

1+ εi t

�

where γt ≡ βtqt(yt ,εt) + κt .

The CoPaTh-HSA demand predicts the markup as:

Pi t

MCi t
=
�

∂ ϕt (yi t ,εi t)
∂ yi t

�−1

= 1+ εi t exp(βt yi t − γt).

When βt = 0, the markup is constant and the pass-through is complete. In addition, εi t = ε is

common for all i, the demand system is reduced to the conventional CES demand system.

With the estimated outputs ŷi t and markups µ̂i t from Step 3, the composite nonlinear least

square estimator of demand parameters (βt , γt , δt) is defined as,

(β̂t , δ̂t , γ̂t)
′ ∈ arg min

βt ,δt ,γt

∑

i

�

ri t −
�

Φ+δt −
1
βt

log
�

exp(−βt ŷi t + γt) + εi t

1+ εi t

���2

+
∑

i

(ûi t − (quantile(εi t)))
2 ,

s.t.

εi t =
µ̂i t − 1

exp(βt ŷi t − γt)
,

1=
∑

i

exp
�

δt −
1
βt

log
�

exp(−βt ŷi t + γt) + εi t

1+ εi t

��

.

where quantile(εi t) is the empirical quantile of εi t among all firms and the industry revenue
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Φ= log
�∑

i exp(ri t)
�

.<<We need to explain why we impose addition restrictions.>> 20

5 Simulation

This section presents the finite sample performance of our proposed estimator, comparing to

that of the ACF method when firms charge small but heterogeneous markups under the HSA

demand system. We consider a simple data-generating process (DGP) in which firms set variable

markups, calibrated to Chilean manufacturing data. Further details of the DGP and simulation

design are provided in the Appendix.

Consider N firms in a market and t ∈ {1,2, ..., T} period. Each firm produces one variety

of differentiated goods and faces the HSA-CoPaTh demand function (66). The demand shock

εi t follows an MA1 process: εi t = 0.5ζi t−1 + ζi t , where ζi t ∼ Uni f [0,0.3]. The production

function takes the Cobb-Douglass form:

yi t = θmmi t + θkki t + θl li t +ωi t (67)

where ωi t follows an AR1 process ωi t = 0.8ωi t−1 + ηi t ,ηi t ∼ N
�

0, (0.05)2
�

. Capital ki t and

labor li t are predetermined and follow exogenous laws of motion explained in Appendix A.1.3.

For each period, we find equilibrium outputs and quantity index (ym
t , qm

t ) in an MCE by

solving the first order order conditions and the market share condition analogous to (54):

Φt +δt − βt

�

ym
it − qm

t

�

+κt +Ξi t −
ym

it

θm
+

1
βt

log(1+ εi t)

−
�

1+
1
βt

�

ln
�

exp(−βt

�

ym
it − qm

t

�

+κt) + εi t

�

= 0 for i = 1, .., Nt

Nt
∑

i=1

exp

�

δt −
1
βt

ln

�

exp(−βt

�

ym
it − qm

t

�

+ κt) + εi t

1+ εi t

��

= 1.

where Ξi t = ln θ̂m + (θ̂kki t + θ̂l li t + ω̂i t)/θ̂m and pmt = 0. Appendix A.2.2 show its derivation.

The value of the “reduced-form” parameter (αt ,βt ,γt) is determined by the HSA system’s

structural parameters (Φt ,δt ,βt ,κt) = (20,−6.5,0.21,0) and the equilibrium quantity index

qt(yt ,εt), such that (αt ,βt) = (Φt + δt ,βt) = (13.5,0.21), while the value of γt depends on

qt(yt ,εt), βt , and κt . Production function parameters are (θm,θk,θl) = (0.4, 0.3,0.3). We

simulate 100 replications of N = 600 firms and T = 5 periods, with the following summary

statistics of the resulting markups:

20For model-consistency, we estimate the HSA demand system only using the firms with estimated markups
µ̂i t > 1.
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Min. 1st Qu. Median Mean 3rd Qu. Max

Markup 1.001 1.146 1.220 1.223 1.295 1.614

Table 1: Summary statistics of Markups in simulated data (t = 5)

In addition to our proposed estimator, we also consider the estimator proposed by Ackerberg

et al. (2015)(ACF). Gandhi et al. (2020)(GNR) showed the difficulty of identification in the

DGP that ACF assumed where a firm-level unobserved shock is a scalar, TFP. The GNR criticism

is not applicable for the current DGP with two unobserved shocks. However, to show our point

is different from the GNR critique, we employ the ACF method with constant returns to scale

(CRS) restriction (i.e., θm + θk + θk = 1) that Flynn, Gandhi, and Traina (2019) proposed to

address the GNR criticism.21

5.1 Result

Figure 1 show the histograms of 100 estimates of (θm,θk,θl) from the ACF method with revenue

data and quantity data. While using quantity data yields estimates that are tightly clustered

around the true values, using revenue data substantially biases the estimation of the production

function. The simulation result confirms the long criticism in the literature against the ad hoc

use of revenue data.
21In Appendix, we present the details of the DGP and the estimation method as well as basically the same

results using the ACF method without imposing CRS.
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Figure 1: Production Function Estimation with ACF on Revenue Data and Quantity Data

Figure 2 shows the histograms of 100 estimates for (θm,θk,θl) from our proposed estimator

and (βt ,δt ,γt) at t = T on the HSA demand system. They are tightly clustered around their

true values, suggesting that our method recovering the structural parameters very well. Figure

3 shows the scatter plot of true versus estimated TFPs for the first 20 Monte Carlo simulations,

and Figure 4 shows the same for markups. The strong alignment of points along the 45-degree
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lines accompanying with the low RMSEs and high correlations suggest that our method precisely

estimates TFPs and markups.

Figure 2: Production Function and Demand System Estimation with Revenue Data
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Figure 3: True and estimated TFPs for first 20 MC Simulations

Figure 4: True and estimated Markups for first 20 MC Simulations

6 Empirical Application: Chilean Manufacturing Sector

The semiparametric estimator is applied to the Chilean manufacturing plant dataset, derived

from the census conducted by Chile Instituto Nacional de EstadÃstica, covering all plants with

10 or more employees from 1993 to 1996. We define labor input as the number of workers,

material input as materials cost, and revenue as income plus the value of capital produced
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for own use, with all values deflated using appropriate deflators. Capital input is calculated

as the sum of deflated values for buildings, machinery, and vehicles, employing the perpetual

inventory method with appropriate deflators. Our analysis focuses on the three largest industries

with 2-digit SIC codes 31 (Food, Beverage, and Tobacco), 32 (Textiles, Apparel, and Leather

Products), and 38 (Metal Products, Electric/Non-electric Machinery, Transport Equipment, and

Professional Equipment) in 1996. We drop firms with non-positive capital. Also, firms with

material cost-to-revenue ratios of less than 0, above 1, and in the bottom and top 2 percentiles

of the distribution are excluded.

6.1 Result

Industry n θ̂m θ̂k θ̂l
ˆ̄µ

31 736 0.848 0.013 0.138 1.386
(0.031) (0.010) (0.031) (0.052)

32 463 0.756 0.079 0.164 1.503
(0.049) (0.032) (0.045) (0.099)

38 391 0.672 0.058 0.270 1.628
(0.067) (0.037) (0.062) (0.167)

Table 2: Chilean Manufacturing plant estimation: Step 1, Step 2, and Step 3 (Industries 31, 32,
and 38 in 1996). Standard errors in parentheses with 100 non-parametric bootstrap iterations.

Industry n β̂ γ̂ δ̂

31 698 0.154 1.770 -8.009
(0.011) (0.105) (0.159)

32 409 0.085 0.951 -6.899
(0.012) (0.141) (0.572)

38 347 0.103 1.367 -5.443
(0.044) (0.443) (1.352)

Table 3: Chilean Manufacturing plant estimation: Step 4 (Industries 31, 32, and 38 in 1996).
Standard errors in parentheses with 100 non-parametric bootstrap iterations.

Table 2 and 3 demonstrate a successful application of our method to standard empirical data.

Notably, we found empirical evidence that β is statistically significantly deviating from zero,
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suggesting that using CES demand system, which corresponds to the HSA demand system with

β = 0 would be misspecified. Moreover, Figures 5 and 6 presents scatter plots of the observed

revenue ri t against the fitted revenue by the HSA demand system from Step 4, and quantiles of

estimated demand shocks εi t from Step 4 against those ui t from Step 1, which show a good fit

of our HSA demand system by the alignment of points along the 45-degree line.

Figure 5: Observered revenue vs fitted revenue from Step 4

Figure 6: Rank of demand shock from Step 1 vs Step 4
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6.2 Counterfactual Welfare Analysis

We quantify the consumer utility loss attributable to firm’s market power, calculating the

compensation variation for a counterfactual marginal cost pricing equilibrium (MPCE) as

described in Section 3.5. First, we calculate a monopolistic competition equilibrium (MCE) as

our benchmark, using the estimated structural parameters from Table 2 and 3 and firm-level

states (ki t , li t , ω̂i t , ε̂i t). Specifically, we recover ym
it and recalibrate γm

t by jointly solving (54),

which are simplified as:

Φt + δ̂t − β̂t ym
it + γ

m
t +Ξi t −

ym
it

θ̂m

+
1

β̂t

log(1+ ε̂i t)

−
�

1+
1

β̂t

�

ln
�

exp(−β̂t ym
it + γ

m
t ) + ε̂i t

�

= 0 for i = 1, .., Nt

Nt
∑

i=1

exp

�

δ̂t −
1

β̂t

ln

�

exp(−β̂t ym
it + γ

m
t ) + ε̂i t

1+ ε̂i t

��

= 1

where Ξi t = ln θ̂m + (θ̂kki t + θ̂l li t + ω̂i t)/θ̂mand pmt is normalized to zero. The obtained

output vector and parameters exactly satisfy our HSA demand system, which also ensures

q̃t

�

ym
t , ε̂t

�

= 0. Using this MCE as a benchmark removes model misspecification bias for

counterfactual analysis.

Second, we consider a marginal cost pricing equilibrium (MCPE) for given counterfactual

log income Φc
t . We find an output vector yc

t(Φ
c
t) and quantity index q̃t(Φc

t) by solving (55), which

are simplified as:

Φc
t + δ̂t +Ξi t −

y c
i t(Φ

c
t)

θ̂m

−
1

β̂t

ln

�

exp(−β̂t

�

y c
i t(Φ

c
t)− q̃c

t (Φ
c
t)
�

+ γm
t ) + ε̂i t

1+ ε̂i t

�

= 0 for i = 1, .., Nt

Nt
∑

i=1

exp

�

δ̂t −
1

β̂t

ln

�

exp(−β̂t

�

y c
i t(Φ

c
t)− q̃c

t (Φ
c
t)
�

+ γm
t ) + ε̂i t

1+ ε̂i t

��

= 1.

We suppose the same income case Φc
t = Φt as our benchmark.

Then, we calculate the compensation variation for transitioning to a MCPE. We find a

counterfactual income Φc∗
t that leads to a zero utility change (56):

∆ ln U c(Φc∗
t ) = q̃c

t (Φ
c∗
t ) +

∑

i

∫ y c
i t (Φ

c∗
t )−q̃c

t (Φ
c∗
t )

ym
it

exp

�

δ̂t −
1

β̂t

log

�

exp(−β̂tζ+ γm
t ) + ε̂i t

1+ ε̂i t

��

dζ= 0.

The compensation variation is calculated by CVt ≡ exp(Φc∗
t )− exp(Φt).

Finally, we calculate firms’ profit loss. In the case of Φc
t = Φt , the total profit change (57) is
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expressed as

Πc −Πm =
Nt
∑

i=1

exp

�

−
θ̂kki t + θ̂l li t + ω̂i t

θ̂m

��

exp

�

ym
it

θ̂m

�

− exp

�

y c
i t(Φt)

θ̂m

��

(68)

since χi t (yi t) = (yi t − θ̂kki t − θ̂l li t − ω̂i t)/θ̂m.

Industry CV ∆Π Overall

31 -14.1 -11.0 3.08
(2.71) (-2.39) (0.58)

32 -16.1 -9.89 6.20
(5.97) (5.04) (1.35)

38 -9.85 -4.07 5.78
(6.75) (4.55) (2.92)

Table 4: Compensating Variation, profit loss, and overall welfare change in percentage of industry
revenue exp(Φt) in the transition from original equilibrium to MCPE of Chilean Industries 31,
32, and 38 in 1996 under HSA demand system. Standard errors in parentheses with 100
non-parametric bootstrap iterations.

From Table 4, we found empirical evidence that under our HSA demand system market

power in these industries results in consumer’s welfare losses of approximately 10%–15%

and profit gains of approximately 4%–11%, with overall welfare losses of 3%–6% of industry

revenue in the three largest Chilean manufacturing industries in 1996.

7 Concluding Remarks

The current study develops constructive nonparametric identification of production function

and markup from revenue data. Our method simultaneously addresses two fundamental

identification issues raised in the literature of production function estimation since Marschak

and Andrews (1944)—namely, correlations between inputs and TFP, and biases from markup

heterogeneity when revenue is used as output. Under standard assumptions, when revenue

is modeled as a function of output (rather than a mere proxy for output), firm’s observed

characteristics and an unobserved demand shock, various economic objects of interest can be

identified from revenue data. We develop a semiparametric estimator that is implementable

with standard datasets used in the literature. In simulation, our estimator performs very well.

We successfully applied our estimator to Chilean manufacturing plant data and found empirical
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evidence of the misspecification of CES demand system. In counterfactual welfare analysis,

the result shows that the market power results in welfare losses of approximately 3%–6% of

industry revenue in the three largest Chilean manufacturing industries in 1996.
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A Online Appendix (Not for Publication)

A.1 Simulation

A.1.1 CoPaTh-HSA Demand System

We consider the “Incomplete Constant (and Common) Pass-Through” formulation of the CoPaTh-

HSA demand system in Matsuyama and Ushchev (2020). With their original notions, the budget

share function for product ω is expressed as:

S∗
ω

�

Y
Q(Y)

�

= γωβω

�

�

1−
1
σω

��

Y /Q(Y)
γω

�−∆

+
1
σω

�−1/∆

(A.1)

where Y is the level of output and Q(Y) is the quantity index which is a function of the output

vector Y. The pass-through rate

ρ =
∂ ln P
∂ ln MC

= 1+
∂ lnµ
∂ ln MC

=
1

∆+ 1

is a function of parameter ∆≥ 0 where µ = P/MC is a markup. When ∆ = 0 and σω = σ, the

demand system is reduced to the conventional CES system.

We reformulate it in log variables:
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ω
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ω
(Y ) = γωβω
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= ln (γωβω)−
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exp (−∆ (y − q) +∆ lnγω) + 1/ (σω − 1)
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Our formulation of the CoPaTh-HSA demand system of inverse demand functions is

s∗ (yi t ,εi t) = δt −
1
βt

log
�

exp(−βt(yi t − qt(yt ,εt)) + κt) + εi t

1+ εi t

�

.

While the original formulation (A.1) has three firm specific demand shifters (γω,βω,σω), we

only allow one shifter.

The correspondence between current parameter notations and Matsuyama and Ushchev

(2020)’s is as follows:
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Current notations i δt βt εi t 1+ εi t κt

Matsuyama and Ushchev (2020)’s notations ω lnγωβω ∆= 1−ρ
ρ

1
σω−1

σi
σi−1 ∆ lnγω

Range (−∞,∞) (0,∞) (0,∞) (1,∞) (−∞,∞)

A.1.2 Structural form of CoPaTh-HSA Demand System

We presented the reduced form of HSA demand system with CoPaTh demand function by

Matsuyama and Ushchev (2020) in the main text. The relationship to the structural form of the

HSA demand system is given by:

ri t = Φt +δt −
1
βt

log
�

exp(−βt(yi t − qt(yt ,εt)) + κt) + εi t

1+ εi t

�

= Φ+δt −
1
βt

log
�

exp(−βt ŷi t + γt) + εi t

1+ εi t

�

,

where γt = βtqt(yt ,εt) + κt . In the simulation, we set κt = 0.

A.1.3 Data Generating Process

The demand shock εi t follows an MA1 process:

εi t = ρεξi t−1 + ξi t

where ξi tand ξi t−1 are independent uniform random variables with supports [0,0.3].
Capital and labor are predetermined and follows the following exogenous laws of motion:

ki t = 0.99ki t−1 + 0.11ωi t−1 + ekit , ekit ∼ N(0,0.252), ki0 ∼ N(10, 1)

li t = 0.99li t−1 + 0.11ωi t−1 + el i t , el i t ∼ N(0,0.252), li0 ∼ N(10,1).

Summary statistics The following table shows the summary statics of endogenous variables

and exogenous variables.
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Endogenous variables

t = 5 Mean SD Min P25 Median P75 Max

Markup 1.223 0.101 1.001 1.146 1.220 1.295 1.614

mi t 11.323 0.565 8.986 10.951 11.322 11.692 13.937

ri t 13.44 0.579 10.98 13.06 13.45 13.82 15.91

Exogenous variables

t = 5 Mean SD Min P25 Median P25 Max

ωi t 0.000 0.0832 −0.314 −0.056 −0.000 0.0563 0.358

εi t 0.225 0.0971 0.000 0.150 0.225 0.300 0.448

ki t 9.511 1.097 4.569 8.771 9.514 10.252 13.953

li t 9.520 1.094 4.875 8.778 9.521 10.257 14.131

A.1.4 Ackerberg et al. (2015) estimation method

We estimate the production function with ACF using the R package prodest by (Rovigatti,

2017). Scale parameters are normalized under constant returns to scale (CRS), and location

parameters are normalized via the mean-zero restriction on the AR(1) TFP process for the

estimates. The initial values in optimization are set to the estimated parameters from our

method for empirical application and the true parameters for simulation.

A.2 Calculations and Proofs

A.2.1 A necessary and sufficient condition for Assumption 5

We first derive some derivatives for preparation. From ϕt(yi t , zi t , ui t) = yi t +ψt(yi t , zi t , ui t),
the demand elasticity is expressed as

∂ ϕt

∂ yi t
= 1−

1

σt(yi t , zd
it , ui t)

⇔ σt(yi t , zd
it , ui t) =

1
1− ∂ ϕt(yi t , zi t , ui t)/∂ yi t

Their derivatives are

∂ σt

∂ yi t
=

∂ 2ϕt/∂ y2
i t

(1− ∂ ϕt/∂ yi t)
2 and

∂ σt

∂ ui t
=
∂ 2ϕt/∂ yi t∂ ui t

(1− ∂ ϕt/∂ yi t)
2 .

Denote the profit by

πt(mi t ,ωi t , ui t) := exp(ϕt( ft(m, ki t , li t , zs
i t) +ωi t , zi tui t), zd

it , ui t)− exp(pm
t +m)
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The first order condition for (11) is

∂ πt

∂m
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Their cross derivatives are
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From the implicit function theorem, the derivatives of the material demand function is

∂Mt

∂ ui t
= −

∂ 2πt/∂mi t∂ ui t

∂ 2πt/∂m2
i t

and
∂Mt

∂ωi t
= −

∂ 2πt/∂mi t∂ωi t

∂ 2πt/∂m2
i t

.

Differentiating mi t = Mt

�

M−1
t (mi t , wi t , ui t), wi t , ui t

�

by ui t , we obtain the derivatives of the

inverse function as

∂M−1
t (mi t , wi t , ui t)

∂ ui t
= −

∂Mt/∂ ui t

∂Mt/∂ωi t

= −
∂ 2πt/∂mi t∂ ui t

∂ 2πt/∂mi t∂ωi t

= −
∂ ϕt
∂ yi t

∂ ϕt
∂ ui t
+ ∂ 2ϕt
∂ yi t ui t

�

∂ ϕt
∂ yi t

�2
+ ∂ 2ϕt

∂ y2
i t

Finally, we derive the derivative of φt with respect to ui t:

∂ φ t (x i t , zi t , ui t)
∂ ui t

=
∂ ϕt

∂ yi t

∂M−1
t

∂ ui t
+
∂ ϕt

∂ ui t

=

�

�

∂ ϕt

∂ yi t

�2

+
∂ 2ϕt

∂ y2
i t

�−1�
∂ ϕt

∂ ui t

∂ 2ϕt

∂ y2
i t

−
∂ ϕt

∂ yi t

∂ 2ϕt

∂ yi t∂ ui t

�

.

=

�

�

∂ ϕt

∂ yi t

�2

+
∂ 2ϕt

∂ y2
i t

�−1�

1−
∂ ϕt

∂ yi t

�2�∂ ϕt

∂ ui t

∂ σt

∂ yi t
−
∂ ϕt

∂ yi t

∂ σt

∂ ui t

�
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The assumption∂Mt/∂ωi t > 0 and ∂ ft/∂mt > 0 implies
�

∂ ϕt
∂ yi t

�2
+ ∂

2ϕt

∂ y2
i t
> 0. Therefore, we have

∂ φ t (x i t , zi t ,εi t)
∂ ui t

> 0⇔
∂ ϕt

∂ ui t

∂ σt

∂ yi t
>
∂ϕt

∂ yi t

∂ σt

∂ ui t
.

A.2.2 Derivations of Equilibrium Conditions for MCE and MCPE

General HSA Demand System

MCE The profit maximization problem is

max
m

exp
�

Φt + st

�

ft

�

m, ki t , li t , zs
i t

�

+ωi t − q̃m
t , zd

it , ui t

��

− exp (pmt +m) .

The first order condition is

exp
�

Φt + st

�

ym
it − q̃m

t , zd
it , ui t

�� ∂ st

�

ym
it − q̃m

t , zd
it , ui t

�

∂ yi t

∂ ft

�

mm
it , ki t , li t

�

∂mi t
= exp

�

pmt +mm
it

�

.

Substituting mm
it = χi t

�

ym
it

�

and taking the log leads to

Φt + st

�

ym
it − q̃m

t , zd
it , ui t

�

+ ln
∂ st

�

ym
it − q̃m

t , zd
it , ui t

�

∂ yi t

+ ln
∂ ft

�

χi t

�

ym
it

�

, ki t , li t

�

∂mi t
− pmt −χi t

�

ym
it

�

= 0.

MCPE The profit maximization problem is

max
m

exp
�

pc
i t + ft

�

m, ki t , li t , zs
i t

�

+ωi t

�

− exp (pmt +m)

where the firm takes pc
i t as given

From pc
i t + ft

�

m, ki t , li t , zs
i t

�

+ωi t = Φc
t + st

�

y c
i t − q̃m

t , zc
i t , ui t

�

, the first order condition is

exp
�

Φc
t + st

�

y c
i t − q̃m

t , zc
i t , ui t

�� ∂ ft

�

mc
i t , ki t , li t

�

∂mi t
= exp

�

pmt +mc
i t

�

.

Substituting mm
it = χi t

�

ym
it

�

and taking the log leads to

Φc
t + st

�

y c
i t − q̃m

t , zc
i t , ui t

�

+ ln
∂ ft

�

χi t

�

y c
i t

�

, ki t , li t

�

∂mi t
− pmt −χi t

�

y c
i t

�

= 0.
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CoPaTh-HSA Demand System and Cobb-Douglas Production Function We use

s(ym
it ,εi t) = δt −

1
βt

ln

�

exp(−βt ym
it + γ

m
t ) + εi t

1+ εi t

�

whereq̃t

�

ym
t , ε̂t

�

= 0 holds in an initial equilibrium.

MCE Since

∂ st

�

ym
it ,εi t

�

∂ ym
it

=
exp(−βt ym

it + γ
m
t )

exp(−βt ym
it + γ

m
t ) + εi t

χi t

�

ym
it

�

=
ym

it − θkki t − θl li t −ωi t

θm
,

the first order condition becomes

Φt +δt −
1
βt

ln

�

exp(−βt ym
it + γ

m
t ) + εi t

1+ εi t

�

− βt ym
it + γ

m
t

− ln
�

exp(−βt ym
it + γ

m
t ) + εi t

�

+ lnθm − pmt −
ym

it − θkki t − θl li t −ωi t

θm
= 0.

Letting Ξi t ≡ lnθm + (θkki t + θl li t +ωi t)/θm and pmt = 0, it is simplified as

Φt +δt − βt ym
it + γ

m
t +Ξi t −

ym
it

θm
+

1
βt

ln (1+ εi t)

−
�

1+
1
βt

�

ln
�

exp(−βt ym
it + γ

m
t ) + εi t

�

= 0.

MCPE The first order condition becomes

Φt +δt −
1
βt

ln

�

exp(−βt ym
it + γ

m
t ) + εi t

1+ εi t

�

+ lnθm − pmt −
ym

it − θkki t − θl li t −ωi t

θm
= 0.

Letting Ξi t ≡ lnθm + (θkki t + θl li t +ωi t)/θm and pmt = 0, it is simplified as

Φt +δt +Ξi t −
ym

it

θm
−

1
βt

ln

�

exp(−βt ym
it + γ

m
t ) + εi t

1+ εi t

�

= 0.
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A.3 Identification of Demand Function

A.3.1 Proof for Proposition 7

The proof for Proposition 7 uses the following result of Matsuyama and Ushchev (2017).

Theorem A.1. (Matsuyama and Ushchev, 2017, Remark 3 and Proposition 1). Consider a

mapping S(Y) := (S1(Y1), ..., SN(YN))′ from RN
+ to RN

+ , which is differentiable almost everywhere,

is normalized by
N
∑

i=1

Si(Y
∗

i ) = 1, (A.2)

for some point Y∗ := (Y ∗1 , ..., Y ∗N ) and satisfies the following conditions

S′i(Yi)Yi < Si(Yi) for i = 1, ..., N ,

S′i(Yi)S
′
j(Yj)≥ 0 for i, j = 1, ..., N , (A.3)

for all Y such that
∑N

i=1 Si(Yi) = 1. Then, (1) for any such mapping, there exists a unique monotone,

convex, continuous, and homothetic rational preference that generates the HSA demand system

described by

Pi =
I
Yi

Si

�

Yi

Q (Y)

�

for i = 1, .., N ,

where I :=
∑N

i=1 PiYi and Q(Y) is obtained by solving

N
∑

i=1

Si

�

Yi

Q (Y)

�

= 1.

(2) This homothetic preference is described by a utility function U which is defined by

ln U(Y) = lnQ(Y) +
N
∑

i=1

∫ Yi/Q(Y )

ci

Si (ξ)
ξ

dξ, (A.4)

where c= (c1, ..., cN ) is a vector of constants such that U(c) = 1.

Proof for Proposition 7

Proof. (a) We construct st(yi t − q̃t(yt ,z
d
t ,ut), zd

it , ui t) and q̃t(yt ,z
d
t ,ut) as is explained in

the main text. Fix zd
t := (zd

1t , ..., zd
N t),ut := (u1t , ...,uN t), and time t. For Y ∈ Ȳ , de-

fine Q t(Y) := exp
�

q̃t(lnY,zd
t ,ut)

�

and St(Y) :=
�

S1t(Y1), ..., SNt t(YNt
)
�

such that Si t(Yi) ≡
exp

�

st

�

ln Yi, zd
it , ui t

��

= exp
�

ϕt

�

ln Yi t , zd
it , ui t

�

−Φt

�

.
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From Assumption 2 (b) and y := ln Y ,

0<
∂ϕt

�

ln Y, zd , u
�

∂ ln Y
= 1+

∂ψt

�

ln Y, zd , u
�

∂ ln Y
< 1

holds for any (y, zd , u). The above inequality implies

S′i t(Y )> 0 and S′i t(Y )Y < Si t(Y ) for all i and Y

because

S′i t(Y )Y = exp
�

ϕt

�

ln Y, zd
it , ui t

�

−Φt

� ∂ ϕt

�

ln Y, zd
it , ui t

�

∂ ln Y

= Si t(Y )
∂ ϕt

�

ln Y, zd
it , ui t

�

∂ ln Y
.

Therefore, S(Y) satisfies the inequalities in (A.3) for all Y satisfying
∑Nt

i=1 Si t(Yi) = 1.

From Theorem A.1 (1), there exists a unique monotone, convex, continuous, and homothetic

rational preference that generates

Pi t =
It

Yi t
Si t

�

Yi t

Q t (Yt)

�

where It = exp (Φt) is the consumer’s budget. Taking the log of the above demand function, we

obtain

pi t = Φt + st(yi t − q̃t(yt ,z
d
t ,ut), zd

it , ui t)− yi t .

(b) Fix zd
t := (zd

1t , ..., zd
N t),ut := (u1t , ..., uN t), and time t. For Yt ∈ Ȳ , let Ut := Ut(Yt ,z

d
t ,ut)

be the utility function of the representative consumer. From Theorem A.1,

ln Ut = lnQ t(Y) +
N
∑

i=1

∫ Yi/Q(Y )

ci

Si (ξ)
ξ

dξ.

= q̃t(lnY,zd
t ,ut) +

N
∑

i=1

∫ Yi/exp(q̃t (lnY,zd
t ,ut ))

ci

exp
�

st

�

lnξ, zd
it , ui t

��

ξ
dξ

Applying a change in variable ζ= lnξ+ at(ỹt) and dζ= dξ
ξ , we write

ln Ut(yt ,z
d
t ,ut) = q̃t(yt ,z

d
t ,ut) +

N
∑

i=1

∫ yi t−q̃t (yt ,z
d
t ,ut )

ln ci

exp
�

st

�

ζ, zd
it , ui t

��

dζ.
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(c) The homothetic preference implies that the market share Pi t Yi t/It depends only on a

price vector and is independent of income. From

1=
Nt
∑

i=1

exp
�

st(yi t − q̃t(yt ,z
d
t ,ut), zd

it , ui t

�

=
Nt
∑

i=1

exp
�

st(yi t + γ− q̃t(yt ,z
d
t ,ut)− γ, zd

it , ui t

�

=
Nt
∑

i=1

exp
�

st(yi t + γ− q̃t(yt + γ,zd
t ,ut), zd

it , ui t

�

,

we have q̃t(yt +γ,zd
t ,ut) = q̃t(yt ,z

d
t ,ut)+γ. Since the output yi t = ϕ−1

t (ri t , zd
it , ui t) is identified

up to location, there is a ∈ R such that yi t = a+ y∗i t where y∗i t is the true output. Note that

yi t − q̃t(yt ,z
d
t ,ut) = a+ y∗i t − q̃t(a+ y∗t ,z

d
t ,ut)

= a+ y∗i t − q̃t(y
∗
t ,z

d
t ,ut)− a

= y∗i t − q̃t(y
∗
t ,z

d
t ,ut).

The utility is expressed as:

ln Ut(yt ,z
d
t ,ut) = q̃t(yt ,z

d
t ,ut) +

N
∑

i=1

∫ yi t−q̃t (yt ,z
d
t ,ut )

ln ci

exp
�

st

�

ζ, zd
it , ui t

��

dζ.

= q̃t(y
∗
t + a,zd

t ,ut) +
N
∑

i=1

∫ y∗i t−q̃t (y∗t ,zd
t ,ut )

ln ci

exp
�

st

�

ζ, zd
it , ui t

��

dζ

= a+ q̃t(y
∗
t ,z

d
t ,ut) +

N
∑

i=1

∫ y∗i t−q̃t (y∗t ,zd
t ,ut )

ln ci

exp
�

st

�

ζ, zd
it , ui t

��

dζ

= a+ ln U(y∗t ,z
d
t ,ut).

Therefore, the log utility function is identified up to the location normalization of ϕ−1
t (·). The

identified utility function is a monotonic transformation of the true utility function, which

implies both utility functions represent the same consumer preference.

A.4 Endogenous Characteristics

A.4.1 Proof for Lemma B.1

The following proof follows Imbens and Newey (2009).
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Proof. From the monotonicity of Γkt in Assumption B.1 (iii), we can define the inverse function

of Γktsuch that κk
it = Γ

−1
kt

�

ςi t ,ϖi t , zk
it

�

.For given (zk
t ,ςt ,ϖt)

Fzk
t |ςt ,ϖt

(zk
t |ςt ,ϖt) = Pr

�

Γkt(ςi t ,ϖi t ,κ
k
it)≤ zk

t |ςi t = ςt ,ϖi t =ϖt

�

= Pr
�

κk
it ≤ Γ

−1
kt

�

ςt ,ϖt , zk
t

�

|ςi t = ςt ,ϖi t =ϖt

�

= Fκk
t

�

Γ−1
kt

�

ςt ,ϖt , zk
t

��

. (from κk
it ⊥ (ςi t ,ϖi t))

Therefore, we have

ξk
it = Fκk

t

�

Γ−1
kt

�

ςi t ,ϖi t , zk
it

��

= Fκk
t

�

κk
it

�

.

Consider an arbitrary point (ξt ,ηt) on the support of (ξi t ,ηi t). Let (κs
t ,κ

d
t ) =

�

F−1
κs

t
(ξs

t), F−1
κd

t
(ξd

t )
�

. Since Fκk
t

is strictly monotonic, the conditional expectations given ξi t = ξt

are identical to those given (κs
i t ,κ

d
t ) = (κ

s
i t ,κ

d
t ). For any bounded function a(vi t) of vi t , the

independence of (ςi t ,ϖi t) and
�

κs
i t ,κ

d
it ,ηi t

�

implies

E [a(vi t)|ξi t = ξt ,ηi t = ηt]

= E
�

a(vi t)|κs
i t = κ

s
t ,κ

d
it = κ

s
t ,ηi t = ηt

�

=

∫

a
�

Γst(ςi tϖi t ,κ
s
t), Γd t(ςi t ,ϖi t ,κ

d
t ),ϖi t

�

Fςt ,ϖt
(d(ςi t ,ϖi t))

= E
�

a(vi t)|κs
i t = κ

s
t ,κ

d
it = κ

s
t

�

= E [a(vi t)|ξi t = ξt] .

For any bounded functions a(vi t) and b(ηi t), we have

E [a(vi t)b(ηi t)|ξi t = ξt] = E [E [a(vi t)b(ηi t)|ξi t = ξt ,ηi t = ηt] |ξi t = ξt]

= E [b(ηi t)E [a(vi t)|ξi t = ξt ,ηi t = ηt] |ξi t = ξt]

= E [b(ηi t)E [a(vi t)|ξi t = ξt] |ξi t = ξt]

= E [b(ηi t)|ξi t = ξt] E [a(vi t)|ξi t = ξt]

Thus, ηi t ⊥ vi t |ξi t .
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B Alternative Settings

B.1 Endogenous Firm Characteristics

Firm characteristics (zs
i t , zd

it)may correlate with ζi t and ηi t . In step 1, we can use (zs
i t−υ−1, zd

it−υ−1)
in place of (zs

i t−υ, zd
it−υ) as instrument variables to construct the moment condition similar to

(29). In step 2, we consider the nonparametric control function approach by Imbens and

Newey (2009) using instrument variables in the triangular model setting. We assume there

exist instrument variables ςi t = (ςs
i t ,ς

d
it) , unknown functions Γkt , and unobservable scalars κk

it

such that

zk
it = Γkt(ςi t ,ϖi t ,κ

k
it), (k = s, d)

where ϖi t := (li t , ki t , ui t , wi t−1, ui t−1, zh
it−1).

Assumption B.1. For k = s, d, (i) ςk
it ⊥ (ηi t ,κ

k
it) (ii) κk

it is a scalar and κk
it ⊥ (ςi t ,ϖi t).(iii) Γkt

is strictly increasing in κk
t (iv) The CDF of κk

it , Fκk
t

�

κk
it

�

, is strictly increasing on the support of κk
it .

Let Fzk
t |ςt ,ϖt

(zk
t |ςt ,ϖt) be the CDF of zk

it conditional on (ςi t ,ϖi t) = (ςt ,ϖt). Define ξk
it :=

Fzk
t |ςt ,ϖt

(zk
it |ςi t ,ϖi t) and ξi t := (ξs

i t ,ξ
d
it). Imbens and Newey (2009) showed ξi tcan be used as

control variables, that is, ηi t becomes independent of vi t conditional on ξi t . Appendix provides

a proof that follows Imbens and Newey (2009).

Lemma B.1. (Imbens and Newey, 2009,Theorem 1) ηi t ⊥ vi t |ξi t .

From Lemma B.1, the conditional distribution of mi t given (vi t ,ξi t) satisfies

Gmt |vt ,ξt
(mi t |vi t ,ξi t) = Gηt |vt ,ξt

�

M−1
t (mi t , wi t , ui t)− h̄t

�

mi t−1, wi t−1, ui t−1, zh
it−1

�

|vi t ,ξi t

�

= Gηt |ξt

�

M−1
t (mi t , wi t , ui t)− h̄t

�

mi t−1, wi t−1, ui t−1, zh
it−1

�

|ξi t

�

,

Taking the derivatives of both sides with respect to qi t ∈ {mi t , ki t , li t , zs
i t , zd

it , ui t} and qi t−1 ∈
{mi t−1, ki t−1, li t−1, zs

i t−1, zd
it−1, zh

it−1, ui t−1}, we obtain

∂ Gmt |vt
(mi t |vi t ,ξi t)

∂ qi t
=
∂M−1

t (mi t , wi t , ui t)

∂ qi t
gη (ηi t |ξi t) , (B.5)

∂ Gmt |vt
(mi t |vi t ,ξi t)

∂ qi t−1
= −

∂ h̄
�

mi t−1, wi t−1, ui t−1, zh
it−1

�

∂ qi t−1
gη (ηi t |ξi t) , (B.6)

where ηi t =M−1
t (mi t , wi t , ui t)− h̄t

�

mi t−1, wi t−1, ui t−1, zh
it−1

�

.
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By taking the ratio of (B.5) and (B.6), we obtain (33) again. Therefore, following the same

steps in the proof for Proposition 3, we can identifyM−1
t (·) up to scale and location and Gη(·)

up to the scale normalization of ηt . Once φt(mi t , wi t , ui t) andM−1
t (mi t , wi t , ui t) are identified,

the step 3 can identify the same objects as before.

B.2 Discrete Firm Characteristics

B.2.1 Exogenous Characteristics

Supposezs
i t , zd

itand zh
it are discrete variable and have finite supportZs := {z1

s , ..., zJs
s },Zd :=

{z1
d , ..., zJd

d } and Zh := {z1
h , ..., zJh

h } In step1, the identification of the IVQR model does not require

the continuity of firm characteristics.Therefore, this section proves Propositions 2 and 3.The

following assumption modifies Assumption 2 for discrete zs
i t and zd

it .

Assumption B.2. (a) For every zs ∈ Zs, ft(·, zs) is continuously differentiable with respect to (m, k, l)
onM ×K ×L and strictly increasing in m. (b) For every

�

zd , u
�

∈ Zd × [0,1], ϕt(·, zd , u) is

strictly increasing and invertible with its inverse ϕ−1
t (r, zd , ut), which is continuously differentiable

with respect to (r, u) on R × [0,1]. (c) For every (k, l, zs, zd , u) ∈ K ×L ×Zs × Zd × [0,1],
Mt(·, k, l, zs, zd , u) is strictly increasing and invertible with its inverseM−1

t (m, k, l, zs, zd , u), which

is continuously differentiable with respect to (m, k, l, zs, zd , u) onM ×K ×L ×Zs ×Zd × [0, 1].
(d) (ζi t , ...,ζi t−υ) are independent from ηi t .

The following assumption modifies Assumption 6 for discrete zs
i t and zd

it .

Assumption B.3. (a) The distribution Gη(·) of η is absolutely continuous with a den-

sity function gη(·) that is continuous on its support. (b) ηi t is independent of vi t :=
(wi t , ui t , mi t−1, wi t−1, ui t−1, zh

it−1)
′ ∈ V with E[ηi t |vi t] = 0. (c) (x i t , x i t−1, ui t , ui t−1) is contin-

uously distributed onX 2× [0, 1]2. (d) The support Ω of ω is an interval [ω, ω̄] ⊂ R where ω< 0

and 1 < ω̄. (e) For every zh ∈ Zh, h(·, zh) is continuously differentiable with respect to ω on Ω.

(f) The setAqt−1
:= {(mi t−1, wi t−1, ui t−1, zh

it−1) ∈M ×W × [0, 1]×Zh : ∂ Gmt |vt
(mi t |vi t)/∂ qi t−1 ̸=

0 for all (mi t , wi t , ut) ∈M ×W × [0,1]} is nonempty for some qi t−1 ∈ {mi t−1, ki t−1, li t−1, ui t−1}.
(g) For each (mt−1, wt−1, ut−1, zh

t−1) ∈ M ×W × [0,1]×Zh, it is possible to find (m̃t , w̃t , ũt) ∈
M ×W × [0, 1] such that ∂ Gmt |vt

(m̃t |w̃t , ũt , mt−1, wt−1, ut−1, zh
t−1)/∂mt > 0.

The following proposition establishes the identification ofM−1
t (·).

Proposition B.1. Suppose that Assumptions 3, 4, B.2, and B.3 hold. Then, we can identifyM−1
t (·)

up to scale and location, and identify Gη(·) up to scale.

B.12



Proof. Choose normalization points (m∗t1, k∗t , l∗t , u∗t ) and (m∗t0, k∗t , l∗t , u∗t ) in Assumption 4 as well

as
�

m∗t−1, k∗t−1, l∗t−1, u∗t−1

�

∈ X × [0,1] such that, for
�

zs
t , zs

t−1, zd
t , zd

t−1, zh
t−1

�

∈ Z 2
s ×Z

2
d ×Zh,

M−1
t (m

∗
t0, k∗t , l∗t , zs

t , zd
t , u∗t ) = c0(z

s
t , zd

t ),M
−1
t (m

∗
t1, k∗t , l∗t , zs

t , zd
t , u∗t ) = c1(z

s
t , zd

t ), (B.7)

and h̄(m∗t−1, k∗t−1, l∗t−1, zs
t−1, zd

t−1, u∗t−1, zh
t−1) = c2(z

s
t−1, zd

t−1, zh
t−1), (B.8)

where {c0(zs
t , zd

t ), c1(zs
t , zd

t )}(zs
t ,z

d
t )∈Zs×Zd

and {c2(zs
t−1, zd

t−1, zh
t−1)}(zs

t−1,zd
t−1,zh

t−1)∈Zs×Zd×Zh
are un-

known constants. Without loss of generality, let
�

zs∗
t , zd∗

t

�

in Assumption 4 be zs∗
t = z1

s and

zd∗
t = z1

d . Thus, the normalization in Assumption 4 is imposed as

c0(z
1
s , z1

d) = 0 and c1(z
1
s , z1

d) = 1.

From the same step in the proof for Proposition 2, we can show that there exist
�

m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

and such some qt−1 ∈ {kt−1, lt−1, mt−1, ut−1, zh
t−1} that

∂M−1
t (mi t , wi t , ui t)

∂ qi t
= −

∂ h̄
�

m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

∂ qi t−1

×
∂ Gmt |vt

�

mi t |wi t , ui t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt

∂ Gmt |vt

�

mi t |wi t , ui t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt−1

(B.9)

for all (mi t , wi t , ui t) and all qt ∈ {mt , kt , lt , ut}. From (B.7) and (B.11), we have

1= c1(z
1
s , z1

d)− c0(z
1
s , z1

d)

=M−1
t (m

∗
t1, k∗t , l∗t , zs

t , zd
t , u∗t )−M

−1
t (m

∗
t0, k∗t , l∗t , zs

t , zd
t , u∗t )

= −
1

Sqt−1

∂ h̄
�

m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

∂ qt−1

and therefore identify ∂ h̄ ( x̃ t−1, z̃t−1)/∂ qt−1 as

∂ h̄
�

m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

∂ qt−1
= −S̃qt−1

, (B.10)

where

S̃qt−1
:=

�

∫ m∗t1

m∗t0

∂ Gmt |vt

�

m|k∗t , l∗t , z1
s , z1

d , u∗t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂mt

∂ Gmt |vt

�

m|k∗t , l∗t , z1
s , z1

d , u∗t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt−1

dm

�−1

.

By substituting (B.10) into (B.9), we can identify ∂M−1
t (mt , kt , lt , zt)/∂ qt for qt ∈

B.13



{mt , kt , lt , ut}as

∂M−1
t (mi t , wi t , ui t)

∂ qt
= S̃qt−1

Tqt qt−1
(mi t , wi t , ui t), (B.11)

where

Tqt qt−1
(mi t , wi t , ui t) :=

∂ Gmt |vt

�

mi t |wi t , ui t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt

∂ Gmt |vt

�

mi t |wi t , ui t , m̃i t−1, w̃i t−1, ũi t−1, z̃h
it−1

�

/∂ qt−1

.

From (B.7) and (B.11),M−1
t (x t , zt) is written as

M−1
t (x t , zs

t , zs
t , ut) = c0(z

s
t , zd

t ) +Λm(x t , zs
t , zd

t , ut), (B.12)

where

Λm

�

x t , zs
t , zd

t , ut

�

:= S̃qt−1

¨

∫ mt

m∗t0

Tmt qt−1
(s, kt , lt , zs

t , zd
t , ut)ds+

∫ kt

k∗t

Tkt qt−1
(m∗t0, s, lt , zs

t , zd
t , ut)ds

+

∫ lt

l∗t

Tlt qt−1
(m∗t0, k∗t , s, zs

t , zd
t , ut)ds+

∫ ut

u∗t

Tlt qt−1
(m∗t0, k∗t , l∗, zs

t , zd
t , s)ds

«

.

From Assumption B.3 (g), for a given point (mt−1, wt−1, ut−1, zh
t−1) ∈ M × W ×

[0,1] × Zh, we can find some point (m̃t , w̃t , ũt) ∈ M × W × [0,1] such that

∂ Gmt |vt
(m̃t |w̃t , ũt , mt−1, wt−1, ut−1, zh

t−1)/∂mt > 0. . Then, (B.9) identifies ∂ h̄ (x t−1, zt−1)/∂ qt−1

as

∂ h̄
�

mt−1, wt−1, ut−1, zh
t−1

�

∂ qt−1
= −

∂ Gmt |vt
(m̃t |w̃t , ũt , mt−1, wt−1, ut−1, zh

t−1)/∂ qt−1

∂ Gmt |vt
(m̃t |w̃t , ũt , mt−1, wt−1, ut−1, zh

t−1)/∂mt

×
∂M−1

t (m̃t , w̃t , ũt)

∂mt
.

Repeating this, we can identify ∂ h̄ (x t−1, zt−1)/∂ qt−1 for all (x t−1, zt−1) ∈ X ×Z . From (B.7)

and (B.10), we can write h̄t(x t−1, zt−1) as

h̄t(mt−1, wt−1, ut−1, zh
t−1) = c2(z

s
t−1, zd

t−1, zh
t−1) +Λh̄(mt−1, wt−1, ut−1, zh

t−1) (B.13)
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with

Λh̄(mt−1, wt−1, ut−1, zh
t−1) :=

∫ mt−1

m∗t−1

∂ h̄t(s, kt−1, lt−1, zs
t−1, zd

t−1, u∗t−1, zh
t−1)

∂mt−1
ds

+

∫ kt−1

k∗t−1

∂ h̄t(m∗t−1, s, lt−1, zs
t−1, zd

t−1, u∗t−1, zh
t−1)

∂ kt−1
ds

+

∫ lt−1

l∗t−1

∂ h̄t(m∗t−1, k∗t−1, s, zs
t−1, zd

t−1, u∗t−1, zh
t−1)

∂ lt−1
ds

+

∫ ut−1

u∗t−1

∂ h̄t(m∗t−1, k∗t−1, l∗t−1, zs
t−1, zd

t−1, s, zh
t−1)

∂ ut−1
ds.

Therefore, we can identifyM−1
t (m, kt , lt , zt) and h̄t (x t−1, zt−1) up to

�

c0(zs
t , zd

t ), c2(zs
t−1, zd

t−1, zh
t−1)

	

z∈Z .

Define eHt(zs
t , zd

t , zs
t−1, zd

t−1, zh
t−1) := E[Λm(x t , zs

t , zd
t , ut)−Λh̄(mt−1, wt−1, ut−1, zh

t−1)|z
s
t , zd

t , zs
t−1, zd

t−1, zh
t−1].

To determine
�

c0(zs
t , zd

t )
	

(zs
t ,z

d
t )∈Zs×Zd

and
�

c2(zs
t−1, zd

t−1, zh
t−1)

	

(zs
t−1,zd

t−1,zh
t−1)∈Zs×Zd

, we evaluate

0= E
�

ηt |zs
t , zd

t , zs
t−1, zd

t−1, zh
t−1

�

= E
�

M−1
t (m, kt , lt , zt)− h̄t (x t−1, zt−1) |zs

t , zd
t , zs

t−1, zd
t−1, zh

t−1

�

= eHt(z
s
t , zd

t , zs
t−1, zd

t−1, zh
t−1) + c0(z

s
t , zd

t )− c2(z
s
t−1, zd

t−1, zh
t−1)

at different values of (zs
t , zd

t , zs
t−1, zd

t−1, zh
t−1). First, evaluating E

�

ηt |zs
t , zd

t , zs
t−1, zd

t−1, zh
t−1

�

= 0 at

(zs
t , zd

t ) = (z
1
s , z1

d), and noting that c0(z1
s , z1

d) = 0, we have

c2(z
s
t−1, zd

t−1, zh
t−1) = eHt(z

1
s , z1

d , zs
t−1, zd

t−1, zh
t−1).

Therefore, c2(z) is identified for all z ∈ Z . Second, evaluating E
�

ηt |zs
t , zd

t , zs
t−1, zd

t−1, zh
t−1

�

= 0

at (zs
t−1, zd

t−1, zh
t−1) =

�

z1
s , z1

d , z1
h

�

, we identify c0(zs
t , zd

t ) as

c0(z
s
t , zd

t ) = c2(z
1
s , z1

d , z1
h)− eHt(z

s
t , zd

t , z1
s , z1

d , z1
h)

= eHt(z
1
s , z1

d , z1
s , z1

d , z1
h)− eHt(z

s
t , zd

t , z1
s , z1

d , z1
h).

Given that {c0(zs
t , zd

t )}(zs
t ,z

d
t )∈Zs×Zd

and {c2(zs
t−1, zd

t−1, zh
t−1)}(zs

t−1,zd
t−1,zh

t−1)∈Zs×Zd
are identified, we

can identify M−1
t (mt , kt , lt , zt) and h̄t(x t−1, zt) from (B.12) and (B.13). From ηi t = ωi t −

h̄t(x i t−1, zi t−1), we can identify the distribution of ηt , Gηt
(η).

Proposition B.2. Suppose that Assumptions 3, 4, B.2, B.3, and 7 hold. Then, we can identify

ϕ−1
t (·) and ft(·) up to scale and location and each firm’s markup ∂ ϕ−1

t (r̄i t , zi t)/∂ rt up to scale.

Proof. From (37) and (39), the markup ∂ ϕ−1
t (ri t , zd

it , ui t)/∂ rt is identified as (41).From φt and
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(41), the markup function µt(mt , wt , ut) is also identified as a function of (mt , wt , ut) as (42).

Substituting (42) into (37), we identify ∂ ft(x t , zs
t)/∂ qt for qs

t ∈ {mt , kt , lt} as (43).

Define c f (zs
t) := ft(m∗t0, k∗t , l∗t , zs

t) for the point (m∗t0, k∗t , l∗t ) in normalization (14) and As-

sumption 4. Integrating ∂ ft(x t , zs
t)/∂ qt for qs

t ∈ {mt , kt , lt} identifies ft(mt , kt , lt , zs
t) up to the

constant c f (zs
t):

ft(mt , kt , lt , zs
t) = c f (z

s
t) +Λ f (mt , kt , lt , zs

t)

where

Λ f (mt , kt , lt , zs
t) =

∫ mt

m∗t0

∂ ft(s, kt , lt , zs
t)

∂mt
ds+

∫ kt

k∗t

∂ ft(m∗t0, s, lt , zs
t)

∂ kt
ds

+

∫ lt

l∗t

∂ ft(m∗t0, k∗t , s, zs
t)

∂ lt
ds.

From the normalization (14) and Assumption 4, we have

ϕ−1
t

�

φt

�

m∗t0, k∗t , l∗t , zs∗
t , zd∗

t , u∗t
�

, zd∗
i t , u∗t

�

= ft(m
∗
t0, k∗t , l∗t , zs∗

t ) +M
−1
t (m

∗
t0, k∗t , l∗t , zs∗

t , zd∗
t , u∗t ) = 0

and

ϕ−1
t

�

φt

�

m∗t0, k∗t , l∗t , zs
t , zd∗

t , u∗t
�

, zd∗
i t , u∗t

�

= ft(m
∗
t0, k∗t , l∗t , zs

t) +M
−1
t (m

∗
t0, k∗t , l∗t , zs

t , zd∗
t , u∗t )

=c f (z
s
t) +M

−1
t (m

∗
t0, k∗t , l∗t , zs

t , zd∗
t , u∗t ).

The integration of ∂ ϕ−1
t (ri t , zd

it , ui t)/∂ rt leads to

∫ φt(m∗t0,k∗t ,l∗t ,zs
t ,z

d∗
t ,u∗t)

φt(m∗t0,k∗t ,l∗t ,zs∗
t ,zd∗

t ,u∗t)

∂ ϕ−1
t (s, zd∗

i t , u∗i t)

∂ rt
ds

=ϕ−1
t

�

φt

�

m∗t0, k∗t , l∗t , zs
t , zd∗

t , u∗t
�

, zd∗
i t , u∗t

�

=c f (z
s
t) +M

−1
t (m

∗
t0, k∗t , l∗t , zs

t , zd∗
t , u∗t ).
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Since φt(·), ∂ ϕ−1
t (·)/∂ rt andM−1

t (·), c f (zs
t) is identified as

c f (z
s
t) =

∫ φt(m∗t0,k∗t ,l∗t ,zs
t ,z

d∗
t ,u∗t)

φt(m∗t0,k∗t ,l∗t ,zs∗
t ,zd∗

t ,u∗t)

∂ ϕ−1
t (s, zd∗

i t , u∗i t)

∂ rt
ds

−M−1
t (m

∗
t0, k∗t , l∗t , zs

t , zd∗
t , u∗t ).

Thus, ft(x t , zs
t) is identified.

For given (rt , zd
t ) ∈ R ×Zd , Bt

�

rt , zd
t , ut

�

:=
��

x t , zs
t

�

∈ X ×Zs : φt

�

x t , zs
t , zd

t , ut

�

= rt

	

is

non-empty by the construction of R . The output quantity ϕ−1
t (rt , zt , ut) for any (rt , zt , ut) ∈

R ×Z × [0, 1] is identified by

ϕ−1
t (rt , zd

t , ut) = ft(x t , zs
t) +M

−1
t (mt , wt , ut) for

�

x t , zs
t

�

∈ Bt(rt , zd
t , ut).

The output price for individual firms is identified as

pi t := ri t −ϕ−1
t (ri t , zd

it , ui t).

B.2.2 Endogenous Characteristics

Firm characteristics (zs
i t , zd

it) may correlate with ui t and ηi t .In step 1, we can use (zs
i t−υ, zd

it−υ)
instead of (zs

i t−υ−1, zd
it−υ−1) as instrument variables to construct the moment condition similar

to (29). In step 2, we consider the control variable approach as in subsection B.1. Using

the same steps in subsection B.1, we can derive (B.5) and (B.6) for continuous variables

qi t ∈ {mi t , ki t , li t , ui t} and qi t−1 ∈ {mi t−1, ki t−1, li t−1, ui t−1}. Taking their ratios, we have (33).

Therefore, we can apply the same steps in subsection B.2.1 to establish identification.
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